WO2012079415A1 - 一种铁路机车车轴用钢及其制造方法 - Google Patents

一种铁路机车车轴用钢及其制造方法 Download PDF

Info

Publication number
WO2012079415A1
WO2012079415A1 PCT/CN2011/080675 CN2011080675W WO2012079415A1 WO 2012079415 A1 WO2012079415 A1 WO 2012079415A1 CN 2011080675 W CN2011080675 W CN 2011080675W WO 2012079415 A1 WO2012079415 A1 WO 2012079415A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
ladle
electric furnace
molten
iron
Prior art date
Application number
PCT/CN2011/080675
Other languages
English (en)
French (fr)
Inventor
王玉玲
王之香
邬中华
Original Assignee
山西太钢不锈钢股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山西太钢不锈钢股份有限公司 filed Critical 山西太钢不锈钢股份有限公司
Publication of WO2012079415A1 publication Critical patent/WO2012079415A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0075Treating in a ladle furnace, e.g. up-/reheating of molten steel within the ladle
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/064Dephosphorising; Desulfurising
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention relates to a steel for axles for railway locomotives and a manufacturing method thereof. Background technique
  • the axle is an important moving part of the railway vehicle, and its quality is directly related to the operational safety of the railway vehicle.
  • the quality of axles especially the axle quality of locomotives, is particularly important.
  • China's railway locomotive axles use steel No. JZ, which is a medium-carbon high-quality steel with technical standard GB5068.
  • the failure mode of railway locomotive axles is mainly fatigue fracture, so the axles are required to have high fatigue strength.
  • Mechanical properties are one of the main factors affecting fatigue strength. Increasing the strength can significantly inhibit the formation of fatigue crack sources, and increasing plasticity can delay crack propagation. Therefore, railway locomotive axle steels require high strength, high plasticity and fine grain. However, in general, the strength and plasticity are inversely proportional. It is difficult to balance the two at the same time. In the production process, the mechanical properties are often unqualified (mainly low in strength), or the grain size test has a mixed crystal phenomenon. Summary of the invention
  • the present invention provides a steel for axles for railway locomotives having high strength and high plasticity and a method for manufacturing the same.
  • the key technology of the present invention is to complete melting and oxidation in the electric furnace smelting process, and control the steel tapping.
  • A1 forms a fine, diffused A1N second phase with N in the steel to prevent austenite grain growth, A1 is too low, A1N is formed less, and austenite grains are easy to grow, so generally Fine Crystal carbon steel requires Al t ⁇ 0.020% in steel, but when A1 is too high in steel, due to its large concentration gradient, the diffusion is faster, and the precipitated A1N particles are larger, resulting in a decrease in the role of A1 grain refinement.
  • control V content is 0.030-0.050%
  • V and steel C, N generate V (C, N) fine, diffused second phase and A1N - prevent
  • the austenite grains grow, significantly refine the grains, and increase the grain coarsening temperature of the steel.
  • the V content is too low, the grain refinement effect is not obvious, the V content is too high, and the precipitates are excessive, although the grains are Refined, the strength is increased, but the plasticity is lowered, and the cost is increased.
  • the mass distribution ratio of the components of the steel for the axle of the railway locomotive of the present invention is:
  • Ni and Cu may be added as needed, and the amount of addition is Ni ⁇ 0.30%, and Cu ⁇ 0.010%.
  • the method for manufacturing steel for axles of railway locomotives of the present invention comprises the following steps:
  • the electric furnace is smelted into the scrap steel and the pre-treated molten iron, and the weight ratio of the molten iron is 50%-90%. ⁇ ⁇ 0.035% and S ⁇ 0.040% in scrap steel; P ⁇ 0.070%, S ⁇ 0.010% in pretreated molten iron; hot metal temperature not lower than 1250 ° C, generally 1250 ° C - 1500 ° C.
