WO2012079291A1 - 一种具有复合蒸发皿的led灯具热管散热器模组 - Google Patents

一种具有复合蒸发皿的led灯具热管散热器模组 Download PDF

Info

Publication number
WO2012079291A1
WO2012079291A1 PCT/CN2011/070152 CN2011070152W WO2012079291A1 WO 2012079291 A1 WO2012079291 A1 WO 2012079291A1 CN 2011070152 W CN2011070152 W CN 2011070152W WO 2012079291 A1 WO2012079291 A1 WO 2012079291A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
heat
module according
heat dissipation
composite evaporation
Prior art date
Application number
PCT/CN2011/070152
Other languages
English (en)
French (fr)
Inventor
吕宝龙
张北
Original Assignee
沈阳立晶光电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 沈阳立晶光电有限公司 filed Critical 沈阳立晶光电有限公司
Publication of WO2012079291A1 publication Critical patent/WO2012079291A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/71Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks using a combination of separate elements interconnected by heat-conducting means, e.g. with heat pipes or thermally conductive bars between separate heat-sink elements
    • F21V29/717Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks using a combination of separate elements interconnected by heat-conducting means, e.g. with heat pipes or thermally conductive bars between separate heat-sink elements using split or remote units thermally interconnected, e.g. by thermally conductive bars or heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/51Cooling arrangements using condensation or evaporation of a fluid, e.g. heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the invention relates to an LED heat sink, in particular to an LED tube heat pipe radiator module. Background technique
  • LEDs Light-emitting diodes
  • LEDs compared with traditional incandescent lamps, fluorescent lamps, high-pressure mercury lamps and other illumination sources, are characterized by energy saving, small size, and high color rendering index. They are considered as substitutes for traditional light sources and have been widely used in many fields. application.
  • the lifetime of an LED is defined as: The time it takes for the luminous flux to decay to 70% of the initial luminous flux. The speed of the luminous flux decay is related to the temperature of the LED junction. The temperature of the LED junction is high, the luminous flux decays fast, and the life of the LED is short. Conversely, the temperature of the LED junction is low and the life of the LED is long. It can be seen that improving the heat dissipation of LED lamps is an important measure to improve the life of LED lamps. LED lamps work in relatively harsh special environments such as high altitude, open air, and inconvenient maintenance, and have high requirements for life and convenient maintenance.
  • the heat pipe radiator is characterized by high heat transfer rate and can quickly transmit heat generated by heat sources such as electronic components, thereby avoiding the accumulation of heat in heat sources such as electronic components and affecting the reliability of the entire electronic system. Due to this feature of the heat pipe radiator, it has been used as a heat sink for LED lamps for several years, but it has not been widely accepted by the market. The reason is that on the surface, it is complicated in structure, difficult to manufacture, high in price, and low in cost performance.
  • the reason for the deep level is that the design does not solve the two key links of heat and heat dissipation of the heat pipe radiator and the heat dissipation problem of the power source, so that the LED After the heat pipe radiator is used, the performance and cost increase synchronously, which limits the further promotion and application of the LED lamp.
  • the heat pipe radiator used by each LED lamp manufacturer and the LED lamp heat pipe radiator described in the literature have a heat-conducting substrate and a base between the light source and the heat-receiving surface of the heat pipe. These pedestals and substrates increase the thermal resistance between the light source (heat source) and the heat pipe, reducing the heat transfer efficiency between the two and increasing the cost.
  • the heat pipe radiators of LED lamps on the market are mostly aluminum alloy casting or aluminum alloy extrusion molding.
  • the aluminum alloy casting radiator has large weight, high cost, poor self-cleaning performance, and dust absorption affects heat dissipation; Blindly pursuing the heat dissipation area, neglecting the unevenness of the fin temperature, reducing the heat exchange efficiency between the heat dissipating fins and the environment, and failing to fully utilize the function of the heat pipe radiator.
