WO2012077971A2 - 무선 통신 시스템에서 단말 간의 통신 방법 및 장치 - Google Patents

무선 통신 시스템에서 단말 간의 통신 방법 및 장치 Download PDF

Info

Publication number
WO2012077971A2
WO2012077971A2 PCT/KR2011/009421 KR2011009421W WO2012077971A2 WO 2012077971 A2 WO2012077971 A2 WO 2012077971A2 KR 2011009421 W KR2011009421 W KR 2011009421W WO 2012077971 A2 WO2012077971 A2 WO 2012077971A2
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
communication
transmission
primary
subframe
Prior art date
Application number
PCT/KR2011/009421
Other languages
English (en)
French (fr)
Other versions
WO2012077971A3 (ko
Inventor
서한별
이대원
김민규
김병훈
김기준
최영섭
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US13/988,708 priority Critical patent/US9185700B2/en
Priority to EP11847214.1A priority patent/EP2651047B1/en
Priority to KR1020137012688A priority patent/KR101955516B1/ko
Publication of WO2012077971A2 publication Critical patent/WO2012077971A2/ko
Publication of WO2012077971A3 publication Critical patent/WO2012077971A3/ko
Priority to US14/919,348 priority patent/US9462585B2/en
Priority to US15/253,302 priority patent/US9888473B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/04Terminal devices adapted for relaying to or from another terminal or user
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the following description relates to a wireless communication system, and more particularly, to a method and apparatus for communication between terminals in a wireless communication system.
  • FIG. 1 is a diagram illustrating an example of a wireless communication system to which the present invention can be applied.
  • two types of user equipments UEs
  • UEs user equipments
  • a primary UE directly connected to a base station for example, an eNB 110
  • a secondary UE that communicates with the network through the primary UE.
  • primary UE1 120 and primary UE2 130 are shown as examples of a primary UE
  • secondary UE1 140 and secondary UE2 150 are shown as examples of secondary UEs
  • secondary UE1 140 is illustrated.
  • secondary UE2 150 may communicate with primary UE1 120.
  • the primary UE and the secondary UE may also be referred to as a master UE and a slave UE.
  • the primary UE1 120 may perform an operation of relaying a signal transmitted by the secondary UE1 140 and / or a signal directed to the secondary UE1 140 between the secondary UE1 140 and the eNB 110. have.
  • a UE-relay scheme may be referred to as being applied.
  • FIG. 1 illustrates an operation in which a primary UE1 120 and a secondary UE 140 and / or 150 exchange signals within a coverage area of the eNB 110.
  • One or more secondary UEs may be connected to one primary UE, and the primary UE may play a role of controlling transmission and reception operations of a plurality of secondary UEs connected thereto.
  • the primary UE may be, for example, a general mobile phone, and the secondary UE may be a low power communication device attached to a laptop computer, a music player, a biosignal sensor, or the like.
  • the primary UE and the secondary UE may be devices owned by the same user.
  • the communication between the primary UE and the secondary UE may have a higher priority than the communication between the primary UE1 120 and the secondary UE1 140.
  • the communication between the primary UE and the eNB generally has a higher priority than communication between the primary UE and the secondary UE.
  • communication between the UE and the eNB according to the previously defined method is designed without considering communication between the primary UE and the secondary UE, so that communication between the primary UE and the secondary UE does not prevent communication between the other UE and the eNB. Because it must be defined. For example, it is preferable that communication between the primary UE1 120 and the secondary UE1 140 is performed only when there is no communication of real time traffic between the primary UE2 130 and the eNB 110.
  • the communication between the primary UE and the secondary UE as described above may be required to avoid the interference caused by the communication of other UEs.
  • the primary UE1 120 and the secondary UE1 140 are located in close proximity (for example, the same user has the primary UE1 120 and the secondary UE1 140). Can be assumed). Accordingly, communication between the primary UE and the secondary UE can be generally performed at low power, which is desirable in that battery consumption of the primary UE and the secondary UE can be reduced. Meanwhile, communication may be performed at a relatively high power between another UE (eg, primary UE2 130) and the eNB 110. Therefore, from the standpoint of communication between the primary UE and the secondary UE, since the communication between the other UE and the eNB may act as a very strong interference, a means for avoiding this needs to be provided.
  • another UE eg, primary UE2 130
  • Another object of the present invention is to provide a method for transmitting and receiving signals between the terminal to be a technical problem. Another object of the present invention is to provide a resource setting method, a channel setting method, a transmission power control method, and the like for communication between terminals. Another object of the present invention is to provide a communication method between terminals in a licensed band / unlicensed band or a communication method between a terminal and a base station.
  • a method of performing communication between terminals by a first terminal and a second terminal includes: Receiving scheduling information including information for allocating a resource; And performing communication with the second terminal by the first terminal based on the scheduling information.
  • a first slot of a subframe among the resources for inter-terminal communication may include a control signal for inter-terminal communication
  • a second slot of the subframe may include a data signal between the terminal.
  • a first terminal for performing terminal-to-terminal communication with a second terminal includes: a transmission module for transmitting a signal to the outside; Receiving module for receiving a signal from the outside; And a processor controlling the first terminal including the receiving module and the transmitting module.
  • the processor is configured to receive scheduling information including information for allocating a resource for communication between terminals from a base station through the receiving module; It may be configured to communicate with the second terminal through one or more of the transmitting module or the receiving module based on the scheduling information.
  • a first slot of a subframe among the resources for inter-terminal communication may include a control signal for inter-terminal communication
  • a second slot of the subframe may include a data signal between the terminal.
  • the first slot is used for transmission of a control signal for the second terminal
  • the second slot is the first slot. It can be used for data transmission and reception between the first and second terminals.
  • resources for inter-terminal communication are allocated among downlink resources from the base station to the first terminal, resources for inter-terminal communication are allocated in remaining symbols except for the first one or more symbols of the subframe,
  • the control signal for the second terminal may be additionally transmitted in the second slot.
  • the first one or more symbols of the one subframe may be allocated for carrier sensing.
  • the last symbol of the first slot of the one subframe may be set to a null symbol for transmission-reception mode switching.
  • the last symbol of the second slot of the one subframe may be set to a null symbol for transmission-reception mode switching or transmission power change.
  • the scheduling information may be provided to the first and second terminals using one scheduling message associated with an identifier assigned to the pair of the first terminal and the second terminal.
  • the scheduling information may be provided to each of the first and second terminals using a separate scheduling message associated with an identifier assigned to each of the first and second terminals.
  • the second terminal may receive a scheduling message associated with the identifier of the first terminal.
  • the scheduling information may be transmitted from the base station to the first terminal through a random access procedure of the first terminal.
  • the scheduling information may include a transmission power control command for transmission from the first terminal to the base station and a transmission power control command for transmission from the first terminal to the second terminal.
  • the transmission power of the signal from the first terminal is a fixed value previously designated by the base station through higher layer signaling or The base station may follow a value indicated by an absolute value.
  • the first terminal may periodically or aperiodically report the transmission power of the signal from the first terminal to the base station.
  • a method for transmitting and receiving signals between terminals may be provided.
  • a resource setting method, a channel setting method, a transmission power control method, and the like for communication between terminals may be provided.
  • a communication scheme between terminals in a licensed band / unlicensed band or a communication scheme between a terminal and a base station may be provided.
  • FIG. 1 is a diagram illustrating an example of a wireless communication system to which the present invention can be applied.
  • FIG. 2 is a diagram illustrating a structure of a downlink radio frame.
  • 3 is a diagram illustrating a resource grid in a downlink slot.
  • FIG. 4 is a diagram illustrating a structure of a downlink subframe.
  • 5 is a diagram illustrating a structure of an uplink subframe.
  • FIG. 6 is a configuration diagram of a wireless communication system having multiple antennas.
  • FIG. 7 is a diagram illustrating a CRS and a DRS pattern defined in an existing 3GPP LTE system.
  • FIG 8 illustrates an uplink subframe structure including an SRS symbol.
  • FIG. 9 is a diagram showing an example of the implementation of the transceiver function of the FDD mode repeater.
  • 10 is a diagram for describing transmission of a terminal from a repeater and downlink transmission from a base station to a repeater.
  • FIG. 11 is a diagram illustrating a DL repeater subframe structure.
  • FIG. 12 illustrates a subframe structure configured in a DL resource according to an example of the present invention.
  • FIG. 13 is a diagram exemplarily illustrating a region in which Tx-Rx switching is performed in a subframe structure according to an embodiment of the present invention.
  • FIG. 14 is a view for explaining the use of the last portion of a subframe in the subframe structure of FIG. 13 according to an embodiment of the present invention.
  • FIG. 15 illustrates a subframe structure using both first and second slots for transmission of a secondary UE according to an example of the present invention.
  • FIG. 16 is a view for explaining the use of the last portion of a subframe in the subframe structure of FIG. 15 according to an example of the present invention.
  • FIG. 17 illustrates a subframe structure configured in UL resources according to an example of the present invention.
  • 18 is a diagram for explaining details of a subframe structure configured in an UL resource according to an embodiment of the present invention.
  • 19 is a diagram illustrating an example of a signal structure used by a secondary UE according to an example of the present invention for random access.
  • 20 is a diagram illustrating an exemplary structure of a control channel for a secondary UE according to an example of the present invention.
  • 21 illustrates a wireless communication system in which communication between UEs is performed using resources designated by an eNB according to an example of the present invention.
  • FIG. 22 is a diagram illustrating a subframe structure when a primary UE forms a separate cell according to an example of the present invention.
  • 23 is a flowchart illustrating a method for communication between terminals according to an embodiment of the present invention.
  • 24 is a diagram showing the configuration of a transmission and reception apparatus according to the present invention.
  • each component or feature may be considered to be optional unless otherwise stated.
  • Each component or feature may be embodied in a form that is not combined with other components or features.
  • some components and / or features may be combined to form an embodiment of the present invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment.
  • the base station has a meaning as a terminal node of the network that directly communicates with the terminal.
  • the specific operation described as performed by the base station in this document may be performed by an upper node of the base station in some cases.
  • a 'base station (BS)' may be replaced by terms such as a fixed station, a Node B, an eNode B (eNB), an access point (AP), and the like.
  • the repeater may be replaced by terms such as relay node (RN) and relay station (RS).
  • the term “terminal” may be replaced with terms such as a user equipment (UE), a mobile station (MS), a mobile subscriber station (MSS), a subscriber station (SS), and the like.
  • Embodiments of the present invention may be supported by standard documents disclosed in at least one of the wireless access systems IEEE 802 system, 3GPP system, 3GPP LTE and LTE-Advanced (LTE-A) system and 3GPP2 system. That is, steps or parts which are not described to clearly reveal the technical spirit of the present invention among the embodiments of the present invention may be supported by the above documents. In addition, all terms disclosed in the present document can be described by the above standard document.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
  • TDMA may be implemented with wireless technologies such as Global System for Mobile communications (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE).
  • GSM Global System for Mobile communications
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA).
  • UTRA is part of the Universal Mobile Telecommunications System (UMTS).
  • 3rd Generation Partnership Project (3GPP) long term evolution (LTE) is part of an Evolved UMTS (E-UMTS) using E-UTRA, and employs OFDMA in downlink and SC-FDMA in uplink.
  • LTE-A Advanced
  • WiMAX can be described by the IEEE 802.16e standard (WirelessMAN-OFDMA Reference System) and the advanced IEEE 802.16m standard (WirelessMAN-OFDMA Advanced system). For clarity, the following description focuses on 3GPP LTE and 3GPP LTE-A systems, but the technical spirit of the present invention is not limited thereto.
  • a structure of a downlink radio frame will be described with reference to FIG. 2.
  • uplink / downlink data packet transmission is performed in units of subframes, and one subframe is defined as a predetermined time interval including a plurality of OFDM symbols.
  • the 3GPP LTE standard supports a type 1 radio frame structure applicable to frequency division duplex (FDD) and a type 2 radio frame structure applicable to time division duplex (TDD).
  • the downlink radio frame consists of 10 subframes, and one subframe consists of two slots in the time domain.
  • the time it takes for one subframe to be transmitted is called a transmission time interval (TTI).
  • TTI transmission time interval
  • one subframe may have a length of 1 ms and one slot may have a length of 0.5 ms.
  • One slot includes a plurality of OFDM symbols in the time domain and a plurality of resource blocks (RBs) in the frequency domain.
  • RBs resource blocks
  • a resource block (RB) is a resource allocation unit and may include a plurality of consecutive subcarriers in one slot.
  • the number of OFDM symbols included in one slot may vary depending on the configuration of a cyclic prefix (CP).
  • CP has an extended CP (normal CP) and a normal CP (normal CP).
  • normal CP normal CP
  • the number of OFDM symbols included in one slot may be seven.
  • the OFDM symbol is configured by an extended CP, since the length of one OFDM symbol is increased, the number of OFDM symbols included in one slot is smaller than that of the normal CP.
  • the number of OFDM symbols included in one slot may be six. If the channel state is unstable, such as when the terminal moves at a high speed, an extended CP may be used to further reduce intersymbol interference.
  • one subframe includes 14 OFDM symbols.
  • the first two or three OFDM symbols of each subframe may be allocated to a physical downlink control channel (PDCCH), and the remaining OFDM symbols may be allocated to a physical downlink shared channel (PDSCH).
  • PDCCH physical downlink control channel
  • PDSCH physical downlink shared channel
  • Type 2B is a diagram illustrating the structure of a type 2 radio frame.
  • Type 2 radio frames consist of two half frames, each of which has five subframes, a downlink pilot time slot (DwPTS), a guard period (GP), and an uplink pilot time slot (UpPTS).
  • DwPTS downlink pilot time slot
  • GP guard period
  • UpPTS uplink pilot time slot
  • One subframe consists of two slots.
  • DwPTS is used for initial cell search, synchronization or channel estimation at the terminal.
  • UpPTS is used for channel estimation at the base station and synchronization of uplink transmission of the terminal.
  • the guard period is a period for removing interference generated in the uplink due to the multipath delay of the downlink signal between the uplink and the downlink.
  • one subframe consists of two slots regardless of the radio frame type.
  • the structure of the radio frame is only an example, and the number of subframes included in the radio frame or the number of slots included in the subframe and the number of symbols included in the slot may be variously changed.
  • One downlink slot includes seven OFDM symbols in the time domain and one resource block (RB) is shown to include 12 subcarriers in the frequency domain, but the present invention is not limited thereto.
  • one slot includes 7 OFDM symbols in the case of a general cyclic prefix (CP), but one slot may include 6 OFDM symbols in the case of an extended-CP (CP).
  • CP general cyclic prefix
  • Each element on the resource grid is called a resource element.
  • One resource block includes 12 ⁇ 7 resource elements.
  • the number of N DLs of resource blocks included in the downlink slot depends on the downlink transmission bandwidth.
  • the structure of the uplink slot may be the same as the structure of the downlink slot.
  • FIG. 4 is a diagram illustrating a structure of a downlink subframe.
  • Up to three OFDM symbols at the front of the first slot in one subframe correspond to a control region to which a control channel is allocated.
  • the remaining OFDM symbols correspond to data regions to which a physical downlink shared channel (PDSCH) is allocated.
  • Downlink control channels used in the 3GPP LTE system include, for example, a Physical Control Format Indicator Channel (PCFICH), a Physical Downlink Control Channel (PDCCH), and a Physical HARQ Indicator Channel.
  • PCFICH Physical Hybrid automatic repeat request Indicator Channel
  • the PCFICH is transmitted in the first OFDM symbol of a subframe and includes information on the number of OFDM symbols used for control channel transmission in the subframe.
  • the PHICH includes a HARQ ACK / NACK signal as a response of uplink transmission.
  • Control information transmitted through the PDCCH is referred to as downlink control information (DCI).
  • DCI includes uplink or downlink scheduling information or an uplink transmit power control command for a certain terminal group.
  • the PDCCH is a resource allocation and transmission format of the downlink shared channel (DL-SCH), resource allocation information of the uplink shared channel (UL-SCH), paging information of the paging channel (PCH), system information on the DL-SCH, on the PDSCH Resource allocation of upper layer control messages such as random access responses transmitted to the network, a set of transmit power control commands for individual terminals in an arbitrary terminal group, transmission power control information, and activation of voice over IP (VoIP) And the like.
  • a plurality of PDCCHs may be transmitted in the control region.
  • the UE may monitor the plurality of PDCCHs.
  • the PDCCH is transmitted in an aggregation of one or more consecutive Control Channel Elements (CCEs).
  • CCEs Control Channel Elements
  • the CCE is a logical allocation unit used to provide a PDCCH at a coding rate based on the state of a radio channel.
  • the CCE corresponds to a plurality of resource element groups.
  • the format of the PDCCH and the number of available bits are determined according to the correlation between the number of CCEs and the coding rate provided by the CCEs.
  • the base station determines the PDCCH format according to the DCI transmitted to the terminal, and adds a cyclic redundancy check (CRC) to the control information.
  • the CRC is masked with an identifier called a Radio Network Temporary Identifier (RNTI) according to the owner or purpose of the PDCCH.
  • RNTI Radio Network Temporary Identifier
  • the cell-RNTI (C-RNTI) identifier of the terminal may be masked to the CRC.
  • a paging indicator identifier P-RNTI
  • the PDCCH is for system information (more specifically, system information block (SIB))
  • SI-RNTI system information RNTI
  • RA-RNTI Random Access-RNTI
  • RA-RNTI may be masked to the CRC to indicate a random access response that is a response to the transmission of the random access preamble of the terminal.
  • the uplink subframe may be divided into a control region and a data region in the frequency domain.
  • a physical uplink control channel (PUCCH) including uplink control information is allocated to the control region.
  • a physical uplink shared channel (PUSCH) including user data is allocated.
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • one UE does not simultaneously transmit a PUCCH and a PUSCH.
  • PUCCH for one UE is allocated to an RB pair in a subframe. Resource blocks belonging to a resource block pair occupy different subcarriers for two slots. This is called a resource block pair allocated to the PUCCH is frequency-hopped at the slot boundary.
  • FIG. 6 is a configuration diagram of a wireless communication system having multiple antennas.
  • the theoretical ratio is proportional to the number of antennas, unlike when a plurality of antennas are used only in a transmitter or a receiver.
  • Channel transmission capacity is increased. Therefore, the transmission rate can be improved and the frequency efficiency can be significantly improved.
  • the transmission rate can theoretically increase as the rate of increase rate R i multiplied by the maximum transmission rate R o when using a single antenna.
  • a transmission rate four times higher than a single antenna system may be theoretically obtained. Since the theoretical capacity increase of multi-antenna systems was proved in the mid 90's, various techniques to actively lead to the actual data rate improvement have been actively studied. In addition, some technologies are already being reflected in various wireless communication standards such as 3G mobile communication and next generation WLAN.
  • the research trends related to multi-antennas to date include the study of information theory aspects related to the calculation of multi-antenna communication capacity in various channel environments and multi-access environments, the study of wireless channel measurement and model derivation of multi-antenna systems, improvement of transmission reliability, and improvement of transmission rate. Research is being actively conducted from various viewpoints, such as research on space-time signal processing technology.
  • the transmission signal when there are N T transmit antennas, the maximum information that can be transmitted is N T.
  • the transmission information may be expressed as follows.
  • Each transmission information The transmit power may be different.
  • Each transmit power In this case, the transmission information whose transmission power is adjusted may be expressed as follows.
  • Weighting matrix N T transmitted signals actually applied by applying Consider the case where is configured.
  • Weighting matrix Plays a role in properly distributing transmission information to each antenna according to a transmission channel situation.
  • Vector It can be expressed as follows.
  • Received signal is received signal of each antenna when there are N R receiving antennas Can be expressed as a vector as
  • channels may be divided according to transmit / receive antenna indexes. From the transmit antenna j to the channel through the receive antenna i It is indicated by. Note that in the order of the index, the receiving antenna index is first, and the index of the transmitting antenna is later.
  • FIG. 6 (b) is a diagram illustrating a channel from the N T transmit antennas to the receive antenna i .
  • the channels may be bundled and displayed in vector and matrix form.
  • a channel arriving from a total of N T transmit antennas to a receive antenna i may be represented as follows.
  • AWGN Additive White Gaussian Noise
  • the received signal may be expressed as follows through the above-described mathematical modeling.
  • the channel matrix indicating the channel state The number of rows and columns of is determined by the number of transmit and receive antennas.
  • Channel matrix The number of rows is equal to the number of receive antennas N R
  • the number of columns is equal to the number of transmit antennas N T. That is, the channel matrix The matrix is N R ⁇ N T.
  • the rank of a matrix is defined as the minimum number of rows or columns that are independent of each other. Thus, the rank of the matrix cannot be greater than the number of rows or columns.
  • Channel matrix Rank of ( ) Is limited to
  • rank may be defined as the number of nonzero eigenvalues when the matrix is eigenvalue decomposition.
  • another definition of rank may be defined as the number of nonzero singular values when singular value decomposition is performed. Therefore, the physical meaning of rank in the channel matrix is the maximum number that can send different information in a given channel.
  • the transmitted packet is transmitted through a wireless channel
  • signal distortion may occur during the transmission process.
  • the distortion In order to correctly receive the distorted signal at the receiving end, the distortion must be corrected in the received signal using the channel information.
  • a method of transmitting the signal known to both the transmitting side and the receiving side and finding the channel information with the distortion degree when the signal is received through the channel is mainly used.
  • the signal is called a pilot signal or a reference signal.
  • the downlink reference signal includes a common reference signal (CRS) shared by all terminals in a cell and a dedicated reference signal (DRS) only for a specific terminal.
  • CRS common reference signal
  • DRS dedicated reference signal
  • the receiver estimates the state of the channel from the CRS and feeds back indicators related to channel quality such as channel quality indicator (CQI), precoding matrix index (PMI), and / or rank indicator (RI) to the transmitter (base station). can do.
  • CQI channel quality indicator
  • PMI precoding matrix index
  • RI rank indicator
  • the CRS may be called a cell-specific reference signal.
  • RS related to feedback of Channel State Information (CSI) such as CQI / PMI / RI may be separately defined as CSI-RS.
  • CSI-RS Channel State Information
  • the DRS may be transmitted through the corresponding RE.
  • the UE may be instructed as to whether DRS is present from a higher layer and may be instructed that the DRS is valid only when the corresponding PDSCH is mapped.
  • the DRS may also be called a UE-specific reference signal or a demodulation reference signal (DMRS).
  • FIG. 7 is a diagram illustrating a pattern in which CRSs and DRSs defined in an existing 3GPP LTE system (eg, Release-8) are mapped onto a downlink resource block pair (RB pair).
  • a downlink resource block pair as a unit to which a reference signal is mapped may be expressed in units of 12 subcarriers in one subframe ⁇ frequency in time. That is, one resource block pair has 14 OFDM symbol lengths in the case of a normal CP (FIG. 7 (a)) and 12 OFDM symbol lengths in the case of an extended CP (FIG. 7 (b)).
  • FIG. 7 shows a position of a reference signal on a resource block pair in a system in which a base station supports four transmit antennas.
  • resource elements RE denoted by '0', '1', '2' and '3' indicate positions of CRSs for antenna port indexes 0, 1, 2, and 3, respectively.
  • the resource element denoted as 'D' in FIG. 7 indicates the position of the DRS.
  • the CRS is used to estimate a channel of a physical antenna terminal, and is a reference signal that can be commonly received by all UEs in a cell, and is distributed over all bands.
  • CRS may be used for channel state information (CSI) acquisition and data demodulation purposes.
  • CSI channel state information
  • the CRS is defined in various forms according to the antenna configuration of the transmitting side (base station).
  • the 3GPP LTE (eg, Release-8) system supports various antenna configurations, and the downlink signal transmitter (base station) uses three types of antenna configurations such as a single antenna, two transmit antennas, and four transmit antennas.
  • a reference signal for a single antenna port is arranged.
  • reference signals for two antenna ports are arranged in a time division multiplexing and / or frequency division multiplexing scheme. That is, reference signals for the two antenna ports may be arranged in different time resources and / or different frequency resources to be distinguished from each other.
  • Channel information estimated by the downlink signal receiving side (terminal) through the CRS is a single antenna transmission (Transmission diversity), closed-loop spatial multiplexing, open-loop It may be used for demodulation of data transmitted by a transmission scheme such as open-loop spatial multiplexing, multi-user MIMO, or the like.
  • the reference signal when transmitting a reference signal from one antenna port, the reference signal is transmitted to a resource element (RE) position designated according to the reference signal pattern, and a signal is transmitted to a resource element (RE) position designated for another antenna port. Do not send.
  • Equation 12 k is a subcarrier index, l is a symbol index, and p is an antenna port index.
  • the position of the reference signal in the frequency domain depends on the V shift value. Since the V shift value also depends on the cell ID, the position of the reference signal has a different frequency shift value for each cell.
  • the position on the frequency domain of the CRS may be shifted for each cell to be different.
  • a reference signal is located every 3 subcarriers
  • one cell may be arranged on a 3k subcarrier and another cell on a 3k + 1 subcarrier.
  • the reference signal is arranged at 6 RE intervals (ie, 6 subcarrier intervals) in the frequency domain, and maintains 3 RE intervals in the frequency domain from the RE where reference signals for other antenna ports are arranged.
  • power boosting may be applied to the CRS.
  • Power boosting refers to the transmission of a reference signal with higher power by taking power from another RE other than the RE allocated for the reference signal among the resource elements RE of one OFDM symbol.
  • reference signal positions are arranged at regular intervals starting from the symbol index ( l ) 0 of each slot.
  • the time interval is defined differently depending on the CP length.
  • the general CP case is located at symbol indexes 0 and 4 of the slot
  • the extended CP case is located at symbol indexes 0 and 3 of the slot.
  • Only one reference signal is defined for up to two antenna ports in one OFDM symbol. Therefore, when transmitting 4 transmit antennas, the reference signals for antenna ports 0 and 1 are located at symbol indexes 0 and 4 of slots (symbol indexes 0 and 3 in the case of an extended CP), and the reference signals for antenna ports 2 and 3 It is located at symbol index 1 of the slot.
  • the frequency positions of the reference signals for the antenna ports 2 and 3 are switched with each other in the second slot.
  • a system with an extended antenna configuration (eg, an LTE-A system) can be designed.
  • the extended antenna configuration can be, for example, eight transmit antenna configurations.
  • it is necessary to support terminals operating in the existing antenna configuration, that is, backward compatibility.
  • adding a CRS for a new antenna port to a system having an existing antenna configuration has a disadvantage in that the reference signal overhead is rapidly increased to decrease the data rate.
  • CSI-RS channel state information
  • the DRS (or terminal-specific reference signal) is a reference signal used for data demodulation.
  • the terminal receives the reference signal by using the precoding weight used for the specific terminal as the reference signal when transmitting multiple antennas, Equivalent channel combined with the precoding weight transmitted in the transmission antenna and the transmission channel can be estimated.
  • Equation 13 is for the case of a general CP
  • Equation 14 is for the case of an extended CP.
  • Equations 13 and 14 k is a subcarrier index, l is a symbol index, and p is an antenna port index.
  • the position of the reference signal in the frequency domain depends on the V shift value. Since the V shift value also depends on the cell ID, the position of the reference signal has a different frequency shift value for each cell.
  • LTE-A Advanced
  • 3GPP LTE 3GPP LTE
  • 3GPP LTE 3GPP LTE
  • two or more layers may be used to support data transmission through an added antenna.
  • DRS can be defined.
  • CoMP Cooperative Multi-Point
  • CoMP transmission and reception techniques also referred to as co-MIMO, collaborative MIMO, network MIMO, etc.
  • CoMP technology can increase the performance of the terminal located in the cell-edge (cell-edge) and increase the average sector throughput (throughput).
  • inter-cell interference may reduce performance and average sector yield of a terminal located in a cell boundary.
  • ICI inter-cell interference
  • existing LTE system is located in a cell-boundary in an environment that is limited by interference by using a simple passive technique such as fractional frequency reuse (FFR) through UE-specific power control.
  • FFR fractional frequency reuse
  • the method for the terminal to have a proper yield performance has been applied.
  • CoMP transmission scheme may be applied.
  • CoMP schemes applicable to downlink can be classified into joint processing (JP) techniques and coordinated scheduling / beamforming (CS / CB) techniques.
  • JP joint processing
  • CS / CB coordinated scheduling / beamforming
  • the JP technique may use data at each point (base station) of the CoMP cooperative unit.
  • CoMP cooperative unit means a set of base stations used in a cooperative transmission scheme.
  • the JP technique can be classified into a joint transmission technique and a dynamic cell selection technique.
  • the joint transmission technique refers to a technique in which a PDSCH is transmitted from a plurality of points (part or all of CoMP cooperative units) at a time. That is, data transmitted to a single terminal may be simultaneously transmitted from a plurality of transmission points. According to the joint transmission technique, the quality of a received signal may be improved coherently or non-coherently, and may also actively cancel interference with other terminals.
  • Dynamic cell selection scheme refers to a scheme in which PDSCH is transmitted from one point (of CoMP cooperative units) at a time. That is, data transmitted to a single terminal at a specific time point is transmitted from one point, and other points in the cooperative unit do not transmit data to the corresponding terminal at that time point, and a point for transmitting data to the corresponding terminal is dynamically selected. Can be.
  • CoMP cooperative units may cooperatively perform beamforming of data transmission for a single terminal.
  • data is transmitted only in the serving cell, but user scheduling / beamforming may be determined by coordination of cells of a corresponding CoMP cooperative unit.
  • coordinated multi-point reception means receiving a signal transmitted by coordination of a plurality of geographically separated points.
  • CoMP schemes applicable to uplink may be classified into joint reception (JR) and coordinated scheduling / beamforming (CS / CB).
  • the JR scheme means that a signal transmitted through a PUSCH is received at a plurality of reception points.
  • a PUSCH is received only at one point, but user scheduling / beamforming is determined by coordination of cells of a CoMP cooperative unit. It means to be.
  • SRS Sounding Reference Signal
  • the sounding reference signal is mainly used for frequency-selective scheduling on uplink by a base station measuring channel quality and is not associated with uplink data and / or control information transmission. Do not.
  • the present invention is not limited thereto, and the SRS may be used for the purpose of improved power control or for supporting various start-up functions of terminals not recently scheduled.
  • the start function is, for example, an initial modulation and coding scheme (MCS), initial power control for data transmission, timing advance and frequency anti-selective scheduling (in the first slot of the subframe).
  • MCS modulation and coding scheme
  • Frequency resources are selectively allocated and may include pseudo-random hopping to other frequencies in the second slot).
  • the SRS may be used for downlink channel quality measurement under the assumption that the radio channel is reciprocal between uplink and downlink. This assumption is particularly valid in time division duplex (TDD) systems where uplink and downlink share the same frequency band and are distinguished in the time domain.
  • TDD time division duplex
  • the subframe in which the SRS is transmitted by any terminal in the cell is indicated by cell-specific broadcast signaling.
  • the 4-bit cell-specific 'SrsSubframeConfiguration' parameter represents fifteen possible configurations of subframes in which an SRS can be transmitted within each radio frame. This configuration can provide flexibility to adjust SRS overhead according to network deployment scenarios.
  • the configuration of the other (16th) of the parameter is to switch off the SRS transmission in the cell completely, for example, may be suitable for a cell serving mainly high speed terminals.
  • the SRS is always transmitted on the last SC-FDMA symbol of the configured subframe. Therefore, the SRS and the demodulation reference signal (DMRS) are located on different SC-FDMA symbols. PUSCH data transmissions are not allowed on the SC-FDMA symbols designated for SRS transmissions, and therefore do not exceed approximately 7% even when the sounding overhead is highest (that is, when there is an SRS transmission symbol in every subframe). .
  • Each SRS symbol is generated by a base sequence (random sequence or Zadoff-Chu-based sequence set) for a given time unit and frequency band, and all terminals in a cell use the same base sequence.
  • SRS transmissions from a plurality of terminals in a cell in the same time unit and the same frequency band are orthogonally distinguished by different cyclic shifts of a basic sequence allocated to the plurality of terminals.
  • SRS sequences of different cells can be distinguished by assigning different base sequences from cell to cell, but orthogonality between different base sequences is not guaranteed.
  • Repeaters may be considered, for example, to extend high data rate coverage, improve group mobility, ad hoc network deployment, improve cell boundary yield and / or provide network coverage in new areas.
  • the relay plays a role of forwarding transmission and reception between the base station and the terminal, and two types of links (backhaul link and access link) having different attributes are applied to each carrier frequency band.
  • the base station may comprise a donor cell.
  • the repeater is wirelessly connected to the radio-access network through the donor cell.
  • the backhaul link between the base station and the repeater may be represented as a backhaul downlink when using a downlink frequency band or a downlink subframe resource, and as a backhaul uplink when using an uplink frequency band or an uplink subframe resource.
  • the frequency band is a resource allocated in the frequency division duplex (FDD) mode
  • the subframe is a resource allocated in the time division duplex (TDD) mode.
  • FDD frequency division duplex
  • TDD time division duplex
  • the access link between the repeater and the terminal (s) uses downlink frequency band or downlink subframe resources, it is expressed as access downlink, and when uplink frequency band or uplink subframe resource is used, access uplink. Can be represented by a link.
  • the base station requires a function of uplink reception and downlink transmission
  • the terminal requires a function of uplink transmission and downlink reception.
  • the repeater requires all the functions of backhaul uplink transmission to the base station, access uplink reception from the terminal, backhaul downlink reception from the base station, and access downlink transmission to the terminal.
  • the receiving function of the repeater is as follows.
  • the downlink received signal from the base station is passed to the fast fourier transform (FFT) module 912 via the duplexer 911 and the OFDMA baseband reception process 913 is performed.
  • the uplink received signal from the terminal is delivered to the FFT module 922 via the duplexer 921 and a Discrete Fourier Transform-spread-OFDMA (DFT-s-OFDMA) baseband reception process 923 is performed.
  • DFT-s-OFDMA Discrete Fourier Transform-spread-OFDMA
  • the downlink signal receiving process from the base station and the uplink signal receiving process from the terminal may be performed in parallel at the same time. Meanwhile, the transmission function of the repeater will be described conceptually as follows.
  • the uplink transmission signal to the base station is transmitted via a DFT-s-OFDMA baseband transmission process 933, an Inverse FFT (IFFT) module 932, and a duplexer 931.
  • the downlink transmission signal to the terminal is transmitted through the OFDM baseband transmission process 943, the IFFT module 942 and the duplexer 941.
  • the uplink signal transmission process to the base station and the downlink signal transmission process to the terminal may be performed in parallel at the same time.
  • the duplexers shown in one direction may be implemented by one bidirectional duplexer.
  • the duplexer 911 and the duplexer 931 may be implemented as one bidirectional duplexer
  • the duplexer 921 and the duplexer 941 may be implemented as one bidirectional duplexer.
  • the IFFT module and baseband process module lines associated with transmission and reception on a particular carrier frequency band in one bidirectional duplexer may be implemented as branching.
  • the case in which the backhaul link operates in the same frequency band as the access link is called 'in-band', and the frequency band in which the backhaul link and the access link are different.
  • the case of operating at is called 'out-band'.
  • a terminal operating according to an existing LTE system eg, Release-8 (hereinafter referred to as a legacy terminal) should be able to access the donor cell.
  • the repeater may be classified as a transparent repeater or a non-transparent repeater.
  • a transparent means a case in which a terminal does not recognize whether it communicates with a network through a repeater
  • a non-transient refers to a case in which a terminal recognizes whether a terminal communicates with a network through a repeater.
  • the repeater may be divided into a repeater configured as part of the donor cell or a repeater controlling the cell by itself.
  • the repeater configured as part of the donor cell may have a repeater identifier (ID), but does not have the repeater's own cell identity.
  • ID a repeater identifier
  • RRM Radio Resource Management
  • a relay configured as part of the donor cell.
  • such a repeater can support legacy terminals.
  • various types of smart repeaters, decode-and-forward relays, L2 (second layer) repeaters, and type-2 repeaters are examples of such repeaters.
  • the repeater controls one or several cells, each of the cells controlled by the repeater is provided with a unique physical layer cell identity, and may use the same RRM mechanism. From a terminal perspective, there is no difference between accessing a cell controlled by a repeater and accessing a cell controlled by a general base station.
  • the cell controlled by this repeater may support the legacy terminal.
  • self-backhauling repeaters, L3 (third layer) repeaters, type-1 repeaters and type-1a repeaters are such repeaters.
  • the type-1 repeater controls the plurality of cells as an in-band repeater, each of which appears to be a separate cell from the donor cell from the terminal's point of view. Also, the plurality of cells have their own physical cell IDs (defined in LTE Release-8), and the repeater may transmit its own synchronization channel, reference signal, and the like. In the case of single-cell operation, the terminal may receive scheduling information and HARQ feedback directly from the relay and transmit its control channel (scheduling request (SR), CQI, ACK / NACK, etc.) to the relay.
  • the type-1 repeater appears to be a legacy base station (base stations operating according to the LTE Release-8 system). That is, it has backward compatibility.
  • the type-1 repeater may be seen as a base station different from the legacy base station, thereby providing performance improvement.
  • the type-1a repeater has the same features as the type-1 repeater described above in addition to operating out-band.
  • the operation of the type-1a repeater may be configured to minimize or eliminate the impact on L1 (first layer) operation.
  • the type-2 repeater is an in-band repeater and does not have a separate physical cell ID and thus does not form a new cell.
  • the type 2 repeater is transparent to the legacy terminal, and the legacy terminal is not aware of the presence of the type 2 repeater.
  • the type-2 repeater may transmit a PDSCH, but not at least CRS and PDCCH.
  • resource partitioning In order for the repeater to operate in-band, some resources in time-frequency space must be reserved for the backhaul link and these resources can be configured not to be used for the access link. This is called resource partitioning.
  • the backhaul downlink and the access downlink may be multiplexed in a time division multiplexing (TDM) scheme on one carrier frequency (ie, only one of the backhaul downlink or the access downlink is activated at a specific time).
  • TDM time division multiplexing
  • the backhaul uplink and access uplink may be multiplexed in a TDM manner on one carrier frequency (ie, only one of the backhaul uplink or access uplink is activated at a particular time).
  • Backhaul link multiplexing in FDD may be described as backhaul downlink transmission is performed in a downlink frequency band, and backhaul uplink transmission is performed in an uplink frequency band.
  • Backhaul link multiplexing in TDD may be described as backhaul downlink transmission is performed in a downlink subframe of a base station and a repeater, and backhaul uplink transmission is performed in an uplink subframe of a base station and a repeater.
  • an in-band repeater for example, when a backhaul downlink reception from a base station and an access downlink transmission to a terminal are simultaneously performed in a predetermined frequency band, a signal transmitted from the transmitting end of the repeater is received at the receiving end of the repeater. This may result in signal interference or RF jamming at the RF front-end of the repeater. Similarly, if the reception of the access uplink from the terminal and the transmission of the backhaul uplink to the base station are simultaneously performed in a predetermined frequency band, signal interference may occur at the RF front end of the repeater.
  • simultaneous transmission and reception in one frequency band in a repeater is sufficient separation between the received signal and the transmitted signal (e.g., with sufficient geographical separation of the transmit and receive antennas (e.g., ground / underground)). If is not provided, it is difficult to implement.
  • a first subframe 1010 is a general subframe, and a downlink (ie, access downlink) control signal and data are transmitted from a repeater to a terminal, and the second subframe 1020 is a multicast broadcast single frequency (MBSFN).
  • MBSFN multicast broadcast single frequency
  • a control signal is transmitted from the repeater to the terminal in the control region 1021 of the downlink subframe, but no transmission is performed from the repeater to the terminal in the remaining region 1022 of the downlink subframe.
  • the legacy UE since the physical downlink control channel (PDCCH) is expected to be transmitted in all downlink subframes (in other words, the repeater receives the PDCCH in every subframe and the legacy UEs in their area measure the measurement function). It is necessary to support to perform the (), to transmit the PDCCH in all downlink subframes for the correct operation of the legacy terminal.
  • PDCCH physical downlink control channel
  • the repeater needs to perform access downlink transmission instead of receiving the backhaul downlink.
  • the PDCCH is transmitted from the repeater to the terminal in the control region 1021 of the second subframe, backward compatibility with respect to the legacy terminal served by the repeater may be provided.
  • the repeater may receive the transmission from the base station while no transmission is performed from the repeater to the terminal. Accordingly, through this resource partitioning scheme, it is possible to prevent access downlink transmission and backhaul downlink reception from being simultaneously performed in the in-band repeater.
  • MBSFN subframe is a subframe for MBMS (Multimedia Broadcast and Multicast Service) in principle, and MBMS means a service for transmitting the same signal simultaneously in multiple cells.
  • the control region 1021 of the second subframe may be referred to as a relay non-hearing section.
  • the repeater non-listening period means a period in which the repeater transmits the access downlink signal without receiving the backhaul downlink signal. This interval may be set to 1, 2 or 3 OFDM lengths as described above.
  • the repeater may perform access downlink transmission to the terminal and receive the backhaul downlink from the base station in the remaining area 1022.
  • the guard time GT needs to be set so that the repeater performs transmission / reception mode switching in the first partial section of the backhaul downlink reception region 1022.
  • a guard time GT for the reception / transmission mode switching of the repeater may be set.
  • the length of this guard time may be given as a value in the time domain, for example, may be given as k (k ⁇ 1) time sample (Ts) values, or may be set to one or more OFDM symbol lengths. have.
  • the guard time of the last part of the subframe may not be defined or set.
  • Such guard time may be defined only in a frequency domain configured for backhaul downlink subframe transmission in order to maintain backward compatibility (when a guard time is set in an access downlink period, legacy terminals cannot be supported).
  • the repeater may receive the PDCCH and the PDSCH from the base station. This may be expressed as a relay-PDCCH (R-PDCCH) and an R-PDSCH (Relay-PDSCH) in the sense of a relay dedicated physical channel.
  • Communication between the primary UE and the secondary UE proposed in the present invention may be performed on an uplink resource (UL resource) or a downlink resource (DL resource).
  • UL resources UL frequency band in the FDD system, UL subframe in the TDD system
  • DL resource downlink resource
  • the terminal is basically equipped with transmission capability on the UL resources to transmit a signal to the eNB. Can be.
  • one UE may additionally have reception capability on UL resources in order to communicate with another UE in addition to transmission capabilities on UL resources.
  • the terminal may have transmission capabilities in addition to the reception capabilities on the DL resources.
  • a DL subframe structure is used to transmit a signal from one UE to another UE, but such a DL subframe structure is a band configured on a UL resource rather than a DL resource. It may also operate in the form of band swapping.
  • This embodiment relates to a method of using an existing DL repeater subframe structure.
  • the DL repeater subframe structure is basically similar to the second subframe 1020 of FIG. 10, and a detailed configuration thereof will be described with reference to FIG. 11.
  • the R-PDCCHs 1120 and 1130 are control channels for the repeater (RN), and OFDM (or PDCCH 1110) after the PDCCH 1110, which is a control channel for another macro-UE (UE directly serviced by the macro eNB). SC-FDMA) symbol may be located.
  • the RN may receive the R-PDCCHs 1120 and 1130 from the eNB by transmitting / receiving (Tx-Rx) switching after transmitting the PDCCH to UEs serving by the RN in the PDCCH region 1110.
  • the R-PDCCH 1120 for DL allocation (or DL scheduling) may be transmitted in the first slot, and the R for UL grant (or UL scheduling) in the second slot.
  • the PDSCH for the PDCCH or the RN may be transmitted (1130).
  • a frequency domain (eg, PRBs) without R-PDCCH transmission may be used for PDSCH transmission for the macro-UE (1140).
  • the PDCCH region 1110 shown in FIG. 11 is left blank and proposed to be used for carrier sensing of a primary UE and / or a secondary UE.
  • 12 shows a subframe structure according to the present embodiment.
  • the UE may sense a carrier signal in a corresponding subframe in the PDCCH region 1210.
  • Carrier sensing means detecting whether there is transmission / reception of another UE adjacent to the corresponding area. If another adjacent UE (eg, primary UE 130 of FIG. 1) is detected to transmit and receive a signal in that subframe, communication between the primary UE and the secondary UE using a relatively low transmit power may be lost. It may be severely interrupted by the signal transmission and reception of the UE.
  • Carrier sensing in the PDCCH region 1210 may be performed by a primary UE and / or a secondary UE. As a result, when it is determined that there is no signal transmission / reception of another adjacent UE in the PDCCH region 1210 of a subframe, the subframe may be regarded as usable for communication between the primary UE and the secondary UE.
  • a primary UE shows an example of a subframe structure that can be used for transmission of a secondary UE (S-UE).
  • the primary UE that was in transmission mode in the previous subframe may be in some region (one or more OFDM (or SC-FDMA) symbols) of the blank region 1210.
  • carrier sensing may be performed in the remaining areas until the control channel 1220 for the secondary UE is transmitted.
  • the control channel for the secondary UE may be newly defined or the existing channel structure may be reused.
  • the R-PDCCH defined in the DL repeater subframe structure may be used as a control channel for the S-UE.
  • a control channel transmitted in an existing data region may be referred to as an e-PDCCH.
  • the second slot 1230 of the PRB in which the R-PDCCH (or e-PDCCH) exists is R-PDCCH (or e-PDCCH) or PDSCH for the secondary UE. Can be used for transmission.
  • the PRB 1240 without the R-PDCCH may be used for PDSCH transmission for the secondary UE.
  • This embodiment relates to a subframe structure when the secondary UE operates in a transmission mode.
  • This embodiment may be divided into a scheme of using only the second slot and a scheme of using both the first and second slots for transmission of the secondary UE.
  • This embodiment relates to a method of using only the second slot for transmission of the secondary UE.
  • FIG. 13 is a diagram exemplarily illustrating a region in which Tx-Rx switching is performed in a subframe structure when only a second slot is used for transmission of a secondary UE.
  • the primary UE When only the second slot is used for transmission of the secondary UE, the primary UE must first perform Tx-Rx switching in a reception mode to receive a signal.
  • the last OFDM (or SC-FDMA) symbol of the first slot as shown in FIG. 13 (a) or the first OFDM (or SC-FDMA) symbol of the second slot as shown in FIG. 13 (b) is Tx-Rx switching.
  • an R-PDCCH (or e-PDCCH) and a PDSCH for a secondary UE may be transmitted in a first slot.
  • the R-PDCCH (or e-PDCCH) for the secondary UE may be transmitted in the 2nd slot, and the PDSCH for the primary UE or the secondary UE may be transmitted according to the transmission / reception mode of the secondary UE. That is, the PDSCH for the secondary UE may be transmitted in the reception mode, and the PDSCH for the primary UE may be transmitted in the transmission mode.
  • the transmission / reception mode of the secondary UE may be determined through an indicator included in the R-PDCCH (or e-PDCCH) of the first slot.
  • the indicator included in the control channel for the S-UE of the first slot may be a UL grant for a signal transmitted in the second slot. That is, the first slot may be used for DL allocation and UL grant transmission, and the second slot may be used for PDSCH transmission.
  • the indicator included in the control channel for the S-UE of the first slot may be defined as a trigger for simply determining the transmission and reception mode.
  • the DL repeater subframe structure may be reused in the first slot, and the UL grant may have the R-PDCCH (or e-PDCCH) of the second slot.
  • the secondary UE has previously configured a signal to be transmitted based on previously received UL grant information, and then receives a trigger instructing transmission through the control channel for the S-UE of the first slot of any subframe. When pre-configured signal can be transmitted in the corresponding subframe.
  • the primary UE transmits a signal to the secondary UE by using the UL resource
  • the primary UE transmits the signal to the eNB in the next UL subframe after the subframe in which the transmission to the secondary UE is performed between the subframes
  • the primary UE can perform transmission using all OFDM (or SC-FDMA) symbols of the second slot.
  • OFDM or SC-FDMA
  • a section for power change is needed at the end of the subframe.
  • the primary UE transmits a signal to the secondary UE using DL resources
  • the primary UE performs Tx-Rx switching to receive a signal from the eNB in the next DL subframe after the subframe in which the transmission to the secondary UE is performed. Should be done.
  • a section for power change or a section for Tx-Rx switching may be required at the end of one subframe.
  • 14 (a) and 14 (b) define Tx-Rx switching periods (or power change intervals) at the end of the subframe in addition to the subframe structures of FIGS. 13 (a) and 13 (b), respectively. An example is shown.
  • the primary UE may include an indicator in a control channel for the secondary UE, and this indicator indicates that the signal transmitted by the primary UE is the last OFDM (or SC-FDMA) signal of the corresponding subframe. ) May be configured as an indicator to inform the secondary UE whether or not to include a symbol.
  • the UE may always be defined to transmit and receive a signal using the remaining OFDM (or SC-FDMA) symbols except for the last OFDM (or SC-FDMA) symbol without defining a separate indicator.
  • the UE may always be defined to transmit and receive a signal using the last OFDM symbol without defining a separate indicator. In this case, transmission and reception between the P-UE and the S-UE can be easily implemented without additional control signaling overhead.
