WO2012079514A1 - 一种发射设备及电磁式触控装置 - Google Patents

一种发射设备及电磁式触控装置 Download PDF

Info

Publication number
WO2012079514A1
WO2012079514A1 PCT/CN2011/084022 CN2011084022W WO2012079514A1 WO 2012079514 A1 WO2012079514 A1 WO 2012079514A1 CN 2011084022 W CN2011084022 W CN 2011084022W WO 2012079514 A1 WO2012079514 A1 WO 2012079514A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
electromagnetic
signal
electromagnetic wave
processing module
Prior art date
Application number
PCT/CN2011/084022
Other languages
English (en)
French (fr)
Inventor
徐前
Original Assignee
华为终端有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为终端有限公司 filed Critical 华为终端有限公司
Publication of WO2012079514A1 publication Critical patent/WO2012079514A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/046Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by electromagnetic means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means

Definitions

  • the present invention relates to the field of computers, and in particular, to a transmitting device and an electromagnetic touch device. Background technique
  • Electromagnetic touch screen is a relatively new type of touch screen. It uses electromagnetic induction to determine the position of the contact. It has the advantages of good transparency, low cost, wear life and high recognition rate.
  • the electromagnetic touch screen includes a transmitting device and a receiving device.
  • the existing electromagnetic touch screen uses an electromagnetic pen as a transmitting device and an electromagnetic coil panel as a receiving device, wherein the electromagnetic pen generates and emits electromagnetic waves through its own DC solenoid, and the user touches the electromagnetic coil panel through the electromagnetic pen, and the electromagnetic coil The panel receives the electromagnetic wave emitted by the electromagnetic pen, and senses the position of the contact touched by the electromagnetic pen according to the received electromagnetic wave.
  • the inventors have found that the prior art has at least the following problems: The user can only touch the electromagnetic coil panel with the electromagnetic pen, and can no longer touch the electromagnetic coil panel by other means; the user is difficult to use multiple electromagnetic pens By touching the electromagnetic coil panel at the same time, it is difficult to achieve multi-touch and reduce the user experience. Summary of the invention
  • the present invention provides a transmitting device and an electromagnetic touch device.
  • the technical solution is as follows:
  • a transmitting device comprising:
  • An electromagnetic wave oscillating circuit and a transmitting electrode wherein the electromagnetic wave oscillating circuit is connected in series with the transmitting electrode;
  • the electromagnetic wave oscillating circuit oscillates to generate electromagnetic waves, and causes the human body attached to the transmitting device to generate electricity Field, the transmitting electrode emits the electromagnetic wave by an electric field generated by a human body.
  • An electromagnetic touch device includes a receiving device and the transmitting device
  • the receiving device includes an electromagnetic coil panel, an electrical signal processing circuit, and a processing module; an output end of the electromagnetic coil panel is electrically connected to an input end of the electrical signal processing circuit and an input end of the processing module, respectively, An output end of the signal processing circuit is electrically connected to an input end of the processing module; the transmitting device oscillates to generate an electromagnetic wave, and an electric field is generated by the attached human body, and the electromagnetic wave is emitted to the electromagnetic coil panel by an electric field generated by a human body.
  • the electromagnetic coil panel is configured to receive an electromagnetic wave signal, convert the electromagnetic wave signal into a voltage signal, and send the voltage signal to the electrical signal processing circuit, and send the position information of the detected voltage signal to the
  • the processing module the electrical signal processing circuit converts the voltage signal into a digital signal and transmits the signal to the processing module, and the processing module is configured to determine a position of the contact according to the position information and the digital signal.
  • the electromagnetic wave oscillation circuit oscillates to generate an electric field, and can generate electromagnetic waves with a frequency of 500 ⁇ to 20 Hz.
  • the electromagnetic waves with a frequency of 500 kHz to 20 Hz can be transmitted by the electric field generated by the human body, and the transmitting electrode generates an electromagnetic wave oscillating circuit.
  • the electromagnetic wave is emitted to the human body.
  • the human finger touches the electromagnetic coil panel the voltage magnetic coil panel generates an alternating voltage signal
  • the signal conversion circuit converts the alternating voltage signal into a digital signal
  • the processing module acquires the coordinates of the contact according to the digital signal. In this way, the electromagnetic coil panel is touched with a finger, and in addition, a plurality of touch points can be touched on the touch electromagnetic coil panel with a finger, thereby improving the user experience.
  • FIG. 1 is a schematic diagram of a transmitting device according to Embodiment 1 of the present invention.
  • Embodiment 1 of the present invention is a schematic diagram of an electromagnetic wave starting circuit provided by Embodiment 1 of the present invention.
  • FIG. 3 is a schematic diagram of an electromagnetic touch device according to Embodiment 2 of the present invention.
  • FIG. 4 is a schematic diagram of an electromagnetic coil panel according to Embodiment 2 of the present invention.
  • FIG. 5 is a schematic diagram of a connection between an electromagnetic coil panel and an electrical signal processing circuit according to Embodiment 2 of the present invention.
  • FIG. 6 is a schematic diagram of a human touch electromagnetic touch device according to Embodiment 2 of the present invention. detailed description The embodiments of the present invention will be further described in detail below with reference to the accompanying drawings.
  • Example 1
  • the present invention provides a transmitting device, including:
  • the electromagnetic wave oscillating circuit 11 and the transmitting electrode 12, and the electromagnetic wave oscillating circuit 11 and the transmitting electrode 12 are connected in series;
  • the electromagnetic wave oscillating circuit 11 oscillates to generate electromagnetic waves, and causes an electric field generated by the human body attached to the transmitting device, and the transmitting electrode 12 emits the electromagnetic wave through an electric field generated by the human body.
