JP2016164856A - Fuel battery stack manufacturing apparatus and fuel battery stack manufacturing method - Google Patents

Fuel battery stack manufacturing apparatus and fuel battery stack manufacturing method Download PDF

Info

Publication number
JP2016164856A
JP2016164856A JP2015045176A JP2015045176A JP2016164856A JP 2016164856 A JP2016164856 A JP 2016164856A JP 2015045176 A JP2015045176 A JP 2015045176A JP 2015045176 A JP2015045176 A JP 2015045176A JP 2016164856 A JP2016164856 A JP 2016164856A
Authority
JP
Japan
Prior art keywords
pair
fuel cell
plate
members
main body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015045176A
Other languages
Japanese (ja)
Other versions
JP6402655B2 (en
Inventor
有吾 市田
Yugo Ichida
有吾 市田
竹内 弘明
Hiroaki Takeuchi
弘明 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2015045176A priority Critical patent/JP6402655B2/en
Publication of JP2016164856A publication Critical patent/JP2016164856A/en
Application granted granted Critical
Publication of JP6402655B2 publication Critical patent/JP6402655B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fuel battery stack manufacturing apparatus and a method that properly arranges an interposition layer between the outer peripheral surface of a fuel battery main body and the inner peripheral surface of a case.SOLUTION: A fuel battery stack manufacturing apparatus for manufacturing a fuel battery stack including a fuel battery main body 1, a case 2 for housing the fuel battery main body, and an interposition layer 3 disposed between the outer peripheral surface 1a of the fuel battery main body and the inner peripheral surface 2a of the case, comprises a clamping tool for clamping both ends of the fuel battery main body, and a compression tool 32 for compressing a pair of interposition layers disposed on a pair of outer peripheral surfaces 1a of the fuel battery main body so that the thickness of the interposition layers is less than the distance between the outer peripheral surface 1a and the inner peripheral surface 2a. The compression tool includes a pair of plate-like members 51, and a moving mechanism 52 for moving the pair of plate-like members disposed to confront the pair of interposition layers so that the pair of plate-like members approach to each other, thereby compressing the pair of interposition layers, and then moving the pair of plate-like members so that the pair of plate-like members separate from each other, thereby leaving the pair of plate-like members from the pair of interposition layers.SELECTED DRAWING: Figure 5

Description

本発明は、燃料電池スタック製造装置及び燃料電池スタックの製造方法に関する。   The present invention relates to a fuel cell stack manufacturing apparatus and a fuel cell stack manufacturing method.

複数の燃料電池単セルを積層方向に沿って積層することにより形成される積層体を含む燃料電池本体と、積層方向に沿った燃料電池本体の外周面の外側に設けられたテンションプレートと、燃料電池本体の外周面とテンションプレートとの間に配置される、低摩擦特性、緩衝特性及び絶縁特性を有する介在層とを備える燃料電池スタックが開示されている(例えば、特許文献1参照)。介在層としては、例えば発泡性の樹脂やゴムが例示されている。   A fuel cell body including a stack formed by stacking a plurality of fuel cell single cells along the stacking direction; a tension plate provided outside the outer peripheral surface of the fuel cell body along the stacking direction; and a fuel There has been disclosed a fuel cell stack including an intervening layer having a low friction characteristic, a buffer characteristic and an insulating characteristic, which is disposed between an outer peripheral surface of a battery main body and a tension plate (see, for example, Patent Document 1). Examples of the intervening layer include foamable resin and rubber.

特開2003−203670号公報JP 2003-203670 A

特許文献1の燃料電池スタックの製造方法としては、特許文献1には具体的に明示されていないが、積層方向に沿った燃料電池本体の外周面上に介在層を配置し、その介在層上にテンションプレートを配置する方法が考え得る。すなわち、燃料電池本体の外周面上にそれぞれ介在層を配置し、続いて、各介在層の上にテンションプレートを配置し、その後、各テンションプレート同士を接続する方法である。この場合、板状のテンションプレートで燃料電池本体を囲むため、水密性を確保するためにテンションプレート間に挿入するガスケットや、テンションプレート同士を接続するためのボルトのような部材が必要であり、製造コストが増加し生産性が低下する。それに対処すべく検討を行った結果、発明者らは、テンションプレートの代わりに箱型のケースを用意し、外周面に介在層を配置された燃料電池本体をケースに収めることで、水密性を確保しつつ、製造コストの低減や生産性の向上が可能であることを見出した。ここで、介在層の機能、特に緩衝特性を発揮させるためには、燃料電池本体の外周面とケースの内周面との間に圧縮状態で介在層を配置する必要がある。しかし、燃料電池本体をケースに収める形態の場合、燃料電池本体の外周面とケースの内周面との間に圧縮状態で介在層を配置することは極めて困難である。燃料電池本体の外周面とケースの内周面との間に適切に介在層を配置可能な技術が望まれる。   Although the method for manufacturing the fuel cell stack of Patent Document 1 is not specifically described in Patent Document 1, an intervening layer is disposed on the outer peripheral surface of the fuel cell main body along the stacking direction, and the intervening layer is placed on the intervening layer. A method of arranging a tension plate on the surface can be considered. That is, there is a method in which intervening layers are arranged on the outer peripheral surface of the fuel cell main body, subsequently tension plates are arranged on the respective intervening layers, and then the tension plates are connected to each other. In this case, in order to surround the fuel cell main body with a plate-like tension plate, a member such as a gasket to be inserted between the tension plates and a bolt for connecting the tension plates to each other is necessary to ensure water tightness. Manufacturing costs increase and productivity decreases. As a result of investigations to cope with this, the inventors prepared a box-shaped case instead of the tension plate, and placed the fuel cell body with an intervening layer on the outer peripheral surface in the case, thereby improving water tightness. It was found that the manufacturing cost can be reduced and the productivity can be improved while securing the above. Here, in order to exhibit the function of the intervening layer, particularly the buffering characteristic, it is necessary to dispose the intervening layer in a compressed state between the outer peripheral surface of the fuel cell main body and the inner peripheral surface of the case. However, in the case where the fuel cell main body is housed in the case, it is extremely difficult to dispose the intervening layer in a compressed state between the outer peripheral surface of the fuel cell main body and the inner peripheral surface of the case. A technique that can appropriately dispose an intervening layer between the outer peripheral surface of the fuel cell body and the inner peripheral surface of the case is desired.

本発明の一の観点によれば、複数の燃料電池単セルを積層方向に沿って積層することにより形成される積層体を含む燃料電池本体と、前記燃料電池本体が収容されるケースと、前記燃料電池本体の前記積層方向に沿った外周面のうち互いに向かい合う一対の外周面部分と前記一対の外周面部分に対向する前記ケースの内周面との間にそれぞれ配置され、変形されたとき元の寸法に戻ろうとする復元力を有する一対の介在層とを備える燃料電池スタックを製造するための燃料電池スタック製造装置であって、前記燃料電池本体を前記積層方向の両端において圧縮状態で挟持する挟持具と、前記挟持具により挟持された前記燃料電池本体の前記一対の外周面部分上に配置されている前記一対の介在層を、前記燃料電池本体が前記ケースに収容されたときの前記外周面と前記内周面との距離よりも大きい初期厚みから前記距離よりも小さい圧縮済み厚みまで圧縮する圧縮具と、を備え、前記圧縮具は、一対の板状部材と、前記燃料電池本体上の前記一対の介在層にそれぞれ対面配置された前記一対の板状部材を互いに近づくよう移動し、それにより前記一対の板状部材と前記燃料電池本体との間で前記一対の介在層を前記圧縮済み厚みまで圧縮し、次いで前記一対の板状部材を互いに離れるよう移動し、それにより前記一対の板状部材を前記一対の介在層から離脱させる、移動機構と、を含む、燃料電池スタック製造装置が提供される。   According to one aspect of the present invention, a fuel cell main body including a stack formed by stacking a plurality of fuel cell single cells along the stacking direction, a case in which the fuel cell main body is accommodated, and When the fuel cell main body is disposed and deformed between a pair of outer peripheral surface portions facing each other among the outer peripheral surfaces along the stacking direction of the fuel cell main body and an inner peripheral surface of the case facing the pair of outer peripheral surface portions, respectively. A fuel cell stack manufacturing apparatus for manufacturing a fuel cell stack comprising a pair of intervening layers having a restoring force to return to the dimension of the fuel cell, wherein the fuel cell main body is clamped at both ends in the stacking direction. The fuel cell main body is accommodated in the case with the sandwiching tool and the pair of intervening layers disposed on the pair of outer peripheral surface portions of the fuel cell main body sandwiched by the sandwiching tool. A compression tool that compresses from an initial thickness that is greater than the distance between the outer peripheral surface and the inner peripheral surface to a compressed thickness that is less than the distance, and the compression tool includes a pair of plate-like members, The pair of plate-like members disposed facing each other on the pair of intervening layers on the fuel cell main body are moved so as to approach each other, whereby the pair of intermediate members are interposed between the pair of plate-like members and the fuel cell main body. A moving mechanism that compresses a layer to the compressed thickness and then moves the pair of plate members away from each other, thereby detaching the pair of plate members from the pair of intervening layers A battery stack manufacturing apparatus is provided.

本発明の別の観点によれば、複数の燃料電池単セルを積層方向に沿って積層することにより形成される積層体を含む燃料電池本体と、前記燃料電池本体が収容されるケースと、前記燃料電池本体の前記積層方向に沿った外周面のうち互いに向かい合う一対の外周面部分と前記一対の外周面部分に対向する前記ケースの内周面との間にそれぞれ配置され、変形されたとき元の寸法に戻ろうとする復元力を有する一対の介在層とを備える燃料電池スタックの製造方法であって、挟持具により、前記燃料電池本体を前記積層方向の両端において圧縮状態で挟持する工程と、前記挟持具により挟持された前記燃料電池本体の前記一対の外周面部分上に、前記燃料電池本体が前記ケースに収容されたときの前記外周面と前記内周面との距離よりも大きい初期厚みを有する前記一対の介在層をそれぞれ配置する工程と、圧縮具により、前記燃料電池本体上に配置された前記一対の介在層を前記初期厚みから前記距離よりも小さい圧縮済み厚みまで同時に圧縮する工程と、を備え、前記圧縮する工程は、前記燃料電池本体上の前記一対の介在層に一対の板状部材をそれぞれ対面配置する工程と、移動機構により、前記一対の板状部材を互いに近づくよう移動し、それにより前記一対の板状部材と前記燃料電池本体との間で前記一対の介在層を前記圧縮済み厚みまで同時に圧縮し、次いで前記一対の板状部材を互いに離れるよう移動し、それにより前記一対の板状部材を前記一対の介在層から離脱させる工程と、を含む、燃料電池スタックの製造方法が提供される。   According to another aspect of the present invention, a fuel cell main body including a stack formed by stacking a plurality of fuel cell single cells along the stacking direction, a case in which the fuel cell main body is accommodated, When the fuel cell main body is disposed and deformed between a pair of outer peripheral surface portions facing each other among the outer peripheral surfaces along the stacking direction of the fuel cell main body and an inner peripheral surface of the case facing the pair of outer peripheral surface portions, respectively. A method of manufacturing a fuel cell stack comprising a pair of intervening layers having a restoring force to return to the dimensions of the step, and sandwiching the fuel cell main body in a compressed state at both ends in the stacking direction by a sandwiching tool; More than the distance between the outer peripheral surface and the inner peripheral surface when the fuel cell main body is accommodated in the case on the pair of outer peripheral surface portions of the fuel cell main body clamped by the clamping tool Compressing the pair of intervening layers disposed on the fuel cell main body simultaneously from the initial thickness to a compressed thickness smaller than the distance by a step of disposing the pair of intervening layers having an initial thickness and a compression tool And the step of compressing the pair of plate-like members to each other with the pair of interposition layers on the fuel cell main body, and a moving mechanism. The pair of interposition layers are simultaneously compressed to the compressed thickness between the pair of plate-like members and the fuel cell main body, and then the pair of plate-like members are moved away from each other. And a step of separating the pair of plate-like members from the pair of intervening layers, thereby providing a method of manufacturing a fuel cell stack.

燃料電池本体の外周面とケースの内周面との間に適切に介在層を配置することができる。   An intervening layer can be appropriately disposed between the outer peripheral surface of the fuel cell main body and the inner peripheral surface of the case.

燃料電池スタックの積層方向の断面図である。It is sectional drawing of the lamination direction of a fuel cell stack. 燃料電池スタックの積層方向に垂直な断面図である。It is sectional drawing perpendicular | vertical to the lamination direction of a fuel cell stack. 圧縮層の厚みの定義を示す断面図である。It is sectional drawing which shows the definition of the thickness of a compression layer. 燃料電池スタック製造装置の挟持具の側面図である。It is a side view of the clamping tool of a fuel cell stack manufacturing apparatus. 燃料電池スタック製造装置の圧縮具の正面図である。It is a front view of the compression tool of a fuel cell stack manufacturing apparatus. 燃料電池スタック製造装置の圧縮具の側面図である。It is a side view of the compression tool of a fuel cell stack manufacturing apparatus. 圧縮具の動作を説明する模式図である。It is a schematic diagram explaining operation | movement of a compression tool. 燃料電池スタックの製造工程を示す積層方向の断面図である。It is sectional drawing of the lamination direction which shows the manufacturing process of a fuel cell stack. 燃料電池スタックの製造工程を示す積層方向の断面図である。It is sectional drawing of the lamination direction which shows the manufacturing process of a fuel cell stack. 燃料電池スタックの製造工程を示す積層方向に垂直な断面図である。It is sectional drawing perpendicular | vertical to the lamination direction which shows the manufacturing process of a fuel cell stack. 燃料電池スタックの製造工程を示す積層方向の断面図である。It is sectional drawing of the lamination direction which shows the manufacturing process of a fuel cell stack. 燃料電池スタックの製造工程を示す積層方向に垂直な断面図である。It is sectional drawing perpendicular | vertical to the lamination direction which shows the manufacturing process of a fuel cell stack. 燃料電池スタックの製造工程を示す積層方向の断面図である。It is sectional drawing of the lamination direction which shows the manufacturing process of a fuel cell stack. 燃料電池スタックの製造工程を示す積層方向に垂直な断面図である。It is sectional drawing perpendicular | vertical to the lamination direction which shows the manufacturing process of a fuel cell stack. 燃料電池スタックの製造工程を示す積層方向の断面図である。It is sectional drawing of the lamination direction which shows the manufacturing process of a fuel cell stack. 燃料電池スタックの製造工程を示す積層方向の断面図である。It is sectional drawing of the lamination direction which shows the manufacturing process of a fuel cell stack. 別の実施例の燃料電池スタック製造装置の圧縮具の正面図である。It is a front view of the compression tool of the fuel cell stack manufacturing apparatus of another Example. 更に別の実施例の燃料電池スタック製造装置の圧縮具の正面図である。It is a front view of the compression tool of the fuel cell stack manufacturing apparatus of another Example. 更に別の実施例の燃料電池スタック製造装置の圧縮具の正面図である。It is a front view of the compression tool of the fuel cell stack manufacturing apparatus of another Example. 更に別の実施例の燃料電池スタックの積層方向に垂直な断面図である。It is sectional drawing perpendicular | vertical to the lamination direction of the fuel cell stack of another Example.

