WO2012081101A1 - Vehicle and method for controlling same - Google Patents

Vehicle and method for controlling same Download PDF

Info

Publication number
WO2012081101A1
WO2012081101A1 PCT/JP2010/072648 JP2010072648W WO2012081101A1 WO 2012081101 A1 WO2012081101 A1 WO 2012081101A1 JP 2010072648 W JP2010072648 W JP 2010072648W WO 2012081101 A1 WO2012081101 A1 WO 2012081101A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
catalyst
temperature
internal combustion
combustion engine
Prior art date
Application number
PCT/JP2010/072648
Other languages
French (fr)
Japanese (ja)
Inventor
慶太 橋元
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2010/072648 priority Critical patent/WO2012081101A1/en
Publication of WO2012081101A1 publication Critical patent/WO2012081101A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2013Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using electric or magnetic heating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1412Introducing closed-loop corrections characterised by the control or regulation method using a predictive controller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a vehicle and a vehicle control method, and more particularly to control of a catalyst warm-up device for purifying exhaust gas of an internal combustion engine.
  • the vehicle uses a driving force generated by a rotating electrical machine using electric power stored in a power storage device (for example, a secondary battery or a capacitor).
  • a power storage device for example, a secondary battery or a capacitor.
  • a catalyst for purifying exhaust gas of the internal combustion engine is provided.
  • the catalyst is lower than a predetermined activation temperature, the exhaust gas cannot be appropriately purified, and there is a risk that the emission of substances that cause air pollution may increase.
  • a warm-up device (hereinafter also referred to as EHC (Electrical Heated Catalyst)) that raises the temperature of the catalyst by energizing the catalyst in order to be able to exert the function of the catalyst as early as possible.
  • EHC Electronic Heated Catalyst
  • the internal combustion engine may be intermittently stopped depending on the road surface condition and the operation by the user.
  • the vehicle when the vehicle is started, the vehicle is generally started at a low speed, and therefore the driving force of only the rotating electrical machine may be used without using the internal combustion engine.
  • a large driving torque is required to oppose gravity, so it is possible to start using the driving force of both the rotating electrical machine and the internal combustion engine. It may be necessary.
  • since the internal combustion engine is started it is desirable to warm up the catalyst in advance before starting the internal combustion engine.
  • Patent Document 1 discloses a configuration in which, in a vehicle equipped with EHC, when the temperature of the catalyst falls below a reference value, the catalyst is heated by EHC. Furthermore, Japanese Patent Application Laid-Open No. 07-139339 (Patent Document 1) discloses a configuration in which the power supplied to the EHC is changed in accordance with the exhaust gas flow rate.
  • Patent Document 1 when the temperature of the catalyst is lower than the reference value, the catalyst is heated by EHC.
  • the internal combustion engine is not always started when traveling, so even if the catalyst is heated by EHC, if the internal combustion engine is not started, the electric power used for heating may be wasted. There is. Therefore, for warming up of the catalyst before starting the vehicle in the hybrid vehicle, it is desirable to start warming up of the catalyst using EHC only when it is assumed in advance that the internal combustion engine is started.
  • the present invention has been made in order to solve such a problem, and the object thereof is appropriately applied to a vehicle equipped with an EHC when it is assumed in advance that the internal combustion engine is started when the vehicle starts. It is to warm up the catalyst.
  • a vehicle includes a detection unit for detecting the inclination of a travel path on which the vehicle travels, an internal combustion engine, a warming-up device for raising the temperature of a catalyst for purifying exhaust gas from the internal combustion engine, A control device for controlling the machine device.
  • the control device uses a warm-up device prior to starting the internal combustion engine. Start heating the catalyst.
  • control device is configured such that, when the vehicle is stopped, the detected slope of the traveling road exceeds a predetermined threshold value, and the shift position is set to a position for traveling in the upward direction of the traveling road. It is assumed that there is a high possibility that the internal combustion engine will be started when a certain condition is satisfied.
  • control device starts to raise the temperature of the catalyst by the warm-up device when the condition is satisfied and the temperature of the catalyst falls below a predetermined reference value.
  • the vehicle further includes a power storage device and a rotating electric machine configured to generate a driving force for running the vehicle using electric power from the power storage device.
  • the vehicle further includes a charging device capable of charging the power storage device using electric power from an external power source outside the vehicle.
  • a vehicle control method is a control method for a vehicle including an internal combustion engine and a warming-up device for raising the temperature of a catalyst for purifying exhaust gas of the internal combustion engine, and a travel path on which the vehicle travels
  • the internal combustion engine is started.
  • the step of raising the temperature of the catalyst is a position in which the detected slope of the traveling road exceeds a predetermined threshold and the shift position travels in the upward direction of the traveling road while the vehicle is stopped. It is assumed that there is a high possibility that the internal combustion engine will be started when the condition set in is established.
  • the temperature of the catalyst is started by the warm-up device.
  • the catalyst in a vehicle equipped with EHC, when it is assumed in advance that the internal combustion engine is started when the vehicle starts, the catalyst can be appropriately warmed up.
  • FIG. 1 is an overall block diagram of a vehicle according to a first embodiment.
  • FIG. 3 is a functional block diagram for illustrating EHC drive control executed by an ECU in the first embodiment.
  • 4 is a flowchart for illustrating details of an EHC drive control process executed by an ECU in the first embodiment.
  • FIG. 6 is an overall block diagram of a vehicle according to a second embodiment.
  • FIG. 1 is an overall block diagram of a vehicle 100 according to the first embodiment.
  • vehicle 100 includes a power storage device 110, a system main relay (SMR) 115, a PCU (Power Control Unit) 120 that is a driving device, motor generators 130 and 135, power Transmission gear 140, drive wheel 150, engine 160 that is an internal combustion engine, exhaust pipe 170 that discharges exhaust from engine 160, EHC (Electrical Heated Catalyst) 180 installed in exhaust pipe 170, and EHC drive unit 190 and an ECU (Electronic Control Unit) 300 which is a control device.
  • PCU 120 includes a converter 121, inverters 122 and 123, and capacitors C1 and C2.
  • the power storage device 110 is a power storage element configured to be chargeable / dischargeable.
  • the power storage device 110 includes, for example, a secondary battery such as a lithium ion battery, a nickel hydride battery, or a lead storage battery, or a power storage element such as an electric double layer capacitor.
  • the power storage device 110 is connected to the PCU 120 via the power line PL1 and the ground line NL1. Then, power storage device 110 supplies power for generating driving force of vehicle 100 to PCU 120. Power storage device 110 stores the electric power generated by motor generators 130 and 135. The output of power storage device 110 is, for example, about 200V.
  • the relays included in the SMR 115 are inserted into the power line PL1 and the ground line NL1 that connect the power storage device 110 and the PCU 120, respectively.
  • SMR 115 switches between power supply and cutoff between power storage device 110 and PCU 120 based on control signal SE ⁇ b> 1 from ECU 300.
  • Converter 121 performs voltage conversion between power line PL1 and ground line NL1, power line PL2 and ground line NL1, based on control signal PWC from ECU 300.
  • Inverters 122 and 123 are connected in parallel to power line PL2 and ground line NL1. Inverters 122 and 123 convert DC power supplied from converter 121 to AC power based on control signals PWI1 and PWI2 from ECU 300, respectively, and drive motor generators 130 and 135, respectively.
  • Capacitor C1 is provided between power line PL1 and ground line NL1, and reduces voltage fluctuation between power line PL1 and ground line NL1.
  • Capacitor C2 is provided between power line PL2 and ground line NL1, and reduces voltage fluctuation between power line PL2 and ground line NL1.
  • Motor generators 130 and 135 are AC rotating electric machines, for example, permanent magnet type synchronous motors having a rotor in which permanent magnets are embedded.
  • the output torque of the motor generators 130 and 135 is transmitted to the drive wheels 150 via the power transmission gear 140 configured to include a speed reducer and a power split mechanism, thereby causing the vehicle 100 to travel.
  • Motor generators 130 and 135 can generate electric power by the rotational force of drive wheels 150 during regenerative braking operation of vehicle 100. Then, the generated power is converted into charging power for power storage device 110 by PCU 120.
  • the motor generators 130 and 135 are also coupled to the engine 160 through the power transmission gear 140. Then, ECU 300 causes motor generators 130 and 135 and engine 160 to operate in a coordinated manner to generate a necessary vehicle driving force. Further, motor generators 130 and 135 can generate electric power by rotation of engine 160, and can charge power storage device 110 using the generated electric power. In the first embodiment, motor generator 135 is used exclusively as an electric motor for driving drive wheels 150, and motor generator 130 is used exclusively as a generator driven by engine 160.
  • FIG. 1 a configuration in which two motor generators are provided is shown as an example.
  • the number of motor generators is not limited to this as long as the configuration includes a motor generator capable of generating power with the engine 160.
  • there is one generator, or more than two motor generators may be provided.
  • Engine 160 controls the rotational speed, valve opening / closing timing, fuel flow rate, and the like by ECU 300, and generates driving force for traveling vehicle 100.
  • the exhaust pipe 170 is coupled to the exhaust port of the engine 160 and discharges exhaust gas generated by the engine 160 to the outside of the vehicle.
  • the EHC 180 is installed in the middle part of the exhaust pipe 170.
  • the EHC 180 includes a so-called three-way catalyst unit, and removes harmful substances such as nitrogen oxides in the exhaust gas.
  • EHC 180 raises the temperature of the three-way catalyst contained therein using electric power supplied from EHC drive unit 190 controlled by control signal SIG from ECU 300.
  • the three-way catalyst cannot fully exhibit its function as a catalyst unless the activation temperature is exceeded.
  • the EHC 180 raises the temperature of the three-way catalyst using the electric power supplied from the EHC driving unit 190, so that the three-way catalyst can exhibit its function as a catalyst at an early stage.
  • the EHC 180 further includes a temperature sensor (not shown), detects the catalyst temperature TMP, and outputs the detection result to the ECU 300.