  • the transmitting device is attached to the arm or wrist of the human body, and the electromagnetic wave starting circuit 11 is turned on and oscillated to generate a magnetic field in the nearby human body, and the electromagnetic wave starting circuit 11 can generate a frequency of 500K.
  • Electromagnetic waves of 20 M Hz in which electromagnetic waves having a frequency of 500 to 20 M Hz can be transmitted using a magnetic field generated by a human body as a carrier.
  • the electromagnetic wave oscillating circuit 11 includes an LC oscillating circuit 111 and a control module 112.
  • the LC oscillating circuit 111 is connected to the control module 112.
  • the control circuit 112 turns the LC oscillating circuit 111 on or off.
  • the LC oscillating circuit 111 includes a power source S, a capacitor C and an inductor L.
  • the power source S is electrically connected to the capacitor C and the inductor L.
  • the capacitor C is also electrically connected to the inductor L, and the control module 112 and the power source S The positive pole, capacitor C and inductor L are electrically connected.
  • the LC oscillating circuit 111 is oscillated after being turned on, and is capable of generating electromagnetic waves having a frequency of 500 to 20 Hz. By changing the length of the inductance L, the LC oscillating circuit 111 can generate electromagnetic waves of different frequencies.
  • the electromagnetic wave starting circuit 11 further includes a switch combination 113.
  • the switch combination 113 is electrically connected to the inductance L in the LC oscillation circuit 111.
  • the switch combination 113 can adjust the length of the inductance L, thereby changing the frequency of the electromagnetic wave.
  • Each switch in the switch combination 113 corresponds to an inductor length, and each switch is used to adjust the length of the inductor L to its own corresponding inductor length.
  • the switch combination 113 includes switches fl, f2, ⁇ ⁇ fn, wherein the switches fl, f2, f3, ... fn respectively correspond to an inductor length, assuming that the user presses the switch fl
  • the switch fl can adjust the length of the inductor L to the length of the inductor corresponding to the switch fl.
  • the length of the inductor L accessing the circuit is the length from the starting point of the inductor L to the length of the switch fl and the inductive electrical connection point, regardless of the conduction state of the other switches.
  • the length of the inductor L accessing the circuit is the smallest; when the switch fl is turned off and the f2 is turned on, regardless of the conduction state of the other switches, the length of the inductor L accessing the circuit is the starting point of the inductor L to the switch f2 and the inductor point The length of the connection point; and so on, when the switches fl and f (n-1) are both turned off and the fn is turned on, the length of the inductance L access circuit is the longest.
  • the transmitting device may further include a first filter amplifying circuit 13;
  • An input end of the first filter amplifying circuit 13 is electrically connected to an output end of the electromagnetic wave vibrating circuit 11, and an output end of the first filter amplifying circuit 13 is electrically connected to an input end of the transmitting electrode 12;
  • the first filter amplifying circuit 13 receives the electromagnetic wave transmitted by the electromagnetic wave oscillating circuit 11, amplifies and filters the electromagnetic wave, and transmits the electromagnetic wave to the transmitting electrode 12.
  • the transmitting device is attached to an arm or a wrist of the human body.
  • the user can turn on the LC oscillating circuit 112 through the control module 111.
  • the LC oscillating circuit 112 oscillates to generate an electric field.
  • the user controls the LC oscillating circuit 112 to generate electromagnetic waves having a frequency of 500 to 20 Hz through the switch combination 113.
  • the first filter amplifying circuit 13 filters out The noise and the noise in the electromagnetic wave generated by the LC oscillation circuit 111 amplify the power of the generated electromagnetic wave, and the transmitting electrode 12 emits the amplified electromagnetic wave to the human body and transmits the electromagnetic wave through the electric field generated by the human body.
  • the human body in the vicinity of the transmitting device generates an electric field by the oscillation of the LC oscillating circuit, and then an electromagnetic wave having a frequency of 500 to 20 Hz is generated by the LC oscillating circuit, and the generated electromagnetic wave is emitted to the human body through the transmitting electrode and passes through the human body.
  • the generated electric field transmits the electromagnetic wave.
  • the present invention provides an electromagnetic touch device, including:
  • Receiving device 2 and transmitting device 1 provided by embodiment 1, receiving device 2 includes electromagnetic coil panel 21, electrical signal processing circuit 22 and processing module 23;
  • the output end of the electromagnetic coil panel 21 is electrically connected to the input end of the electrical signal processing circuit 22 and the processing module 23, and the output end of the electrical signal processing circuit 22 is electrically connected to the input end of the processing module 23; wherein, the transmitting device 1 oscillates Electromagnetic waves, and an electric field generated by the human body to which it is attached, electromagnetic waves generated by an electric field generated by the human body are supplied to the electromagnetic coil panel 21, and the electromagnetic coil panel 21 is used to receive electromagnetic wave signals, and convert the received electromagnetic wave signals into voltage signals, and The voltage signal is sent And sent to the electrical signal processing circuit 22, the position information of the detected voltage signal is sent to the processing module 23; the electrical signal processing circuit 22 converts the voltage signal into a digital signal and transmits it to the processing module 23, and the processing module 23 is configured to The position information and the digital signal determine the position of the contact.
  • the electromagnetic coil panel 21 is a matrix composed of coils, and the matrix is composed of rectangular coils.
  • the output ends of each rectangular coil in the matrix are respectively input to the input end of the electrical signal processing circuit 22 and the processing module.
  • the input of 23 is electrically connected;
  • each rectangular coil that receives electromagnetic waves in the electromagnetic coil panel 21 generates an alternating voltage signal, and each rectangular coil transmits an alternating voltage signal generated by itself to the electrical signal processing circuit 22 and transmits its own coordinates to the processing module 23,
  • the signal processing circuit 22 converts the alternating voltage signal of each rectangular coil into a digital signal, and transmits the digital signal of each rectangular coil to the processing module 23, and the processing module 23 determines the contact according to the digital signal and coordinates of each rectangular coil. position.