実施例に係る燃料電池スタックAについて説明する。図1及び図2は、燃料電池スタックAの概略断面図である。ただし、図1は図2のE1−E1断面図であり、図2は図1のE2−E2断面図である。燃料電池スタックAは、燃料電池本体1と、燃料電池本体1が収容されるケース2と、燃料電池本体1とケース2との間に配置される介在層3とを備える。   The fuel cell stack A according to the example will be described. 1 and 2 are schematic sectional views of the fuel cell stack A. FIG. However, FIG. 1 is an E1-E1 sectional view of FIG. 2, and FIG. 2 is an E2-E2 sectional view of FIG. The fuel cell stack A includes a fuel cell main body 1, a case 2 in which the fuel cell main body 1 is accommodated, and an intervening layer 3 disposed between the fuel cell main body 1 and the case 2.

燃料電池本体1は、燃料ガスと酸化剤ガスとを供給され電気化学反応により電力を発生する。燃料電池本体1は、積層体11と、一対のターミナルプレート12と、一対のエンドプレート14と、一対の絶縁プレート13とを備える。積層体11は、複数の燃料電池単セルを積層方向Sに沿って積層することにより形成される。ターミナルプレート12は、積層体11の積層方向Sの両端部に配置される。エンドプレート14は、ターミナルプレート12の積層方向Sの外側に配置される。絶縁プレート13は、ターミナルプレート12とエンドプレート14との間に配置される。ターミナルプレート12、エンドプレート14及び絶縁プレート13は、積層方向Sに垂直な断面でみると、それぞれ長方形状をなしている。そのとき、ターミナルプレート12及び絶縁プレート13は互いにほぼ同じ大きさである。一方、エンドプレート14はターミナルプレート12及び絶縁プレート13とほぼ同じ大きさか又はこれらよりもわずかに大きい。ターミナルプレート12及びエンドプレート14は導電性材料から形成され、絶縁プレート13は電気絶縁性材料から形成される。   The fuel cell body 1 is supplied with a fuel gas and an oxidant gas and generates electric power by an electrochemical reaction. The fuel cell body 1 includes a stacked body 11, a pair of terminal plates 12, a pair of end plates 14, and a pair of insulating plates 13. The stacked body 11 is formed by stacking a plurality of fuel cell single cells along the stacking direction S. The terminal plate 12 is disposed at both ends of the stacked body 11 in the stacking direction S. The end plate 14 is disposed outside the terminal plate 12 in the stacking direction S. The insulating plate 13 is disposed between the terminal plate 12 and the end plate 14. The terminal plate 12, the end plate 14, and the insulating plate 13 each have a rectangular shape when viewed in a cross section perpendicular to the stacking direction S. At that time, the terminal plate 12 and the insulating plate 13 have substantially the same size. On the other hand, the end plate 14 is approximately the same size as or slightly larger than the terminal plate 12 and the insulating plate 13. The terminal plate 12 and the end plate 14 are made of a conductive material, and the insulating plate 13 is made of an electrically insulating material.

ケース2は、燃料電池本体1を圧縮状態で収容し、燃料電池本体1を拘束する。ケース2は、ケース本体22と、蓋プレート21とを備える。ケース本体22は、その内部に燃料電池本体1を収容可能である。ケース本体22は、ほぼ直方体であり、積層方向Sに沿い燃料電池本体1を囲む四つの側壁22aと底壁22bとを有し、底壁22bに対向して開口22cを有する。底壁22bには配線や配管用の開口部(図示されず)が形成される。ケース本体22の内部における底壁22bの広さは、燃料電池本体1の積層方向Sに垂直な断面の広さよりもやや大きい。ケース本体22の内部における積層方向Sの長さ、すなわち深さは、圧縮状態の燃料電池本体1の積層方向Sの長さと同じである。蓋プレート21は、ケース本体22の蓋であり、ケース本体22に締結部材(図示せず)で締結され、開口22cを封止する。ケース本体22及び蓋プレート21は、ステンレスやアルミニウムのような金属で形成される。なお、図1及び図2に示す実施例では側壁22a及び底壁22bは略平板状の側壁であるが、図示しない別の実施例では側壁22a及び底壁22bの少なくとも一方は一部又は全部に曲面を有する側壁である。   The case 2 accommodates the fuel cell body 1 in a compressed state and restrains the fuel cell body 1. The case 2 includes a case main body 22 and a lid plate 21. The case main body 22 can accommodate the fuel cell main body 1 therein. The case body 22 is substantially a rectangular parallelepiped, has four side walls 22a and a bottom wall 22b surrounding the fuel cell body 1 along the stacking direction S, and has an opening 22c facing the bottom wall 22b. An opening (not shown) for wiring and piping is formed in the bottom wall 22b. The width of the bottom wall 22 b inside the case body 22 is slightly larger than the width of the cross section perpendicular to the stacking direction S of the fuel cell body 1. The length in the stacking direction S inside the case body 22, that is, the depth is the same as the length of the compressed fuel cell body 1 in the stacking direction S. The lid plate 21 is a lid of the case body 22 and is fastened to the case body 22 with a fastening member (not shown) to seal the opening 22c. The case body 22 and the lid plate 21 are made of a metal such as stainless steel or aluminum. In the embodiment shown in FIGS. 1 and 2, the side wall 22a and the bottom wall 22b are substantially flat side walls, but in another embodiment (not shown), at least one of the side wall 22a and the bottom wall 22b is partly or entirely. A side wall having a curved surface.

ケース本体22内に燃料電池本体1が収容されて蓋プレート21が開口22cを閉じ、ケース本体22と蓋プレート21とが締結部材で締結されると、燃料電池本体1は蓋プレート21とケース本体22の底壁22bとにより両側から積層方向S内向きに圧縮状態で拘束される。その結果、燃料電池本体1の両側のエンドプレート14、14が積層方向S内向きに互いに近づく。したがって、積層体11、ターミナルプレート12、絶縁プレート13及びエンドプレート14が積層方向Sに関し互いに密着される。このとき、積層方向Sに沿った燃料電池本体1の外周面1aと外周面1aに対向するケース2の側壁22aの内周面2aとの間に距離Dの隙間が形成される。その隙間に介在層3が配置される。   When the fuel cell main body 1 is accommodated in the case main body 22, the lid plate 21 closes the opening 22 c, and the case main body 22 and the lid plate 21 are fastened by a fastening member, the fuel cell main body 1 has the lid plate 21 and the case main body. 22 is restrained in a compressed state inward in the stacking direction S from both sides by the bottom wall 22b. As a result, the end plates 14 and 14 on both sides of the fuel cell main body 1 approach each other in the stacking direction S. Therefore, the stacked body 11, the terminal plate 12, the insulating plate 13, and the end plate 14 are in close contact with each other in the stacking direction S. At this time, a gap of a distance D is formed between the outer peripheral surface 1a of the fuel cell main body 1 along the stacking direction S and the inner peripheral surface 2a of the side wall 22a of the case 2 facing the outer peripheral surface 1a. The intervening layer 3 is disposed in the gap.

なお、ケース本体22の深さは圧縮状態の燃料電池本体1の積層方向Sの長さよりやや長くてもよい。その場合には、例えば、ケース本体22の底壁22bの外側からボルトが締め込まれることで、底壁22bの内側から突き出したボルトが燃料電池本体1のエンドプレート14を押して燃料電池本体1を拘束する。図示しない別の実施例では、燃料電池本体1がケース2に収容されると、蓋プレート21とそれに接するエンドプレート14とが締結部材で締結され、ケース本体22の底壁22bとそれに接するエンドプレート14とが締結部材で締結されることで、ケース2と燃料電池本体1とが締結される。   The depth of the case body 22 may be slightly longer than the length of the compressed fuel cell body 1 in the stacking direction S. In that case, for example, a bolt is tightened from the outside of the bottom wall 22b of the case body 22 so that the bolt protruding from the inside of the bottom wall 22b pushes the end plate 14 of the fuel cell body 1 to to bound. In another embodiment (not shown), when the fuel cell main body 1 is accommodated in the case 2, the lid plate 21 and the end plate 14 in contact therewith are fastened by a fastening member, and the bottom wall 22 b of the case main body 22 and the end plate in contact therewith. 14 is fastened with a fastening member, whereby the case 2 and the fuel cell main body 1 are fastened.

燃料電池スタックAの積層方向Sの一端に位置する蓋プレート21、ターミナルプレート12、絶縁プレート13及びエンドプレート14は、これら蓋プレート21、ターミナルプレート12、絶縁プレート13及びエンドプレート14を積層方向Sに貫通して燃料電池スタックAの外部から積層体11に到る複数の流通路(図示せず)を備える。これら流通路には、水素のような燃料ガスを積層体11に供給する供給路、燃料ガスを積層体11から排出する排出路、空気のような酸化剤ガスを積層体11に供給する供給路、酸化剤ガスを積層体11から排出する排出路、冷却水を積層体11に供給する供給路、及び冷却水を積層体11から排出する排出路が含まれる。   The lid plate 21, the terminal plate 12, the insulating plate 13 and the end plate 14 located at one end in the stacking direction S of the fuel cell stack A are connected to the lid plate 21, the terminal plate 12, the insulating plate 13 and the end plate 14 in the stacking direction S. And a plurality of flow paths (not shown) extending from the outside of the fuel cell stack A to the stacked body 11. In these flow passages, a supply path for supplying a fuel gas such as hydrogen to the stack 11, a discharge path for discharging the fuel gas from the stack 11, and a supply path for supplying an oxidant gas such as air to the stack 11 , A discharge path for discharging the oxidant gas from the stacked body 11, a supply path for supplying cooling water to the stacked body 11, and a discharge path for discharging cooling water from the stacked body 11.

燃料電池単セルはそれぞれアノード極及びカソード極(図示せず)を有し、アノード極は一側に隣接する燃料電池単セルのカソード極に電気的に接続され、カソード極は他側に隣接する燃料電池単セルのアノード極に電気的に接続される。積層体11の一端のアノード極は一方のターミナルプレート12に電気的に接続され、他端のカソード極は他方のターミナルプレート12に電気的に接続される。燃料電池単セルは、燃料電池単セルに供給された燃料ガス及び酸化剤ガスの電気化学反応により電力を発生する。燃料電池単セルで発生した電力は、ターミナルプレート12から燃料電池スタックAの外部に到る複数の配線を介して燃料電池スタックAの外部に取り出される。燃料電池スタックAから取り出された電力は例えば車両の駆動用電気モータ又は蓄電器に供給される。エンドプレート14及びケース2は接地されている。なお、これらの電気的な構成については、図示を省略している。   Each single fuel cell has an anode electrode and a cathode electrode (not shown), and the anode electrode is electrically connected to the cathode electrode of the fuel cell unit cell adjacent to one side, and the cathode electrode is adjacent to the other side. It is electrically connected to the anode electrode of the single fuel cell. The anode electrode at one end of the laminate 11 is electrically connected to one terminal plate 12, and the cathode electrode at the other end is electrically connected to the other terminal plate 12. The fuel cell unit cell generates electric power by an electrochemical reaction between the fuel gas and the oxidant gas supplied to the fuel cell unit cell. The electric power generated in the single fuel cell is taken out of the fuel cell stack A through a plurality of wires extending from the terminal plate 12 to the outside of the fuel cell stack A. The electric power extracted from the fuel cell stack A is supplied to, for example, an electric motor for driving a vehicle or a capacitor. The end plate 14 and the case 2 are grounded. Note that illustration of these electrical configurations is omitted.

介在層3は、燃料電池本体1に加わる衝撃を吸収し、燃料電池本体1の位置ずれを抑制し、燃料電池本体1とケース2とを電気的に絶縁する部材である。介在層3は、燃料電池本体1とケース2との間、すなわち積層方向Sに沿った燃料電池本体1の外周面1aと外周面1aに対向するケース2の側壁22aの内周面2aとの間に配置される。また、積層方向Sの断面(例えば図1)で見た場合、介在層3は、積層方向Sに沿って燃料電池本体1の一端から他端に亘って設けられる。一方、積層方向Sと垂直な断面(例えば図2)で見た場合、介在層3は、少なくとも燃料電池本体1の四つの角部Cnの近傍に、すなわち少なくともケース2の四つの角部の近傍に設けられる。図示しない別の実施例では、燃料電池本体1とケース2との間に電気的絶縁部材が更に配置される。   The intervening layer 3 is a member that absorbs an impact applied to the fuel cell main body 1, suppresses displacement of the fuel cell main body 1, and electrically insulates the fuel cell main body 1 and the case 2. The intervening layer 3 is formed between the fuel cell main body 1 and the case 2, that is, between the outer peripheral surface 1a of the fuel cell main body 1 along the stacking direction S and the inner peripheral surface 2a of the side wall 22a of the case 2 facing the outer peripheral surface 1a. Arranged between. Further, when viewed in a cross section in the stacking direction S (for example, FIG. 1), the intervening layer 3 is provided from one end to the other end of the fuel cell main body 1 along the stacking direction S. On the other hand, when viewed in a cross section perpendicular to the stacking direction S (for example, FIG. 2), the intervening layer 3 is at least in the vicinity of the four corners Cn of the fuel cell body 1, that is, at least in the vicinity of the four corners of the case 2. Is provided. In another embodiment (not shown), an electrical insulating member is further disposed between the fuel cell main body 1 and the case 2.