  • This embodiment is directed to using both the first and second slots for transmission of the secondary UE.
  • FIG. 15 shows a subframe structure when both first and second slots are used for transmission of a secondary UE.
  • an R-PDCCH (or e-PDCCH) for an S-UE in a first slot, as shown in FIGS. 13 and 14, is a secondary UE in a second slot.
  • the secondary UE may be configured to transmit a signal in both the first slot and the second slot as shown in FIG. In this case, since no interval for Tx-Rx switching is required in the subframe, more OFDM (or SC-FDMA) symbols can be used for signal transmission of the secondary UE.
  • the subframe corresponding to the time point in which the secondary UE is previously promised to operate in the transmission mode is determined in advance after a predetermined time (for example, after 4 subframes (ie, 4 ms)) at the time when the UL grant is received. You can put it.
  • a subframe corresponding to a point in time at which the secondary UE is previously promised to operate in the transmission mode is designated through an R-PDCCH (e-PDCCH) for the secondary UE, and then, in the designated subframe, the secondary UE is assigned to the first and the second frame. It may operate by performing transmission using all of the second slots.
  • the secondary UE receiving the UL grant may be defined to transmit a signal in one or several subframes after a designated time.
  • the secondary UE may always transmit in one subframe after a designated time, or based on information such as a buffer status report of the secondary UE when the primary UE transmits an UL grant.
  • the number of subframes that a secondary UE can use for transmission can be specified.
  • the secondary UE may determine the number of subframes to use for transmission. For example, a flag indicating whether continuous data transmission exists in the PDSCH for the primary UE may be defined, and the flag information may allow the secondary UE to adjust the number of subframes to be used for transmission.
  • the secondary UE can transmit a signal in all OFDM (or SC-FDMA) symbols as shown in Fig. 15 (a).
  • the secondary UE may transmit a signal after performing carrier sensing on some OFDM (or SC-FDMA) symbols of the subframe.
  • the secondary UE may transmit a signal to the primary UE.
  • the secondary UE may attempt to retransmit after receiving a new UL grant.
  • subframes for retransmission may be defined in advance, and in this subframe, the secondary UE may attempt retransmission and the primary UE may be set to a reception mode.
  • the secondary UE may attempt to retransmit continuously until transmission of the secondary UE is possible.
  • the number of subframes that can be used for retransmission of the secondary UE is not limited, or if the limit is reached by a certain number, the primary UE can transmit a new UL grant.
  • a power change interval may be needed when transmitting to the eNB in the next subframe after the transmission of the secondary UE on the UL resource is performed as shown in the example of FIG. 15.
  • a Tx-Rx switching interval may be needed for DL reception in the next subframe after transmission of the secondary UE on the DL resource is performed as illustrated in FIG. 15.
  • a Tx-Rx switching interval or a power change interval may be defined at the last portion of the subframe.
  • Tx-Rx switching periods or power change intervals
  • FIGS. 15 (a) and 15 (b) An example is shown.
  • whether the last OFDM (or SC-FDMA) symbol of the subframe is used for transmission of the secondary UE may be informed in advance.
  • an indicator indicating whether the last OFDM (or SC-FDMA) symbol of the subframe is used for transmission of the secondary UE may be included in the control channel for the secondary UE.
  • the UE may always be defined as using or not using the last OFDM (or SC-FDMA) symbol of the subframe without defining a separate indicator. In this case, transmission and reception between the P-UE and the S-UE can be easily implemented without additional control signaling overhead.
  • the present embodiment relates to a method in which communication between a primary UE and a secondary UE uses UL resources (UL frequency band in an FDD system and UL subframe in a TDD system).
  • an eNB since the primary UE already has UL transmission capability for communication with the eNB, communication between the primary UE and the secondary UE is possible without additional DL transmission capability.
  • interference caused by communication between another UE and the eNB can be mitigated.
  • an eNB generally has a signal having a very strong strength (for example, a CRS, a Primary Synchronization Signal (PSS), a Secondary Synchronization Signal (SSS), and a Physical Broadcast Channel). Channel (PBCH), etc.), it is possible to avoid interference by a strong signal from the eNB to another UE by using UL resources without using DL resources for communication between UEs.
  • a signal having a very strong strength for example, a CRS, a Primary Synchronization Signal (PSS), a Secondary Synchronization Signal (SSS), and a Physical Broadcast Channel). Channel (PBCH), etc.
  • the communication between the primary UE and the secondary UE may have strong UE-to-UE interference for adjacent UEs to receive DL signals from the eNB. As such, if communication between UEs uses UL resources, adjacent UEs may not interfere with receiving DL signals from eNBs.
  • FIG. 17 illustrates a UL subframe structure according to the present embodiment.
  • a first slot of one UL subframe may be used as an area for transmitting and receiving a control signal
  • a second slot may be used as an area for transmitting and receiving a data signal.
  • the second slot used as the data region may be configured in the same manner as the PUSCH transmission defined in the existing LTE system.
  • DMRS uplink demodulation reference signal
  • the definition in the existing LTE system may be followed.
  • the signal transmitted in the second slot may be predefined to occupy a specific bandwidth.
  • the signal transmitted in the second slot may be predefined to occupy the entire system bandwidth.
  • a primary UE When a primary UE performs UL transmission to an eNB in a specific UL subframe, the primary UE cannot communicate with the secondary UE connected to it in the corresponding UL subframe. Thus, communication between the primary UE and the secondary UE may be limited to performing only in a subframe in which the primary UE does not perform transmission to the eNB.
  • the primary UE can know in advance whether it will perform UL transmission to the eNB in the corresponding UL subframe. For example, in case of PUSCH, SRS, UL ACK / NACK transmission dynamically scheduled by the eNB to the primary UE, this scheduling message may be delivered to the UE at least 4 ms before.
  • the eNB may advance in advance through higher layer signaling (eg, RRC signaling).
  • the UE may be informed. Therefore, since the primary UE can predetermine a subframe in which it transmits to the eNB, communication between the primary UE and the secondary UE can be performed in the remaining subframes.
  • the present embodiment relates to an OFDM (or SC-FDMA) configuration method for carrier sensing among specific configuration methods of a first slot used as a control signal region in an UL subframe.
  • a primary UE and / or secondary UE may sense a carrier signal in the first one or a plurality of OFDM (or SC-FDMA) symbols 1810 of a subframe.
  • Carrier sensing is used to determine whether there is transmission / reception of other neighboring UEs, and if the neighboring UE performs signal transmission / reception in the corresponding subframe, communication between the primary UE and the secondary UE that uses relatively low transmission power interferes severely. Can be received.
  • the primary UE and / or the secondary UE performs carrier sensing and determines that signal transmission and reception of another neighboring UE does not exist in the corresponding subframe, the primary UE and / or the secondary UE may be used as communication between the primary UE and the secondary UE. Can be considered.
  • the size of the region 1810 (ie, the number of OFDM (or SC-FDMA) symbols) on which the primary UE and / or the secondary UE will perform carrier sensing may be determined as follows. First, timing advance will be briefly described. If the distance from each terminal to the base station is different, the propagation delay from each terminal to the base station is also different. When the base station receives uplink subframes from a plurality of terminals, uplink subframes may be received at different timings, respectively. In order to solve this problem, a base station signals an appropriate timing advance value to each terminal, and each terminal can adjust uplink subframe transmission timing according to the signaled timing advance value. The uplink subframe can be received at the same timing.
  • the timing advance used by the primary or secondary UE There may be a case where the value and the timing advance value used by the other UE are significantly different. In this case, it is necessary to consider substantially the propagation delay from the other UE to the primary / secondary UE. That is, the signal transmitted in the first OFDM (or SC-FDMA) symbol of the uplink subframe of the other terminal is not the first symbol of the uplink subframe of the primary / secondary UE due to the propagation delay. -FDMA) may interfere with the primary / secondary UE in the timing of the symbol.
  • the eNB may set the number of OFDM (or SC-FDMA) symbols 1810 to be used by the primary / secondary UE for carrier sensing to the primary / secondary UE through an upper layer signal.
  • an eNB may use an OFDM (or SC-FDMA) symbol (eg, a primary / secondary UE) for carrier sensing based on the distance of another UE that may interfere with communication between the primary and secondary UEs in the cell. 1810 may be determined and informed.
  • Transmission and reception operations of the primary UE and / or secondary UE may be determined according to the result of carrier sensing.
  • the primary UE may schedule and transmit data transmission in the second slot to the secondary UE when another neighboring UE is not detected as a result of carrier sensing.
  • the carrier sensing is performed before performing the transmission operation like the primary UE, and the transmission is performed in the second slot according to the instruction of the primary UE only when no other UE communicating in the corresponding subframe is detected. It may be defined to perform an operation.
  • This embodiment relates to a method of configuring a control channel for a secondary UE among detailed configuration methods of a first slot used as a control signal region in an UL subframe. That is, the primary UE transmits a control channel for the secondary UE (on 1820 of FIG. 18) using some OFDM (or SC-FDMA) symbol (s) after the OFDM (or SC-FDMA) symbol on which carrier sensing has been performed. Can be.
  • the control channel for the secondary UE of the first slot may include an indicator (Tx / Rx indicator) indicating whether the secondary UE performs a transmission operation or a reception operation in the second slot of the corresponding subframe.
  • the primary UE may add an identifier of the secondary UE to the control channel. Accordingly, the secondary UE having the identifier may be instructed to transmit data in the second slot of the subframe.
  • the secondary UE receiving the identifier sends an ACK / NACK signal to the data transmitted in the second slot (1840 in FIG. 18) indicating whether the data received from the primary UE has been successfully received (or decoding success). Multiplexing can be sent.
  • the operation of the secondary UE multiplexing the ACK / NACK signal to the data may be performed according to the instruction of the primary UE.
  • the primary UE may add the ACK / NACK multiplexing request indicator to the control channel for the secondary UE.
  • a method of piggybacking the PUCCH to the PUSCH may be used.
  • a piggyback scheme as defined in the 3GPP LTE system, when PUCCH transmission and PUSCH transmission should be performed simultaneously, a scheme of piggybacking PUCCH on resources allocated for PUSCH may be reused. That is, the secondary UE may insert an ACK / NACK signal instead of the data signal transmitted by the secondary UE into a portion of a resource (1840 of FIG. 18) to transmit data and transmit the data to the primary UE.
  • ACK information is transmitted only when all of the one or more pieces of data are successfully decoded. That is, it may be defined to transmit NACK in the case where any one of the one or more pieces of data fails to decode.
  • the primary UE transmits a control channel informing the secondary UE that the secondary UE will receive data, but the secondary UE does not detect the control channel, the secondary UE also receives data informed by the control channel not detected. You won't be able to. However, since the secondary UE cannot know that the primary UE has transmitted the control channel and data, it is determined that the secondary UE has received all the data transmitted by the primary UE even though the secondary UE has failed to receive the specific data. The case may occur. As such, the ACK transmitted by the secondary UE to the primary UE becomes incorrect information that does not indicate actual reception failure. To avoid this problem, the primary UE may use a counter indicating the number of transmissions of data to a particular secondary UE. That is, the primary UE increases the counter by one each time data is transmitted to the secondary UE, thereby identifying a case where the secondary UE does not detect receiving specific data in the middle of the plurality of data.
  • the indicator (Tx / Rx indicator) included in the control channel for the secondary UE in a subframe indicates the transmission of the secondary UE, but does not include the identifier of the specific secondary UE
  • the primary UE is the corresponding subframe.
  • the second slot of may be used for random access of secondary UEs.
  • the second slot may be allocated to any of the secondary UEs by using a pre-specified special indicator (or the Tx / Rx indicator may have a pre-specified special value) included in the control channel for the secondary UE. It may be instructed to use for connection purposes.
  • the secondary UE may perform a random access procedure. Through the random access procedure, the secondary UE may transmit a signal (scheduling request) requesting scheduling of itself or a signal (buffer status report) indicating information such as the amount of data stored in its buffer to the primary UE.
  • a signal scheduling request
  • a signal buffer status report
  • FIG. 19 is a diagram illustrating an example of a signal structure that a secondary UE uses for random access.
  • An example of a signal used for random access of FIG. 19 may be transmitted from a secondary UE to a primary UE on data area 1840 of the second slot of FIG. 18.
  • a secondary UE transmits a preamble for signal detection or channel estimation, followed by a payload such as an identifier, scheduling request, and buffer status report of the secondary UE.
  • a payload such as an identifier, scheduling request, and buffer status report of the secondary UE.
  • the preamble occupies as few SC-FDMA symbols as possible.
  • the preamble can reuse the random access preamble format 4 defined in 3GPP LTE (see section 5.7.1 of 3GPP TS 36.211).
  • the resource (or RB) used for the random connection from the secondary UE may be predefined or limited to a resource designated by the primary UE.
  • the primary UE adds the identifier of the secondary UE to the control channel, thereby corresponding identifier
  • the secondary UE having a may indicate to receive data in the second slot of the subframe.
  • the indicator (Tx / Rx indicator) included in the control channel for the secondary UE in a subframe indicates reception of the secondary UE
  • the primary UE includes a specific indicator previously promised in the control channel
  • All secondary UEs connected to the primary UE may instruct to receive data in a second slot of the subframe. This case can be advantageously applied especially in the case where it is desired to transmit various control information that should be received by all secondary UEs through the data area (1840 of FIG. 18).
  • control channel for the secondary UE in a subframe may include various control information such as an ACK / NACK signal indicating whether the primary UE has successfully received data transmitted by the secondary UE.
  • control information such as an ACK / NACK signal indicating whether the primary UE has successfully received data transmitted by the secondary UE.
  • 20 is a diagram illustrating an exemplary structure of a control channel for a secondary UE. 20 may be transmitted from the primary UE to the secondary UE on the control channel region 1820 of the first slot of FIG. 18. As shown in FIG. 20, the control channel may include a preamble and a payload, and correspond to the preamble 1821 and the control channel payload 1822 of FIG. 18, respectively.
  • the preamble of the control channel is for signal detection and channel estimation, and the payload of the control channel can be transmitted including information such as Tx / Rx indicator, secondary UE identifier, and ACK / NACK indicating the transmission / reception of the secondary UE. have.
  • the complexity of the UE operation may be further reduced.
  • the last one or a plurality of OFDM (or SC-FDMA) symbols 1830 of the first slot is set to a null symbol in which no signal is transmitted and received by the primary UE Can be.
  • Tx-Rx switching of the primary UE and / or secondary UE may be performed.
  • This embodiment relates to a specific configuration scheme of a second slot used as a data signal region in an UL subframe.
  • the primary UE needs to receive a signal from the secondary UE in a subframe and perform signal transmission to the eNB in the next subframe, to allow time for the primary UE to switch from the receive mode to the transmit mode, the sub The last one (or plural) OFDM (or SC-FDMA) symbols of the frame cannot be utilized for signal transmission of the secondary UE (received signal from the secondary UE from the primary UE's point of view). That is, the Tx-Rx switching region 1850 of FIG. 18 may be set.
  • the primary UE may include in the control channel 1820 for the secondary UE of the first slot whether the last one or a plurality of OFDM (or SC-FDMA) symbols of the second slot is used for data transmission. .
  • the secondary UE instructed to transmit from the second slot to the primary UE always uses only the OFDM (or SC-FDMA) symbols of the second slot except the last one (or plural) OFDM (or SC-FDMA) symbols. It can be defined to perform data transfer.
  • an indicator indicating whether to use the last OFDM (or SC-FDMA) symbol of the second slot does not need to be included in the control channel of the first slot, thereby simplifying the operation of the UE.
  • the primary UE needs to transmit a signal to the secondary UE in a subframe and the signal transmission to the eNB in the next subframe, it is not necessary to switch the transmission and reception mode of the primary UE. Accordingly, the primary UE can use all OFDM (or SC-FDMA) symbols of the second slot for data transmission.
  • OFDM or SC-FDMA
  • the primary UE includes one indicator in the control channel for the secondary UE, and uses this indicator to configure whether the data transmitted by the primary UE includes the last OFDM (or SC-FDMA) symbol or a power change interval. It can also tell the secondary UE if it is. Alternatively, without defining such an indicator, the primary UE may be configured to always transmit data using the remaining symbols except for the last OFDM (or SC-FDMA) symbol, in which case the complexity of the UE operation may be reduced.
  • the case where the primary UE schedules the transmission and reception of signals to / from the secondary UE has been described.
  • a method for eNB to directly perform scheduling for communication between UEs will be described.
  • some or one or more combinations of examples for the subframe structure, resource configuration, channel structure, and the like described in the above-described Embodiments 1 to 6 may be partially used even when the eNB directly performs scheduling for communication between UEs. Can be applied.
  • the primary UE and the secondary UE read the scheduling messages of the eNB (e.g., UL / DL scheduling messages that the eNB transmits over the PDCCH) and between the UEs. It is possible to know on which resource the communication of is scheduled and also at what time.
  • the scheduling messages of the eNB e.g., UL / DL scheduling messages that the eNB transmits over the PDCCH
  • the present embodiment relates to a method in which a primary UE and a secondary UE read the same scheduling message.
  • the eNB transmits one scheduling message, and two UEs (primary UE and secondary UE) can read this message and grasp information on communication between the UEs.
  • the eNB may establish a UE communication pair for performing mutual communication.
  • One UE communication pair may be configured as one primary UE and one secondary UE when unicast, and may be configured as one primary UE and a plurality of secondary UE when multicast.
  • a plurality of UE communication pairs may be set, the eNB may assign a unique identifier (ID) to each of the UE communication pairs, and transmit a scheduling message for each identifier of the UE communication pair.
  • ID unique identifier
  • the UE belonging to each UE communication pair detects the scheduling message using the ID assigned to the UE communication pair to which it belongs (for example, by decoding the CRC masked PDCCH with the corresponding UE communication pair ID). Scheduling information (resource, such as time / frequency) of the UE communication pair to which it belongs can be grasped.
  • the UE communication pairs may be classified by directionality and may be given a separate ID. For example, it may be assumed that transmission and reception between two UEs (eg, UE1 and UE2) are repeatedly performed alternately.
  • the eNB may assign one ID for the UE communication pair transmitted by UE1 and received by UE2 and another ID for the UE communication pair transmitted by UE2 and received by UE1.
  • a separate UE communication pair ID is given according to the transmission / reception direction, only decoding the scheduling message determines what the transmitting UE is and what the receiving UE is (ie, what is the transmitting UE and the receiving UE). The complexity of the UE operation can be reduced in that no separate signaling is needed to inform.
  • an eNB may assign IDs to UE pairs without directivity (that is, without distinction between a transmitting and receiving end). There may be a problem that the number increases. Therefore, the ID is assigned to the UE communication pair without discriminating the transmitting / receiving end (i.e., the same one UE communication pair ID is assigned to both when UE1 transmits and UE2 receives and when UE2 transmits and UE1 receives). can do. In this case, a separate signaling field may be defined in the scheduling message so as to indicate what is the transmitting end and what is the receiving end.
  • one UE may have two or more IDs for uplink transmission.
  • one ID is an ID for uplink transmission to an eNB
  • another ID is an ID for transmission to another UE.
  • Various uplink control information indicated by the eNB may be separately managed for each ID.
  • the UE controls power transmitted through one and the same ID. Only commands can be accumulated, and power control commands transmitted through other IDs can be accumulated separately. This is because an appropriate power control value is different for each receiver because the receiving end is different in scheduling through each ID.
  • the base station does not know what is the reception target of each uplink control information (for example, whether it is a base station or a UE)
  • the destination of uplink transmission is determined from the perspective of the UE receiving the uplink control information.
  • the uplink control information is managed using an ID assigned for each uplink receiving object, the control information for uplink transmission can be distinguished and applied for each destination.
  • the eNB may not provide an uplink power control command for the UE communication pair ID for the communication between the UEs, or the terminal may control the power even if the power control command is included in the scheduling message for the UE communication pair ID. You can ignore the command and not apply it.
  • the present embodiment relates to a method in which primary and secondary UEs read separate scheduling messages.
  • the eNB may send a separate scheduling message to two UEs performing communication between the UEs. Each UE may read the scheduling message corresponding to its ID and determine the location of the resource for which the communication between the UEs is scheduled.
  • the ID used by each UE for communication with the eNB can be equally used for the scheduling message for communication between the UEs, the complexity of the UE operation can be reduced in terms of scheduling message detection. For example, since the UE needs to perform PDCCH blind decoding with only one ID regardless of whether it is communicating with an eNB or another UE, decoding by not performing PDCCH blind decoding with a different ID according to the type of the counterpart of the communication. The delay can be reduced.
  • the eNB defines a separate signaling field in the scheduling message and uses the field to determine whether the corresponding scheduling information is for transmission to the eNB. It is necessary to indicate whether it is about transmission to the UE or whether the UE receiving the scheduling message is about receiving transmission from another UE.
  • the signaling field (field indicating whether a communication counterpart and a transmitting / receiving side) may be related to uplink power control of a UE that has received a scheduling message. That is, the power control command is transmitted through the PDCCH masked with the same ID regardless of the communication counterpart, but the corresponding power control command should be accumulated separately for the same content of the signaling field. For example, if a scheduling message received at a particular point in time was for a transmission to an eNB, then the power control command in that scheduling message should accumulate in the power control commands that were included in the scheduling message for the transmission to the eNB and otherwise (eg For example, it should not accumulate in power control commands that were included in a scheduling message for transmission to another UE).
  • the eNB may not provide an uplink power control command in the scheduling message for the communication between the UEs, or the UE receiving the scheduling message may transmit the scheduling message even if the power control command is included in the scheduling message. If it is, then the power control command may be ignored and not applied.
  • a predetermined level of transmission power eg, minimum transmission power
  • This embodiment relates to a method for the secondary UE to read the scheduling message of the primary UE.
  • the primary UE may operate in the same manner as in the embodiment 7-2. That is, the primary UE can receive the scheduling message for the communication between the UE by reusing the ID used for communication with the eNB. In this case, the eNB may not assign a separate ID to the secondary UE.
  • the secondary UE may receive an ID of the primary UE from the eNB through an upper layer signal in advance, and attempt to detect a scheduling message with the ID of the primary UE. This may be expressed as the secondary UE overhears the scheduling message from the eNB to the primary UE. In the event of a successful reading of the scheduling message, the secondary UE can determine when the primary UE is using which resource to send a signal to itself.
  • an indication field indicating what kind of object the primary UE performs transmission may be added to the scheduling message.
  • This embodiment is advantageous in that it operates simply without increasing the burden of blind decoding on the scheduling message, especially when the secondary UE is not directly connected to the eNB and there is no ID allocated for transmitting the signal to the eNB directly. There is this.
  • This embodiment relates to a method of reading a scheduling message using a random access procedure.
  • the primary UE may request to allocate a resource for communication between the UE by transmitting a physical random access channel (PRACH) preamble to the eNB.
  • PRACH physical random access channel
  • the index of the PRACH preamble for the request of the communication between the UE, the location of the time and frequency resources, etc. may be previously promised (or designated) through the higher layer signal for the individual primary UE.
  • the primary UE wishing to communicate between the UEs transmits a PRACH preamble using a predetermined resource, and attempts to decode the masked PDCCH with the RA-RNTI for a predetermined time.
  • the RA-RATI is determined by the location of the resource that transmitted the PRACH, and as described above, the PRACH transmission resource may be specified in advance, so that the RA-RATI used for decoding by the primary UE may also be regarded as previously promised. Can be.
  • the eNB schedules the PDSCH through the PDCCH masked with RA-RNTI, and schedules an uplink resource that the UE can use to transmit an uplink signal to the UE that has transmitted the PRACH preamble on the designated resource through the PDSCH.
  • a primary UE detects a PDCCH masked by RA-RNTI, decodes a PDSCH scheduled by the corresponding PDCCH, and reads uplink scheduling information (ie, UL grant message) corresponding to the UE within the PDSCH. You can decide which resources to use for communication between them.
  • the secondary UE may attempt decoding of the PDCCH with RA-RATI of the primary UE similarly to the above-described embodiment 7-3. Since the size of this PDCCH is the same as that of the uplink grant DCI format 0 or the DCI format 1A for PDSCH compact scheduling in the secondary UE communicating with the eNB, the blind decoding burden does not increase from the secondary UE's point of view. Accordingly, the secondary UE can read the UL grant message for the primary UE in the communication between the UE by decoding the PDCCH with the RA-RATI of the primary UE. Accordingly, the secondary UE can determine which resource the primary UE performs communication between the UEs, and can appropriately perform the corresponding receiving operation.
  • the secondary UE since the secondary UE needs to know the RA-RNTI of the primary UE in advance, the eNB or the primary UE can use information for determining the RA-RNTI of the primary UE (for example, to transmit the PRACH preamble of the primary UE). Index, information on time / frequency resources) can be transmitted to the secondary UE in advance.
  • the primary UE does not apply the power control command applied for the communication between the UEs (that is, the power control command transmitted through the random access procedure for the specific PRACH preamble described above) to the communication with the eNB. It should work only for communication between them.
  • This embodiment relates to a specific scheme for a secondary UE to access an eNB.
  • the eNB needs to know whether a secondary UE exists and the eNB needs to know which secondary UE wants to communicate with which primary UE. That is, the eNB needs a method for allowing the secondary UE to access the eNB without knowing the existence of the secondary UE. Since the secondary UE is generally a UE having a very low transmission power, the secondary UE may not be directly connected to the eNB and may be connected to the eNB only through the primary UE. That is, the secondary UE first attempts to connect to the primary UE, and informs the eNB that the specific secondary UE attempts to connect by transmitting the connection attempt to the eNB.
  • the meaning of the secondary UE not directly accessing the eNB may be limited only to uplink transmission. It may be possible to receive a signal.
  • the secondary UE may directly receive a response to the random access signal transmitted by the secondary UE from the eNB. For example, the secondary UE may receive a random access response through the PDCCH transmitted by the eNB.
  • the eNB may inform PRACH resource information (PRACH preamble index, PRACH time / frequency resource, etc.) that secondary UEs can use to access the primary UE using a signal such as a broadcast message.
  • PRACH resource information PRACH preamble index, PRACH time / frequency resource, etc.
  • the primary UE and the secondary UE are typically located at close distances, a very short length preamble such as the PRACH preamble format 4 defined in the LTE system is not used to consume much energy for transmission of the PRACH preamble. You can use it.
  • the primary UE may transmit a specific signal such as SRS periodically or aperiodically in order for the secondary UE close to the self to recognize the existence of the primary UE.
  • the configuration of periodic / aperiodic transmission of this particular signal may be known to secondary UEs through an eNB.
  • the transmission setting of the specific signal may include ID information of the corresponding primary UE, so that the secondary UE can distinguish which primary UE transmits the specific signal.
  • the secondary UE provided with this information may recognize that a primary UE exists near its own, and may attempt to initially access the primary UE. At this time, in order to control transmission power between the primary UE and the secondary UE, it is also possible to report the signal strength of the primary UE received by the secondary UE to the primary UE or the eNB.
  • the primary UE may transmit a PRACH preamble for random access and the secondary UE may detect the link between the two UEs by detecting it. Since the PRACH preamble occupies a relatively small bandwidth compared to the SRS, there is an advantage in that link detection can be performed using less frequency resources.
  • the base station may inform the secondary UE of the information related to the PRACH transmitted by the primary UE through a higher layer signal such as an RRC. In this case, the base station transmits a PRACH preamble using a PRACH resource other than the PRACH resource that can be used by UEs attempting initial access (for example, a PRACH resource reserved for a handover or the like). Instruct the UE.
  • the base station may instruct the primary UE to periodically transmit a specific PRACH preamble to prepare for the case where the secondary UE does not detect the primary UE signal at one time.
  • a secondary UE provided with configuration information on transmission to the PRACH preamble transmitted by the primary UE may attempt to detect the PRACH preamble of the primary UE on the UL resource corresponding to the configuration information.
  • the base station provides the secondary UE with information such as the ID of the primary UE so that the secondary UE can easily detect the signal from the primary UE. You can also tell.
  • blind decoding means an operation of trying to decode each candidate without knowing in advance which DCI format the PDCCH transmitted by the transmitter corresponds to.
  • blind decoding may be performed in a common search space and / or a UE-specific search space in which UEs commonly search.
  • the secondary UE may be configured to decode the PDCCH only in the common search space.
  • the above limitation may prevent the secondary UE from performing PDCCH decoding in the UE-specific search space of the primary UE.
  • the transmission to the secondary UE is scheduled using a random access procedure, since the PDCCH transmitted to the RA-RNTI is transmitted in the common search area, it is possible to avoid unnecessary operation through this restriction as well.
  • a method of scheduling a transmission / reception of signals to / from a secondary UE by a primary UE, and a scheme of scheduling an communication between UEs directly by an eNB are described.
  • a primary UE is pre-allocated a resource to be used for communication with a secondary UE from a base station, and uses the corresponding resource to use one or more secondary UEs. The method of performing communication with the present invention will be described.
  • the eNB may allocate specific frequency resources to the primary UE periodically. Specifically, the eNB designates a frequency resource that can be allocated to the primary UE using higher layer signaling (eg, RRC signaling), and the like, activating / activating the designated frequency resource through a physical layer control signal. You can indicate deactivate.
  • This operation can be set up similarly to conventional semi-persistent scheduling (SPS).
  • SPS semi-persistent scheduling
  • the resources allocated by the eNB to the primary UE are for communication between the UEs, there is a difference in the SPS scheduling scheme and the specific contents. That is, in a resource allocated by the eNB to the primary UE, a subframe structure, a channel structure, a transmission power control scheme, etc. proposed in the above-described embodiments of the present invention may be applied for communication between the primary UE and the secondary UE.
  • FIG. 21 illustrates an example of a wireless communication system in which communication between UEs (or peer-to-peer communication) is performed using dedicated resources designated by an eNB.
  • one of UE1, UE2, and UE3 may receive resource allocation from the eNB as a primary UE to use a specific frequency resource at a period of 7 subframes. Communication between the UE1, the UE2, and the UE3 may be performed using the corresponding resource.
  • the primary UE may transmit information on resources necessary for communication with the secondary UE to the base station.
  • This information may include location information of the primary and / or secondary UEs, categories of services (e.g., voice services, data services) with which the communication between the UEs is involved, the amount and / or duration of resources required, and the number of secondary UEs. May contain content.
  • the base station may determine a resource to be allocated for inter-UE communication based on the information reported by the primary UE.
  • the base station may limit the maximum power that can be used in the resources allocated for inter-UE communication to a specific value, and may inform the primary and / or secondary UE of the power limit information.
  • the base station allocates a specific resource for inter-UE communication, the resource is allocated for communication of another UE (such as communication between another UE and the base station or communication between another UE and another UE) far from the location where the inter-UE communication is performed. This is to make it available. Since the UE-to-UE communication is generally performed between adjacent UEs, smooth communication is possible even with low transmission power, so that the base station can limit the power used for the UE-to-UE communication so that interference does not occur with other UEs.
  • the base station in designating resources to be used for communication between UEs by the base station as described above, the base station takes into consideration the type of service (eg, voice or data) related to the UE-to-UE communication requested by the terminal or the cost charged to the service. It is possible to control the data rate and coverage available to the UE by determining / adjusting the amount, quality (or interference level), maximum transmit power, etc. of resources to be used for communication between the UE.
  • the type of service eg, voice or data
  • the data rate and coverage available to the UE by determining / adjusting the amount, quality (or interference level), maximum transmit power, etc. of resources to be used for communication between the UE.
  • the base station when a terminal requests a high quality inter-UE communication service (or pays a high fee according to the high quality of service), the base station is a resource (e.g., monopolistic) high quality, high data rate, and / or wide coverage by allocating resources for inter-UE communication in such a way as to allocate a resource, a large amount of resources, or a high transmit power limit value.
  • a resource e.g., monopolistic
  • the base station is a resource (for example, sharing ( shared resources, low resource, low data rate and / or narrow coverage by allocating resources for inter-UE communication, such as by allocating a small amount of resources or by assigning low transmit power limit values.
  • a resource for example, sharing ( shared resources, low resource, low data rate and / or narrow coverage by allocating resources for inter-UE communication, such as by allocating a small amount of resources or by assigning low transmit power limit values.
  • the terminal may transmit the location information (eg, GPS information) of the terminal together.
  • the base station allocates resources for inter-UE communication to the UE requesting the UE-to-UE communication service and at the same time, considering the location of the UE requesting the UE-to-UE communication service, the UE geographically separated from the UE (that is, requested by the UE Other terminals not participating in the inter-UE communication) may be allocated the same resources as the resources used for the inter-UE communication. Since the UE participating in the UE-to-UE communication and the other UE are geographically separated from each other, even if the same resource is allocated, interference between the UEs may be small.
  • the base station may perform a silencing operation to reduce interference in a subframe corresponding to a resource allocated for communication between UEs.
  • a subframe is set to an ABS (Almost Blank Subframe) subframe (a subframe in which only the common reference signal (CRS) is transmitted and the remaining resource elements are blanked), or an MBSFN subframe (CRS in the data area). Subframes not transmitted).
  • the frequency selective influence may be reduced by using frequency hopping (a method of allocating while changing a frequency band) in resource allocation for communication between UEs.
  • the primary UE may form a separate cell.
  • 22 is a diagram illustrating a subframe structure when the primary UE forms a separate cell by way of example. 22 exemplarily illustrates a case in which a primary UE is allocated a DL resource from a base station as a resource for communication between UEs.
  • the present invention is not limited thereto, and a subframe structure as shown in FIG. 17 or FIG. 18 may be applied when a primary UE is allocated an UL resource for communication between UEs.
  • some time-frequency resources may be allocated for communication between UEs in subframe n.
  • the first few OFDM (or SC-FDMA) symbol (s) in subframe n are the areas in which the PDCCH from the macro cell (ie, base station) is transmitted, and the remaining OFDM (or SC-FDMA) in subframe n. )
  • the primary UE and the secondary UE in specific frequency domains 2220 and 2230.
  • the PDCCH from the primary UE to the secondary UE may be transmitted on the time-frequency domain 2220
  • the PDSCH from the primary UE to the secondary UE may be transmitted on the time-frequency domain 2230.
  • subframe n except for the PDCCH transmission region 2210 from the macro cell and the resource regions 2220 and 2230 allocated for the communication between the UEs, the remaining region 2240 is allocated from the macro cell to the macro UE (another UE served by the macro cell). ) Can be used for PDSCH transmission.
  • the subframe n + 1 represents a general subframe in which resources for inter-UE communication are not allocated. For example, when subframe n + 1 is a downlink subframe, the first few OFDM symbols 2250 correspond to the PDCCH transmission region of the macro cell, and the remaining OFDM symbols 2260 are macro UEs from the macro cell. Corresponds to the PDSCH transmission region.
  • the primary UE may perform communication with the secondary UE by transmitting signals such as CRS / PDCCH with separate cell IDs in the time-frequency resources 2220 and 2230 allocated from the base station.
  • the base station may transmit information such as a cell ID to be used for cell formation by the primary UE to the primary UE.
  • the secondary UE determines the location of the time-frequency resource where the cell formed by the primary UE appears (this information may be directly informed by the base station), and the secondary UE is determined from the cell formed by the primary UE on the corresponding time-frequency resource. Scheduling information and the like can be obtained and appropriate measurement (measurement for radio resource management (RRM), radio link monitoring (RLM), etc.) can be performed.
  • RRM radio resource management
  • RLM radio link monitoring
  • a PDSCH / PUSCH is transmitted / received to a secondary UE in a cell formed by a primary UE
  • an operation for a case in which a reduced resource is used as compared to PDSCH / PUSCH transmission resources in a general cell needs to be defined.
  • the primary UE is allocated DL resources for communication between UEs, as in the example of FIG. 22, the first few OFDM symbols 2210 of a subframe in which the allocated DL resources exist include a base station (macro cell). Is used for PDCCH transmission. That is, since the primary UE should transmit the PDSCH to the secondary UE using only OFDM symbols reduced compared to the number of OFDM symbols (for example, 2260 of FIG.
  • PDSCH may be transmitted by applying rate matching or puncturing.
  • the PDSCH is transmitted to the secondary UE when the primary UE is allocated the DL resource, but may also receive the PUSCH from the secondary UE in the resource allocated for inter-UE communication.
  • rate matching / puncturing as described above can be applied.
  • the primary UE may transmit the PDCCH for the secondary UE from the first SC-FDMA symbol of the subframe of the allocated UL resource.
  • the secondary UE can access both the cell (macro cell) formed by the base station and the cell formed by the primary UE, and can perform data transmission and reception with each cell.
  • the secondary UE may perform data transmission and reception similarly to the operation of carrier aggregation.
  • Carrier aggregation is a technique introduced to bundle a plurality of frequency bands (ie, carriers) to provide a large band, and one of the plurality of frequency bands corresponds to a primary carrier (or primary cell) and the other It corresponds to each secondary carrier (or secondary cell) of the frequency band.
  • a cell formed by a base station may be set as a primary cell (PCell), and a cell formed by a primary UE may be set as a secondary cell (SCell).
  • PCell primary cell
  • SCell secondary cell
  • the difference from the general carrier aggregation in the example of the present invention is that the SCell is in some time / frequency region of the PCell.
  • only one blind decoding for one cell may be performed in one subframe.
  • subframe n where there is a cell formed by the primary UE (ie, SCell in terms of carrier aggregation (or in terms of secondary UE)) in the example of FIG. 22, the cell (ie, SCell) of the primary UE is present. Only PDCCH can be searched.
  • subframe n + 1 in which the cell of the primary UE (that is, the SCell) does not exist, only the PDCCH of the cell of the base station (that is, the PCell in terms of carrier aggregation (or in terms of the secondary UE)) may be searched. .
  • the operation of performing a search for each PCell or SCell may be configured to be performed only in a UE-specific search space. That is, in the common search space, the switching of the search is not applied for each PCell or SCell, which means that the common search space can always be searched in only one cell (for example, PCell).
  • This embodiment relates to a specific method of adjusting the transmit power of a primary UE in the various examples of the present invention described above.
  • Signals transmitted by the primary UE can be classified into three types.
  • One is a UL transmission signal for transmitting data and control signals by a primary UE to a base station (hereinafter referred to as signal type 1), and the other is a signal for transmitting data and control signals by the primary UE to a secondary UE (hereinafter called a signal).
  • Another type is the signal transmitted to allow potential secondary UEs (UEs that are not currently connected to the primary UE but are likely to be connected in the future) to discover the primary UE ( Hereinafter referred to as signal type 3).
  • the signal type 3 may be a signal such as SRS or PRACH transmitted periodically or aperiodically in UL resources, or may be a reference signal transmitted periodically or aperiodically in DL resources.
  • the reference signal transmitted periodically / aperiodically in the DL resource may be, for example, a CRS based on a cell ID separately allocated by the primary UE, a UE-specific RS (DRS) specific to the secondary UE, or a base station. It may be CRS or CSI-RS for some antenna ports among the set CRS or CSI-RS.
  • the secondary UE can discover the primary UE and attempt to connect using the signal type 3.
  • the base station may adjust the transmission power as in the conventional base station-to-terminal communication. That is, the base station may control a power of a signal transmitted by the primary UE to the base station by providing a transmit power control (TPC) command to the primary UE.
  • TPC transmit power control
  • the TPC command may be provided as a relative value relative to the previous transmit power, and the UE may accumulate the TPC command to calculate the transmit power to be applied currently.
  • signal type 2 is a transmission from the UE to the UE, the transmit power cannot be adjusted with the signal type 1, which is a transmission from the UE to the base station (as described in Embodiment 7 described above), and a separate signal type 2 is used. Transmit power regulation should be performed.
  • the base station may directly control the transmit power of the signal type 2 transmitted by the primary UE to the secondary UE by directly transmitting a transmit power control command to the primary UE, or the base station sets a maximum value of the transmit power of the primary UE.
  • the primary UE may adjust the transmission power of the signal type 2 by itself.
  • the primary purpose of signal type 3 is to know how closely a secondary UE is located with which primary UE, in the power control of signal type 3, the path between the primary UE and the secondary UE rather than the power received by the secondary UE itself. It may be more important to be able to correctly measure the pathloss. Even though the secondary UE reports the received signal strength of the signal type 3 to the base station, the base station can estimate the path loss only by knowing the transmission power of the signal (that is, the power transmitted from the primary UE). Accordingly, there is a need for a transmission power control method for allowing a base station to know a power value at which a primary UE transmits signal type 3.
  • the base station instructs the primary UE to fix the transmission power value of the signal type 3 to a predetermined value.
  • a higher layer signal eg, an RRC signal
  • the base station since the base station always knows that the primary UE transmits signal type 3 to a predetermined fixed power value, when the base station receives a report on the received signal power value of the signal type 3 from the secondary UE, a path loss between the primary UE and the secondary UE is reported. Can be calculated.
  • the base station controls the transmission power of the signal type 3 transmitted by the primary UE
  • the base station directly instructs the primary UE of the transmission power value of the signal type 3
  • the power control command from the base station does not indicate a relative value based on the previous transmission power, but may represent an absolute value of the transmission power to be applied to this transmission.
  • the power control command provided as a relative value must be accumulated to derive the transmission power value
  • the error between the transmission power indicated by the base station and the transmission power applied by the UE is determined. It can prevent.
  • the transmit power value of the signal type 3 currently applied by the primary UE may be reported to the base station.
  • the reporting of the transmit power value may be performed periodically or when a specific event occurs (that is, performed in an event-triggered manner).
  • the specific event may be determined, for example, when the received power of a signal from an adjacent cell is greater than or equal to a predetermined threshold, or the transmission power of the signal type 3 is changed by more than a predetermined difference compared to the previous transmit power. It may be determined as a case, or may be determined to be performed aperiodically when the base station requests the report of the transmission power value.
  • Various embodiments of the present invention described above may be applied to communication between terminals in a licensed band.
  • the principles of the present invention as described above can be applied to the communication between the terminal and the base station in the unlicensed band band.
  • an LTE-based system is operated in a cognitive radio manner in an unlicensed band.
  • a method of performing LTE-based communication may be considered. In this case, it is necessary to sense the use of a different wireless system every subframe.
  • the LTE system when the carrier sensing is performed in the first few OFDM (or SC-FDMA) symbol periods of a subframe and there is no carrier use, the LTE system is performed in the remaining areas of the corresponding subframe.
  • the transmission for the UE from the eNB of may be performed.
  • examples of the subframe structure, channel structure, transmission power control, etc. when the UL resource or the DL resource described in the above-described examples of the present invention are allocated for communication between UEs include a base station and a terminal in an unlicensed band. It can be applied to communication between. Accordingly, the interference between the base station and the terminal in the unlicensed band can be mitigated / removed and the interference received from the communication of the other system can be avoided / removed.
  • 23 is a flowchart illustrating a method for communication between terminals according to an embodiment of the present invention.
  • the base station allocates resources for inter-UE communication (communication between the first terminal and the second terminal), and schedules information including power control information and the like with the resource allocation information in the first terminal and / or the second terminal. It can transmit to the terminal.
  • the first terminal may schedule communication between the first terminal and the second terminal using resources allocated for communication between the UEs from the base station, and inform the second terminal of such scheduling information.
  • a first slot of a subframe among resources for inter-terminal communication may include a control signal for inter-terminal communication and a second slot may include a data signal between the terminal.
  • the first and second terminals may perform communication between terminals based on the scheduling information in operation S2320.
  • a first terminal may correspond to a primary UE, and a second terminal may correspond to a secondary UE.
  • the above-described matters described in various embodiments of the present invention may be independently applied or two or more embodiments may be simultaneously applied and overlapped.
  • the content is omitted for clarity.
  • the terminal-to-device communication method according to an example of the present invention described with reference to FIG. 23 may be applied to communication between a base station and a terminal for reducing interference to another system or another cell.
  • the operation of the first terminal may be understood as the operation of the base station
  • the operation of the second terminal may be understood as the operation of the terminal communicating with the base station.
  • 24 is a diagram showing the configuration of a transmission and reception apparatus according to the present invention.
  • the transmitting and receiving device 2400 of FIG. 24 may be, for example, a terminal device.
  • the terminal device 2400 according to the present invention may include a reception module 2410, a transmission module 2420, a processor 2430, a memory 2440, and a plurality of antennas 2450.
  • the plurality of antennas 2450 refers to a terminal device that supports MIMO transmission and reception.
  • the receiving module 2410 may receive various signals, data, and information from the outside.
  • the transmission module 2420 may transmit various signals, data, and information to the outside.
  • the processor 2430 may control operations of the entire terminal device 2400.
  • the terminal device 2400 may be configured to perform communication between terminals with another terminal.
  • the processor 2430 of the terminal device 2400 may be configured to receive scheduling information including information for allocating a resource for the terminal-to-terminal communication from the base station through the receiving module 2410.
  • the processor 2430 may be configured to communicate with the other terminal through one or more of the transmission module 2410 or the reception module 2420 based on the scheduling information.
  • a first slot of a subframe among the resources for inter-terminal communication may include a control signal for inter-terminal communication
  • a second slot of the subframe may include a data signal between the terminal.
  • the processor 2430 of the terminal device 2400 performs a function of processing information received by the terminal device 2400, information to be transmitted to the outside, and the memory 2440 stores the processed information and the like for a predetermined time. And may be replaced by a component such as a buffer (not shown).
  • the description of the base station may be equally applicable to a relay apparatus as a downlink transmission entity or an uplink reception entity, and the description of the terminal is a downlink reception entity or uplink transmission.
  • Embodiments of the present invention described above may be implemented through various means.
  • embodiments of the present invention may be implemented by hardware, firmware, software, or a combination thereof.
  • a method according to embodiments of the present invention may include one or more Application Specific Integrated Circuits (ASICs), Digital Signal Processors (DSPs), Digital Signal Processing Devices (DSPDs), and Programmable Logic Devices (PLDs). It may be implemented by field programmable gate arrays (FPGAs), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs Application Specific Integrated Circuits
  • DSPs Digital Signal Processors
  • DSPDs Digital Signal Processing Devices
  • PLDs Programmable Logic Devices
  • FPGAs field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, and the like.
  • the method according to the embodiments of the present invention may be implemented in the form of a module, a procedure, or a function that performs the functions or operations described above.
  • the software code may be stored in a memory unit and driven by a processor.
  • the memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.
  • Embodiments of the present invention as described above may be applied to various mobile communication systems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 발명은 무선 통신 시스템에 대한 것으로, 보다 상세하게는 무선 통신 시스템에서 단말 간의 통신 방법 및 장치에 대한 것이다. 본 발명에 따르면 단말간의 통신을 위한 자원 설정 방안, 채널 설정 방안, 전송 전력 제어 방안 등이 제공될 수 있다.