  • the scrap is first added to the electric furnace, then the molten iron is added, and then the oxygen is started to be blown, and the slag-forming material lime (18-22 kg/t, which is the amount of lime added per molten steel formed by each p ⁇ scrap and molten iron) is added for 5-10 minutes.
  • Scrap melting and hot metal oxidation are carried out simultaneously. During the smelting process, the scrap and lime materials are rapidly melted, and at the same time, C, dislocation, degassing, and inclusion are involved. After ⁇ 0.015%, the electric furnace is tapped.
  • the iron alloy containing the corresponding elements, lime (8-10kg/t), synthetic slag (3-4kg/t) and silicon-aluminum lanthanum are added to the ladle of the ladle refining furnace according to the smelted steel grade. 3-4kg/t), and baked for not less than 30 minutes, then pour the molten steel of the electric furnace into the ladle, and the molten steel is initially alloyed in the ladle, and the amount of the iron alloy containing the corresponding element is the corresponding element in the molten steel.
  • the content is close to the lower limit of the component range.
  • the mass ratio of the composition of molten steel is:
  • Ni and Cu may be added as needed, and the amount of addition is Ni ⁇ 0.30%, and Cu ⁇ 0.010%.
  • the method for manufacturing steel for axles for railway locomotives is characterized in that: in step I, when the molten steel is initially alloyed in the ladle, the content of alloying elements in the ferroalloy is high, the composition is accurate, and the content of harmful elements is low; The content of the corresponding elements in the molten steel is close to the lower limit of the enthalpy required by the corresponding standard; when the steel element in the step II is controlled to control the trace elements in the molten steel, the other elements are controlled at the upper limit of the standard.
  • the above method for manufacturing steel for axles for railway locomotives is characterized in that: fluorite is added before the tapping of the electric furnace in step I, and the amount is 3-4 kg/t.
  • the main key technology for manufacturing the steel for axles of railway locomotives is to control the content of trace elements Cr, Al and V in steel, and reduce the content of strontium and S, thereby ensuring the actual grain size after heat treatment is increased by 1-2 grades, strength Increased by about 10%, the strength, ductility and toughness are significantly higher than the standard requirements, and the pass rate of grain size and mechanical properties is 100%.
  • the railway locomotive axle steel produced by the steel locomotive axle manufacturing method of the invention has fine grain, high strength, plasticity and toughness, and can better ensure the safety of railway vehicles. detailed description
  • This embodiment is JZ45 steel for railway locomotive axles (adding new components), the specific steps are as follows: I Electric furnace smelting
  • Electric furnace smelting is to melt and oxidize scrap steel.
  • 18 tons of scrap steel is added to a high-power electric furnace with a nominal capacity of 60 tons.
  • the molten iron was added to the same electric furnace.
  • the melting composition of the steel is as follows:
  • the ingot red delivery profile plant is heated and rolled into 280 mm square steel.
  • Example 2 of the method for manufacturing steel for locomotive axles This embodiment is steel for axles of railway locomotives. The specific steps are as follows:
  • the melting composition of the steel is as follows:
  • the rest are Fe and inevitable impurities.
  • the ingot red delivery profile plant is heated and rolled into 280 mm square steel.
  • the invention is applicable to carbon steel for axles of other railway locomotives.
  • lime (18-22kg/t) is added to the slag-forming material, which means that -22kg of lime is added per ton of molten steel.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Description