  • the power supply is also the main reason that affects the life of LED lamps.
  • the power supply of LED lamps also needs heat dissipation.
  • Most LED lamp manufacturers separately set the power supply and heat pipe heat sink, and the power supply naturally dissipates itself.
  • the present invention provides a heat pipe radiator module for LED lamps with composite evaporation to reduce the temperature and light decay speed of the LED junctions, increase the life of the LED lamps and reduce the cost.
  • the present invention provides a heat-dissipating heat sink module for a LED lamp having a composite evaporation, which is mainly composed of a composite evaporation and a heat-dissipating pipe, wherein
  • the composite evaporation is a plate structure, and a cavity channel is disposed in the plate, the cavity channel is connected with the heat dissipation pipe disposed outside the composite evaporation, and the inner cavity channel and the heat dissipation pipe are filled with a working medium;
  • the upper surface and/or the lower surface constitute a heating surface, and a printed circuit is prepared on the heated surface, and an electronic component in which the LED chip and the constant current driving power source of the LED chip are bonded is attached.
  • the lumen channels in the composite evaporation jnr are arranged in a crisscross manner.
  • the composite evaporation of the invention increases the heat exchange area between the working medium and the evaporation by providing the inner cavity passages which are criss-crossed, and increases the heat dissipation area by providing grooves, threads, heat radiating fins and the like on the inner and outer surfaces of the heat dissipation pipe. This greatly improves the heat dissipation efficiency.
  • the heating surface of the composite evaporation directly receives the heat generated by the electronic components of the LED chip constant current driving power source and the LED chip, thereby greatly reducing the thermal resistance between the heat source and the heat pipe, and improving the heat dissipation efficiency of the heat pipe heat dissipation module of the LED lamp, and also It reduces the weight and cost of LED luminaire power and even the entire LED luminaire.
  • FIG. 1 is a front elevational view showing a first embodiment of the present invention
  • Figure 2 is a left side view of Figure 1;
  • Figure 3 is an enlarged view of a portion A in Figure 1;
  • Figure 4 is a bottom view of Figure 1;
  • Figure 5 is a cross-sectional view taken along line A-A of Figure 4.
  • Figure 6 is a schematic view showing another form of the A-A section of Figure 4.
  • Figure 7 is a front elevational view showing a second embodiment of the present invention.
  • Figure 8 is a left side view of Figure 7;
  • Figure 9 is a front elevational view showing a third embodiment of the present invention.
  • Figure 10 is a left side view of Figure 9;
  • Figure 11 is a front elevational view showing a fourth embodiment of the present invention.
  • Figure 12 is a left side view of Figure 11;
  • Figure 13 is a front elevational view showing a fifth embodiment of the present invention.
  • Figure 14 is a left side view of Figure 13.
  • the present invention is a heat pipe radiator model for an LED lamp with composite evaporation Jnr, which is composed of a composite evaporation H heat dissipation pipe 2, a connection pipe 3 and a liquid filling pipe 4.
  • the composite evaporation l is a plate structure, and the inside of the plate is provided with a criss-crossing inner cavity passage 1 3 , and the inner cavity passage 13 is communicated with the heat dissipation pipe 2 disposed outside the composite evaporation 1 through the connecting pipe 3.
  • the compound evaporation 1 is provided with a liquid filling tube 4 communicating with the inner chamber passage 13 , and the inner chamber passage 13 and the heat dissipating duct 2 are filled with a working medium after being evacuated.
  • the first type It is made by pressing and blowing up the upper and lower layers of metal materials.
  • the materials of the lower and upper layers of metal 12, 11 are each composed of aluminum, aluminum alloy, or copper, copper alloy, or each of other metals having good thermal conductivity and alloys thereof.
  • the blown cavity passage 1 3 constitutes a cavity that is vertically and horizontally connected to each other in the upper and lower layers of metal (see the structure of Fig. 5).