  • ECU 300 controls the supply of electric power to EHC 180 by EHC drive unit 190 based on catalyst temperature TMP.
  • the EHC driving unit 190 is connected to the power line PL2 and the ground line NL1, and is connected to the EHC 180 by the power line PL3 and the ground line NL3.
  • EHC drive unit 190 generates electric power for driving EHC 180 using electric power from power storage device 110 or electric power generated by motor generators 130 and 135, and switches between supply and interruption of electric power to EHC 180.
  • the EHC 180 includes, for example, a DC / DC converter, an inverter, or a relay.
  • ECU 300 includes a CPU (Central Processing Unit), a storage device, and an input / output buffer (not shown in FIG. 1).
  • the ECU 300 inputs a signal from each sensor and outputs a control signal to each device. 100 and each device are controlled. Note that these controls are not limited to processing by software, and can be processed by dedicated hardware (electronic circuit).
  • ECU 300 calculates a state of charge (SOC) of power storage device 110 based on the detected values of voltage VB and current IB from a voltage sensor and a current sensor (both not shown) provided in power storage device 110. .
  • SOC state of charge
  • ECU 300 receives accelerator opening ACC based on the operating state of accelerator pedal 116, shift position SFT of shift lever 117 set by the user, and catalyst temperature TMP from EHC 180. Further, ECU 300 receives a signal SLP indicating the inclination from inclination detecting section 118 for detecting the inclination of the traveling road, and also receives an operation signal IG of an ignition switch (not shown) by the user.
  • inclination detecting unit 118 an inclinometer, an acceleration sensor, or the like can be used.
  • the ECU 300 performs EHC drive control, which will be described later, based on these pieces of information.
  • one control device is provided as the ECU 300.
  • a control device for the PCU 120, a control device for the power storage device 110, or the like is provided individually for each function or for each control target device. It is good also as a structure which provides a control apparatus.
  • the engine when the vehicle starts, the engine may not be started depending on the state of the traveling path or the operation state of the user.
  • EV Electric
  • a vehicle that can travel there is a high possibility that the engine will not be driven.
  • the engine In a conventional vehicle in which driving force is generated only by the engine, the engine is always started when the vehicle starts, so the catalyst may be warmed up whenever there is a possibility that the vehicle will start to travel.
  • the engine may not be used when the vehicle starts. Therefore, if the catalyst is always warmed up before starting the vehicle, the electric power used for warming up is consumed when the engine is not started. There is a risk of being wasted. Therefore, in a hybrid vehicle, from the viewpoint of preventing deterioration of energy efficiency and early implementation of the catalyst purification mechanism, the catalyst must be warmed up before starting the vehicle only when there is a high possibility that the engine will be started when the vehicle starts. It is desirable to do so.
  • EHC drive control is performed to raise the temperature of the catalyst prior to starting the engine.
  • FIG. 2 is a functional block diagram for explaining the EHC drive control executed by the ECU 300 in the first embodiment. Each functional block described in the functional block diagram of FIG. 2 is realized by hardware or software processing by ECU 300.
  • ECU 300 includes an input unit 310, a determination unit 320, and an EHC control unit 330.
  • the input unit 310 receives the shift position SFT of the shift lever 117, the signal SLP indicating the inclination from the inclination detection unit 118, and the catalyst temperature TMP from the EHC 180. Further, the input unit 310 receives an operation signal IG for the ignition switch by the user. Then, the input unit 310 outputs these pieces of information to the determination unit 320.
  • the determination unit 320 determines whether or not the temperature of the catalyst needs to be raised by the EHC 180 based on the catalyst temperature TMP from the input unit 310. Determination unit 320 determines whether or not vehicle 100 is set to a shift position in which the vehicle 100 travels in an upward direction on a slope based on signal SLP indicating the slope and shift position SFT. Based on these determination results, determination unit 320 generates an execution flag FLG for raising the temperature of the catalyst by EHC 180, and outputs this execution flag FLG to EHC control unit 330.
  • the EHC control unit 330 receives the execution flag FLG from the determination unit 320 and the catalyst temperature TMP from the EHC 180.
  • the EHC control unit 330 outputs a control signal SIG and outputs the control signal SIG so that the catalyst temperature TMP becomes equal to or higher than a predetermined threshold value when the execution flag FLG instructs the temperature increase of the catalyst. To control.
  • FIG. 3 is a flowchart for illustrating details of the EHC drive control process executed by ECU 300 in the first embodiment.
  • the processing is realized by a program stored in advance in ECU 300 being called from the main routine and executed in a predetermined cycle.
  • some or all of the steps can be realized by dedicated hardware (electronic circuit).
  • step 100 determines in step 100 (hereinafter, step is abbreviated as S) whether vehicle 100 is stopped and is in a Ready-ON state by operation signal IG. Determine.
  • the Ready-ON state refers to a state in which the control system of the vehicle 100 is activated and the SMR 115 is closed.
  • the engine 160 is generally stopped unless the power storage device 110 needs to be charged.
  • shift position SFT is not a travelable position (NO in S120), that is, for example, if shift position SFT is parking position P or neutral position N, the user may not be willing to travel the vehicle. Therefore, ECU 300 returns the process to the main routine without increasing the temperature of the catalyst by the control.
  • shift position SFT is a travelable position (YES in S120)
  • ECU 300 causes the inclination detection unit 118 to Read the slope SLP of the travel path.
  • ECU 300 determines whether or not the read slope SLP is greater than or equal to a predetermined threshold value ⁇ , that is, whether or not it is a steep slope. Although not shown in FIG. 3, in S140, it is also determined whether or not the set shift position SFT is a position for traveling in the uphill direction of the slope.
  • ECU 300 When slope SLP is equal to or greater than the threshold value and shift position SFT is a position for traveling in the uphill direction (YES in S140), ECU 300 causes engine 160 to be Judge that the possibility of starting is high. Then, ECU 300 advances the process to S150 and reads the current catalyst temperature TMP from a temperature sensor (not shown) provided in EHC 180.
  • ECU 300 determines whether or not catalyst temperature TMP is equal to or lower than reference temperature ⁇ determined in advance based on the activation temperature (for example, 400 ° C.) of the catalyst.
  • ECU 300 may not process exhaust sufficiently by the catalyst when engine 160 is started.
  • the temperature of the catalyst is started by energizing the EHC 180. Thereafter, the process is returned to S150, and the ECU 300 continues to raise the temperature of the catalyst until the catalyst temperature TMP becomes higher than the reference temperature ⁇ .
  • ECU 300 determines that the catalyst is already within the activation temperature range and can be appropriately purified by the catalyst. Then, ECU 300 advances the process to S170, stops energization of EHC 180, and stops the temperature rise of the catalyst. If the time from the end of the previous run is short and energization of EHC 180 is not performed in this process, the state where energization of EHC 180 is not performed is maintained in S170.
  • the reference temperature ⁇ described above is set to a temperature (for example, 500 ° C.) sufficiently higher than the activation temperature of the catalyst (for example, 350 ° C.), the power of the power storage device 110 is wasted. obtain. Therefore, the reference temperature ⁇ is set to a temperature (for example, 400 ° C.) that is slightly higher than the activation temperature at which the catalyst purification action can be exerted in consideration of the temperature drop due to the time from the end of energization to the EHC 180 until traveling. It is preferable.
  • the vehicle mounted with EHC is stopped on a steep slope, and it is assumed that the engine is started when the vehicle starts next time. It is possible to appropriately warm up the catalyst in advance.
  • FIG. 4 is an overall block diagram showing vehicle 100A according to the second embodiment. 4, in addition to the configuration of vehicle 100 shown in FIG. 1, a configuration capable of charging power storage device 110 with power from external power supply 500 is added, and a power supply unit to EHC drive unit 190 and The mechanism for generating the driving force is changed. In FIG. 4, the description of the elements overlapping with those in FIG. 1 will not be repeated.
  • vehicle 100A is not configured to include two motor generators as vehicle 100 of FIG. 1, but is configured to include only one motor generator.
  • vehicle 100 includes PCU 120A instead of PCU 120 in FIG.
  • PCU 120 ⁇ / b> A includes one inverter corresponding to motor generator 130.
  • the EHC drive control described in the first embodiment can be applied to a hybrid vehicle having only one motor generator.
  • EHC driving unit 190 is connected to power line PL1 and ground line NL1 on the low voltage side, unlike the connection in FIG.
  • the voltage on the low voltage side for example, 200 V
  • the voltage on the high voltage side for example, 600 V
  • the rated capacity and the physique of the EHC driving unit 190 can be reduced when the voltage is stepped down or directly used.
  • vehicle 100A includes a charging device 200, a charging relay CHR210, and a connection unit 220 as a configuration that allows charging of power storage device 110 with electric power from external power supply 500.
  • Connection unit 220 is provided on the body of vehicle 100 in order to receive power from external power supply 500.
  • a charging connector 410 of the charging cable 400 is connected to the connection unit 220.
  • the plug 420 of the charging cable 400 is connected to the outlet 510 of the external power supply 500, whereby the power from the external power supply 500 is transmitted to the vehicle 100 via the electric wire portion 430 of the charging cable 400.
  • a charging circuit breaker also referred to as “CCID (Charging Circuit Interrupt Device)” for switching between power supply and interruption from the external power supply 500 to the vehicle 100 is provided in the electric wire portion 430 of the charging cable 400. May be inserted.
  • the charging device 200 is connected to the connection unit 220 via the power lines ACL1 and ACL2. Charging device 200 is connected to power storage device 110 via CHR 210. Charging device 200 converts AC power supplied from external power supply 500 into DC power that power storage device 110 can charge based on control signal PWD from ECU 300.
  • CHR 210 One end of the relay included in CHR 210 is connected to the positive terminal and the negative terminal of power storage device 110, respectively.
  • the other end of the relay included in CHR 210 is connected to power line PL4 and ground line NL4 connected to charging device 200, respectively.
  • CHR 210 switches between supply and interruption of power from charging device 200 to power storage device 110 based on control signal SE ⁇ b> 2 from ECU 300.
  • the above-described EHC drive control can also be applied to a vehicle capable of so-called external charging.