一种铁路机车车轴用钢及其制造方法 技术领域
本发明涉及一种铁路机车车轴用钢及其制造方法。 背景技术
车轴是铁路车辆重要的走行部件,其质量直接关系着铁路车辆的运行安全。 近年来, 随着我国铁路车辆的不断提速加载, 车轴的质量, 尤其是机车车轴质 量的提升尤为重要。 目前, 我国铁路机车车轴使用钢号为 JZ, 属中碳优质钢, 技术标准为 GB5068。铁路机车车轴的失效形式主要是疲劳断裂, 因此要求车轴 具有高的疲劳强度。 力学性能是影响疲劳强度的主要因素之一, 提高强度可显 著抑制疲劳裂纹源的形成, 提高塑性可延緩裂纹扩展, 因此, 铁路机车车轴钢 要求高强度、 高塑性和细晶粒。 但一般情况下, 强度和塑性成反比, 两者很难 同时兼顾, 生产过程中也经常出现力学性能不合格(主要是强度偏低), 或晶粒 度检验有混晶现象。 发明内容
为了克服现有铁路机车车轴用钢的上述不足, 本发明提供一种强度高塑性 好的铁路机车车轴用钢及其制造方法。
本发明的技术关键是在电炉冶炼过程中完成熔化和氧化, 控制出钢
P<0.015%, P 易偏析于晶界, 降低晶界的表面能, 还可在晶界上形成磷共晶型 非金属夹杂, 造成晶界脆化, 钢中 P含量越低, 钢的性能, 特别是籾性越好。
在精炼过程中深脱 S,控制 S≤0.005% ,因钢中 S和 Mn结合生成塑性 MnS, 在热加工过程中要发生变形, 并延伸成条状, 显著降低钢材的性能, 特别是钢 材横向性能大幅度下降, 使钢材出现各向异性, 钢中 S含量越低, 钢的韧塑性 能越好; 控制 Cr含量在 0.10-0.20%, 可提高钢的强度, 对塑性基本没有影响; 控制 Alt含量为 0.020-0.050%, A1与钢中 N形成细小、 弥散的 A1N第二相阻止 奥氏体晶粒长大, A1过低, 形成的 A1N少, 奥氏体晶粒容易长大, 因此一般细 晶碳素钢都要求钢中 Alt≥0.020%, 但当钢中 A1过高时, 由于其浓度梯度大, 扩 散较快, 析出的 A1N颗粒较大, 导致 A1细化晶粒的作用降低, 甚至因钢中固 溶 A1高而促进晶粒长大; 控制 V含量在 0.030-0.050%, V与钢中 C、 N生成 V(C、 N)细小、 弥散的第二相与 A1N—起阻止奥氏体晶粒长大, 显著细化晶粒, 并提高钢的晶粒粗化温度, V含量过低, 细化晶粒作用不明显, V含量过高, 析出物偏多, 尽管晶粒细化, 强度提高, 但塑性降低, 而且成本增加。
本发明铁路机车车轴用钢的成分的质量百分配比为:
C: 0.42-0.46%; Mn: 0.65-0.80%; Si: 0.20-0.30%;
Cr: 0.10-0.20%; V: 0.030-0.050%; Alt: 0.020-0.050%; P<0.015%; S <0.005%; 其余为 Fe与不可避免的杂质。
根据需要可加入 Ni和 Cu, 加入量 Ni≤0.30%, Cu≤0.010%。
本发明铁路机车车轴用钢的制造方法包括下述步骤:
I 电炉冶炼
电炉冶炼加入废钢和预处理后的铁水, 铁水的重量比例 50%-90%。 废钢中 的卩≤0.035%、 S<0.040%; 预处理后的铁水中 P≤0.070%、 S<0.010%; 铁水温度 不低于 1250°C , 一般为 1250°C-1500°C。
先将废钢加入电炉中, 再加入铁水, 然后开始吹氧, 开吹 5-10分钟加入造 渣材料石灰( 18-22kg/t, 指每 p屯废钢和铁水形成的钢水加入的石灰量)。 废钢熔 化和铁水氧化同时进行, 在冶炼过程中废钢及石灰等炉料迅速熔化, 同时脱 C、 脱卩、 去气、 去夹杂, 在?≤0.015%后, 电炉出钢。 电炉出钢前, 先根据所冶炼 的钢种, 在钢包精炼炉的钢包内加入含有对应元素的铁合金, 石灰(8-10kg/t )、 合成渣(3-4kg/t )与硅铝钡 (3-4kg/t ), 并烘烤不少于 30分钟, 然后把电炉的 钢水倒入钢包中, 钢水在钢包中进行初步合金化, 其中含有对应元素的铁合金 的加入量是以钢水中对应元素的含量接近成分范围的下限为准。
II 钢包炉精炼
把装有钢水的钢包移到精炼工位, 在还原条件下进一步脱氧、 去夹杂、 脱
8至8≤0.005%, 同时加入对应元素的铁合金, 调整钢水成分。 钢包出钢时, 控 制钢水中的微量元素的质量百分比, Cr为 0.10-0.20%, Alt为 0.020-0.050%, V 为 0.030-0.050%;
钢水的成分的质量百分配比为:
C: 0.42-0.46%; Mn: 0.65-0.80%; Si: 0.20-0.30%;