  • the lower surface 17 of the composite evaporation l is a heated surface, and a printed circuit 14 is prepared on the heated surface 17, and an electronic component 15 is bonded to the LED chip 16 and a constant current driving power source constituting the LED chip 16.
  • the heating surface 17 directly receives the heat generated by the electronic component 15 and the LED chip 16 of the LED chip constant current driving power source.
  • the upper and lower surfaces of the composite evaporation can be used as the heating surface.
  • the LED chip can be attached to the upper surface of the composite evaporation Jnr without affecting the illumination of the LED chip, or the LED chip and its constant
  • the flow driving power sources are respectively disposed on the upper and lower surfaces of the composite evaporation Jnr.
  • Figure 3 shows the connection of the inner cavity channel 13 and the heat dissipating pipe 2 to the connecting pipe 3, which may be a press-fit connection, brazing, electric resistance welding, argon arc welding, energy storage welding or adhesive bonding. .
  • Heat-dissipating pipe 2 The material of the connecting pipe 3 may be aluminum, copper or steel (helping the pipe), or an alloy of the above materials, or other materials having good heat conductivity.
  • the heat dissipating duct 2 and the connecting pipe 3 are round pipes or special-shaped pipes having axial grooves or threads on the inner and outer surfaces, or ordinary smooth round pipes.
  • the heat-dissipating pipe 2 is a circular pipe or a special-shaped pipe having axial grooves or threads on the inner and outer surfaces, which increases the heat exchange efficiency between the heat-dissipating pipe 2 and the working medium, and the heat exchange efficiency between the outer wall of the pipe and the environment.
  • the structure of the heat dissipating duct 2 can be designed into various patterns according to the heat dissipating area, the shape of the LED lamp, etc., and the structure thereof can be a serpentine tube (as shown in FIG. 1 and FIG. 2) and a horizontal single tube (as shown in FIG. 7 and FIG. 8). Shown) Straight single tubes (as shown in Fig. 11 and Fig. 12) can also be in various forms, such as vertical multi-tube, double-tube and multi-tube alternately arranged, inclined tubes, etc., not enumerated. In practical applications, it is not limited to the several shapes shown in the drawings of the present invention.
  • the heat dissipation pipe 2 can be bent into various shapes according to the shape and size of the LED lamp.
  • the heat dissipating duct 2 can be provided with heat dissipating fins 5.
  • the surface of the heat dissipating fin 5 is a plane or a curved surface, and the cross section of the curved surface may be a circular arc, a triangle, a trapezoid or a rectangle.
  • the above-described shape of the heat dissipating fins 5 improves the heat exchange efficiency of the fins compared with the conventional fins.
  • the material of the heat dissipating fins 5 is: aluminum, copper or alloys thereof, or other metals with good thermal conductivity.
  • Heat sink 5 heat pipe 2
  • the surface of the connecting pipe 3 can be coated with a layer of far-infrared paint or anodized to black, which improves the heat exchange intensity between the heat pipe 2 and the environment, and further improves the heat dissipation efficiency.
  • the constant current power circuit component 15 converts the alternating current into direct current for the LED chip 16 to operate.
  • the heat generated by the LED chip 16 and the constant current power source component 15 heats the working fluid in the inner cavity channel 13 of the composite evaporation l, and the working fluid absorbs heat and boils, evaporates into a working fluid vapor carrying heat and a certain speed, and the working fluid vapor
  • the connecting pipe 3 enters the heat dissipating pipe 2, and the working fluid vapor exchanges heat with the environment through the pipe wall in the heat dissipating pipe 2, and the refrigerant that loses heat is condensed into working fluid and returns to the inner cavity passage 13 of the composite evaporation 1 by gravity.
  • the heat pipe radiator module of the LED lamp with composite evaporation has the characteristics of simple structure, light weight, easy processing, mass production, low thermal resistance, fast heat dissipation and low cost, and can effectively reduce the temperature of the LED junction and Extend the life of LED lights.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)