図2に示す実施例では、燃料電池本体1の積層方向Sに沿った外周面1aのうち互いに向かい合う一対の外周面部分1a−1及び1a−2とその一対の外周面部分1a−1及び1a−2に対向するケース2の内周面2a−1及び2a−2との間の距離Dの隙間に介在層3−1及び3−2がそれぞれ配置される。このとき、外周面部分1a−1には両側の角部Cnの近傍にそれぞれ介在層3−1が配置され、外周面部分1a−2には両側の角部Cnにそれぞれ介在層3−2が配置される。また、燃料電池本体1の積層方向Sに沿った外周面1aのうち互いに向かい合う別の一対の外周面部分1a−3及び1a−4とその別の一対の外周面部分1a−3及び1a−4に対向するケース2の内周面2a−3及び2a−4との間の距離Dの隙間に介在層3−3及び3−4がそれぞれ配置される。このとき、外周面部分1a−3には両側の角部Cnの近傍にそれぞれ介在層3−3が配置され、外周面部分1a−4には両側の角部Cnにそれぞれ介在層3−4が配置される。図示しない別の実施例では、外周面1aの一つの外周面部分につき、角部Cn近傍の二枚の介在層3ではなく、ほぼ全面を覆う一枚の介在層3が配置される。   In the embodiment shown in FIG. 2, a pair of outer peripheral surface portions 1 a-1 and 1 a-2 facing each other out of the outer peripheral surface 1 a along the stacking direction S of the fuel cell main body 1 and the pair of outer peripheral surface portions 1 a-1 and 1 a. The intervening layers 3-1 and 3-2 are arranged in the gaps of the distance D between the inner peripheral surfaces 2a-1 and 2a-2 of the case 2 facing -2. At this time, the outer peripheral surface portion 1a-1 is provided with the intervening layers 3-1 in the vicinity of the corner portions Cn on both sides, and the outer peripheral surface portion 1a-2 is provided with the intervening layers 3-2 on the corner portions Cn on both sides. Be placed. Also, another pair of outer peripheral surface portions 1a-3 and 1a-4 facing each other in the outer peripheral surface 1a along the stacking direction S of the fuel cell main body 1 and another pair of outer peripheral surface portions 1a-3 and 1a-4. The intervening layers 3-3 and 3-4 are respectively disposed in the gaps of the distance D between the inner peripheral surfaces 2a-3 and 2a-4 of the case 2 facing each other. At this time, the intervening layer 3-3 is disposed in the vicinity of the corners Cn on both sides of the outer peripheral surface portion 1a-3, and the intervening layers 3-4 are disposed on the corner portions Cn of both sides of the outer peripheral surface portion 1a-4. Be placed. In another embodiment (not shown), instead of the two intervening layers 3 in the vicinity of the corner portion Cn, one intervening layer 3 covering almost the entire surface is arranged for one outer peripheral surface portion of the outer peripheral surface 1a.

介在層3を、積層方向Sの断面(図1)で見た場合、積層方向Sに沿って燃料電池本体1の一端から他端に亘って設けるのは、積層方向Sに垂直な方向の力が加わったとき、各燃料電池単セルが位置ずれするのを抑制するためであり、特に位置ずれし易い積層体11の中央部を確実に保持するためである。また、介在層3を、積層方向Sと垂直な断面(図2)で見た場合、少なくともケース2の四つの角部に設けるのは、燃料電池単セルが位置ずれしようとするとき介在層3に掛かる力をケース2で支持する場合、少なくとも剛性の高いケース2の角部で支持することで介在層3に掛かる力を安定的に支持できるからである。また、介在層3を、外周面1aのうちの向かい合う両側面に対になるようにそれぞれ配置するのは、介在層3を介して燃料電池本体1の両側から均等に燃料電池本体1を拘束する力や介在層3を押し潰す力を付与するためである。   When the intervening layer 3 is viewed in a cross section in the stacking direction S (FIG. 1), the force in the direction perpendicular to the stacking direction S is provided along the stacking direction S from one end to the other end of the fuel cell body 1. This is to prevent the position of each fuel cell unit from being displaced when the is added, and to reliably hold the central portion of the stacked body 11 that is particularly likely to be displaced. Further, when the intervening layer 3 is viewed in a cross section perpendicular to the stacking direction S (FIG. 2), at least four corners of the case 2 are provided when the intervening layer 3 is about to be displaced. This is because when the force applied to the intermediate layer 3 is supported by the case 2, the force applied to the intervening layer 3 can be stably supported by supporting at least the corners of the case 2 having high rigidity. In addition, the interposing layer 3 is disposed so as to be paired on opposite side surfaces of the outer peripheral surface 1a so that the fuel cell main body 1 is evenly restrained from both sides of the fuel cell main body 1 via the intervening layer 3. This is because a force or a force for crushing the intervening layer 3 is applied.

介在層3は、電気的絶縁性及び復元力を有する。復元力とは、外力により寸法が変化したとき、元の寸法に戻ろうとする力である。介在層3の材料としては、電気的絶縁性及び復元力を有していれば特に限定されず、例えば、樹脂の弾性材に例示される。介在層3は、好ましくはダイラタント的特性を更に有する。ダイラタント的特性とは、ゆっくりとした入力荷重には流動性を示し、ゆっくり変形し、急激な入力荷重には固体のように振る舞い、ほとんど変形しない性質をいう。その場合、介在層3の材料としては、上記特性に加えてダイラタント的特性を更に有していれば特に限定されず、例えば、樹脂と固形物との混合物が挙げられる。具体的には、シリコーンオイルとホウ酸の混合物が例示される。また、ダウコーニング社のダウコーニング3179(ダウコーニングは登録商標)や、Wacker GmbH社のM48、M49のような製品を用いることもできる。また、シリコーン樹脂(ゲルを含む)とシリカとの混合物を用いることもできる。図1及び図2及び以下に示す実施例では、介在層3が電気的絶縁性及び復元力に加えてダイラタント的特性を更に有する場合について説明する。   The intervening layer 3 has electrical insulation and restoring force. The restoring force is a force for returning to the original dimension when the dimension is changed by an external force. The material of the intervening layer 3 is not particularly limited as long as it has electrical insulation and restoring force, and is exemplified by a resin elastic material. The intervening layer 3 preferably further has dilatant characteristics. The dilatant characteristic is a property that exhibits fluidity to a slow input load, deforms slowly, behaves like a solid to a sudden input load, and hardly deforms. In this case, the material of the intervening layer 3 is not particularly limited as long as it further has dilatant characteristics in addition to the above characteristics, and examples thereof include a mixture of a resin and a solid material. Specifically, a mixture of silicone oil and boric acid is exemplified. In addition, products such as Dow Corning 3179 (Dow Corning is a registered trademark) manufactured by Dow Corning and M48 and M49 manufactured by Wacker GmbH may be used. A mixture of silicone resin (including gel) and silica can also be used. In FIG. 1 and FIG. 2 and the embodiment shown below, the case where the intervening layer 3 further has a dilatant characteristic in addition to the electrical insulation and the restoring force will be described.

介在層3としては、荷重ゼロの状態では、燃料電池本体1の外周面1aとケース2の側壁22aの内周面2aとの距離Dよりも大きい厚み、すなわち初期厚みを有するものが用いられる。そして、外周面1aに配置された介在層3が潰されてその厚みが距離Dよりも小さくなり、その厚みが距離Dにまで膨らむ前に燃料電池本体1がケース2に収容されることで、介在層3に影響されずに燃料電池本体1がケース2に収容される。この場合、介在層3は、その後にその復元力により距離Dと同じ厚みに回復するが、初期厚みが距離Dよりも大きいので、初期厚みを回復することなく圧縮状態で燃料電池本体1の外周面1aとケース2の側壁22aの内周面2aとの間に配置される。介在層3が圧縮状態で配置されることで、燃料電池本体1に加わる衝撃が吸収し易くなり、燃料電池本体1の位置ずれがより抑制される。   As the intervening layer 3, a layer having a thickness larger than the distance D between the outer peripheral surface 1 a of the fuel cell main body 1 and the inner peripheral surface 2 a of the side wall 22 a of the case 2, that is, an initial thickness is used. And the intervening layer 3 arrange | positioned at the outer peripheral surface 1a is crushed, the thickness becomes smaller than the distance D, and the fuel cell main body 1 is accommodated in the case 2 before the thickness expands to the distance D, The fuel cell body 1 is accommodated in the case 2 without being affected by the intervening layer 3. In this case, the intervening layer 3 subsequently recovers to the same thickness as the distance D by its restoring force, but since the initial thickness is larger than the distance D, the outer periphery of the fuel cell body 1 is compressed in a compressed state without recovering the initial thickness. It arrange | positions between the surface 1a and the internal peripheral surface 2a of the side wall 22a of case 2. As shown in FIG. By disposing the intervening layer 3 in a compressed state, the impact applied to the fuel cell main body 1 is easily absorbed, and the displacement of the fuel cell main body 1 is further suppressed.

介在層3にダイラタント的特性を有する材料を用いることが好ましい理由は以下のとおりである。燃料電池スタックAが車両に搭載される場合、燃料電池本体1が車両の衝突などで積層方向Sに垂直な方向に急激な衝撃を受けると、燃料電池本体1の各燃料電池単セルは元の位置から力の方向にずれようとする。このとき、介在層3がダイラタント的特性を有すると、介在層3は急激な変化を受けて固体のように振る舞う。そのため、各燃料電池単セルの位置ずれの発生を抑制し、位置ずれに起因する反応ガスや冷却媒体の漏れを抑制できる。一方、燃料電池単セルの熱膨張などに起因して各燃料電池単セルが積層方向Sに垂直な方向にゆっくりと変形することがある。このとき、介在層3がダイラタント的特性を有すると、介在層3はゆっくりとした変化を受けて流動的に変化し、燃料電池単セルの変形によって生じた燃料電池単セルと介在層3との隙間を埋めるように変形する。そのため、その後に車両の衝突が発生し、燃料電池単セルが急激にずれようとしても、介在層3によりずれの発生を抑制できる。   The reason why it is preferable to use a material having a dilatant characteristic for the intervening layer 3 is as follows. When the fuel cell stack A is mounted on a vehicle, when the fuel cell main body 1 receives a sudden impact in a direction perpendicular to the stacking direction S due to a vehicle collision or the like, each fuel cell single cell of the fuel cell main body 1 is restored to its original state. Try to deviate from the position in the direction of the force. At this time, if the intervening layer 3 has a dilatant characteristic, the intervening layer 3 behaves like a solid in response to an abrupt change. Therefore, it is possible to suppress the occurrence of misalignment of each fuel cell single cell, and to suppress the leakage of the reaction gas and the cooling medium due to the misalignment. On the other hand, due to the thermal expansion of the single fuel cell, each single fuel cell may be slowly deformed in the direction perpendicular to the stacking direction S. At this time, if the intervening layer 3 has a dilatant characteristic, the intervening layer 3 is subjected to a slow change and fluidly changes, and the fuel cell single cell and the intervening layer 3 formed by the deformation of the fuel cell single cell. Deform to fill the gap. Therefore, even if a vehicle collision occurs after that and the fuel cell unit cell is about to shift suddenly, the occurrence of the shift can be suppressed by the intervening layer 3.

なお、積層体11において、積層方向Sに垂直な方向での燃料電池単セル11aの端部は揃っていて外周面1aを形成するが、詳細にみると図3に示すように隣り合う燃料電池単セル11a同士では端部が少しずつずれている場合もある。その場合、介在層3の厚みは、介在層3の外面を基準として最小値dmin以上、最大値dmax以下の値となり一定値ではない。本実施例では、厚みの平均値daveを介在層3の厚みとする。   Note that, in the stacked body 11, the end portions of the fuel cell single cells 11a in the direction perpendicular to the stacking direction S are aligned to form the outer peripheral surface 1a. However, when viewed in detail, adjacent fuel cells as shown in FIG. In some cases, the end portions of the single cells 11a are slightly shifted. In this case, the thickness of the intervening layer 3 is not a constant value because the thickness is not less than the minimum value dmin and not more than the maximum value dmax with reference to the outer surface of the intervening layer 3. In this embodiment, the average value “dave” of the thickness is defined as the thickness of the intervening layer 3.

次に、実施例に係る燃料電池スタックAの製造に用いる燃料電池スタック製造装置について説明する。燃料電池スタック製造装置30は、挟持具31と、圧縮具32とを備える。図4は、燃料電池スタック製造装置30の挟持具31の構成を示す側面図である。   Next, a fuel cell stack manufacturing apparatus used for manufacturing the fuel cell stack A according to the embodiment will be described. The fuel cell stack manufacturing apparatus 30 includes a clamping tool 31 and a compression tool 32. FIG. 4 is a side view showing the configuration of the holding tool 31 of the fuel cell stack manufacturing apparatus 30.

挟持具31は、燃料電池本体1を積層方向Sの両端において圧縮状態で挟持する。図4に示す実施例では、挟持具31は、長方形の板状の基材40を有する。基材40の長手方向Lの一端には基材40から略垂直に立設された板状の垂直部材41が結合され、長手方向Lの他端には基材40から略垂直に立設された板状の垂直部材42が結合される。垂直部材42には駆動機構44が配置される。駆動機構44は、長手方向Lに沿って垂直部材41へ延びる加圧シャフト43を長手方向Lに移動させる。燃料電池スタックAの製造工程では、積層方向Sが長手方向Lに一致するように燃料電池本体1が蓋プレート21と共に、挟持具31に対し配置され、次いで加圧シャフト43が長手方向Lに沿って垂直部材41に向けて移動される。その結果、燃料電池本体1が垂直部材41と加圧シャフト43との間で積層方向Sに圧縮状態で挟持される。このとき、ケース本体22の底壁22bの上記の開口部及び開口22cを加圧シャフト43が通るように、すなわちケース本体22を加圧シャフト43が貫通するようにケース本体22が加圧シャフト43に予め配置されており、ケース本体22が積層方向Sに移動されることで、ケース本体22が圧縮状態の燃料電池本体1を収容する。   The clamping tool 31 clamps the fuel cell main body 1 in a compressed state at both ends in the stacking direction S. In the embodiment shown in FIG. 4, the holding tool 31 has a rectangular plate-like base material 40. A plate-like vertical member 41 erected substantially vertically from the substrate 40 is coupled to one end of the substrate 40 in the longitudinal direction L, and the other end in the longitudinal direction L is erected substantially vertically from the substrate 40. A plate-like vertical member 42 is coupled. A drive mechanism 44 is disposed on the vertical member 42. The drive mechanism 44 moves the pressure shaft 43 extending to the vertical member 41 along the longitudinal direction L in the longitudinal direction L. In the manufacturing process of the fuel cell stack A, the fuel cell main body 1 is disposed with respect to the clamping tool 31 together with the lid plate 21 so that the stacking direction S coincides with the longitudinal direction L, and then the pressure shaft 43 extends along the longitudinal direction L. To move toward the vertical member 41. As a result, the fuel cell main body 1 is sandwiched between the vertical member 41 and the pressure shaft 43 in the stacking direction S in a compressed state. At this time, the case main body 22 is connected to the pressure shaft 43 so that the pressure shaft 43 passes through the opening and the opening 22c of the bottom wall 22b of the case main body 22, that is, the pressure shaft 43 penetrates the case main body 22. The case body 22 accommodates the compressed fuel cell body 1 by moving the case body 22 in the stacking direction S.