Cr: 0.10-0.20%; V: 0.030-0.050%; Alt: 0.020-0.050%; P<0.015%; S <0.005%; 其余为 Fe与不可避免的杂质。
根据需要可加入 Ni和 Cu, 加入量 Ni≤0.30%, Cu≤0.010%。
之后, 进行真空脱气、 模铸成锭、 红送钢锭、 轧制成材。
上述铁路机车车轴用钢的制造方法, 其特征是: 在步骤 I, 钢水在钢包中 进行初步合金化时, 铁合金中合金元素的含量要高、 成分准确、 有害元素含量 低; 铁合金加入量应使钢水中对应元素的含量接近相应标准要求的牟下限; 在 步骤 II钢包出钢控制钢水中的微量元素时, 其它元素控制在标准的中上限。
上述铁路机车车轴用钢的制造方法, 其特征是: 在步骤 I电炉出钢前可加 入萤石, 加入量为 3-4kg/t。
本发明铁路机车车轴用钢的制造方法, 主要关键技术是控制钢中微量元素 Cr、 Al、 V含量, 同时降低卩、 S含量, 从而保证其热处理后实际晶粒度提高 1-2级, 强度提高约 10%, 强度、 塑性和韧性明显高于标准要求, 晶粒度和力学 性能检验合格率达到 100%。用本发明铁路机车车轴用钢制造方法生产的铁路机 车车轴钢晶粒细小, 强度、 塑性、 韧性高, 可更好地保证铁路车辆运行安全。 具体实施方式
下面结合实施例详细说明本发明铁路机车车轴用钢及其制造方法的具体实 述的实施例。
铁路机车车轴用钢实施例一
本实施例的成分的质量百分配比为:
C=0.45%; Si=0.25%; Mn=0.73%; P=0.008%; S=0.002%;
Alt =0.029; V=0.042%; Cr=0.14%; 其余为 Fe与不可避免的杂质。
铁路机车车轴用钢实施例二 本实施例的成分的质量百分配比为:
C=0.46%; Si=0.27%; Mn=0.77%; P=0.009%; S=0.001% ; Al=0.027%; V=0.039%; Cr=0.12%; 其余为 Fe与不可避免的杂质。 机车车轴用钢制造方法实施例 之一
本实施例是铁路机车车轴用 JZ45钢(增加新的成分), 具体步骤如下: I 电炉冶炼
( 1 )电炉冶炼是将废钢熔化和氧化, 把废钢 18吨加入公称容量为 60吨的 高功率的电炉中, 废钢中的 P=0.033%、 S=0.029%; 再把 47吨预处理后的铁水 加入到同一电炉中,预处理后的铁水温度为 1485 °C、铁水的重量比例为 72.3% , Ρ=0·057%、 S =0.009%。
( 2 )加入铁水后开始吹氧助熔, 吹氧 5分钟后加入石灰(含 CaO≥90% ) 1072 kg, 轻烧白云石 (含 MgO≥19%; CaO>45%; Si02≤2% ) 252kg。 在冶炼过 程中废钢和石灰、 白云石迅速熔化, 同时脱 C、 脱卩、 去气、 去夹杂。
( 3 )钢水温度达到 1660-1680°C , C>0.10% , Ρ≤0·015%时出钢,
本实施例的出钢温度为 1663 °C , C=0.22%, P=0.006%, Mn=0.07%; 然后把 钢水倒入装有硅锰合金(含 Si: 23%; 含 Mn: 64% ) 250 kg, 碳锰合金(含 C: 2%; 含 Mn: 79% ) 250kg, 石灰 500 kg、 合成渣(含 CaO: 40%; A1203: 40%; ) 300 kg,硅铝钡 800kg (硅 35.5%、铝 10.8%和钡 17.4%,其他为铁),增碳剂(含 C: 92% ) 14包(7kg/包)并烘烤 32分钟的钢包精炼炉的钢包内, 钢水在该钢 包内进行钢水初步合金化。
II 钢包炉精炼
( 1 )把装有钢水的钢包精炼炉的钢包移到 LF精炼工位, 测温 1551 °C , 喂 A1线 80kg, 送电, 加电石 (含 CaC2≥90% ) 65kg。
( 2 )取样分析, 钢水的化学成分的重量百分配比为:
C=0.29%; Si=0.23%; Mn=0.63%; P=0.007%; S=0.003%; Al=0.02%; Cr=0.02%; V=0.01%; 其余为 Fe与不可避免的杂质。
调渣加石灰 200kg、 合成渣 200kg; 调成分加碳锰(含 C: 2%; Mn: 79% ) 52kg 碳粉 58kg。
( 3 ) 取样分析, 钢水的化学成分的重量百分配比为:
C=0.38%; Si=0.25%; Mn=0.70%; P=0.008%; S=0.001%; Al=0.02%; Cr=0.02%; V=0.01%; 其余为 Fe与不可避免的杂质。