Description

무선 통신 시스템에서 단말 간의 통신 방법 및 장치
이하의 설명은 무선 통신 시스템에 대한 것으로, 보다 상세하게는 무선 통신 시스템에서 단말 간의 통신 방법 및 장치에 대한 것이다.
도 1은 본 발명이 적용될 수 있는 무선 통신 시스템의 일례를 나타내는 도면이다. 도 1 에서는 2 가지 종류의 단말(User Equipment; UE)을 나타내는데, 하나는 직접 기지국(예를 들어, eNB(110))에 연결되어 네트워크와 신호를 주고 받는 주 UE(primary UE)이고, 다른 하나는 primary UE를 통해서 네트워크와 신호를 주고 받는 부 UE(secondary UE)이다. 도 1 에서는 primary UE의 예시로서 primary UE1 (120) 및 primary UE2 (130)이 도시되어 있고, secondary UE의 예시로서 secondary UE1 (140) 및 secondary UE2 (150) 이 도시되어 있으며, secondary UE1 (140) 및 secondary UE2 (150) 은 primary UE1 (120)과 통신할 수 있다. Primary UE 및 secondary UE는 마스터 UE(Master UE) 및 슬레이브 UE(slave UE)라고도 표현할 수 있다. 예를 들어, Primary UE1 (120) 는 secondary UE1 (140) 과 eNB (110) 사이에서 secondary UE1 (140) 가 전송하는 신호 및/또는 secondary UE1 (140) 로 향하는 신호를 중계하는 동작을 수행할 수 있다. 이와 같이 하나의 UE가 다른 UE를 위해 중계기(relay)의 역할을 수행하는 경우, UE-릴레이(UE-relay) 방식이 적용되는 것으로 칭할 수도 있다. 도 1 에서는 eNB (110) 의 커버리지 영역 내에서 primary UE1 (120) 와 secondary UE (140 및/또는 150)가 상호간에 신호를 주고 받는 동작을 도시한 것이다.
하나의 primary UE에는 하나 이상의 secondary UE가 연결될 수 있으며, primary UE는 자신에게 연결된 다수의 secondary UE의 송수신 동작을 제어하는 역할을 수행할 수 있다. Primary UE는 예를 들어 일반적인 휴대 전화일 수 있고, secondary UE는 랩탑 컴퓨터(laptop computer), 음악 플레이어(music player), 생체 신호 센서 등에 부착된 저전력 통신 기기일 수 있다. 예를 들어, primary UE와 secondary UE는 동일한 사용자가 지니고 있는 기기들일 수 있다.
전술한 바와 같은 primary UE와 secondary UE 사이의 통신에 의해서 다른 UE들의 통신이 간섭을 받지 않을 것(또는 간섭이 최소화될 것)이 요구될 수 있다. 도 1 의 예시에서, primary UE1(120)과 secondary UE1(140) 사이의 통신에 비하여, 다른 UE(예를 들어, primary UE2 (130))와 eNB(110) 사이의 통신이 높은 우선순위를 가질 수 있다. primary UE와 eNB간의 통신은 일반적으로 primary UE와 secondary UE 간의 통신에 비해 높은 우선순위를 가진다. 그 이유 중의 하나는, 기존에 정의된 방식에 따른 UE와 eNB 간의 통신에서는 primary UE와 secondary UE 간의 통신을 고려하지 않고 설계된 것이므로, primary UE와 secondary UE 간의 통신은 다른 UE와 eNB간의 통신을 방해하지 않도록 정의되어야 하기 때문이다. 예를 들어, primary UE2(130)와 eNB(110) 사이의 실시간 트래픽의 통신이 없는 경우에만 primary UE1(120)와 secondary UE1(140) 간의 통신이 수행되는 것이 바람직하다.
또한, 전술한 바와 같은 primary UE와 secondary UE 사이의 통신은, 다른 UE들의 통신에 의해 유발되는 간섭을 회피하는 것이 요구될 수 있다. 예를 들어, 도 1 과 같은 통신 환경에서 primary UE1(120)와 secondary UE1(140)는 매우 근접한 곳에 위치한다(예를 들어, 동일한 한 사용자가 primary UE1(120)와 secondary UE1(140)를 지니고 있다)고 가정할 수 있다. 따라서, primary UE와 secondary UE 사이에는 일반적으로 낮은 전력으로 통신을 수행할 수 있으며, 이는 primary UE 및 secondary UE의 배터리 소모를 줄일 수 있는 점에서 바람직하다. 한편, 다른 UE (예를 들어, primary UE2(130))와 eNB(110)의 사이에서는 비교적 높은 전력으로 통신이 수행될 수 있다. 따라서, primary UE와 secondary UE 사이의 통신의 입장에서는, 다른 UE와 eNB 사이의 통신이 매우 강력한 간섭으로 작용할 수 있으므로, 이를 회피할 수 있는 수단이 제공될 필요가 있다.
본 발명에서는 단말 간의 신호 송수신을 위한 방안을 제공하는 것을 기술적 과제로 한다. 또한, 본 발명은 단말간의 통신을 위한 자원 설정 방안, 채널 설정 방안, 전송 전력 제어 방안 등을 제공하는 것을 기술적 과제로 한다. 또한, 본 발명은 면허 대역/비면허 대역에서의 단말간의 통신 또는 단말과 기지국간의 통신 방안을 제공하는 것을 기술적 과제로 한다.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
상기의 기술적 과제를 해결하기 위하여 본 발명의 일 실시예에 따른 무선 통신 시스템에서 제 1 단말이 제 2 단말과 단말간 통신을 수행하는 방법은, 상기 제 1 단말이 기지국으로부터 상기 단말간 통신을 위한 자원을 할당하는 정보를 포함하는 스케줄링 정보를 수신하는 단계; 및 상기 스케줄링 정보에 기초하여 상기 제 1 단말이 상기 제 2 단말과 통신을 수행하는 단계를 포함할 수 있다. 여기서, 상기 단말간 통신을 위한 자원 중 서브프레임의 제 1 슬롯은 상기 단말간 통신을 위한 제어 신호를 포함하고, 상기 서브프레임의 제 2 슬롯은 상기 단말간의 데이터 신호를 포함할 수 있다.
상기의 기술적 과제를 해결하기 위하여 본 발명의 다른 실시예에 따른 무선 통신 시스템에서 제 2 단말과의 단말간 통신을 수행하는 제 1 단말은, 외부로 신호를 전송하는 송신 모듈; 외부로부터 신호를 수신하는 수신 모듈; 및 상기 수신 모듈 및 전송 모듈을 포함하는 상기 제 1 단말을 제어하는 프로세서를 포함할 수 있다. 여기서, 상기 프로세서는, 상기 수신 모듈을 통하여 기지국으로부터 상기 단말간 통신을 위한 자원을 할당하는 정보를 포함하는 스케줄링 정보를 수신하고; 상기 스케줄링 정보에 기초하여 상기 송신 모듈 또는 상기 수신 모듈 중 하나 이상을 통하여 상기 제 2 단말과 통신을 수행하도록 구성될 수 있다. 여기서, 상기 단말간 통신을 위한 자원 중 서브프레임의 제 1 슬롯은 상기 단말간 통신을 위한 제어 신호를 포함하고, 상기 서브프레임의 제 2 슬롯은 상기 단말간의 데이터 신호를 포함할 수 있다.
상기 본 발명에 따른 실시예들에 있어서 이하의 사항이 공통으로 적용될 수 있다.
상기 제 1 단말로부터 상기 기지국으로의 상향링크 자원 중에서 상기 단말간 통신을 위한 자원이 할당되는 경우, 상기 제 1 슬롯은 상기 제 2 단말을 위한 제어 신호 전송을 위해 사용되고, 상기 제 2 슬롯은 상기 제 1 및 제 2 단말간의 데이터 송수신을 위해 사용될 수 있다.
상기 기지국으로부터 상기 제 1 단말로의 하향링크 자원 중에서 상기 단말간 통신을 위한 자원이 할당되는 경우, 상기 서브프레임의 처음 하나 이상의 심볼을 제외한 나머지 심볼들에서 상기 단말간의 통신을 위한 자원이 할당되고, 상기 제 2 단말을 위한 제어 신호 추가적으로 상기 제 2 슬롯에서 전송될 수 있다.
상기 하나의 서브프레임의 처음 하나 이상의 심볼은 반송파 센싱을 위해 할당될 수 있다.
상기 하나의 서브프레임의 상기 제 1 슬롯의 마지막 심볼은 송신-수신 모드 전환을 위한 널 심볼로 설정될 수 있다.
상기 하나의 서브프레임의 상기 제 2 슬롯의 마지막 심볼은 송신-수신 모드 전환 또는 전송 전력 변경을 위한 널 심볼로 설정될 수 있다.
상기 스케줄링 정보는 상기 제 1 단말 및 상기 제 2 단말의 쌍에게 부여되는 식별자에 연관된 하나의 스케줄링 메시지를 이용하여 상기 제 1 및 제 2 단말에게 제공될 수 있다.
상기 스케줄링 정보는 상기 제 1 단말 및 상기 제 2 단말 각각에게 부여되는 식별자에 연관된 별도의 스케줄링 메시지를 이용하여 상기 제 1 및 제 2 단말의 각각에게 제공될 수 있다. ,
상기 제 2 단말이 상기 제 1 단말의 식별자에 연관된 스케줄링 메시지를 수신할 수 있다.
상기 스케줄링 정보는 상기 제 1 단말의 임의 접속 과정을 통하여 상기 기지국으로부터 상기 제 1 단말에게 전송될 수 있다.
상기 스케줄링 정보는, 상기 제 1 단말로부터 상기 기지국으로의 전송에 대한 전송전력제어명령과 상기 제 1 단말로부터 상기 제 2 단말로의 전송에 대한 전송전력제어명령을 구분하여 포함할 수 있다.
상기 제 2 단말이 상기 제 1 단말로부터의 신호의 수신 전력을 상기 기지국에게 보고하는 경우, 상기 제 1 단말로부터의 상기 신호의 전송 전력은, 상기 기지국이 상위계층 시그널링을 통해 미리 지정한 고정된 값 또는 상기 기지국이 절대값으로 지시하는 값에 따를 수 있다.
상기 제 1 단말로부터의 상기 신호의 전송 전력을 상기 제 1 단말이 상기 기지국에게 주기적 또는 비주기적으로 보고할 수 있다.
본 발명에 대하여 전술한 일반적인 설명과 후술하는 상세한 설명은 예시적인 것이며, 청구항 기재 발명에 대한 추가적인 설명을 위한 것이다.
본 발명에 따르면 단말 간의 신호 송수신을 위한 방안이 제공될 수 있다. 또한, 단말간의 통신을 위한 자원 설정 방안, 채널 설정 방안, 전송 전력 제어 방안 등이 제공될 수 있다. 또한, 면허 대역/비면허 대역에서의 단말간의 통신 또는 단말과 기지국간의 통신 방안이 제공될 수 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 명세서에 첨부되는 도면은 본 발명에 대한 이해를 제공하기 위한 것으로서 본 발명의 다양한 실시형태들을 나타내고 명세서의 기재와 함께 본 발명의 원리를 설명하기 위한 것이다.
도 1은 본 발명이 적용될 수 있는 무선 통신 시스템의 일례를 나타내는 도면이다.
도 2는 하향링크 무선 프레임의 구조를 나타내는 도면이다.
도 3은 하향링크 슬롯에서의 자원 그리드(resource grid)를 나타내는 도면이다.
도 4는 하향링크 서브프레임의 구조를 나타내는 도면이다.
도 5는 상향링크 서브프레임의 구조를 나타내는 도면이다.
도 6은 다중안테나를 갖는 무선 통신 시스템의 구성도이다.
도 7은 기존의 3GPP LTE 시스템에서 정의하는 CRS 및 DRS 패턴을 나타내는 도면이다.
도 8은 SRS 심볼을 포함하는 상향링크 서브프레임 구조를 나타내는 도면이다.
도 9는 FDD 모드 중계기의 송수신부 기능 구현의 일례를 나타내는 도면이다.
도 10는 중계기로부터 단말의 전송 및 기지국으로부터 중계기로의 하향링크 전송을 설명하기 위한 도면이다.
도 11은 DL 중계기 서브프레임 구조를 나타내는 도면이다.
도 12는 본 발명의 일례에 따른 DL 자원에서 설정되는 서브프레임 구조를 나타내는 도면이다.
도 13은 본 발명의 일례에 따른 서브프레임 구조에서 Tx-Rx 스위칭이 수행되는 영역을 예시적으로 나타내는 도면이다.
도 14는 본 발명의 일례에 따른 도 13 의 서브프레임 구조에서 서브프레임의 마지막 부분의 용도를 설명하기 위한 도면이다.
도 15는 본 발명의 일례에 따른 secondary UE의 송신을 위해 제 1 및 제 2 슬롯 모두를 사용하는 서브프레임 구조를 나타내는 도면이다.
도 16은 본 발명의 일례에 따른 도 15 의 서브프레임 구조에서 서브프레임의 마지막 부분의 용도를 설명하기 위한 도면이다.
도 17은 본 발명의 일례에 따른 UL 자원에서 설정되는 서브프레임 구조를 나타내는 도면이다.
도 18은 본 발명의 일례에 따른 UL 자원에서 설정되는 서브프레임 구조의 구체적인 사항을 설명하기 위한 도면이다.
도 19는 본 발명의 일례에 따른 secondary UE가 임의 접속에 사용하는 신호 구조의 일례를 나타내는 도면이다.
도 20은 본 발명의 일례에 따른 secondary UE를 위한 제어 채널의 예시적인 구조를 나타내는 도면이다.
도 21은 본 발명의 일례에 따라 eNB가 지정해준 자원을 이용하여 UE 간의 통신 수행되는 무선 통신 시스템을 나타내는 도면이다.
도 22는 본 발명의 일례에 따라 primary UE가 별도의 셀을 형성하는 경우의 서브프레임 구조를 예시적으로 나타내는 도면이다.
도 23은 본 발명의 일 실시예에 따른 단말간 통신 방법에 대한 흐름도이다.
도 24 는 본 발명에 따른 송수신 장치의 구성을 도시한 도면이다.
이하의 실시예들은 본 발명의 구성요소들과 특징들을 소정 형태로 결합한 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려될 수 있다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성할 수도 있다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다.
본 명세서에서 본 발명의 실시예들을 기지국과 단말 간의 데이터 송신 및 수신의 관계를 중심으로 설명한다. 여기서, 기지국은 단말과 직접적으로 통신을 수행하는 네트워크의 종단 노드(terminal node)로서의 의미를 갖는다. 본 문서에서 기지국에 의해 수행되는 것으로 설명된 특정 동작은 경우에 따라서는 기지국의 상위 노드(upper node)에 의해 수행될 수도 있다.
즉, 기지국을 포함하는 다수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. '기지국(BS: Base Station)'은 고정국(fixed station), Node B, eNode B(eNB), 액세스 포인트(AP: Access Point) 등의 용어에 의해 대체될 수 있다. 중계기는 Relay Node(RN), Relay Station(RS) 등의 용어에 의해 대체될 수 있다. 또한, '단말(Terminal)'은 UE(User Equipment), MS(Mobile Station), MSS(Mobile Subscriber Station), SS(Subscriber Station) 등의 용어로 대체될 수 있다.
이하의 설명에서 사용되는 특정 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다. 또한, 본 명세서 전체에서 동일한 구성요소에 대해서는 동일한 도면 부호를 사용하여 설명한다.
본 발명의 실시예들은 무선 접속 시스템들인 IEEE 802 시스템, 3GPP 시스템, 3GPP LTE 및 LTE-A(LTE-Advanced)시스템 및 3GPP2 시스템 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있다. 즉, 본 발명의 실시예들 중 본 발명의 기술적 사상을 명확히 드러내기 위해 설명하지 않은 단계들 또는 부분들은 상기 문서들에 의해 뒷받침될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다.
이하의 기술은 CDMA(Code Division Multiple Access), FDMA(Frequency Division Multiple Access), TDMA(Time Division Multiple Access), OFDMA(Orthogonal Frequency Division Multiple Access), SC-FDMA(Single Carrier Frequency Division Multiple Access) 등과 같은 다양한 무선 접속 시스템에 사용될 수 있다. CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP(3rd Generation Partnership Project) LTE(long term evolution)는 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(Advanced)는 3GPP LTE의 진화이다. WiMAX는 IEEE 802.16e 규격(WirelessMAN-OFDMA Reference System) 및 발전된 IEEE 802.16m 규격(WirelessMAN-OFDMA Advanced system)에 의하여 설명될 수 있다. 명확성을 위하여 이하에서는 3GPP LTE 및 3GPP LTE-A 시스템을 위주로 설명하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다.
도 2를 참조하여 하향링크 무선 프레임의 구조에 대하여 설명한다.
셀룰라 OFDM 무선 패킷 통신 시스템에서, 상/하향링크 데이터 패킷 전송은 서브프레임 (subframe) 단위로 이루어지며, 한 서브프레임은 다수의 OFDM 심볼을 포함하는 일정 시간 구간으로 정의된다. 3GPP LTE 표준에서는 FDD(Frequency Division Duplex)에 적용 가능한 타입 1 무선 프레임(radio frame) 구조와 TDD(Time Division Duplex)에 적용 가능한 타입 2의 무선 프레임 구조를 지원한다.
도 2(a)는 타입 1 무선 프레임의 구조를 나타내는 도면이다. 하향링크 무선 프레임(radio frame)은 10개의 서브프레임(subframe)으로 구성되고, 하나의 서브프레임은 시간 영역(time domain)에서 2개의 슬롯(slot)으로 구성된다. 하나의 서브프레임이 전송되는 데 걸리는 시간을 TTI(transmission time interval)이라 하고, 예를 들어 하나의 서브프레임의 길이는 1ms이고, 하나의 슬롯의 길이는 0.5ms 일 수 있다. 하나의 슬롯은 시간 영역에서 복수의 OFDM 심볼을 포함하고, 주파수 영역에서 다수의 자원블록(Resource Block; RB)을 포함한다. 3GPP LTE 시스템에서는 하향링크에서 OFDMA 를 사용하므로, OFDM 심볼이 하나의 심볼 구간을 나타낸다. OFDM 심볼은 또한 SC-FDMA 심볼 또는 심볼 구간으로 칭하여질 수도 있다. 자원 블록(Resource Block; RB)은 자원 할당 단위이고, 하나의 슬롯에서 복수개의 연속적인 부반송파(subcarrier)를 포함할 수 있다.
하나의 슬롯에 포함되는 OFDM 심볼의 수는 CP(Cyclic Prefix)의 구성(configuration)에 따라 달라질 수 있다. CP에는 확장된 CP(extended CP)와 일반 CP(normal CP)가 있다. 예를 들어, OFDM 심볼이 일반 CP에 의해 구성된 경우, 하나의 슬롯에 포함되는 OFDM 심볼의 수는 7개일 수 있다. OFDM 심볼이 확장된 CP에 의해 구성된 경우, 한 OFDM 심볼의 길이가 늘어나므로, 한 슬롯에 포함되는 OFDM 심볼의 수는 일반 CP인 경우보다 적다. 확장된 CP의 경우에, 예를 들어, 하나의 슬롯에 포함되는 OFDM 심볼의 수는 6개일 수 있다. 단말이 빠른 속도로 이동하는 등의 경우와 같이 채널상태가 불안정한 경우, 심볼간 간섭을 더욱 줄이기 위해 확장된 CP가 사용될 수 있다.
일반 CP가 사용되는 경우 하나의 슬롯은 7개의 OFDM 심볼을 포함하므로, 하나의 서브프레임은 14개의 OFDM 심볼을 포함한다. 이때, 각 서브프레임의 처음 2개 또는 3개의 OFDM 심볼은 PDCCH(physical downlink control channel)에 할당되고, 나머지 OFDM 심볼은 PDSCH(physical downlink shared channel)에 할당될 수 있다.
도 2(b)는 타입 2 무선 프레임의 구조를 나타내는 도면이다. 타입 2 무선 프레임은 2개의 해프 프레임 (half frame)으로 구성되며, 각 해프 프레임은 5개의 서브프레임과 DwPTS (Downlink Pilot Time Slot), 보호구간(Guard Period; GP), UpPTS (Uplink Pilot Time Slot)로 구성되며, 이 중 1개의 서브프레임은 2개의 슬롯으로 구성된다. DwPTS는 단말에서의 초기 셀 탐색, 동기화 또는 채널 추정에 사용된다. UpPTS는 기지국에서의 채널 추정과 단말의 상향 전송 동기를 맞추는 데 사용된다. 보호구간은 상향링크와 하향링크 사이에 하향링크 신호의 다중경로 지연으로 인해 상향링크에서 생기는 간섭을 제거하기 위한 구간이다. 한편, 무선 프레임의 타입에 관계 없이 1개의 서브프레임은 2개의 슬롯으로 구성된다.
무선 프레임의 구조는 예시에 불과하고, 무선 프레임에 포함되는 서브프레임의 수 또는 서브프레임에 포함되는 슬롯의 수, 슬롯에 포함되는 심볼의 수는 다양하게 변경될 수 있다.
도 3는 하향링크 슬롯에서의 자원 그리드(resource grid)를 나타내는 도면이다. 하나의 하향링크 슬롯은 시간 영역에서 7 개의 OFDM 심볼을 포함하고, 하나의 자원블록(RB)은 주파수 영역에서 12 개의 부반송파를 포함하는 것으로 도시되어 있지만, 본 발명이 이에 제한되는 것은 아니다. 예를 들어, 일반 CP(Cyclic Prefix)의 경우에는 하나의 슬롯이 7 OFDM 심볼을 포함하지만, 확장된 CP(extended-CP)의 경우에는 하나의 슬롯이 6 OFDM 심볼을 포함할 수 있다. 자원 그리드 상의 각각의 요소는 자원 요소(resource element)라 한다. 하나의 자원블록은 12×7 자원 요소를 포함한다. 하향링크 슬롯에 포함되는 자원블록들의 NDL의 개수는 하향링크 전송 대역폭에 따른다. 상향링크 슬롯의 구조는 하향링크 슬롯의 구조와 동일할 수 있다.
도 4은 하향링크 서브프레임의 구조를 나타내는 도면이다. 하나의 서브프레임 내에서 첫 번째 슬롯의 앞 부분의 최대 3 개의 OFDM 심볼은 제어 채널이 할당되는 제어 영역에 해당한다. 나머지 OFDM 심볼들은 물리하향링크공유채널(Physical Downlink Shared Chancel; PDSCH)이 할당되는 데이터 영역에 해당한다. 3GPP LTE 시스템에서 사용되는 하향링크 제어 채널들에는, 예를 들어, 물리제어포맷지시자채널(Physical Control Format Indicator Channel; PCFICH), 물리하향링크제어채널(Physical Downlink Control Channel; PDCCH), 물리HARQ지시자채널(Physical Hybrid automatic repeat request Indicator Channel; PHICH) 등이 있다. PCFICH는 서브프레임의 첫 번째 OFDM 심볼에서 전송되고 서브프레임 내의 제어 채널 전송에 사용되는 OFDM 심볼의 개수에 대한 정보를 포함한다. PHICH는 상향링크 전송의 응답으로서 HARQ ACK/NACK 신호를 포함한다. PDCCH를 통하여 전송되는 제어 정보를 하향링크제어정보(Downlink Control Information; DCI)라 한다. DCI는 상향링크 또는 하향링크 스케줄링 정보를 포함하거나 임의의 단말 그룹에 대한 상향링크 전송 전력 제어 명령을 포함한다. PDCCH는 하향링크공유채널(DL-SCH)의 자원 할당 및 전송 포맷, 상향링크공유채널(UL-SCH)의 자원 할당 정보, 페이징채널(PCH)의 페이징 정보, DL-SCH 상의 시스템 정보, PDSCH 상으로 전송되는 임의접속응답(Random Access Response)과 같은 상위계층 제어 메시지의 자원 할당, 임의의 단말 그룹 내의 개별 단말에 대한 전송 전력 제어 명령의 세트, 전송 전력 제어 정보, VoIP(Voice over IP)의 활성화 등을 포함할 수 있다. 복수의 PDCCH가 제어 영역 내에서 전송될 수 있다. 단말은 복수의 PDCCH를 모니터링할 수 있다. PDCCH는 하나 이상의 연속하는 제어채널요소(Control Channel Element; CCE)의 조합(aggregation)으로 전송된다. CCE는 무선 채널의 상태에 기초한 코딩 레이트로 PDCCH를 제공하기 위해 사용되는 논리 할당 단위이다. CCE는 복수개의 자원 요소 그룹에 대응한다. PDCCH의 포맷과 이용가능한 비트 수는 CCE의 개수와 CCE에 의해 제공되는 코딩 레이트 간의 상관관계에 따라서 결정된다. 기지국은 단말에게 전송되는 DCI에 따라서 PDCCH 포맷을 결정하고, 제어 정보에 순환잉여검사(Cyclic Redundancy Check; CRC)를 부가한다. CRC는 PDCCH의 소유자 또는 용도에 따라 무선 네트워크 임시 식별자(Radio Network Temporary Identifier; RNTI)라 하는 식별자로 마스킹된다. PDCCH가 특정 단말에 대한 것이면, 단말의 cell-RNTI(C-RNTI) 식별자가 CRC에 마스킹될 수 있다. 또는, PDCCH가 페이징 메시지에 대한 것이면, 페이징 지시자 식별자(Paging Indicator Identifier; P-RNTI)가 CRC에 마스킹될 수 있다. PDCCH가 시스템 정보(보다 구체적으로, 시스템 정보 블록(SIB))에 대한 것이면, 시스템 정보 식별자 및 시스템 정보 RNTI(SI-RNTI)가 CRC에 마스킹될 수 있다. 단말의 임의 접속 프리앰블의 전송에 대한 응답인 임의접속응답을 나타내기 위해, 임의접속-RNTI(RA-RNTI)가 CRC에 마스킹될 수 있다.
도 5는 상향링크 서브프레임의 구조를 나타내는 도면이다. 상향링크 서브프레임은 주파수 영역에서 제어 영역과 데이터 영역으로 분할될 수 있다. 제어 영역에는 상향링크 제어 정보를 포함하는 물리상향링크제어채널(Physical Uplink Control Channel; PUCCH)이 할당된다. 데이터 영역에는 사용자 데이터를 포함하는 물리상향링크공유채널(Physical uplink shared channel; PUSCH)이 할당된다. 단일 반송파 특성을 유지하기 위해서, 하나의 단말은 PUCCH와 PUSCH를 동시에 전송하지 않는다. 하나의 단말에 대한 PUCCH는 서브프레임에서 자원블록 쌍(RB pair)에 할당된다. 자원블록 쌍에 속하는 자원블록들은 2 슬롯에 대하여 상이한 부반송파를 차지한다. 이를 PUCCH에 할당되는 자원블록 쌍이 슬롯 경계에서 주파수-호핑(frequency-hopped)된다고 한다.
다중안테나(MIMO) 시스템의 모델링
도 6는 다중안테나를 갖는 무선 통신 시스템의 구성도이다.
도 6(a)에 도시된 바와 같이 송신 안테나의 수를 N T 개로, 수신 안테나의 수를 N R 개로 늘리면, 송신기나 수신기에서만 다수의 안테나를 사용하게 되는 경우와 달리 안테나 수에 비례하여 이론적인 채널 전송 용량이 증가한다. 따라서, 전송 레이트를 향상시키고 주파수 효율을 획기적으로 향상시킬 수 있다. 채널 전송 용량이 증가함에 따라, 전송 레이트는 이론적으로 단일 안테나 이용시의 최대 전송 레이트(R o )에 레이트 증가율(R i )이 곱해진 만큼 증가할 수 있다.
수학식 1
Figure PCTKR2011009421-appb-M000001
예를 들어, 4개의 송신 안테나와 4개의 수신 안테나를 이용하는 MIMO 통신 시스템에서는 단일 안테나 시스템에 비해 이론상 4배의 전송 레이트를 획득할 수 있다. 다중안테나 시스템의 이론적 용량 증가가 90 년대 중반에 증명된 이후 이를 실질적인 데이터 전송률 향상으로 이끌어 내기 위한 다양한 기술들이 현재까지 활발히 연구되고 있다. 또한, 몇몇 기술들은 이미 3 세대 이동 통신과 차세대 무선랜 등의 다양한 무선 통신의 표준에 반영되고 있다.
현재까지의 다중안테나 관련 연구 동향을 살펴보면 다양한 채널 환경 및 다중접속 환경에서의 다중안테나 통신 용량 계산 등과 관련된 정보 이론 측면 연구, 다중안테나 시스템의 무선 채널 측정 및 모형 도출 연구, 전송 신뢰도 향상 및 전송률 향상을 위한 시공간 신호 처리 기술 연구 등 다양한 관점에서 활발히 연구가 진행되고 있다.
다중안테나 시스템에서의 통신 방법을 수학적 모델링을 이용하여 보다 구체적으로 설명한다. 상기 시스템에는 N T 개의 송신 안테나와 N R 개의 수신 안테나가 존재한다고 가정한다.
송신 신호를 살펴보면, N T 개의 송신 안테나가 있는 경우 전송 가능한 최대 정보는 N T 개이다. 전송 정보는 다음과 같이 표현될 수 있다.
수학식 2
Figure PCTKR2011009421-appb-M000002
각각의 전송 정보
Figure PCTKR2011009421-appb-I000001
는 전송 전력이 다를 수 있다. 각각의 전송 전력을
Figure PCTKR2011009421-appb-I000002
라고 하면, 전송 전력이 조정된 전송 정보는 다음과 같이 표현될 수 있다.
수학식 3
Figure PCTKR2011009421-appb-M000003
또한,
Figure PCTKR2011009421-appb-I000003
는 전송 전력의 대각행렬
Figure PCTKR2011009421-appb-I000004
를 이용해 다음과 같이 표현될 수 있다.
수학식 4
Figure PCTKR2011009421-appb-M000004
전송전력이 조정된 정보 벡터
Figure PCTKR2011009421-appb-I000005
에 가중치 행렬
Figure PCTKR2011009421-appb-I000006
가 적용되어 실제 전송되는 N T 개의 송신신호
Figure PCTKR2011009421-appb-I000007
가 구성되는 경우를 고려해 보자. 가중치 행렬
Figure PCTKR2011009421-appb-I000008
는 전송 정보를 전송 채널 상황 등에 따라 각 안테나에 적절히 분배해 주는 역할을 한다.
Figure PCTKR2011009421-appb-I000009
는 벡터
Figure PCTKR2011009421-appb-I000010
를 이용하여 다음과 같이 표현될 수 있다.
수학식 5
Figure PCTKR2011009421-appb-M000005
여기에서,
Figure PCTKR2011009421-appb-I000011
i번째 송신 안테나와 j번째 정보간의 가중치를 의미한다.
Figure PCTKR2011009421-appb-I000012
는 프리코딩 행렬이라고도 불린다.
수신신호는 N R 개의 수신 안테나가 있는 경우 각 안테나의 수신신호
Figure PCTKR2011009421-appb-I000013
은 벡터로 다음과 같이 표현될 수 있다.
수학식 6
Figure PCTKR2011009421-appb-M000006
다중안테나 무선 통신 시스템에서 채널을 모델링하는 경우, 채널은 송수신 안테나 인덱스에 따라 구분될 수 있다. 송신 안테나 j로부터 수신 안테나 i를 거치는 채널을
Figure PCTKR2011009421-appb-I000014
로 표시하기로 한다.
Figure PCTKR2011009421-appb-I000015
에서, 인덱스의 순서가 수신 안테나 인덱스가 먼저, 송신 안테나의 인덱스가 나중임에 유의한다.
한편, 도 6(b)은 N T 개의 송신 안테나에서 수신 안테나 i로의 채널을 도시한 도면이다. 상기 채널을 묶어서 벡터 및 행렬 형태로 표시할 수 있다. 도 6(b)에서, 총 N T 개의 송신 안테나로부터 수신 안테나 i로 도착하는 채널은 다음과 같이 나타낼 수 있다.
수학식 7
Figure PCTKR2011009421-appb-M000007
따라서, N T 개의 송신 안테나로부터 N R 개의 수신 안테나로 도착하는 모든 채널은 다음과 같이 표현될 수 있다.
수학식 8
실제 채널에는 채널 행렬
Figure PCTKR2011009421-appb-I000016
를 거친 후에 백색잡음(AWGN; Additive White Gaussian Noise)이 더해진다. N R 개의 수신 안테나 각각에 더해지는 백색잡음
Figure PCTKR2011009421-appb-I000017
은 다음과 같이 표현될 수 있다.
수학식 9
Figure PCTKR2011009421-appb-M000009
상술한 수식 모델링을 통해 수신신호는 다음과 같이 표현될 수 있다.
수학식 10
Figure PCTKR2011009421-appb-M000010
한편, 채널 상태를 나타내는 채널 행렬
Figure PCTKR2011009421-appb-I000018
의 행과 열의 수는 송수신 안테나의 수에 의해 결정된다. 채널 행렬
Figure PCTKR2011009421-appb-I000019
에서 행의 수는 수신 안테나의 수 N R 과 같고, 열의 수는 송신 안테나의 수 N T 와 같다. 즉, 채널 행렬
Figure PCTKR2011009421-appb-I000020
는 행렬이 N R ×N T 된다.
행렬의 랭크(rank)는 서로 독립인(independent) 행 또는 열의 개수 중에서 최소 개수로 정의된다. 따라서, 행렬의 랭크는 행 또는 열의 개수 보다 클 수 없다. 채널 행렬
Figure PCTKR2011009421-appb-I000021
의 랭크(
Figure PCTKR2011009421-appb-I000022
)는 다음과 같이 제한된다.
수학식 11
Figure PCTKR2011009421-appb-M000011
랭크의 다른 정의는 행렬을 고유치 분해(Eigen value decomposition) 하였을 때, 0이 아닌 고유치들의 개수로 정의할 수 있다. 유사하게, 랭크의 또 다른 정의는 특이치 분해(singular value decomposition) 하였을 때, 0이 아닌 특이치들의 개수로 정의할 수 있다. 따라서, 채널 행렬에서 랭크의 물리적인 의미는 주어진 채널에서 서로 다른 정보를 보낼 수 있는 최대 수라고 할 수 있다.
참조 신호 (Reference Signal; RS)
무선 통신 시스템에서 패킷을 전송할 때, 전송되는 패킷은 무선 채널을 통해서 전송되기 때문에 전송과정에서 신호의 왜곡이 발생할 수 있다. 왜곡된 신호를 수신측에서 올바로 수신하기 위해서는 채널 정보를 이용하여 수신 신호에서 왜곡을 보정하여야 한다. 채널 정보를 알아내기 위해서, 송신측과 수신측에서 모두 알고 있는 신호를 전송하여, 상기 신호가 채널을 통해 수신될 때의 왜곡 정도를 가지고 채널 정보를 알아내는 방법을 주로 사용한다. 상기 신호를 파일럿 신호 (Pilot Signal) 또는 참조 신호 (Reference Signal)라고 한다.
다중안테나를 사용하여 데이터를 송수신하는 경우에는 각 송신 안테나와 수신 안테나 사이의 채널 상황을 알아야 올바른 신호를 수신할 수 있다. 따라서, 각 송신 안테나 별로 별도의 참조 신호가 존재하여야 한다.
하향링크 참조신호는 셀 내의 모든 단말이 공유하는 공용 참조신호(Common Reference Signal; CRS)와 특정 단말만을 위한 전용 참조신호(Dedicated Reference Signal; DRS)가 있다. 이러한 참조신호들에 의해 채널 추정 및 복조를 위한 정보가 제공될 수 있다.
수신측(단말)은 CRS로부터 채널의 상태를 추정하여 CQI(Channel Quality Indicator), PMI(Precoding Matrix Index) 및/또는 RI(Rank Indicator)와 같은 채널 품질과 관련된 지시자를 송신측(기지국)으로 피드백할 수 있다. CRS는 셀-특정(cell-specific) 참조신호라 불릴 수도 있다. 또는 CQI/PMI/RI 와 같은 채널 상태 정보(Channel State Information; CSI)의 피드백과 관련된 RS를 별도로 CSI-RS로 정의할 수도 있다.
한편, DRS는 PDSCH 상의 데이터의 복조가 필요한 경우에 해당 RE를 통하여 전송될 수 있다. 단말은 상위계층으로부터 DRS의 존재 여부에 대하여 지시받을 수 있고, 해당 PDSCH가 매핑된 경우에만 DRS가 유효하다는 것에 대하여 지시받을 수 있다. DRS는 단말-특정(UE-specific) 참조신호 또는 복조용 참조신호(Demodulation Reference Signal; DMRS)라 불릴 수도 있다.
도 7은 기존의 3GPP LTE 시스템 (예를 들어, 릴리즈-8)에서 정의하는 CRS 및 DRS가 하향링크 자원블록 쌍 (RB pair) 상에 매핑되는 패턴을 나타내는 도면이다. 참조신호가 매핑되는 단위로서의 하향링크 자원블록 쌍은 시간 상으로 하나의 서브프레임×주파수 상으로 12 부반송파의 단위로 표현될 수 있다. 즉, 하나의 자원블록 쌍은 시간 상으로 일반 CP의 경우(도 7(a))에는 14 개의 OFDM 심볼 길이, 확장된 CP의 경우(도 7(b))에는 12 개의 OFDM 심볼 길이를 가진다.
도 7은 기지국이 4 개의 전송 안테나를 지원하는 시스템에서 참조신호의 자원블록 쌍 상에서의 위치를 나타낸다. 도 7에서 '0', '1', '2' 및 '3' 으로 표시된 자원 요소(RE)는, 각각 안테나 포트 인덱스 0, 1, 2 및 3에 대한 CRS의 위치를 나타낸다. 한편, 도 7에서 'D'로 표시된 자원 요소는 DRS의 위치를 나타낸다.
이하에서는 CRS에 대하여 구체적으로 설명한다.
CRS는 물리 안테나단의 채널을 추정하기 위해 사용되며, 셀 내에 있는 모든 단말(UE)들이 공통적으로 수신할 수 있는 참조신호로서, 전대역에 걸쳐 분포한다. CRS는 채널 상태 정보 (CSI) 획득 및 데이터 복조의 목적으로 사용될 수 있다.
CRS는 송신측(기지국)의 안테나 구성에 따라 다양한 형태로 정의된다. 3GPP LTE (예를 들어, 릴리즈-8) 시스템은 다양한 안테나 구성(Antenna configuration)을 지원하며, 하향링크 신호 송신측(기지국)은 단일 안테나, 2 전송 안테나, 4 전송 안테나 등 3 종류의 안테나 구성을 가진다. 기지국이 단일 안테나 전송을 하는 경우에는 단일 안테나 포트를 위한 참조신호가 배치된다. 기지국이 2 안테나 전송을 하는 경우에는 2개의 안테나 포트를 위한 참조신호가 시간분할다중화(Time Division Multiplexing) 및/또는 주파수분할다중화(Frequency Division Multiplexing) 방식으로 배치된다. 즉, 2 개의 안테나 포트를 위한 참조신호가 상이한 시간 자원 및/또는 상이한 주파수 자원에 배치되어 서로 구별될 수 있다. 또한, 기지국이 4 안테나 전송을 하는 경우에는 4개의 안테나 포트를 위한 참조신호가 TDM/FDM 방식으로 배치된다. CRS를 통해 하향링크 신호 수신측(단말)에 의하여 추정된 채널 정보는 단일 안테나 전송(Single Antenna Transmission), 전송 다이버시티(Transmit diversity), 폐-루프 공간 다중화(Closed-loop Spatial multiplexing), 개-루프 공간 다중화(Open-loop Spatial multiplexing), 다중-사용자(Multi-User) MIMO(MU-MIMO) 등의 전송 기법으로 송신된 데이터의 복조를 위해 사용될 수 있다.