圧縮具32は、挟持具31により挟持された燃料電池本体1の外周面1a上に配置されている介在層3を圧縮する。図4に示す実施例では、圧縮具32は挟持具31とは別体として形成される。   The compression tool 32 compresses the intervening layer 3 disposed on the outer peripheral surface 1 a of the fuel cell main body 1 sandwiched by the sandwiching tool 31. In the embodiment shown in FIG. 4, the compression tool 32 is formed separately from the holding tool 31.

図5及び図6は、燃料電池スタック製造装置30の圧縮具32の正面図及び側面図である。圧縮具32は、挟持具31により挟持された燃料電池本体1の一対の外周面部分1a−1及び1a−2上に配置されている一対の介在層3−1及び3−2を、燃料電池本体1がケース2に収容されたときの外周面1aと内周面2aとの距離Dよりも大きい初期厚みから距離Dよりも小さい厚み、すなわち圧縮済み厚みまで同時に圧縮する。図5に示す実施例では、更に、圧縮具32は、挟持具31により挟持された燃料電池本体1の別の一対の外周面部分1a−3及び1a−4上に配置されている別の一対の介在層3−3及び3−4を、初期厚みから圧縮済み厚みまで同時に圧縮する。   FIGS. 5 and 6 are a front view and a side view of the compression tool 32 of the fuel cell stack manufacturing apparatus 30. The compression tool 32 includes a pair of intervening layers 3-1 and 3-2 disposed on the pair of outer peripheral surface portions 1a-1 and 1a-2 of the fuel cell main body 1 sandwiched by the sandwiching tool 31. The main body 1 is compressed simultaneously from an initial thickness larger than the distance D between the outer peripheral surface 1a and the inner peripheral surface 2a when accommodated in the case 2 to a thickness smaller than the distance D, that is, a compressed thickness. In the embodiment shown in FIG. 5, the compression tool 32 further includes another pair of fuel cell bodies 1 sandwiched by the sandwiching tool 31 and disposed on another pair of outer peripheral surface portions 1 a-3 and 1 a-4. The intervening layers 3-3 and 3-4 are simultaneously compressed from the initial thickness to the compressed thickness.

圧縮具32は、一対の板状部材51−1及び51−2と、一対の支持部材53−1及び53−2と、固定部材54aと、一対の移動機構52−1及び52−2とを含んでいる。一対の支持部材53−1及び53−2は、それぞれ移動機構52−1及び52−2を介して、対応する板状部材51−1及び51−2を支持する。固定部材54aは、一対の支持部材53−1及び53−2を燃料電池本体1の周囲において互いに連結し、それにより一対の支持部材53−1及び53−2同士間の距離を一定に保つ。移動機構52−1及び52−2は、燃料電池本体1上の一対の介在層3−1及び3−2にそれぞれ対面配置された一対の板状部材51−1及び51−2を互いに近づくよう移動し、それにより一対の板状部材51−1及び51−2と燃料電池本体1との間で一対の介在層3−1及び3−2を圧縮済み厚みまで同時に圧縮し、次いで一対の板状部材51−1及び51−2を互いに離れるよう移動し、それにより一対の板状部材51−1及び51−2を一対の介在層3−1及び3−2から離脱させる。言い換えると、移動機構52−1及び52−2は、一対の板状部材51−1及び51−2のうち少なくとも一方を対応する支持部材53−1及び53−2に対し移動し、それにより一対の板状部材51−1及び51−2を互いに近づくよう又は互いに離れるよう移動する。移動機構52−1及び52−2としては電動シリンダや電動アクチュエータが挙げられる。ここで、図5に示す実施例では、外周面部分1a−1及び1a−2上に一対の介在層3−1及び3−2が二組あることに対応して、第1の圧縮具32−1は二組設けられる。   The compression tool 32 includes a pair of plate-like members 51-1 and 51-2, a pair of support members 53-1 and 53-2, a fixing member 54a, and a pair of moving mechanisms 52-1 and 52-2. Contains. The pair of support members 53-1 and 53-2 support the corresponding plate-like members 51-1 and 51-2 via the moving mechanisms 52-1 and 52-2, respectively. The fixing member 54a connects the pair of support members 53-1 and 53-2 to each other around the fuel cell body 1, thereby keeping the distance between the pair of support members 53-1 and 53-2 constant. The moving mechanisms 52-1 and 52-2 approach the pair of plate-like members 51-1 and 51-2 facing each other on the pair of interposed layers 3-1 and 3-2 on the fuel cell main body 1. And thereby simultaneously compressing the pair of intervening layers 3-1 and 3-2 to a compressed thickness between the pair of plate-like members 51-1 and 51-2 and the fuel cell body 1, and then the pair of plates The pair of plate-like members 51-1 and 51-2 are moved away from each other, thereby separating the pair of plate-like members 51-1 and 51-2 from the pair of intervening layers 3-1 and 3-2. In other words, the moving mechanisms 52-1 and 52-2 move at least one of the pair of plate-like members 51-1 and 51-2 with respect to the corresponding support members 53-1 and 53-2, thereby The plate-like members 51-1 and 51-2 are moved toward or away from each other. Examples of the moving mechanisms 52-1 and 52-2 include an electric cylinder and an electric actuator. Here, in the embodiment shown in FIG. 5, the first compression tool 32 corresponds to the two pairs of intervening layers 3-1 and 3-2 on the outer peripheral surface portions 1a-1 and 1a-2. Two sets of -1 are provided.

図5に示す実施例では、更に、圧縮具32は、別の一対の板状部材51−3及び51−4と、別の一対の支持部材53−3及び53−4と、別の固定部材54bと、別の一対の移動機構52−3及び52−4とを含んでいる。一対の支持部材53−3及び53−4は、それぞれ移動機構52−3及び52−4を介して、対応する板状部材51−3及び51−4を支持する。固定部材54bは、一対の支持部材53−3及び53−4を燃料電池本体1の周囲において互いに連結し、それにより一対の支持部材53−3及び53−4同士間の距離を一定に保つ。移動機構52−3及び52−4は、燃料電池本体1上の一対の介在層3−3及び3−4にそれぞれ対面配置された一対の板状部材51−3及び51−4を互いに近づくよう移動し、それにより一対の板状部材51−3及び51−4と燃料電池本体1との間で一対の介在層3−3及び3−4を圧縮済み厚みまで同時に圧縮し、次いで一対の板状部材51−3及び51−4を互いに離れるよう移動し、それにより一対の板状部材51−3及び51−4を一対の介在層3−1及び3−2から離脱させる。言い換えると、移動機構52−3及び52−4は、一対の板状部材51−3及び51−4のうち少なくとも一方を対応する支持部材53−3及び53−4に対し移動し、それにより一対の板状部材51−3及び51−4を互いに近づくよう又は互いに離れるよう移動する。ここで、図5に示す実施例では、外周面部分1a−3及び1a−4上に一対の介在層3−3及び3−4が二組あることに対応して、第2の圧縮具32−2は二組設けられる。   In the embodiment shown in FIG. 5, the compression tool 32 further includes another pair of plate-like members 51-3 and 51-4, another pair of support members 53-3 and 53-4, and another fixing member. 54b and another pair of moving mechanisms 52-3 and 52-4. The pair of support members 53-3 and 53-4 support the corresponding plate-like members 51-3 and 51-4 via the moving mechanisms 52-3 and 52-4, respectively. The fixing member 54b connects the pair of support members 53-3 and 53-4 to each other around the fuel cell main body 1, thereby keeping the distance between the pair of support members 53-3 and 53-4 constant. The moving mechanisms 52-3 and 52-4 approach the pair of plate-like members 51-3 and 51-4 facing each other on the pair of intervening layers 3-3 and 3-4 on the fuel cell main body 1. And thereby simultaneously compressing the pair of intervening layers 3-3 and 3-4 to the compressed thickness between the pair of plate-like members 51-3 and 51-4 and the fuel cell main body 1, and then the pair of plates The member 51-3 and 51-4 are moved away from each other, thereby separating the pair of plate members 51-3 and 51-4 from the pair of intervening layers 3-1 and 3-2. In other words, the moving mechanisms 52-3 and 52-4 move at least one of the pair of plate-like members 51-3 and 51-4 with respect to the corresponding support members 53-3 and 53-4, and thereby a pair of The plate-like members 51-3 and 51-4 are moved toward or away from each other. Here, in the embodiment shown in FIG. 5, the second compression tool 32 corresponds to the two pairs of intervening layers 3-3 and 3-4 on the outer peripheral surface portions 1a-3 and 1a-4. Two sets of -2 are provided.

板状部材51−1及び51−2は、外周面部分1a−1及び1a−2上を積層方向Sに延在する介在層3−1及び3−2の外面を覆うように形成されている。図5に示す実施例では、板状部材51−1、51−2は、介在層3−1及び3−2の外面の全面を覆うように、介在層3−1、3−2の幅よりも広い幅で、燃料電池本体1の積層方向Sの長さと同じ長さの板状に形成される。板状部材51−3及び51−4についても、板状部材51−1、51−2と同様に、介在層3−3及び3−4の外面の全面を覆うように形成される。   The plate-like members 51-1 and 51-2 are formed so as to cover the outer surfaces of the intervening layers 3-1 and 3-2 extending in the stacking direction S on the outer peripheral surface portions 1a-1 and 1a-2. . In the embodiment shown in FIG. 5, the plate-like members 51-1 and 51-2 are wider than the width of the intervening layers 3-1 and 3-2 so as to cover the entire outer surfaces of the intervening layers 3-1 and 3-2. Is formed in a plate shape having a wide width and the same length as the length of the fuel cell body 1 in the stacking direction S. The plate-like members 51-3 and 51-4 are formed so as to cover the entire outer surfaces of the intervening layers 3-3 and 3-4, similarly to the plate-like members 51-1 and 51-2.

図6に示す実施例では、一対の板状部材51−1及び51−2に対して、一対の移動機構52−1及び52−2、一対の支持部材53−1及び53−2並びに固定部材54aが積層方向Sに複数個配置される。これらは、向かい合う一対の外周面部分1a−1及び1a−2上の一対の介在層3−1及び3−2を圧縮するので、以下では便宜上、第1の圧縮具32−1と呼ぶこととする。同様に、一対の板状部材51−3及び51−4に対して、一対の移動機構52−3及び52−4、一対の支持部材53−3及び53−4並びに固定部材54bが積層方向Sに複数個配置される。これらは、別の向かい合う一対の外周面部分1a−3及び1a−4上の一対の介在層3−3及び3−4を圧縮するので、以下では便宜上、第2の圧縮具32−2と呼ぶこととする。   In the embodiment shown in FIG. 6, a pair of moving mechanisms 52-1 and 52-2, a pair of support members 53-1 and 53-2 and a fixing member with respect to the pair of plate-like members 51-1 and 51-2 A plurality of 54a are arranged in the stacking direction S. Since these compress the pair of intervening layers 3-1 and 3-2 on the pair of opposed outer peripheral surface portions 1a-1 and 1a-2, in the following, for the sake of convenience, they will be referred to as the first compressor 32-1. To do. Similarly, with respect to the pair of plate-like members 51-3 and 51-4, the pair of moving mechanisms 52-3 and 52-4, the pair of support members 53-3 and 53-4, and the fixing member 54b are stacked in the stacking direction S. A plurality are arranged. Since these compress the pair of intervening layers 3-3 and 3-4 on another pair of outer peripheral surface portions 1a-3 and 1a-4 facing each other, they are hereinafter referred to as a second compression tool 32-2 for convenience. I will do it.

図7は圧縮具の動作の一例を説明する模式図である。第1の圧縮具32−1で介在層3−1及び3−2を圧縮する動作と、第2の圧縮具32−2で介在層3−3及び3−4を圧縮する動作は同じなので、以下では、第1の圧縮具32−1で介在層3−1及び3−2を圧縮する動作について説明する。   FIG. 7 is a schematic diagram for explaining an example of the operation of the compression tool. The operation of compressing the intervening layers 3-1 and 3-2 with the first compression tool 32-1 and the operation of compressing the interposing layers 3-3 and 3-4 with the second compression tool 32-2 are the same, Below, the operation | movement which compresses the intervening layers 3-1 and 3-2 with the 1st compression tool 32-1 is demonstrated.

図7の左側の図に示すように、第1の圧縮具32−1で介在層3−1及び3−2が圧縮される前、介在層3−1及び3−2の厚みは初期厚みd1である。移動機構52−1は、板状部材51−1を、外周面部分1a−1から外側に初期厚みd1と同じ、又は、それより大きい距離だけ離れた外側位置PS1aに保持する。一方、移動機構52−2は、板状部材51−2を、外周面部分1a−2から外側に初期厚みd1と同じ、又は、それより大きい距離だけ離れた外側位置PS2aに保持する。このとき、板状部材51−1及び51−2は、それぞれ外周面部分1a−1及び1a−2に対向する面が介在層3−1及び3−2の外面に略平行になるように配置される。   As shown in the figure on the left side of FIG. 7, before the intervening layers 3-1 and 3-2 are compressed by the first compression tool 32-1, the thickness of the interposing layers 3-1 and 3-2 is the initial thickness d1. It is. The moving mechanism 52-1 holds the plate-like member 51-1 at the outer position PS <b> 1 a that is away from the outer peripheral surface portion 1 a-1 by the same distance as the initial thickness d <b> 1 or larger than that. On the other hand, the moving mechanism 52-2 holds the plate-like member 51-2 at the outer position PS2a away from the outer peripheral surface portion 1a-2 by a distance equal to or larger than the initial thickness d1. At this time, the plate-like members 51-1 and 51-2 are disposed so that the surfaces facing the outer peripheral surface portions 1a-1 and 1a-2 are substantially parallel to the outer surfaces of the intervening layers 3-1 and 3-2, respectively. Is done.