  • the density of the rectangular coils in the matrix is high, and the length of the side of each rectangular coil is short, so for each rectangular coil, any one of the vertices included in each rectangular coil
  • the coordinates are taken as their own coordinates.
  • the rectangular coil can be a square coil.
  • any one of the rectangular coils generates an alternating voltage signal when receiving electromagnetic waves.
  • the electrical signal processing circuit 22 includes a frequency-voltage conversion circuit 221, a second filter amplification circuit 222, and a signal conversion circuit 223;
  • the input end of the frequency-voltage conversion circuit 221 is electrically connected to the output end of each rectangular coil in the electromagnetic coil panel 21, and the output end of the frequency-voltage conversion circuit 221 is electrically connected to the input end of the second filter-amplifying circuit 222; An output of the circuit 222 is electrically connected to an input end of the signal conversion circuit 223;
  • the frequency-voltage conversion circuit 221 receives an AC voltage signal transmitted by each rectangular coil that receives electromagnetic waves in the electromagnetic coil panel 21, converts the AC voltage signal of each rectangular coil into a DC voltage signal, and converts the DC voltage signal of each rectangular coil.
  • the second filter amplifying circuit 222 transmits and filters the DC voltage signal of each rectangular coil, and then transmits the DC voltage signal of each rectangular coil to the signal conversion circuit 223, and the signal conversion circuit 223
  • the DC voltage signals of each rectangular coil are converted into digital signals, and the digital signals of each rectangular coil are transmitted to the processing module 23.
  • the signal conversion circuit 223 can be an AD (Analog-to-Digital convert). Circuit.
  • the input end of the processing module 23 is electrically connected to the output end of each rectangular coil in the electromagnetic coil panel 21 and the output end of the signal conversion module 223 in the electrical signal processing circuit 22;
  • the processing module 23 receives the coordinates and digital signals of each rectangular coil, selects the rectangular coil with the largest voltage, obtains the coordinates of the selected rectangular coil, and uses the acquired coordinates as the position of the contact.
  • the processing module 23 can be a processor.
  • the transmitting device 1 can be attached to the back of the hand or the wrist of the human body.
  • the user can turn on the LC oscillating circuit 111 through the control module 112, and the LC oscillating circuit 111 oscillates and generates electromagnetic waves having a frequency of 500K to 20M Hz.
  • the LC oscillating circuit 112 oscillates and is near the transmitting device 1.
  • the human body generates an electric field, and the LC oscillating circuit 111 outputs the generated electromagnetic wave to the first filter amplifying circuit 13; the first filter amplifying circuit 13 receives the electromagnetic wave and removes the noise and clutter of the electromagnetic wave, and then amplifies the power of the electromagnetic wave.
  • the amplified electromagnetic wave is output to the transmitting electrode 12; the transmitting electrode 12 receives the amplified electromagnetic wave and emits the amplified electromagnetic wave to the human body to which the transmitting device 1 is attached.
  • the transmitting electrode 12 emits electromagnetic waves to the human body, and the electromagnetic waves can be transmitted by using the magnetic field generated by the human body as a carrier and emitted from the human body.
  • the electromagnetic coil panel 21 When the user touches the electromagnetic coil panel 21 with a finger, in the electromagnetic coil panel 21, a rectangular coil near the contact contacted by the user's finger receives the electromagnetic wave emitted by the finger, and a rectangular coil that receives the electromagnetic wave generates an alternating voltage signal.
  • the stronger the intensity of the electromagnetic wave received by the rectangular coil closer to the contact point the stronger the generated AC voltage signal, so the rectangular coil in which the contact is located generates the strongest AC voltage signal.
  • each rectangular coil receiving the electromagnetic wave generates an alternating voltage signal
  • each rectangular coil receiving the electromagnetic wave outputs an alternating voltage signal generated by itself to the frequency-voltage conversion circuit 221 and outputs its own coordinate to the processing module 23
  • the conversion circuit 221 receives the alternating voltage signal generated by each rectangular coil and converts it into a direct current voltage signal, and outputs the direct current voltage signal of each rectangular coil to the second filter amplifying circuit 222;
  • the second filter amplifying circuit 222 receives each The DC voltage signal of the rectangular coil removes the noise of the DC voltage signal of each rectangular coil, and then amplifies the DC voltage signal of each rectangular coil, and outputs the DC voltage signal of each rectangular coil after amplification to the signal conversion circuit 223.
  • the signal conversion circuit 223 receives the DC voltage signal of each rectangular coil, converts the DC voltage signal of each rectangular coil into a voltage signal in the form of a digital signal, and outputs the DC voltage signal of each rectangular coil in the form of a digital signal to Processing module 23; processing module 23 receives each moment The coordinates of the coil and the DC voltage signal in the form of digital signals select the rectangular coil with the largest DC voltage, and obtain the coordinates of the selected rectangular coil, and take the acquired coordinates as the coordinates of the contact.
  • the user can touch a plurality of contacts on the electromagnetic coil panel at the same time by the user's finger, and acquire the coordinates of each contact as described above.
  • the electromagnetic wave oscillation circuit oscillates to generate an electric field, and can generate electromagnetic waves having a frequency of 500K to 20M Hz.
  • the electromagnetic waves having a frequency of 500K to 20M Hz can be transmitted by using an electric field generated by the human body as a carrier.
  • the electrode emits electromagnetic waves generated by the electromagnetic wave starting circuit to the human body.
  • the human finger touches the electromagnetic coil panel the voltage magnetic coil panel generates a voltage signal
  • the signal conversion circuit converts the voltage signal into a digital signal
  • the processing module acquires the contact according to the digital signal. coordinate of.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • User Interface Of Digital Computer (AREA)
  • Electronic Switches (AREA)

