WO2012081173A1 - Battery pack - Google Patents

Battery pack Download PDF

Info

Publication number
WO2012081173A1
WO2012081173A1 PCT/JP2011/006599 JP2011006599W WO2012081173A1 WO 2012081173 A1 WO2012081173 A1 WO 2012081173A1 JP 2011006599 W JP2011006599 W JP 2011006599W WO 2012081173 A1 WO2012081173 A1 WO 2012081173A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery pack
buffer member
pack according
battery
exterior body
Prior art date
Application number
PCT/JP2011/006599
Other languages
French (fr)
Japanese (ja)
Inventor
平塚 秀和
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2012516426A priority Critical patent/JP5039866B2/en
Publication of WO2012081173A1 publication Critical patent/WO2012081173A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/231Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/213Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/222Inorganic material
    • H01M50/224Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/227Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/229Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/24Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/242Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries against vibrations, collision impact or swelling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery pack in which a plurality of single cells are accommodated in an exterior body.
  • lithium ion secondary batteries are lightweight but have high electromotive force and high energy density, so various types of mobile phones, digital cameras, video cameras, notebook computers, etc.
  • power sources for driving portable electronic devices and mobile communication devices and power sources for powering cordless power tools There is an increasing demand for power sources for driving portable electronic devices and mobile communication devices and power sources for powering cordless power tools.
  • power sources for driving portable electronic devices and mobile communication devices and power sources for powering cordless power tools.
  • the conventional battery pack incorporates various protection circuits. However, such a battery pack may cause the protection circuit itself to fail due to an impact.
  • the battery pack itself is also limited in weight and shape, so that it is required to have a higher degree of design freedom while ensuring safety.
  • Patent Document 1 discloses a battery pack provided with a releasing means for releasing a connection state by a connecting means for connecting batteries by detecting an impact received by the battery pack.
  • Patent Document 2 discloses a battery pack that includes an impact absorbing portion that is adjacent to a storage portion that stores a battery and is destroyed when an impact is applied to the battery pack.
  • the present invention has been made in view of the above points, and its main purpose is to provide a battery pack having a high degree of freedom in design that is highly flexible during normal times and has a function of protecting the battery when subjected to an impact. It is to provide.
  • a battery pack according to the present invention is a battery pack in which an assembled battery in which a plurality of unit cells are connected is housed in an exterior body, and at least a part of the plurality of unit cells is covered with a buffer member having dilatancy characteristics. It is characterized by.
  • the buffer member is preferably made of a polymer base material imparting dilatancy characteristics or a resin material or a porous material containing an organic substance. Further, the buffer member may be formed of a bag body filled with a liquid or gel-like substance imparting dilatancy characteristics.
  • the organic substance is made of a gel-like substance
  • the buffer member is further imparted with thermal conductivity by bonding the gel-like substance when cured by absorbing an impact.
  • the buffer member is provided on the outer surface or inner surface of the exterior body. Moreover, the said buffer member may be comprised with the exterior body.
  • the “dilatancy characteristic” in the present invention is a kind of nonlinear viscoelasticity, and usually refers to a characteristic in which the viscosity rapidly increases as the flow rate increases, although the viscosity is usually small.
  • a typical example of the dilatancy characteristic is a characteristic that cures when a momentary impact is applied.
  • a battery pack having a high degree of freedom in design which is highly flexible during normal times and has a function of protecting the battery when subjected to an impact.
  • FIG. 2 is a cross-sectional view taken along the line X-X ′ of the battery pack of FIG. 1. It is the fragmentary sectional perspective view which showed the structure of the single battery accommodated in a battery pack. It is the perspective view which showed the structure of the assembled battery which connected the several cell. It is sectional drawing which showed the structure of the buffer member in other embodiment of this invention. It is sectional drawing which showed the structure of the buffer member in other embodiment of this invention. It is sectional drawing which showed the structure of the buffer member in other embodiment of this invention. It is sectional drawing which showed the structure of the buffer member in other embodiment of this invention. It is sectional drawing which showed the structure of the buffer member in other embodiment of this invention.
  • FIG. 1 is a perspective view showing a configuration of a battery pack 1 according to an embodiment of the present invention.
  • 2 is a cross-sectional view taken along the line X-X ′ of the battery pack 1 shown in FIG.
  • a battery pack 1 houses an assembled battery 4 configured by electrically connecting a plurality of cylindrical unit cells 3 inside a box-shaped housing 2 having a substantially rectangular parallelepiped shape. Yes.
  • the housing 2 is composed of a battery pack exterior body 7 and a buffer member (protective layer) 8 having a dilatancy characteristic.
  • the outer surface of the exterior body 7 is covered with the buffer member 8, so that the plurality of single cells 3 are covered with the buffer member 8.
  • the exterior body 7 is made of a heat-resistant metal such as iron, nickel, aluminum, titanium, copper, stainless steel, a noncombustible material, liquid crystalline wholly aromatic polyester, polyethersulfone, aromatic polyamide, or the like. A certain resin or a laminate of a metal and a resin is used.
  • the buffer member 8 is made of a polymer base material imparting dilatancy characteristics or a resin material or a porous material containing an organic substance.
  • the buffer member 8 is made of a composite material in which a polymer base material imparting dilatancy characteristics is contained in pores of an open-cell foam such as a polyurethane foam or a cellulose foam.
  • the polymer base material that imparts dilatancy characteristics examples include silicone bouncing putties.
  • the silicone bouncing putty is a boron-containing siloxane polymer obtained by polymerizing dimethylsiloxane using boric acid as a catalyst.
  • This material is a shear-thickening material that is sensitive to the deformation rate, and becomes a viscous flow at a low-speed strain deformation, but sufficiently increases the viscosity at a high-speed strain deformation.
  • examples of the organic material imparting dilatancy characteristics include a liquid or gel substance that is a dispersion of solid particles in a viscous fluid.
  • these organic materials can be filled in the bag body to constitute the buffer member 8.
  • a resin material that is lightweight, flexible, and relatively easy to process is desirable.
  • a processed material such as a film, a sheet, or a fiber can be used.
  • the resin material by processing the resin material into a hollow body or a foam, it is possible to enclose an organic material that imparts dilatancy characteristics inside the resin.
  • the buffer member 8 by covering the plurality of single cells 3 with the buffer member 8 having dilatancy characteristics, when the battery pack 1 receives an impact from the outside, the buffer member 8 is cured, whereby the single cell 3. Can be protected from impact.
  • the buffer member 8 can be comprised with the polymer base material which provides a dilatancy characteristic, or the resin material or porous material containing the organic substance, it can be normally utilized in a lightweight and flexible form. it can. Thereby, the battery pack 1 which is safe and has a high degree of design freedom can be realized.
  • the buffer member 8 when a gel-like substance is used as an organic substance that imparts dilatancy characteristics, the buffer member 8 further imparts thermal conductivity by bonding the gel-like substance when cured by absorbing an impact. Can do. Thereby, even if an excessive impact is applied to the battery pack, an internal short circuit occurs in the unit cell, and the unit cell generates heat, the generated heat is transferred to the outside through the buffer member 8 provided with thermal conductivity. I can escape. As a result, it is possible to prevent thermal runaway due to a rise in temperature of normal cells other than the unit cell in which an internal short circuit has occurred.
  • a gel substance examples include a heat conductive silicone grease.
  • the silicone polymer includes aluminum, silver, copper, nickel, zinc oxide, alumina, magnesium oxide, aluminum nitride, boron nitride, silicon nitride, diamond, graphite, carbon nanotube, metallic silicon, carbon fiber, fullerene, etc. Examples thereof include materials containing at least one kind of heat conductive material.
  • FIG. 3 is a partial cross-sectional perspective view schematically showing the configuration of the unit cell 3 housed in the battery pack 1.
  • the type of unit cell 3 housed in the battery pack 1 is not particularly limited.
  • the single battery 3 illustrated in FIG. 3 is a cylindrical lithium ion secondary battery.
  • an electrode group 28 in which a positive electrode plate 17 and a negative electrode plate 19 are wound through a separator 21 is housed in a battery case 24 together with an electrolytic solution (not shown).
  • Insulating plates 22 and 23 are respectively provided above and below the electrode group 28, and the opening of the battery case 24 is sealed with a gasket 25, a sealing plate 26, and a positive electrode terminal 27.
  • the positive electrode plate 17 is connected to the sealing plate 26 and the positive electrode terminal 27 through the positive electrode lead 18, and the negative electrode plate 19 is connected to the bottom of the battery case 24 that also serves as the negative electrode terminal through the negative electrode lead 20.