続いて、図7の右側の図に示すように、第1の圧縮具32−1で介在層3−1及び3−2が圧縮されるとき、移動機構52−1は、板状部材51−1を、外周面部分1a−1から外側に距離Dよりも小さい距離だけ離れた内側位置PS1bに移動する。すなわち、板状部材51−1を介在層3−1に押し付けて介在層3−1を圧縮し、介在層3−1を圧縮済み厚みd2にする。それと同時に、移動機構52−2は、板状部材51−2を、外周面部分1a−2から外側に距離Dよりも小さい距離だけ離れた内側位置PS2bに移動する。すなわち、板状部材51−2を介在層3−2に押し付けて介在層3−2を圧縮し、介在層3−2を圧縮済み厚みd2にする。   Subsequently, as shown in the diagram on the right side of FIG. 7, when the intervening layers 3-1 and 3-2 are compressed by the first compression tool 32-1, the moving mechanism 52-1 is moved to the plate-like member 51-. 1 is moved to the inner position PS1b away from the outer peripheral surface portion 1a-1 by a distance smaller than the distance D. That is, the plate-like member 51-1 is pressed against the intervening layer 3-1 to compress the intervening layer 3-1 so that the intervening layer 3-1 has a compressed thickness d 2. At the same time, the moving mechanism 52-2 moves the plate-like member 51-2 to the inner position PS2b away from the outer peripheral surface portion 1a-2 by a distance smaller than the distance D. That is, the plate-like member 51-2 is pressed against the intervening layer 3-2 to compress the intervening layer 3-2, so that the intervening layer 3-2 has a compressed thickness d2.

その後、移動機構52−1は、板状部材51−1を外側位置PS1aに戻す。同様に、移動機構52−2は、板状部材51−2を外側位置PS2aに戻す。すなわち、板状部材51−1及び51−2は、それぞれ介在層3−1及び3−2から離脱される。   Thereafter, the moving mechanism 52-1 returns the plate-like member 51-1 to the outer position PS1a. Similarly, the moving mechanism 52-2 returns the plate-like member 51-2 to the outer position PS2a. That is, the plate-like members 51-1 and 51-2 are detached from the intervening layers 3-1 and 3-2, respectively.

図4に示す実施例では、圧縮具32は挟持具31とは別体として形成されるが、図示しない別の実施例では、圧縮具32は挟持具31に固定され、両者は一体に形成される。例えば、圧縮具32の複数の固定部材54a及び54bが挟持具31の基材40に固定される。   In the embodiment shown in FIG. 4, the compression tool 32 is formed as a separate body from the holding tool 31, but in another embodiment (not shown), the compression tool 32 is fixed to the holding tool 31, and both are formed integrally. The For example, the plurality of fixing members 54 a and 54 b of the compression tool 32 are fixed to the base material 40 of the clamping tool 31.

図示しない別の実施例では、燃料電池スタック製造装置30は、挟持具31及び圧縮具32に加えて、ケース本体22が燃料電池本体1を収容するようにケース本体22を燃料電池本体1へ移動する収容機構を更に備える。収容機構は、加圧シャフト43が貫通するように加圧シャフト43に配置されたケース本体22をケース本体22の底壁22bにおいて保持する保持具と、ケース本体22を保持した保持具を積層方向Sに沿って燃料電池本体1に向かって移動する保持治具移動機構とを含んでいる。   In another embodiment (not shown), the fuel cell stack manufacturing apparatus 30 moves the case body 22 to the fuel cell body 1 so that the case body 22 accommodates the fuel cell body 1 in addition to the clamping tool 31 and the compression tool 32. And a storage mechanism. The housing mechanism includes a holder that holds the case main body 22 disposed on the pressure shaft 43 so that the pressure shaft 43 passes through the bottom wall 22b of the case main body 22, and a holder that holds the case main body 22 in the stacking direction. And a holding jig moving mechanism that moves toward the fuel cell main body 1 along S.

次に、実施例に係る燃料電池スタックAの製造方法について説明する。図8〜図16は、燃料電池スタックAの各製造工程を示す概略断面図である。   Next, a method for manufacturing the fuel cell stack A according to the embodiment will be described. 8 to 16 are schematic cross-sectional views showing each manufacturing process of the fuel cell stack A.

まず、図4に示すような燃料電池スタック製造装置30の挟持具31により、燃料電池本体1を積層方向Sの両端において圧縮状態で挟持する。具体的には、図8に示すように、ケース2の蓋プレート21を挟持具31の垂直部材41の一側面に当接させ、垂直部材41の他側面から垂直部材41を貫通し蓋プレート21に達するボルトのような締結部材(図示せず)で蓋プレート21を垂直部材41に保持し、保持された蓋プレート21に燃料電池本体1を加圧シャフト43により荷重Pで押し付ける。それにより、燃料電池本体1は、積層方向Sの両端から荷重Pで圧縮される。なお、図8では燃料電池スタック製造装置30のうち、挟持具31の垂直部材41及び加圧シャフト43のみを図示している。本製造方法において、燃料電池本体1は、蓋プレート21とケース本体22とが締結されるまで挟持具31により圧縮され続ける。以下では、垂直部材41及び加圧シャフト43の図示を省略する。   First, the fuel cell body 1 is clamped at both ends in the stacking direction S by the clamping tool 31 of the fuel cell stack manufacturing apparatus 30 as shown in FIG. Specifically, as shown in FIG. 8, the lid plate 21 of the case 2 is brought into contact with one side surface of the vertical member 41 of the holding tool 31 and penetrates the vertical member 41 from the other side surface of the vertical member 41. The lid plate 21 is held by the vertical member 41 with a fastening member (not shown) such as a bolt that reaches the pressure, and the fuel cell body 1 is pressed against the held lid plate 21 by the pressure shaft 43 with a load P. Thereby, the fuel cell main body 1 is compressed with the load P from both ends in the stacking direction S. In FIG. 8, only the vertical member 41 and the pressure shaft 43 of the holding tool 31 in the fuel cell stack manufacturing apparatus 30 are illustrated. In this manufacturing method, the fuel cell main body 1 continues to be compressed by the clamping tool 31 until the lid plate 21 and the case main body 22 are fastened. Hereinafter, illustration of the vertical member 41 and the pressure shaft 43 is omitted.

次に、初期厚みd1の介在層3−1〜3−4を用意し、図9及び図10に示すように、燃料電池本体1の一対の外周面部分1a−1及び1a−2上に、一対の介在層3−1及び3−2をそれぞれ配置し、別の一対の外周面部分1a−3及び1a−4上に、別の一対の介在層3−3及び3−4をそれぞれ配置する。ただし、図9は図10のE9−E9断面図であり、図10は図9のE10−E10断面図である。   Next, intervening layers 3-1 to 3-4 having an initial thickness d1 are prepared, and as shown in FIGS. 9 and 10, on the pair of outer peripheral surface portions 1a-1 and 1a-2 of the fuel cell main body 1, A pair of intervening layers 3-1 and 3-2 are respectively arranged, and another pair of interposing layers 3-3 and 3-4 are respectively arranged on another pair of outer peripheral surface portions 1a-3 and 1a-4. . 9 is a cross-sectional view taken along line E9-E9 in FIG. 10, and FIG. 10 is a cross-sectional view taken along line E10-E10 in FIG.

続いて、図11及び図12に示すように、燃料電池本体1の一対の外周面部分1a−3及び1a−4の外側にそれぞれ第1の圧縮具32−1を配置し、燃料電池本体1上の一対の介在層3−1及び3−2に一対の板状部材51−1及び51−2をそれぞれ対面配置する。同様に、燃料電池本体1の別の一対の外周面部分1a−1及び1a−2の外側にそれぞれ第2の圧縮具32−2を配置し、燃料電池本体1上の別の一対の介在層3−3及び3−4に別の一対の板状部材51−3及び51−4をそれぞれ対面配置する。ただし、図12は図11のE12−E12断面図であり、図11は図12のE11−E11断面図である。また、図11及び図12では燃料電池スタック製造装置30のうち、圧縮具32の板状部材51(51−1〜51−4)のみを図示している(以下、図13及び図14において同じ。)。図11に示す実施例では板状部材51は介在層3に接しないが、図示しない別の実施例では板状部材51は介在層3に接する。   Subsequently, as shown in FIGS. 11 and 12, the first compressor 32-1 is disposed outside the pair of outer peripheral surface portions 1 a-3 and 1 a-4 of the fuel cell main body 1, respectively. A pair of plate-like members 51-1 and 51-2 are arranged facing each other on the pair of intervening layers 3-1 and 3-2. Similarly, another pair of intervening layers on the fuel cell main body 1 is arranged by disposing the second compressor 32-2 on the outside of another pair of outer peripheral surface portions 1a-1 and 1a-2 of the fuel cell main body 1, respectively. Another pair of plate-like members 51-3 and 51-4 are arranged facing each other on 3-3 and 3-4. However, FIG. 12 is an E12-E12 cross-sectional view of FIG. 11, and FIG. 11 is an E11-E11 cross-sectional view of FIG. 11 and 12 show only the plate-like member 51 (51-1 to 51-4) of the compressor 32 in the fuel cell stack manufacturing apparatus 30 (hereinafter the same in FIGS. 13 and 14). .) In the embodiment shown in FIG. 11, the plate member 51 does not contact the intervening layer 3, but in another embodiment not shown, the plate member 51 contacts the intervening layer 3.

続いて、図13及び図14に示すように、圧縮具32の板状部材51−1及び51−2により、一対の介在層3−1及び3−2を初期厚みd1から圧縮済み厚みd2まで同時に圧縮する。このとき、積層方向Sに並んだ複数の移動機構5−1及び5−2は板状部材51−1及び51−2を同時に介在層3−1及び3−2へ移動する。すなわち、介在層3−1及び3−2は積層方向Sに一度に圧縮される。同様に、圧縮具32の板状部材51−3及び51−4により、一対の介在層3−3及び3−4を初期厚みd1から圧縮済み厚みd2まで同時に圧縮する。このとき、積層方向Sに並んだ複数の移動機構5−3及び5−4は板状部材51−3及び51−4を同時に介在層3−3及び3−4へ移動する。すなわち、介在層3−3及び3−4は積層方向Sに一度に圧縮される。ただし、図14は図13のE14−E14断面図であり、図13は図14のE13−E13断面図である。図13に示す実施例では、介在層3−1及び3−2と介在層3−3及び3−4とは同時に圧縮される。図示しない別の実施例では介在層3−1及び3−2と介在層3−3及び3−4とはタイミングをずらして圧縮される。   Subsequently, as shown in FIGS. 13 and 14, the pair of intervening layers 3-1 and 3-2 is moved from the initial thickness d1 to the compressed thickness d2 by the plate-like members 51-1 and 51-2 of the compression tool 32. Compress at the same time. At this time, the plurality of moving mechanisms 5-1 and 5-2 arranged in the stacking direction S simultaneously move the plate-like members 51-1 and 51-2 to the intervening layers 3-1 and 3-2. That is, the intervening layers 3-1 and 3-2 are compressed in the stacking direction S at a time. Similarly, the pair of intervening layers 3-3 and 3-4 are simultaneously compressed from the initial thickness d1 to the compressed thickness d2 by the plate-like members 51-3 and 51-4 of the compression tool 32. At this time, the plurality of moving mechanisms 5-3 and 5-4 arranged in the stacking direction S simultaneously move the plate-like members 51-3 and 51-4 to the intervening layers 3-3 and 3-4. That is, the intervening layers 3-3 and 3-4 are compressed at once in the stacking direction S. 14 is a cross-sectional view taken along line E14-E14 in FIG. 13, and FIG. 13 is a cross-sectional view taken along line E13-E13 in FIG. In the embodiment shown in FIG. 13, the intervening layers 3-1 and 3-2 and the intervening layers 3-3 and 3-4 are compressed simultaneously. In another embodiment (not shown), the intervening layers 3-1 and 3-2 and the intervening layers 3-3 and 3-4 are compressed at different timings.

その後、圧縮具32の板状部材51−1及び51−2を一対の介在層3−1及び3−2から離脱させる。同様に、圧縮具32の板状部材51−3及び51−4を一対の介在層3−3及び3−4から離脱させる。このとき、板状部材51−1及び51−2を同時に離脱させると介在層3−1及び3−2の厚みが同じになるため、より好ましい。同様に、板状部材51−3及び51−4を同時に離脱させると介在層3−3及び3−4の厚みが同じになるので、より好ましい。そして、第1の圧縮具32−1及び第2の圧縮具32−2を燃料電池本体1から離脱させる。圧縮具32が離脱されて、板状部材51−1〜51−4が介在層3−1〜3−4から離脱されると、介在層3−1〜3−4の厚みは、ゆっくりとした速度で元の厚みに戻っていく。   Thereafter, the plate-like members 51-1 and 51-2 of the compression tool 32 are detached from the pair of intervening layers 3-1 and 3-2. Similarly, the plate-like members 51-3 and 51-4 of the compression tool 32 are detached from the pair of intervening layers 3-3 and 3-4. At this time, if the plate-like members 51-1 and 51-2 are detached at the same time, the thicknesses of the intervening layers 3-1 and 3-2 are more preferable. Similarly, if the plate-like members 51-3 and 51-4 are detached at the same time, the thicknesses of the intervening layers 3-3 and 3-4 become the same, which is more preferable. Then, the first compressor 32-1 and the second compressor 32-2 are detached from the fuel cell main body 1. When the compression tool 32 is detached and the plate-like members 51-1 to 51-4 are detached from the intervening layers 3-1 to 3-4, the thickness of the interposing layers 3-1 to 3-4 is slow. It will return to its original thickness at speed.

次に、図15に示すように、介在層3の厚みが距離Dにまで膨らむ前に、ケース本体22を燃料電池本体1に対して相対的に移動させながら、開口を介してケース本体22に燃料電池本体1を収容する。このとき、図15に示す実施例では、外周面部分1a−1と内周面2a−1との距離、外周面部分1a−2と内周面2a−2との距離、外周面部分1a−3と内周面2a−3との距離及び外周面部分1a−4と内周面2a−4との距離は、いずれも等しく距離Dである。で〜1a−4と内周面この例では4つの面で距離が等しくDである、その後、ケース本体22をボルトのような締結部材(図示せず)で蓋プレート21に締結する。それにより、介在層3を配置された燃料電池本体1がケース2内に収容される。このとき、図15に示すように、介在層3は厚みd2程度であるため、ケース本体22にほとんど触れることはない。なお、荷重Pはケース2の底壁22bに設けられた開口部を介して印加する。図示しない別の実施例では、ケース本体22に底壁22bを設けず開口したままで荷重Pを印加する。その場合、ケース本体22に燃料電池本体1を収容した後、ケース本体22をボルトのような締結部材(図示せず)で蓋プレート21に締結すると共に、底壁22bをボルトのような締結部材(図示せず)で側壁22aに締結する。   Next, as shown in FIG. 15, before the thickness of the intervening layer 3 swells to the distance D, the case body 22 is moved to the case body 22 through the opening while moving the case body 22 relative to the fuel cell body 1. The fuel cell main body 1 is accommodated. At this time, in the embodiment shown in FIG. 15, the distance between the outer peripheral surface portion 1a-1 and the inner peripheral surface 2a-1, the distance between the outer peripheral surface portion 1a-2 and the inner peripheral surface 2a-2, the outer peripheral surface portion 1a-. 3 and the inner peripheral surface 2a-3 and the distance between the outer peripheral surface portion 1a-4 and the inner peripheral surface 2a-4 are all equal to the distance D. In this example, the distance between the four surfaces is equal to D, and the case body 22 is then fastened to the lid plate 21 with a fastening member (not shown) such as a bolt. Thereby, the fuel cell main body 1 in which the intervening layer 3 is disposed is accommodated in the case 2. At this time, as shown in FIG. 15, since the intervening layer 3 has a thickness of about d2, the case main body 22 is hardly touched. The load P is applied through an opening provided in the bottom wall 22b of the case 2. In another embodiment (not shown), the load P is applied while the case main body 22 is opened without providing the bottom wall 22b. In that case, after housing the fuel cell body 1 in the case body 22, the case body 22 is fastened to the lid plate 21 with a fastening member (not shown) such as a bolt, and the bottom wall 22b is fastened to a fastening member such as a bolt. (Not shown) and fastened to the side wall 22a.