Description

一种发射设备及电磁式触控装置 本申请要求于 2010 年 12 月 17 日提交中国专利局、 申请号为 201020678682.9、 名称为 "一种发射设备及电磁式触控装置" 的中国专利申请 的优先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明涉及计算机领域, 特别涉及一种发射设备及电磁式触控装置。 背景技术
电磁式触控屏是目前较新的一种触控屏,采用电磁感应的方式来确定触点 的位置, 具有透光度好、 成本低、 耐磨寿命以及辨识率高等优点。
电磁式触控屏包括发射设备和接收设备。现有的电磁式触控屏以电磁笔作 为发射设备以及以电磁线圈面板作为接收设备, 其中, 电磁笔通过自身的直流 螺线管产生并发射电磁波, 用户通过电磁笔触摸电磁线圈面板, 电磁线圈面板 接收电磁笔发射的电磁波, 并根据接收的电磁波感应电磁笔触摸的触点的位 置。
在实现本发明的过程中, 发明人发现现有技术至少存在以下问题: 用户只能利用电磁笔触摸电磁线圈面板,不可以再通过其他的方式触摸电 磁线圈面板; 用户很难利用多个电磁笔去同时触摸电磁线圈面板,很难实现多 点触摸, 降低用户体验。 发明内容
为了能够用户手指触摸电磁线圈面板、 实现多点触摸以及提高用户体验, 本发明提供了一种发射设备及电磁式触控装置。 所述技术方案如下:
一种发射设备, 所述发射设备包括:
电磁波起振电路和发射电极, 所述电磁波起振电路与所述发射电极相串 联;
所述电磁波起振电路振荡产生电磁波,并使发射设备所附着的人体产生电 场, 所述发射电极通过人体产生的电场发射所述电磁波。
一种电磁式触控装置, 所述电磁式触控装置包括接收设备和所述发射设 备;
所述接收设备包括电磁线圈面板、 电信号处理电路和处理模块; 所述电磁 线圈面板的输出端分别与所述电信号处理电路的输入端和所述处理模块的输 入端电连接, 所述电信号处理电路的输出端与所述处理模块的输入端电连接; 所述发射设备振荡产生电磁波, 并使其所附着的人体产生电场, 通过人体 产生的电场发射所述电磁波给所述电磁线圈面板,所述电磁线圈面板用于接收 电磁波信号, 并将所述电磁波信号转换为电压信号, 并将所述电压信号发送给 所述电信号处理电路, 将检测到该电压信号的位置信息发送给所述处理模块; 所述电信号处理电路将所述电压信号转换成数字信号并传送给所述处理模块, 所述处理模块用于根据所述位置信息和所述数字信号确定出触点的位置。
电磁波起振电路振荡能够使人体产生电场, 且能够产生频率为 500Κ至 20Μ Hz的电磁波,频率为 500K至 20M Hz的电磁波能够以人体产生的电场为 载体进行传输,发射电极将电磁波起振电路产生的电磁波发射到人体, 当人的 手指触摸电磁线圈面板时, 电压磁圈面板产生交流电压信号,信号转换电路将 交流电压信号转换成数字信号, 处理模块根据数字信号获取触点的坐标。如此 实现利用手指触摸电磁线圈面板, 另外, 可以用手指在触摸电磁线圈面板上触 摸多个触摸点, 从而提高用户体验。 附图说明
图 1是本发明实施例 1提供的一种发射设备示意图;
图 2是本发明实施例 1提供的一种电磁波起振电路示意图;
图 3是本发明实施例 2提供的一种电磁式触控装置示意图;
图 4是本发明实施例 2提供的一种电磁线圈面板示意图;
图 5是本发明实施例 2提供的一种电磁线圈面板与电信号处理电路的连接 示意图;
图 6是本发明实施例 2提供的一种人体触摸电磁式触控装置示意图。 具体实施方式 为使本发明的目的、技术方案和优点更加清楚, 下面将结合附图对本发明 实施方式作进一步地详细描述。 实施例 1
如图 1所示, 本发明提供了一种发射设备, 包括:
电磁波起振电路 11和发射电极 12, 电磁波起振电路 11与发射电极 12相 串联;
其中, 电磁波起振电路 11振荡产生电磁波, 并使发射设备所附着的人体 产生电场, 发射电极 12通过人体产生的电场发射该电磁波。
其中, 在本实施例中, 该发射设备附着在人体的手臂或手腕等处, 电磁波 起振电路 11开启后振荡, 能够使附近的人体产生磁场, 且电磁波起振电路 11 能够产生频率为 500K至 20M Hz的电磁波, 其中, 频率为 500至 20M Hz的 电磁波能够以人体产生的磁场为载体进行传输。
其中, 电磁波起振电路 11包括 LC振荡电路 111和控制模块 112, LC振 荡电路 111与控制模块 112相连; 控制电路 112开启或关闭 LC振荡电路 111。
进一步地, 如图 2所示, LC振荡电路 111包括电源 S、 电容 C和电感 L, 电源 S与电容 C和电感 L电连接,电容 C还与电感 L电连接,且控制模块 112 与电源 S的正极、 电容 C和电感 L电连接。