调渣加石灰 100kg; 调成分加钒铁(含 V: 50%; Fe: 47% ) 53kg、 碳锰 20kg, 铬铁(含 Cr: 55%; Fe: 42% ) 150kg。
( 4 ) 取样分析, 钢水的化学成分的重量百分配比为:
C=0.45%; Si=0.25%; Mn=0.73%; P=0.008%; S=0.002%; Al=0.029%; V=0.042%; Cr=0.14%; 其余为 Fe与不可避免的杂质。
( 5 ) 测温 1668°C , 精炼结束。
之后, 进行真空脱气处理、 模铸成钢锭, 浇铸过程取样分析化学成分, 钢的熔炼成分如下:
C=0.45%; Mn=0.73%; Si=0.25%; Cr=0.14%; V=0.042%;
Alt=0.029%; P=0.008%; S=0.002%; 其余为 Fe与不可避免的杂质。
钢锭红送型材厂加热并轧制成 280mm方钢。
方钢按照 GB/T5068标准要求检验,试样采用 140x140mm大样坯 860 °C正 火处理。 力学性能和晶粒度检验结果如表 1 :
表 1
Figure imgf000006_0001
机车车轴用钢制造方法实施例 之二 本实施例是铁路机车车轴用钢, 具体步骤如下:
I 电炉冶炼
( 1 ) 电炉冶炼是将废钢熔化和氧化, 把废钢 7.4吨加入公称容量为 60吨 高功率的电炉中, 废钢中的 P=0.030%、 S=0.032%; 再把 53.2 p屯预处理后的铁 水加入到同一电炉中, 预处理后的铁水温度为 1425°C、 铁水的重量比例为 87.8 重量%, P=0.049%、 S =0.010%;
( 2 )加入铁水后开始吹氧助熔, 吹氧 5分钟后加入石灰 1088 kg, 白云石 261kg。 在冶炼过程中废钢和石灰、 白云石迅速熔化, 同时脱 C、 脱卩、 去气、 去夹杂。
( 3 )钢水温度达到 1660-1680°C , C≥0.10% , Ρ≤0·015%时出钢, 本实施例的出钢温度为 1661 °C, C=0.29%, P=0.008%, Mn=0.05%; 然后把 钢水倒入装有硅锰合金 240 kg、 碳锰合金 280 kg、 石灰 500 kg、 合成渣 300 kg、 硅铝钡 800kg, 增碳剂 18包(7kg/包), 萤石 200 kg (含 CaF2 > 85% )并烘烤 35分钟的钢包精炼炉的钢包内, 钢水在该钢包内进行钢水初步合金化。
II 钢包炉精炼
( 1 )把装有钢水的钢包精炼炉的钢包移到 LF精炼工位, 测温 1557°C , 喂 A1线 80kg, 送电, 加电石 65kg。
( 2 )取样分析, 钢水的化学成分的重量百分配比为:
C=0.38%; Si=0.25%; Mn=0.65%; P=0.009%; S=0.003%; Al=0.02%; Cr=0.02%; V=0.01%; 其余为 Fe与不可避免的杂质。
调渣加石灰 200kg、 合成渣 200kg; 调成分加碳锰 60kg, 碳粉 45kg
( 3 ) 取样分析, 钢水的化学成分的重量百分配比为:
C=0.47%; Si=0.25%; Mn=0.73%; P=0.009%; S=0.001%; Al=0.02%; Cr=0.02%; V=0.01%; 其余为 Fe与不可避免的杂质。
调渣加石灰 100kg; 调成分加钒铁 50kg、 碳锰 20Kg, 铬铁 130Kg。
( 4 ) 取样分析, 钢水的化学成分的重量百分配比为:
C= 0.46%; Si=0.25%; Mn=0.77%; P=0.009%; S=0.001%; Al=0.035%; V=0.039%; Cr=0.12%; 其余为 Fe与不可避免的杂质。 ( 5 ) 测温 1663 °C , 精炼结束。
之后, 进行真空脱气处理、 模铸成钢锭, 浇铸过程取样分析化学成分, 钢的熔炼成分如下:
C=0.46%; Mn= 0.77%; Si=0.27%; Cr=0.12%; V=0.039%;
Alt=0.027%; P=0.009%; S=0.001%;
其余为 Fe与不可避免的杂质。
钢锭红送型材厂加热并轧制成 280mm方钢。
方钢按照 GB/T5068标准要求检验, 试样采用 140x 140mm大样坯 830火 处理。 力学性能和晶粒度检验结果见表 2: 表 2
Figure imgf000008_0001
本发明适用于其它铁路机车车轴用碳素钢。
本申请文件中, 加入造渣材料石灰( 18-22kg/t ) , 表示每吨钢水加入石灰 -22kg。