  • a circular groove 29 is formed in the center of the sealing plate 26.
  • the groove 29 is broken. Further, the convex portion of the positive electrode terminal 27 is provided with an opening 30 (discharge port). When the groove 29 is broken, the gas generated in the battery case 24 is discharged from the opening 30 to the outside. It has become.
  • the positive electrode plate 17 has a positive electrode active material coated on the surface of a positive electrode current collector made of aluminum foil or the like.
  • a transition metal-containing composite oxide containing lithium for example, a transition metal-containing composite oxide such as LiCoO 2 or LiNiO 2 can be used.
  • the negative electrode plate 19 has a negative electrode active material coated on the surface of a negative electrode current collector made of a metal foil such as a copper foil.
  • a negative electrode active material a carbon material, a lithium-containing composite oxide, a material that can be alloyed with lithium, a material that can reversibly store and release lithium, a metallic lithium, and the like can be used.
  • FIG. 4 is a perspective view showing the configuration of the assembled battery 4 in which a plurality of unit cells 3 are connected.
  • the assembled battery 4 illustrated in FIG. 4 includes a plurality of unit cells 3 connected in series by a connection plate 12.
  • An insulation sheet 13 is wound around the outer periphery of the unit cell 3, and connection lead wires 14 for connection to external devices extend from the unit cells 3 at both ends of the assembled battery 4.
  • the cell 3 which comprises the assembled battery 4 may be connected in parallel.
  • the buffer member 8 is cured when the battery pack 1 receives an impact from the outside by covering the plurality of single cells 3 with the buffer member 8 having dilatancy characteristics.
  • the unit cell 3 can be protected from impact.
  • the form in which the buffer member 8 covers the plurality of single cells 3 is not limited to the configuration shown in FIG. 2 and can take various forms.
  • the battery pack 1 shown in FIG. 5 is configured such that the buffer member 8 is constituted by an exterior body of the battery pack 1.
  • the buffer member 8 can be made of a resin material in which plastic, rubber, or fiber containing an organic substance imparting dilatancy characteristics is woven.
  • the buffer member 8 also serves to protect the unit cell 3 as an exterior body of the battery pack 1.
  • the battery pack 1 shown in FIG. 6 has a buffer member 8 attached to a part of the surface of the exterior body 7.
  • the shock can be effectively absorbed by attaching the buffer member 8 to a portion where the strength of the exterior body 7 is weak.
  • the battery pack 1 shown in FIG. 7 has a buffer member 8 attached to the inside of the exterior body 7. Since the buffer member 8 is hidden inside the battery pack 1 in appearance, the shape and function of the exterior body 7 can be maintained.
  • the battery pack 1 shown in FIG. 8 has a buffer member 8 attached to a part of the inside of the exterior body 7 and the unit cell 3 is fixed by the buffer member 8. Thereby, the cell 3 can be protected more stably.
  • the battery pack 1 shown in FIG. 9 is obtained by filling the space between the exterior body 7 and the unit cell 3 with a buffer member 8 made of a gel substance. Thereby, the cell 3 can be protected more stably.
  • the battery pack 1 shown in FIG. 10 has a buffer member 8 provided between adjacent unit cells 3.
  • the buffer member 8 By making the buffer member 8 function as a storage wall for partitioning the unit cell 3, the unit cell 3 can be protected from impact and the structure of the exterior body 7 can be further strengthened.
  • the battery pack 1 shown in FIG. 11 is one in which a base material 32 having pores is filled in the exterior body 7, and an organic substance imparting dilatancy characteristics is filled in the pores.
  • a base material 32 foamed polystyrene, a ceramic porous body, or the like can be used, and the organic material imparting dilatancy characteristics is preferably liquid or gel.
  • the buffer member 8 is constituted by a bag body filled with a liquid or gel-like substance imparting dilatancy characteristics.
  • a bag body for example, a bag made of aluminum foil can be used.
  • the buffer member 8 may be directly attached to the outer periphery of the unit cell 3 or the assembled battery 4.
  • FIG. 13A shows an example in which the buffer member 8 is attached to the outer periphery of the cylindrical unit cell 3
  • FIG. 13B shows an example in which the buffer member 8 is attached to the outer periphery of the prismatic unit cell 3.
  • FIG. 14 shows an example in which the buffer member 8 is attached to the outer periphery of the assembled battery 4.
  • the cylindrical lithium ion secondary battery 3 having a diameter of 18 mm and a height of 65 mm was produced by housing in a metal battery case 24 and sealing the opening of the battery case 24.
  • the design capacity of the battery was 2000 mAh.
  • the outer periphery of the battery case 24 was covered with a heat-shrinkable tube made of polyethylene terephthalate having a thickness of 80 ⁇ m.
  • Example 1 As shown in FIG. 2, a battery pack 1 having a structure in which a buffer member 8 was provided on the outer peripheral surface of the exterior body 7 was produced.
  • a plastic containing a polymer base material exhibiting dilatancy characteristics was used, and the thickness was set to 0.3 mm.
  • the polymer base material a resin material in which silicone oil is the main raw material and boron is bonded is used.
  • the exterior body 7 was made of epoxy resin and the thickness was 0.2 mm.
  • Example 2 As shown in FIG. 5, a battery pack 1 having a structure in which the buffer member 8 is configured by an exterior body was produced.
  • the buffer member 8 a plastic containing a polymer base material exhibiting dilatancy characteristics was used, and the thickness was set to 0.5 mm.
  • the polymer base material a resin material in which silicone oil is the main raw material and boron is bonded is used.
  • Example 3 As shown in FIG. 6, the battery pack 1 having a configuration in which the buffer member 8 was attached to a part of the surface of the exterior body 7 was produced.
  • the buffer member 8 a plastic containing a polymer base material exhibiting dilatancy characteristics was used, and the outer dimensions were 15 mm ⁇ 50 mm and the thickness was 0.3 mm.
  • the polymer base material a resin material in which silicone oil is the main raw material and boron is bonded is used.
  • Example 4 As shown in FIG. 7, the battery pack 1 having a configuration in which the buffer member 8 was attached to the inside of the exterior body 7 was produced.
  • the buffer member 8 a plastic containing a polymer base material exhibiting dilatancy characteristics was used, and the thickness was set to 0.3 mm.
  • the polymer base material a resin material in which silicone oil is the main raw material and boron is bonded is used.
  • Example 5 As shown in FIG. 8, the battery pack 1 having a configuration in which the buffer member 8 was attached to a part of the inside of the exterior body 7 and the unit cell 3 was fixed by the buffer member 8 was produced.
  • the buffer member 8 a plastic containing a polymer base material exhibiting dilatancy characteristics was used, and the outer dimensions were 15 mm ⁇ 50 mm and the thickness was 0.3 mm.
  • the polymer base material a resin material in which silicone oil is the main raw material and boron is bonded is used.
  • Example 6 As shown in FIG. 9, a battery pack 1 having a configuration in which the space between the exterior body 7 and the single battery 3 was filled with a buffer member 8 made of a gel material was produced.
  • a buffer member 8 As the buffer member 8, a resin material having a dilatancy characteristic in which silicone oil is the main raw material and boron is bonded is used.
  • Example 7 As shown in FIG. 10, a battery pack 1 having a configuration in which a buffer member 8 was provided between adjacent unit cells 3 was produced.
  • a plastic containing a polymer base material exhibiting dilatancy characteristics was used, and the outer dimensions were 18 mm ⁇ 65 mm and the thickness was 0.5 mm.
  • the polymer base material a resin material in which silicone oil is the main raw material and boron is bonded is used.
  • Example 8 As shown in FIG. 11, a battery pack 1 having a configuration in which a base material 32 having pores was filled in the exterior body 7 and an organic substance imparting dilatancy characteristics was filled in the pores.
  • the base material 32 foamed silicone was used, and as the buffer member 8, a resin material fluid having a dilatancy characteristic in which polydiorganosiloxane and boron were bonded together was used.
  • Example 9 As shown in FIG. 12, a battery pack 1 was produced in which the buffer member 8 was constituted by a bag body filled with a gel-like substance imparting dilatancy characteristics.
  • the buffer member 8 an aluminum foil bag filled with a polymer base material exhibiting dilatancy characteristics and sealed was used.
  • a polymer base material exhibiting dilatancy characteristics a mixture of 80% quartz sand, 16% glycerin, and 4% water was used.
  • the battery pack 1 having a configuration in which the buffer member 8 is attached to the outer periphery of the unit cell 3 was produced.
  • the buffer member 8 a plastic containing a polymer base material exhibiting dilatancy characteristics was used, and the thickness was set to 0.3 mm.
  • the polymer base material a resin material in which silicone oil is the main raw material and boron is bonded is used.
  • Example 11 As shown in FIG. 14, the battery pack 1 having a configuration in which the buffer member 8 was attached to the outer periphery of the assembled battery 4 was produced.
  • the buffer member 8 a plastic containing a polymer base material exhibiting dilatancy characteristics was used, and the thickness was set to 0.3 mm.
  • the polymer base material a resin material in which silicone oil is the main raw material and boron is bonded is used.
  • the single battery 3 is a lithium ion secondary battery, but other secondary batteries (for example, a nickel metal hydride battery) may be used.
  • the present invention is useful as a power source for electronic devices, automobiles, electric motorcycles, electric playground equipment, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