Description

一种具有复合蒸发亚的 LED灯具热管散热器模组
技术领域
本发明涉及一种 LED散热器, 特别涉及一种 LED灯具热管散热器模组。 背景技术
由于发光二极管(LED )与传统白炽灯、 荧光灯、 高压汞灯等照明光源相比, 具有节能、 体积小、 显色指数高等显著特点, 被认为是传统光源的替代品, 开 始在许多领域得到广泛应用。 LED 的寿命被定义为: 光通量衰减到初始光通量 70 %所用的时间。 而光通量衰减的速度与 LED结的温度有关, LED结的温度高, 光通量衰减的速度快, 既 LED的寿命短; 反过来, LED结的温度低, LED的寿命 长。 可见改善 LED灯具的散热, 是提高 LED灯具寿命的重要措施。 LED灯具在高 空、 露天、 不便于维修等相对恶劣的特殊环境工作的, 对寿命、 方便维修等有 较高的要求。
热管散热器的特点是传热速度快, 能迅速的将电子元器件等热源所产生的 热量迅速传出, 避免了热量在电子元器件等热源处积聚而影响整个电子系统的 可靠性。 由于热管散热器的这个特点, 数年前就开始被用做 LED灯具的散热, 但是至今还没有被市场广泛接受。 其原因, 从表面上看是结构复杂、 不易制造、 价格高、 性价比低, 深层次的原因是在设计上没有解决好热管散热器的受热、 散热两个关键环节以及电源的散热问题, 使得 LED灯具在使用热管散热器后, 性能和成本同步增加, 限制了 LED灯具的进一步推广应用。 目前各 LED灯具厂 家使用的热管散热器和文献所介绍的 LED 灯具热管散热器, 在光源和热管受热 面之间加设了导热基板、 基座。 这些基座、 基板增加了光源 (热源) 与热管之 间的热阻, 降低了两者之间的热传导效率, 并增加了成本。
目前市场上 LED灯具的热管散热器, 大多是铝合金铸造或铝合金挤压成型, 铝合金铸造的散热器重量大、 成本高、 自洁性能差, 落尘影响散热; 使用铝合 金冲压翅片者, 盲目追求散热面积, 忽略了翅片温度的不均匀性, 降低了散热 翅片与环境之间的换热效率, 不能充分发挥热管散热器的功能。 另外, 电源也 是影响 LED灯具寿命的主要原因, LED灯具的电源同样需要散热, 大多 LED灯具 厂家把电源和热管散热器分开设置, 电源自行自然散热, 这种设置方式既降低 了电源的寿命, 增加了成本, 也由此影响到 LED灯具的寿命和成本。 发明内容 为解决上述问题, 本发明提供了一种具有复合蒸发 的 LED灯具热管散热 器模组, 以降低 LED结的温度和光衰速度, 增加 LED灯具的寿命并降低成本。
为达到上述目的, 本发明提供一种具有复合蒸发 的 LED灯具热管散热器 模组, 它主要由复合蒸发 和散热管道构成, 其中,
所述复合蒸发 为板式结构, 板中内部设置有内腔通道, 该内腔通道与设 置在复合蒸发 外部的所述散热管道相连通 , 内腔通道和散热管道中注有工质; 复合蒸发 的上表面和 /或下表面构成受热面, 在受热面上制备有印刷电 路, 以及贴合有 LED芯片和构成 LED芯片恒流驱动电源的电子元器件。
所述复合蒸发 jnr中的所述内腔通道纵横交错设置。
本发明复合蒸发 通过设置纵横交错的内腔通道, 增加了工质与蒸发 之 间的热交换面积, 并通过在散热管道内外表面设置沟槽、 螺纹、 散热翅片等结 构增加了散热面积, 由此大大提高了散热效率。 复合蒸发 的受热面直接接受 LED芯片恒流驱动电源的电子元器件和 LED芯片发出的热量,大大降低了热源与 热管之间的热阻,提高了 LED灯具热管散热模组的散热效率, 同时还减轻了 LED 灯具电源乃至整个 LED灯具的重量和成本。 附图说明
图 1为本发明第 1种实施方式的主视示意图;
图 2为图 1 的左视图;
图 3为图 1中的 A部放大图;
图 4为图 1的仰视图;
图 5为图 4的 A-A剖面示意图;
图 6为图 4的 A-A剖面的另一形式的结构示意图;
图 7为本发明第二种实施方式的主视示意图;
图 8为图 7的左视图;
图 9为本发明第三种实施方式的主视示意图;
图 10为图 9的左视图;
图 11为本发明第四种实施方式的主视示意图;
图 12为图 1 1的左视图;
图 1 3为本发明第五种实施方式的主视示意图;
图 14为图 1 3的左视图。
图中: 1复合蒸发 , 1 1下层金属, 12上层金属, 1 3内腔通道, 14印刷电 路、 15恒流电源的电子元器件, 16LED芯片, 17受热面, 18金属型材, 2散热 管道, 3连接管, 4充液管, 5散热翅片。 具体实施方式
参见图 1一图 14 , 本发明是一种具有复合蒸发 Jnr的 LED灯具热管散热器模 组, 它由复合蒸发 H 散热管道 2、 连接管 3和充液管 4构成。 复合蒸发 l 为板式结构,板中内部设置有纵横交错的内腔通道 1 3 , 内腔通道 1 3通过连接管 3与设置在复合蒸发 1外部的散热管道 2相连通。在复合蒸发 1上装有与内 腔通道 1 3相通的充液管 4 , 内腔通道 1 3与散热管道 2经抽真空后加注有工质。
复合蒸发 可以有两种构成形式:
第一种: 由上、 下两层金属材料经加压、 吹涨等工序制成。
下、 上层金属 12、 11的材料各由铝、 铝合金, 或者铜、 铜合金, 或者各由 其他导热性能好的金属、 及其合金构成。
吹涨成的内腔通道 1 3构成了夹在上、下层金属内的相互纵横连接的内腔(见 图 5的结构)。
第二种: 整体由铝及其合金、 铜及其合金或其他导热性能好的金属及其合 金的型材 18制成(见图 6的结构)。
参见图 4 , 复合蒸发 l下表面 17为受热面, 在受热面 17上制备有印刷电 路 14、 以及贴合有 LED芯片 16和构成 LED芯片 16恒流驱动电源的电子元器件 15。 受热面 17直接接受 LED芯片恒流驱动电源的电子元器件 15和 LED芯片 16 发出的热量。
需要说明的是, 复合蒸发 的上下表面均可作为受热面, 如在不影响 LED 芯片发光的情况下, 也可将 LED 芯片贴合在复合蒸发 Jnr的上表面上, 或将 LED 芯片及其恒流驱动电源分别设置在复合蒸发 Jnr的上下两侧表面上。
图 3显示的是内腔通道 1 3、 散热管道 2与连接管 3的连接方式, 它们之间 可以是压合连接、 钎焊、 电阻焊、 氩弧焊、 储能焊或粘结剂粘接。
散热管道 2、 连接管 3的材料可以是铝、 铜或钢(帮迪管), 或者是上述材 料的合金, 甚或是导热性能好的其他材料。
散热管道 2和连接管 3是内外表面有轴向沟槽或螺纹的圓管或异形管, 或 者是普通的光滑圓管。 散热管道 2是内外表面有轴向沟槽或螺纹的圓管或异形 管, 增加了散热管道 2 管内与工质的热交换效率以及管外壁与环境的热交换效 率。
散热管道 2的结构根据散热的面积、 LED灯具的形状等可以设计成多种样式 , 其结构可以是蛇形管 (如图 1、 图 2所示)、 水平单管 (如图 7、 图 8所示)、 垂 直单管 (如图 11、 图 12所示), 还可以有多种形式, 如垂直多管、 双管和多管 交替排列, 倾斜管等等, 不一一列举。 在实际应用中, 并不局限于本发明的图 中所示的几种形状。 散热管道 2可根据 LED灯具的形状、 尺寸弯成各种形状。
为提高散热效率,散热管道 2上可以套装散热翅片 5。散热翅片 5的表面为 平面或曲面, 曲面的横断面可为园弧、 三角形、 梯形或矩形。 散热翅片 5 具有 的上述形状, 较传统散热翅片提高了散热翅片的换热效率。 散热翅片 5 的材料 是: 铝、 铜或它们的合金, 或者其他导热性能好的金属。
散热片 5、 散热管道 2、 连接管 3的表面可以涂覆一层远红外涂料或阳极氧 化成黑色, 提高了散热管道 2 与环境之间的热交换强度, 使散热效率进一步提 高。
复合蒸发 H 散热管道 2、 连接管 3、 充液管 4相互之间密封连接后, 经 充液管 4抽真空、 加注工质并密封后, 制作完成。
实际应用时,接通电源后,恒流电源电路元器件 15将交流电转换成直流电, 供 LED芯片 16工作。 LED芯片 16和恒流电源元器件 15所产生的热量加热复合 蒸发 l中内腔通道 13内的工质, 工质吸热沸腾、 蒸发为携带热量并具有一定 速度的工质蒸汽, 工质蒸汽经连接管 3进入散热管道 2 , 工质蒸汽在散热管道 2 内通过管壁与环境进行热交换, 失去热量的工质蒸汽冷凝为工质液体并依靠重 力回到复合蒸发 1的内腔通道 13中, 继续参加吸热蒸发、 放热冷凝的循环。 如此吸热蒸发、 放热冷凝的循环往复实现了对 LED芯片 16及其恒流驱动电源的 电子元器件的高效散热。
本发明的具有复合蒸发 ^的 LED灯具热管散热器模组, 具有结构简单、 重 量轻、 易加工、 可量产、 热阻低、 散热快、 成本低的特点, 能有效降低 LED结 的温度和延长 LED灯的寿命。

Claims

权利 要求
1、 一种具有复合蒸发 的 LED灯具热管散热器模组,它主要由复合蒸发 和散热管道构成, 其中,
所述的复合蒸发 为板式结构, 板中内部设置有内腔通道, 该内腔通道与 设置在复合蒸发 外部的所述散热管道相连通 , 内腔通道和散热管道中注有工 复合蒸发 的上表面和 /或下表面为受热面, 在受热面上制备有印刷电路, 以及贴合有 LED芯片和构成 LED芯片恒流驱动电源的电子元器件。
2、 根据权利要求 1所述的模组, 其特征在于: 所述复合蒸发 Jnr中的所述内 腔通道纵横交错设置。
3、 根据权利要求 1所述的模组, 其特征在于: 所述内腔通道通过连接管与 所述散热管道相连通。
4、 根据权利要求 1所述的模组, 其特征在于: 在所述复合蒸发 上设置有 与所述内腔通道相通的充液管。
5、 根据权利要求 1所述的模组, 其特征在于: 所述复合蒸发 由上、 下两 层金属材料经加压、 吹涨等已知工艺制成, 其中, 所述内腔通道经吹涨形成于 上、 下层金属之间; 上、 下层金属由铝、 铝合金、 铜、 铜合金或者其他导热性 能好的金属材料构成。
6、 根据权利要求 1所述的模组, 其特征在于: 所述复合蒸发 整体由铝、 铝合金、 铜、 铜合金或其他导热性能好的金属材料型材制成。
7、 根据权利要求 3所述的模组, 其特征在于: 所述内腔通道、 所述散热管 道与所述连接管之间通过压合、 钎焊、 电阻焊、 氩弧焊、 储能焊或粘结剂相互 连接。
8、 根据权利要求 3所述的模组, 其特征在于: 所述散热管道、 所述连接管 的材料可以是铝、 铜或钢(帮迪管), 或者是上述材料的合金, 也可以是导热性 能好的其他材料。
9、 根据权利要求 3所述的模组, 其特征在于: 所述散热管道和所述连接管 是内外表面有轴向沟槽或螺纹的圓管或异形管, 或者是普通的光滑圓管。
1 0、 根据权利要求 1 所述的模组, 其特征在于: 所述散热管道上套装散热 翅片, 散热翅片的表面为平面或曲面; 散热翅片 5 的材料是: 铝、 铜或它们的 合金, 或者其他导热性能好的金属。
1 1、 根据权利要求 1 所述的模组, 其特征在于: 所述散热翅片、 所述散热 管道、 所述连接管的表面设置有一层远红外涂料或经阳极氧化成黑色。
12、 根据权利要求 1 所述的模组, 其特征在于: 所述散热管道的结构根据 所需散热的面积、 LED灯具的形状等可以设计成多种样式,其结构可以是蛇形管、 水平单管、 垂单管、 双管、 多管交替排列或倾斜管。
PCT/CN2011/070152 2010-12-14 2011-01-10 一种具有复合蒸发皿的led灯具热管散热器模组 WO2012079291A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010585170.2 2010-12-14
CN2010105851702A CN102095188A (zh) 2010-12-14 2010-12-14 一种具有复合蒸发皿的led灯具热管散热器模组

Publications (1)

Publication Number Publication Date
WO2012079291A1 true WO2012079291A1 (zh) 2012-06-21

Family

ID=44128388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/070152 WO2012079291A1 (zh) 2010-12-14 2011-01-10 一种具有复合蒸发皿的led灯具热管散热器模组

Country Status (2)