다중 안테나를 지원하는 경우, 어떤 안테나 포트에서 참조신호를 전송할 때에 참조신호 패턴에 따라 지정된 자원요소(RE) 위치에 참조신호를 전송하고, 다른 안테나 포트를 위해 지정된 자원요소(RE) 위치에는 어떠한 신호도 전송하지 않는다.
CRS가 자원 블록 상에 매핑되는 규칙은 아래의 수식 12에 따른다.
수학식 12
Figure PCTKR2011009421-appb-M000012
Figure PCTKR2011009421-appb-I000023
Figure PCTKR2011009421-appb-I000024
수식 12에서, k 는 부반송파 인덱스이고, l은 심볼 인덱스이며, p는 안테나 포트 인덱스이다.
Figure PCTKR2011009421-appb-I000025
는 하나의 하향링크 슬롯의 OFDM 심볼의 개수이고,
Figure PCTKR2011009421-appb-I000026
는 하향링크에 할당된 자원블록의 개수이고,
Figure PCTKR2011009421-appb-I000027
는 슬롯 인덱스이고,
Figure PCTKR2011009421-appb-I000028
는 셀 ID를 의미한다. mod 는 모듈러 연산을 의미한다. 주파수 영역에서 참조신호의 위치는 Vshift 값에 의존한다. Vshift 값은 또한 셀 ID에 의존하므로, 참조신호의 위치는 셀 별로 상이한 주파수 시프트 값을 가지게 된다.
구체적으로는, CRS를 통한 채널 추정 성능을 높이기 위해 셀 별로 CRS의 주파수 영역 상의 위치를 시프트(shift)시켜 다르게 할 수 있다. 예를 들어, 참조신호가 3 부반송파 마다 위치하는 경우에, 어떤 셀은 3k 의 부반송파 상에, 다른 셀은 3k+1의 부반송파 상에 배치 되도록 할 수 있다. 하나의 안테나 포트의 관점에서 참조신호는 주파수 영역에서 6 RE 간격(즉, 6 부반송파 간격)으로 배치되고, 다른 안테나 포트를 위한 참조신호가 배치되는 RE 와는 주파수 영역에서 3 RE 간격을 유지한다.
또한, CRS에 대해서 전력 부스팅(power boosting)이 적용될 수 있다. 전력 부스팅이란, 하나의 OFDM 심볼의 자원요소(RE)들 중 참조신호를 위해 할당된 RE가 아닌 다른 RE로부터 전력을 가져와서 참조신호를 보다 높은 전력으로 전송하는 것을 의미한다.
시간 영역에서 참조신호 위치는 각 슬롯의 심볼 인덱스 (l) 0을 시작점으로 하여 일정한 간격으로 배치된다. 시간 간격은 CP 길이에 따라 다르게 정의된다. 일반 CP 경우는 슬롯의 심볼 인덱스 0 및 4에 위치하며, 확장된 CP 경우는 슬롯의 심볼 인덱스 0 및 3에 위치한다. 하나의 OFDM 심볼에는 최대 2개의 안테나 포트를 참조신호만이 정의된다. 따라서 4 전송 안테나 전송 시, 안테나 포트 0 및 1을 위한 참조신호는 슬롯의 심볼 인덱스 0 및 4 (확장된 CP 경우는 심볼 인덱스 0 및 3)에 위치하며, 안테나 포트 2 및 3을 위한 참조신호는 슬롯의 심볼 인덱스 1에 위치한다. 단, 안테나 포트 2 및 3을 위한 참조신호의 주파수 위치는 2 번째 슬롯에서는 서로 스위칭된다.
기존의 3GPP LTE (예를 들어, 릴리즈-8) 시스템보다 높은 스펙트럼 효율성(Spectral Efficiency)를 지원하기 위하여, 확장된 안테나 구성을 갖는 시스템(예를 들어, LTE-A 시스템)을 설계할 수 있다. 확장된 안테나 구성은, 예를 들어, 8개의 전송 안테나 구성일 수 있다. 이러한 확장된 안테나 구성을 갖는 시스템에서 기존의 안테나 구성에서 동작하는 단말들을 지원, 즉, 역방향 호환성(backward compatibility)을 지원할 필요가 있다. 따라서, 기존의 안테나 구성에 따른 참조신호 패턴을 지원하고, 추가적인 안테나 구성에 대한 새로운 참조신호 패턴을 설계할 필요가 있다. 여기서, 기존의 안테나 구성을 가진 시스템에 새로운 안테나 포트를 위한 CRS를 추가하게 되면 참조신호 오버헤드가 급격하게 증가하여 데이터 전송률을 떨어뜨리는 단점이 있다. 위와 같은 사항을 고려하여 3GPP LTE의 진화인 LTE-A(Advanced) 시스템에서는 새로운 안테나 포트를 위한 채널 상태 정보(CSI) 측정을 위한 별도의 참조신호 (CSI-RS)가 도입될 수 있다.
이하에서는 DRS에 대하여 구체적으로 설명한다.
DRS (또는 단말-특정 참조신호)는 데이터 복조를 위해 사용되는 참조신호로, 다중안테나 전송을 할 때 특정 단말에 사용되는 프리코딩 가중치를 참조신호에도 그대로 사용함으로써 단말이 참조신호를 수신했을 때에 각 송신안테나에서 전송되는 프리코딩 가중치와 전송 채널이 결합된 균등 채널(Equivalent channel)을 추정할 수 있도록 한다.
기존의 3GPP LTE 시스템 (예를 들어, 릴리즈-8)은 최대 4 송신 안테나 전송을 지원하고, 랭크 1 빔포밍을 위한 DRS가 정의되어 있다. 랭크 1 빔포밍을 위한 DRS는 안테나 포트 인덱스 5 에 대한 참조신호로 표시되기도 한다. DRS가 자원블록 상에 매핑되는 규칙은 아래의 수식 13 및 14에 따른다. 수식 13은 일반 CP의 경우에 대한 것이고, 수식 14는 확장된 CP의 경우에 대한 것이다.
수학식 13
Figure PCTKR2011009421-appb-M000013
Figure PCTKR2011009421-appb-I000029
수학식 14
Figure PCTKR2011009421-appb-M000014
Figure PCTKR2011009421-appb-I000030
수식 13 및 14에서, k 는 부반송파 인덱스이고, l은 심볼 인덱스이며, p는 안테나 포트 인덱스이다.
Figure PCTKR2011009421-appb-I000031
는 주파수 영역에서 자원 블록 크기를 나타내며 부반송파의 개수로 표현된다.
Figure PCTKR2011009421-appb-I000032
는 물리자원블록 넘버를 나타낸다.
Figure PCTKR2011009421-appb-I000033
는 대응하는 PDSCH 전송의 자원 블록의 대역폭을 나타낸다.
Figure PCTKR2011009421-appb-I000034
는 슬롯 인덱스이고,
Figure PCTKR2011009421-appb-I000035
는 셀 ID를 의미한다. mod 는 모듈러 연산을 의미한다. 주파수 영역에서 참조신호의 위치는 Vshift 값에 의존한다. Vshift 값은 또한 셀 ID에 의존하므로, 참조신호의 위치는 셀 별로 상이한 주파수 시프트 값을 가지게 된다.
한편, 3GPP LTE의 진화인 LTE-A(Advanced) 시스템에서는 높은 차수(order)의 MIMO, 다중-셀 전송, 발전된 MU-MIMO 등이 고려되고 있는데, 효율적인 참조신호의 운용과 발전된 전송 방식을 지원하기 위하여 DRS 기반의 데이터 복조를 고려하고 있다. 즉, 기존의 3GPP LTE (예를 들어, 릴리즈-8) 에서 정의하는 랭크 1 빔포밍을 위한 DRS (안테나 포트 인덱스 5)와는 별도로, 추가된 안테나를 통한 데이터 전송을 지원하기 위하여 2 이상의 레이어에 대한 DRS를 정의할 수 있다.
협력형 다중-포인트 (Cooperative Multi-Point; CoMP)
3GPP LTE-A 시스템의 개선된 시스템 성능 요구조건에 따라서, CoMP 송수신 기술 (co-MIMO, 공동(collaborative) MIMO 또는 네트워크 MIMO 등으로 표현되기도 함)이 제안되고 있다. CoMP 기술은 셀-경계(cell-edge)에 위치한 단말의 성능을 증가시키고 평균 섹터 수율(throughput)을 증가시킬 수 있다.
일반적으로, 주파수 재사용 인자(frequency reuse factor)가 1 인 다중-셀 환경에서, 셀-간 간섭(Inter-Cell Interference; ICI)으로 인하여 셀-경계에 위치한 단말의 성능과 평균 섹터 수율이 감소될 수 있다. 이러한 ICI를 저감하기 위하여, 기존의 LTE 시스템에서는 단말 특정 전력 제어를 통한 부분 주파수 재사용(fractional frequency reuse; FFR)과 같은 단순한 수동적인 기법을 이용하여 간섭에 의해 제한을 받은 환경에서 셀-경계에 위치한 단말이 적절한 수율 성능을 가지도록 하는 방법이 적용되었다. 그러나, 셀 당 주파수 자원 사용을 낮추기보다는, ICI를 저감하거나 ICI를 단말이 원하는 신호로 재사용하는 것이 보다 바람직할 수 있다. 위와 같은 목적을 달성하기 위하여, CoMP 전송 기법이 적용될 수 있다.
하향링크의 경우에 적용될 수 있는 CoMP 기법은 크게 조인트-프로세싱(joint processing; JP) 기법 및 조정 스케줄링/빔포밍 (coordinated scheduling/beamforming; CS/CB) 기법으로 분류할 수 있다.
JP 기법은 CoMP 협력 단위의 각각의 포인트(기지국)에서 데이터를 이용할 수 있다. CoMP 협력 단위는 협력 전송 기법에 이용되는 기지국들의 집합을 의미한다. JP 기법은 조인트 전송(Joint Transmission) 기법과 동적 셀 선택(Dynamic cell selection) 기법으로 분류할 수 있다.
조인트 전송 기법은, PDSCH 가 한번에 복수개의 포인트(CoMP 협력 단위의 일부 또는 전부)로부터 전송되는 기법을 말한다. 즉, 단일 단말로 전송되는 데이터는 복수개의 전송 포인트로부터 동시에 전송될 수 있다. 조인트 전송 기법에 의하면, 코히어런트하게(coherently) 또는 넌-코히어런트하게 (non-coherently) 수신 신호의 품질이 향상될 수 있고, 또한, 다른 단말에 대한 간섭을 능동적으로 소거할 수도 있다.
동적 셀 선택 기법은, PDSCH가 한번에 (CoMP 협력 단위의) 하나의 포인트로부터 전송되는 기법을 말한다. 즉, 특정 시점에서 단일 단말로 전송되는 데이터는 하나의 포인트로부터 전송되고, 그 시점에 협력 단위 내의 다른 포인트는 해당 단말에 대하여 데이터 전송을 하지 않으며, 해당 단말로 데이터를 전송하는 포인트는 동적으로 선택될 수 있다.
한편, CS/CB 기법에 의하면 CoMP 협력 단위들이 단일 단말에 대한 데이터 전송의 빔포밍을 협력적으로 수행할 수 있다. 여기서, 데이터는 서빙 셀에서만 전송되지만, 사용자 스케줄링/빔포밍은 해당 CoMP 협력 단위의 셀들의 조정에 의하여 결정될 수 있다.
한편, 상향링크의 경우에, 조정(coordinated) 다중-포인트 수신은 지리적으로 떨어진 복수개의 포인트들의 조정에 의해서 전송된 신호를 수신하는 것을 의미한다. 상향링크의 경우에 적용될 수 있는 CoMP 기법은 조인트 수신(Joint Reception; JR) 및 조정 스케줄링/빔포밍(coordinated scheduling/beamforming; CS/CB)으로 분류할 수 있다.
JR 기법은 PUSCH 를 통해 전송된 신호가 복수개의 수신 포인트에서 수신되는 것을 의미하고, CS/CB 기법은 PUSCH 가 하나의 포인트에서만 수신되지만 사용자 스케줄링/빔포밍은 CoMP 협력 단위의 셀들의 조정에 의해 결정되는 것을 의미한다.
사운딩 참조 신호(SRS)
사운딩 참조 신호(Sounding Reference Signal; SRS)는 주로 기지국이 채널 품질 측정을 하여 상향링크 상에서 주파수-선택적(frequency-selective) 스케줄링을 위해 사용되며, 상향링크 데이터 및/또는 제어 정보 전송과 연관되지는 않는다. 그러나, 이에 제한되는 것은 아니고, SRS는 향상된 전력 제어의 목적 또는 최근에 스케줄링되지 않은 단말들의 다양한 시작 기능(start-up function)을 지원하는 목적으로 사용될 수도 있다. 시작 기능은, 예를 들어, 초기 변조및코딩 기법(Modulation and Coding Scheme; MCS), 데이터 전송을 위한 초기 전력 제어, 타이밍 정렬(timing advance) 및 주파수 반-선택적 스케줄링 (서브프레임의 첫 번째 슬롯에서는 주파수 자원이 선택적으로 할당되고 두 번째 슬롯에서는 다른 주파수로 유사-무작위(pseudo-random)적으로 호핑되는 스케줄링) 등을 포함할 수 있다.
또한, SRS 는 무선 채널이 상향링크와 하향링크 간에 상호적인(reciprocal)이라는 가정하에 하향링크 채널 품질 측정을 위해 사용될 수도 있다. 이러한 가정은, 상향링크와 하향링크가 동일한 주파수 대역을 공유하고 시간 영역에서 구별되는 시분할듀플렉스(time division duplex ;TDD) 시스템에서 특히 유효하다.
셀 내의 임의의 단말에 의하여 SRS가 전송되는 서브프레임은 셀-특정 브로드캐스트 시그널링에 의하여 지시된다. 4-비트의 셀-특정 'SrsSubframeConfiguration' 파라미터는 각각의 무선 프레임 내에서 SRS가 전송될 수 있는 서브프레임의 15 가지 가능한 구성들을 나타낸다. 이러한 구성에 의해 네트워크 배치 시나리오에 따라 SRS 오버헤드를 조정할 수 있는 유연성이 제공될 수 있다. 상기 파라미터의 나머지 하나(16 번째)의 구성은 셀 내의 SRS 전송을 완전히 끄는(switch-off) 것으로, 예를 들어, 주로 고속의 단말들을 서빙하는 셀에 적절할 수 있다.
도 8에서 도시하는 바와 같이, SRS는 항상 구성된 서브프레임의 마지막 SC-FDMA 심볼 상에서 전송된다. 따라서, SRS와 복조용 참조신호(DeModulation Reference Signal; DMRS)는 상이한 SC-FDMA 심볼 상에 위치된다. PUSCH 데이터 전송은 SRS 전송을 위해 지정된 SC-FDMA 심볼 상에서 허용되지 않으며, 이에 따라 사운딩 오버헤드가 가장 높은 경우 (즉, 모든 서브프레임에서 SRS 전송 심볼이 존재하는 경우)에도 대략 7% 를 넘지 않는다.
각각의 SRS 심볼은 주어진 시간 단위 및 주파수 대역에 대하여 기본 시퀀스(랜덤 시퀀스 또는 ZC(Zadoff-Chu)-기반 시퀀스 집합)에 의하여 생성되고, 셀 내의 모든 단말은 동일한 기본 시퀀스를 사용한다. 이때, 동일한 시간 단위 및 동일한 주파수 대역에서 셀 내의 복수개의 단말로부터의 SRS 전송은, 해당 복수개의 단말들에게 할당되는 기본 시퀀스의 상이한 순환 시프트(cyclic shifts)에 의하여 직교적으로(orthogonally) 구별된다. 상이한 셀의 SRS 시퀀스는 셀 마다 상이한 기본 시퀀스를 할당함으로써 구별될 수 있지만, 상이한 기본 시퀀스들 간에 직교성은 보장되지 않는다.
중계기
중계기는, 예를 들어, 고속 데이터 레이트 커버리지의 확대, 그룹 이동성의 향상, 임시 네트워크 배치, 셀 경계 수율의 향상 및/또는 새로운 영역에 네트워크 커버리지를 제공하기 위하여 고려될 수 있다.
중계기는 기지국과 단말 사이의 송수신을 전달(forwarding)하는 역할을 하며, 각각의 반송파 주파수 대역에 속성이 상이한 두 종류의 링크(백홀 링크 및 액세스 링크)가 적용된다. 기지국은 도너 셀(donor cell)을 포함할 수 있다. 중계기는 도너 셀을 통하여 무선-액세스 네트워크와 무선으로 접속된다.
기지국과 중계기 간의 백홀 링크가 하향링크 주파수 대역 또는 하향링크 서브프레임 자원을 이용하는 경우에는 백홀 하향링크로 표현하고, 상향링크 주파수 대역 또는 상향링크 서브프레임 자원을 이용하는 경우에는 백홀 상향링크로 표현할 수 있다. 여기서, 주파수 대역은 FDD(Frequency Division Duplex) 모드에서 할당되는 자원이고, 서브프레임은 TDD(Time Division Duplex) 모드에서 할당되는 자원이다. 유사하게, 중계기와 단말(들) 간의 액세스 링크가 하향링크 주파수 대역 또는 하향링크 서브프레임 자원을 이용하는 경우에는 액세스 하향링크로 표현하고, 상향링크 주파수 대역 또는 상향링크 서브프레임 자원을 이용하는 경우에는 액세스 상향링크로 표현할 수 있다.
기지국에는 상향링크 수신 및 하향링크 전송의 기능이 요구되고, 단말에게는 상향링크 전송 및 하향링크 수신의 기능이 요구된다. 한편, 중계기에는 기지국으로의 백홀 상향링크 전송, 단말로부터의 액세스 상향링크 수신, 기지국으로부터의 백홀 하향링크 수신 및 단말로의 액세스 하향링크 전송의 기능이 모두 요구된다.
도 9은 FDD 모드 중계기의 송수신부 기능 구현의 일례를 나타내는 도면이다. 중계기의 수신 기능을 개념적으로 설명하면 다음과 같다. 기지국으로부터의 하향링크 수신 신호는 듀플렉서(911)를 거쳐 FFT(Fast Fourier Transform) 모듈(912)로 전달되고 OFDMA 기저대역(Baseband) 수신 프로세스(913)가 수행된다. 단말로부터의 상향링크 수신 신호는 듀플렉서(921)를 거쳐 FFT 모듈(922)로 전달되고 DFT-s-OFDMA(Discrete Fourier Transform-spread-OFDMA) 기저대역 수신 프로세스(923)가 수행된다. 기지국으로부터의 하향링크 신호 수신 프로세스와 단말로부터의 상향링크 신호 수신 프로세스는 동시에 병렬적으로 수행될 수 있다. 한편, 중계기의 전송 기능을 개념적으로 설명하면 다음과 같다. 기지국으로의 상향링크 전송 신호는 DFT-s-OFDMA 기저대역 전송 프로세스(933), IFFT(Inverse FFT) 모듈(932) 및 듀플렉서(931)를 통해 전송된다. 단말로의 하향링크 전송 신호는 OFDM 기저대역 전송 프로세스(943), IFFT 모듈(942) 및 듀플렉서(941)를 통해 전송된다. 기지국으로의 상향링크 신호 전송 프로세스와 단말로의 하향링크 신호 전송 프로세스는 동시에 병렬적으로 수행될 수 있다. 또한, 일방향으로 도시된 듀플렉서들은 하나의 양방향 듀플렉서에 의해 구현될 수 있다. 예를 들어, 듀플렉서(911)와 듀플렉서(931)는 하나의 양방향 듀플렉서로 구현될 수 있고, 듀플렉서(921)와 듀플렉서(941)는 하나의 양방향 듀플렉서로 구현될 수 있다. 양방향 듀플렉서인 경우에, 하나의 양방향 듀플렉서에서 특정 반송파 주파수 대역 상의 송수신에 연관되는 IFFT 모듈 및 기저대역 프로세스 모듈 라인이 분기되는 것으로 구현될 수도 있다.
한편, 중계기의 대역(또는 스펙트럼) 사용과 관련하여, 백홀 링크가 액세스 링크와 동일한 주파수 대역에서 동작하는 경우를 '인-밴드(in-band)'라고 하고, 백홀 링크와 액세스 링크가 상이한 주파수 대역에서 동작하는 경우를 '아웃-밴드(out-band)'라고 한다. 인-밴드 및 아웃-밴드 경우 모두에서 기존의 LTE 시스템(예를 들어, 릴리즈-8)에 따라 동작하는 단말(이하, 레거시(legacy) 단말이라 함)이 도너 셀에 접속할 수 있어야 한다.
단말에서 중계기를 인식하는지 여부에 따라 중계기는 트랜스패런트(transparent) 중계기 또는 넌-트랜스패런트(non-transparent) 중계기로 분류될 수 있다. 트랜스패런트는 단말이 중계기를 통하여 네트워크와 통신하는지 여부를 인지하지 못하는 경우를 의미하고, 넌-트랜스패런트는 단말이 중계기를 통하여 네트워크와 통신하는지 여부를 인지하는 경우를 의미한다.
중계기의 제어와 관련하여, 도너 셀의 일부로 구성되는 중계기 또는 스스로 셀을 제어하는 중계기로 구분될 수 있다.
도너 셀의 일부로서 구성되는 중계기는 중계기 식별자(ID)를 가질 수는 있지만, 중계기 자신의 셀 아이덴터티(identity)를 가지지 않는다. 도너 셀이 속하는 기지국에 의하여 RRM(Radio Resource Management)의 적어도 일부가 제어되면 (RRM의 나머지 부분들은 중계기에 위치하더라도), 도너 셀의 일부로서 구성되는 중계기라 한다. 바람직하게는, 이러한 중계기는 레거시 단말을 지원할 수 있다. 예를 들어, 스마트 리피터(Smart repeaters), 디코드-앤-포워드 중계기(decode-and-forward relays), L2(제2계층) 중계기들의 다양한 종류들 및 타입-2 중계기가 이러한 중계기에 해당한다.
스스로 셀을 제어하는 중계기의 경우에, 중계기는 하나 또는 여러개의 셀들을 제어하고, 중계기에 의해 제어되는 셀들 각각에 고유의 물리계층 셀 아이덴터티가 제공되며, 동일한 RRM 메커니즘을 이용할 수 있다. 단말 관점에서는 중계기에 의하여 제어되는 셀에 액세스하는 것과 일반 기지국에 의해 제어되는 셀에 액세스하는 것에 차이점이 없다. 바람직하게는, 이러한 중계기에 의해 제어되는 셀은 레거시 단말을 지원할 수 있다. 예를 들어, 셀프-백홀링(Self-backhauling) 중계기, L3(제3계층) 중계기, 타입-1 중계기 및 타입-1a 중계기가 이러한 중계기에 해당한다.
타입-1 중계기는 인-밴드 중계기로서 복수개의 셀들을 제어하고, 이들 복수개의 셀들의 각각은 단말 입장에서 도너 셀과 구별되는 별개의 셀로 보인다. 또한, 복수개의 셀들은 각자의 물리 셀 ID(LTE 릴리즈-8에서 정의함)를 가지고, 중계기는 자신의 동기화 채널, 참조신호 등을 전송할 수 있다. 단일-셀 동작의 경우에, 단말은 중계기로부터 직접 스케줄링 정보 및 HARQ 피드백을 수신하고 중계기로 자신의 제어 채널(스케줄링 요청(SR), CQI, ACK/NACK 등)을 전송할 수 있다. 또한, 레거시 단말(LTE 릴리즈-8 시스템에 따라 동작하는 단말)들에게 타입-1 중계기는 레거시 기지국(LTE 릴리즈-8 시스템에 따라 동작하는 기지국)으로 보인다. 즉, 역방향 호환성(backward compatibility)을 가진다. 한편, LTE-A 시스템에 따라 동작하는 단말들에게는, 타입-1 중계기는 레거시 기지국과 다른 기지국으로 보여, 성능 향상을 제공할 수 있다.
타입-1a 중계기는 아웃-밴드로 동작하는 것 외에 전술한 타입-1 중계기와 동일한 특징들을 가진다. 타입-1a 중계기의 동작은 L1(제1계층) 동작에 대한 영향이 최소화 또는 없도록 구성될 수 있다.
타입-2 중계기는 인-밴드 중계기로서, 별도의 물리 셀 ID를 가지지 않으며, 이에 따라 새로운 셀을 형성하지 않는다. 타입-2 중계기는 레거시 단말에 대해 트랜스패런트하고, 레거시 단말은 타입-2 중계기의 존재를 인지하지 못한다. 타입-2 중계기는 PDSCH를 전송할 수 있지만, 적어도 CRS 및 PDCCH는 전송하지 않는다.
한편, 중계기가 인-밴드로 동작하도록 하기 위하여, 시간-주파수 공간에서의 일부 자원이 백홀 링크를 위해 예비되어야 하고 이 자원은 액세스 링크를 위해서 사용되지 않도록 설정(configure)할 수 있다. 이를 자원 분할(resource partitioning)이라 한다.
중계기에서의 자원 분할에 있어서의 일반적인 원리는 다음과 같이 설명할 수 있다. 백홀 하향링크 및 액세스 하향링크가 하나의 반송파 주파수 상에서 시간분할다중화(Time Division Multiplexing; TDM) 방식으로 다중화될 수 있다 (즉, 특정 시간에서 백홀 하향링크 또는 액세스 하향링크 중 하나만이 활성화된다). 유사하게, 백홀 상향링크 및 액세스 상향링크는 하나의 반송파 주파수 상에서 TDM 방식으로 다중화될 수 있다 (즉, 특정 시간에서 백홀 상향링크 또는 액세스 상향링크 중 하나만이 활성화된다).
FDD 에서의 백홀 링크 다중화는, 백홀 하향링크 전송은 하향링크 주파수 대역에서 수행되고, 백홀 상향링크 전송은 상향링크 주파수 대역에서 수행되는 것으로 설명할 수 있다. TDD 에서의 백홀 링크 다중화는, 백홀 하향링크 전송은 기지국과 중계기의 하향링크 서브프레임에서 수행되고, 백홀 상향링크 전송은 기지국과 중계기의 상향링크 서브프레임에서 수행되는 것으로 설명할 수 있다.
인-밴드 중계기의 경우에, 예를 들어, 소정의 주파수 대역에서 기지국으로부터의 백홀 하향링크 수신과 단말로의 액세스 하향링크 전송이 동시에 이루어지면, 중계기의 송신단으로부터 전송되는 신호가 중계기의 수신단에서 수신될 수 있고, 이에 따라 중계기의 RF 전단(front-end)에서 신호 간섭 또는 RF 재밍(jamming)이 발생할 수 있다. 유사하게, 소정의 주파수 대역에서 단말로부터의 액세스 상향링크의 수신과 기지국으로의 백홀 상향링크의 전송이 동시에 이루어지면, 중계기의 RF 전단에서 신호 간섭이 발생할 수 있다. 따라서, 중계기에서 하나의 주파수 대역에서의 동시 송수신은 수신 신호와 송신 신호간에 충분한 분리(예를 들어, 송신 안테나와 수신 안테나를 지리적으로 충분히 이격시켜(예를 들어, 지상/지하에) 설치함)가 제공되지 않으면 구현하기 어렵다.
이와 같은 신호 간섭의 문제를 해결하는 한 가지 방안은, 중계기가 도너 셀로부터 신호를 수신하는 동안에 단말로 신호를 전송하지 않도록 동작하게 하는 것이다. 즉, 중계기로부터 단말로의 전송에 갭(gap)을 생성하고, 이 갭 동안에는 단말(레거시 단말 포함)이 중계기로부터의 어떠한 전송도 기대하지 않도록 설정할 수 있다. 도 10에서는 제 1 서브프레임(1010)은 일반 서브프레임으로서 중계기로부터 단말로 하향링크 (즉, 액세스 하향링크) 제어신호 및 데이터가 전송되고, 제 2 서브프레임(1020)은 MBSFN(Multicast Broadcast Single Frequency Network) 서브프레임으로서, 하향링크 서브프레임의 제어 영역(1021)에서는 중계기로부터 단말로 제어 신호가 전송되지만 하향링크 서브프레임의 나머지 영역(1022)에서는 중계기로부터 단말로 아무런 전송이 수행되지 않는다. 여기서, 레거시 단말의 경우에는 모든 하향링크 서브프레임에서 물리하향링크제어채널(PDCCH)의 전송을 기대하게 되므로 (다시 말하자면, 중계기는 자신의 영역 내의 레거시 단말들이 매 서브프레임에서 PDCCH를 수신하여 측정 기능을 수행하도록 지원할 필요가 있으므로), 레거시 단말의 올바른 동작을 위해서는 모든 하향링크 서브프레임에서 PDCCH를 전송할 필요가 있다. 따라서, 기지국으로부터 중계기로의 하향링크 (즉, 백홀 하향링크) 전송을 위해 설정된 서브프레임 (제 2 서브프레임(1020))상에서도, 서브프레임의 처음 N (N=1, 2 또는 3) 개의 OFDM 심볼구간에서 중계기는 백홀 하향링크를 수신하는 것이 아니라 액세스 하향링크 전송을 해야할 필요가 있다. 이에 대하여, 제 2 서브프레임의 제어 영역(1021)에서 PDCCH가 중계기로부터 단말로 전송되므로 중계기에서 서빙하는 레거시 단말에 대한 역방향 호환성이 제공될 수 있다. 제 2 서브프레임의 나머지 영역(1022)에서는 중계기로부터 단말로 아무런 전송이 수행되지 않는 동안에 중계기는 기지국으로부터의 전송을 수신할 수 있다. 따라서, 이러한 자원 분할 방식을 통해서, 인-밴드 중계기에서 액세스 하향링크 전송과 백홀 하향링크 수신이 동시에 수행되지 않도록 할 수 있다.
MBSFN 서브프레임을 이용하는 제 2 서브프레임(1022)에 대하여 구체적으로 설명한다. MBSFN 서브프레임은 원칙적으로 MBMS(Multimedia Broadcast and Multicast Service)를 위한 서브프레임이며, MBMS는 여러 셀에서 동시에 동일한 신호를 전송하는 서비스를 의미한다. 제 2 서브프레임의 제어 영역(1021)은 중계기 비-청취(non-hearing) 구간이라고 할 수 있다. 중계기 비-청취 구간은 중계기가 백홀 하향링크 신호를 수신하지 않고 액세스 하향링크 신호를 전송하는 구간을 의미한다. 이 구간은 전술한 바와 같이 1, 2 또는 3 OFDM 길이로 설정될 수 있다. 중계기 비-청취 구간(1021)에서 중계기는 단말로의 액세스 하향링크 전송을 수행하고 나머지 영역(1022)에서는 기지국으로부터 백홀 하향링크를 수신할 수 있다. 이 때, 중계기는 동일한 주파수 대역에서 동시에 송수신을 수행할 수 없으므로, 중계기가 송신 모드에서 수신 모드로 전환하는데에 시간이 소요된다. 따라서, 백홀 하향링크 수신 영역(1022)의 처음 일부 구간에서 중계기가 송신/수신 모드 스위칭을 하도록 가드 시간(GT)이 설정될 필요가 있다. 유사하게 중계기가 기지국으로부터의 백홀 하향링크를 수신하고 단말로의 액세스 하향링크를 전송하도록 동작하는 경우에도, 중계기의 수신/송신 모드 스위칭을 위한 가드 시간(GT)이 설정될 수 있다. 이러한 가드 시간의 길이는 시간 영역의 값으로 주어질 수 있고, 예를 들어, k (k≥1) 개의 시간 샘플(time sample, Ts) 값으로 주어질 수 있고, 또는 하나 이상의 OFDM 심볼 길이로 설정될 수도 있다. 또는, 중계기 백홀 하향링크 서브프레임이 연속으로 설정되어 있는 경우에 또는 소정의 서브프레임 타이밍 정렬(timing alignment) 관계에 따라서, 서브프레임의 마지막 부분의 가드시간은 정의되거나 설정되지 않을 수 있다. 이러한 가드 시간은 역방향 호환성을 유지하기 위하여, 백홀 하향링크 서브프레임 전송을 위해 설정되어 있는 주파수 영역에서만 정의될 수 있다 (액세스 하향링크 구간에서 가드 시간이 설정되는 경우에는 레거시 단말을 지원할 수 없다). 가드 시간을 제외한 백홀 하향링크 수신 구간 (1022) 에서 중계기는 기지국으로부터 PDCCH 및 PDSCH를 수신할 수 있다. 이를 중계기 전용 물리 채널이라는 의미에서 R-PDCCH (Relay-PDCCH) 및 R-PDSCH (Relay-PDSCH)로 표현할 수도 있다.
단말간의 통신
본 발명에서 제안하는 primary UE와 secondary UE 사이의 통신은 상향링크 자원(UL resource) 또는 하향링크 자원(DL resource) 상에서 수행될 수 있다. 단말간의 통신에 UL 자원(FDD 시스템에서는 UL 주파수 대역, TDD 시스템에서는 UL 서브프레임)을 사용하는 경우, 단말은 eNB에게 신호를 송신하기 위해 UL 자원 상에서의 전송 캐퍼빌리티(transmission capability)는 기본적으로 갖출 수 있다. 본 발명의 적용을 위해서는 하나의 UE가 UL 자원 상에서의 전송 캐퍼빌리티에 추가적으로, 다른 UE와 통신하기 위해서 UL 자원 상에서의 수신 캐퍼빌리티를 추가적으로 갖출 수도 있다. 또는, 단말간의 통신에 DL 자원(FDD 시스템에서는 DL 주파수 대역, TDD 시스템에서는 DL 서브프레임)을 사용하는 경우, 단말은 DL 자원 상에서의 수신 캐퍼빌리티에 추가적으로 전송 캐퍼빌리티를 갖출 수도 있다.
이하에서는, primary UE와 secondary UE 사이의 통신이 기존의 DL 서브프레임 구조를 변형하여 사용하는 본 발명의 실시예에 대하여 설명한다. 만약 UL 자원을 이용하여 단말간의 통신이 수행되는 경우에는, 한 UE에서 다른 UE로 신호를 전송하기 위해 DL 서브프레임 구조가 사용되지만, 이러한 DL 서브프레임 구조가 DL 자원이 아닌 UL 자원 상에서 구성되는 대역 스와핑(band swapping) 형태로 동작할 수도 있다.
실시예 1
본 실시예는 기존의 DL 중계기 서브프레임 구조를 이용하는 방안에 대한 것이다.
도 11 은 기존의 DL 중계기 서브프레임 구조를 나타내는 도면이다. DL 중계기 서브프레임 구조는 기본적으로는 도 10의 제 2 서브프레임(1020)과 유사하며, 구체적인 구성은 도 11을 참조하여 설명한다. R-PDCCH(1120, 1130)는 중계기(RN)을 위한 제어채널이고, 다른 매크로(macro)-UE(매크로 eNB로부터 직접 서비스를 받는 UE)를 위한 제어 채널인 PDCCH (1110) 이후의 OFDM(또는 SC-FDMA) 심볼 상에 위치할 수 있다. RN은 PDCCH 영역(1110)에서 자신이 서비스하는 UE들에게 PDCCH를 전송한 후, 송신-수신(Tx-Rx) 스위칭을 하여 eNB로부터 R-PDCCH(1120, 1130)를 수신할 수 있다. RN이 eNB로부터 수신할 수 있는 영역에서, 제 1 슬롯에 DL 할당(또는 DL 스케줄링)을 위한 R-PDCCH(1120)가 전송될 수 있고, 제 2 슬롯에서는 UL 그랜트(또는 UL 스케줄링)를 위한 R-PDCCH 또는 RN을 위한 PDSCH가 전송될 수 있다 (1130). R-PDCCH 전송이 없는 주파수 영역(예를 들어, PRB들)은 macro-UE를 위한 PDSCH 전송에 사용될 수 있다 (1140).
본 실시예에서는 도 11 의 PDCCH 영역(1110)을 비워(blank)두고 primary UE 및/또는 secondary UE의 반송파 센싱(carrier sensing)에 사용하는 제안한다. 도 12 에서는 본 실시예에 따른 서브프레임 구조를 나타낸다.
UE는 PDCCH 영역(1210)에서 해당 서브프레임에서의 반송파 신호를 센싱(sensing)할 수 있다. 반송파 센싱이란 해당 영역에서 인접한 다른 UE의 송수신이 있는지 여부를 검출하는 것을 의미한다. 만일 인접한 다른 UE(예를 들어, 도 1 의 primary UE(130))가 해당 서브프레임에서 신호를 송수신하는 것으로 검출된다면, 상대적으로 낮은 전송 전력을 사용하는 primary UE와 secondary UE 사이의 통신은 인접한 다른 UE의 신호 송수신에 의해서 심하게 간섭을 받을 수 있다. PDCCH 영역(1210)에서의 반송파 센싱은 Primary UE 및/또는 secondary UE가 수행할 수 있다. 그 결과 어떤 서브프레임의 PDCCH영역(1210)에서 인접한 다른 UE의 신호 송수신이 없다고 판단한 경우에는, 해당 서브프레임을 primary UE와 secondary UE 사이의 통신에 사용할 수 있는 것으로 간주할 수 있다.
도 12 에서 primary UE(P-UE)는 secondary UE(S-UE)의 전송에 이용될 수 있는 서브프레임 구조의 일례를 나타낸다.
본 실시예가 UL 자원 상에서 적용되는 경우, 이전 서브프레임(일반적인 UL 서브프레임)에서 송신모드에 있었던 primary UE는 블랭크 영역(1210) 중 일부 영역(하나 또는 그 이상의 OFDM(또는 SC-FDMA) 심볼)에서 송신-수신(Tx-Rx) 스위칭을 추가적으로 수행한 후에 secondary UE에 대한 제어 채널(1220)을 전송하기 전까지의 나머지 영역에서 반송파 센싱을 수행할 수 있다. 이때 secondary UE를 위한 제어 채널은 새롭게 정의되거나, 기존 채널 구조를 재사용할 수 있다. 예를 들어, DL 중계기 서브프레임 구조에서 정의된 R-PDCCH를 S-UE를 위한 제어 채널로서 사용할 수 있다. R-PDCCH와 같이 기존의 데이터 영역에서 전송되는 제어 채널을 e-PDCCH라고 칭할 수도 있다. 도 12 에서는 secondary UE가 수신모드로 동작하는 예시로서, R-PDCCH(또는 e-PDCCH)가 존재하는 PRB의 제 2 슬롯(1230)은 secondary UE를 위한 R-PDCCH(또는 e-PDCCH) 또는 PDSCH 전송에 사용될 수 있다. R-PDCCH가 존재하지 않는 PRB(1240)는 secondary UE를 위한 PDSCH 전송에 사용될 수 있다.
실시예 2
본 실시예는 secondary UE가 송신모드로 동작하는 경우의 서브프레임 구조에 대한 것이다. 본 실시예는, secondary UE의 송신을 위하여 제 2 슬롯만 사용하는 방식과 제 1 및 제 2 슬롯 모두를 사용하는 방식으로 구분할 수 있다.
실시예 2-1
본 실시예는 secondary UE의 송신을 위하여 제 2 슬롯만 사용하는 방식에 대한 것이다.
도 13 에서는 secondary UE의 송신을 위해 제 2 슬롯만 사용하는 경우의 서브프레임 구조에서 Tx-Rx 스위칭이 수행되는 영역을 예시적으로 나타내는 도면이다. Secondary UE의 송신을 위해 제 2 슬롯만 사용하는 경우, primary UE는 신호를 수신하기 위해 먼저 수신모드로 Tx-Rx 스위칭을 수행해야 한다. 이를 위하여, 도 13(a)와 같이 제 1 슬롯의 마지막 OFDM(또는 SC-FDMA) 심볼 또는 도 13(b)와 같이 제 2 슬롯의 첫 번째 OFDM(또는 SC-FDMA) 심볼이 Tx-Rx 스위칭에 사용될 수 있다.
도 13 의 예시와 같은 서브프레임 구조에서, 제 1 슬롯에는 secondary UE를 위한 R-PDCCH(또는 e-PDCCH)와 PDSCH가 전송될 수 있다. 2nd slot에는 경우에 따라 secondary UE를 위한 R-PDCCH(또는 e-PDCCH)가 전송될 수 있고, secondary UE의 송수신 모드에 따라 primary UE 또는 secondary UE를 위한 PDSCH가 전송될 수 있다. 즉, 수신모드에서는 secondary UE를 위한 PDSCH가 전송되고, 송신모드에서는 primary UE를 위한 PDSCH가 전송될 수 있다.
Secondary UE의 송수신 모드는 제 1 슬롯의 R-PDCCH(또는 e-PDCCH)에 포함된 지시자를 통해 결정될 수 있다. 예를 들어, 제 1 슬롯의 S-UE를 위한 제어채널에 포함되는 상기 지시자는 제 2 슬롯에서 전송되는 신호를 위한 UL 그랜트일 수 있다. 즉, 제 1 슬롯은 DL 할당 및 UL 그랜트 전송에 사용될 수 있으며, 제 2 슬롯은 PDSCH 전송에 사용될 수 있다.
또는, 제 1 슬롯의 S-UE를 위한 제어채널에 포함되는 지시자는 상기 지시자는 단순히 송수신 모드 결정하기 위한 트리거(trigger)로 정의될 수도 있다. 이 경우, 제 1 슬롯에 DL 중계기 서브프레임 구조를 재사용할 수 있고, UL 그랜트는 제 2 슬롯의 R-PDCCH(또는 e-PDCCH)가 위치할 수 있다. 이 경우, secondary UE는 미리 수신한 UL 그랜트 정보를 바탕으로 전송할 신호를 미리 구성해 두고, 이후 임의의 서브프레임의 제 1 슬롯의 S-UE에 대한 제어 채널을 통해서 송신을 지시하는 트리거를 수신했을 때 사전에 구성된 신호를 해당 서브프레임에서 송신할 수 있다.
한편, UL 자원을 이용하여 primary UE가 secondary UE로 신호를 송신하는 경우, primary UE는 secondary UE로의 송신이 수행된 서브프레임 이후의 다음 UL 서브프레임에서 eNB로 신호를 전송해는 경우에 서브프레임 간 송수신 모드를 전환할 필요는 없다. 따라서 primary UE는 제 2 슬롯의 모든 OFDM(또는 SC-FDMA) 심볼을 이용하여 송신을 수행할 수 있다. 그러나. secondary UE에게 전송하는 신호의 전력과 다음 서브프레임에서 eNB에게 전송할 신호의 전력 사이에 큰 차이가 날 경우 primary UE의 증폭기에 급격한 출력 전력 변화가 필요하며, 매우 짧은 시간 내에 출력을 크게 변화시킬 수 있는 전력 증폭기를 사용하기 위해서는 고비용에 요구되거나 경우에 따라서는 구현이 불가능할 수도 있다. 이러한 경우, 서브프레임의 마지막 부분에서 전력 변경을 위한 구간이 필요하게 된다. 또는, DL 자원을 이용하여 primary UE가 secondary UE로 신호를 송신하는 경우, primary UE는 secondary UE로의 송신이 수행된 서브프레임 이후의 다음 DL 서브프레임에서 eNB로부터 신호를 수신하기 위해 Tx-Rx 스위칭을 수행해야 한다. 전술한 primary UE의 경우와 마찬가지로 secondary UE의 동작에 있어서도 하나의 서브프레임의 마지막 부분에서 전력 변경을 위한 구간 또는 Tx-Rx 스위칭을 위한 구간이 필요할 수 있다. 도 14(a) 및 도 14(b) 는 각각 도 13(a) 및 도 13(b) 의 서브프레임 구조에 추가적으로 서브프레임의 마지막 부분에 Tx-Rx 스위칭 구간 (또는 전력 변경 구간)을 정의하는 예시를 나타낸다.