LC振荡电路 111开启后振荡, 且能够产生频率为 500至 20M Hz的电磁 波,通过改变电感 L的长度,可以使 LC振荡电路 111产生不同频率的电磁波。
进一步地, 电磁波起振电路 11还包括开关组合 113 , 开关组合 113与 LC 振荡电路 111中的电感 L电连接,开关组合 113可以调节电感 L的长度,进而 改变电磁波的频率。
其中, 开关组合 113中的每个开关对应一种电感长度,每个开关用于将电 感 L的长度调节为自身对应的电感长度。
例如, 开关组合 113中包括开关 fl、 f2、 β ··· ··· fn, 其中, 开关 fl、 f2、 f3... ... fn分别对应一种电感长度, 假设, 用户按下开关 fl , 开关 fl可以将电 感 L的长度调节为开关 fl对应的电感长度。
具体地, 如图 2所示, 当开关 fl导通时, 不论其他开关的导通情况如何, 电感 L接入电路的长度为电感 L的起始点到开关 fl与电感电连接点的长度, 此时电感 L接入电路的长度最小; 当开关 fl断开, f2导通时, 不论其它开关 的导通情况如何, 电感 L接入电路的长度为电感 L的起始点到开关 f2与电感 点连接点的长度; 以此类推, 当开关 fl及 f ( n-1 )均断开, fn导通时, 电感 L 接入电路的长度最长。
进一步地, 该发射设备还可以包括第一滤波放大电路 13;
第一滤波放大电路 13的输入端与电磁波起振电路 11的输出端电连接,第 一滤波放大电路 13的输出端与发射电极 12的输入端电连接;
其中, 第一滤波放大电路 13接收电磁波起振电路 11传输的电磁波,对该 电磁波进行放大和滤波, 再将该电磁波传输给发射电极 12。
其中, 在本实施例中, 该发射设备附着在人体的手臂或手腕等处。 用户可 通过控制模块 111开启 LC振荡电路 112, LC振荡电路 112振荡使人体产生电 场, 用户通过开关组合 113控制 LC振荡电路 112产生频率为 500至 20M Hz 的电磁波, 第一滤波放大电路 13过滤掉 LC振荡电路 111产生的电磁波中的 噪音和杂波, 再对产生的电磁波的功率进行放大, 发射电极 12将放大后的电 磁波发射到人体并通过人体产生的电场传输电磁波。
在本发明实施例中, 通过 LC振荡电路的振荡使发射设备附近的人体产生 电场, 再通过 LC振荡电路产生频率为 500至 20M Hz的电磁波, 通过发射电 极将产生的电磁波发射到人体并通过人体产生的电场传输该电磁波。如此, 用 户可以直接利用手指触摸电磁式触控装置,以及用户还可以利用多个手指同时 触电磁式触控装置, 实现多点触摸, 并提高了用户体验。 实施例 2
如图 3所示, 本发明提供了一种电磁式触控装置, 包括:
接收设备 2和实施例 1提供的发射设备 1 , 接收设备 2包括电磁线圈面板 21、 电信号处理电路 22和处理模块 23;
其中, 电磁线圈面板 21的输出端与电信号处理电路 22和处理模块 23的 输入端电连接, 电信号处理电路 22的输出端与处理模块 23的输入端电连接; 其中, 发射设备 1振荡产生电磁波, 并使其所附着的人体产生电场, 通过 人体产生的电场发射产生的电磁波给电磁线圈面板 21 , 电磁线圈面板 21用于 接收电磁波信号, 并将接收的电磁波信号转换为电压信号, 并将该电压信号发 送给电信号处理电路 22,将检测到该电压信号的位置信息发送给处理模块 23; 电信号处理电路 22将该电压信号转换成数字信号并传送给处理模块 23 , 处理 模块 23用于根据该位置信息和该数字信号确定出触点的位置。
进一步地, 如图 4所示, 电磁线圈面板 21是由线圈组成的矩阵, 该矩阵 由矩形线圈组成, 矩阵内的每个矩形线圈的输出端分别与电信号处理电路 22 的输入端和处理模块 23的输入端电连接;
其中,电磁线圈面板 21内接收电磁波的每个矩形线圈产生交流电压信号, 且每个矩形线圈将自身产生的交流电压信号传输给电信号处理电路 22以及将 自身的坐标传输给处理模块 23 , 电信号处理电路 22将每个矩形线圈的交流电 压信号转换为数字信号, 将每个矩形线圈的数字信号传输给处理模块 23 , 处 理模块 23根据每个矩形线圈的数字信号和坐标确定出触点的位置。
其中, 在电磁线圈面板 21中, 矩阵内的矩形线圈的密集度较高, 每个矩 形的线圈的边长较短, 所以对于每个矩形的线圈, 将每个矩形的线圈包括的任 意一个顶点的坐标作为其自身的坐标。 矩形线圈可以为正方形线圈。
其中, 在电磁线圈面板 21中, 任意一个矩形线圈当接收到电磁波时会产 生交流的电压信号。