A battery pack (1) is formed from an assembly cell (4) having a plurality of connected single cells (3) contained within an exterior casing (7). At least some of the single cells (3) are covered by a cushioning member (8) having dilatant characteristics. The cushioning member (8) is formed from a resin material, porous material, or other material containing a polymer base material or organic substance that imparts the dilatant characteristics.

Description

電池パックBattery pack
 本発明は、複数の単電池が外装体内に収容された電池パックに関する。 The present invention relates to a battery pack in which a plurality of single cells are accommodated in an exterior body.
 近年、省資源や省エネルギーの観点から、繰り返し使用できるニッケル水素、ニッケルカドミウムやリチウムイオンなどの二次電池の需要が高まっている。中でも、リチウムイオン二次電池は、軽量でありながら起電力が高く、高エネルギー密度であるという特徴を有しているため、携帯電話、デジタルカメラ、ビデオカメラ、ノート型パソコンなどの様々な種類の携帯型電子機器や移動体通信機器の駆動用電源、また、コードレス化した電動工具の動力用電源としての需要が拡大している。一方、石油などの化石燃料の使用量の低減やCO2の排出量を削減するために、自動車などのモータ駆動用の電源として、複数の電池を組み合わせて、所望の電圧や容量を得ることができる電池パックも開発されている。 In recent years, demands for secondary batteries such as nickel metal hydride, nickel cadmium, and lithium ion that can be used repeatedly are increasing from the viewpoint of resource saving and energy saving. In particular, lithium ion secondary batteries are lightweight but have high electromotive force and high energy density, so various types of mobile phones, digital cameras, video cameras, notebook computers, etc. There is an increasing demand for power sources for driving portable electronic devices and mobile communication devices and power sources for powering cordless power tools. On the other hand, in order to reduce the consumption of fossil fuels such as petroleum and reduce CO 2 emissions, it is possible to obtain a desired voltage and capacity by combining a plurality of batteries as a power source for driving a motor of an automobile or the like. Battery packs that can be used have been developed.
 電池の高エネルギー密度化が進むに伴って、電池自体の安全性とともに、それらを集合して用いる電池パックにおける安全性がより重要となっている。 As the battery energy density increases, the safety of the battery pack that uses them together with the safety of the battery itself is becoming more important.
 外部から強い衝撃を受けて、電池内部、あるいは電池パック内部で短絡が起きると、極めて大きな電流が電池パック内に流れて、破裂や発火が生じるおそれがある。これを防止するために、従来の電池パックは、種々の保護回路を内蔵している。しかしながら、このような電池パックは、衝撃により、保護回路自身が故障するおそれがある。 If a short circuit occurs inside the battery pack or inside the battery pack due to a strong impact from the outside, a very large current may flow into the battery pack, causing explosion or ignition. In order to prevent this, the conventional battery pack incorporates various protection circuits. However, such a battery pack may cause the protection circuit itself to fail due to an impact.
 また、機器の小型・軽量化に伴い、搭載する電池パック自体も、重量や形状に制限が設けられることから、安全性を図りながら、より設計自由度の高いものが要求されている。 Also, as the equipment becomes smaller and lighter, the battery pack itself is also limited in weight and shape, so that it is required to have a higher degree of design freedom while ensuring safety.
 特許文献1には、電池パックが受けた衝撃を検知することによって、電池を連結する連結手段による接続状態を解除する解除手段を備えた電池パックが開示されている。 Patent Document 1 discloses a battery pack provided with a releasing means for releasing a connection state by a connecting means for connecting batteries by detecting an impact received by the battery pack.
 また、特許文献2には、電池を収納する収納部に隣接して、電池パックに衝撃が加わると破壊される衝撃吸収部を備えた電池パックが開示されている。 Further, Patent Document 2 discloses a battery pack that includes an impact absorbing portion that is adjacent to a storage portion that stores a battery and is destroyed when an impact is applied to the battery pack.
特開平9-274906号公報JP-A-9-274906 特開2003-45392号公報JP 2003-45392 A
 特許文献1に開示された電池パックは、電池パックを大きく変形させるような衝撃が加わった場合、連結手段が大きく変形すると、電池自体が接触するおそれがある。そのため、電池の短絡を防止するためには、電池パックの外装体を強固なものにする必要がある。 In the battery pack disclosed in Patent Document 1, when an impact that greatly deforms the battery pack is applied, the battery itself may come into contact if the connecting means is greatly deformed. Therefore, in order to prevent a short circuit of the battery, it is necessary to make the outer package of the battery pack strong.
 また、特許文献2に開示された電池パックは、電池を収納する収納部とは別個に、衝撃吸収部を設ける必要があるため、電池パックの外装体の形状に制約が加わる。 In addition, since the battery pack disclosed in Patent Document 2 needs to be provided with an impact absorbing portion separately from the storage portion for storing the battery, the shape of the battery pack exterior body is restricted.
 すなわち、従来の電池パックでは、安全性を確保するために、電池パックの外装体の強度や形態等に制約が加わるため、電池パックの設計自由度に高めることが難しい。 That is, in the conventional battery pack, in order to ensure safety, restrictions are imposed on the strength and form of the battery pack exterior body, so it is difficult to increase the design freedom of the battery pack.
 本発明は、かかる点に鑑みなされたもので、その主な目的は、通常時は柔軟性が高く、衝撃を受けたときには電池を保護する機能が付加される、設計自由度の高い電池パックを提供することにある。 The present invention has been made in view of the above points, and its main purpose is to provide a battery pack having a high degree of freedom in design that is highly flexible during normal times and has a function of protecting the battery when subjected to an impact. It is to provide.
 本発明に係る電池パックは、複数の単電池を接続した組電池が外装体内に収納されてなる電池パックであって、複数の単電池の少なくとも一部が、ダイラタンシー特性を有する緩衝部材で覆われていることを特徴とする。 A battery pack according to the present invention is a battery pack in which an assembled battery in which a plurality of unit cells are connected is housed in an exterior body, and at least a part of the plurality of unit cells is covered with a buffer member having dilatancy characteristics. It is characterized by.
 上記緩衝部材は、ダイラタンシー特性を付与するポリマーベース材料または有機物質を含有した樹脂材料または多孔質材料からなることが好ましい。また、上記緩衝部材は、ダイラタンシー特性を付与する液状またはゲル状の物質が充填された袋体からなるものであってもよい。 The buffer member is preferably made of a polymer base material imparting dilatancy characteristics or a resin material or a porous material containing an organic substance. Further, the buffer member may be formed of a bag body filled with a liquid or gel-like substance imparting dilatancy characteristics.
 ある好適な実施形態において、上記有機物質は、ゲル状物質からなり、緩衝部材は、衝撃を吸収して硬化したとき、ゲル状物質が結合することにより、熱伝導性がさらに付与される。 In a preferred embodiment, the organic substance is made of a gel-like substance, and the buffer member is further imparted with thermal conductivity by bonding the gel-like substance when cured by absorbing an impact.
 上記緩衝部材は、外装体の外表面または内表面に設けられていることが好ましい。また、上記緩衝部材は、外装体で構成されていてもよい。 It is preferable that the buffer member is provided on the outer surface or inner surface of the exterior body. Moreover, the said buffer member may be comprised with the exterior body.
 なお、本発明における「ダイラタンシー特性」とは、非線形粘弾性の一種であり、通常は粘度が小さいが、流動の速度が大きくなると急激に粘度が増大する特性をいう。ダイラタンシー特性の典型的な例としては、瞬間的な衝撃が加わったときに、硬化する特性が挙げられる。 The “dilatancy characteristic” in the present invention is a kind of nonlinear viscoelasticity, and usually refers to a characteristic in which the viscosity rapidly increases as the flow rate increases, although the viscosity is usually small. A typical example of the dilatancy characteristic is a characteristic that cures when a momentary impact is applied.
 本発明によると、通常時は柔軟性が高く、衝撃を受けたときには電池を保護する機能が付加される、設計自由度の高い電池パックを提供することができる。 According to the present invention, it is possible to provide a battery pack having a high degree of freedom in design, which is highly flexible during normal times and has a function of protecting the battery when subjected to an impact.
本発明の一実施形態における電池パックの構成を示した斜視図である。It is the perspective view which showed the structure of the battery pack in one Embodiment of this invention. 図1の電池パックのX-X’に沿った断面図である。FIG. 2 is a cross-sectional view taken along the line X-X ′ of the battery pack of FIG. 1. 電池パックに収納される単電池の構成を示した部分断面斜視図である。It is the fragmentary sectional perspective view which showed the structure of the single battery accommodated in a battery pack. 複数の単電池を接続した組電池の構成を示した斜視図である。It is the perspective view which showed the structure of the assembled battery which connected the several cell. 本発明の他の実施形態における緩衝部材の構成を示した断面図である。It is sectional drawing which showed the structure of the buffer member in other embodiment of this invention. 本発明の他の実施形態における緩衝部材の構成を示した断面図である。It is sectional drawing which showed the structure of the buffer member in other embodiment of this invention. 本発明の他の実施形態における緩衝部材の構成を示した断面図である。It is sectional drawing which showed the structure of the buffer member in other embodiment of this invention. 本発明の他の実施形態における緩衝部材の構成を示した断面図である。It is sectional drawing which showed the structure of the buffer member in other embodiment of this invention. 本発明の他の実施形態における緩衝部材の構成を示した断面図である。It is sectional drawing which showed the structure of the buffer member in other embodiment of this invention. 本発明の他の実施形態における緩衝部材の構成を示した断面図である。It is sectional drawing which showed the structure of the buffer member in other embodiment of this invention. 本発明の他の実施形態における緩衝部材の構成を示した断面図である。It is sectional drawing which showed the structure of the buffer member in other embodiment of this invention. 本発明の他の実施形態における緩衝部材の構成を示した断面図である。It is sectional drawing which showed the structure of the buffer member in other embodiment of this invention. (a)、(b)は、本発明の他の実施形態における緩衝部材の構成を示した斜視図である。(A), (b) is the perspective view which showed the structure of the buffer member in other embodiment of this invention. 本発明の他の実施形態における緩衝部材の構成を示した断面図である。It is sectional drawing which showed the structure of the buffer member in other embodiment of this invention.
 以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではない。また、本発明の効果を奏する範囲を逸脱しない範囲で、適宜変更は可能である。さらに、他の実施形態との組み合わせも可能である。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited to the following embodiment. Moreover, it can change suitably in the range which does not deviate from the range which has the effect of this invention. Furthermore, combinations with other embodiments are possible.