Claims

权 利 要 求 书
1. 一种铁路机车车轴用钢, 它的成分的质量的百分配比为:
C: 0.42-0.46%; Mn: 0.65-0.80%; Si: 0.20-0.30%;
Cr: 0.10-0.20%; V: 0.030-0.050%; Alt: 0.020-0.050%;
P<0.015%; S <0.005%; 其余为 Fe与不可避免的杂质。
2. 一种铁路机车车轴用钢的制造方法, 包括下述依次的步骤:
I 电炉冶炼
电炉冶炼加入废钢和预处理后的铁水, 铁水的重量比例 50%-90%, 废钢中 的卩≤0.035%、 S<0.040%; 预处理后的铁水中 P≤0.070%、 S<0.010%, 铁水温度 不低于 1250 °C ;
先将废钢加入电炉中, 再加入铁水, 然后开始吹氧, 开吹 5-10分钟加 入造渣材料石灰; 废钢熔化和铁水氧化同时进行, 在冶炼过程中废钢及炉料迅 速熔化, 同时脱 C、 脱卩、 去气、 去夹杂, 在卩≤0.015%后, 电炉出钢; 电炉出 钢前, 先根据所冶炼的钢种, 在钢包精炼炉的钢包内加入含有对应元素的铁合 金、 石灰、 合成渣与硅铝钡并烘烤不少于 30分钟, 然后把电炉的钢水倒入钢包 中, 钢水在钢包中进行初步合金化;
II 钢包炉精炼
把装有钢水的钢包移到精炼工位, 在还原条件下进一步脱氧、 去夹杂、 脱 8至8≤0.005%, 同时加入对应元素的铁合金, 调整钢水成分; 钢包出钢时, 控 制钢水中的微量元素的质量百分比, Cr为 0.10-0.20%, Alt为 0.020-0.050%, V 为 0.030-0.050%;
钢水的成分的质量百分配比为:
C: 0.42-0.46%; Mn: 0.65-0.80%; Si: 0.20-0.30%;
Cr: 0.10-0.20%; V: 0.030-0.050%; Alt: 0.020-0.050%;
P<0.015%; S <0.005%;
其余为 Fe与不可避免的杂质。
3. 根据权利要求 1-3任一项所述的钢的制造方法, 其中, 步骤 I电炉冶炼 中, 铁水温度为 1250-1500 °C。
PCT/CN2011/080675 2010-12-15 2011-10-12 一种铁路机车车轴用钢及其制造方法 WO2012079415A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010601316.8 2010-12-15
CN2010106013168A CN102108468B (zh) 2010-12-15 2010-12-15 一种铁路机车车轴用钢及其制造方法

Publications (1)

Publication Number Publication Date
WO2012079415A1 true WO2012079415A1 (zh) 2012-06-21

Family

ID=44172753

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/080675 WO2012079415A1 (zh) 2010-12-15 2011-10-12 一种铁路机车车轴用钢及其制造方法

Country Status (2)