进一步地, 如图 3所示, 电信号处理电路 22包括频压转换电路 221、 第 二滤波放大电路 222和信号转换电路 223;
其中, 如图 3和 5所示。 频压转换电路 221的输入端与电磁线圈面板 21 中的每个矩形线圈的输出端电连接,频压转换电路 221的输出端与第二滤波放 大电路 222的输入端电连接;第二滤波放大电路 222的输出端与信号转换电路 223的输入端电连接;
其中, 频压转换电路 221接收电磁线圈面板 21内接收电磁波的每个矩形 线圈传输的交流电压信号,将每个矩形线圈的交流电压信号转换成直流电压信 号, 将每个矩形线圈的直流电压信号传输给第二滤波放大电路 222, 第二滤波 放大电路 222对每个矩形线圈的直流电压信号进行滤波和放大,再将每个矩形 线圈的直流电压信号传输给信号转换电路 223 , 信号转换电路 223将每个矩形 线圈的直流电压信号转换成数字信号,将每个矩形线圈的数字信号传输给处理 模块 23。
其中,信号转换电路 223可以为 AD ( Analog-to-Digital convert,模数转换 ) 电路。
其中,处理模块 23的输入端与电磁线圈面板 21中的每个矩形线圈的输出 端和电信号处理电路 22中的信号转换模块 223的输出端电连接;
处理模块 23接收每个矩形线圈的坐标和数字信号, 选择电压最大的矩形 线圈, 获取选择的矩形线圈的坐标, 将获取的坐标作为触点的位置。
其中, 处理模块 23可以为处理器。
其中, 在本实施例中, 发射设备 1可以附着在人体的手背或手腕等处。 其中, 在本实施例中, 参见图 6, 用户可以通过控制模块 112开启 LC振 荡电路 111 , LC振荡电路 111振荡并产生频率为 500K至 20M Hz的电磁波, LC振荡电路 112振荡后发射设备 1附近的人体产生电场, LC振荡电路 111将 产生的电磁波输出给第一滤波放大电路 13; 第一滤波放大电路 13接收该电磁 波并去除该电磁波的噪声以及杂波,再对该电磁波的功率进行放大,再将放大 后的电磁波输出给发射电极 12; 发射电极 12接收放大后的电磁波并将放大后 的电磁波发射到发射设备 1所附着的人体。
其中, 发射电极 12向人体发射电磁波, 电磁波可以以人体产生的磁场为 载体进行传输, 并从人体发射出去。 当用户用手指触摸电磁线圈面板 21时, 在电磁线圈面板 21中, 在用户手指接触的触点附近的矩形线圈会接收到手指 发射的电磁波, 并且接收电磁波的矩形的线圈产生交流电压信号。 其中, 离触 点越近的矩形线圈接收电磁波的强度越强,产生的交流电压信号也就越强, 所 以触点所在的矩形线圈产生的交流电压信号最强。
其中,接收电磁波的每个矩形线圈产生交流电压信号后, 将接收电磁波的 每个矩形线圈将自身产生的交流电压信号输出给频压转换电路 221 以及将自 身的坐标输出给处理模块 23; 频压转换电路 221接收每个矩形线圈产生的交 流电压信号并将其转换为直流电压信号,再将每个矩形线圈的直流电压信号输 出给第二滤波放大电路 222; 第二滤波放大电路 222接收每个矩形线圈的直流 电压信号, 去除每个矩形的线圈的直流电压信号的噪音,再对每个矩形线圈的 直流电压信号进行放大,将放大后每个矩形线圈的直流电压信号输出给信号转 换电路 223; 信号转换电路 223接收每个矩形线圈的直流电压信号, 再将每个 矩形线圈的直流电压信号转换为数字信号形式的电压信号,再将数字信号形式 的每个矩形线圈的直流电压信号输出给处理模块 23; 处理模块 23接收每个矩 形线圈的坐标和数字信号形式的直流电压信号, 选择直流电压最大的矩形线 圈, 并获取选择的矩形线圈的坐标, 将获取的坐标作为触点的坐标。
其中, 用户可以用户手指同时在电磁线圈面板上触摸多个触点, 并按上述 步骤获取每个触点的坐标。
在本发明实施例中, 电磁波起振电路振荡能够使人体产生电场, 且能够产 生频率为 500K至 20M Hz的电磁波,频率为 500K至 20M Hz的电磁波能够以 人体产生的电场为载体进行传输,发射电极将电磁波起振电路产生的电磁波发 射到人体, 当人的手指触摸电磁线圈面板时, 电压磁圈面板产生电压信号, 信 号转换电路将电压信号转换成数字信号,处理模块根据数字信号获取触点的坐 标。 如此实现利用手指触摸电磁线圈面板, 另外, 可以用手指在触摸电磁线圈 面板上触摸多个触摸点, 从而提高用户体验。 以上所述仅为本发明的较佳实施例, 并不用以限制本发明, 凡在本发明的 精神和原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的 保护范围之内。