 図1は、本発明の一実施形態における電池パック1の構成を示した斜視図である。また、図2は、図1に示す電池パック1のX-X’に沿った断面図である。 FIG. 1 is a perspective view showing a configuration of a battery pack 1 according to an embodiment of the present invention. 2 is a cross-sectional view taken along the line X-X ′ of the battery pack 1 shown in FIG.
 図1に示すように、電池パック1は、略直方体の箱状の筐体2の内部に、複数の円筒形の単電池3が電気的に接続されて構成された組電池4を収納している。 As shown in FIG. 1, a battery pack 1 houses an assembled battery 4 configured by electrically connecting a plurality of cylindrical unit cells 3 inside a box-shaped housing 2 having a substantially rectangular parallelepiped shape. Yes.
 図2に示すように、筐体2は、電池パックの外装体7と、ダイラタンシー特性を有する緩衝部材(保護層)8とで構成されている。本実施形態では、外装体7の外表面を、緩衝部材8で覆うことによって、複数の単電池3が、緩衝部材8で覆われた状態になっている。 As shown in FIG. 2, the housing 2 is composed of a battery pack exterior body 7 and a buffer member (protective layer) 8 having a dilatancy characteristic. In the present embodiment, the outer surface of the exterior body 7 is covered with the buffer member 8, so that the plurality of single cells 3 are covered with the buffer member 8.
 ここで、外装体7は、例えば、鉄、ニッケル、アルミニウム、チタン、銅、ステンレス等、不燃材料である金属や、液晶性全芳香族ポリエステル、ポリエーテルサルホン、芳香族ポリアミドなどの耐熱性のある樹脂、または金属と樹脂との積層体を用いて構成されている。 Here, the exterior body 7 is made of a heat-resistant metal such as iron, nickel, aluminum, titanium, copper, stainless steel, a noncombustible material, liquid crystalline wholly aromatic polyester, polyethersulfone, aromatic polyamide, or the like. A certain resin or a laminate of a metal and a resin is used.
 また、緩衝部材8は、ダイラタンシー特性を付与するポリマーベース材料または有機物質を含有した樹脂材料または多孔質材料からなる。 The buffer member 8 is made of a polymer base material imparting dilatancy characteristics or a resin material or a porous material containing an organic substance.
 例えば、緩衝部材8は、ポリウレタン発泡体又はセルロース発泡体等の連続気泡発泡体の空孔中に、ダイラタンシー特性を付与するポリマーベース材料を含有させた複合材料で構成されている。 For example, the buffer member 8 is made of a composite material in which a polymer base material imparting dilatancy characteristics is contained in pores of an open-cell foam such as a polyurethane foam or a cellulose foam.
 ダイラタンシー特性を付与するポリマーベース材料としては、例えば、シリコーン・バウンシング・パテ(silicon bouncing putties)が挙げられる。ここで、シリコーン・バウンシング・パテは、ジメチルシロキサンをホウ酸を触媒として重合してなるホウ素含有シロキサンポリマーである。この材料は、変形速度に敏感な、せん断増粘性の材料であり、低速のひずみ変形では粘性流になるが、高速のひずみ変形では、十分な粘度上昇を果たす。 Examples of the polymer base material that imparts dilatancy characteristics include silicone bouncing putties. Here, the silicone bouncing putty is a boron-containing siloxane polymer obtained by polymerizing dimethylsiloxane using boric acid as a catalyst. This material is a shear-thickening material that is sensitive to the deformation rate, and becomes a viscous flow at a low-speed strain deformation, but sufficiently increases the viscosity at a high-speed strain deformation.
 また、ダイラタンシー特性を付与する有機材料としては、例えば、粘性流体中の固体粒子の分散液とした液状もしくはゲル状の物質が挙げられる。なお、これらの有機材料は、袋体に充填されて、緩衝部材8を構成することができる。 Also, examples of the organic material imparting dilatancy characteristics include a liquid or gel substance that is a dispersion of solid particles in a viscous fluid. In addition, these organic materials can be filled in the bag body to constitute the buffer member 8.
 袋体としては、軽量で柔軟性を持ち、比較的加工が容易な樹脂材料が望ましく、例えば、フィルム、シート、ファイバー等の形状に加工したものを用いることができる。また、樹脂材料を、中空体または発泡体に加工することにより、樹脂内部にダイラタンシー特性を付与する有機材料を内封させることも可能である。 As the bag body, a resin material that is lightweight, flexible, and relatively easy to process is desirable. For example, a processed material such as a film, a sheet, or a fiber can be used. Further, by processing the resin material into a hollow body or a foam, it is possible to enclose an organic material that imparts dilatancy characteristics inside the resin.
 本発明によれば、複数の単電池3を、ダイラタンシー特性を有する緩衝部材8で覆うことによって、電池パック1が外部から衝撃を受けたときに、緩衝部材8が硬化することによって、単電池3を衝撃から保護することができる。また、緩衝部材8は、ダイラタンシー特性を付与するポリマーベース材料または有機物質を含有した樹脂材料または多孔質材料で構成することができるため、通常時は、軽量、かつ柔軟な形態で利用することができる。これにより、安全で、設計自由度の高い電池パック1を実現することができる。 According to the present invention, by covering the plurality of single cells 3 with the buffer member 8 having dilatancy characteristics, when the battery pack 1 receives an impact from the outside, the buffer member 8 is cured, whereby the single cell 3. Can be protected from impact. Moreover, since the buffer member 8 can be comprised with the polymer base material which provides a dilatancy characteristic, or the resin material or porous material containing the organic substance, it can be normally utilized in a lightweight and flexible form. it can. Thereby, the battery pack 1 which is safe and has a high degree of design freedom can be realized.
 なお、ダイラタンシー特性を付与する有機物質として、ゲル状物質を用いた場合、緩衝部材8は、衝撃を吸収して硬化したとき、ゲル状物質が結合することにより、熱伝導性をさらに付与することができる。これにより、電池パックに過度の衝撃が加わって、単電池に内部短絡等が生じて単電池が発熱しても、熱伝導性が付与された緩衝部材8を介して、発生した熱を外部に逃がすことができる。その結果、内部短絡が生じた単電池以外の正常な単電池の温度上昇による熱暴走を防止することができる。 In addition, when a gel-like substance is used as an organic substance that imparts dilatancy characteristics, the buffer member 8 further imparts thermal conductivity by bonding the gel-like substance when cured by absorbing an impact. Can do. Thereby, even if an excessive impact is applied to the battery pack, an internal short circuit occurs in the unit cell, and the unit cell generates heat, the generated heat is transferred to the outside through the buffer member 8 provided with thermal conductivity. I can escape. As a result, it is possible to prevent thermal runaway due to a rise in temperature of normal cells other than the unit cell in which an internal short circuit has occurred.
 このようなゲル状物質としては、例えば、熱伝導性シリコーングリース等を挙げることができる。具体的には、シリコーンポリマーに、アルミニウム、銀、銅、ニッケル、酸化亜鉛、アルミナ、酸化マグネシウム、窒化アルミニウム、窒化ホウ素、窒化珪素、ダイヤモンド、グラファイト、カーボンナノチューブ、金属珪素、カーボンファイバー、フラーレン等の熱伝導性材料を、少なくとも1種類以上含む材料が挙げられる。 Examples of such a gel substance include a heat conductive silicone grease. Specifically, the silicone polymer includes aluminum, silver, copper, nickel, zinc oxide, alumina, magnesium oxide, aluminum nitride, boron nitride, silicon nitride, diamond, graphite, carbon nanotube, metallic silicon, carbon fiber, fullerene, etc. Examples thereof include materials containing at least one kind of heat conductive material.
 図3は、電池パック1に収納される単電池3の構成を模式的に示した部分断面斜視図である。なお、本発明において、電池パック1に収納される単電池3の種類は、特に制限されない。図3に例示する単電池3は、円筒形のリチウムイオン二次電池である。 FIG. 3 is a partial cross-sectional perspective view schematically showing the configuration of the unit cell 3 housed in the battery pack 1. In the present invention, the type of unit cell 3 housed in the battery pack 1 is not particularly limited. The single battery 3 illustrated in FIG. 3 is a cylindrical lithium ion secondary battery.
 図3に示すように、正極板17と負極板19とが、セパレータ21を介して捲回された電極群28が、電解液(不図示)とともに、電池ケース24内に収容されている。電極群28の上下には、絶縁板22、23がそれぞれ配設され、電池ケース24の開口部は、ガスケット25、封口板26、及び正極端子27とで封口されている。また、正極板17は、正極リード18を介して、封口板26及び正極端子27に接続され、負極板19は、負極リード20を介して、負極端子を兼ねる電池ケース24の底部に接続されている。 As shown in FIG. 3, an electrode group 28 in which a positive electrode plate 17 and a negative electrode plate 19 are wound through a separator 21 is housed in a battery case 24 together with an electrolytic solution (not shown). Insulating plates 22 and 23 are respectively provided above and below the electrode group 28, and the opening of the battery case 24 is sealed with a gasket 25, a sealing plate 26, and a positive electrode terminal 27. The positive electrode plate 17 is connected to the sealing plate 26 and the positive electrode terminal 27 through the positive electrode lead 18, and the negative electrode plate 19 is connected to the bottom of the battery case 24 that also serves as the negative electrode terminal through the negative electrode lead 20. Yes.
 封口板26の中央には、円形の溝29が形成されており、電池ケース24内でガスが発生して内部圧力が所定の圧力を超えると、溝29が破断するようになっている。また、正極端子27の凸部には、開口部30(放出口)が設けられており、溝29が破断したとき、電池ケース24内で発生したガスは、開口部30から外部へ放出させるようになっている。 A circular groove 29 is formed in the center of the sealing plate 26. When gas is generated in the battery case 24 and the internal pressure exceeds a predetermined pressure, the groove 29 is broken. Further, the convex portion of the positive electrode terminal 27 is provided with an opening 30 (discharge port). When the groove 29 is broken, the gas generated in the battery case 24 is discharged from the opening 30 to the outside. It has become.
 正極板17は、アルミニウム箔等からなる正極集電体の表面に、正極活物質が塗布されている。正極活物質は、リチウムを含む遷移金属含有複合酸化物、例えば、LiCoO2、LiNiO2等の遷移金属含有複合酸化物を使用することができる。 The positive electrode plate 17 has a positive electrode active material coated on the surface of a positive electrode current collector made of aluminum foil or the like. As the positive electrode active material, a transition metal-containing composite oxide containing lithium, for example, a transition metal-containing composite oxide such as LiCoO 2 or LiNiO 2 can be used.
 負極板19は、銅箔等の金属箔からなる負極集電体の表面に、負極活物質が塗布されている。負極活物質は、炭素材料、リチウム含有複合酸化物、リチウムと合金化可能な材料等、リチウムを可逆的に吸蔵放出可能な材料、及び金属リチウム等を使用することができる。 The negative electrode plate 19 has a negative electrode active material coated on the surface of a negative electrode current collector made of a metal foil such as a copper foil. As the negative electrode active material, a carbon material, a lithium-containing composite oxide, a material that can be alloyed with lithium, a material that can reversibly store and release lithium, a metallic lithium, and the like can be used.
 図4は、複数の単電池3を接続した組電池4の構成を示した斜視図である。 FIG. 4 is a perspective view showing the configuration of the assembled battery 4 in which a plurality of unit cells 3 are connected.