なお、図示しない別の実施例では、互いに向かい合う外周面部分1a−1及び1a−2において内周面2a−1及び2a−2との距離が異なるか、又は、互いに向かい合う外周面部分1a−3及び1a−4において内周面2a−3及び2a−4との距離が異なる。この場合、例えば、燃料電池スタックA内での介在層3−1の厚みと介在層3−2の厚みとは差があるが、いずれも初期厚みd1よりも小さい厚みになっていれば、介在層3−1及び介在層3−2はその機能を果たし得る。   In another embodiment (not shown), the outer peripheral surface portions 1a-1 and 1a-2 facing each other have different distances from the inner peripheral surfaces 2a-1 and 2a-2, or the outer peripheral surface portions 1a-3 facing each other. And 1a-4, the distances from the inner peripheral surfaces 2a-3 and 2a-4 are different. In this case, for example, there is a difference between the thickness of the intervening layer 3-1 and the thickness of the intervening layer 3-2 in the fuel cell stack A, but if both are smaller than the initial thickness d 1, The layer 3-1 and the intervening layer 3-2 can perform the function.

その後、図16に示すように、介在層3は、復元力により元の形状、すなわち初期厚みd1に戻ってゆく。しかし、外周面1aと内周面2aとの隙間が距離Dしかないため、介在層3は、厚みDまで戻った後に圧縮された状態で外周面1aと内周面2aとの間に保持される。   Thereafter, as shown in FIG. 16, the intervening layer 3 returns to the original shape, that is, the initial thickness d1 by the restoring force. However, since the gap between the outer peripheral surface 1a and the inner peripheral surface 2a is only the distance D, the intervening layer 3 is held between the outer peripheral surface 1a and the inner peripheral surface 2a in a compressed state after returning to the thickness D. The

以上により、燃料電池スタックAが完成される。このとき、介在層3が膨らみながら厚みを回復しつつ、燃料電池本体1の各プレートや各燃料電池単セルの凹凸に合わせてケース2との隙間を埋め、燃料電池本体1の外周面1aとケース2の内周面2aとの間に圧縮状態で配置される。   Thus, the fuel cell stack A is completed. At this time, while the thickness of the intervening layer 3 is expanded and the thickness is restored, the gap with the case 2 is filled in accordance with the unevenness of each plate of the fuel cell main body 1 and each single cell of the fuel cell, and the outer peripheral surface 1a of the fuel cell main body 1 It arrange | positions in the compression state between the internal peripheral surfaces 2a of case 2. As shown in FIG.

上記の燃料電池スタックの製造方法では、燃料電池本体1の外周面1aのうちの互いに向かい合う一対の外周面部分1a−1及び1a−2に配置された介在層3−1及び3−2を、一対の板状部材51−1及び5−2で、燃料電池本体1の外側から内側へ同時に圧縮する。このとき、一対の板状部材51−1及び5−2が介在層3−1及び3−2を押し潰す力は、その大きさが同じで、その方向が互いに逆である。そのため、一方の力が他方の力に比べて大きい場合、例えば、板状部材51−2で介在層3−2を圧縮することなく板状部材51−1のみで介在層3−1を圧縮する場合には、外周面部分1a−1側のみから積層体11に力が加わるため、燃料電池単セルが圧縮状態で挟持されていた本来の位置から反対の外周面部分1a−2側へ押し出されることが起こり得るが、上記の製造方法ではそのような事態を回避できる。すなわち、燃料電池本体1での燃料電池単セルのずれを発生させずに介在層3−1及び3−2を押し潰すことができる。また、燃料電池本体1とケース2との距離(隙間)D未満に介在層3−1及び3−2を潰すことで、燃料電池本体1のケース2への挿入に要する外力を削減でき、燃料電池本体1のケース2への挿入し易さを向上できる。加えて、燃料電池本体1がケース2内に収まった後に介在層3−1及び3−2の厚みが復元することで、燃料電池本体1とケース2との間に圧縮状態で介在層3−1及び3−2を容易に配置できる。これらの効果は、板状部材51−3及び5−4で介在層3−3及び3−4を圧縮する場合にも同様に奏される。また、ケース2が水密、締結、外部拘束の機能を有するため、それら機能を実現する構成が簡略化され、燃料電池スタックAの大きさを小さくでき、コストを低減できる。   In the fuel cell stack manufacturing method described above, the intervening layers 3-1 and 3-2 disposed on the pair of outer peripheral surface portions 1a-1 and 1a-2 facing each other in the outer peripheral surface 1a of the fuel cell main body 1 are obtained. The pair of plate-like members 51-1 and 5-2 simultaneously compress the fuel cell main body 1 from the outside to the inside. At this time, the force with which the pair of plate-like members 51-1 and 5-2 crush the intervening layers 3-1 and 3-2 has the same magnitude, and the directions are opposite to each other. Therefore, when one force is larger than the other force, for example, the interstitial layer 3-1 is compressed only by the plate-like member 51-1 without compressing the intervening layer 3-2 by the plate-like member 51-2. In this case, since the force is applied to the stacked body 11 only from the outer peripheral surface portion 1a-1 side, the fuel cell single cell is pushed out from the original position where it is held in a compressed state to the opposite outer peripheral surface portion 1a-2 side. However, the above manufacturing method can avoid such a situation. That is, the intervening layers 3-1 and 3-2 can be crushed without causing a shift of the single fuel cell in the fuel cell main body 1. Further, by crushing the intervening layers 3-1 and 3-2 below the distance (gap) D between the fuel cell main body 1 and the case 2, the external force required to insert the fuel cell main body 1 into the case 2 can be reduced. The ease of inserting the battery body 1 into the case 2 can be improved. In addition, the thickness of the intervening layers 3-1 and 3-2 is restored after the fuel cell main body 1 is accommodated in the case 2, so that the intervening layer 3-3 is compressed between the fuel cell main body 1 and the case 2. 1 and 3-2 can be easily arranged. These effects are also exhibited when the interposition layers 3-3 and 3-4 are compressed by the plate-like members 51-3 and 5-4. Further, since the case 2 has functions of watertightness, fastening, and external restraint, the configuration for realizing these functions is simplified, the size of the fuel cell stack A can be reduced, and the cost can be reduced.

以上説明されたように、実施例の燃料電池スタックAの製造方法は、燃料電池本体の外周面とケースの内周面との間に適切に介在層3を配置することができる。   As described above, in the method of manufacturing the fuel cell stack A according to the embodiment, the intervening layer 3 can be appropriately disposed between the outer peripheral surface of the fuel cell main body and the inner peripheral surface of the case.

次に、図17を参照して、別の実施例について説明する。   Next, another embodiment will be described with reference to FIG.

図17は、別の実施例の燃料電池スタック製造装置の圧縮具の正面図である。図5に示す実施例と図17に示す実施例とは、板状部材51−1〜51−4を移動させる移動機構が相違する。以下、相違点について主に説明する。   FIG. 17 is a front view of a compressor of a fuel cell stack manufacturing apparatus according to another embodiment. The embodiment shown in FIG. 5 is different from the embodiment shown in FIG. 17 in the moving mechanism for moving the plate-like members 51-1 to 51-4. Hereinafter, the difference will be mainly described.

図17に示すように、第1の圧縮具32−1では、移動機構として支持部材53−1に設けられたネジ穴52sにボルト52aが配置される。図17の左下側拡大図に示すように、ボルト52aの先端は板状部材51−1に、回転軸回りに回転可能に連結されている。したがって、板状部材51−1はボルト52aを介して支持部材53−1に支持されており、一方で、ボルト52aによって移動される。このとき、支持部材53−1と支持部材53−2との距離は固定部材54aにより一定に保たれるので、ボルト52aにより板状部材51−1が介在層3−1方向に支持部材53−1に対し移動することで、板状部材51−1と板状部材51−2との距離が小さくなり、外周面部分1a−1及び1a−2上の介在層3−1及び3−2が圧縮される。   As shown in FIG. 17, in the first compression tool 32-1, a bolt 52 a is disposed in a screw hole 52 s provided in the support member 53-1 as a moving mechanism. As shown in the enlarged view on the lower left side of FIG. 17, the tip of the bolt 52a is connected to the plate-like member 51-1 so as to be rotatable about the rotation axis. Therefore, the plate-like member 51-1 is supported by the support member 53-1 via the bolt 52a, and is moved by the bolt 52a. At this time, since the distance between the support member 53-1 and the support member 53-2 is kept constant by the fixing member 54a, the plate-like member 51-1 is moved in the direction of the intervening layer 3-1 by the bolt 52a. 1, the distance between the plate-like member 51-1 and the plate-like member 51-2 is reduced, and the intervening layers 3-1 and 3-2 on the outer peripheral surface portions 1a-1 and 1a-2 are reduced. Compressed.

同様に、第2の圧縮具32−2では、移動機構として支持部材53−4に設けられたネジ穴52sにボルト52bが配置される。図17の右下側拡大図に示すように、ボルト52bの先端は板状部材51−4に、回転軸回りに回転可能に連結されている。したがって、板状部材51−4はボルト52bを介して支持部材53−4に支持されており、一方で、ボルト52bによって移動される。この場合にも、支持部材53−3と支持部材53−4との距離は固定部材54bにより一定に保たれるので、ボルト52bにより板状部材51−4が介在層3−4方向に移動することで、板状部材51−4と板状部材51−3との距離が小さくなり、外周面部分1a−4及び1a−3上の介在層3−4及び3−3が圧縮される。   Similarly, in the second compression tool 32-2, a bolt 52b is disposed in a screw hole 52s provided in the support member 53-4 as a moving mechanism. As shown in the lower right side enlarged view of FIG. 17, the tip of the bolt 52b is connected to the plate-like member 51-4 so as to be rotatable about the rotation axis. Therefore, the plate-like member 51-4 is supported by the support member 53-4 via the bolt 52b, while being moved by the bolt 52b. Also in this case, since the distance between the support member 53-3 and the support member 53-4 is kept constant by the fixing member 54b, the plate-like member 51-4 is moved in the direction of the intervening layer 3-4 by the bolt 52b. Thus, the distance between the plate-like member 51-4 and the plate-like member 51-3 is reduced, and the intervening layers 3-4 and 3-3 on the outer peripheral surface portions 1a-4 and 1a-3 are compressed.

図17に示す実施例では、移動機構であるボルト52a及び52bは、それぞれ支持部材53−1及び支持部材53−4に配置され、支持部材53−2及び53−3には配置されない。図示しない別の実施例では、ボルト52a及び52bは、それぞれ支持部材53−1及び支持部材53−4に配置されるだけでなく、支持部材53−2及び53−3にも配置される。   In the embodiment shown in FIG. 17, the bolts 52a and 52b, which are moving mechanisms, are disposed on the support member 53-1 and the support member 53-4, respectively, and are not disposed on the support members 53-2 and 53-3. In another embodiment (not shown), the bolts 52a and 52b are arranged not only on the support member 53-1 and the support member 53-4, but also on the support members 53-2 and 53-3.

図17に示される実施例でも図5の実施例と同様の効果を得ることができる。加えて、ボルト52a及び52bの締め付けトルクにより、介在層3−1〜3−4にかかる圧縮力を制御でき、圧縮力の制御を容易にすることができる。また、例えば、移動機構としてのボルト52aを配置するのが、支持部材53−1及び53−2のうちの片方だけでよいので、圧縮具32の構造や操作を簡便にできる。   In the embodiment shown in FIG. 17, the same effect as that in the embodiment of FIG. 5 can be obtained. In addition, the compression force applied to the intervening layers 3-1 to 3-4 can be controlled by the tightening torque of the bolts 52a and 52b, and the compression force can be easily controlled. In addition, for example, the bolt 52a as the moving mechanism may be disposed only on one of the support members 53-1 and 53-2, so that the structure and operation of the compression tool 32 can be simplified.

次に、図18を参照して、更に別の実施例について説明する。   Next, still another embodiment will be described with reference to FIG.

図18は、更に別の実施例の燃料電池スタック製造装置の圧縮具の正面図である。図5に示す実施例と図18に示す実施例とは、板状部材51−1〜51−4を移動させる移動機構が相違する。以下、相違点について主に説明する。   FIG. 18 is a front view of a compressor of a fuel cell stack manufacturing apparatus according to still another embodiment. The embodiment shown in FIG. 5 is different from the embodiment shown in FIG. 18 in the moving mechanism for moving the plate-like members 51-1 to 51-4. Hereinafter, the difference will be mainly described.

図18に示すように、第1の圧縮具32−1は、一対の板状部材51−1及び51−2をそれぞれ支持しかつ互いに分離された一対の支持部材56−1及び56−2と、燃料電池本体1の周囲において一対の支持部材56−1及び56−2を分離可能に互いに連結する連結具55aとを含んでいる。板状部材51−1及び51−2はそれぞれ支持部材56−1及び56−2に対し移動できないように支持部材に支持されている。一対の支持部材56−1及び56−2が、連結具55aにより互いに連結されると、一対の板状部材51−1及び51−2が互いに近づくよう移動される。次いで連結具55aにより一対の支持部材56−1及び56−2が互いに分離されると、一対の板状部材51−1及び51−2が互いに離れるよう移動される。図18に示す実施例では、一対の支持部材56−1及び56−2は略L字形状を有し、支持部材56−1及び56−2における板状部材51−1及び51−2と反対側の端部は互いに接近して、連結具55aで連結される。連結具55aとしてはバックルが挙げられる。バックルは、例えば、図18の下側の拡大図に示すように、支持部材56−1の端部に一端を接続されたバンド61と、支持部材56−2の端部の窪み64に設けられた金具62と、支持部材56−1の端部に設けられた係止具63とを備える。   As shown in FIG. 18, the first compression tool 32-1 supports a pair of plate-like members 51-1 and 51-2, and a pair of support members 56-1 and 56-2 separated from each other. And a connector 55a that detachably connects the pair of support members 56-1 and 56-2 around the fuel cell main body 1. The plate-like members 51-1 and 51-2 are supported by the support members so that they cannot move with respect to the support members 56-1 and 56-2, respectively. When the pair of support members 56-1 and 56-2 are connected to each other by the connector 55a, the pair of plate-like members 51-1 and 51-2 are moved so as to approach each other. Next, when the pair of support members 56-1 and 56-2 are separated from each other by the connector 55a, the pair of plate-like members 51-1 and 51-2 are moved away from each other. In the embodiment shown in FIG. 18, the pair of support members 56-1 and 56-2 has a substantially L shape, and is opposite to the plate-like members 51-1 and 51-2 in the support members 56-1 and 56-2. The end portions on the side approach each other and are connected by a connector 55a. A buckle is mentioned as the connection tool 55a. For example, as shown in the enlarged view on the lower side of FIG. 18, the buckle is provided in a band 61 having one end connected to the end of the support member 56-1 and a recess 64 in the end of the support member 56-2. The metal fitting 62 and the locking tool 63 provided at the end of the support member 56-1 are provided.

一対の板状部材51−1及び51−2がそれぞれ介在層3−1及び3−2に当接するように第1の圧縮具32−1が燃料電池本体1の周囲に配置された後、連結具55aの支持部材56−1側のバンド61が支持部材56−2側の金具62に引っ掛けられ、支持部材56−1側に引き戻されて、支持部材56−1側の係止具63に係止される。それにより、支持部材56−1及び56−2の端部は互いに接近して連結されると共に、板状部材51−1と51−2とが互いに接近して、介在層3−1及び3−2が圧縮される。その後、係止具63がバンド61を開放することで、一対の板状部材51−1及び51−2が介在層3−1及び3−2から離脱される。   After the first compressor 32-1 is disposed around the fuel cell body 1 so that the pair of plate-like members 51-1 and 51-2 abut against the intervening layers 3-1 and 3-2, respectively, The band 61 on the support member 56-1 side of the tool 55a is hooked on the metal fitting 62 on the support member 56-2 side, pulled back to the support member 56-1 side, and engaged with the locking tool 63 on the support member 56-1 side. Stopped. Thereby, the end portions of the supporting members 56-1 and 56-2 are connected to each other close to each other, and the plate-like members 51-1 and 51-2 are close to each other, so that the intervening layers 3-1 and 3- 2 is compressed. Thereafter, when the locking tool 63 opens the band 61, the pair of plate-like members 51-1 and 51-2 are detached from the intervening layers 3-1 and 3-2.

更に、図18に示す実施例では、第2の圧縮具32−2は、一対の板状部材51−3及び51−4をそれぞれ支持する一対の支持部材56−3及び56−4と、燃料電池本体1の周囲において一対の支持部材56−3及び56−4を分離可能に互いに連結する連結具55bとを含んでいる。これら一対の支持部材56−3及び56−4及び連結具55bも、一対の支持部材56−1及び56−2及び連結具55aと同様な機能を有し、動作をする。   Further, in the embodiment shown in FIG. 18, the second compression tool 32-2 includes a pair of support members 56-3 and 56-4 that respectively support the pair of plate-like members 51-3 and 51-4, and fuel. In the periphery of the battery main body 1, a pair of support members 56-3 and 56-4 are connected to each other so as to be separable from each other. The pair of support members 56-3 and 56-4 and the connector 55b also have the same functions as the pair of support members 56-1 and 56-2 and the connector 55a, and operate.

このように、一対の支持部材56−1及び56−2及び連結具55aは、一対の板状部材51−1及び51−2を互いに近づくよう移動し、及び、互いに離れるよう移動しているので、板状部材51−1及び51−2を移動させる移動機構と見ることができる。同様に、一対の支持部材56−3及び56−4及び連結具55bは、一対の板状部材51−3及び51−4を互いに近づくよう移動し、及び、互いに離れるよう移動しているので、板状部材51−3及び51−4を移動させる移動機構と見ることができる。   As described above, the pair of support members 56-1 and 56-2 and the connector 55a move the pair of plate-like members 51-1 and 51-2 closer to each other and move away from each other. It can be regarded as a moving mechanism for moving the plate-like members 51-1 and 51-2. Similarly, the pair of support members 56-3 and 56-4 and the connector 55b move so that the pair of plate members 51-3 and 51-4 approach each other and move away from each other. It can be regarded as a moving mechanism for moving the plate-like members 51-3 and 51-4.

図18に示される実施例でも図5の実施例と同様の効果を得ることができる。加えて、バックルをワンタッチで外せるようにすることで、介在層3の圧縮後に素早く圧縮具32を取り外すことができ、作業効率を上げることができる。   The embodiment shown in FIG. 18 can achieve the same effects as the embodiment of FIG. In addition, by allowing the buckle to be removed with a single touch, the compression tool 32 can be quickly removed after the intervening layer 3 is compressed, and the working efficiency can be increased.

次に、図19を参照して、更に別の実施例について説明する。   Next, still another embodiment will be described with reference to FIG.

図19は、更に別の実施例の燃料電池スタック製造装置の圧縮具の正面図である。図5に示す実施例と図19に示す実施例とは、板状部材51−1〜51−4を移動させる移動機構が、図5の実施例の圧縮具32と相違する。以下、相違点について主に説明する。   FIG. 19 is a front view of a compressor of a fuel cell stack manufacturing apparatus according to still another embodiment. The embodiment shown in FIG. 5 and the embodiment shown in FIG. 19 are different from the compressor 32 of the embodiment of FIG. 5 in the moving mechanism for moving the plate-like members 51-1 to 51-4. Hereinafter, the difference will be mainly described.

図19に示すように、圧縮具32は、燃料電池本体1上の一対の介在層3−1及び3−2の外面にそれぞれ対面配置された一対の板状部材51−1及び51−2を燃料電池本体1と共に取り囲むバンド57と、バンド57を巻き取り又は巻き戻す巻取り機構58とを含んでいる。このとき、巻取り機構58によりバンド57が巻き取られると、一対の板状部材51−1及び51−2が互いに近づくよう移動される。次いで巻取り機構58によりバンド57が巻き戻されると、一対の板状部材51−1及び51−2が互いに離れるよう移動可能になる。   As shown in FIG. 19, the compression tool 32 includes a pair of plate-like members 51-1 and 51-2 disposed facing each other on the outer surfaces of the pair of intervening layers 3-1 and 3-2 on the fuel cell body 1. A band 57 surrounding the fuel cell body 1 and a winding mechanism 58 for winding or unwinding the band 57 are included. At this time, when the band 57 is wound up by the winding mechanism 58, the pair of plate-like members 51-1 and 51-2 are moved so as to approach each other. Next, when the band 57 is rewound by the winding mechanism 58, the pair of plate-like members 51-1 and 51-2 can move away from each other.

更に、図19に示す実施例では、バンド57は、更に燃料電池本体1上の一対の介在層3−3及び3−4の外面にそれぞれ対面配置された一対の板状部材51−3及び51−4を取り囲む。これら一対の板状部材51−3及び51−4も、一対の一対の板状部材51−1及び51−2と同様である。図19に示す実施例では、板状部材51−1と51−3とが端部で結合し、板状部材51−1と51−4とが端部で結合し、板状部材51−2と51−3とが端部で結合し、及び、板状部材51−2と51−4とが端部で結合し、それぞれ略L字形状を有している。   Further, in the embodiment shown in FIG. 19, the band 57 further includes a pair of plate-like members 51-3 and 51 arranged on the outer surfaces of the pair of intervening layers 3-3 and 3-4 on the fuel cell main body 1. Surround -4. The pair of plate-like members 51-3 and 51-4 are the same as the pair of plate-like members 51-1 and 51-2. In the embodiment shown in FIG. 19, the plate-like members 51-1 and 51-3 are joined at the end, the plate-like members 51-1 and 51-4 are joined at the end, and the plate-like member 51-2. And 51-3 are joined at the end, and plate-like members 51-2 and 51-4 are joined at the end, and each has a substantially L-shape.

略L字形状の板状部材51−1と51−3、板状部材51−1と51−4、板状部材51−2と51−3及び板状部材51−2と51−4が介在層3−1〜3−4に当接するように燃料電池本体1の周囲に配置された後、各板状部材が燃料電池本体1と共にバンド57で取り囲まれ、その後に巻取り機構58によりバンド57が巻き取られ。それにより、各板状部材が燃料電池本体1を挟んで互いに接近して、介在層3−1〜3−4が圧縮され、上下方向の圧縮と、左右方向の圧縮が同時に行われる。その後、巻取り機構58がバンド57を巻き戻すと、各板状部材が介在層3−1〜3−4から離脱可能になり、作業者により取り外される。   Substantially L-shaped plate-like members 51-1 and 51-3, plate-like members 51-1 and 51-4, plate-like members 51-2 and 51-3, and plate-like members 51-2 and 51-4 are interposed. After being arranged around the fuel cell main body 1 so as to contact the layers 3-1 to 3-4, each plate-like member is surrounded by the band 57 together with the fuel cell main body 1, and then the band 57 is wound by the winding mechanism 58. Is wound up. Thereby, each plate-shaped member approaches each other with the fuel cell main body 1 interposed therebetween, and the intervening layers 3-1 to 3-4 are compressed, and the compression in the vertical direction and the compression in the horizontal direction are performed simultaneously. Thereafter, when the winding mechanism 58 rewinds the band 57, each plate-like member can be detached from the intervening layers 3-1 to 3-4, and is removed by the operator.

このように、バンド57及び巻取り機構58は、一対の板状部材51−1〜51−4を互いに近づくよう移動し、及び、互いに離れるよう移動可能にしているので、板状部材51−1〜51−4を移動させる移動機構と見ることができる。   Thus, since the band 57 and the winding mechanism 58 move the pair of plate-like members 51-1 to 51-4 so as to approach each other and move away from each other, the plate-like member 51-1. ˜51-4 can be viewed as a moving mechanism.

この更に別の実施例でも図5の実施例と同様の効果を得ることができる。加えて、この更に別の実施例では、一つの締め付け用のバンド57で八か所すべての介在層3を圧縮できる。また、バンド57を外して抜き取るという簡単な操作により、より効率的な作業ができる。   In this further embodiment, the same effects as in the embodiment of FIG. 5 can be obtained. In addition, in this further embodiment, all eight intervening layers 3 can be compressed with a single fastening band 57. Further, more efficient work can be performed by a simple operation of removing and removing the band 57.

次に、図20を参照して、更に別の実施例について説明する。   Next, still another embodiment will be described with reference to FIG.

図2に示す実施例では、外周面1aのうちの、二組の互いに向かい合う外周面部分1a−1、1a−2及び1a−3、1a−4に介在層3が配置される。図20に示す実施例では、外周面1aのうちの、一組の互いに向かい合う外周面部分1a−1、1a−2のみに介在層3、すなわち介在層3−1、3−2が配置される。介在層3の拘束力が大きい場合、例えば介在層3の圧縮の程度が大きい場合には、別の一組の互いに向かい合う外周面部分1a−3、1a−4に介在層3が無くても燃料電池単セルのずれを防止等、図2の実施例の場合と同等の効果を奏することができる。加えて、介在層3が削減されるので、生産性を向上でき、製造コストを低減できる。図示しない別の実施例では、外周面1aの一つの面につき、角部近傍の二枚ではなく、ほぼ全面を覆う一枚の介在層3が配置される。   In the embodiment shown in FIG. 2, the intervening layer 3 is disposed on two sets of outer peripheral surface portions 1a-1, 1a-2 and 1a-3, 1a-4 facing each other in the outer peripheral surface 1a. In the embodiment shown in FIG. 20, the intervening layer 3, that is, the interposing layers 3-1 and 3-2 are disposed only on the outer peripheral surface portions 1 a-1 and 1 a-2 that face each other in the outer peripheral surface 1 a. . When the restraining force of the intervening layer 3 is large, for example, when the degree of compression of the intervening layer 3 is large, the fuel can be obtained even if there is no intervening layer 3 in another set of mutually facing outer peripheral surface portions 1a-3 and 1a-4. The same effects as in the case of the embodiment of FIG. In addition, since the intervening layer 3 is reduced, productivity can be improved and manufacturing cost can be reduced. In another embodiment (not shown), one intervening layer 3 that covers almost the entire surface, not two near the corner, is disposed on one surface of the outer peripheral surface 1a.

1 燃料電池本体
1a 外周面
2 ケース
2a 内周面
3 介在層
11 積層体
30 燃料電池スタック製造装置
31 挟持具
32 圧縮具
51 板状部材
52 移動機構
53 支持部材
A 燃料電池スタック
D 距離
d1 初期厚み
d2 圧縮済み厚み
S 積層方向
DESCRIPTION OF SYMBOLS 1 Fuel cell main body 1a Outer peripheral surface 2 Case 2a Inner peripheral surface 3 Intervening layer 11 Laminated body 30 Fuel cell stack manufacturing apparatus 31 Clamping tool 32 Compressor 51 Plate-shaped member 52 Moving mechanism 53 Support member A Fuel cell stack D Distance d1 Initial thickness d2 Compressed thickness S Lamination direction

Claims (9)

複数の燃料電池単セルを積層方向に沿って積層することにより形成される積層体を含む燃料電池本体と、前記燃料電池本体が収容されるケースと、前記燃料電池本体の前記積層方向に沿った外周面のうち互いに向かい合う一対の外周面部分と前記一対の外周面部分に対向する前記ケースの内周面との間にそれぞれ配置され、変形されたとき元の寸法に戻ろうとする復元力を有する一対の介在層とを備える燃料電池スタックを製造するための燃料電池スタック製造装置であって、
前記燃料電池本体を前記積層方向の両端において圧縮状態で挟持する挟持具と、
前記挟持具により挟持された前記燃料電池本体の前記一対の外周面部分上に配置されている前記一対の介在層を、前記燃料電池本体が前記ケースに収容されたときの前記外周面と前記内周面との距離よりも大きい初期厚みから前記距離よりも小さい圧縮済み厚みまで圧縮する圧縮具と、
を備え、
前記圧縮具は、
一対の板状部材と、
前記燃料電池本体上の前記一対の介在層にそれぞれ対面配置された前記一対の板状部材を互いに近づくよう移動し、それにより前記一対の板状部材と前記燃料電池本体との間で前記一対の介在層を前記圧縮済み厚みまで圧縮し、次いで前記一対の板状部材を互いに離れるよう移動し、それにより前記一対の板状部材を前記一対の介在層から離脱させる、移動機構と、
を含む、
燃料電池スタック製造装置。
A fuel cell main body including a stack formed by stacking a plurality of fuel cell single cells along the stacking direction, a case in which the fuel cell main body is accommodated, and the fuel cell main body along the stacking direction Each of the outer peripheral surfaces is disposed between a pair of outer peripheral surface portions facing each other and the inner peripheral surface of the case facing the pair of outer peripheral surface portions, and has a restoring force to return to the original dimensions when deformed. A fuel cell stack manufacturing apparatus for manufacturing a fuel cell stack comprising a pair of intervening layers,
A clamping tool for clamping the fuel cell main body in a compressed state at both ends in the stacking direction;
The pair of intervening layers disposed on the pair of outer peripheral surface portions of the fuel cell main body clamped by the clamping tool are arranged such that the fuel cell main body is accommodated in the case and the outer peripheral surface when the fuel cell main body is accommodated in the case. A compression tool that compresses from an initial thickness greater than the distance to the peripheral surface to a compressed thickness that is less than the distance;
With
The compression tool is
A pair of plate-like members;
The pair of plate-like members disposed facing each other on the pair of intervening layers on the fuel cell main body are moved so as to approach each other, and thereby the pair of plate-like members between the pair of plate-like members and the fuel cell main body. A moving mechanism that compresses the intervening layer to the compressed thickness and then moves the pair of plate-like members away from each other, thereby separating the pair of plate-like members from the pair of intervening layers;
including,
Fuel cell stack manufacturing equipment.
前記圧縮具が、
前記一対の板状部材をそれぞれ支持する一対の支持部材と、
前記一対の支持部材を前記燃料電池本体の周囲において互いに連結し、それにより前記一対の支持部材同士間の距離を一定に保つ固定部材と、
を更に含み、
前記移動機構は、前記一対の板状部材のうち少なくとも一方を対応する前記支持部材に対し移動し、それにより前記一対の板状部材を互いに近づくよう又は互いに離れるよう移動する、
請求項1に記載の燃料電池スタック製造装置。
The compression tool is
A pair of support members that respectively support the pair of plate-like members;
The pair of support members are connected to each other around the fuel cell main body, thereby fixing the distance between the pair of support members constant,
Further including
The moving mechanism moves at least one of the pair of plate-like members relative to the corresponding support member, thereby moving the pair of plate-like members closer to each other or away from each other.
The fuel cell stack manufacturing apparatus according to claim 1.
前記移動機構が、
前記一対の板状部材をそれぞれ支持する一対の支持部材と、
前記燃料電池本体の周囲において前記一対の支持部材を分離可能に互いに連結する連結具と、
を含み、
前記連結具により前記一対の支持部材が互いに連結されると、前記一対の板状部材が互いに近づくよう移動され、
次いで前記連結具により前記一対の支持部材が互いに分離されると、前記一対の板状部材が互いに離れるよう移動される、
請求項1に記載の燃料電池スタック製造装置。
The moving mechanism is
A pair of support members that respectively support the pair of plate-like members;
A connector for releasably connecting the pair of support members around the fuel cell body;
Including
When the pair of support members are connected to each other by the connector, the pair of plate-like members are moved so as to approach each other,
Next, when the pair of support members are separated from each other by the connector, the pair of plate-like members are moved away from each other.
The fuel cell stack manufacturing apparatus according to claim 1.
前記移動機構が、
前記燃料電池本体上の前記一対の介在層の外面にそれぞれ対面配置された前記一対の板状部材を前記燃料電池本体と共に取り囲むバンドと、
前記バンドを巻き取り又は巻き戻す巻取り機構と、
を含み、
前記巻取り機構により前記バンドが巻き取られると、前記一対の板状部材が互いに近づくよう移動され、
前記巻取り機構により前記バンドが巻き戻されると、前記一対の板状部材が互いに離れるよう移動可能になる、
請求項1に記載の燃料電池スタック製造装置。
The moving mechanism is
A band that surrounds the pair of plate-like members disposed on the outer surfaces of the pair of intervening layers on the fuel cell body together with the fuel cell body;
A winding mechanism for winding or rewinding the band;
Including
When the band is wound by the winding mechanism, the pair of plate-shaped members are moved so as to approach each other,
When the band is rewound by the winding mechanism, the pair of plate-like members can move away from each other.
The fuel cell stack manufacturing apparatus according to claim 1.
前記移動機構が、前記積層方向に複数配置される
請求項1乃至4のいずれか一項に記載の燃料電池スタック製造装置。
The fuel cell stack manufacturing apparatus according to any one of claims 1 to 4, wherein a plurality of the moving mechanisms are arranged in the stacking direction.
前記燃料電池スタックが、前記燃料電池本体の前記外周面のうち互いに向かい合う別の一対の外周面部分と前記別の一対の外周面部分に対向する前記ケースの内周面との間にそれぞれ配置された別の一対の介在層を更に備えており、
前記圧縮具が、
別の一対の板状部材と、
前記燃料電池本体上の前記別の一対の介在層にそれぞれ対面配置された前記別の一対の板状部材を互いに近づくよう移動し、それにより前記別の一対の板状部材と前記燃料電池本体との間で前記別の一対の介在層を前記圧縮済み厚みまで同時に圧縮し、次いで前記別の一対の板状部材を互いに離れるよう移動し、それにより前記別の一対の板状部材を前記別の一対の介在層から離脱させる、別の移動機構と、
を更に含む、
請求項1乃至5のいずれか一項に記載の燃料電池スタック製造装置。
The fuel cell stack is disposed between another pair of outer peripheral surface portions facing each other in the outer peripheral surface of the fuel cell main body and an inner peripheral surface of the case facing the other pair of outer peripheral surface portions. A further pair of intervening layers,
The compression tool is
Another pair of plate members;
The another pair of plate-like members respectively disposed facing each other pair of the intervening layers on the fuel cell main body are moved so as to approach each other, whereby the other pair of plate-like members, the fuel cell main body, Simultaneously compressing the other pair of intervening layers to the compressed thickness and then moving the other pair of plate members away from each other, thereby moving the other pair of plate members to the other Another moving mechanism for separating from the pair of intervening layers;
Further including
The fuel cell stack manufacturing apparatus according to any one of claims 1 to 5.
前記板状部材は、前記介在層の外面の全体を覆うように形成されている、
請求項1乃至6のいずれか一項に記載の燃料電池スタック製造装置。
The plate-like member is formed so as to cover the entire outer surface of the intervening layer.
The fuel cell stack manufacturing apparatus according to any one of claims 1 to 6.
複数の燃料電池単セルを積層方向に沿って積層することにより形成される積層体を含む燃料電池本体と、前記燃料電池本体が収容されるケースと、前記燃料電池本体の前記積層方向に沿った外周面のうち互いに向かい合う一対の外周面部分と前記一対の外周面部分に対向する前記ケースの内周面との間にそれぞれ配置され、変形されたとき元の寸法に戻ろうとする復元力を有する一対の介在層とを備える燃料電池スタックの製造方法であって、
挟持具により、前記燃料電池本体を前記積層方向の両端において圧縮状態で挟持する工程と、
前記挟持具により挟持された前記燃料電池本体の前記一対の外周面部分上に、前記燃料電池本体が前記ケースに収容されたときの前記外周面と前記内周面との距離よりも大きい初期厚みを有する前記一対の介在層をそれぞれ配置する工程と、
圧縮具により、前記燃料電池本体上に配置された前記一対の介在層を前記初期厚みから前記距離よりも小さい圧縮済み厚みまで同時に圧縮する工程と、
を備え、
前記圧縮する工程は、
前記燃料電池本体上の前記一対の介在層に一対の板状部材をそれぞれ対面配置する工程と、
移動機構により、前記一対の板状部材を互いに近づくよう移動し、それにより前記一対の板状部材と前記燃料電池本体との間で前記一対の介在層を前記圧縮済み厚みまで同時に圧縮し、次いで前記一対の板状部材を互いに離れるよう移動し、それにより前記一対の板状部材を前記一対の介在層から離脱させる工程と、
を含む、
燃料電池スタックの製造方法。
A fuel cell main body including a stack formed by stacking a plurality of fuel cell single cells along the stacking direction, a case in which the fuel cell main body is accommodated, and the fuel cell main body along the stacking direction Each of the outer peripheral surfaces is disposed between a pair of outer peripheral surface portions facing each other and the inner peripheral surface of the case facing the pair of outer peripheral surface portions, and has a restoring force to return to the original dimensions when deformed. A method of manufacturing a fuel cell stack comprising a pair of intervening layers,
Clamping the fuel cell main body in a compressed state at both ends in the stacking direction with a clamping tool;
An initial thickness larger than the distance between the outer peripheral surface and the inner peripheral surface when the fuel cell main body is accommodated in the case on the pair of outer peripheral surface portions of the fuel cell main body clamped by the clamping tool. Disposing each of the pair of intervening layers having:
Simultaneously compressing the pair of intervening layers disposed on the fuel cell main body from the initial thickness to a compressed thickness smaller than the distance by a compression tool;
With
The compressing step includes
Placing a pair of plate-like members facing each other on the pair of intervening layers on the fuel cell body;
The moving mechanism moves the pair of plate-like members closer to each other, thereby compressing the pair of intervening layers simultaneously between the pair of plate-like members and the fuel cell main body to the compressed thickness, Moving the pair of plate members away from each other, thereby separating the pair of plate members from the pair of intervening layers;
including,
Manufacturing method of fuel cell stack.
前記介在層は、ダイラタント特性を有する
請求項8に記載の燃料電池スタックの製造方法。
The method for manufacturing a fuel cell stack according to claim 8, wherein the intervening layer has a dilatant characteristic.
JP2015045176A 2015-03-06 2015-03-06 Fuel cell stack manufacturing apparatus and fuel cell stack manufacturing method Active JP6402655B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015045176A JP6402655B2 (en) 2015-03-06 2015-03-06 Fuel cell stack manufacturing apparatus and fuel cell stack manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015045176A JP6402655B2 (en) 2015-03-06 2015-03-06 Fuel cell stack manufacturing apparatus and fuel cell stack manufacturing method

Publications (2)

Publication Number Publication Date
JP2016164856A true JP2016164856A (en) 2016-09-08
JP6402655B2 JP6402655B2 (en) 2018-10-10

Family

ID=56876181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015045176A Active JP6402655B2 (en) 2015-03-06 2015-03-06 Fuel cell stack manufacturing apparatus and fuel cell stack manufacturing method

Country Status (1)

Country Link
JP (1) JP6402655B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005228698A (en) * 2004-02-16 2005-08-25 Casio Comput Co Ltd Fuel cell and its manufacturing method
JP2005285405A (en) * 2004-03-29 2005-10-13 Honda Motor Co Ltd Fuel cell stack
JP2009026547A (en) * 2007-07-18 2009-02-05 Toyota Motor Corp Fuel cell, and manufacturing method for fuel cell
US20110200904A1 (en) * 2008-11-26 2011-08-18 Guthrie Robin J External manifold for minimizing external leakage of reactant from cell stack
WO2012081173A1 (en) * 2010-12-16 2012-06-21 パナソニック株式会社 Battery pack
JP2012195259A (en) * 2011-03-18 2012-10-11 Panasonic Corp Battery
WO2014132562A1 (en) * 2013-02-26 2014-09-04 トヨタ自動車株式会社 Fuel cell device and manufacturing method for same
JP2014209418A (en) * 2013-04-16 2014-11-06 トヨタ自動車株式会社 Fastening method of stack and fastening jig of stack

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005228698A (en) * 2004-02-16 2005-08-25 Casio Comput Co Ltd Fuel cell and its manufacturing method
JP2005285405A (en) * 2004-03-29 2005-10-13 Honda Motor Co Ltd Fuel cell stack
JP2009026547A (en) * 2007-07-18 2009-02-05 Toyota Motor Corp Fuel cell, and manufacturing method for fuel cell
US20110200904A1 (en) * 2008-11-26 2011-08-18 Guthrie Robin J External manifold for minimizing external leakage of reactant from cell stack
WO2012081173A1 (en) * 2010-12-16 2012-06-21 パナソニック株式会社 Battery pack
JP2012195259A (en) * 2011-03-18 2012-10-11 Panasonic Corp Battery
WO2014132562A1 (en) * 2013-02-26 2014-09-04 トヨタ自動車株式会社 Fuel cell device and manufacturing method for same
JP2014209418A (en) * 2013-04-16 2014-11-06 トヨタ自動車株式会社 Fastening method of stack and fastening jig of stack

Also Published As

Publication number Publication date
JP6402655B2 (en) 2018-10-10

Similar Documents

Publication Publication Date Title
JP6055037B2 (en) Assembly method of fuel cell stack
JP5022031B2 (en) Film-clad electrical device, frame member, and film-clad electrical device storage system
JP5253377B2 (en) Pouch type battery
KR101636125B1 (en) Battery clamping device, battery heating device, battery drying device, battery cooling device and method for manufacturing battery
US9324982B2 (en) Battery module
JP4956882B2 (en) Fuel cell
WO2013111669A1 (en) Fuel cell vehicle
WO2014203342A1 (en) Battery module
JP5293813B2 (en) FUEL CELL MANUFACTURING METHOD, FUEL CELL MANUFACTURING DEVICE, AND FUEL CELL
JP2009533834A5 (en)
JP2013145649A (en) Method for manufacturing electric device pack or electric device module and electric device pack or electric device module manufactured thereby
JP2012038529A (en) Battery, and vehicle and electrical device equipped with the same
KR20200117177A (en) Manufacturing apparatus of pouch case for secondary battery and manufacturing mehtod the same
JP2006049129A (en) Fuel cell stack
KR101836595B1 (en) Device for compensating assembling power of fuel cell stack
JP2020077577A (en) Fuel cell stack and method of assembling fuel cell stack
JP2016012408A (en) Manufacturing method of fuel battery
JP6580391B2 (en) Fuel cell stack and method of assembling the same
JP6402655B2 (en) Fuel cell stack manufacturing apparatus and fuel cell stack manufacturing method
JP2012059712A (en) Fuel battery
JP6252415B2 (en) Manufacturing method of fuel cell stack
JP6341063B2 (en) Manufacturing method of fuel cell stack
JP2016076309A (en) Method of manufacturing fuel battery stack
JP2008269936A (en) Fuel cell stack
JP5305893B2 (en) External manifold fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180814

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180827

R151 Written notification of patent or utility model registration

Ref document number: 6402655

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151