Abstract

A vehicle (100) includes: a gradient detection section (118) for detecting the gradient of a track; an engine (160); an EHC (180) for increasing the temperature of a catalyst for purifying the exhaust from the engine (160); and an ECU (300) for controlling the EHC (180). If, on the basis of the shift position and the gradient of the track detected by the gradient detection section (118), there is deemed to be a high possibility that the engine (160) will be started, the ECU (300) begins to increase the temperature of the catalyst by the EHC (180) prior to starting of the engine (160).

Description

車両および車両の制御方法Vehicle and vehicle control method
 本発明は、車両および車両の制御方法に関し、より特定的には、内燃機関の排気を浄化するための触媒の暖機装置の制御に関する。 The present invention relates to a vehicle and a vehicle control method, and more particularly to control of a catalyst warm-up device for purifying exhaust gas of an internal combustion engine.
 近年、環境に配慮した車両として、従来からの内燃機関による駆動力に加えて、蓄電装置(たとえば二次電池やキャパシタなど)に蓄えられた電力を用いて回転電機によって生じる駆動力を用いて走行するハイブリッド車両が注目されている。 In recent years, as an environment-friendly vehicle, in addition to the driving force of a conventional internal combustion engine, the vehicle uses a driving force generated by a rotating electrical machine using electric power stored in a power storage device (for example, a secondary battery or a capacitor). Hybrid vehicles are attracting attention.
 一般的に、内燃機関を有する車両においては、内燃機関の排気を浄化するための触媒が設けられる。この触媒は、所定の活性化温度よりも低下している場合には、適切に排気を浄化することができないので、大気汚染の要因となる物質の排出が増加してしまうおそれがある。 Generally, in a vehicle having an internal combustion engine, a catalyst for purifying exhaust gas of the internal combustion engine is provided. When the catalyst is lower than a predetermined activation temperature, the exhaust gas cannot be appropriately purified, and there is a risk that the emission of substances that cause air pollution may increase.
 一方で、できるだけ早期に触媒の機能を発揮することができるようにするために、触媒に通電することによって触媒を昇温させる暖機装置(以下、EHC(Electrical Heated Catalyst)とも称する。)についての技術が開発されている。 On the other hand, a warm-up device (hereinafter also referred to as EHC (Electrical Heated Catalyst)) that raises the temperature of the catalyst by energizing the catalyst in order to be able to exert the function of the catalyst as early as possible. Technology has been developed.
 上述のハイブリッド車両においては、路面の状態およびユーザによる操作に応じて、内燃機関が間欠的に停止される場合がある。特に、車両を発進させるときには、一般的には低速で発進するため、内燃機関を用いずに回転電機のみの駆動力を用いる場合がある。しかしながら、たとえば、急な上り坂で車両を発進させるような場合には、重力に対向するために大きな駆動トルクが必要なため、回転電機および内燃機関の両方による駆動力を用いて発進することが必要となる場合がある。このような場合には、内燃機関が始動するので内燃機関の始動前に、予め触媒を暖機しておくことが望ましい。 In the above-described hybrid vehicle, the internal combustion engine may be intermittently stopped depending on the road surface condition and the operation by the user. In particular, when the vehicle is started, the vehicle is generally started at a low speed, and therefore the driving force of only the rotating electrical machine may be used without using the internal combustion engine. However, for example, when a vehicle is started on a steep uphill, a large driving torque is required to oppose gravity, so it is possible to start using the driving force of both the rotating electrical machine and the internal combustion engine. It may be necessary. In such a case, since the internal combustion engine is started, it is desirable to warm up the catalyst in advance before starting the internal combustion engine.
 特開平07-139339号公報(特許文献1)は、EHCを搭載した車両において、触媒の温度が基準値より低下した場合には、EHCにより触媒を加熱する構成を開示する。さらに、特開平07-139339号公報(特許文献1)は、排ガス流量に応じてEHCへの供給電力を変化させる構成を開示する。 Japanese Unexamined Patent Publication No. 07-139339 (Patent Document 1) discloses a configuration in which, in a vehicle equipped with EHC, when the temperature of the catalyst falls below a reference value, the catalyst is heated by EHC. Furthermore, Japanese Patent Application Laid-Open No. 07-139339 (Patent Document 1) discloses a configuration in which the power supplied to the EHC is changed in accordance with the exhaust gas flow rate.
特開平07-139339号公報JP 07-139339 A 特開2008-265357号公報JP 2008-265357 A 特開2009-041403号公報JP 2009-041403 A
 特開平07-139339号公報(特許文献1)に開示された構成においては、触媒の温度が基準値より低下している場合にEHCにより触媒が加熱される。しかしながら、ハイブリッド車両においては、走行時に必ずしも内燃機関を始動するとは限らないので、EHCによって触媒が加熱されても、内燃機関が始動されなければ、加熱に用いられた電力が無駄になってしまうおそれがある。そのため、ハイブリッド車両における車両発進前の触媒の暖機については、内燃機関を始動させることが予め想定される場合に限って、EHCを用いて触媒の暖機を開始することが望ましい。 In the configuration disclosed in Japanese Patent Application Laid-Open No. 07-139339 (Patent Document 1), when the temperature of the catalyst is lower than the reference value, the catalyst is heated by EHC. However, in a hybrid vehicle, the internal combustion engine is not always started when traveling, so even if the catalyst is heated by EHC, if the internal combustion engine is not started, the electric power used for heating may be wasted. There is. Therefore, for warming up of the catalyst before starting the vehicle in the hybrid vehicle, it is desirable to start warming up of the catalyst using EHC only when it is assumed in advance that the internal combustion engine is started.
 本発明は、このような課題を解決するためになされたものであって、その目的は、EHCを搭載した車両において、車両発進時に内燃機関を始動させることが予め想定される場合に、適切に触媒の暖機を行なうことである。 The present invention has been made in order to solve such a problem, and the object thereof is appropriately applied to a vehicle equipped with an EHC when it is assumed in advance that the internal combustion engine is started when the vehicle starts. It is to warm up the catalyst.
 本発明による車両は、車両が走行する走行路の斜度を検出するための検出部と、内燃機関と、内燃機関の排気を浄化するための触媒を昇温するための暖機装置と、暖機装置を制御するための制御装置とを備える。制御装置は、検出部により検出された走行路の斜度およびシフトポジションに基づいて、燃機関が始動される可能性が高いと想定される場合に、内燃機関の始動に先立って暖機装置により触媒の昇温を開始する。 A vehicle according to the present invention includes a detection unit for detecting the inclination of a travel path on which the vehicle travels, an internal combustion engine, a warming-up device for raising the temperature of a catalyst for purifying exhaust gas from the internal combustion engine, A control device for controlling the machine device. When it is assumed that there is a high possibility that the combustion engine will be started based on the slope of the travel path and the shift position detected by the detection unit, the control device uses a warm-up device prior to starting the internal combustion engine. Start heating the catalyst.
 好ましくは、制御装置は、停車中に、検出された走行路の斜度が予め定められたしきい値を上回っており、かつ、シフトポジションが走行路の上り方向へ走行するポジションに設定されている条件が成立した場合に、内燃機関が始動される可能性が高いと想定する。 Preferably, the control device is configured such that, when the vehicle is stopped, the detected slope of the traveling road exceeds a predetermined threshold value, and the shift position is set to a position for traveling in the upward direction of the traveling road. It is assumed that there is a high possibility that the internal combustion engine will be started when a certain condition is satisfied.
 好ましくは、制御装置は、条件が成立し、かつ触媒の温度が予め定められた基準値を下回る場合に、暖機装置により触媒の昇温を開始する。 Preferably, the control device starts to raise the temperature of the catalyst by the warm-up device when the condition is satisfied and the temperature of the catalyst falls below a predetermined reference value.
 好ましくは、車両は、蓄電装置と、蓄電装置からの電力を用いて車両を走行させるための駆動力を発生することが可能に構成された回転電機をさらに備える。 Preferably, the vehicle further includes a power storage device and a rotating electric machine configured to generate a driving force for running the vehicle using electric power from the power storage device.
 好ましくは、車両は、車両外部の外部電源からの電力を用いて、蓄電装置を充電することができる充電装置をさらに備える。 Preferably, the vehicle further includes a charging device capable of charging the power storage device using electric power from an external power source outside the vehicle.
 本発明による車両の制御方法は、内燃機関と、内燃機関の排気を浄化するための触媒を昇温するための暖機装置とを含む車両についての制御方法であって、車両が走行する走行路の斜度を検出するステップと、検出するステップにより検出された走行路の斜度およびシフトポジションに基づいて、内燃機関が始動される可能性が高いと想定される場合に、内燃機関の始動に先立って暖機装置により触媒の昇温を開始するステップとを備える。 A vehicle control method according to the present invention is a control method for a vehicle including an internal combustion engine and a warming-up device for raising the temperature of a catalyst for purifying exhaust gas of the internal combustion engine, and a travel path on which the vehicle travels When the internal combustion engine is likely to be started based on the step of detecting the inclination of the engine and the inclination and shift position of the travel path detected by the detecting step, the internal combustion engine is started. A step of starting the temperature rise of the catalyst by a warm-up device in advance.
 好ましくは、触媒を昇温するステップは、停車中に、検出された走行路の斜度が予め定められたしきい値を上回っており、かつ、シフトポジションが走行路の上り方向へ走行するポジションに設定されている条件が成立する場合に、内燃機関が始動される可能性が高いと想定する。 Preferably, the step of raising the temperature of the catalyst is a position in which the detected slope of the traveling road exceeds a predetermined threshold and the shift position travels in the upward direction of the traveling road while the vehicle is stopped. It is assumed that there is a high possibility that the internal combustion engine will be started when the condition set in is established.
 好ましくは、触媒を昇温するステップは、条件が成立し、かつ触媒の温度が予め定められた基準値を下回る場合に、暖機装置により触媒の昇温を開始する。 Preferably, in the step of raising the temperature of the catalyst, when the condition is satisfied and the temperature of the catalyst falls below a predetermined reference value, the temperature of the catalyst is started by the warm-up device.
 本発明によれば、EHCを搭載した車両において、車両発進時に内燃機関を始動させることが予め想定される場合に、適切に触媒の暖機を行なうことができる。 According to the present invention, in a vehicle equipped with EHC, when it is assumed in advance that the internal combustion engine is started when the vehicle starts, the catalyst can be appropriately warmed up.
実施の形態1に従う車両の全体ブロック図である。1 is an overall block diagram of a vehicle according to a first embodiment. 実施の形態1において、ECUで実行されるEHC駆動制御を説明するための機能ブロック図である。FIG. 3 is a functional block diagram for illustrating EHC drive control executed by an ECU in the first embodiment. 実施の形態1において、ECUで実行されるEHC駆動制御処理の詳細を説明するためのフローチャートである。4 is a flowchart for illustrating details of an EHC drive control process executed by an ECU in the first embodiment. 実施の形態2に従う車両の全体ブロック図である。FIG. 6 is an overall block diagram of a vehicle according to a second embodiment.