Claims

权利 要求 书
1、 一种发射设备, 其特征在于, 所述发射设备包括:
电磁波起振电路和发射电极, 所述电磁波起振电路与所述发射电极相串 联;
所述电磁波起振电路振荡产生电磁波,并使发射设备所附着的人体产生电 场, 所述发射电极通过人体产生的电场发射所述电磁波。
2、 如权利要求 1所述的发射设备, 其特征在于,
所述电磁波起振电路包括 LC振荡电路和控制模块; 所述控制模块与所述
LC振荡电路相连; 所述控制电路开启或关闭所述 LC振荡电路。
3、 如权利要求 2所述的发射设备, 其特征在于, 所述电磁波起振电路还 包括开关组合, 所述开关组合与所述 LC振荡电路中的电感电连接, 所述开关 组合调节所述 LC振荡电路中的电感的长度。
4、 如权利要求 1-3任一项权利要求所述的发射设备, 其特征在于, 所述 发射设备还包括第一滤波放大电路;
所述第一滤波放大电路的输入端与所述电磁波起振电路的输出端电连接, 所述第一滤波放大电路的输出端与所述发射电极的输入端电连接;
所述第一滤波放大电路接收所述电磁波起振电路传输的电磁波,对所述电 磁波进行放大和滤波, 再将所述电磁波传输给所述发射电极。
5、 一种电磁式触控装置, 其特征在于, 所述电磁式触控装置包括接收设 备和权利要求 1-4任一项权利要求所述的发射设备;
所述接收设备包括电磁线圈面板、 电信号处理电路和处理模块; 所述电磁 线圈面板的输出端分别与所述电信号处理电路的输入端和所述处理模块的输 入端电连接, 所述电信号处理电路的输出端与所述处理模块的输入端电连接; 所述发射设备振荡产生电磁波, 并使其所附着的人体产生电场, 通过人体 产生的电场发射所述电磁波给所述电磁线圈面板,所述电磁线圈面板用于接收 电磁波信号, 并将所述电磁波信号转换为电压信号, 并将所述电压信号发送给 所述电信号处理电路, 将检测到该电压信号的位置信息发送给所述处理模块; 所述电信号处理电路将所述电压信号转换成数字信号并传送给所述处理模块, 所述处理模块用于根据所述位置信息和所述数字信号确定出触点的位置。
6、 如权利要求 5所述的电磁式触控装置, 其特征在于, 所述电磁线圈面 板是由线圈组成的矩阵,所述矩阵内的每个矩形线圈的输出端分别与所述电信 号处理电路的输入端和所述处理模块的输入端电连接;
所述电磁线圈面板内接收电磁波的每个矩形线圈产生交流电压信号,且所 述每个矩形线圈将自身产生的交流电压信号传输给所述电信号处理电路以及 将自身的坐标传输给所述处理模块,所述电信号处理电路将所述每个矩形线圈 的交流电压信号转换为数字信号,将所述每个矩形线圈的数字信号传输给所述 处理模块,所述处理模块根据所述每个矩形线圈的数字信号和坐标确定出触点 的位置。
7、 如权利要求 5所述的电磁式触控装置, 其特征在于, 所述电信号处理 电路包括频压转换电路、 第二滤波放大电路和信号转换电路;
所述频压转换电路的输入端与所述电磁线圈面板中的每个矩形线圈的输 出端电连接,所述频压转换电路的输出端与所述第二滤波放大电路的输入端电 连接; 所述第二滤波放大电路的输出端与所述信号转换电路的输入端电连接; 所述信号转换模块的输出端与所述处理模块的输入端电连接;
所述频压转换电路接收所述电磁线圈面板内的接收电磁波的每个矩形线 圈传输的交流电压信号,将所述每个矩形线圈的交流电压信号转换成直流电压 信号,将所述每个矩形线圈的直流电压信号传输给所述第二滤波放大电路, 所 述第二滤波放大电路对所述每个矩形线圈的直流电压信号进行滤波和放大,再 将所述每个矩形线圈的直流电压信号传输给所述信号转换电路,所述信号转换 电路将所述每个矩形线圈的直流电压信号转换成数字信号,将所述每个矩形线 圈的数字信号传输给所述处理模块。
8、 如权利要求 7所述的电磁式触控装置, 其特征在于, 所述信号转换电 路为模数转换电路。
9、 如权利要求 5-8任一项权利要求所述的电磁式触控装置, 其特征在于, 所述处理模块为处理器。
PCT/CN2011/084022 2010-12-17 2011-12-15 一种发射设备及电磁式触控装置 WO2012079514A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN 201020678682 CN201903836U (zh) 2010-12-17 2010-12-17 一种发射设备及电磁式触控装置
CN201020678682.9 2010-12-17