 図4に例示した組電池4は、複数の単電池3が、接続板12によって直列接続されて構成されている。単電池3の外周は、絶縁シート13が巻かれており、組電池4の両端にある単電池3からは、外部機器への接続用の接続リード線14が延出している。なお、組電池4を構成する単電池3は、並列接続されていてもよい。 The assembled battery 4 illustrated in FIG. 4 includes a plurality of unit cells 3 connected in series by a connection plate 12. An insulation sheet 13 is wound around the outer periphery of the unit cell 3, and connection lead wires 14 for connection to external devices extend from the unit cells 3 at both ends of the assembled battery 4. In addition, the cell 3 which comprises the assembled battery 4 may be connected in parallel.
 本発明では、図2に示したように、複数の単電池3を、ダイラタンシー特性を有する緩衝部材8で覆うことによって、電池パック1が外部から衝撃を受けたときに、緩衝部材8が硬化することにより、単電池3を衝撃から保護することができる。 In the present invention, as shown in FIG. 2, the buffer member 8 is cured when the battery pack 1 receives an impact from the outside by covering the plurality of single cells 3 with the buffer member 8 having dilatancy characteristics. Thus, the unit cell 3 can be protected from impact.
 ここで、緩衝部材8が、複数の単電池3を覆う形態は、図2に示した構成に限定されず、様々な形態を取り得る。 Here, the form in which the buffer member 8 covers the plurality of single cells 3 is not limited to the configuration shown in FIG. 2 and can take various forms.
 以下、図5~図14を参照しながら、他の実施形態における緩衝部材8の構成を説明する。 Hereinafter, the configuration of the buffer member 8 according to another embodiment will be described with reference to FIGS.
 図5に示す電池パック1は、緩衝部材8を電池パック1の外装体で構成したものである。例えば、緩衝部材8は、ダイラタンシー特性を付与する有機物質を含有させたプラスチック、ゴム、もしくは繊維を織り込んだ樹脂材料で構成することができる。この場合、緩衝部材8は、電池パック1の外装体として、単電池3を保護する役目も果たす。 The battery pack 1 shown in FIG. 5 is configured such that the buffer member 8 is constituted by an exterior body of the battery pack 1. For example, the buffer member 8 can be made of a resin material in which plastic, rubber, or fiber containing an organic substance imparting dilatancy characteristics is woven. In this case, the buffer member 8 also serves to protect the unit cell 3 as an exterior body of the battery pack 1.
 図6に示す電池パック1は、外装体7の表面の一部に緩衝部材8を取り付けたものである。例えば、外装体7の強度が脆弱な部分に緩衝部材8を取り付けることにより、効果的に衝撃を吸収することができる。 The battery pack 1 shown in FIG. 6 has a buffer member 8 attached to a part of the surface of the exterior body 7. For example, the shock can be effectively absorbed by attaching the buffer member 8 to a portion where the strength of the exterior body 7 is weak.
 図7に示す電池パック1は、外装体7の内側に緩衝部材8を取り付けたものである。外観上、緩衝部材8が電池パック1内部に隠れるため、外装体7の形状や機能を維持することができる。 The battery pack 1 shown in FIG. 7 has a buffer member 8 attached to the inside of the exterior body 7. Since the buffer member 8 is hidden inside the battery pack 1 in appearance, the shape and function of the exterior body 7 can be maintained.
 図8に示す電池パック1は、外装体7の内側の一部分に緩衝部材8を取り付けるとともに、緩衝部材8によって、単電池3の固定を図ったものである。これにより、単電池3をより安定して保護することができる。 The battery pack 1 shown in FIG. 8 has a buffer member 8 attached to a part of the inside of the exterior body 7 and the unit cell 3 is fixed by the buffer member 8. Thereby, the cell 3 can be protected more stably.
 図9に示す電池パック1は、外装体7と単電池3との空間にゲル状物質からなる緩衝部材8を充填したものである。これにより、単電池3をより安定して保護することができる。 The battery pack 1 shown in FIG. 9 is obtained by filling the space between the exterior body 7 and the unit cell 3 with a buffer member 8 made of a gel substance. Thereby, the cell 3 can be protected more stably.
 図10に示す電池パック1は、隣接する単電池3間に緩衝部材8を設けたものである。緩衝部材8を、単電池3を仕切る収納壁としても機能させることにより、単電池3を衝撃から保護するとともに、外装体7の構造をより強固にすることができる。 The battery pack 1 shown in FIG. 10 has a buffer member 8 provided between adjacent unit cells 3. By making the buffer member 8 function as a storage wall for partitioning the unit cell 3, the unit cell 3 can be protected from impact and the structure of the exterior body 7 can be further strengthened.
 図11に示す電池パック1は、外装体7の内部に、空孔を有する基材32を充填し、空孔内にダイラタンシー特性を付与する有機物質を充填させたものである。基材32は、発泡スチロールやセラミック多孔体等を用いることができ、ダイラタンシー特性を付与する有機材料は、液状またはゲル状のものが好ましい。 The battery pack 1 shown in FIG. 11 is one in which a base material 32 having pores is filled in the exterior body 7, and an organic substance imparting dilatancy characteristics is filled in the pores. As the base material 32, foamed polystyrene, a ceramic porous body, or the like can be used, and the organic material imparting dilatancy characteristics is preferably liquid or gel.
 図12に示す電池パック1は、緩衝部材8を、ダイラタンシー特性を付与する液状またはゲル状の物質が充填された袋体で構成したものである。袋体は、例えば、アルミニウム箔製の袋を用いることができる。 In the battery pack 1 shown in FIG. 12, the buffer member 8 is constituted by a bag body filled with a liquid or gel-like substance imparting dilatancy characteristics. As the bag body, for example, a bag made of aluminum foil can be used.
 また、図13、14に示すように、緩衝部材8は、単電池3もしくは組電池4の外周に、直接取り付けてもよい。 Further, as shown in FIGS. 13 and 14, the buffer member 8 may be directly attached to the outer periphery of the unit cell 3 or the assembled battery 4.
 図13(a)は、円筒形の単電池3の外周に緩衝部材8を取り付けて例を示し、図13(b)は、角形の単電池3の外周に緩衝部材8を取り付けて例を示す。また、図14は、組電池4の外周に緩衝部材8を取り付けて例を示す。 FIG. 13A shows an example in which the buffer member 8 is attached to the outer periphery of the cylindrical unit cell 3, and FIG. 13B shows an example in which the buffer member 8 is attached to the outer periphery of the prismatic unit cell 3. . FIG. 14 shows an example in which the buffer member 8 is attached to the outer periphery of the assembled battery 4.
 以下に、図3に示したリチウムイオン二次電池を用いて電池パックを構成した実施例を説明する。
(1)正極板の作製
 正極活物質としてコバルト酸リチウム粉末(85質量部)、導電剤として炭素粉末(10質量部)、結着剤としてポリフッ化ビニリデン(PVDF)(5質量部)のN-メチル-2-ピロリドン(以下、NMPと略す)溶液を混合して、正極合剤を作製した。この正極合剤を、厚み15μmのアルミニウム箔からなる集電体に塗布し、乾燥させた後に圧延して、厚みが100μmの正極板17を作製した。
(2)負極板の作製
 負極活物質として人造黒鉛粉末(95質量部)、及び結着剤としてPVDF(5質量部)のNMP溶液を混合して、負極合剤を作製した。この負極合剤を、厚み10μmの銅箔からなる集電体に塗布し、乾燥させた後に圧延して、厚みが110μmの負極板19を作製した。
(3)非水電解液の調整
 非水溶媒として、エチレンカーボネートとエチルメチルカーボネートを体積比1:1で混合し、これに、六フッ化リン酸リチウム(LiPF6)が1mol/Lになるように溶解させて、15mlの非水電解液を調整した。
(4)二次電池の作製
 正極板17と負極板19とを、厚み25μmのセパレータ21を介して捲回し、円筒状の電極群28を作製した後、電極群28を、非水電解液とともに金属製の電池ケース24内に収容し、電池ケース24の開口部を封口して、直径18mm、高さ65mmの円筒形リチウムイオン二次電池3を作製した。電池の設計容量は2000mAhであった。なお、電池ケース24の外周は、厚み80μmのポリエチレンテレフタレート製の熱収縮チューブで覆った。
(5)組電池の製作
 作製した二次電池3を4本、図4に示したように配列し、ニッケル製の厚み0.2mmの接続板12で直列接続した。さらに、直列接続された単電池3と電池パック1の端子とを導通させるための接続リード線14を、両端の単電池3に取り付けて組電池4を製作した。
(6)電池パックの作製
 作製した組電池4を外装体7に収納し、以下の実施例1~12、および比較例1の電池パック1を作製した。
Below, the Example which comprised the battery pack using the lithium ion secondary battery shown in FIG. 3 is described.
(1) Production of Positive Electrode Plate N- of lithium cobaltate powder (85 parts by mass) as a positive electrode active material, carbon powder (10 parts by mass) as a conductive agent, and polyvinylidene fluoride (PVDF) (5 parts by mass) as a binder. A positive electrode mixture was prepared by mixing a methyl-2-pyrrolidone (hereinafter abbreviated as NMP) solution. This positive electrode material mixture was applied to a current collector made of an aluminum foil having a thickness of 15 μm, dried and then rolled to prepare a positive electrode plate 17 having a thickness of 100 μm.
(2) Production of negative electrode plate An artificial graphite powder (95 parts by mass) as a negative electrode active material and an NMP solution of PVDF (5 parts by mass) as a binder were mixed to produce a negative electrode mixture. This negative electrode mixture was applied to a current collector made of a copper foil having a thickness of 10 μm, dried and then rolled to prepare a negative electrode plate 19 having a thickness of 110 μm.
(3) Preparation of non-aqueous electrolyte As a non-aqueous solvent, ethylene carbonate and ethyl methyl carbonate are mixed at a volume ratio of 1: 1 so that lithium hexafluorophosphate (LiPF6) is 1 mol / L. Dissolve to prepare 15 ml of non-aqueous electrolyte.
(4) Production of Secondary Battery After the positive electrode plate 17 and the negative electrode plate 19 are wound through a separator 21 having a thickness of 25 μm to produce a cylindrical electrode group 28, the electrode group 28 is combined with a non-aqueous electrolyte. The cylindrical lithium ion secondary battery 3 having a diameter of 18 mm and a height of 65 mm was produced by housing in a metal battery case 24 and sealing the opening of the battery case 24. The design capacity of the battery was 2000 mAh. The outer periphery of the battery case 24 was covered with a heat-shrinkable tube made of polyethylene terephthalate having a thickness of 80 μm.
(5) Manufacture of assembled battery Four produced secondary batteries 3 were arranged as shown in FIG. 4 and connected in series with a connecting plate 12 made of nickel and having a thickness of 0.2 mm. Furthermore, the assembled battery 4 was manufactured by attaching connection lead wires 14 for connecting the unit cells 3 connected in series and the terminals of the battery pack 1 to the unit cells 3 at both ends.
(6) Production of Battery Pack The produced assembled battery 4 was accommodated in the outer package 7 to produce the battery packs 1 of Examples 1 to 12 and Comparative Example 1 below.
 (実施例1)
 図2に示したように、外装体7の外周面に緩衝部材8を設けた構造の電池パック1を作製した。緩衝部材8としては、ダイラタンシー特性を示すポリマーベース材料を含有させたプラスチックを使用し、厚みを0.3mmとした。なお、ポリマーベース材料は、シリコーンオイルを主原料としホウ素を結合させた樹脂材料を用いた。また、外装体7にはエポキシ樹脂を用い、厚みを0.2mmとした。
Example 1
As shown in FIG. 2, a battery pack 1 having a structure in which a buffer member 8 was provided on the outer peripheral surface of the exterior body 7 was produced. As the buffer member 8, a plastic containing a polymer base material exhibiting dilatancy characteristics was used, and the thickness was set to 0.3 mm. As the polymer base material, a resin material in which silicone oil is the main raw material and boron is bonded is used. Moreover, the exterior body 7 was made of epoxy resin and the thickness was 0.2 mm.