 以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals and description thereof will not be repeated.
 [実施の形態1]
 図1は、実施の形態1に従う車両100の全体ブロック図である。図1を参照して、車両100は、蓄電装置110と、システムメインリレー(System Main Relay:SMR)115と、駆動装置であるPCU(Power Control Unit)120と、モータジェネレータ130,135と、動力伝達ギヤ140と、駆動輪150と、内燃機関であるエンジン160と、エンジン160からの排気を放出するエキゾーストパイプ170と、エキゾーストパイプ170に設置されたEHC(Electrical Heated Catalyst)180と、EHC駆動部190と、制御装置であるECU(Electronic Control Unit)300とを備える。また、PCU120は、コンバータ121と、インバータ122,123と、コンデンサC1,C2とを含む。
[Embodiment 1]
FIG. 1 is an overall block diagram of a vehicle 100 according to the first embodiment. Referring to FIG. 1, vehicle 100 includes a power storage device 110, a system main relay (SMR) 115, a PCU (Power Control Unit) 120 that is a driving device, motor generators 130 and 135, power Transmission gear 140, drive wheel 150, engine 160 that is an internal combustion engine, exhaust pipe 170 that discharges exhaust from engine 160, EHC (Electrical Heated Catalyst) 180 installed in exhaust pipe 170, and EHC drive unit 190 and an ECU (Electronic Control Unit) 300 which is a control device. PCU 120 includes a converter 121, inverters 122 and 123, and capacitors C1 and C2.
 蓄電装置110は、充放電可能に構成された電力貯蔵要素である。蓄電装置110は、たとえば、リチウムイオン電池、ニッケル水素電池または鉛蓄電池などの二次電池、あるいは電気二重層キャパシタなどの蓄電素子を含んで構成される。 The power storage device 110 is a power storage element configured to be chargeable / dischargeable. The power storage device 110 includes, for example, a secondary battery such as a lithium ion battery, a nickel hydride battery, or a lead storage battery, or a power storage element such as an electric double layer capacitor.
 蓄電装置110は、電力線PL1および接地線NL1を介してPCU120に接続される。そして、蓄電装置110は、車両100の駆動力を発生させるための電力をPCU120に供給する。また、蓄電装置110は、モータジェネレータ130,135で発電された電力を蓄電する。蓄電装置110の出力はたとえば200V程度である。 The power storage device 110 is connected to the PCU 120 via the power line PL1 and the ground line NL1. Then, power storage device 110 supplies power for generating driving force of vehicle 100 to PCU 120. Power storage device 110 stores the electric power generated by motor generators 130 and 135. The output of power storage device 110 is, for example, about 200V.
 SMR115に含まれるリレーは、蓄電装置110とPCU120とを結ぶ電力線PL1および接地線NL1にそれぞれ介挿される。そして、SMR115は、ECU300からの制御信号SE1に基づいて、蓄電装置110とPCU120との間での電力の供給と遮断とを切換える。 The relays included in the SMR 115 are inserted into the power line PL1 and the ground line NL1 that connect the power storage device 110 and the PCU 120, respectively. SMR 115 switches between power supply and cutoff between power storage device 110 and PCU 120 based on control signal SE <b> 1 from ECU 300.
 コンバータ121は、ECU300からの制御信号PWCに基づいて、電力線PL1および接地線NL1と電力線PL2および接地線NL1との間で電圧変換を行なう。 Converter 121 performs voltage conversion between power line PL1 and ground line NL1, power line PL2 and ground line NL1, based on control signal PWC from ECU 300.
 インバータ122,123は、電力線PL2および接地線NL1に並列に接続される。インバータ122,123は、ECU300からの制御信号PWI1,PWI2にそれぞれ基づいて、コンバータ121から供給される直流電力を交流電力に変換し、モータジェネレータ130,135をそれぞれ駆動する。 Inverters 122 and 123 are connected in parallel to power line PL2 and ground line NL1. Inverters 122 and 123 convert DC power supplied from converter 121 to AC power based on control signals PWI1 and PWI2 from ECU 300, respectively, and drive motor generators 130 and 135, respectively.
 コンデンサC1は、電力線PL1および接地線NL1の間に設けられ、電力線PL1および接地線NL1間の電圧変動を減少させる。また、コンデンサC2は、電力線PL2および接地線NL1の間に設けられ、電力線PL2および接地線NL1間の電圧変動を減少させる。 Capacitor C1 is provided between power line PL1 and ground line NL1, and reduces voltage fluctuation between power line PL1 and ground line NL1. Capacitor C2 is provided between power line PL2 and ground line NL1, and reduces voltage fluctuation between power line PL2 and ground line NL1.
 モータジェネレータ130,135は交流回転電機であり、たとえば、永久磁石が埋設されたロータを備える永久磁石型同期電動機である。 Motor generators 130 and 135 are AC rotating electric machines, for example, permanent magnet type synchronous motors having a rotor in which permanent magnets are embedded.
 モータジェネレータ130,135の出力トルクは、減速機や動力分割機構を含んで構成される動力伝達ギヤ140を介して駆動輪150に伝達されて、車両100を走行させる。モータジェネレータ130,135は、車両100の回生制動動作時には、駆動輪150の回転力によって発電することができる。そして、その発電電力は、PCU120によって蓄電装置110の充電電力に変換される。 The output torque of the motor generators 130 and 135 is transmitted to the drive wheels 150 via the power transmission gear 140 configured to include a speed reducer and a power split mechanism, thereby causing the vehicle 100 to travel. Motor generators 130 and 135 can generate electric power by the rotational force of drive wheels 150 during regenerative braking operation of vehicle 100. Then, the generated power is converted into charging power for power storage device 110 by PCU 120.
 また、モータジェネレータ130,135は動力伝達ギヤ140を介してエンジン160とも結合される。そして、ECU300により、モータジェネレータ130,135およびエンジン160が協調的に動作されて必要な車両駆動力が発生される。さらに、モータジェネレータ130,135は、エンジン160の回転により発電が可能であり、この発電電力を用いて蓄電装置110を充電することができる。実施の形態1においては、モータジェネレータ135を専ら駆動輪150を駆動するための電動機として用い、モータジェネレータ130を専らエンジン160により駆動される発電機として用いるものとする。 The motor generators 130 and 135 are also coupled to the engine 160 through the power transmission gear 140. Then, ECU 300 causes motor generators 130 and 135 and engine 160 to operate in a coordinated manner to generate a necessary vehicle driving force. Further, motor generators 130 and 135 can generate electric power by rotation of engine 160, and can charge power storage device 110 using the generated electric power. In the first embodiment, motor generator 135 is used exclusively as an electric motor for driving drive wheels 150, and motor generator 130 is used exclusively as a generator driven by engine 160.
 なお、図1においては、モータジェネレータが2つ設けられる構成が例として示されるが、エンジン160によって発電が可能なモータジェネレータを備える構成であれば、モータジェネレータの数はこれに限定されず、モータジェネレータが1つの場合、あるいは2つより多くのモータジェネレータを設ける構成としてもよい。 In FIG. 1, a configuration in which two motor generators are provided is shown as an example. However, the number of motor generators is not limited to this as long as the configuration includes a motor generator capable of generating power with the engine 160. When there is one generator, or more than two motor generators may be provided.
 エンジン160は、ECU300により回転速度、バルブの開閉タイミングおよび燃料流量等が制御され、車両100を走行するための駆動力を発生する。 Engine 160 controls the rotational speed, valve opening / closing timing, fuel flow rate, and the like by ECU 300, and generates driving force for traveling vehicle 100.
 エキゾーストパイプ170は、エンジン160の排気口に結合され、エンジン160で発生する排気ガスを車両外部へ放出する。 The exhaust pipe 170 is coupled to the exhaust port of the engine 160 and discharges exhaust gas generated by the engine 160 to the outside of the vehicle.
 EHC180は、エキゾーストパイプ170の中間部に設置される。EHC180は、いわゆる三元触媒ユニットを含み、排気ガス中の窒素酸化物等の有害物質を除去する。また、EHC180は、ECU300からの制御信号SIGによって制御されるEHC駆動部190から供給される電力を用いて内部に含まれるの三元触媒を昇温する。一般的に、三元触媒は、活性化温度以上にならないと触媒としての機能が十分に発現できない。EHC180は、EHC駆動部190から供給される電力を用いて三元触媒を昇温することによって、三元触媒が早期に触媒としての機能を発揮できるようにする。 The EHC 180 is installed in the middle part of the exhaust pipe 170. The EHC 180 includes a so-called three-way catalyst unit, and removes harmful substances such as nitrogen oxides in the exhaust gas. In addition, EHC 180 raises the temperature of the three-way catalyst contained therein using electric power supplied from EHC drive unit 190 controlled by control signal SIG from ECU 300. In general, the three-way catalyst cannot fully exhibit its function as a catalyst unless the activation temperature is exceeded. The EHC 180 raises the temperature of the three-way catalyst using the electric power supplied from the EHC driving unit 190, so that the three-way catalyst can exhibit its function as a catalyst at an early stage.
 また、EHC180は、温度センサ(図示せず)をさらに含み、触媒温度TMPを検出してその検出結果をECU300へ出力する。ECU300は、この触媒温度TMPに基づいて、EHC駆動部190によるEHC180への電力の供給を制御する。 The EHC 180 further includes a temperature sensor (not shown), detects the catalyst temperature TMP, and outputs the detection result to the ECU 300. ECU 300 controls the supply of electric power to EHC 180 by EHC drive unit 190 based on catalyst temperature TMP.
 EHC駆動部190は、電力線PL2および接地線NL1に接続されるとともに、電力線PL3および接地線NL3によってEHC180に接続される。EHC駆動部190は、蓄電装置110からの電力、あるいはモータジェネレータ130,135による発電電力を用いて、EHC180を駆動するための電力を生成するとともに、EHC180への電力の供給と遮断とを切換える。EHC180としては、たとえば、DC/DCコンバータやインバータ、あるいはリレーなどが含まれる。 The EHC driving unit 190 is connected to the power line PL2 and the ground line NL1, and is connected to the EHC 180 by the power line PL3 and the ground line NL3. EHC drive unit 190 generates electric power for driving EHC 180 using electric power from power storage device 110 or electric power generated by motor generators 130 and 135, and switches between supply and interruption of electric power to EHC 180. The EHC 180 includes, for example, a DC / DC converter, an inverter, or a relay.
 ECU300は、いずれも図1には図示しないがCPU(Central Processing Unit)、記憶装置および入出力バッファを含み、各センサ等からの信号の入力や各機器への制御信号の出力を行なうとともに、車両100および各機器の制御を行なう。なお、これらの制御については、ソフトウェアによる処理に限られず、専用のハードウェア(電子回路)で処理することも可能である。 ECU 300 includes a CPU (Central Processing Unit), a storage device, and an input / output buffer (not shown in FIG. 1). The ECU 300 inputs a signal from each sensor and outputs a control signal to each device. 100 and each device are controlled. Note that these controls are not limited to processing by software, and can be processed by dedicated hardware (electronic circuit).
 ECU300は、蓄電装置110に備えられる電圧センサ,電流センサ(いずれも図示せず)からの電圧VBおよび電流IBの検出値に基づいて、蓄電装置110の充電状態SOC(State of Charge)を演算する。 ECU 300 calculates a state of charge (SOC) of power storage device 110 based on the detected values of voltage VB and current IB from a voltage sensor and a current sensor (both not shown) provided in power storage device 110. .
 ECU300は、アクセルペダル116の操作状態に基づくアクセル開度ACCと、ユーザにより設定されるシフトレバー117のシフトポジションSFTと、EHC180からの触媒温度TMPとを受ける。さらに、ECU300は、走行路の斜度を検出するための斜度検出部118からの斜度を示す信号SLPを受けるとともに、ユーザによるイグニッションスイッチ(図示せず)の操作信号IGを受ける。なお、斜度検出部118としては、斜度計や加速度センサなどが用いられ得る。 ECU 300 receives accelerator opening ACC based on the operating state of accelerator pedal 116, shift position SFT of shift lever 117 set by the user, and catalyst temperature TMP from EHC 180. Further, ECU 300 receives a signal SLP indicating the inclination from inclination detecting section 118 for detecting the inclination of the traveling road, and also receives an operation signal IG of an ignition switch (not shown) by the user. As the inclination detecting unit 118, an inclinometer, an acceleration sensor, or the like can be used.