Publications (1)

Publication Number Publication Date
WO2012079514A1 true WO2012079514A1 (zh) 2012-06-21

Family

ID=44274428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/084022 WO2012079514A1 (zh) 2010-12-17 2011-12-15 一种发射设备及电磁式触控装置

Country Status (2)

Country Link
CN (1) CN201903836U (zh)
WO (1) WO2012079514A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201903836U (zh) * 2010-12-17 2011-07-20 华为终端有限公司 一种发射设备及电磁式触控装置
WO2014059583A1 (zh) * 2012-10-15 2014-04-24 詹金良 电磁式触控装置
CN104777770A (zh) * 2014-01-15 2015-07-15 黄德铭 一种基于微处理器选择运用制茶时杀青声音的控制电路
CN109549750B (zh) * 2018-12-12 2023-12-08 广州翼鲲生物科技有限公司 一种蹄浴装置及其控制方法
CN109728804A (zh) * 2019-01-24 2019-05-07 努比亚技术有限公司 电磁按键及具有该电磁按键的电子装置
CN114285187A (zh) * 2021-12-14 2022-04-05 苏州大学 线圈位置自动校准的工业机器人无线充电系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101369180A (zh) * 2007-08-15 2009-02-18 联想(北京)有限公司 手指指点装置
CN201302712Y (zh) * 2008-11-28 2009-09-02 深圳市汇顶科技有限公司 电容式触摸检测装置
CN101685366A (zh) * 2008-09-26 2010-03-31 汉王科技股份有限公司 具有多点触摸功能的电磁感应装置
CN201903836U (zh) * 2010-12-17 2011-07-20 华为终端有限公司 一种发射设备及电磁式触控装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101369180A (zh) * 2007-08-15 2009-02-18 联想(北京)有限公司 手指指点装置
CN101685366A (zh) * 2008-09-26 2010-03-31 汉王科技股份有限公司 具有多点触摸功能的电磁感应装置
CN201302712Y (zh) * 2008-11-28 2009-09-02 深圳市汇顶科技有限公司 电容式触摸检测装置
CN201903836U (zh) * 2010-12-17 2011-07-20 华为终端有限公司 一种发射设备及电磁式触控装置

Also Published As

Publication number Publication date
CN201903836U (zh) 2011-07-20

Similar Documents

Publication Publication Date Title
WO2012079514A1 (zh) 一种发射设备及电磁式触控装置
CN105929985B (zh) 带射频收发传输功能的真笔迹触控笔和触控装置
US9417738B2 (en) Untethered active pen and a method for communicating with a capacitive sensing device using the untethered active pen
TWI403066B (zh) Battery plate for battery-free indicator element and power supply method of digital plate using battery-free wireless indicator element
JP5882194B2 (ja) 把持および近接検出のためのセンサーデバイスおよび方法
TWI710929B (zh) 位置檢測裝置、及其位置指示器
TW201011600A (en) Electromagnetic stylus for operating a capacitive touch panel
TWI518557B (zh) 投射電容式觸控筆及其控制方法
US20140184554A1 (en) Methods and Systems for Hybrid Multi-Touch Capacitive (MTC) and Active Stylus Touch Device
KR102113685B1 (ko) 터치입력장치
JP4154342B2 (ja) コンピュータ入力用の無線無電源手書き装置
TW201232337A (en) Position detecting device
JP6508734B2 (ja) 検出装置、入力装置及び検出方法
TW201344511A (zh) 操控裝置以及利用操控裝置的指向輸入設備
KR102034052B1 (ko) 터치 입력 시스템 및 이를 이용한 터치 검출 방법
TWI416378B (zh) 具電磁能量傳送之手寫輸入裝置
CN102135832B (zh) 位置侦测装置
TW200743318A (en) Infrared ray switching device
TW201430645A (zh) 觸控面板與觸控裝置
KR102246905B1 (ko) 좌표 측정 장치 및 이를 구비한 좌표 측정 시스템
KR102488057B1 (ko) 디지털 스타일러스, 입력 시스템 및 그의 제어 방법
CN210431382U (zh) 一种基于个人电子用品的多点触摸开关控制装置
TW201133323A (en) Electromagnetic touch displayer
CN202026295U (zh) 触摸按键装置
US20120271971A1 (en) Non-contact sensing device and its method for computer peripherals

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11849534

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11849534

Country of ref document: EP

Kind code of ref document: A1