 (実施例2)
 図5に示したように、緩衝部材8を外装体で構成した構造の電池パック1を作製した。緩衝部材8としては、ダイラタンシー特性を示すポリマーベース材料を含有させたプラスチックを使用し、厚みを0.5mmとした。なお、ポリマーベース材料は、シリコーンオイルを主原料としホウ素を結合させた樹脂材料を用いた。
(Example 2)
As shown in FIG. 5, a battery pack 1 having a structure in which the buffer member 8 is configured by an exterior body was produced. As the buffer member 8, a plastic containing a polymer base material exhibiting dilatancy characteristics was used, and the thickness was set to 0.5 mm. As the polymer base material, a resin material in which silicone oil is the main raw material and boron is bonded is used.
 (実施例3)
 図6に示したように、外装体7の表面の一部に緩衝部材8を取り付けた構成の電池パック1を作製した。緩衝部材8としては、ダイラタンシー特性を示すポリマーベース材料を含有させたプラスチックを使用し、外形寸法を15mm×50mm、厚みを0.3mmとした。なお、ポリマーベース材料は、シリコーンオイルを主原料としホウ素を結合させた樹脂材料を用いた。
(Example 3)
As shown in FIG. 6, the battery pack 1 having a configuration in which the buffer member 8 was attached to a part of the surface of the exterior body 7 was produced. As the buffer member 8, a plastic containing a polymer base material exhibiting dilatancy characteristics was used, and the outer dimensions were 15 mm × 50 mm and the thickness was 0.3 mm. As the polymer base material, a resin material in which silicone oil is the main raw material and boron is bonded is used.
 (実施例4)
 図7に示したように、外装体7の内側に緩衝部材8を取り付けた構成の電池パック1を作製した。緩衝部材8としては、ダイラタンシー特性を示すポリマーベース材料を含有させたプラスチックを使用し、厚みを0.3mmとした。なお、ポリマーベース材料は、シリコーンオイルを主原料としホウ素を結合させた樹脂材料を用いた。
Example 4
As shown in FIG. 7, the battery pack 1 having a configuration in which the buffer member 8 was attached to the inside of the exterior body 7 was produced. As the buffer member 8, a plastic containing a polymer base material exhibiting dilatancy characteristics was used, and the thickness was set to 0.3 mm. As the polymer base material, a resin material in which silicone oil is the main raw material and boron is bonded is used.
 (実施例5)
 図8に示したように、外装体7の内側の一部分に緩衝部材8を取り付けるとともに、緩衝部材8によって、単電池3を固定した構成の電池パック1を作製した。緩衝部材8としては、ダイラタンシー特性を示すポリマーベース材料を含有させたプラスチックを使用し、外形寸法を15mm×50mm、厚みを0.3mmとした。なお、ポリマーベース材料は、シリコーンオイルを主原料としホウ素を結合させた樹脂材料を用いた。
(Example 5)
As shown in FIG. 8, the battery pack 1 having a configuration in which the buffer member 8 was attached to a part of the inside of the exterior body 7 and the unit cell 3 was fixed by the buffer member 8 was produced. As the buffer member 8, a plastic containing a polymer base material exhibiting dilatancy characteristics was used, and the outer dimensions were 15 mm × 50 mm and the thickness was 0.3 mm. As the polymer base material, a resin material in which silicone oil is the main raw material and boron is bonded is used.
 (実施例6)
 図9に示したように、外装体7と単電池3との空間にゲル状物質からなる緩衝部材8を充填した構成の電池パック1を作製した。緩衝部材8としては、シリコーンオイルを主原料としホウ素を結合させたダイラタンシー特性を有する樹脂材料を用いた。
(Example 6)
As shown in FIG. 9, a battery pack 1 having a configuration in which the space between the exterior body 7 and the single battery 3 was filled with a buffer member 8 made of a gel material was produced. As the buffer member 8, a resin material having a dilatancy characteristic in which silicone oil is the main raw material and boron is bonded is used.
 (実施例7)
 図10に示したように、隣接する単電池3間に緩衝部材8を設けた構成の電池パック1を作製した。緩衝部材8としては、ダイラタンシー特性を示すポリマーベース材料を含有させたプラスチックを使用し、外形寸法を18mm×65mm、厚みを0.5mmとした。なお、ポリマーベース材料は、シリコーンオイルを主原料としホウ素を結合させた樹脂材料を用いた。
(Example 7)
As shown in FIG. 10, a battery pack 1 having a configuration in which a buffer member 8 was provided between adjacent unit cells 3 was produced. As the buffer member 8, a plastic containing a polymer base material exhibiting dilatancy characteristics was used, and the outer dimensions were 18 mm × 65 mm and the thickness was 0.5 mm. As the polymer base material, a resin material in which silicone oil is the main raw material and boron is bonded is used.
 (実施例8)
 図11に示したように、外装体7の内部に、空孔を有する基材32を充填し、空孔内にダイラタンシー特性を付与する有機物質を充填させた構成の電池パック1を作製した。基材32には、発泡シリコーンを用い、緩衝部材8としては、ポリジオルガノシロキサンとホウ素を結合させたダイラタンシー特性を有する樹脂材料流体を用いた。
(Example 8)
As shown in FIG. 11, a battery pack 1 having a configuration in which a base material 32 having pores was filled in the exterior body 7 and an organic substance imparting dilatancy characteristics was filled in the pores. As the base material 32, foamed silicone was used, and as the buffer member 8, a resin material fluid having a dilatancy characteristic in which polydiorganosiloxane and boron were bonded together was used.
 (実施例9)
 図12に示したように、緩衝部材8を、ダイラタンシー特性を付与するゲル状物質が充填された袋体で構成した電池パック1を作製した。緩衝部材8としては、ダイラタンシー特性を示すポリマーベース材料を充填し密閉したアルミニウム箔製の袋を用いた。ダイラタンシー特性を示すポリマーベース材料としては、石英砂を80%、グリセリンを16%、および水を4%混合したものを用いた。
Example 9
As shown in FIG. 12, a battery pack 1 was produced in which the buffer member 8 was constituted by a bag body filled with a gel-like substance imparting dilatancy characteristics. As the buffer member 8, an aluminum foil bag filled with a polymer base material exhibiting dilatancy characteristics and sealed was used. As a polymer base material exhibiting dilatancy characteristics, a mixture of 80% quartz sand, 16% glycerin, and 4% water was used.
 (実施例10)
 図13(a)に示したように、単電池3の外周に緩衝部材8を取り付けた構成の電池パック1を作製した。緩衝部材8としては、ダイラタンシー特性を示すポリマーベース材料を含有させたプラスチックを使用し、厚みを0.3mmとした。なお、ポリマーベース材料は、シリコーンオイルを主原料としホウ素を結合させた樹脂材料を用いた。
(Example 10)
As shown in FIG. 13A, the battery pack 1 having a configuration in which the buffer member 8 is attached to the outer periphery of the unit cell 3 was produced. As the buffer member 8, a plastic containing a polymer base material exhibiting dilatancy characteristics was used, and the thickness was set to 0.3 mm. As the polymer base material, a resin material in which silicone oil is the main raw material and boron is bonded is used.
 (実施例11)
 図14に示したように、組電池4の外周に緩衝部材8を取り付けた構成の電池パック1を作製した。緩衝部材8としては、ダイラタンシー特性を示すポリマーベース材料を含有させたプラスチックを使用し、厚みを0.3mmとした。なお、ポリマーベース材料は、シリコーンオイルを主原料としホウ素を結合させた樹脂材料を用いた。
(Example 11)
As shown in FIG. 14, the battery pack 1 having a configuration in which the buffer member 8 was attached to the outer periphery of the assembled battery 4 was produced. As the buffer member 8, a plastic containing a polymer base material exhibiting dilatancy characteristics was used, and the thickness was set to 0.3 mm. As the polymer base material, a resin material in which silicone oil is the main raw material and boron is bonded is used.
 (比較例1)
 実施例1の電池パック1において、緩衝部材8のない構成の電池パック1を作製した。
(Comparative Example 1)
In the battery pack 1 of Example 1, the battery pack 1 having a configuration without the buffer member 8 was produced.
 以上の実施例および比較例で得られた各電池パックについて、以下の評価を行った。 The following evaluation was performed for each battery pack obtained in the above Examples and Comparative Examples.
 (7)落下試験
 安全性を確認するために、電池パック1を、高さ16mの位置からコンクリート壁へ落下させる落下試験を実施した。表1は、その結果を示した表で、単電池3の破壊(ひび割れを含む)が発生しなかったものを○、破壊してしまったものを×で表している。
(7) Drop test In order to confirm safety, a drop test was performed in which the battery pack 1 was dropped from a position of 16 m height onto the concrete wall. Table 1 is a table showing the results. In the table, the cells 3 in which the breakage (including cracks) did not occur are indicated by ◯, and the cells that have been broken are indicated by ×.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例1~11は落下試験によって単電池3の破壊は発生しなかったが、比較例1では破壊された。このことから、緩衝部材8を有する電池パック1は、安全性が向上していることが分かる。 In Examples 1 to 11, the cell 3 was not broken by the drop test, but in the comparative example 1, it was broken. From this, it can be seen that the battery pack 1 having the buffer member 8 has improved safety.
 上記実施例では、電池パックのみの落下試験を行ったが、実際に、機器本体へ搭載した電池パックが衝撃を受けた場合においても、単電池が破壊されることにより発生する発熱や漏液等による機器本体の損傷も、最小限に抑制される。特に、落下破損しやすい携帯型電子機器や移動体通信機器、衝突により強い衝撃を受ける自動車には高い安全性の効果が見込まれる。 In the above embodiment, a drop test was performed only on the battery pack. However, even when the battery pack mounted on the device body was actually subjected to an impact, heat generation or leakage, etc. generated by destruction of the single cell, etc. Damage to the main body of the equipment is also minimized. In particular, high safety effects are expected for portable electronic devices and mobile communication devices that are easily dropped and damaged, and automobiles that are subject to a strong impact by collision.
 以上、本発明を好適な実施形態により説明してきたが、こうした記述は限定事項ではなく、もちろん、種々の改変が可能である。例えば、上記実施形態においては、単電池3をリチウムイオン二次電池としたが、これ以外の二次電池(例えばニッケル水素電池)であっても良い。 As mentioned above, although this invention has been demonstrated by suitable embodiment, such description is not a limitation matter and of course various modifications are possible. For example, in the above embodiment, the single battery 3 is a lithium ion secondary battery, but other secondary batteries (for example, a nickel metal hydride battery) may be used.
 本発明は、電子機器、自動車、電動バイク又は電動遊具等の電源として有用である。 The present invention is useful as a power source for electronic devices, automobiles, electric motorcycles, electric playground equipment, and the like.
 1   電池パック 
 2   筐体 
 3   単電池 
 4   組電池 
 7   外装体 
 8   緩衝部材 
 12  接続板 
 13  絶縁シート 
 14  接続リード線 
 17  正極板 
 18  正極リード 
 19  負極板 
 20  負極リード 
 21  セパレータ 
 22、23  絶縁板 
 24  電池ケース 
 25  ガスケット 
 26  封口板 
 27  正極端子 
 28  電極群 
 29  溝 
 30  開口部 
 32  基材
1 Battery pack
2 Case
3 cells
4 batteries
7 exterior body
8 cushioning member
12 Connection board
13 Insulation sheet
14 Connection lead wire
17 Positive electrode plate
18 Positive lead
19 Negative electrode plate
20 Negative lead
21 Separator
22, 23 Insulation plate
24 battery case
25 Gasket
26 Sealing plate
27 Positive terminal
28 Electrode group
29 Groove
30 opening
32 Base material