 ECU300は、これらの情報に基づいて、後述するEHC駆動制御を行なう。なお、図1においては、ECU300として1つの制御装置を設ける構成としているが、たとえば、PCU120用の制御装置や蓄電装置110用の制御装置などのように、機能ごとまたは制御対象機器ごとに個別の制御装置を設ける構成としてもよい。 The ECU 300 performs EHC drive control, which will be described later, based on these pieces of information. In FIG. 1, one control device is provided as the ECU 300. However, for example, a control device for the PCU 120, a control device for the power storage device 110, or the like is provided individually for each function or for each control target device. It is good also as a structure which provides a control apparatus.
 上述のようなハイブリッド車両においては、車両発進時に、走行路の状態やユーザの操作状態によっては、エンジンが始動されない場合がある。特に、モータジェネレータの駆動力のみを優先的に使用して走行するEV(Electric
Vehicle)走行が可能な車両においては、エンジンの駆動が行なわれない可能性が高い。
In the hybrid vehicle as described above, when the vehicle starts, the engine may not be started depending on the state of the traveling path or the operation state of the user. In particular, EV (Electric) that uses only the driving force of the motor generator to preferentially travel
Vehicle) In a vehicle that can travel, there is a high possibility that the engine will not be driven.
 エンジンが始動されるとエンジンの排気を触媒で浄化することが必要であるが、触媒は活性化温度より低いと十分に浄化機能を発揮することができないため、図1の車両100のようにEHCを備える車両においては、エンジンの始動前に触媒を暖機しておくことが望ましい。 When the engine is started, it is necessary to purify the exhaust of the engine with a catalyst. However, if the catalyst is lower than the activation temperature, the catalyst cannot fully perform the purifying function, and thus the EHC as in the vehicle 100 of FIG. In a vehicle having the above, it is desirable to warm up the catalyst before starting the engine.
 駆動力をエンジンのみで発生する従来の車両では、車両発進時にはエンジンが必ず始動されるので、車両の走行が開始される可能性がある場合はいつも触媒を暖機すればよい。しかしながら、ハイブリッド車両においては、上述のように、車両発進時にエンジンが使用されない場合もあるので、車両発進前にいつも触媒の暖機を行なうと、エンジンが始動されないときには、暖機に用いた電力が無駄になってしまうおそれがある。したがって、ハイブリッド車両においては、エネルギ効率悪化の防止および触媒の浄化機構の早期発揮の観点から、車両発進時にエンジンが始動される可能性が高い場合に限って、車両発進前に触媒の暖機を行なうようにすることが望ましい。 In a conventional vehicle in which driving force is generated only by the engine, the engine is always started when the vehicle starts, so the catalyst may be warmed up whenever there is a possibility that the vehicle will start to travel. However, in a hybrid vehicle, as described above, the engine may not be used when the vehicle starts. Therefore, if the catalyst is always warmed up before starting the vehicle, the electric power used for warming up is consumed when the engine is not started. There is a risk of being wasted. Therefore, in a hybrid vehicle, from the viewpoint of preventing deterioration of energy efficiency and early implementation of the catalyst purification mechanism, the catalyst must be warmed up before starting the vehicle only when there is a high possibility that the engine will be started when the vehicle starts. It is desirable to do so.
 そこで、本実施の形態においては、EHCを搭載したハイブリッド車両において、車両発進時にエンジンが始動される可能性が高い場合に、エンジンの始動に先立って触媒を昇温するEHC駆動制御を実行する。 Therefore, in this embodiment, in a hybrid vehicle equipped with EHC, when there is a high possibility that the engine will be started when the vehicle starts, EHC drive control is performed to raise the temperature of the catalyst prior to starting the engine.
 図2は、実施の形態1において、ECU300で実行されるEHC駆動制御を説明するための機能ブロック図である。図2の機能ブロック図に記載された各機能ブロックは、ECU300によるハードウェア的あるいはソフトウェア的な処理によって実現される。 FIG. 2 is a functional block diagram for explaining the EHC drive control executed by the ECU 300 in the first embodiment. Each functional block described in the functional block diagram of FIG. 2 is realized by hardware or software processing by ECU 300.
 図1および図2を参照して、ECU300は、入力部310と、判定部320と、EHC制御部330とを含む。 1 and 2, ECU 300 includes an input unit 310, a determination unit 320, and an EHC control unit 330.
 入力部310は、シフトレバー117のシフトポジションSFT、斜度検出部118からの斜度を示す信号SLP、およびEHC180からの触媒温度TMPを受ける。また、入力部310は、ユーザによるイグニッションスイッチの操作信号IGを受ける。そして、入力部310は、これらの情報を判定部320へ出力する。 The input unit 310 receives the shift position SFT of the shift lever 117, the signal SLP indicating the inclination from the inclination detection unit 118, and the catalyst temperature TMP from the EHC 180. Further, the input unit 310 receives an operation signal IG for the ignition switch by the user. Then, the input unit 310 outputs these pieces of information to the determination unit 320.
 判定部320は、入力部310からの触媒温度TMPに基づいて、EHC180による触媒の昇温が必要か否かを判定する。また、判定部320は、斜度を示す信号SLPおよびシフトポジションSFTに基づいて、車両100が坂道において上り方向へ走行するシフトポジションに設定されているか否かを判定する。そして、判定部320は、これらの判定結果に基づいて、EHC180による触媒の昇温の実行フラグFLGを生成し、この実行フラグFLGをEHC制御部330へ出力する。 The determination unit 320 determines whether or not the temperature of the catalyst needs to be raised by the EHC 180 based on the catalyst temperature TMP from the input unit 310. Determination unit 320 determines whether or not vehicle 100 is set to a shift position in which the vehicle 100 travels in an upward direction on a slope based on signal SLP indicating the slope and shift position SFT. Based on these determination results, determination unit 320 generates an execution flag FLG for raising the temperature of the catalyst by EHC 180, and outputs this execution flag FLG to EHC control unit 330.
 EHC制御部330は、判定部320からの実行フラグFLGと、EHC180からの触媒温度TMPとを受ける。EHC制御部330は、実行フラグFLGによって触媒の昇温が指示されている場合に、触媒温度TMPが予め定められたしきい値以上となるように、制御信号SIGを出力してEHC駆動部190を制御する。 The EHC control unit 330 receives the execution flag FLG from the determination unit 320 and the catalyst temperature TMP from the EHC 180. The EHC control unit 330 outputs a control signal SIG and outputs the control signal SIG so that the catalyst temperature TMP becomes equal to or higher than a predetermined threshold value when the execution flag FLG instructs the temperature increase of the catalyst. To control.
 図3は、実施の形態1において、ECU300で実行されるEHC駆動制御処理の詳細を説明するためのフローチャートである。図3に示されるフローチャートは、ECU300に予め格納されたプログラムがメインルーチンから呼び出されて、所定周期で実行されることによって処理が実現される。あるいは、一部または全部のステップについては、専用のハードウェア(電子回路)で処理を実現することも可能である。 FIG. 3 is a flowchart for illustrating details of the EHC drive control process executed by ECU 300 in the first embodiment. In the flowchart shown in FIG. 3, the processing is realized by a program stored in advance in ECU 300 being called from the main routine and executed in a predetermined cycle. Alternatively, some or all of the steps can be realized by dedicated hardware (electronic circuit).
 図1および図3を参照して、ECU300は、ステップ(以下、ステップをSと略す。)100にて、車両100が停止中でありかつ操作信号IGによってReady-ON状態になっているか否かを判定する。 Referring to FIGS. 1 and 3, ECU 300 determines in step 100 (hereinafter, step is abbreviated as S) whether vehicle 100 is stopped and is in a Ready-ON state by operation signal IG. Determine.
 ここで、本実施の形態においては、Ready-ON状態とは、車両100の制御システムが起動され、SMR115が閉成されている状態のことを称するものとする。車両100のようなハイブリッド車両においては、Ready-ON状態で車両100が停止中の場合は、蓄電装置110の充電が必要な場合を除いては、一般的にエンジン160は停止状態にされる。 Here, in the present embodiment, the Ready-ON state refers to a state in which the control system of the vehicle 100 is activated and the SMR 115 is closed. In a hybrid vehicle such as the vehicle 100, when the vehicle 100 is stopped in the Ready-ON state, the engine 160 is generally stopped unless the power storage device 110 needs to be charged.
 車両100が停止中かつReady-ON状態の条件が成立していない場合(S100にてNO)、すなわち、車両100が走行中の場合、あるいは、Ready-OFF状態でありユーザに車両走行の意思がないと想定される場合には、当該処理は実行されず、処理がメインルーチンに戻される。 When vehicle 100 is stopped and the condition of Ready-ON state is not satisfied (NO in S100), that is, when vehicle 100 is traveling, or in Ready-OFF state, the user is willing to travel the vehicle. If it is assumed that there is no such process, the process is not executed, and the process is returned to the main routine.
 車両100が停止中でありかつReady-ON状態である場合(S100にてYES)は、処理がS110に進められ、ECU300は、シフトレバー117の現在のシフトポジションSFTを読取る。そして、ECU300は、S120にて、読取ったシフトポジションSFTが、走行可能ポジションであるか否かを判定する。 If vehicle 100 is stopped and in the Ready-ON state (YES in S100), the process proceeds to S110, and ECU 300 reads the current shift position SFT of shift lever 117. Then, in S120, ECU 300 determines whether or not read shift position SFT is a travelable position.
 シフトポジションSFTが走行可能ポジションでない場合(S120にてNO)、すなわち、たとえば、シフトポジションSFTがパーキングポジションPやニュートラルポジションNである場合には、ユーザに車両を走行させる意思がない可能性があるので、ECU300は、当該制御による触媒の昇温を行なわず、処理をメインルーチンに戻す。 If shift position SFT is not a travelable position (NO in S120), that is, for example, if shift position SFT is parking position P or neutral position N, the user may not be willing to travel the vehicle. Therefore, ECU 300 returns the process to the main routine without increasing the temperature of the catalyst by the control.
 シフトポジションSFTが走行可能ポジションである場合(S120にてYES)は、ユーザに車両走行の意思があると想定されるので、処理がS130に進められて、ECU300は、斜度検出部118からの走行路の斜度SLPを読取る。 If shift position SFT is a travelable position (YES in S120), it is assumed that the user has an intention to travel the vehicle. Therefore, the process proceeds to S130, and ECU 300 causes the inclination detection unit 118 to Read the slope SLP of the travel path.
 次に、ECU300は、S140にて、読取った斜度SLPが予め定められたしきい値α以上であるか否か、すなわち、急な坂道であるか否かを判定する。また、図3には記載していないが、S140においては、設定されているシフトポジションSFTが坂道の上り方向に走行するためのポジションであるか否かについても判定される。 Next, in S140, ECU 300 determines whether or not the read slope SLP is greater than or equal to a predetermined threshold value α, that is, whether or not it is a steep slope. Although not shown in FIG. 3, in S140, it is also determined whether or not the set shift position SFT is a position for traveling in the uphill direction of the slope.
 斜度SLPがしきい値以上であり、かつシフトポジションSFTが坂道の上り方向に走行するためのポジションの場合(S140にてYES)は、ECU300は、直後に行なわれる車両発進時には、エンジン160が始動される可能性が高いと判断する。そして、ECU300は、処理をS150に進めて、EHC180に設けられる温度センサ(図示せず)からの現在の触媒温度TMPを読取る。 When slope SLP is equal to or greater than the threshold value and shift position SFT is a position for traveling in the uphill direction (YES in S140), ECU 300 causes engine 160 to be Judge that the possibility of starting is high. Then, ECU 300 advances the process to S150 and reads the current catalyst temperature TMP from a temperature sensor (not shown) provided in EHC 180.