도 14 와 같은 서브프레임 구조를 적용하기 위하여, primary UE가 secondary UE 를 위한 제어 채널에 지시자를 포함할 수 있고, 이 지시자는 primary UE가 전송하는 신호가 해당 서브프레임의 마지막 OFDM(또는 SC-FDMA) 심볼까지 포함하는지 여부를 secondary UE에게 알리기 위한 지시자로서 구성될 수 있다.
또는, 별도의 지시자를 정의하지 않고 UE가 항상 마지막 OFDM(또는 SC-FDMA) 심볼을 제외한 나머지 OFDM(또는 SC-FDMA) 심볼들을 이용하여 신호를 송수신하도록 정의할 수도 있다. 또는, 별도의 지시자를 정의하지 않고 UE가 항상 마지막 OFDM 심볼까지 사용하여 신호를 송수신하도록 정의할 수도 있다. 이러한 경우, 별도의 제어 시그널링 오버헤드 없이 P-UE와 S-UE간의 송수신을 간단하게 구현할 수 있다.
실시예 2-2
본 실시예는 secondary UE의 송신을 위하여 제 1 및 제 2 슬롯 모두를 사용하는 방식에 대한 것이다.
도 15 에서는 secondary UE의 송신을 위해 제 1 및 제 2 슬롯 모두를 사용하는 경우의 서브프레임 구조를 나타낸다. Secondary UE가 primary UE에게 신호를 전송하는 방법에 있어서, 도 13 및 도 14 의 예시에서와 같이 제 1 슬롯에서 S-UE를 위한 R-PDCCH(또는 e-PDCCH)가 제 2 슬롯에서의 secondary UE의 송수신 모드를 결정하도록 하지 않고, 미리 약속된 시점에 도 15와 같이 제 1 및 제 2 슬롯 모두에서 secondary UE가 신호를 전송하도록 정할 수 있다. 이 경우 서브프레임 내에서 Tx-Rx 스위칭을 위한 구간이 필요하지 않으므로 더 많은 OFDM(또는 SC-FDMA) 심볼을 secondary UE의 신호 전송에 이용할 수 있다. 여기서, secondary UE가 송신 모드로 동작하도록 미리 약속된 시점에 해당하는 서브프레임은, UL 그랜트를 수신한 시점에서 소정의 시간 이후(예를 들어, 4 서브프레임 (즉, 4ms) 이후)로 미리 정해둘 수 있다. 또는, secondary UE가 송신 모드로 동작하도록 미리 약속된 시점에 해당하는 서브프레임을, secondary UE를 위한 R-PDCCH(e-PDCCH) 등을 통해 지정해준 후, 지정된 서브프레임에서는 secondary UE가 제 1 및 제 2 슬롯 모두를 이용하여 송신을 수행하는 것으로 동작할 수도 있다.
또한, UL 그랜트를 수신한 secondary UE가 지정된 시간 이후 하나 또는 여러개의 서브프레임에서 신호를 송신하도록 정의할 수 있다. 이 경우, secondary UE가 지정된 시간 이후 항상 하나의 서브프레임에서만 송신을 수행하도록 할 수도 있고, 또는, primary UE가 UL 그랜트를 전송할 때 secondary UE의 버퍼상태보고(buffer status report) 등의 정보를 바탕으로 secondary UE가 송신에 사용할 수 있는 서브프레임의 개수를 지정해 줄 수 있다. 또는, 이와 반대로 송신에 사용할 서브프레임의 개수를 secondary UE가 결정하도록 할 수도 있다. 예를 들어, primary UE를 위한 PDSCH 내에 연속적인 데이터 전송이 존재하는지 알려주는 플래그(flag)를 정의하고, 이 플래그 정보를 통해서 secondary UE가 송신에 사용할 서브프레임의 개수를 조절하도록 할 수 있다.
Primary UE는 약속된 시간에 수신모드로 설정될 것이기 때문에, secondary UE는 도 15(a)와 같이 모든 OFDM(또는 SC-FDMA) 심볼에서 신호를 송신할 수 있다.
또는, 도 15(b)와 같이 secondary UE는 서브프레임의 일부 OFDM(또는 SC-FDMA) 심볼에서 반송파 센싱을 수행한 후 신호를 송신할 수도 있다. 이 경우, secondary UE는 반송파 센싱을 통해 송신이 가능하다고 판단되면 primary UE에게 신호를 전송할 수 있다. 만약 송신이 불가능하다고 판단되어 신호를 전송하지 못하는 경우, secondary UE는 새로운 UL 그랜트를 수신한 후에 재전송을 시도할 수 있다. 또는 재전송을 위한 서브프레임들을 미리 규정해두고, 해당 서브프레임에서 secondary UE는 재전송을 시도하고 primary UE는 수신모드로 설정될 수도 있다. 또는 secondary UE의 송신이 가능할 때까지 연속적으로 재전송을 시도하도록 할 수도 있다. 이때 secondary UE의 재전송에 사용될 수 있는 서브프레임의 개수에 제한을 두지 않거나, 일정개수로 제한을 두어 한계치에 도달할 경우 primary UE가 새로운 UL 그랜트를 전송하도록 할 수 있다.
UL 자원 상에서 secondary UE의 송신이 도 15 의 예시와 같이 수행된 이후의 다음 서브프레임에서 eNB로의 전송을 수행하는 경우에 전력 변경 구간이 필요할 수 있다. 또는, DL 자원 상에서 secondary UE의 송신이 도 15 의 예시와 같이 수행된 이후의 다음 서브프레임에서 DL 수신을 위해서 Tx-Rx 스위칭 구간이 필요할 수도 있다. 이러한 경우, 도 16에서와 같이 서브프레임의 마지막 부분에 Tx-Rx 스위칭 구간 또는 전력 변경 구간이 정의될 수도 있다.
도 16(a) 및 도 16(b) 는 각각 도 15(a) 및 도 15(b) 의 서브프레임 구조에 추가적으로 서브프레임의 마지막 부분에 Tx-Rx 스위칭 구간 (또는 전력 변경 구간)을 정의하는 예시를 나타낸다.
도 16과 같은 서브프레임 구조를 적용하기 위해서, secondary UE의 전송을 위해 서브프레임의 마지막 OFDM(또는 SC-FDMA) 심볼을 사용하는지 여부를 미리 알려줄 수 있다. 예를 들어, secondary UE의 전송을 위해 서브프레임의 마지막 OFDM(또는 SC-FDMA) 심볼이 사용되는지 여부를 나타내는 지시자가 secondary UE에 대한 제어 채널에 포함될 수 있다. 또는, 별도의 지시자를 정의하지 않고 UE가 항상 서브프레임의 마지막 OFDM(또는 SC-FDMA) 심볼을 사용하거나 또는 사용하지 않는 것으로 정의할 수도 있다. 이러한 경우, 별도의 제어 시그널링 오버헤드 없이 P-UE와 S-UE간의 송수신을 간단하게 구현할 수 있다.
실시예 3
본 실시예는 primary UE와 secondary UE 사이의 통신이 UL 자원(FDD 시스템에서는 UL 주파수 대역, TDD 시스템에서는 UL 서브프레임)을 사용하는 방안에 대한 것이다.
본 실시예에 따르면 primary UE는 eNB와 통신을 위해서 UL 전송 캐퍼빌리티를 이미 가지고 있으므로 추가적인 DL 전송 캐퍼빌리티 없이도 primary UE와 secondary UE 사이의 통신이 가능해진다. 또한, 본 실시예에 따르면 다른 UE와 eNB 간의 통신에 의해 유발되는 간섭을 완화할 수 있다. 예를 들어, DL 자원에서는 일반적으로 eNB가 매우 강한 세기의 신호(예를 들어 CRS, 주동기신호(Primary Synchronization Signal; PSS), 부동기신호(Secondary Synchronization Signal; SSS), 물리방송채널(Physical Broadcast Channel; PBCH) 등)을 전송하기 때문에, UE간의 통신에 DL 자원을 사용하지 않고 UL 자원을 사용함으로써 eNB로부터 다른 UE로의 강한 신호에 의한 간섭을 회피할 수 있다. 또한 UE간의 통신이 DL 자원을 사용하는 경우에는, primary UE와 secondary UE 사이의 통신이 인접한 다른 UE가 eNB로부터 DL 신호를 수신하는데에 강한 UE-대-UE 간섭을 미칠 수 있는데 반하여, 본 실시예와 같이 UE간의 통신이 UL 자원을 사용한다면 인접한 다른 UE가 eNB로부터 DL 신호를 수신하는 데에 간섭을 미치지 않을 수 있다.
본 실시예에서는 하나의 UL 서브프레임을 구성하는 두 개의 슬롯을 서로 다른 용도로 사용하는 방안을 제안한다. 도 17 은 본 실시예에 따른 UL 서브프레임 구조를 나타내는 도면이다. 도 17에서 나타내는 바와 같이 하나의 UL 서브프레임의 제 1 슬롯은 제어 신호 송수신을 위한 영역으로 사용하고, 제 2 슬롯은 데이터 신호 송수신을 위한 영역으로 사용할 수 있다. 특히, 데이터 영역으로 사용되는 제 2 슬롯은 기존의 LTE 시스템에서 정의하는 PUSCH 전송과 동일하게 구성될 수 있다. 예를 들어, 상향링크 복조참조신호(DMRS)의 구성, 물리자원 매핑, 변조및코딩기법의 적용 등의 관점에서 기존의 LTE 시스템에서의 정의를 그대로 따를 수 있다. 다만, 기존의 LTE 시스템에서는 UL 서브프레임의 2 개의 슬롯에 걸쳐서 PUSCH 전송이 수행되는 반면, 본 실시예에서 데이터 송신은 제 2 슬롯에서만 수행되는 점에서만 차이점을 가진다. 이와 같이 설정하는 경우, UE간 데이터 통신을 위해서 기존에 설계된 PUSCH 전송 방식을 재사용할 수 있으므로, UE간 통신을 구현하기 위한 복잡도의 증가가 최소화될 수 있다. 또한, UE간 통신을 보다 간단하게 규정하기 위해서, 제 2 슬롯에서 전송되는 신호는 특정 대역폭을 차지하도록 미리 정의될 수 있다. 예를 들어, 제 2 슬롯에서 전송되는 신호는 시스템 전체 대역폭을 차지하는 것으로 미리 정의될 수도 있다.
특정 UL 서브프레임에서 primary UE가 eNB에게 UL 전송을 수행하는 경우에, primary UE는 해당 UL 서브프레임에서 자신에게 연결된 secondary UE와 통신을 수행할 수 없다. 따라서, primary UE와 secondary UE 사이의 통신은 primary UE가 eNB로의 전송을 수행하지 않는 서브프레임에서만 수행하도록 제한될 수 있다. 여기서, primary UE는 해당 UL 서브프레임에서의 자신이 eNB에게 UL 전송을 수행할지 여부를 사전에 알 수 있다. 예를 들어, eNB에 의해서 primary UE에게 동적으로 스케줄링되는 PUSCH, SRS, UL ACK/NACK 전송의 경우에는, 이러한 스케줄링 메시지가 최소한 4ms 이전에 UE에게 전달될 수 있다. 또한, 주기적 채널상태정보 보고(periodic CSI report), 주기적 SRS, 반-영속 스케줄링(semi-persistence scheduling) 등이 언제 전송되어야 할지는 eNB가 상위계층 시그널링(예를 들어, RRC 시그널링)을 통해서 사전에 primary UE에게 알려줄 수 있다. 따라서, primary UE는 자신이 eNB로의 전송을 수행하는 서브프레임을 미리 결정할 수 있으므로, primary UE와 secondary UE 사이의 통신은 나머지 서브프레임에서 수행될 수 있다.
실시예 4
본 실시예는 UL 서브프레임에서 제어 신호 영역으로 사용되는 제 1 슬롯의 구체적인 구성 방안 중에서, 반송파 센싱을 위한 OFDM(또는 SC-FDMA) 설정 방안에 대한 것이다.
도 18을 참조하면, primary UE 및/또는 secondary UE는 서브프레임의 처음 하나 또는 복수개의 OFDM(또는 SC-FDMA) 심볼(1810)에서 반송파 신호를 센싱할 수 있다. 반송파 센싱은 인접한 다른 UE의 송수신이 있는지 여부를 판단하기 위한 것이며, 인접한 UE가 해당 서브프레임에서 신호 송수신을 수행한다면 그에 비해 상대적으로 낮은 전송 전력을 사용하는 primary UE와 secondary UE 사이의 통신은 심하게 간섭을 받을 수 있다. Primary UE 및/또는 secondary UE는 반송파 센싱을 수행한 결과, 인접한 다른 UE의 신호 송수신이 해당 서브프레임에서 존재하지 않는 것으로 판단한 경우에, 해당 서브프레임을 primary UE와 secondary UE 사이의 통신으로 사용가능한 것으로 간주할 수 있다.
primary UE 및/또는 secondary UE가 반송파 센싱을 수행할 영역(1810)의 크기(즉, OFDM(또는 SC-FDMA) 심볼의 개수)는 다음과 같이 결정될 수 있다. 먼저, 타이밍 어드밴스(timing advance)에 대하여 간략하게 설명한다. 각각의 단말이 기지국으로부터 떨어져 있는 거리가 상이하면 각각의 단말로부터 기지국으로의 전파 지연 역시 상이하게 된다. 기지국이 복수개의 단말로부터 상향링크 서브프레임을 수신하는 경우에, 제각각 상이한 타이밍으로 상향링크 서브프레임이 수신될 수 있다. 이러한 문제를 해결하기 위해서 기지국은 각각의 단말에게 적절한 타이밍 어드밴스 값을 시그널링하고, 각각의 단말은 시그널링된 타이밍 어드밴스 값에 따라 상향링크 서브프레임 전송 타이밍을 조절할 수 있고, 결과적으로 기지국에서는 복수개의 단말로부터 동일한 타이밍으로 상향링크 서브프레임을 수신할 수 있게 된다.
만일 다른 UE가 primary UE나 secondary UE와 멀리 떨어져 위치하는 경우에 (다만 다른 UE의 신호 송수신이 UE간 통신에 대해서 간섭을 미칠 만큼 떨어진 경우를 가정함), primary UE나 secondary UE가 사용하는 타이밍 어드밴스 값과 상기 다른 UE가 사용하는 타이밍 어드밴스 값이 상당히 다른 경우가 있을 수 있다. 이러한 경우, 상기 다른 UE로부터 primary/secondary UE로의 전파 지연을 실질적으로 고려할 필요가 있다. 즉, 상기 다른 단말의 상향링크 서브프레임의 첫 번째 OFDM(또는 SC-FDMA) 심볼에서 전송된 신호가 전파 지연으로 인하여 primary/secondary UE의 상향링크 서브프레임의 첫 번째 심볼이 아닌 다른 OFDM(또는 SC-FDMA) 심볼의 타이밍에 primary/secondary UE에 간섭을 미칠 수 있다. 따라서, 반송파 신호 센싱을 위한 OFDM(또는 SC-FDMA) 심볼의 개수가 충분치 않다면, primary/secondary UE의 반송파 센싱이 종료된 이후의 타이밍에 상기 다른 UE가 전송한 신호가 primary/secondary UE에게 도달할 수도 있다. 이를 해결하기 위해서, eNB는 primary/secondary UE가 반송파 센싱에 사용할 OFDM(또는 SC-FDMA) 심볼(1810)의 개수를 상위계층 신호 등을 통하여 primary/secondary UE에게 설정하여 줄 수 있다. 예를 들어, eNB는 해당 셀 내에서 primary UE와 secondary UE 사이의 통신을 방해할 가능성이 있는 다른 UE의 거리 등을 기반으로 primary/secondary UE가 반송파 센싱에 사용할 OFDM(또는 SC-FDMA) 심볼(1810)의 개수를 정하여 알려줄 수 있다.
primary UE 및/또는 secondary UE의 송수신 동작은 반송파 센싱의 결과에 따라 결정될 수 있다. 예를 들어, primary UE는 반송파 센싱의 결과 인접한 다른 UE가 검출되지 않은 경우에 secondary UE에게 제 2 슬롯에서 데이터 전송을 스케줄링 및 전송할 수 있다. secondary UE의 입장에서는 primary UE와 마찬가지로 송신 동작을 수행하기 전에 반송파 센싱을 수행하고, 해당 서브프레임에서 통신을 수행하는 다른 UE가 검출되지 않은 경우에만, primary UE의 지시에 따른 제 2 슬롯에서의 송신 동작을 수행하도록 규정될 수도 있다.
실시예 5
본 실시예는 UL 서브프레임에서 제어 신호 영역으로 사용되는 제 1 슬롯의 구체적인 구성 방안 중에서, secondary UE를 위한 제어 채널을 구성하는 방안에 대한 것이다. 즉, primary UE는 반송파 센싱이 수행된 OFDM(또는 SC-FDMA) 심볼 이후의 일부 OFDM (또는 SC-FDMA) 심볼(들)을 이용하여 (도 18의 1820 상에서) secondary UE를 위한 제어 채널을 전송할 수 있다. 제 1 슬롯의 secondary UE를 위한 제어 채널에는, 해당 서브프레임의 제 2 슬롯에서 secondary UE가 송신 동작을 수행할지 또는 수신 동작을 수행할지를 알려주는 지시자(Tx/Rx 지시자)가 포함될 수 있다.
어떤 서브프레임에서 secondary UE를 위한 제어 채널에 포함된 지시자(Tx/Rx 지시자)가 secondary UE의 송신을 지시하는 경우, primary UE는 secondary UE의 식별자(identifier)를 상기 제어 채널에 추가할 수 있다. 이에 따라, 상기 식별자를 가지는 secondary UE가 상기 서브프레임의 제 2 슬롯에서 데이터를 전송하도록 지시될 수 있다.
또한, 상기 식별자를 수신한 secondary UE는 제 2 슬롯에서 전송되는 데이터(도 18의 1840)에, 지금까지 primary UE로부터 수신한 데이터의 수신 성공 여부(또는 디코딩 성공 여부)를 알리는 ACK/NACK 신호를 다중화하여 전송할 수 있다. secondary UE가 데이터에 ACK/NACK 신호를 다중화하는 동작은 primary UE의 지시에 따라서 수행될 수 있으며, 이를 위하여 primary UE는 secondary UE를 위한 제어 채널에 ACK/NACK 다중화 요청 지시자를 추가할 수 있다.
이러한 경우, secondary UE가 ACK/NACK 신호를 데이터와 다중화하는 방식의 일례로서, PUCCH를 PUSCH에 피기백(piggyback)하는 방식이 사용될 수 있다. 이러한 피기백 방식으로서, 3GPP LTE 시스템에서 정의하는 바와 같이 PUCCH 전송과 PUSCH 전송이 동시에 수행되어야 하는 경우에 PUSCH를 위해 할당 받은 자원 상에서 PUCCH를 피기백하는 방식이 재사용될 수 있다. 즉, secondary UE는 데이터를 전송할 자원(도 18의 1840)의 일부분에, 자신이 송신하는 데이터 신호 대신 ACK/NACK 신호를 삽입하여 primary UE에게 송신할 수 있다.
여기서, primary UE 로부터 지금까지 수신된 하나 이상의 데이터의 수신 성공 여부를 나타내는 ACK/NACK을 전송해야 하는 경우에, 상기 하나 이상의 데이터가 모두 성공적으로 디코딩된 경우에만 ACK 정보를 전송하고, 그렇지 않은 경우(즉, 상기 하나 이상의 데이터 중의 하나라도 디코딩에 실패한 경우)에는 NACK 을 전송하도록 정의될 수 있다.
또한, primary UE가 secondary UE에게, secondary UE가 데이터를 수신할 것을 알려주는 제어 채널을 전송하였지만 secondary UE가 상기 제어 채널을 검출하지 못하는 경우에는 secondary UE는 검출하지 못한 제어 채널이 알려주는 데이터 역시 수신하지 못하게 된다. 그러나, secondary UE의 입장에서는 primary UE가 제어 채널 및 데이터를 전송하였다는 것 자체를 알 수 없기 때문에, secondary UE가 특정 데이터를 수신 실패하였음에도 primary UE가 전송한 데이터를 모두 수신한 것으로 판단하여 ACK을 전송하는 경우가 발생할 수 있다. 이와 같이 secondary UE가 primary UE에게 전송하는 ACK은 실제 수신 실패를 나타내지 못하는 잘못된 정보가 된다. 이러한 문제를 방지하기 위해서, primary UE는 특정 secondary UE로 향하는 데이터의 송신의 횟수를 나타내는 카운터를 이용할 수 있다. 즉, primary UE는 secondary UE에게 데이터를 전송할 때마다 카운터를 하나씩 증가시킴으로써 secondary UE가 복수개의 데이터 중에서 중간에 특정 데이터 수신을 검출하지 못하는 경우를 파악할 수 있다.
한편, 어떤 서브프레임에서 secondary UE를 위한 제어 채널에 포함되는 상기 지시자(Tx/Rx 지시자)가 secondary UE의 송신을 지시하지만, 특정 secondary UE의 식별자를 포함하지 않는 경우에는, primary UE는 해당 서브프레임의 제 2 슬롯을 secondary UE들의 임의 접속(random access) 용도로 활용할 수 있다. 또는, secondary UE를 위한 제어 채널에 포함되는 사전에 약속된 특별한 지시자(또는 상기 Tx/Rx 지시자가 사전에 약속된 특별한 값을 가지는 경우일 수도 있음)를 이용하여, 제 2 슬롯을 secondary UE들의 임의 접속 용도로 사용하는 것을 지시할 수도 있다. 즉, secondary UE가 송신을 지시 받았으나 특정 UE의 식별자가 포함되지 않거나 사전에 약속된 특별한 지시자가 포함된 경우에, secondary UE는 임의 접속 과정을 수행할 수 있다. 임의 접속 과정을 통하여 secondary UE는 자신을 스케줄링 할 것을 요청하는 신호(스케줄링 요청) 또는 자신의 버퍼에 저장된 데이터의 양과 같은 정보를 알리는 신호(버퍼 상태 보고)를 primary UE에게 전송할 수 있다.
도 19는 secondary UE가 임의 접속에 사용하는 신호 구조의 일례를 나타내는 도면이다. 도 19 의 임의 접속에 사용하는 신호의 예시는 도 18 의 제 2 슬롯의 데이터 영역(1840) 상에서 secondary UE로부터 primary UE로 전송될 수 있다. 도 19 의 예시에서는 secondary UE가 신호검출 또는 채널 추정(channel estimation)을 위한 프리앰블(preamble)을 전송하고 뒤이어 secondary UE의 식별자, 스케줄링 요청, 버퍼상태보고 등의 페이로드(payload)가 전송될 수 있다. 여기서, UE간의 통신의 경우 일반적으로 근거리에서 통신이 수행되는 것을 고려하면, 프리앰블은 가능한 적은 개수의 SC-FDMA 심볼을 차지하는 것이 바람직하다. 예를 들어 상기 프리앰블로서 3GPP LTE에서 정의한 임의 접속 프리앰블 포맷 4 를 재사용할 수 있다 (3GPP TS 36.211 의 섹션 5.7.1 참조). 또한, primary UE가 secondary UE로부터의 임의 접속을 보다 쉽게 검출하기 위해서, secondary UE로부터의 임의 접속에 이용되는 자원(또는, RB)는 미리 정의되거나 primary UE가 지정한 자원으로 제한될 수 있다.
한편, 어떤 서브프레임에서 secondary UE를 위한 제어 채널에 포함되는 상기 지시자(Tx/Rx 지시자)가 secondary UE의 수신을 지시하는 경우, primary UE는 상기 제어 채널에 secondary UE의 식별자를 추가하여, 해당 식별자를 가지는 secondary UE가 상기 서브프레임의 제 2 슬롯에서 데이터를 수신할 것을 지시할 수 있다. 또는, 어떤 서브프레임에서 secondary UE를 위한 제어 채널에 포함되는 상기 지시자(Tx/Rx 지시자)가 secondary UE의 수신을 지시하는 경우, primary UE는 상기 제어 채널에 사전에 약속된 특정 지시자를 포함시켜, 상기 primary UE에 연결된 모든 secondary UE가 상기 서브프레임의 제 2 슬롯에서 데이터를 수신할 것을 지시할 수 있다. 이 경우는 특히 모든 secondary UE가 수신해야 할 각종 제어 정보를 데이터 영역(도 18의 1840)을 통하여 전송하고자 하는 경우에 유리하게 적용될 수 있다.
추가적으로, 어떤 서브프레임에서 secondary UE를 위한 제어 채널에는 이전에 secondary UE가 전송했던 데이터를 primary UE에서 수신에 성공했는지 여부를 알리는 ACK/NACK 신호 등의 다양한 제어 정보도 포함할 수 있다. 이러한 제어 채널의 구조를 도 20 을 참조하여 설명한다.
도 20 은 secondary UE를 위한 제어 채널의 예시적인 구조를 나타내는 도면이다. 도 20 의 예시와 같은 제어 채널은 도 18의 제 1 슬롯의 제어 채널 영역(1820)상에서 primary UE로부터 secondary UE로 전송될 수 있다. 도 20 에서 나타내는 바와 같이 제어 채널은 프리앰블과 페이로드로 구성될 수 있고, 각각 도 18 의 프리앰블(1821) 및 제어채널페이로드(1822)에 대응한다. 제어 채널의 프리앰블은 신호 검출 및 채널 추정을 위한 것이고, 제어 채널의 페이로드는 secondary UE의 전송/수신을 지시하는 Tx/Rx 지시자, secondary UE 식별자, ACK/NACK 등의 정보가 포함되어 전송될 수 있다.
여기서, 도 19에서 예시하는 secondary UE의 임의 접속 포맷과 도 20 에서 예시하는 secondary UE를 위한 제어 채널의 기본 구조를 동일하게 설계함으로써, UE 동작의 복잡도를 더욱 감소할 수 있다.
한편, 도 18의 예시에서 나타내는 바와 같이, 제 1 슬롯의 마지막 하나 또는 복수개의 OFDM (또는 SC-FDMA) 심볼(1830)은 primary UE에 의해서 아무런 신호도 송수신되지 않는 널 심볼(null symbol)로 설정될 수 있다. 이 부분(1830) 동안 primary UE 및/또는 secondary UE의 Tx-Rx 전환이 수행될 수 있다. 다음으로 본 발명에서 제안하는 서브프레임 구조의 제 2 슬롯의 구성 방안에 대하여 설명한다.
실시예 6
본 실시예는 UL 서브프레임에서 데이터 신호 영역으로 사용되는 제 2 슬롯의 구체적인 구성 방안에 대한 것이다.
만약 primary UE가 어떤 서브프레임에서 secondary UE로부터의 신호를 수신하고 바로 다음의 서브프레임에서 eNB로의 신호 전송을 수행해야 한다면, primary UE가 수신 모드에서 송신 모드로 전환하는 시간을 허용하기 위해서, 상기 서브프레임의 마지막 하나(또는 복수개)의 OFDM (또는 SC-FDMA) 심볼은 secondary UE의 신호 전송(primary UE 입장에서는 secondary UE로부터의 신호 수신)에 활용될 수 없다. 즉, 도 18 의 Tx-Rx 전환 영역(1850)이 설정될 수 있다. primary UE는 제 2 슬롯의 마지막 하나 또는 복수개의 OFDM (또는 SC-FDMA) 심볼이 데이터 전송에 사용되는지 여부를 알리는 지시자를, 제 1 슬롯의 secondary UE를 위한 제어 채널(1820)에 포함시킬 수 있다. 또는, 제 2 슬롯에서 primary UE 로의 송신을 지시 받은 secondary UE는 항상 마지막 하나(또는 복수개)의 OFDM (또는 SC-FDMA) 심볼을 제외한 나머지 제 2 슬롯의 OFDM (또는 SC-FDMA) 심볼만을 사용하여 데이터 전송을 수행하도록 정의될 수 있다. 이러한 경우, 제 2 슬롯의 마지막 OFDM (또는 SC-FDMA) 심볼의 사용여부를 알려주는 지시자가 제 1 슬롯의 제어채널에 포함될 필요가 없어 UE 동작을 보다 단순하게 정의할 수 있다.
한편, primary UE가 어떤 서브프레임에서 secondary UE로 신호를 전송하고 바로 다음의 서브프레임에서 eNB로의 신호 전송을 수행해야 한다면, primary UE의 송수신 모드의 전환은 필요 없다. 따라서 primary UE는 제 2 슬롯의 모든 OFDM (또는 SC-FDMA) 심볼을 데이터 전송에 이용할 수 있다. 다만, 상기 서브프레임에서 primary UE가 secondary UE에게 전송하는 신호의 전력과 다음 서브프레임에서 eNB에게 전송할 신호의 전력 사이에 큰 차이가 날 경우, primary UE의 증폭기에 급격한 출력 전력 변화를 야기하므로 이를 구현하기가 어려울 수 있으므로, 전술한 Tx-Rx 전환 구간(1850)과 유사하게 전력 변경 구간을 설정하는 것이 필요할 수 있다.
이를 위하여, primary UE가 secondary UE를 위한 제어 채널에 하나의 지시자를 포함시키고, 이 지시자를 이용해서 primary UE가 전송하는 데이터가 마지막 OFDM (또는 SC-FDMA) 심볼까지 포함하는지 또는 전력 변경 구간을 설정하는지를 secondary UE에게 알려줄 수도 있다. 또는, 이와 같은 지시자를 정의하지 않고 primary UE가 항상 마지막 OFDM (또는 SC-FDMA) 심볼을 제외한 나머지 심볼들을 이용하여 데이터를 전송하도록 정해둘 수 있으며, 이러한 경우 UE 동작의 복잡도를 경감할 수 있다.
실시예 7
전술한 예시들에서는 주로 primary UE가 secondary UE 로의/로부터의 신호 송수신을 스케줄링하는 경우에 대하여 설명하였다. 이하에서는 본 발명에서 제안하는 UE들 간의 통신 방식의 또 다른 방안으로서, eNB가 직접 UE들 사이의 통신에 대한 스케줄링을 수행하는 방안에 대하여 설명한다. 그러나, 전술한 실시예 1 내지 6 에서 설명하는 서브프레임 구조, 자원 설정, 채널 구조 등에 대한 예시들의 일부 또는 하나 이상의 조합이, eNB가 직접 UE들 사이의 통신에 대한 스케줄링을 수행하는 경우에도 그 일부 적용될 수 있다.
eNB가 직접 UE들 사이의 통신에 대한 스케줄링을 수행하는 경우, primary UE와 secondary UE는 eNB의 스케줄링 메시지(예를 들어, eNB가 PDCCH를 통해서 전송하는 UL/DL 스케줄링 메시지)를 읽고, UE들 사이의 통신이 어떤 자원 상에서 스케줄링되는지 또한 어떤 시점에 스케줄링되는지를 파악할 수 있다.
실시예 7-1
본 실시예는 primary UE와 secondary UE가 동일한 스케줄링 메시지를 읽는 방안에 대한 것이다.
eNB는 하나의 스케줄링 메시지를 전송하고, 두 UE(primary UE와 secondary UE)는 이 메시지를 읽고 UE간의 통신에 대한 정보를 파악할 수 있다. 이를 위해서 eNB는 상호 통신을 수행하는 UE 통신 쌍(UE communication pair)를 설정할 수 있다. 하나의 UE 통신 쌍은, 유니캐스트인 경우 하나의 primary UE와 하나의 secondary UE로 구성될 수 있고, 멀티캐스트인 경우에 하나의 primary UE와 복수개의 secondary UE로 구성될 수도 있다. eNB의 입장에서는 복수개의 UE 통신 쌍이 설정될 수 있고, eNB는 UE 통신 쌍의 각각에 대해서 고유의 식별자(ID)를 부여할 수 있으며, UE 통신 쌍의 식별자 별로 스케줄링 메시지를 전송할 수 있다. 이에 따라, 각각의 UE 통신 쌍에 속한 UE는 자신이 속한 UE 통신 쌍에 부여된 ID를 이용하여 스케줄링 메시지를 검출함으로써 (예를 들어 해당 UE 통신 쌍 ID로 CRC 마스킹된 PDCCH를 디코딩함으로써), 자신이 속한 UE 통신 쌍에 대한 스케줄링 정보(시간/주파수 등의 자원)를 파악할 수 있다.
여기서, UE 통신 쌍은 방향성으로 구분되어 별도의 ID가 부여될 수도 있다. 예를 들어, 두 UE(예를 들어, UE1 및 UE2) 간의 송수신이 번갈아 반복하여 수행되는 경우를 가정할 수 있다. 이러한 경우, eNB는 UE1이 송신하고 UE2가 수신하는 UE 통신 쌍에 대해서 하나의 ID를 부여하고, UE2가 송신하고 UE1이 수신하는 UE 통신 쌍에 대해서 또 다른 하나의 ID를 부여할 수 있다. 이와 같이 송수신 방향에 따라 별도의 UE 통신 쌍 ID가 부여되는 경우에는, 스케줄링 메시지를 디코딩하는 것만으로 송신 UE 가 무엇이고 수신 UE가 무엇인지 결정된다는 점에서 (즉, 송신 UE, 수신 UE가 무엇인지 알려주기 위한 별도의 시그널링이 불필요하다는 점에서) UE 동작의 복잡성이 감소될 수 있다.
그러나, UE 통신 쌍의 방향 별로 다른 ID를 부여하는 경우는, 방향성 없이 (즉, 송수신단의 구분 없이) UE 통신 쌍에 대해서 ID를 부여하는 경우에 비하여 eNB가 개별 UE들에게 할당해야 할 ID의 개수가 많아진다는 문제가 있을 수 있다. 따라서, 송수신단의 구분 없이 UE 통신 쌍에 대해서 ID를 부여(즉, UE1이 송신하고 UE2가 수신하는 경우 및 UE2가 송신하고 UE1이 수신하는 경우 모두에 대해서 동일한 하나의 UE 통신 쌍 ID를 부여)할 수 있다. 이 경우, 스케줄링 메시지 내에 별도의 시그널링 필드를 정의하여 무엇이 송신단이고 무엇이 수신단인지를 알려주는 방식으로 동작할 수도 있다.
위와 같이 UE 통신 쌍에 대해서 ID를 부여하는 경우에, 하나의 UE는 상향링크로의 전송에 대해서 2 이상의 ID를 가질 수 있다. 예를 들어, 하나의 ID는 eNB로의 상향링크 전송을 위한 ID 이고, 다른 하나의 ID 는 다른 UE로의 전송을 위한 ID이다.
eNB가 지시한 각종 상향링크 제어 정보는 각 ID 별로 별도로 관리될 수 있다. 예를 들어, 기존의 전송 전력에 비해 해당 시점의 전송 전력을 일정한 수준으로 높이거나 낮추도록 동작하는 폐루프 전력 제어(closed loop power control)의 경우, UE는 하나의 동일한 ID를 통하여 전송된 전력 제어 명령만을 누적하고, 다른 ID를 통해서 전송된 전력 제어 명령은 별도로 누적할 수 있다. 이는 각 ID를 통한 스케줄링에 있어서의 수신단이 다르기 때문에 각각의 수신단 별로 적절한 전력 제어 값이 다르기 때문이다. 예를 들어, 기지국이 각 상향링크 제어 정보의 수신 대상이 무엇인지(예를 들어, 기지국인지 아니면 UE인지)를 알려주지 않는 경우에는 상향링크 제어 정보를 수신하는 UE의 입장에서는 상향링크 전송의 목적지가 무엇인지 직접적으로 알지 못하지만, 상향링크 수신대상별로 할당된 ID 를 이용하여 상향링크 제어 정보를 관리하게 되면 상향링크 전송에 대한 제어 정보를 목적지 별로 구별하여 적용할 수 있다.
또는, UE간의 통신을 위한 전송의 경우에는 별도의 전력 제어 없이 사전에 미리 정해진 수준의 전송 전력 (예를 들어, 최소 전송 전력)을 사용하도록 정의될 수도 있다. 이는, UE간의 통신은 일반적으로 근거리에 위치한 UE 사이에서 이루어지기 때문에 낮은 수준의 전송 전력으로도 통신에 큰 문제가 없다는 점을 고려한 것이다. 이러한 경우, eNB는 UE간의 통신에 대한 UE 통신 쌍 ID에 대해서는 상향링크 전력 제어 명령을 제공하지 않을 수 있고, 또는 UE 통신 쌍 ID에 대한 스케줄링 메시지에 전력 제어 명령이 포함되어 있더라도 단말은 그 전력 제어 명령을 무시하고 적용하지 않을 수도 있다.
실시예 7-2
본 실시예는 primary UE와 secondary UE가 별도의 스케줄링 메시지를 읽는 방안에 대한 것이다.
eNB는 UE 사이의 통신을 수행하는 두 UE에게 별도의 스케줄링 메시지를 전송할 수 있다. 각 UE는 자신의 ID에 해당하는 스케줄링 메시지를 읽고 UE 사이의 통신이 스케줄링되는 자원의 위치를 파악할 수 있다. 이 방식은 각 UE가 eNB와의 통신을 위해서 사용하는 ID를 UE 사이의 통신을 위한 스케줄링 메시지에도 동일하게 이용할 수 있으므로 스케줄링 메시지 검출의 관점에서 UE 동작의 복잡도가 경감될 수 있다. 예를 들어, UE는 eNB와의 통신이지 아니면 다른 UE와의 통신인지에 무관하게 하나의 ID만을 가지고 PDCCH 블라인드 디코딩을 하면 되므로, 통신의 상대방의 타입에 따라 상이한 ID를 가지고 PDCCH 블라인드 디코딩을 하지 않음으로써 디코딩 지연이 감소될 수 있다.
각 UE에 대해서 통신 상대방의 종류에 무관하게 하나의 ID만을 부여하는 경우에, eNB는 스케줄링 메시지 내에 별도의 시그널링 필드를 정의하고, 그 필드를 이용하여 해당 스케줄링 정보가 eNB로의 전송에 대한 것인지, 다른 UE로의 전송에 대한 것인지, 아니면 스케줄링 메시지를 수신한 UE가 다른 UE로부터의 전송을 수신하는 것에 대한 것인지를 알려주는 것이 필요하다.
또한, 상기 시그널링 필드 (통신 상대방 및 송신/수신측인지를 알려주는 필드)는 스케줄링 메시지를 수신한 UE의 상향링크 전력 제어와 관련될 수 있다. 즉, 전력 제어 명령은 통신 상대방에 무관하게 동일한 ID로 마스킹된 PDCCH를 통해서 전송되지만, 해당 전력 제어 명령은 상기 시그널링 필드의 내용이 동일한 경우 별로 별도로 누적되어야 한다. 예를 들어, 특정 시점에 수신한 스케줄링 메시지가 eNB로의 전송에 대한 것이었다면, 해당 스케줄링 메시지 내의 전력 제어 명령은 eNB로의 전송에 대한 스케줄링 메시지에 포함되었던 전력 제어 명령들에 누적되어야 하고 다른 경우(예를 들어, 다른 UE로의 전송)에 대한 스케줄링 메시지에 포함되었던 전력 제어 명령들에 누적되어서는 안된다.
또는, UE간의 통신을 위한 전송의 경우에는 별도의 전력 제어 없이 사전에 미리 정해진 수준의 전송 전력 (예를 들어, 최소 전송 전력)을 사용하도록 정의될 수도 있다. 이는, UE간의 통신은 일반적으로 근거리에 위치한 UE 사이에서 이루어지기 때문에 낮은 수준의 전송 전력으로도 통신에 큰 문제가 없다는 점을 고려한 것이다. 이러한 경우, eNB는 UE간의 통신에 대한 스케줄링 메시지에는 상향링크 전력 제어 명령을 제공하지 않을 수 있고, 또는 스케줄링 메시지를 수신하는 UE는 전력 제어 명령이 스케줄링 메시지에 포함되어 있더라도 해당 스케줄링 메시지가 UE간의 통신에 대한 것이면 그 전력 제어 명령을 무시하고 적용하지 않을 수도 있다.
실시예 7-3
본 실시예는 secondary UE가 primary UE의 스케줄링 메시지를 읽는 방안에 대한 것이다.
본 실시예에 따르면 primary UE는 상기 실시예 7-2와 동일하게 동작할 수 있다. 즉, primary UE는 eNB와의 통신을 위해서 사용하는 ID를 그대로 재사용하여 UE 사이의 통신에 대한 스케줄링 메시지를 수신할 수 있다. 이 경우, secondary UE에게는 eNB가 별도의 ID를 부여하지 않을 수 있다.
한편, secondary UE는 사전에 primary UE의 ID를 상위 계층 신호를 통하여 eNB로부터 전달받고, primary UE의 ID를 가지고 스케줄링 메시지의 검출을 시도할 수 있다. 이를 secondary UE가 eNB로부터 primary UE로의 스케줄링 메시지를 오버히어(overhear)하는 것으로 표현할 수도 있다. 스케줄링 메시지를 읽는 데에 성공한 경우에, secondary UE는 primary UE가 언제, 어떤 자원을 이용하여 자신에게 신호를 전송할 지를 파악할 수 있다.
secondary UE가 읽은 primary UE를 위한 스케줄링 메시지가 primary UE로부터 eNB로의 전송에 대한 것인지 아니면 primary UE로부터 자신 (secondary UE)에 대한 것인지를 구분하는 것이 필요하다. 따라서, 스케줄링 메시지 내에는 primary UE가 전송을 수행하는 대상의 종류가 무엇인지를 나타내는 지시 필드가 추가될 수도 있다.