Claims (9)

  1.  複数の単電池を接続した組電池が外装体内に収納されてなる電池パックであって、
     前記複数の単電池の少なくとも一部が、ダイラタンシー特性を有する緩衝部材で覆われている、電池パック。
    A battery pack in which an assembled battery in which a plurality of cells are connected is housed in an exterior body,
    A battery pack, wherein at least some of the plurality of single cells are covered with a buffer member having a dilatancy characteristic.
  2.  前記緩衝部材は、ダイラタンシー特性を付与するポリマーベース材料または有機物質を含有した樹脂材料または多孔質材料からなる、請求項1に記載の電池パック。 The battery pack according to claim 1, wherein the buffer member is made of a polymer base material imparting dilatancy characteristics, a resin material containing an organic substance, or a porous material.
  3.  前記緩衝部材は、ダイラタンシー特性を付与する液状またはゲル状の物質が充填された袋体からなる、請求項1に記載の電池パック。 2. The battery pack according to claim 1, wherein the buffer member is formed of a bag body filled with a liquid or gel-like substance imparting dilatancy characteristics.
  4.  前記有機物質は、ゲル状物質からなり、
     前記緩衝部材は、衝撃を吸収して硬化したとき、前記ゲル状物質が結合することにより、熱伝導性がさらに付与される、請求項3に記載の電池パック。
    The organic material is a gel material,
    4. The battery pack according to claim 3, wherein when the shock absorbing member absorbs an impact and is cured, the gel-like substance is bonded to further impart thermal conductivity.
  5.  前記ゲル状物質は、シリコーンポリマーに、アルミニウム、銀、銅、ニッケル、酸化亜鉛、アルミナ、酸化マグネシウム、窒化アルミニウム、窒化ホウ素、窒化珪素、ダイヤモンド、グラファイト、カーボンナノチューブ、金属珪素、カーボンファイバー、フラーレンからなる群の中から選択された少なくとも1種の熱伝導性材料を含むものからなる、請求項4に記載の電池パック。 The gel material is made of silicone polymer, aluminum, silver, copper, nickel, zinc oxide, alumina, magnesium oxide, aluminum nitride, boron nitride, silicon nitride, diamond, graphite, carbon nanotube, metallic silicon, carbon fiber, fullerene. The battery pack according to claim 4, comprising at least one heat conductive material selected from the group.
  6.  前記緩衝部材は、前記外装体の外表面または内表面に設けられている、請求項1に記載の電池パック。 The battery pack according to claim 1, wherein the buffer member is provided on an outer surface or an inner surface of the exterior body.
  7.  前記緩衝部材は、前記外装体で構成されている、請求項1に記載の電池パック。 The battery pack according to claim 1, wherein the buffer member is configured by the exterior body.
  8.  前記緩衝部材は、隣接する前記単電池間に設けられている、請求項1に記載の電池パック。 The battery pack according to claim 1, wherein the buffer member is provided between the adjacent single cells.
  9.  前記緩衝部材は、前記単電池の外周部に設けられている、請求項1に記載の電池パック。 The battery pack according to claim 1, wherein the buffer member is provided on an outer peripheral portion of the unit cell.
PCT/JP2011/006599 2010-12-16 2011-11-28 Battery pack WO2012081173A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012516426A JP5039866B2 (en) 2010-12-16 2011-11-28 Battery pack

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-280138 2010-12-16
JP2010280138 2010-12-16

Publications (1)

Publication Number Publication Date
WO2012081173A1 true WO2012081173A1 (en) 2012-06-21

Family

ID=46244293

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/006599 WO2012081173A1 (en) 2010-12-16 2011-11-28 Battery pack

Country Status (2)

Country Link
JP (1) JP5039866B2 (en)
WO (1) WO2012081173A1 (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014022264A (en) * 2012-07-20 2014-02-03 Chia Yuan Li Vehicle battery with four functions of water proof, fire protection, vibration isolation and explosion protection and manufacturing method thereof
KR101446501B1 (en) 2013-10-23 2014-10-07 주식회사 에이치알에스 Liquid silicone composition for back light unit side cushion rubber of liquid crystal display
JP2015082493A (en) * 2013-10-24 2015-04-27 株式会社豊田自動織機 Battery pack
JP2015082370A (en) * 2013-10-22 2015-04-27 トヨタ自動車株式会社 Fuel cell
JP2015082492A (en) * 2013-10-24 2015-04-27 株式会社豊田自動織機 Battery pack
JP2015125901A (en) * 2013-12-26 2015-07-06 株式会社豊田自動織機 Battery pack
JP2016062713A (en) * 2014-09-17 2016-04-25 トヨタ自動車株式会社 Manufacturing method of fuel cell stack
CN105870535A (en) * 2015-02-09 2016-08-17 波音公司 Containment system and method for devices with high energy density
JP2016164856A (en) * 2015-03-06 2016-09-08 トヨタ自動車株式会社 Fuel battery stack manufacturing apparatus and fuel battery stack manufacturing method
JP2016213104A (en) * 2015-05-12 2016-12-15 株式会社豊田自動織機 Battery pack
US9590274B2 (en) 2014-09-26 2017-03-07 Ut-Battelle, Llc Impact resistant electrolytes
JP2017050383A (en) * 2015-09-01 2017-03-09 東芝テック株式会社 Electronic apparatus
CN107230796A (en) * 2016-03-25 2017-10-03 安徽巨大电池技术有限公司 Battery pack and method of assembling the same
CN107452915A (en) * 2017-09-18 2017-12-08 华霆(合肥)动力技术有限公司 Battery fastening structure and supply unit
CN108321326A (en) * 2017-01-16 2018-07-24 本田技研工业株式会社 Battery pack protection structure
CN108767146A (en) * 2018-04-11 2018-11-06 苏州达方电子有限公司 The safeguard structure of the inhibition battery thermal runaway of tool fire extinguishing effect
KR20190042369A (en) * 2017-10-16 2019-04-24 주식회사 엘지화학 Battery Cell with Fluid Material Coated on Surface of Battery Case
JP2019087526A (en) * 2017-11-08 2019-06-06 株式会社東芝 Battery
US10347934B2 (en) 2014-09-26 2019-07-09 Ut-Battelle, Llc Shear activated impact resistant electrolyte
US10347945B2 (en) 2017-12-08 2019-07-09 Ut-Battelle, Llc Stabilized shear thickening electrolyte
CN110676403A (en) * 2018-07-03 2020-01-10 罗伯特·博世有限公司 Battery pack system, method for producing same, and motor vehicle
US10637100B2 (en) 2018-04-20 2020-04-28 Ut-Battelle, Llc Fabrication of films and coatings used to activate shear thickening, impact resistant electrolytes
CN111386615A (en) * 2017-12-18 2020-07-07 喜利得股份公司 Battery pack for a hand-held power tool
JP2020129467A (en) * 2019-02-08 2020-08-27 トヨタ自動車株式会社 Power storage device
CN112133846A (en) * 2020-09-11 2020-12-25 东莞市创明电池技术有限公司 Secondary battery and method for manufacturing the same
CN115149181A (en) * 2021-03-31 2022-10-04 丰田自动车株式会社 Electricity storage device
JP2022156427A (en) * 2021-03-31 2022-10-14 トヨタ自動車株式会社 power storage device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017201692A1 (en) 2017-02-02 2018-08-02 Robert Bosch Gmbh Battery module with a plurality of battery cells and battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08106886A (en) * 1994-10-03 1996-04-23 Asahi Chem Ind Co Ltd Battery
JPH1145691A (en) * 1997-07-28 1999-02-16 Shin Kobe Electric Mach Co Ltd Battery pack
JP2004146161A (en) * 2002-10-23 2004-05-20 Sony Corp Battery pack
JP2010040243A (en) * 2008-08-01 2010-02-18 Panasonic Corp Battery module
JP2010129244A (en) * 2008-11-26 2010-06-10 Nec Tokin Corp Square lithium ion secondary battery pack

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08106886A (en) * 1994-10-03 1996-04-23 Asahi Chem Ind Co Ltd Battery
JPH1145691A (en) * 1997-07-28 1999-02-16 Shin Kobe Electric Mach Co Ltd Battery pack
JP2004146161A (en) * 2002-10-23 2004-05-20 Sony Corp Battery pack
JP2010040243A (en) * 2008-08-01 2010-02-18 Panasonic Corp Battery module
JP2010129244A (en) * 2008-11-26 2010-06-10 Nec Tokin Corp Square lithium ion secondary battery pack

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014022264A (en) * 2012-07-20 2014-02-03 Chia Yuan Li Vehicle battery with four functions of water proof, fire protection, vibration isolation and explosion protection and manufacturing method thereof
CN105637691B (en) * 2013-10-22 2017-06-16 丰田自动车株式会社 Fuel cell
US9520612B2 (en) 2013-10-22 2016-12-13 Toyota Jidosha Kabushiki Kaisha Fuel cell
JP2015082370A (en) * 2013-10-22 2015-04-27 トヨタ自動車株式会社 Fuel cell
WO2015059858A1 (en) * 2013-10-22 2015-04-30 トヨタ自動車株式会社 Fuel cell
KR101446501B1 (en) 2013-10-23 2014-10-07 주식회사 에이치알에스 Liquid silicone composition for back light unit side cushion rubber of liquid crystal display
JP2015082492A (en) * 2013-10-24 2015-04-27 株式会社豊田自動織機 Battery pack
JP2015082493A (en) * 2013-10-24 2015-04-27 株式会社豊田自動織機 Battery pack
JP2015125901A (en) * 2013-12-26 2015-07-06 株式会社豊田自動織機 Battery pack
JP2016062713A (en) * 2014-09-17 2016-04-25 トヨタ自動車株式会社 Manufacturing method of fuel cell stack
US10347934B2 (en) 2014-09-26 2019-07-09 Ut-Battelle, Llc Shear activated impact resistant electrolyte
US9590274B2 (en) 2014-09-26 2017-03-07 Ut-Battelle, Llc Impact resistant electrolytes
CN105870535A (en) * 2015-02-09 2016-08-17 波音公司 Containment system and method for devices with high energy density
US10217979B2 (en) * 2015-02-09 2019-02-26 The Boeing Company Containment system and method for high energy density devices
US20160359154A1 (en) * 2015-02-09 2016-12-08 The Boeing Company Containment System and Method for High Energy Density Devices
CN105870535B (en) * 2015-02-09 2020-06-16 波音公司 Containment system and method for high energy density devices
JP2016164856A (en) * 2015-03-06 2016-09-08 トヨタ自動車株式会社 Fuel battery stack manufacturing apparatus and fuel battery stack manufacturing method
JP2016213104A (en) * 2015-05-12 2016-12-15 株式会社豊田自動織機 Battery pack
JP2017050383A (en) * 2015-09-01 2017-03-09 東芝テック株式会社 Electronic apparatus
CN107230796A (en) * 2016-03-25 2017-10-03 安徽巨大电池技术有限公司 Battery pack and method of assembling the same
CN107230796B (en) * 2016-03-25 2023-10-27 安徽巨大电池技术有限公司 Battery pack and method of assembling the same
CN108321326B (en) * 2017-01-16 2021-11-16 本田技研工业株式会社 Battery pack protection structure
JP2018116770A (en) * 2017-01-16 2018-07-26 本田技研工業株式会社 Battery pack protection structure
CN108321326A (en) * 2017-01-16 2018-07-24 本田技研工业株式会社 Battery pack protection structure
CN107452915A (en) * 2017-09-18 2017-12-08 华霆(合肥)动力技术有限公司 Battery fastening structure and supply unit
KR20190042369A (en) * 2017-10-16 2019-04-24 주식회사 엘지화학 Battery Cell with Fluid Material Coated on Surface of Battery Case
KR102415726B1 (en) * 2017-10-16 2022-06-30 주식회사 엘지에너지솔루션 Battery Cell with Fluid Material Coated on Surface of Battery Case
JP2019087526A (en) * 2017-11-08 2019-06-06 株式会社東芝 Battery
US10347945B2 (en) 2017-12-08 2019-07-09 Ut-Battelle, Llc Stabilized shear thickening electrolyte
CN111386615A (en) * 2017-12-18 2020-07-07 喜利得股份公司 Battery pack for a hand-held power tool
CN108767146B (en) * 2018-04-11 2021-08-06 苏州达方电子有限公司 Protective structure with fire extinguishing function for inhibiting thermal runaway of battery core
CN108767146A (en) * 2018-04-11 2018-11-06 苏州达方电子有限公司 The safeguard structure of the inhibition battery thermal runaway of tool fire extinguishing effect
US10637100B2 (en) 2018-04-20 2020-04-28 Ut-Battelle, Llc Fabrication of films and coatings used to activate shear thickening, impact resistant electrolytes
US11233271B2 (en) 2018-04-20 2022-01-25 Ut-Battelle, Llc Fabrication of films and coatings used to activate shear thickening, impact resistant electrolytes
US11824162B2 (en) 2018-04-20 2023-11-21 Ut-Battelle, Llc Battery with shear thickening, impact resistant electrolytes
US11824163B2 (en) 2018-04-20 2023-11-21 Ut-Battelle, Llc Method of making a passively impact resistant battery
CN110676403A (en) * 2018-07-03 2020-01-10 罗伯特·博世有限公司 Battery pack system, method for producing same, and motor vehicle
JP2020129467A (en) * 2019-02-08 2020-08-27 トヨタ自動車株式会社 Power storage device
JP7115347B2 (en) 2019-02-08 2022-08-09 トヨタ自動車株式会社 power storage device
CN112133846A (en) * 2020-09-11 2020-12-25 东莞市创明电池技术有限公司 Secondary battery and method for manufacturing the same
CN115149181A (en) * 2021-03-31 2022-10-04 丰田自动车株式会社 Electricity storage device
JP2022156427A (en) * 2021-03-31 2022-10-14 トヨタ自動車株式会社 power storage device
JP7424337B2 (en) 2021-03-31 2024-01-30 トヨタ自動車株式会社 Power storage device
CN115149181B (en) * 2021-03-31 2024-04-23 丰田自动车株式会社 Power storage device

Also Published As

Publication number Publication date
JP5039866B2 (en) 2012-10-03
JPWO2012081173A1 (en) 2014-05-22

Similar Documents

Publication Publication Date Title
JP5039866B2 (en) Battery pack
JP2012195259A (en) Battery
JP6152483B2 (en) Battery module
US20100255359A1 (en) Battery pack and battery-equipped device
JP2017524240A (en) Lithium-ion battery with thermal runaway protection
EP2299535A1 (en) Battery pack
JP2009021223A (en) Battery pack and equipment equipped with battery
WO2019107560A1 (en) Partition member and battery pack
KR102172931B1 (en) Pouch-Typed Battery Cell Having Ring Shape
JP2012059489A (en) Laminated battery
CN112889174A (en) Lithium ion battery
WO2007106112A2 (en) Composite battery pack
KR102308017B1 (en) Cylindrical Secondary Battery having Hollow portion filled with Thermal Conductive Resin
KR101539584B1 (en) Battery Module with Improved Safety
JP2011192518A (en) Secondary battery
KR101576597B1 (en) Secondary battery and battery pack including the same
JP2005340015A (en) Battery pack
JP7520042B2 (en) Electrode assemblies and related batteries, devices, manufacturing methods, and manufacturing apparatus
KR102525677B1 (en) Lithium secondary battery
WO2013046555A1 (en) Battery
CN212277261U (en) Electrode assembly, battery module, battery pack, device using battery, and device for manufacturing electrode assembly
CN117378065A (en) Pole piece, battery monomer, battery and power consumption device
CN211507806U (en) Explosion-proof assembled lithium battery
CN114497833A (en) Battery packaging film, preparation method of battery packaging film and electronic equipment
CN221239657U (en) Battery cell and electronic equipment

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2012516426

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11848752

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11848752

Country of ref document: EP

Kind code of ref document: A1