 そして、ECU300は、S160にて、触媒温度TMPが、触媒の活性化温度(たとえば、400℃)に基づいて予め定められた基準温度β以下であるか否かを判定する。 Then, in S160, ECU 300 determines whether or not catalyst temperature TMP is equal to or lower than reference temperature β determined in advance based on the activation temperature (for example, 400 ° C.) of the catalyst.
 触媒温度TMPが基準温度β以下である場合(S160にてYES)は、エンジン160が始動された際に触媒によって排気を十分に浄化することができない可能性があるので、ECU300は、S180に処理を進めて、EHC180に通電を行なうことによって触媒の昇温を開始する。その後、処理がS150に戻され、ECU300は、触媒温度TMPが基準温度βより大きくなるまで触媒の昇温を継続する。 If catalyst temperature TMP is equal to or lower than reference temperature β (YES in S160), ECU 300 may not process exhaust sufficiently by the catalyst when engine 160 is started. The temperature of the catalyst is started by energizing the EHC 180. Thereafter, the process is returned to S150, and the ECU 300 continues to raise the temperature of the catalyst until the catalyst temperature TMP becomes higher than the reference temperature β.
 触媒温度TMPが基準温度βより大きい場合(S160にてNO)は、ECU300は、触媒がすでに活性化温度の範囲内であり触媒による適切な浄化が可能であると判断する。そして、ECU300は、S170に処理を進めて、EHC180への通電を停止して触媒の昇温を停止する。なお、前回の走行終了からの時間が短く、当該処理においてEHC180への通電が行なわれない場合には、S170においては、EHC180への通電を行なわない状態が維持される。 If catalyst temperature TMP is higher than reference temperature β (NO in S160), ECU 300 determines that the catalyst is already within the activation temperature range and can be appropriately purified by the catalyst. Then, ECU 300 advances the process to S170, stops energization of EHC 180, and stops the temperature rise of the catalyst. If the time from the end of the previous run is short and energization of EHC 180 is not performed in this process, the state where energization of EHC 180 is not performed is maintained in S170.
 なお、本実施の形態におけるEHC180への通電は、蓄電装置110に蓄えられた電力を用いて実行される。そのため、上述の基準温度βを、触媒の活性化温度(たとえば、350℃)よりも十分に高い温度(たとえば、500℃)設定すると、蓄電装置110の電力を無駄に消費してしまうことになり得る。したがって、基準温度βは、EHC180への通電終了後走行までの時間による温度低下を考慮して、触媒の浄化作用が発揮可能な活性化温度より少し高い温度(たとえば、400℃)くらいに設定されることが好ましい。 Note that energization of the EHC 180 in the present embodiment is performed using electric power stored in the power storage device 110. Therefore, if the reference temperature β described above is set to a temperature (for example, 500 ° C.) sufficiently higher than the activation temperature of the catalyst (for example, 350 ° C.), the power of the power storage device 110 is wasted. obtain. Therefore, the reference temperature β is set to a temperature (for example, 400 ° C.) that is slightly higher than the activation temperature at which the catalyst purification action can be exerted in consideration of the temperature drop due to the time from the end of energization to the EHC 180 until traveling. It is preferable.
 以上のような処理に従って制御を行なうことによって、EHCを搭載した車両において、急な坂道に停車しており、次回の車両発進時にエンジンを始動させることが予め想定される場合に、エンジンの始動に先立って適切に触媒の暖機を行なうことが可能となる。 By performing the control according to the above-described process, the vehicle mounted with EHC is stopped on a steep slope, and it is assumed that the engine is started when the vehicle starts next time. It is possible to appropriately warm up the catalyst in advance.
 [実施の形態2]
 実施の形態2においては、上記で説明した実施の形態1についての変形例について説明する。
[Embodiment 2]
In the second embodiment, a modified example of the first embodiment described above will be described.
 図4は、実施の形態2の従う車両100Aを示す全体ブロック図である。図4においては、図1に示した車両100の構成に加えて、外部電源500からの電力により蓄電装置110の充電が可能な構成が追加されるとともに、EHC駆動部190への電力供給部および駆動力を発生させる機構が変更されたものとなっている。図4において、図1と重複する要素の説明は繰り返さない。 FIG. 4 is an overall block diagram showing vehicle 100A according to the second embodiment. 4, in addition to the configuration of vehicle 100 shown in FIG. 1, a configuration capable of charging power storage device 110 with power from external power supply 500 is added, and a power supply unit to EHC drive unit 190 and The mechanism for generating the driving force is changed. In FIG. 4, the description of the elements overlapping with those in FIG. 1 will not be repeated.
 図4を参照して、車両100Aは、図1の車両100のように2つのモータジェネレータを備える構成ではなく、モータジェネレータを1つだけ備える構成となっている。また、車両100は、これに対応して、図1のPCU120に代えてPCU120Aを備える。PCU120Aの内部構成の詳細は示さないが、PCU120Aは、モータジェネレータ130に対応する1つのインバータを含んでいる。このように、実施の形態1で説明したEHC駆動制御は、モータジェネレータを1つだけ備える構成のハイブリッド車両に対しても適用可能である。 Referring to FIG. 4, vehicle 100A is not configured to include two motor generators as vehicle 100 of FIG. 1, but is configured to include only one motor generator. Correspondingly, vehicle 100 includes PCU 120A instead of PCU 120 in FIG. Although details of the internal configuration of PCU 120 </ b> A are not shown, PCU 120 </ b> A includes one inverter corresponding to motor generator 130. Thus, the EHC drive control described in the first embodiment can be applied to a hybrid vehicle having only one motor generator.
 また、車両100Aにおいては、EHC駆動部190は、図1における接続とは異なり、低電圧側の電力線PL1および接地線NL1に接続される。たとえば、EHC180を駆動するための電源電圧が比較的低い電圧である場合には、図1のような高電圧側(たとえば、600V)の電圧を降圧するよりも、低圧側(たとえば、200V)の電圧を降圧してあるいは直接用いるほうが、EHC駆動部190の定格容量および体格を小さくできるという利点がある。 Further, in vehicle 100A, EHC driving unit 190 is connected to power line PL1 and ground line NL1 on the low voltage side, unlike the connection in FIG. For example, when the power supply voltage for driving EHC 180 is a relatively low voltage, the voltage on the low voltage side (for example, 200 V) is lower than the voltage on the high voltage side (for example, 600 V) as shown in FIG. There is an advantage that the rated capacity and the physique of the EHC driving unit 190 can be reduced when the voltage is stepped down or directly used.
 さらに、車両100Aは、外部電源500からの電力により蓄電装置110の充電が可能な構成として、充電装置200と、充電リレーCHR210と、接続部220とを備える。 Furthermore, vehicle 100A includes a charging device 200, a charging relay CHR210, and a connection unit 220 as a configuration that allows charging of power storage device 110 with electric power from external power supply 500.
 接続部220は、外部電源500からの電力を受けるために、車両100のボディに設けられる。接続部220には、充電ケーブル400の充電コネクタ410が接続される。そして、充電ケーブル400のプラグ420が、外部電源500のコンセント510に接続されることによって、外部電源500からの電力が、充電ケーブル400の電線部430を介して車両100に伝達される。また、充電ケーブル400の電線部430には、外部電源500から車両100への電力の供給と遮断とを切換えるための、充電回路遮断装置(「CCID(Charging Circuit Interrupt Device)」とも称する。)が介挿される場合がある。 Connection unit 220 is provided on the body of vehicle 100 in order to receive power from external power supply 500. A charging connector 410 of the charging cable 400 is connected to the connection unit 220. Then, the plug 420 of the charging cable 400 is connected to the outlet 510 of the external power supply 500, whereby the power from the external power supply 500 is transmitted to the vehicle 100 via the electric wire portion 430 of the charging cable 400. In addition, a charging circuit breaker (also referred to as “CCID (Charging Circuit Interrupt Device)”) for switching between power supply and interruption from the external power supply 500 to the vehicle 100 is provided in the electric wire portion 430 of the charging cable 400. May be inserted.
 充電装置200は、電力線ACL1,ACL2を介して接続部220に接続される。また、充電装置200は、CHR210を介して蓄電装置110と接続される。そして、充電装置200は、ECU300からの制御信号PWDに基づいて、外部電源500から供給される交流電力を、蓄電装置110が充電可能な直流電力に変換する。 The charging device 200 is connected to the connection unit 220 via the power lines ACL1 and ACL2. Charging device 200 is connected to power storage device 110 via CHR 210. Charging device 200 converts AC power supplied from external power supply 500 into DC power that power storage device 110 can charge based on control signal PWD from ECU 300.
 CHR210に含まれるリレーの一方端は、蓄電装置110の正極端子および負極端子にそれぞれ接続される。CHR210に含まれるリレーの他方端は、充電装置200に接続された電力線PL4および接地線NL4にそれぞれ接続される。そして、CHR210は、ECU300からの制御信号SE2に基づいて、充電装置200から蓄電装置110への電力の供給と遮断とを切換える。 One end of the relay included in CHR 210 is connected to the positive terminal and the negative terminal of power storage device 110, respectively. The other end of the relay included in CHR 210 is connected to power line PL4 and ground line NL4 connected to charging device 200, respectively. CHR 210 switches between supply and interruption of power from charging device 200 to power storage device 110 based on control signal SE <b> 2 from ECU 300.
 このように、いわゆる外部充電が可能な車両においても、上述のEHC駆動制御を適用することができる。 Thus, the above-described EHC drive control can also be applied to a vehicle capable of so-called external charging.
 なお、実施の形態2において示した、外部充電を有する構成、EHC駆動部の接続構成、およびモータジェネレータの構成については、すべてを同時に備えることは必須ではない。すなわち、図1で示した実施の形態1の構成に、上記の変形された構成のうちのいずれか1つ、またはより多くの組み合わせを適用することが可能である。 It should be noted that it is not essential to provide all of the configuration having external charging, the connection configuration of the EHC drive unit, and the configuration of the motor generator shown in the second embodiment at the same time. That is, any one or more combinations of the above-described modified configurations can be applied to the configuration of the first embodiment shown in FIG.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなく請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 100、100A 車両、110 蓄電装置、115 SMR、116 アクセルペダル、117 シフトレバー、118 斜度検出部、120 PCU、121 コンバータ、122 123 インバータ、130,135 モータジェネレータ、140 動力伝達ギヤ、150 駆動輪、160 エンジン、170 エキゾーストパイプ、180 EHC、190 EHC駆動部、200 充電装置、210 CHR、220 接続部、300 ECU、310 入力部、320 判定部、330 EHC制御部、400 充電ケーブル、410 充電コネクタ、420 プラグ、430 電線部、500 外部電源、510 コンセント、ACL1,ACL2,PL1~PL4 電力線、C1,C2 コンデンサ、NL1,NL3,NL4 接地線。 100, 100A vehicle, 110 power storage device, 115 SMR, 116 accelerator pedal, 117 shift lever, 118 slope detection unit, 120 PCU, 121 converter, 122 123 inverter, 130, 135 motor generator, 140 power transmission gear, 150 drive wheels , 160 engine, 170 exhaust pipe, 180 EHC, 190 EHC drive unit, 200 charging device, 210 CHR, 220 connection unit, 300 ECU, 310 input unit, 320 determination unit, 330 EHC control unit, 400 charging cable, 410 charging connector , 420 plug, 430 electric wire part, 500 external power supply, 510 outlet, ACL1, ACL2, PL1 to PL4 power line, C1, C2 capacitor, NL1, NL3 L4 ground line.