본 실시예는 특히 secondary UE가 eNB에 직접 연결되지 않아서 secondary UE가 직접 eNB로 신호를 전송하기 위해서 할당받는 ID가 없는 경우에, 스케줄링 메시지에 대한 블라인드 디코딩의 부담을 증가시키지 않고도 간단하게 동작한다는 장점이 있다.
실시예 7-4
본 실시예는 임의 접속 과정을 이용하여 스케줄링 메시지를 읽는 방안에 대한 것이다.
primary UE는 물리임의접속채널(PRACH) 프리앰블을 eNB에게 전송하여서 UE 사이의 통신에 대한 자원을 할당해 줄 것을 요청할 수 있다. 이 때, UE 사이의 통신의 요청을 위한 PRACH 프리앰블의 인덱스, 시간 및 주파수 자원의 위치 등은 개별 primary UE에 대해서 상위 계층 신호를 통해서 사전에 약속된(또는 지정된) 것일 수 있다. UE 사이의 통신을 원하는 primary UE는 사전에 지정된 자원을 활용하여 PRACH 프리앰블을 전송하고, 일정 시간 동안 RA-RNTI로 마스킹된 PDCCH 디코딩을 시도한다. 여기서 RA-RATI는 PRACH를 전송한 자원의 위치에 의해서 결정되고, 전술한 바와 같이 PRACH 전송 자원은 사전에 지정될 수 있으므로, primary UE가 디코딩에 사용하는 RA-RATI 역시 사전에 약속된 것으로 간주될 수 있다.
eNB는 RA-RNTI로 마스킹된 PDCCH를 통해서 PDSCH를 스케줄링하고, 이 PDSCH를 통하여 상기 지정된 자원 상에서 PRACH 프리앰블을 전송한 UE에게 해당 UE가 상향링크 신호를 전송하는데 사용할 수 있는 상향링크 자원을 스케줄링하는 정보를 알려줄 수 있다. 즉, primary UE 입장에서는 RA-RNTI로 마스킹된 PDCCH를 검출하고, 해당 PDCCH가 스케줄링하는 PDSCH를 디코딩하여, 그 PDSCH 내에서 자신에게 해당하는 상향링크 스케줄링 정보(즉, UL 그랜트 메시지)를 읽음으로써 UE 사이의 통신에 활용할 자원을 결정할 수 있다.
한편, secondary UE는 전술한 실시예 7-3 에서와 유사하게 primary UE의 RA-RATI로 PDCCH의 디코딩을 시도할 수 있다. 이 PDCCH의 크기는 secondary UE가 eNB와의 통신에 있어서 상향링크 그랜트 DCI 포맷 0 또는 PDSCH 컴팩트 스케줄링을 위한 DCI 포맷 1A와 크기가 동일하므로, secondary UE의 입장에서 블라인드 디코딩 부담이 증가하지는 않는다. 이에 따라, secondary UE는 primary UE의 RA-RATI로 PDCCH를 디코딩하여, UE 사이의 통신에 있어서 primary UE에 대한 UL 그랜트 메시지를 읽을 수 있다. 이에 따라, secondary UE는 primary UE가 어떤 자원을 통해서 UE 간의 통신을 수행할지를 파악할 수 있고, 이에 상응하는 수신 동작을 적절하게 수행할 수 있다. 이와 같이 동작하기 위해서는 secondary UE가 primary UE의 RA-RNTI를 미리 알아야 하므로, eNB 또는 primary UE가 primary UE의 RA-RNTI가 결정될 수 있는 정보(예를 들어, primary UE의 PRACH 프리앰블의 전송에 사용하는 인덱스, 시간/주파수 자원에 대한 정보)를 사전에 secondary UE에게 전송하여 줄 수 있다.
또한, 이 경우에도 primary UE는 UE 사이의 통신에 대해서 적용되는 전력 제어 명령을 (즉, 상기 설명한 특정 PRACH 프리앰블에 대한 임의접속과정을 통하여 전달된 전력 제어 명령을) eNB와의 통신에는 적용하지 않고 UE 사이의 통신에만 적용하도록 동작해야 한다.
실시예 8
본 실시예는 secondary UE가 eNB에 접속하는 구체적인 방안에 대한 것이다.
전술한 실시예들의 적용을 위해서, eNB는 secondary UE의 존재 여부를 알아야 하고, eNB는 어떤 secondary UE가 어떤 primary UE와의 통신을 원하는지도 알아야 할 필요가 있다. 즉, eNB는 secondary UE의 존재 여부를 모르는 상태에서, secondary UE가 eNB에 접속할 수 있도록 하는 방안이 필요하다. secondary UE는, 일반적으로 전송 전력이 매우 낮은 UE이기 때문에, 직접 eNB에 접속을 하지 못하고 primary UE를 거쳐서만 eNB로의 접속이 가능할 수 있다. 즉, secondary UE는 먼저 primary UE에게 접속을 시도하고, 이 접속 시도를 primary UE가 eNB에 전달함으로써 특정 secondary UE가 접속을 시도한다는 사실을 eNB에게 알릴 수 있다.
여기서 secondary UE가 직접 eNB에 접속하지 못한다는 의미는 상향링크 전송에 대해서만으로 그 의미가 제한될 수 있으며, 하향링크의 경우에는 secondary UE가 단순히 eNB로부터의 수신 동작만을 수행하면 되므로, 직접 eNB로부터의 신호를 수신하는 것이 가능할 수도 있다. 이 경우에는 secondary UE는 자신이 전송한 임의 접속 신호에 대한 응답을 eNB로부터 직접 수신할 수도 있다. 예를 들어, secondary UE는 eNB가 전송하는 PDCCH를 통하여 임의 접속 응답을 수신할 수 있다.
위와 같은 동작을 위해서, eNB는 브로드캐스트 메시지와 같은 신호를 이용하여 secondary UE들이 primary UE에 접속하는데 사용할 수 있는 PRACH 자원 정보 (PRACH 프리앰블 인덱스, PRACH 시간/주파수 자원 등)을 알릴 수 있다. 이 때, 통상적으로 primary UE와 secondary UE는 근접한 거리에 위치할 가능성이 높으므로 많은 에너지를 PRACH 프리앰블의 전송에 소모하지 않기 위해서, LTE 시스템에서 정의하는 PRACH 프리앰블 포맷 4와 같은 매우 짧은 길이의 프리앰블을 이용하도록 할 수 있다.
또한 primary UE는 자신에게 근접한 secondary UE가 자신의 존재를 인지하도록 하기 위해서 SRS와 같은 특정 신호를 주기적 혹은 비주기적으로 전송할 수 있다. 이러한 특정 신호의 주기적/비주기적 전송의 설정(configuration)은 eNB를 통해서 secondary UE들에게 알려질 수 있다. 이러한 특정 신호의 전송 설정에는, 해당하는 primary UE의 ID 정보가 포함될 수 있어서, secondary UE로 하여금 어떤 primary UE가 상기 특정 신호를 전송하는지를 구분할 수 있도록 할 수 있다. 이러한 정보를 제공 받은 secondary UE는, 설정된 바와 같은 상기 특정 신호를 수신한 경우에 자신의 근처에 primary UE가 존재한다는 것을 인지하고, 해당 primary UE로 초기 접속을 시도할 수 있다. 이 때 primary UE와 secondary UE 사이의 전송 전력 제어 등을 위해서, secondary UE가 수신한 primary UE의 신호 세기를 primary UE나 eNB에게 보고하는 것도 가능하다.
또는, primary UE가 임의 접속을 위한 PRACH 프리앰블을 전송하고 secondary UE가 이를 검출함으로써 두 UE 사이의 링크를 검출할 수도 있다. PRACH 프리앰블은 SRS에 비해 상대적으로 적은 대역폭을 차지하므로 보다 적은 주파수 자원을 활용하고도 링크 검출이 가능하다는 장점이 있다. 이를 위해서 기지국은 primary UE가 전송하는 PRACH에 관련된 정보를, RRC와 같은 상위계층 신호를 통하여 secondary UE에게 알려줄 수 있다. 여기서, 기지국은 초기 접속을 시도하는 UE들이 사용할 수 있는 PRACH 자원 이외의 PRACH 자원(예를 들어, 핸드오버 등의 용도를 위해서 유보(reserve)해 둔 PRACH 자원)을 이용하여 PRACH 프리앰블을 전송할 것을 primary UE에게 지시할 수 있다. 추가적으로, 기지국은 secondary UE가 한 번에 primary UE 신호를 검출하지 못하는 경우를 대비하기 위해서, primary UE에게 특정 PRACH 프리앰블을 주기적으로 전송할 것을 지시할 수도 있다. primary UE가 전송하는 PRACH 프리앰블에 전송에 대한 설정 정보를 eNB로부터 제공받은 secondary UE는 해당 설정 정보에 대응하는 UL 자원 상에서 primary UE의 PRACH 프리앰블 검출을 시도할 수 있다. 추가적으로, primary UE가 전송하는 신호가 primary UE에 특정으로 무작위화(randomize)되는 경우에는, secondary UE가 간편하게 primary UE로부터의 신호를 검출할 수 있도록, 기지국은 secondary UE에게 primary UE의 ID와 같은 정보를 알려줄 수도 있다.
실시예 9
전술한 본 발명의 실시예들에 있어서, secondary UE가 eNB로부터의 PDCCH를 직접 디코딩하는 경우에 대하여 설명하였다. 이 때, secondary UE가 디코딩해야 하는 PDCCH의 후보가 너무 많게 되면 (즉, 블라인드 디코딩 횟수가 많으면), secondary UE의 동작의 복잡도가 증가하고 전력 소모 역시 증가되는 문제가 생긴다.
블라인드 디코딩이란 상이한 크기의 다양한 PDCCH DCI 포맷들이 존재하는 경우에, 송신측이 전송한 PDCCH가 어떤 크기의 DCI 포맷에 해당하는지를 수신측은 미리 알지 못하고 각각의 후보에 대해서 디코딩을 시도해보는 동작을 의미한다. 또한, 블라인드 디코딩은 단말들이 공통으로 검색을 하는 공통 검색 공간(common search space) 및/또는 UE-특정 검색 공간(UE-specific search space)에서 수행될 수 있다.
Secondary UE의 블라인드 디코딩 부담을 경감하기 위해서, secondary UE가 eNB로부터의 PDCCH에 대한 블라인드 디코딩을 수행하는 영역을 제한하는 것을 고려할 수 있다. 예를 들어, secondary UE는 공통 검색 공간에서만 PDCCH를 디코딩하도록 설정될 수 있다. 특히, primary UE와 secondary UE가 동일한 PDCCH를 디코딩하는 경우에, 위와 같은 제한을 통해서 secondary UE가 primary UE의 UE-특정 검색 공간에서 PDCCH 디코딩을 수행하지 않도록 할 수 있다. 또한 secondary UE로의 전송을 임의 접속 과정을 이용하여 스케줄링하는 경우에, RA-RNTI로 전송되는 PDCCH는 공통 검색 영역에서 전송되므로, 역시 이런 제한을 통해서 불필요한 동작을 회피하는 것이 가능하다.
실시예 10
전술한 예시들에서는 primary UE가 secondary UE 로의/로부터의 신호 송수신을 스케줄링하는 방안과, eNB가 직접 UE들 사이의 통신에 대한 스케줄링을 수행하는 방안에 대하여 설명하였다. 이하에서는 본 발명에서 제안하는 UE들 간의 통신 방식의 또 다른 방안으로서, primary UE가 기지국으로부터 secondary UE와의 통신을 위해서 활용할 자원을 미리 할당 받고, 해당 자원을 사용하여 primary UE와 하나 혹은 복수개의 secondary UE와의 통신을 수행하는 방안에 대하여 설명한다.
이를 위하여, eNB는 특정 주파수 자원을 주기적으로 primary UE에게 할당할 수 있다. 구체적으로, eNB는 상위계층 시그널링(예를 들어, RRC 시그널링) 등을 이용하여 primary UE에게 할당될 수 있는 주파수 자원을 지정하여 주고, 물리 계층 제어 신호를 통해서 상기 지정된 주파수 자원의 활성화(activate)/비활성화(deactivate)를 지시하여 줄 수 있다. 이러한 동작은, 기존의 반-영속 스케줄링(semi-persistent scheduling; SPS)과 유사하게 설정될 수 있다. 다만, 본 발명에서 eNB가 primary UE에게 할당하는 자원은 UE간의 통신을 위한 것이므로 SPS 스케줄링 방식과 구체적인 내용에서는 차이를 가진다. 즉, eNB가 primary UE에게 할당하는 자원 내에서, primary UE와 secondary UE 간의 통신을 위해서 전술한 본 발명의 실시예들에서 제안하는 서브프레임 구조, 채널 구조, 전송 전력 제어 방안 등이 적용될 수 있다.
도 21 은 eNB가 지정해준 전용 자원(dedicated resources)을 이용하여 UE 간의 통신 (또는 피어-대-피어 (peer-to-peer) 통신)이 수행되는 무선 통신 시스템의 일례를 나타내는 도면이다. 도 21 에서 UE1, UE2 및 UE3 중 하나가 primary UE로서 eNB로부터 7 서브프레임의 주기로 특정 주파수 자원을 이용하도록 자원 할당을 받을 수 있다. 해당 자원을 이용하여 UE1, UE2 및 UE3 간의 통신이 수행될 수 있다.
도 21 과 같은 동작을 수행하기 위해서 primary UE는 secondary UE와의 통신을 위해서 필요한 자원에 대한 정보를 기지국에게 전송할 수 있다. 이러한 정보에는 primary 및/또는 secondary UE의 위치 정보, UE 사이의 통신이 관련된 서비스의 범주 (예를 들어, 음성 서비스, 데이터 서비스), 필요한 자원의 양 및/또는 지속 시간, secondary UE의 개수 등의 내용을 포함할 수 있다.
기지국은 primary UE가 보고한 정보를 바탕으로, UE간 통신에 할당할 자원을 결정할 수 있다. 추가적으로, 기지국은 UE간 통신을 위해 할당된 자원에서 사용할 수 있는 최대의 전력을 특정한 값으로 제한할 수 있고, 전력 제한 정보를 primary 및/또는 secondary UE에게 알릴 수 있다. 이는 기지국이 UE간 통신을 위해 특정 자원을 할당하더라도 UE간 통신이 수행되는 위치에서 멀리 떨어진 다른 UE의 통신(다른 UE 와 기지국간의 통신 또는 다른 UE와 또 다른 UE간의 통신 등)을 위해서 해당 자원을 사용할 수 있도록 하기 위함이다. UE간 통신은 일반적으로 근접한 UE 간에서 수행되므로 낮은 전송 전력으로도 원활한 통신이 가능하기 때문에, 기지국은 UE간 통신에 사용되는 전력을 제한하여 다른 UE에 대해서 간섭이 발생하지 않도록 할 수 있다.
또한, 위와 같이 기지국이 UE 간의 통신에 사용할 자원을 지정함에 있어서, 기지국은 단말이 요청하는 UE간 통신이 관련된 서비스의 종류(예를 들어, 음성 또는 데이터) 또는 서비스에 부과되는 비용을 고려하여, UE 간의 통신에 이용될 자원의 양, 품질(또는 간섭 레벨), 최대 전송 전력 등을 결정/조절함으로써 UE가 이용할 수 있는 데이터 레이트 및 커버리지를 제어할 수 있다. 예를 들어, 단말이 높은 품질의 UE간 통신 서비스를 요청하는 경우에 (또는 높은 서비스 품질에 따른 높은 요금을 지불한다면), 기지국은 상대적으로 낮은 간섭 레벨이 예상되는 자원(예를 들어, 독점적(exclusive) 자원)을 할당하거나, 많은 양의 자원을 할당해 주거나, 높은 전송 전력 제한 값을 할당하는 등의 방식으로 UE간 통신을 위한 자원을 할당함으로써, 높은 품질, 고속 데이터 레이트 및/또는 넓은 커버리지의 서비스를 제공할 수 있다. 반면, 단말이 상대적으로 낮은 품질의 UE간 통신 서비스를 요청하는 경우에 (또는 낮은 서비스 품질에 따른 낮은 요금을 지불한다면), 기지국은 상대적으로 높은 간섭 레벨이 예상되는 자원(예를 들어, 공유(shared) 자원)을 할당하거나, 적은 양의 자원을 할당해 주거나, 낮은 전송 전력 제한 값을 할당하는 등의 방식으로 UE간 통신을 위한 자원을 할당함으로써, 낮은 품질, 저속 데이터 레이트 및/또는 좁은 커버리지의 서비스를 제공할 수 있다.
또한, 단말이 기지국에 UE간의 통신 서비스를 요청할 때에 단말의 위치 정보(예를 들어, GPS 정보)를 함께 송신하게 할 수 있다. 기지국은 UE간 통신 서비스를 요청하는 단말에게 UE간 통신을 위한 자원을 할당하는 동시에, UE간 통신 서비스를 요청하는 단말의 위치를 고려하여 해당 단말과 지리적으로 떨어진 단말(즉, 상기 단말이 요청하는 UE간 통신에 참여하지 않는 다른 단말)에게 상기 UE간 통신에 이용되는 자원과 동일한 자원을 할당할 수도 있다. UE간 통신에 참여하는 단말과 상기 다른 단말은 지리적으로 멀리 떨어져 있으므로 동일한 자원을 할당하더라도 서로 간의 간섭은 적은 것으로 예상할 수 있다.
추가적으로, 기지국이 UE 간 통신을 위해서 자원을 할당하여 줄 때에, 해당 자원에서 기지국이 다른 UE와 수행하는 통신의 신호 세기가 큰 경우에는 UE간 통신을 위해 할당된 자원에 간섭을 미칠 수 있다. 이를 해결하기 위해서, 기지국은 UE 간의 통신을 위해 할당하는 자원에 해당하는 서브프레임에서 간섭을 줄이는 사일런싱(silencing) 동작을 수행할 수 있다. 사일런싱 동작의 예로서, 어떤 서브프레임을 ABS(Almost Blank Subframe) 서브프레임(공통참조신호(CRS)만을 전송하고 나머지 자원요소들을 블랭킹한 서브프레임)으로 설정하거나, MBSFN 서브프레임(데이터 영역에서 CRS도 전송되지 않는 서브프레임)으로 설정하는 동작 등이 가능하다.
또한, UE 사이 통신에 사용되는 자원이 주파수 영역에서 고정될 경우, 해당 주파수 영역이 지속적으로 나쁜 채널 상태를 가질 수도 있다. 따라서, UE간의 통신을 위한 자원 할당에 있어서 주파수 호핑(주파수 대역을 바꾸어 가면서 할당하는 방식) 등을 이용하여 주파수 선택적인 영향을 경감할 수도 있다.
또한, UE간의 통신을 위해서 primary UE가 eNB로부터 할당받은 자원에서, primary UE는 별도의 셀(cell)을 형성할 수 있다. 도 22 는 primary UE가 별도의 셀을 형성하는 경우의 서브프레임 구조를 예시적으로 나타내는 도면이다. 도 22 에서는 primary UE가 UE간의 통신을 위한 자원으로서 기지국으로부터 DL 자원을 할당받은 경우를 예시적으로 나타낸다. 그러나, 이에 제한되는 것은 아니고 primary UE 가 UE간의 통신을 위해서 UL 자원을 할당받는 경우에 도 17 또는 도 18 과 같은 서브프레임 구조가 적용될 수도 있다.
도 22 의 예시에서와 같이, 서브프레임 n 에서 일부 시간-주파수 자원이 UE 간의 통신을 위해 할당될 수 있다. 예를 들어, 서브프레임 n 의 처음 몇개의 OFDM(또는 SC-FDMA) 심볼(들)은 매크로 셀(즉, 기지국)로부터의 PDCCH가 전송되는 영역이고, 서브프레임 n 의 나머지 OFDM(또는 SC-FDMA) 심볼들 및 특정 주파수 영역(2220 및 2230)에서 primary UE와 secondary UE 간의 통신이 수행될 수 있다. 구체적으로, primary UE로부터 secondary UE로의 PDCCH는 시간-주파수 영역(2220) 상에서 전송되고, primary UE로부터 secondary UE로의 PDSCH는 시간-주파수 영역(2230) 상에서 전송될 수 있다. 서브프레임 n 에서 매크로 셀로부터의 PDCCH 전송 영역(2210) 및 UE간의 통신에 할당된 자원 영역(2220 및 2230)을 제외한 나머지 영역 (2240)은 매크로 셀로부터 매크로 UE(매크로 셀에 의해 서비스 받는 다른 UE)로의 PDSCH 전송에 이용될 수 있다. 한편, 서브프레임 n+1 에서는 UE간 통신을 위한 자원이 할당되지 않는 일반 서브프레임을 나타낸 것이다. 예를 들어, 서브프레임 n+1 이 하향링크 서브프레임인 경우에, 처음 몇 개의 OFDM 심볼(2250)은 매크로 셀의 PDCCH 전송 영역에 해당하고, 나머지 OFDM 심볼들(2260)은 매크로 셀로부터 매크로 UE로의 PDSCH 전송 영역에 해당한다.
도 22 에서 도시하는 바와 같이, primary UE는 기지국으로부터 할당 받은 시간-주파수 자원(2220 및 2230)에서 별도의 cell ID를 가지고 CRS/PDCCH 등의 신호를 전송하여 secondary UE와의 통신을 수행할 수 있다. 이를 위해 기지국은 primary UE에게 primary UE가 cell 형성에 사용할 cell ID등의 정보를 전달할 수 있다. Secondary UE는 primary UE가 형성하는 cell이 나타나는 시간-주파수 자원의 위치를 파악하고 (이 정보는 기지국이 직접 secondary UE에게 알려줄 수도 있음), 해당 시간-주파수 자원 상에서 primary UE가 형성한 cell로부터 자신의 스케줄링 정보 등을 획득하고 적절한 측정(무선자원관리(RRM), 무선링크모니터링(RLM) 등을 위한 측정)을 수행할 수 있다.
또한, primary UE가 형성한 셀에서 secondary UE에게 PDSCH/PUSCH를 송수신하는 경우에, 일반적인 셀에서의 PDSCH/PUSCH 전송 자원에 비하여 줄어든 자원을 사용하게 되는 경우에 대한 동작이 정의될 필요가 있다. 예를 들어, 도 22 의 예시에서와 같이 primary UE가 UE간의 통신을 위해서 DL 자원을 할당받은 경우에, 할당 받은 DL 자원이 존재하는 서브프레임의 처음 몇개의 OFDM 심볼(2210)은 기지국(매크로 셀)의 PDCCH 전송에 이용된다. 즉, 일반적인 셀에서의 PDSCH 전송에 사용되는 OFDM 심볼의 개수(예를 들어, 도 22 의 2260)에 비하여 줄어든 OFDM 심볼만을 사용하여 primary UE가 secondary UE로 PDSCH를 송신해야 하므로, 이를 반영하여 레이트 매칭(rate matching) 또는 펑처링(puncturing)을 적용하여 PDSCH를 전송할 수 있다. 도 22 에서는 primary UE가 DL 자원을 할당받은 경우에 secondary UE에게 PDSCH를 전송하는 것을 예시적으로 나타내지만, UE간 통신을 위해 할당된 자원에서 secondary UE로부터 PUSCH 를 수신할 수도 있다. 이 경우에도 마찬가지로, secondary UE가 PUSCH 전송에 사용하는 자원은 일반적인 PUSCH 전송의 경우에 비하여 적은 개수의 SC-FDMA 심볼 상에서 수행되어야 하므로, 전술한 바와 같은 레이트매칭/펑처링 등이 적용될 수 있다. 한편, UE간 통신을 위하여 primary UE가 UL 자원을 할당받은 경우에는, 할당받은 서브프레임에서 매크로 셀의 PDCCH가 존재하지 않기 때문에 UL 자원의 전체 SC-FDMA 심볼을 이용할 수 있다. 이 경우, primary UE는 할당받은 UL 자원의 서브프레임의 첫 번째 SC-FDMA 심볼부터 secondary UE를 위한 PDCCH를 전송할 수도 있다.
한편, secondary UE의 입장에서는 기지국이 형성한 셀(매크로 셀)과 primary UE가 형성한 셀 모두에 접속할 수 있고, 각각의 셀과 데이터 송수신을 수행할 수 있다. 이 경우, secondary UE의 입장에서는 반송파 병합(carrier aggregation)의 동작과 유사하게 데이터 송수신을 수행할 수 있다. 반송파 병합이란 복수개의 주파수 대역(즉, 반송파)를 묶어서 큰 대역을 제공하기 위해 도입되는 기술이며, 복수개의 주파수 대역 중의 하나는 주(primary) 반송파(또는 주 셀(primary cell))에 해당하고 나머지 주파수 대역의 각각의 부(secondary) 반송파(또는 부 셀(secondary cell))에 해당한다. 이러한 반송파 병합 기술이 적용되는 경우에, 예를 들어, 기지국이 형성한 셀이 primary cell(PCell)인 것으로 설정하고, primary UE가 형성한 셀을 secondary cell(SCell)인 것으로 설정할 수 있다. 본 발명의 예시에서 일반적인 반송파 병합과 상이한 점은, SCell이 PCell의 일부 시간/주파수 영역 내에 존재한다는 것이다.
또한, secondary UE의 PDCCH 블라인드 디코딩의 복잡도를 줄이기 위해서, 하나의 서브프레임에서는 하나의 cell에 대한 블라인드 디코딩만이 수행되도록 할 수도 있다. 예를 들어, 도 22 의 예시에서 primary UE가 형성한 cell (즉, 반송파 병합의 관점에서 (또는 secondary UE의 입장에서) SCell)이 존재하는 서브프레임 n에서는 primary UE의 셀(즉, SCell)의 PDCCH만을 검색(search)하도록 할 수 있다. 또한, primary UE의 cell(즉, SCell)이 존재하지 않는 서브프레임 n+1에서는 기지국의 셀(즉, 반송파 병합의 관점에서 (또는 secondary UE의 입장에서) PCell)의 PDCCH만을 검색하도록 할 수 있다. 이와 같이 PCell 또는 SCell 별로 검색을 수행하는 동작은, UE-특정 검색 공간에서만 이루어지도록 설정할 수도 있다. 즉, 공통 검색 공간에서는 PCell 또는 SCell 별로 검색의 전환이 적용되지 않는 것을 의미하며, 공통 검색 공간은 항상 한쪽 셀(예를 들어, PCell)에서만 검색하는 것이 가능하다는 의미이다.
실시예 11
본 실시예는 전술한 본 발명의 다양한 예시들에 있어서 primary UE의 전송 전력을 조절하는 구체적인 방안에 대한 것이다.
Primary UE가 송신하는 신호는 세 종류로 구분이 가능하다. 하나는 기지국으로 primary UE가 데이터 및 제어 신호를 송신하는 UL 전송 신호이고 (이하, 신호 타입 1 이라 지칭함), 다른 하나는 secondary UE로 primary UE가 데이터 및 제어 신호를 송신하는 신호이고 (이하, 신호 타입 2 라 지칭함), 또 다른 하나는 잠재적인 secondary UE들(현재 primary UE에 연결되어 있지 않지만 장래 primary UE에 연결될 가능성이 있는 UE들)이 primary UE를 발견할 수 있도록 하기 위해서 전송하는 신호이다 (이하, 신호 타입 3 이라 지칭함).
상기 신호 타입 3 은, UL 자원에서 주기적/비주기적으로 전송되는 SRS나 PRACH와 같은 신호일 수 있고, 또는 DL 자원에서 주기적/비주기적으로 전송되는 참조신호일 수도 있다. 여기서, DL 자원에서 주기적/비주기적으로 전송되는 참조신호는 예를 들어, primary UE가 별도로 할당받은 cell ID를 기반으로 하는 CRS이거나, secondary UE에 특정적인 UE-특정 RS(DRS)이거나, 또는 기지국이 설정한 CRS나 CSI-RS 중에서 일부 안테나 포트에 대한 CRS나 CSI-RS일 수도 있다. secondary UE는 상기 신호 타입 3 을 이용하여 primary UE를 발견하고 접속을 시도할 수 있다.
이하에서는, 각각의 신호 타입 별로 전송 전력을 조절하는 예시에 대하여 구체적으로 설명한다.
신호 타입 1 의 경우에는 기존의 기지국-단말 간의 통신에서와 같이 기지국이 전송 전력을 조절할 수 있다. 즉, 기지국은 primary UE에게 전송전력제어(Transmit Power Control; TPC) 명령을 제공함으로써, primary UE가 기지국에게 전송하는 신호의 전력을 제어할 수 있다. 예를 들어, TPC 명령은 이전 전송 전력에 비하여 상대적인 값으로 제공될 수 있고, UE는 TPC 명령을 누적(accumulate)하여 현재 적용해야 할 전송 전력을 계산할 수 있다.
신호 타입 2 는 UE로부터 UE로의 송신이므로, (전술한 실시예 7 에서 설명한 바와 같이) UE로부터 기지국으로의 전송인 상기 신호 타입 1 과 함께 전송 전력이 조절될 수 없고, 신호 타입 2 에 대해서 별도의 전송 전력 조절이 수행되어야 한다. 예를 들어, 기지국이 직접 전송 전력 제어 명령을 primary UE에게 줌으로써 primary UE가 secondary UE로 전송하는 신호 타입 2 의 전송 전력을 조절할 수도 있고, 또는 기지국에서는 primary UE의 전송 전력의 최대 값을 설정하여 두고 상기 최대 값 내에서 primary UE와 secondary UE간의 무선 링크의 상태를 고려하여 primary UE가 스스로 신호 타입 2 의 전송 전력을 조절할 수도 있다.
한편 신호 타입 3 의 주된 목적은 어떤 secondary UE가 어떤 primary UE와 얼마나 가까이 위치하는지를 파악하는 것에 있으므로, 신호 타입 3 의 전력 제어에 있어서는 secondary UE가 수신한 전력 그 자체 보다는 primary UE와 secondary UE 사이의 경로손실(pathloss)를 올바르게 측정할 수 있도록 하는 것이 보다 중요할 수 있다. 여기서 secondary UE가 신호 타입 3의 수신 신호 세기를 기지국에게 보고한다고 하더라도 기지국은 해당 신호의 전송 전력(즉, primary UE에서 전송한 전력)을 알아야 경로 손실을 추정할 수 있다. 따라서, primary UE가 신호 타입 3 을 전송한 전력 값을 기지국이 알 수 있도록 하는 전송 전력 제어 방법이 필요하다.
예를 들어, 상위계층 신호(예를 들어, RRC 신호) 등을 이용하여, 기지국이 primary UE로 하여금 신호 타입 3의 전송 전력 값을 소정의 값으로 고정하도록 지시하는 것을 고려할 수 있다. 이러한 경우, 기지국은 항상 primary UE가 신호 타입 3 을 소정의 고정된 전력 값으로 전송하는 것을 알고 있으므로, secondary UE로부터의 신호 타입 3 의 수신 신호 전력 값을 보고 받으면, primary UE와 secondary UE 간의 경로 손실을 계산할 수 있게 된다.
다른 예시로서, primary UE가 전송하는 신호 타입 3 의 전송 전력을 기지국이 제어하면서, primary UE가 신호 타입 3 을 전송할 때마다 기지국이 신호 타입 3 의 전송 전력 값을 직접적으로 primary UE에게 지시하여 주는 것을 고려할 수도 있다. 즉, 기지국으로부터의 전력 제어 명령이 이전의 전송 전력을 기준으로 하는 상대적인 값을 나타내는 것이 아니라, 이번 전송에 적용될 전송 전력의 절대 값을 나타낼 수 있다. 이러한 경우, 상대적인 값으로 제공되는 전력 제어 명령을 누적시켜서 이번 전송 전력 값을 도출해야 하는 방식에서, UE가 전력 제어 명령을 놓치는 경우에 기지국이 지시한 전송 전력과 UE가 적용하는 전송 전력의 오차를 방지할 수 있다.
또 다른 예시로서, primary UE가 현재 적용하고 있는 신호 타입 3 의 전송 전력 값을 기지국에게 보고할 수도 있다. 이러한 전송 전력 값의 보고는 주기적으로 수행될 수도 있고, 특정 이벤트가 발생하는 경우에 수행(즉, event-triggered 방식으로 수행)될 수도 있다. 특정 이벤트는 예를 들어, 인접 셀로부터의 신호의 수신 전력이 소정의 임계치 이상인 경우로 정해질 수 있고, 또는, 신호 타입 3 의 전송 전력이 이전의 전송 전력에 비해 소정의 차이값 이상으로 변경되는 경우로 정해질 수도 있으며, 또는 기지국이 전송 전력 값의 보고를 요청하는 경우에 비주기적으로 수행되는 것으로 정해질 수도 있다.
전술한 본 발명의 다양한 실시예들은 면허 대역(licensed band)에서 단말간의 통신에 적용될 수 있다. 또한, 전술한 바와 같은 본 발명의 원리는 비면허(unlicensed band) 대역에서 단말과 기지국 간의 통신에도 적용될 수 있다. 예를 들어, 비면허 대역에서 LTE기반 시스템을 인지 무선(cognitive radio) 방식으로 운영하는 경우를 가정할 수 있다. 예를 들어, LTE 시스템에서의 eNB와 UE간 통신이 기본적으로는 허용되지 않고 다른 무선 시스템이 우선적으로 허용되는 대역에서, 우선적으로 허용되는 다른 무선 통신 시스템의 통신이 존재하는지 여부를 인지하고, 우선적 사용자(incumbent user)가 없는 경우에만 LTE기반 통신을 수행하는 방식을 고려할 수 있다. 이 경우, 매 서브프레임마다 다른 무선 시스템의 사용여부를 센싱하는 것이 필요하다. 이 경우, 전술한 본 발명의 예시들에서 설명한 바와 같이 서브프레임의 처음 몇 개의 OFDM (또는 SC-FDMA) 심볼 구간에서 반송파 센싱을 수행하고 반송파 사용이 없는 경우에만 해당 서브프레임의 나머지 영역에서 LTE 시스템의 eNB로부터 UE를 위한 전송이 수행될 수 있다. 또한, 전술한 바와 같은 본 발명의 예시들에서 설명한 UL 자원 또는 DL 자원이 UE 간의 통신을 위해 할당되는 경우의 서브프레임 구조, 채널 구조, 전송 전력 제어 등의 예시들이, 비면허 대역에서의 기지국과 단말간의 통신에 적용될 수 있다. 이에 따라, 비면허 대역에서 기지국과 단말간의 통신이 다른 시스템의 통신에 주는 간섭을 완화/제거할 수 있고, 다른 시스템의 통신으로부터 받는 간섭을 회피/제거할 수 있게 된다.
도 23은 본 발명의 일 실시예에 따른 단말간 통신 방법에 대한 흐름도이다.
단계 S2310에서 기지국은 UE간 통신(제 1 단말과 제 2 단말간의 통신)을 위한 자원을 할당하고, 이러한 자원 할당 정보와 함께 전력 제어 정보 등을 포함하는 스케줄링 정보를 제 1 단말 및/또는 제 2 단말에게 전송할 수 있다.
단계 S2320에서 제 1 단말은 기지국으로부터 할당받은 UE간 통신을 위한 자원을 이용하여 제 1 단말과 제 2 단말 간의 통신을 스케줄링하고, 이러한 스케줄링 정보를 제 2 단말에게 알려줄 수 있다. 여기서, 단말간 통신을 위한 자원 중 서브프레임의 제 1 슬롯은 단말간 통신을 위한 제어 신호를 포함하고, 제 2 슬롯은 상기 단말간의 데이터 신호를 포함하도록 설정될 수 있다.
단계 S2320 에서 제 1 및 제 2 단말은 상기 단계 S2320 에서의 스케줄링 정보에 기초하여 단말간 통신을 수행할 수 있다.
도 23 에 있어서 제 1 단말은 primary UE에 해당하고 제 2 단말은 secondary UE에 해당할 수 있다.
도 23 과 관련하여 설명한 본 발명의 일례에 따른 단말간 통신 방법에 있어서, 전술한 본 발명의 다양한 실시예에서 설명한 사항들이 독립적으로 적용되거나 또는 2 이상의 실시예가 동시에 적용되도록 구현될 수 있으며, 중복되는 내용은 명확성을 위하여 설명을 생략한다. 또한, 도 23 과 관련하여 설명한 본 발명의 일례에 따른 단말간 통신 방법은 다른 시스템 또는 다른 셀에 대한 간섭을 저감하기 위한 기지국-단말 간의 통신에도 적용될 수 있다. 이 경우, 제 1 단말의 동작은 기지국의 동작으로 이해될 수 있고, 제 2 단말의 동작은 기지국과 통신하는 단말의 동작으로 이해될 수 있다.
도 24 는 본 발명에 따른 송수신 장치의 구성을 도시한 도면이다.
도 24의 송수신 장치(2400)는 예를 들어 단말 장치일 수 있다. 본 발명에 따른 단말 장치(2400)는, 수신모듈(2410), 전송모듈(2420), 프로세서(2430), 메모리(2440) 및 복수개의 안테나(2450)를 포함할 수 있다. 복수개의 안테나(2450)는 MIMO 송수신을 지원하는 단말 장치를 의미한다. 수신모듈(2410)은 외부로부터 각종 신호, 데이터 및 정보를 수신할 수 있다. 전송모듈(2420)은 외부로 각종 신호, 데이터 및 정보를 전송할 수 있다. 프로세서(2430)는 단말 장치(2400) 전반의 동작을 제어할 수 있다.
본 발명의 일 실시예에 따른 단말 장치(2400)는 다른 단말과 단말간 통신을 수행하도록 구성될 수 있다. 단말장치(2400)의 프로세서(2430)는, 수신 모듈(2410)을 통하여 기지국으로부터 상기 단말간 통신을 위한 자원을 할당하는 정보를 포함하는 스케줄링 정보를 수신하도록 구성될 수 있다. 또한, 프로세서(2430)는, 상기 스케줄링 정보에 기초하여 송신 모듈(2410) 또는 수신 모듈(2420) 중 하나 이상을 통하여 상기 다른 단말과 통신을 수행하도록 구성될 수 있다. 여기서, 상기 단말간 통신을 위한 자원 중 서브프레임의 제 1 슬롯은 상기 단말간 통신을 위한 제어 신호를 포함하고, 상기 서브프레임의 제 2 슬롯은 상기 단말간의 데이터 신호를 포함할 수 있다.
단말 장치(2400)의 프로세서(2430)는 그 외에도 단말 장치(2400)가 수신한 정보, 외부로 전송할 정보 등을 연산 처리하는 기능을 수행하며, 메모리(2440)는 연산 처리된 정보 등을 소정시간 동안 저장할 수 있으며, 버퍼(미도시) 등의 구성요소로 대체될 수 있다.
위와 같은 기지국 장치 및 단말 장치의 구체적인 구성은, 전술한 본 발명의 다양한 실시예에서 설명한 사항들이 독립적으로 적용되거나 또는 2 이상의 실시예가 동시에 적용되도록 구현될 수 있으며, 중복되는 내용은 명확성을 위하여 설명을 생략한다.
또한, 전술한 본 발명의 예시들에 있어서, 기지국에 대한 설명은 하향링크 전송 주체 또는 상향링크 수신 주체로서의 중계기 장치에 대해서도 동일하게 적용될 수 있고, 단말에 대한 설명은 하향링크 수신 주체 또는 상향링크 전송 주체로서의 중계기 장치에 대해서도 동일하게 적용될 수 있다.
상술한 본 발명의 실시예들은 다양한 수단을 통해 구현될 수 있다. 예를 들어, 본 발명의 실시예들은 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다.
하드웨어에 의한 구현의 경우, 본 발명의 실시예들에 따른 방법은 하나 또는 그 이상의 ASICs(Application Specific Integrated Circuits), DSPs(Digital Signal Processors), DSPDs(Digital Signal Processing Devices), PLDs(Programmable Logic Devices), FPGAs(Field Programmable Gate Arrays), 프로세서, 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 실시예들에 따른 방법은 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차 또는 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
상술한 바와 같이 개시된 본 발명의 바람직한 실시예들에 대한 상세한 설명은 당업자가 본 발명을 구현하고 실시할 수 있도록 제공되었다. 상기에서는 본 발명의 바람직한 실시예들을 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 본 발명의 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다. 예를 들어, 당업자는 상술한 실시예들에 기재된 각 구성을 서로 조합하는 방식으로 이용할 수 있다. 따라서, 본 발명은 여기에 나타난 실시형태들에 제한되려는 것이 아니라, 여기서 개시된 원리들 및 신규한 특징들과 일치하는 최광의 범위를 부여하려는 것이다.
본 발명은 본 발명의 정신 및 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니 되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다. 본 발명은 여기에 나타난 실시형태들에 제한되려는 것이 아니라, 여기서 개시된 원리들 및 신규한 특징들과 일치하는 최광의 범위를 부여하려는 것이다. 또한, 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함할 수 있다.
상술한 바와 같은 본 발명의 실시형태들은 다양한 이동통신 시스템에 적용될 수 있다.

Claims (14)

  1. 무선 통신 시스템에서 제 1 단말이 제 2 단말과 단말간 통신을 수행하는 방법으로서,
    상기 제 1 단말이 기지국으로부터 상기 단말간 통신을 위한 자원을 할당하는 정보를 포함하는 스케줄링 정보를 수신하는 단계; 및
    상기 스케줄링 정보에 기초하여 상기 제 1 단말이 상기 제 2 단말과 통신을 수행하는 단계를 포함하고,
    상기 단말간 통신을 위한 자원 중 서브프레임의 제 1 슬롯은 상기 단말간 통신을 위한 제어 신호를 포함하고, 상기 서브프레임의 제 2 슬롯은 상기 단말간의 데이터 신호를 포함하는, 단말간 통신 수행 방법.
  2. 제 1 항에 있어서,
    상기 제 1 단말로부터 상기 기지국으로의 상향링크 자원 중에서 상기 단말간 통신을 위한 자원이 할당되는 경우, 상기 제 1 슬롯은 상기 제 2 단말을 위한 제어 신호 전송을 위해 사용되고, 상기 제 2 슬롯은 상기 제 1 및 제 2 단말간의 데이터 송수신을 위해 사용되는, 단말간 통신 수행 방법.
  3. 제 1 항에 있어서,
    상기 기지국으로부터 상기 제 1 단말로의 하향링크 자원 중에서 상기 단말간 통신을 위한 자원이 할당되는 경우, 상기 서브프레임의 처음 하나 이상의 심볼을 제외한 나머지 심볼들에서 상기 단말간의 통신을 위한 자원이 할당되고, 상기 제 2 단말을 위한 제어 신호 추가적으로 상기 제 2 슬롯에서 전송되는, 단말간 통신 수행 방법.
  4. 제 1 항에 있어서,
    상기 하나의 서브프레임의 처음 하나 이상의 심볼은 반송파 센싱을 위해 할당되는, 단말간 통신 수행 방법.
  5. 제 1 항에 있어서,
    상기 하나의 서브프레임의 상기 제 1 슬롯의 마지막 심볼은 송신-수신 모드 전환을 위한 널 심볼로 설정되는, 단말간 통신 수행 방법.
  6. 제 1 항에 있어서,
    상기 하나의 서브프레임의 상기 제 2 슬롯의 마지막 심볼은 송신-수신 모드 전환 또는 전송 전력 변경을 위한 널 심볼로 설정되는, 단말간 통신 수행 방법.
  7. 제 1 항에 있어서,
    상기 스케줄링 정보는 상기 제 1 단말 및 상기 제 2 단말의 쌍에게 부여되는 식별자에 연관된 하나의 스케줄링 메시지를 이용하여 상기 제 1 및 제 2 단말에게 제공되는, 단말간 통신 수행 방법.
  8. 제 1 항에 있어서,
    상기 스케줄링 정보는 상기 제 1 단말 및 상기 제 2 단말 각각에게 부여되는 식별자에 연관된 별도의 스케줄링 메시지를 이용하여 상기 제 1 및 제 2 단말의 각각에게 제공되는, 단말간 통신 수행 방법.
  9. 제 1 항에 있어서,
    상기 제 2 단말이 상기 제 1 단말의 식별자에 연관된 스케줄링 메시지를 수신하는, 단말간 통신 수행 방법.
  10. 제 1 항에 있어서,
    상기 스케줄링 정보는 상기 제 1 단말의 임의 접속 과정을 통하여 상기 기지국으로부터 상기 제 1 단말에게 전송되는, 단말간 통신 수행 방법.
  11. 제 1 항에 있어서,
    상기 스케줄링 정보는, 상기 제 1 단말로부터 상기 기지국으로의 전송에 대한 전송전력제어명령과 상기 제 1 단말로부터 상기 제 2 단말로의 전송에 대한 전송전력제어명령을 구분하여 포함하는, 단말간 통신 수행 방법.
  12. 제 1 항에 있어서,
    상기 제 2 단말이 상기 제 1 단말로부터의 신호의 수신 전력을 상기 기지국에게 보고하는 경우, 상기 제 1 단말로부터의 상기 신호의 전송 전력은, 상기 기지국이 상위계층 시그널링을 통해 미리 지정한 고정된 값 또는 상기 기지국이 절대값으로 지시하는 값에 따르는, 단말간 통신 수행 방법.
  13. 제 12 항에 있어서,
    상기 제 1 단말로부터의 상기 신호의 전송 전력을 상기 제 1 단말이 상기 기지국에게 주기적 또는 비주기적으로 보고하는, 단말간 통신 수행 방법.
  14. 무선 통신 시스템에서 제 2 단말과의 단말간 통신을 수행하는 제 1 단말로서,
    외부로 신호를 전송하는 송신 모듈;
    외부로부터 신호를 수신하는 수신 모듈; 및
    상기 수신 모듈 및 전송 모듈을 포함하는 상기 제 1 단말을 제어하는 프로세서를 포함하고;
    상기 프로세서는,
    상기 수신 모듈을 통하여 기지국으로부터 상기 단말간 통신을 위한 자원을 할당하는 정보를 포함하는 스케줄링 정보를 수신하고;
    상기 스케줄링 정보에 기초하여 상기 송신 모듈 또는 상기 수신 모듈 중 하나 이상을 통하여 상기 제 2 단말과 통신을 수행하도록 구성되며;
    상기 단말간 통신을 위한 자원 중 서브프레임의 제 1 슬롯은 상기 단말간 통신을 위한 제어 신호를 포함하고, 상기 서브프레임의 제 2 슬롯은 상기 단말간의 데이터 신호를 포함하는, 단말간 통신 수행 단말.
PCT/KR2011/009421 2010-12-07 2011-12-07 무선 통신 시스템에서 단말 간의 통신 방법 및 장치 WO2012077971A2 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/988,708 US9185700B2 (en) 2010-12-07 2011-12-07 Method and device for communication between terminals in wireless communication system
EP11847214.1A EP2651047B1 (en) 2010-12-07 2011-12-07 Method and device for communication between terminals in wireless communication system
KR1020137012688A KR101955516B1 (ko) 2010-12-07 2011-12-07 무선 통신 시스템에서 단말 간의 통신 방법 및 장치
US14/919,348 US9462585B2 (en) 2010-12-07 2015-10-21 Method and device for communication between terminals in wireless communication system
US15/253,302 US9888473B2 (en) 2010-12-07 2016-08-31 Method and device for communication between terminals in wireless communication system

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
US42032210P 2010-12-07 2010-12-07
US61/420,322 2010-12-07
US201061427097P 2010-12-23 2010-12-23
US61/427,097 2010-12-23
US201161451077P 2011-03-09 2011-03-09
US61/451,077 2011-03-09
US201161475644P 2011-04-14 2011-04-14
US61/475,644 2011-04-14
US201161490601P 2011-05-27 2011-05-27
US61/490,601 2011-05-27
US201161492354P 2011-06-01 2011-06-01
US61/492,354 2011-06-01

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/988,708 A-371-Of-International US9185700B2 (en) 2010-12-07 2011-12-07 Method and device for communication between terminals in wireless communication system
US14/919,348 Continuation US9462585B2 (en) 2010-12-07 2015-10-21 Method and device for communication between terminals in wireless communication system

Publications (2)

Publication Number Publication Date
WO2012077971A2 true WO2012077971A2 (ko) 2012-06-14
WO2012077971A3 WO2012077971A3 (ko) 2012-10-04

Family

ID=46207598

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/009421 WO2012077971A2 (ko) 2010-12-07 2011-12-07 무선 통신 시스템에서 단말 간의 통신 방법 및 장치

Country Status (4)

Country Link
US (3) US9185700B2 (ko)
EP (1) EP2651047B1 (ko)
KR (1) KR101955516B1 (ko)
WO (1) WO2012077971A2 (ko)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014007509A1 (ko) * 2012-07-02 2014-01-09 한국전자통신연구원 자원 할당 장치 및 방법
KR20140006720A (ko) * 2012-07-02 2014-01-16 한국전자통신연구원 자원 할당 장치 및 방법
WO2014092497A1 (en) * 2012-12-14 2014-06-19 Lg Electronics Inc. Method and apparatus for supporting transmission efficiency in a wireless communication system
WO2014163335A1 (ko) * 2013-04-01 2014-10-09 엘지전자 주식회사 무선 통신 시스템에서 d2d(device-to-device) 통신을 위한 멀티미디어 방송/멀티캐스트 서비스 방법 및 이를 위한 장치
WO2015005742A1 (ko) * 2013-07-12 2015-01-15 엘지전자 주식회사 무선 통신 시스템에서 신호 전송 방법 및 장치
WO2015102445A1 (ko) * 2014-01-05 2015-07-09 엘지전자 주식회사 근접 서비스 기반의 그룹 통신을 중계하는 방법 및 사용자 장치
WO2015160167A1 (ko) * 2014-04-14 2015-10-22 엘지전자 주식회사 무선 통신 시스템에서 단말 간 직접 통신을 위한 동기 신호 전송 방법 및 이를 위한 장치
WO2015190795A1 (ko) * 2014-06-10 2015-12-17 엘지전자 주식회사 무선 통신 시스템에서 단말 간 직접 통신을 위한 타이밍 어드밴스를 제어하는 방법 및 이를 위한 장치
WO2016043513A1 (ko) * 2014-09-16 2016-03-24 엘지전자 주식회사 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
EP3041312A4 (en) * 2013-08-27 2016-08-24 Hytera Comm Corp Ltd COMMUNICATION CONSTRUCTION PROCESS, MOBILE STATION AND TRANSMISSION DEVICE BASED ON THE TRANSFER MODE
WO2017034237A1 (ko) * 2015-08-21 2017-03-02 엘지전자 주식회사 무선 통신 시스템에서 채널 엑세스 방법 및 이를 수행하는 장치
KR101761040B1 (ko) 2013-02-26 2017-07-24 퀄컴 인코포레이티드 피어 발견 및 레거시 lte 트래픽의 공존을 위한 리소스 할당
WO2019192405A1 (zh) * 2018-04-02 2019-10-10 中兴通讯股份有限公司 上行信号的发送、接收方法及装置、存储介质、电子设备
US11924767B2 (en) 2019-08-08 2024-03-05 Qualcomm Incorporated Sidelink closed-loop transmit power control command processing

Families Citing this family (107)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2620026B1 (en) * 2010-09-21 2020-08-19 Telefonaktiebolaget LM Ericsson (publ) Relaying in mixed licensed and unlicensed carrier aggregation
US9185700B2 (en) * 2010-12-07 2015-11-10 Lg Electronics Inc. Method and device for communication between terminals in wireless communication system
GB2488513B (en) * 2011-02-04 2015-06-24 Sca Ipla Holdings Inc Telecommunication method and systen
US9282556B2 (en) * 2011-02-15 2016-03-08 Kyocera Corporation Base station and communication method thereof
WO2012136253A1 (en) * 2011-04-06 2012-10-11 Nokia Siemens Networks Oy Dual in-band/out-band radio access system field
KR101948801B1 (ko) * 2011-04-11 2019-02-18 삼성전자주식회사 Mbms 지원 사용자 장치의 데이터 수신 방법 및 장치
US9668251B2 (en) * 2011-04-20 2017-05-30 Lg Electronics Inc. Method and apparatus for transmission of signal from device to device in a wireless communication system
CN103563459A (zh) * 2011-04-27 2014-02-05 诺基亚西门子网络公司 用于使用ofdma与多个用户设备通信的装置和方法
EP2706677B1 (en) 2011-05-03 2016-08-10 Samsung Electronics Co., Ltd. Method and apparatus for user equipment receiving mbms service processing semi-permanent scheduling from mbsfn subframe in wireless communication system
US9699771B2 (en) * 2011-05-04 2017-07-04 Lg Electronics Inc. Method for enabling terminal to transmit ACK/NACK response in wireless communication system and apparatus therefor
US8792924B2 (en) * 2011-05-06 2014-07-29 Futurewei Technologies, Inc. System and method for multi-cell access
EP2730104B1 (en) * 2011-07-06 2019-10-09 Nokia Solutions and Networks Oy Dm rs based downlink lte physical layer
US8395985B2 (en) 2011-07-25 2013-03-12 Ofinno Technologies, Llc Time alignment in multicarrier OFDM network
US9723496B2 (en) * 2011-11-04 2017-08-01 Qualcomm Incorporated Method and apparatus for interference cancellation by a user equipment using blind detection
GB2493224B (en) * 2011-11-07 2013-07-03 Renesas Mobile Corp Wireless communication network
US10588101B2 (en) * 2012-01-06 2020-03-10 Qualcomm Incorporated Long term evoluton (LTE) user equipment relays having a licensed wireless or wired backhaul link and an unlicensed access link
US9237537B2 (en) 2012-01-25 2016-01-12 Ofinno Technologies, Llc Random access process in a multicarrier base station and wireless device
EP3937551A3 (en) 2012-01-25 2022-02-09 Comcast Cable Communications, LLC Random access channel in multicarrier wireless communications with timing advance groups
US8964780B2 (en) 2012-01-25 2015-02-24 Ofinno Technologies, Llc Sounding in multicarrier wireless communications
WO2013110218A1 (en) * 2012-01-29 2013-08-01 Alcatel Lucent A high interference indicator for time division duplex wireless communication systems
WO2013151651A1 (en) 2012-04-01 2013-10-10 Dinan Esmael Hejazi Cell group configuration in a wireless device and base station with timing advance groups
US8964590B2 (en) 2012-04-01 2015-02-24 Ofinno Technologies, Llc Random access mechanism for a wireless device and base station
US11943813B2 (en) 2012-04-01 2024-03-26 Comcast Cable Communications, Llc Cell grouping for wireless communications
US8971280B2 (en) 2012-04-20 2015-03-03 Ofinno Technologies, Llc Uplink transmissions in a wireless device
EP3337079B1 (en) 2012-04-16 2024-06-05 Comcast Cable Communications, LLC Cell group configuration for uplink transmission in a multicarrier wireless device and base station with timing advance groups
US11252679B2 (en) 2012-04-16 2022-02-15 Comcast Cable Communications, Llc Signal transmission power adjustment in a wireless device
US11582704B2 (en) 2012-04-16 2023-02-14 Comcast Cable Communications, Llc Signal transmission power adjustment in a wireless device
US8958342B2 (en) 2012-04-17 2015-02-17 Ofinno Technologies, Llc Uplink transmission power in a multicarrier wireless device
US8964593B2 (en) 2012-04-16 2015-02-24 Ofinno Technologies, Llc Wireless device transmission power
US11825419B2 (en) 2012-04-16 2023-11-21 Comcast Cable Communications, Llc Cell timing in a wireless device and base station
WO2013183946A1 (ko) * 2012-06-05 2013-12-12 엘지전자 주식회사 채널 상태 정보를 보고하는 방법 및 장치
US9113387B2 (en) 2012-06-20 2015-08-18 Ofinno Technologies, Llc Handover signalling in wireless networks
US9210619B2 (en) 2012-06-20 2015-12-08 Ofinno Technologies, Llc Signalling mechanisms for wireless device handover
US11622372B2 (en) 2012-06-18 2023-04-04 Comcast Cable Communications, Llc Communication device
US11882560B2 (en) 2012-06-18 2024-01-23 Comcast Cable Communications, Llc Carrier grouping in multicarrier wireless networks
US9179457B2 (en) 2012-06-20 2015-11-03 Ofinno Technologies, Llc Carrier configuration in wireless networks
US9084228B2 (en) 2012-06-20 2015-07-14 Ofinno Technologies, Llc Automobile communication device
US8971298B2 (en) 2012-06-18 2015-03-03 Ofinno Technologies, Llc Wireless device connection to an application server
US9107206B2 (en) 2012-06-18 2015-08-11 Ofinne Technologies, LLC Carrier grouping in multicarrier wireless networks
EP2875666B1 (en) 2012-07-20 2019-01-30 LG Electronics Inc. Method and apparatus for information on interference for device-to-device connection in wireless communication system
US8855134B2 (en) * 2012-07-25 2014-10-07 Qualcomm Incorporated Network-assisted peer discovery
US8867397B2 (en) * 2012-10-17 2014-10-21 Motorola Solutions, Inc. Method and apparatus for uplink power control in an orthogonal frequency division multiple access communication system
USRE49468E1 (en) * 2012-10-24 2023-03-21 Samsung Electronics Co., Ltd Method and apparatus for transmitting and receiving common channel information in wireless communication system
CN109905222A (zh) 2012-11-12 2019-06-18 华为技术有限公司 上报信道状态信息的方法、用户设备及基站
WO2015020736A1 (en) 2013-08-08 2015-02-12 Intel IP Corporation Method, apparatus and system for electrical downtilt adjustment in a multiple input multiple output system
US9326122B2 (en) 2013-08-08 2016-04-26 Intel IP Corporation User equipment and method for packet based device-to-device (D2D) discovery in an LTE network
US9661657B2 (en) * 2013-11-27 2017-05-23 Intel Corporation TCP traffic adaptation in wireless systems
PT3557784T (pt) 2013-12-04 2020-11-24 Ericsson Telefon Ab L M Encurtamento de subtramas de ligação ascendente em sistemas de duplexagem por divisão de tempo (tdd)
AU2013406839B2 (en) * 2013-12-04 2017-03-09 Telefonaktiebolaget Lm Ericsson (Publ) Downlink subframe shortening in time-division duplex (TDD) systems
CN105027466B (zh) * 2013-12-31 2019-07-09 华为技术有限公司 一种控制数据传输的方法、装置以及系统
WO2015115951A1 (en) * 2014-01-31 2015-08-06 Telefonaktiebolaget L M Ericsson (Publ) Radio node, communication devices and methods therein
TWI683557B (zh) 2014-01-31 2020-01-21 日商新力股份有限公司 通訊裝置及方法
GB201402308D0 (en) * 2014-02-11 2014-03-26 Nec Corp Communication system
GB2523328A (en) 2014-02-19 2015-08-26 Nec Corp Communication system
US10057906B2 (en) * 2014-02-28 2018-08-21 Lg Electronics Inc. Method and apparatus for generating signal for low latency in wireless communication system
KR102270540B1 (ko) * 2014-03-21 2021-06-29 삼성전자주식회사 기기간 통신을 위한 스케쥴링 방법 및 장치
US9609649B2 (en) * 2014-04-11 2017-03-28 Qualcomm Incorporated Adaptively using subframes for radar detection in unlicensed spectrum
KR102319182B1 (ko) * 2014-05-09 2021-10-29 삼성전자 주식회사 D2D(Device to Device)통신 단말의 통신 방법 및 장치
WO2015170937A1 (en) 2014-05-09 2015-11-12 Samsung Electronics Co., Ltd. Method and apparatus for performing communication by d2d communication terminal
US9967802B2 (en) 2014-06-13 2018-05-08 Qualcomm Incorporated Wireless communications over unlicensed radio frequency spectrum
EP2963989A1 (en) * 2014-07-04 2016-01-06 Sequans Communications S.A. LTE transmission in unlicensed bands
US9608690B2 (en) * 2014-07-17 2017-03-28 Qualcomm Incorporated Type 1 and type 2 hopping for device-to-device communications
US20160050667A1 (en) 2014-08-18 2016-02-18 Samsung Electronics Co., Ltd. Communication on licensed and unlicensed bands
JP6404453B2 (ja) * 2014-09-15 2018-10-10 インテル アイピー コーポレーション ミリ波キャリアアグリゲーションを用いる中継バックホーリングの装置、システムおよび方法
JP6619742B2 (ja) * 2014-09-26 2019-12-11 京セラ株式会社 基地局及びユーザ端末
US10305585B2 (en) 2014-10-07 2019-05-28 Lg Electronics Inc. Communication method and device in unlicensed band
WO2016064450A1 (en) * 2014-10-23 2016-04-28 Fujitsu Limited Device-to-device synchronization sequences
US10397954B2 (en) * 2014-11-06 2019-08-27 Lg Electronics Inc. Method for performing backoff in wireless connection system that supports unlicensed bands, and apparatus supporting same
ES2773918T3 (es) 2014-12-23 2020-07-15 Lg Electronics Inc Procedimiento para informar de información de estado de canal en un sistema de acceso inalámbrico que soporta bandas sin licencia, y aparato que soporta el mismo
US20180020441A1 (en) * 2015-01-25 2018-01-18 Titus Lo Collaborative transmission by mobile devices
CN107431591B (zh) * 2015-01-28 2020-09-25 交互数字专利控股公司 用于无授权频带中的lte的上行链路操作的方法和装置
JP2018050087A (ja) * 2015-01-29 2018-03-29 シャープ株式会社 端末装置、基地局装置、および通信方法
KR102320997B1 (ko) * 2015-03-31 2021-11-03 삼성전자 주식회사 이동통신 시스템에서 단말과 기지국 간 데이터 송수신 방법 및 장치
US10111216B2 (en) 2015-04-02 2018-10-23 Qualcomm Incorporated Reducing blind decoding in enhanced carrier aggregation
KR102442537B1 (ko) * 2015-06-30 2022-09-08 애플 인크. 디바이스 투 디바이스 통신을 위한 분산형 링크 스케줄링 기술
KR20220164064A (ko) * 2015-07-27 2022-12-12 애플 인크. 5g ciot(셀룰러 사물 인터넷)을 위한 향상된 rach(랜덤 액세스 채널) 설계
US10575334B2 (en) * 2015-08-13 2020-02-25 Electronics And Telecommunications Research Institute Method and apparatus for fast access and method of supporting fast access in communication system
KR102441529B1 (ko) * 2015-08-13 2022-09-08 한국전자통신연구원 통신 시스템에서의 빠른 접속 방법 및 장치, 그리고 빠른 접속 지원 방법
US11700641B2 (en) * 2015-08-19 2023-07-11 Lg Electronics Inc. Random access procedure performing method in wireless communication system, and apparatus therefor
WO2017061930A1 (en) 2015-10-05 2017-04-13 Telefonaktiebolaget Lm Ericsson (Publ) Methods, network nodes and devices for communicating at an unlicensed frequency spectrum
US20170231002A1 (en) * 2016-02-04 2017-08-10 Ofinno Technologies, Llc Random access procedure in a wireless network
US10117188B2 (en) * 2016-04-01 2018-10-30 Motorola Mobility Llc Method and apparatus for scheduling uplink transmissions with reduced latency
US10412620B2 (en) 2016-04-01 2019-09-10 Motorola Mobility Llc Method and apparatus for scheduling uplink transmissions with reduced latency
US10172156B2 (en) 2016-09-12 2019-01-01 Motorola Mobility Llc Method and apparatus for scheduling uplink transmissions with reduced latency
US10542503B2 (en) 2016-04-01 2020-01-21 Motorola Mobility Llc Method and apparatus for scheduling uplink transmissions with reduced latency
US10069613B2 (en) 2016-04-01 2018-09-04 Motorola Mobility Llc Method and apparatus for scheduling uplink transmissions with reduced latency
US10277367B2 (en) 2016-04-01 2019-04-30 Motorola Mobility Llc Method and apparatus for scheduling uplink transmissions with reduced latency
EP3440888B1 (en) * 2016-04-07 2021-07-14 Telefonaktiebolaget LM Ericsson (publ) Radio-network node, wireless device and methods performed therein
WO2017175938A1 (ko) * 2016-04-07 2017-10-12 엘지전자 주식회사 무선 통신 시스템에서 셀 순환 하향링크 송신 방법 및 이를 위한 장치
US10200991B2 (en) * 2016-04-25 2019-02-05 Ofinno Technologies, Llc Scheduling request process in a wireless device and wireless network
CN109792328B (zh) * 2016-08-11 2021-08-24 松下电器(美国)知识产权公司 基站,终端和通信方法
US10708938B2 (en) * 2016-10-31 2020-07-07 Samsung Electronics Co., Ltd. Transmission of UL control channels with dynamic structures
US10357829B2 (en) * 2017-03-02 2019-07-23 Velo3D, Inc. Three-dimensional printing of three-dimensional objects
US10397052B2 (en) 2017-08-10 2019-08-27 At&T Intellectual Property I, L.P. Adapting demodulation reference signal configuration in networks using massive MIMO
US10674518B2 (en) * 2017-12-27 2020-06-02 Comcast Cable Communications, Llc Dynamic management of interference and coverage in wireless communications
WO2019138658A1 (ja) 2018-01-11 2019-07-18 ソニー株式会社 端末装置、基地局装置及び方法
EP3769855B1 (en) 2018-03-20 2024-03-13 Musashi Engineering, Inc. Liquid material ejecting apparatus
US11057957B2 (en) 2018-10-09 2021-07-06 Cable Television Laboratories, Inc. Systems and methods for joint wireless transmission and joint wireless reception
CN111585732B (zh) 2019-02-15 2022-02-25 华为技术有限公司 通信方法和通信设备
WO2020172022A1 (en) 2019-02-21 2020-08-27 Google Llc User-equipment-coordination set for a wireless network using an unlicensed frequency band
US10893572B2 (en) 2019-05-22 2021-01-12 Google Llc User-equipment-coordination set for disengaged mode
WO2021015774A1 (en) 2019-07-25 2021-01-28 Google Llc User-equipment-coordination-set regrouping
US11350439B2 (en) 2019-08-13 2022-05-31 Google Llc User-equipment-coordination-set control aggregation
CN118100993A (zh) * 2019-09-19 2024-05-28 谷歌有限责任公司 用户设备协调集合选择性参加的方法和用户设备
US20230413259A1 (en) * 2020-11-02 2023-12-21 Beijing Xiaomi Mobile Software Co., Ltd. Indication information-based method and device for transmitting uncontrolled channel grant data
FR3119027B1 (fr) * 2021-01-19 2022-12-30 Thales Sa Radar à antenne active à couverture angulaire élargie
US11937185B2 (en) * 2021-08-26 2024-03-19 Qualcomm Incorporated Shared transmit power control for uplink shared and control channels

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4739354B2 (ja) * 2006-01-23 2011-08-03 シャープ株式会社 基地局装置、移動局装置、移動局識別情報割り当て方法、プログラム及び記録媒体
US8432786B2 (en) * 2007-07-10 2013-04-30 Qualcomm Incorporated Control channel design to support one-to-one, many-to-one, and one-to-many peer-to-peer communications
WO2009020110A1 (ja) * 2007-08-07 2009-02-12 Sharp Kabushiki Kaisha 基地局装置、端末装置および通信システム
JP5142379B2 (ja) * 2008-03-19 2013-02-13 パナソニック株式会社 移動局装置及び基地局装置、並びに無線通信システムの通信制御方法
WO2009138820A1 (en) * 2008-05-15 2009-11-19 Nokia Corporation Methods, apparatuses and computer program products for providing coordination of device to device communication
US8447236B2 (en) * 2008-05-15 2013-05-21 Qualcomm Incorporated Spatial interference mitigation schemes for wireless communication
US8554200B2 (en) * 2008-09-12 2013-10-08 Nokia Corporation Method and apparatus for providing interference measurements for device to-device communication
WO2010039003A2 (ko) 2008-10-01 2010-04-08 엘지전자주식회사 무선통신 시스템에서 중계기를 위한 무선 자원 할당 방법 및 장치
TWI491291B (zh) * 2008-10-20 2015-07-01 Interdigital Patent Holdings 載波聚合控制頻道信令及獲得
US20100120442A1 (en) * 2008-11-12 2010-05-13 Motorola, Inc. Resource sharing in relay operations within wireless communication systems
US8886113B2 (en) * 2008-12-30 2014-11-11 Qualcomm Incorporated Centralized control of relay operation
JP5189046B2 (ja) * 2009-01-21 2013-04-24 株式会社エヌ・ティ・ティ・ドコモ 無線通信制御方法、無線基地局装置及びユーザ装置
WO2010085054A2 (en) * 2009-01-21 2010-07-29 Lg Electronics Inc. Method of transmitting and receiving data in a wireless system
US8305972B2 (en) * 2009-01-27 2012-11-06 Motorola Solutions, Inc. Proactive scheduling methods and apparatus to enable peer-to-peer communication links in a wireless OFDMA system
CN112584476A (zh) * 2009-02-09 2021-03-30 交互数字专利控股公司 在wtru中进行上行链路功率控制的方法和wtru
WO2010093202A2 (ko) * 2009-02-13 2010-08-19 한국전자통신연구원 자원 분할에 기반한 릴레이 시스템
KR101482201B1 (ko) * 2009-04-07 2015-01-22 삼성전자주식회사 광대역 무선통신 시스템에서 피어 투 피어 통신 지원 장치 및 방법
US8787240B2 (en) * 2009-04-10 2014-07-22 Samsung Electronics Co., Ltd. Peer-to-peer communication protocol for relay enhanced cellular wireless communication systems
US9154352B2 (en) * 2009-04-21 2015-10-06 Qualcomm Incorporated Pre-communication for relay base stations in wireless communication
WO2010122419A2 (en) 2009-04-22 2010-10-28 Nokia Corporation Methods and apparatus for subframe splitting to obtain uplink feedback using relay nodes
CN101925129B (zh) * 2009-06-17 2016-04-13 夏普株式会社 下行控制信道格式配置方法
WO2011015250A1 (en) * 2009-08-07 2011-02-10 Nokia Siemens Networks Oy Scheduling in radio telecommunication system
EP2481182B1 (en) * 2009-09-25 2016-01-13 BlackBerry Limited System and method for multi-carrier network operation
US9763197B2 (en) * 2009-10-05 2017-09-12 Qualcomm Incorporated Component carrier power control in multi-carrier wireless network
KR101915271B1 (ko) * 2010-03-26 2018-11-06 삼성전자 주식회사 무선 통신 시스템에서 자원 할당을 위한 하향링크 제어 지시 방법 및 장치
US8774123B1 (en) * 2010-04-01 2014-07-08 Telefonaktiebolaget L M Ericsson (Publ) System and method for signaling control information in a mobile communication network
TW201204116A (en) * 2010-04-07 2012-01-16 Htc Corp Communication method
US8711789B2 (en) * 2010-08-19 2014-04-29 Motorola Mobility Llc Method and apparatus for providing contention-based resource zones in a wireless network
US9560682B2 (en) * 2010-11-05 2017-01-31 Qualcomm Incorporated Methods and apparatus for resource allocations to support peer-to-peer communications in cellular networks
US20120122472A1 (en) * 2010-11-12 2012-05-17 Motorola Mobility, Inc. Positioning Reference Signal Assistance Data Signaling for Enhanced Interference Coordination in a Wireless Communication Network
US8744458B2 (en) * 2010-11-19 2014-06-03 Nokia Corporation Signaling mixed resource allocations for D2D communications
US9185700B2 (en) * 2010-12-07 2015-11-10 Lg Electronics Inc. Method and device for communication between terminals in wireless communication system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None
See also references of EP2651047A4

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140006720A (ko) * 2012-07-02 2014-01-16 한국전자통신연구원 자원 할당 장치 및 방법
KR102091157B1 (ko) 2012-07-02 2020-03-19 한국전자통신연구원 자원 할당 장치 및 방법
WO2014007509A1 (ko) * 2012-07-02 2014-01-09 한국전자통신연구원 자원 할당 장치 및 방법
WO2014092497A1 (en) * 2012-12-14 2014-06-19 Lg Electronics Inc. Method and apparatus for supporting transmission efficiency in a wireless communication system
US9730204B2 (en) 2012-12-14 2017-08-08 Lg Electronics Inc. Method and apparatus for supporting transmission efficiency in a wireless communication system
KR101761040B1 (ko) 2013-02-26 2017-07-24 퀄컴 인코포레이티드 피어 발견 및 레거시 lte 트래픽의 공존을 위한 리소스 할당
WO2014163335A1 (ko) * 2013-04-01 2014-10-09 엘지전자 주식회사 무선 통신 시스템에서 d2d(device-to-device) 통신을 위한 멀티미디어 방송/멀티캐스트 서비스 방법 및 이를 위한 장치
CN105191177B (zh) * 2013-04-01 2018-09-11 Lg电子株式会社 用于无线通信系统中的装置至装置d2d通信的多媒体广播/多播服务方法和装置
KR101792515B1 (ko) * 2013-04-01 2017-11-02 엘지전자 주식회사 무선 통신 시스템에서 d2d(device-to-device) 통신을 위한 멀티미디어 방송/멀티캐스트 서비스 방법 및 이를 위한 장치
US9756609B2 (en) 2013-04-01 2017-09-05 Lg Electronics Inc. Multimedia broadcast/multicast service method and apparatus for device-to-device (D2D) communication in wireless communication system
CN105191177A (zh) * 2013-04-01 2015-12-23 Lg电子株式会社 用于无线通信系统中的装置至装置d2d通信的多媒体广播/多播服务方法和装置
CN105379133A (zh) * 2013-07-12 2016-03-02 Lg电子株式会社 用于在无线通信系统中发送信号的方法和设备
US9713124B2 (en) 2013-07-12 2017-07-18 Lg Electronics Inc. Method and apparatus for transmitting signal in wireless communication system
WO2015005742A1 (ko) * 2013-07-12 2015-01-15 엘지전자 주식회사 무선 통신 시스템에서 신호 전송 방법 및 장치
US10292154B2 (en) 2013-08-27 2019-05-14 Hytera Communications Corporation Limited Communication establishment method, mobile station and transfer device based on transfer mode
EP3041312A4 (en) * 2013-08-27 2016-08-24 Hytera Comm Corp Ltd COMMUNICATION CONSTRUCTION PROCESS, MOBILE STATION AND TRANSMISSION DEVICE BASED ON THE TRANSFER MODE
WO2015102445A1 (ko) * 2014-01-05 2015-07-09 엘지전자 주식회사 근접 서비스 기반의 그룹 통신을 중계하는 방법 및 사용자 장치
CN105874825A (zh) * 2014-01-05 2016-08-17 Lg电子株式会社 用于中继基于邻近服务的组通信的方法和用户设备
US10149099B2 (en) 2014-01-05 2018-12-04 Lg Electronics Inc. Method and user equipment for relaying proximity service-based group communication
CN105874825B (zh) * 2014-01-05 2019-06-11 Lg电子株式会社 用于中继基于邻近服务的组通信的方法和用户设备
WO2015160167A1 (ko) * 2014-04-14 2015-10-22 엘지전자 주식회사 무선 통신 시스템에서 단말 간 직접 통신을 위한 동기 신호 전송 방법 및 이를 위한 장치
KR102352395B1 (ko) 2014-04-14 2022-01-18 엘지전자 주식회사 무선 통신 시스템에서 단말 간 직접 통신을 위한 동기 신호 전송 방법 및 이를 위한 장치
US10225812B2 (en) 2014-04-14 2019-03-05 Lg Electronics Inc. Method for transmitting synchronization signal for direct device-to-device communication in wireless communication system, and apparatus therefor
KR20160144984A (ko) * 2014-04-14 2016-12-19 엘지전자 주식회사 무선 통신 시스템에서 단말 간 직접 통신을 위한 동기 신호 전송 방법 및 이를 위한 장치
CN106416392A (zh) * 2014-06-10 2017-02-15 Lg电子株式会社 无线通信系统中控制用于终端之间的直接通信的定时提前的方法及其设备
WO2015190795A1 (ko) * 2014-06-10 2015-12-17 엘지전자 주식회사 무선 통신 시스템에서 단말 간 직접 통신을 위한 타이밍 어드밴스를 제어하는 방법 및 이를 위한 장치
CN106416392B (zh) * 2014-06-10 2020-02-07 Lg电子株式会社 无线通信系统中控制用于终端之间的直接通信的定时提前的方法及其设备
US10306570B2 (en) 2014-06-10 2019-05-28 Lg Electronics Inc. Method for controlling timing advance for direct communication between terminals in wireless communication system, and apparatus therefor
WO2016043513A1 (ko) * 2014-09-16 2016-03-24 엘지전자 주식회사 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
US10342002B2 (en) 2014-09-16 2019-07-02 Lg Electronics Inc. Method and device for transmitting and receiving wireless signal in wireless communication system
US10560964B2 (en) 2015-08-21 2020-02-11 Lg Electronics Inc. Method for channel access in wireless communication system and apparatus for performing same
US10912119B2 (en) 2015-08-21 2021-02-02 Lg Electronics Inc. Method for channel access in wireless communication system and apparatus for performing same
CN112929984A (zh) * 2015-08-21 2021-06-08 Lg 电子株式会社 在无线通信系统中用于信道接入的方法和执行该方法的装置
WO2017034237A1 (ko) * 2015-08-21 2017-03-02 엘지전자 주식회사 무선 통신 시스템에서 채널 엑세스 방법 및 이를 수행하는 장치
US11464049B2 (en) 2015-08-21 2022-10-04 Lg Electronics Inc. Method for channel access in wireless communication system and apparatus for performing same
CN112929984B (zh) * 2015-08-21 2023-08-15 Lg 电子株式会社 在无线通信系统中用于信道接入的方法和执行该方法的装置
WO2019192405A1 (zh) * 2018-04-02 2019-10-10 中兴通讯股份有限公司 上行信号的发送、接收方法及装置、存储介质、电子设备
US11637667B2 (en) 2018-04-02 2023-04-25 Zte Corporation Method and apparatus for transmitting and receiving uplink signal, storage medium, and electronic device
US11924767B2 (en) 2019-08-08 2024-03-05 Qualcomm Incorporated Sidelink closed-loop transmit power control command processing

Also Published As

Publication number Publication date
US20130329711A1 (en) 2013-12-12
US20170006605A1 (en) 2017-01-05
US9185700B2 (en) 2015-11-10
KR101955516B1 (ko) 2019-03-07
US9462585B2 (en) 2016-10-04
EP2651047A2 (en) 2013-10-16
US9888473B2 (en) 2018-02-06
US20160088620A1 (en) 2016-03-24
WO2012077971A3 (ko) 2012-10-04
KR20130137643A (ko) 2013-12-17
EP2651047A4 (en) 2014-05-07
EP2651047B1 (en) 2017-08-30

Similar Documents

Publication Publication Date Title
WO2012077971A2 (ko) 무선 통신 시스템에서 단말 간의 통신 방법 및 장치
WO2012070914A2 (ko) 무선 통신 시스템에서 제어 채널 및 데이터 채널 전송 방법 및 장치
WO2017010761A1 (ko) 무선 통신 시스템에서 데이터를 송수신하기 위한 방법 및 장치
WO2016200137A1 (ko) 무선 통신 시스템에서 데이터를 송수신하기 위한 방법 및 장치
WO2019216599A1 (ko) 고신뢰 및 저지연 통신을 위한 신호의 송수신 방법
WO2018062937A1 (ko) 무선 통신 시스템에서의 데이터 송수신 방법 및 이를 위한 장치
WO2016163721A1 (ko) 단말간 통신을 지원하는 무선 통신 시스템에서 데이터를 송수신하기 위한 방법 및 장치
WO2018128297A1 (ko) 측정 정보를 보고하는 방법 및 이를 위한 단말
WO2017034340A1 (ko) 무선 통신 시스템에서 자원 할당 방법 및 이를 위한 장치
WO2012064117A9 (ko) 무선 통신 시스템에서 셀간 간섭 조정에 대한 하향링크 제어 채널의 송수신 방법 및 장치
WO2017052193A1 (ko) 비면허 대역에서 데이터를 송수신하는 방법 및 이를 위한 장치
WO2012070823A2 (ko) 무선 통신 시스템에서 하향링크 측정 방법 및 장치
WO2018147700A1 (ko) 무선 통신 시스템에서 단말과 복수의 trp (transmission and reception point)를 포함하는 기지국의 신호 송수신 방법 및 이를 위한 장치
WO2016043523A1 (ko) 반송파 집성 기법을 지원하는 무선 통신 시스템에서 단말이 기지국과 신호를 송수신하는 방법 및 장치
WO2017078464A1 (ko) 무선 통신 시스템에서 하향링크 데이터 송수신 방법 및 이를 위한 장치
WO2017030412A1 (ko) 무선 통신 시스템에서의 랜덤 액세스 절차 수행 방법 및 이를 위한 장치
WO2016122197A1 (ko) 상향링크 신호를 전송하기 위한 방법 및 이를 위한 장치
WO2012067448A2 (ko) 무선 통신 시스템에서 하향링크제어채널을 송수신하는 방법 및 장치
WO2012128505A2 (ko) 장치-대-장치 통신 방법 및 장치
WO2017123045A1 (en) Method and apparatus for supporting multiple services in wireless communication systems
WO2018182358A1 (ko) 무선 통신 시스템에서 참조 신호를 송수신하기 위한 방법 및 이를 위한 장치
WO2012099412A2 (ko) 무선 통신 시스템에서 중계기의 상향링크 신호 전송 방법 및 장치
WO2016064169A2 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 이를 위한 장치
WO2011052964A2 (en) Method for transmitting and receiving signal of relay in radio communication system supporting multiple carriers
WO2016163802A1 (ko) 비면허 대역을 지원하는 무선접속시스템에서 cca를 수행하는 방법 및 이를 지원하는 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11847214

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 20137012688

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011847214

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011847214

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13988708

Country of ref document: US