Country Link
CN (1) CN102095188A (zh)
WO (1) WO2012079291A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103488266A (zh) * 2013-10-14 2014-01-01 浙江嘉熙光电设备制造有限公司 一种薄板型cpu散热器件及其加工方法
CN206280932U (zh) * 2016-06-01 2017-06-27 刘真 一种超大功率led投光灯用重力热管散热器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1971133A (zh) * 2006-11-29 2007-05-30 郑日春 一种灯
CN101576206A (zh) * 2009-05-05 2009-11-11 浙江名芯半导体科技有限公司 一种基于热管导热的大功率led灯
CN101608788A (zh) * 2009-07-21 2009-12-23 史杰 Led灯采用增强型蒸发段的回路热管散热装置
CN101769462A (zh) * 2010-01-08 2010-07-07 莱芜市玉成光电科技有限公司 一种led灯
CN101852416A (zh) * 2010-06-10 2010-10-06 上海合亚经贸有限公司 一种大功率led灯散热的方法与装置
CN101886801A (zh) * 2010-07-20 2010-11-17 上海交通大学 用于冷却led的组合式平板热管散热器
CN201636608U (zh) * 2010-02-11 2010-11-17 郑日春 一种大功率集成led灯

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2893560Y (zh) * 2006-05-08 2007-04-25 齐媛 一种温差电致冷器用热管散热器的蒸发皿
CN200979315Y (zh) * 2006-12-11 2007-11-21 齐媛 一种用于温差电致冷器的管翅式热管散热器
CN201964366U (zh) * 2010-12-14 2011-09-07 沈阳立晶光电有限公司 一种具有复合蒸发皿的led灯具热管散热器模组

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1971133A (zh) * 2006-11-29 2007-05-30 郑日春 一种灯
CN101576206A (zh) * 2009-05-05 2009-11-11 浙江名芯半导体科技有限公司 一种基于热管导热的大功率led灯
CN101608788A (zh) * 2009-07-21 2009-12-23 史杰 Led灯采用增强型蒸发段的回路热管散热装置
CN101769462A (zh) * 2010-01-08 2010-07-07 莱芜市玉成光电科技有限公司 一种led灯
CN201636608U (zh) * 2010-02-11 2010-11-17 郑日春 一种大功率集成led灯
CN101852416A (zh) * 2010-06-10 2010-10-06 上海合亚经贸有限公司 一种大功率led灯散热的方法与装置
CN101886801A (zh) * 2010-07-20 2010-11-17 上海交通大学 用于冷却led的组合式平板热管散热器

Also Published As

Publication number Publication date
CN102095188A (zh) 2011-06-15

Similar Documents

Publication Publication Date Title
CN101701701B (zh) 一种球形led灯泡的散热结构
TW201002994A (en) Illuminating device and annular heat-dissipating structure thereof
CN101937908B (zh) 一种热管型大功率led模块
TWI491083B (zh) A light emitting diode with a superheat conduit can replace a universal platform
CN101608757B (zh) Led路灯
CN201522221U (zh) 高导热均温箱回路热管散热装置
CN103185246B (zh) 照明装置
WO2019169938A1 (zh) 车灯及车辆
TW201251148A (en) Manufacturing method of LED heat conduction device
CN201475752U (zh) 高效热管散热的led照明灯具
WO2012079291A1 (zh) 一种具有复合蒸发皿的led灯具热管散热器模组
CN101893220B (zh) 用于冷却led的重力型平板热管散热器
CN101666440A (zh) 一种大功率led灯
CN101634533A (zh) 高导热均温箱回路热管散热装置
CN201476650U (zh) 高导热均温箱热管散热装置
CN201401649Y (zh) 大功率热管散热器led照明灯
CN201964366U (zh) 一种具有复合蒸发皿的led灯具热管散热器模组
CN203421650U (zh) 一种用于大功率led照明灯具的相变散热器
CN207179231U (zh) 一种led球泡灯散热结构
CN201475757U (zh) 一种大功率led灯
CN101943328A (zh) 一种单颗特大功率led光源照明灯
CN204358464U (zh) 一种led灯具
CN204285002U (zh) 一种led灯具
CN217302521U (zh) 一种散热体及led灯泡
CN214580888U (zh) 一种led灯散热结构、车灯及车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11849295

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11849295

Country of ref document: EP

Kind code of ref document: A1