Claims (8)

  1.  車両であって、
     前記車両(100,100A)が走行する走行路の斜度を検出するための検出部(118)と、
     内燃機関(160)と、
     前記内燃機関(160)の排気を浄化するための触媒を昇温するための暖機装置(180)と、
     前記暖機装置(180)を制御するための制御装置(300)とを備え、
     前記制御装置(300)は、前記検出部(118)により検出された前記走行路の斜度およびシフトポジションに基づいて、前記内燃機関(160)が始動される可能性が高いと想定される場合に、前記内燃機関(160)の始動に先立って前記暖機装置(180)により前記触媒の昇温を開始する、車両。
    A vehicle,
    A detection unit (118) for detecting an inclination of a travel path on which the vehicle (100, 100A) travels;
    An internal combustion engine (160);
    A warm-up device (180) for raising the temperature of a catalyst for purifying exhaust gas of the internal combustion engine (160);
    A control device (300) for controlling the warm-up device (180),
    When it is assumed that the control device (300) is likely to start the internal combustion engine (160) based on the slope and shift position of the travel path detected by the detection unit (118) Further, prior to starting the internal combustion engine (160), the warm-up device (180) starts raising the temperature of the catalyst.
  2.  前記制御装置(300)は、停車中に、検出された前記走行路の斜度が予め定められたしきい値を上回っており、かつ、前記シフトポジションが前記走行路の上り方向へ走行するポジションに設定されている条件が成立した場合に、前記内燃機関(160)が始動される可能性が高いと想定する、請求項1に記載の車両。 The control device (300) is a position where the detected slope of the travel path exceeds a predetermined threshold value while the vehicle is stopped, and the shift position travels in the upward direction of the travel path. The vehicle according to claim 1, wherein it is assumed that the internal combustion engine (160) is likely to be started when a condition set in (2) is satisfied.
  3.  前記制御装置(300)は、前記条件が成立し、かつ前記触媒の温度が予め定められた基準値を下回る場合に、前記暖機装置(180)により前記触媒の昇温を開始する、請求項2に記載の車両。 The said control apparatus (300) starts temperature rising of the said catalyst by the said warming-up apparatus (180), when the said conditions are satisfied and the temperature of the said catalyst is less than the predetermined reference value. 2. The vehicle according to 2.
  4.  蓄電装置(110)と、
     前記蓄電装置(110)からの電力を用いて、前記車両(100,100A)を走行させるための駆動力を発生することが可能に構成された回転電機(130,135)をさらに備える、請求項1に記載の車両。
    A power storage device (110);
    The rotating electrical machine (130, 135) configured to be able to generate a driving force for running the vehicle (100, 100A) using electric power from the power storage device (110). The vehicle according to 1.
  5.  前記車両(100,100A)外部の外部電源からの電力を用いて、前記蓄電装置(110)を充電することができる充電装置(200)をさらに備える、請求項4に記載の車両。 The vehicle according to claim 4, further comprising a charging device (200) capable of charging the power storage device (110) using electric power from an external power source outside the vehicle (100, 100A).
  6.  車両の制御方法であって、
     前記車両(100,100A)は、
     内燃機関(160)と、
     前記内燃機関(160)の排気を浄化するための触媒を昇温するための暖機装置(180)とを含み、
     前記制御方法は、
     前記車両(100,100A)が走行する走行路の斜度を検出するステップと、
     前記検出するステップにより検出された前記走行路の斜度およびシフトポジションに基づいて、前記内燃機関(160)が始動される可能性が高いと想定される場合に、前記内燃機関(160)の始動に先立って前記暖機装置(180)により前記触媒の昇温を開始するステップとを備える、車両の制御方法。
    A vehicle control method comprising:
    The vehicle (100, 100A)
    An internal combustion engine (160);
    A warm-up device (180) for raising the temperature of a catalyst for purifying exhaust gas of the internal combustion engine (160),
    The control method is:
    Detecting a slope of a travel path on which the vehicle (100, 100A) travels;
    Starting the internal combustion engine (160) when it is assumed that the internal combustion engine (160) is likely to be started based on the slope and shift position of the travel path detected in the detecting step. And starting the temperature of the catalyst by the warming-up device (180) prior to the vehicle control method.
  7.  前記触媒を昇温するステップは、停車中に、検出された前記走行路の斜度が予め定められたしきい値を上回っており、かつ、前記シフトポジションが前記走行路の上り方向へ走行するポジションに設定されている条件が成立する場合に、前記内燃機関(160)が始動される可能性が高いと想定する、請求項6に記載の車両の制御方法。 In the step of raising the temperature of the catalyst, the detected slope of the travel path exceeds a predetermined threshold value while the vehicle is stopped, and the shift position travels in the upward direction of the travel path. The vehicle control method according to claim 6, wherein it is assumed that the internal combustion engine (160) is likely to be started when a condition set in a position is satisfied.
  8.  前記触媒を昇温するステップは、前記条件が成立し、かつ前記触媒の温度が予め定められた基準値を下回る場合に、前記暖機装置(180)により前記触媒の昇温を開始する、請求項7に記載の車両の制御方法。 The step of raising the temperature of the catalyst starts raising the temperature of the catalyst by the warm-up device (180) when the condition is satisfied and the temperature of the catalyst is lower than a predetermined reference value. Item 8. The vehicle control method according to Item 7.
PCT/JP2010/072648 2010-12-16 2010-12-16 Vehicle and method for controlling same WO2012081101A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/072648 WO2012081101A1 (en) 2010-12-16 2010-12-16 Vehicle and method for controlling same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/072648 WO2012081101A1 (en) 2010-12-16 2010-12-16 Vehicle and method for controlling same