Country Link
CN (1) CN102108468B (zh)
WO (1) WO2012079415A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102108468B (zh) * 2010-12-15 2013-02-27 山西太钢不锈钢股份有限公司 一种铁路机车车轴用钢及其制造方法
CN102776323B (zh) * 2012-07-30 2014-07-16 山西太钢不锈钢股份有限公司 一种低氧车轴用钢的冶炼方法
CN102766729B (zh) * 2012-07-30 2014-07-16 山西太钢不锈钢股份有限公司 一种高速车轴用钢的低磷控制方法
CN103060527B (zh) * 2013-02-04 2015-12-02 山西太钢不锈钢股份有限公司 一种车轴钢lf精炼炉造渣方法
CN103255257A (zh) * 2013-05-13 2013-08-21 山西太钢不锈钢股份有限公司 一种提高铁素体—珠光体型非调质钢屈强比的方法
CN107829032A (zh) * 2017-11-21 2018-03-23 苏州胜禹材料科技股份有限公司 高速铁路机车车轴用不锈钢材料及其制备方法
CN112011668B (zh) * 2020-08-30 2021-11-12 中南大学 一种提高eaf-lf钢液精炼过程脱硫效率的生产工艺
CN113549810A (zh) * 2021-07-16 2021-10-26 山西太钢不锈钢股份有限公司 大规格机车车轴钢坯及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1410581A (zh) * 2001-10-01 2003-04-16 住友金属工业株式会社 机械结构用钢及其制造方法
CN101381790A (zh) * 2008-10-23 2009-03-11 衡阳华菱连轧管有限公司 电炉冶炼10Cr9Mo1VNbN铁素体耐热钢经水平连铸成圆管坯的方法
JP2009299137A (ja) * 2008-06-13 2009-12-24 Nippon Steel Corp 伸びフランジ性と疲労特性に優れた高強度鋼板およびその溶鋼の溶製方法
CN102108468A (zh) * 2010-12-15 2011-06-29 山西太钢不锈钢股份有限公司 一种铁路机车车轴用钢及其制造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1410581A (zh) * 2001-10-01 2003-04-16 住友金属工业株式会社 机械结构用钢及其制造方法
JP2009299137A (ja) * 2008-06-13 2009-12-24 Nippon Steel Corp 伸びフランジ性と疲労特性に優れた高強度鋼板およびその溶鋼の溶製方法
CN101381790A (zh) * 2008-10-23 2009-03-11 衡阳华菱连轧管有限公司 电炉冶炼10Cr9Mo1VNbN铁素体耐热钢经水平连铸成圆管坯的方法
CN102108468A (zh) * 2010-12-15 2011-06-29 山西太钢不锈钢股份有限公司 一种铁路机车车轴用钢及其制造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG XIAOHUA.: "Research And Development Of Micro-alloying Steel for Railway Truck Axle", JIANGSU UNIVERSITY DISSERTATION FOR A DEGREE OF MASTER, 9 August 2010 (2010-08-09) *

Also Published As

Publication number Publication date
CN102108468A (zh) 2011-06-29
CN102108468B (zh) 2013-02-27

Similar Documents

Publication Publication Date Title
CN112853211B (zh) 一种乘用车万向节叉冷锻用钢及其制造方法
WO2012079415A1 (zh) 一种铁路机车车轴用钢及其制造方法
CN103160729B (zh) 中碳微合金化工程机械履带链片用钢及其生产工艺
CN102776323B (zh) 一种低氧车轴用钢的冶炼方法
CN102719759B (zh) 高速铁路扣件用弹条用钢及其冶炼生产方法
CN114574770B (zh) 一种高强度耐疲劳的60Si2MnA弹簧钢制备方法
CN102418048A (zh) 一种高速动车空心车轴用钢及其制造方法
CN114395657B (zh) 一种高洁净铁路货车用电渣轴承钢及其冶炼方法
CN109837460B (zh) 一种铁路客车货车车轴用钢inc35e及其制造方法
CN112899560A (zh) 一种高强度齿轮用钢23CrMnMoS及其制造方法
CN108929997A (zh) 一种汽车轮毂用轴承钢及其制造方法
CN108893682B (zh) 模具钢钢坯及其制备方法
CN108677084B (zh) 一种低夹杂洁净钢的生产方法
CN113278764A (zh) 提高中碳含硫钢硫弥散化的冶炼方法
CN112695258B (zh) 一种超高锰twip钢的大容量冶炼与成分调控方法
CN110952026B (zh) 一种车轴用钢、制备方法及其应用
CN112877587A (zh) 一种采用电弧炉与钢包精炼炉冶炼高锰twip钢的方法
CN115026252B (zh) 一种铁路车轴用ea1n钢的夹杂物控制方法
CN112680656B (zh) 一种含硼电机爪极用钢及其低成本冶炼工艺
CN115094307A (zh) 一种电渣重熔用热作模具钢连铸圆坯及其生产工艺
CN101565792B (zh) 一种冶炼硼钢的方法
CN113249640A (zh) 一种p91钢中细化夹杂物的冶炼方法
CN110468329A (zh) ZG-SY09MnCrNiMo RE钢及铸件制备方法
CN117604194B (zh) 一种300M钢用真空自耗电极及其无Al脱氧精炼方法
CN103320698A (zh) 一种车轴用钢及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11848947

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11848947

Country of ref document: EP

Kind code of ref document: A1