Publications (1)

Publication Number Publication Date
WO2012081101A1 true WO2012081101A1 (en) 2012-06-21

Family

ID=46244228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/072648 WO2012081101A1 (en) 2010-12-16 2010-12-16 Vehicle and method for controlling same

Country Status (1)

Country Link
WO (1) WO2012081101A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10288028A (en) * 1997-04-11 1998-10-27 Toyota Motor Corp Operation control device for hybrid vehicle
JP2000038939A (en) * 1998-07-22 2000-02-08 Mazda Motor Corp Hybrid vehicle
JP2010173377A (en) * 2009-01-27 2010-08-12 Toyota Motor Corp Vehicle and method for controlling the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10288028A (en) * 1997-04-11 1998-10-27 Toyota Motor Corp Operation control device for hybrid vehicle
JP2000038939A (en) * 1998-07-22 2000-02-08 Mazda Motor Corp Hybrid vehicle
JP2010173377A (en) * 2009-01-27 2010-08-12 Toyota Motor Corp Vehicle and method for controlling the same

Similar Documents

Publication Publication Date Title
JP5817741B2 (en) Vehicle and vehicle control method
US8091663B2 (en) Hybrid vehicle and method of controlling the same
US8774993B2 (en) Hybrid vehicle and method of controlling the same
US9114698B2 (en) Control apparatus and control method for vehicle
US9074509B2 (en) Control apparatus for vehicle
WO2009139277A1 (en) Hybrid vehicle and power control method of hybrid vehicle
WO2012131941A1 (en) Vehicle, engine control method, and engine control device
JP5714239B2 (en) Vehicle control system
JP5062288B2 (en) Engine starter
JP2012180004A (en) Vehicle and control method for vehicle
JP2009274479A (en) Hybrid vehicle
WO2015068011A1 (en) Vehicle, controller for vehicle, and control method for vehicle
JP6424566B2 (en) Control device for hybrid vehicle
WO2012066665A1 (en) Vehicle and method for controlling vehicle
CN104471201A (en) Vehicle and control method of vehicle
JP2010064499A (en) Hybrid vehicle
JP5842899B2 (en) HYBRID VEHICLE, HYBRID VEHICLE CONTROL METHOD, AND ENGINE CONTROL DEVICE
EP2913213B1 (en) Electric vehicle
JP2010070030A (en) Control device for vehicle
JP2009248889A (en) Battery temperature control device
US20130297130A1 (en) Vehicle and control method for vehicle
JP2010173377A (en) Vehicle and method for controlling the same
JP6376169B2 (en) Hybrid vehicle
WO2012081101A1 (en) Vehicle and method for controlling same
JP2007168719A (en) Hybrid automobile

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10860717

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10860717

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP