WO2012077220A1 - Variable valve gear for internal combustion engine - Google Patents

Variable valve gear for internal combustion engine Download PDF

Info

Publication number
WO2012077220A1
WO2012077220A1 PCT/JP2010/072175 JP2010072175W WO2012077220A1 WO 2012077220 A1 WO2012077220 A1 WO 2012077220A1 JP 2010072175 W JP2010072175 W JP 2010072175W WO 2012077220 A1 WO2012077220 A1 WO 2012077220A1
Authority
WO
WIPO (PCT)
Prior art keywords
release
chamber
oil
holding mechanism
oil passage
Prior art date
Application number
PCT/JP2010/072175
Other languages
French (fr)
Japanese (ja)
Inventor
横山 友
治仁 藤村
Original Assignee
トヨタ自動車 株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車 株式会社 filed Critical トヨタ自動車 株式会社
Priority to JP2012516429A priority Critical patent/JP5282850B2/en
Priority to PCT/JP2010/072175 priority patent/WO2012077220A1/en
Publication of WO2012077220A1 publication Critical patent/WO2012077220A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force

Definitions

  • the present invention includes a variable mechanism that changes the valve timing, a holding mechanism that holds the valve timing at a specific time, and an oil passage control unit that controls the supply and discharge states of hydraulic oil to and from the oil chambers of the variable mechanism and the holding mechanism.
  • the present invention relates to a variable valve operating apparatus for an internal combustion engine including a hydraulic mechanism.
  • variable valve operating device As a device mounted on an internal combustion engine, there is known a variable valve operating device provided with a variable mechanism that changes the valve timing of a valve that is driven to open and close by a camshaft according to an operating state (see, for example, Patent Document 1).
  • FIG. 11A shows the configuration of a conventional general variable mechanism including the variable mechanism described in Patent Document 1.
  • FIG. 11A shows the internal structure of the variable mechanism 100 when the sprocket 101 side is viewed from the cover side with the cover of the variable mechanism 100 removed.
  • the rotation direction of the cam shaft (not shown) is indicated by an arrow RA.
  • a variable mechanism 100 shown in FIG. 11 includes, as two rotating bodies rotating around the same rotating shaft, a sprocket 101 drivingly connected to a crankshaft (not shown), a housing 102 fixed thereto, and a camshaft. And a vane rotor 103 that is drivingly connected.
  • Each vane 103 ⁇ / b> A of the vane rotor 103 is disposed in a storage chamber 105 formed inside the housing 102.
  • the storage chamber 105 is divided into an advance chamber 106 and a retard chamber 107 by a vane 103A.
  • the vane 103A is displaced in the storage chamber 105 by the hydraulic pressure supplied to the advance chamber 106 and the retard chamber 107, and the housing 102 and the vane rotor 103 described above rotate relative to each other, whereby the cam shaft relative to the crankshaft rotates.
  • the phase in other words, the valve timing is changed.
  • variable mechanism 100 is provided with a holding mechanism 110 that holds the valve timing at a specific time.
  • the holding mechanism 110 includes a pin 111 provided on the vane 103A and a recess 112 formed on the sprocket 101 so that the pin 111 is inserted or removed.
  • the pin 111 is urged in a direction to be fitted into the recess 112 by the spring 113, and is urged in a direction to be removed from the recess 112 by the pressure of the hydraulic oil supplied to the release chamber 114.
  • variable valve operating apparatus when the holding mechanism is in the locked state, the release chamber is opened through the release oil passage, so that hydraulic oil is discharged from the release chamber and the release oil passage. In some cases, there is almost no hydraulic oil. And when there is almost no hydraulic oil in the release chamber and the release oil passage in this way, even if supply of hydraulic oil to the release chamber is started to switch the holding mechanism from the locked state to the release state, the release chamber and the release oil The biasing force based on the pressure of the hydraulic oil does not act on the pin until the path is in an oil tight state filled with the hydraulic oil.
  • the present invention has been made in view of such circumstances, and an object of the present invention is an internal combustion engine capable of improving responsiveness when a holding mechanism that holds a valve timing at a specific time is switched from a locked state to a released state.
  • the object is to provide a variable valve gear.
  • a variable valve operating apparatus for an internal combustion engine includes a first rotating body drivingly connected to a crankshaft, a driving shaft connected to a camshaft, and the same as the first rotating body.
  • a second rotating body that rotates around the rotation axis of the first rotating body, and an advance chamber and a retard chamber that are defined by the first rotating body and the second rotating body,
  • a variable mechanism that changes the valve timing of the valve that is driven to open and close by the camshaft by relatively rotating each rotating body by hydraulic pressure that is selectively supplied to the retard chamber;
  • a pin provided on one side, a recess provided on the other of the rotating bodies and into which the pin fits, a biasing member for biasing the pin in a direction to fit into the recess, and the pin serving as the recess
  • a supply oil passage that supplies the control oil to the advance chamber and the retard chamber from the oil passage control portion and the oil passage control portion; From the road controller to the release chamber Comprising a release oil passage for supplying hydraulic oil, and a communicating oil passage for supplying the oil supply passage and said release oil passage and a small hydraulic pressure of the hydraulic fluid from the release oil pressure communicates with the release chamber.
  • the release chamber is supplied with hydraulic oil having a lower hydraulic pressure than the release hydraulic pressure from the supply oil passage through the communication oil passage. For this reason, it is possible to increase the amount of hydraulic oil remaining in the release oil passage and the release chamber while maintaining the holding mechanism in the locked state. Therefore, when the release condition for switching the holding mechanism from the locked state to the released state is satisfied and hydraulic oil starts to be supplied from the oil passage control unit to the release chamber via the release oil passage, the release chamber quickly becomes oil-tight. The hydraulic pressure in the release chamber rises quickly. When the release condition of the holding mechanism is satisfied in this way, the hydraulic pressure in the release chamber can be quickly increased, so that the responsiveness when switching the holding mechanism from the locked state to the released state can be improved. .
  • the said communicating oil path connects the part from the said hydraulic oil supply source to the said oil path control part in the said supply oil path, and the said cancellation
  • the hydraulic pressure of the hydraulic oil in the part of the supply oil path from the oil path control unit to the advance chamber or retard chamber is advanced, retarded, or kept at the current timing. It depends on the valve timing control request such as whether or not.
  • the hydraulic pressure of the hydraulic oil in the part from the hydraulic oil supply source to the oil path control unit in the supply oil path does not depend on the control timing of such valve timing,
  • the hydraulic oil can be stably supplied to the release oil passage and the release chamber. For this reason, according to the structure mentioned above, hydraulic fluid can remain suitably in the inside of a cancellation
  • the holding mechanism includes a first holding mechanism that restricts the valve timing from changing to the advance side with respect to the specific time, and a first holding mechanism that restricts the valve timing from changing to the retard side from the specific time. 2 holding mechanism, and the first holding mechanism and the second holding mechanism cooperate to set the valve timing to the specific time which is an intermediate time between the most advanced timing and the most retarded timing.
  • the release oil passage is a first release chamber provided in the first holding mechanism as the release chamber and a second release provided in the second holding mechanism as the release chamber. It is preferable to supply hydraulic oil to both the chamber.
  • the first holding mechanism and the second holding mechanism cooperate to hold the valve timing at a specific timing which is an intermediate timing between the most advanced timing and the most retarded timing.
  • the pin can be easily pulled out of the recess when the holding mechanism is switched from the locked state to the released state as compared with a configuration in which the valve timing is held at a specific time by a single holding mechanism. That is, when the valve timing is about to change to the retard side due to the alternating torque acting on the camshaft, the pin of the first holding mechanism is easily pulled out of the recess. On the other hand, when the valve timing is about to change to the advance side due to the alternating torque acting on the camshaft, the pin of the second holding mechanism is easily pulled out of the recess.
  • the holding mechanism is a ratchet that advances the valve timing stepwise from a timing retarded from the specific timing to the specific timing by relatively rotating the rotating bodies with an alternating torque acting on the camshaft.
  • the holding mechanism further includes an atmospheric communication path that communicates the advance chamber and the retard chamber with the atmospheric space, and the pin opens the atmospheric communication path or It also serves as an on-off valve that shuts off, and it is preferable that the pin opens the atmosphere communication path as the hydraulic pressure in the release chamber decreases.
  • valve timing is not maintained at a specific time that is an intermediate time when the engine is stopped, the first rotating body and the second rotating body are stopped in a state where the valve timing is at the most retarded time.
  • an alternating torque acts on the camshaft, so the valve timing is advanced to a specific time through a ratchet type autonomous advance mechanism that uses the relative rotation of each rotating body.
  • the hydraulic oil is discharged from the advance chamber and the retard chamber after the engine is stopped, and the oil pressure of each oil chamber is It is desirable that is sufficiently lowered.
  • the holding mechanism further includes an atmospheric communication path that communicates the advance chamber and the retard chamber with the atmospheric space, and the pin opens the atmospheric communication path as the hydraulic pressure in the release chamber decreases. Accordingly, when the supply of hydraulic oil to the release chamber is stopped after the engine is stopped and each hydraulic pressure is reduced, the atmosphere is introduced into the advance chamber and the retard chamber through the atmosphere communication path. As a result, when the hydraulic oil is quickly discharged from the advance chamber and the retard chamber, the first rotating body and the second rotating body easily rotate relative to each other due to the alternating torque acting on the camshaft when the engine is started.
  • the valve timing can be rapidly advanced to a specific time.
  • an atmospheric communication passage that communicates the advance chamber and the retard chamber with the atmospheric space, an on-off valve that opens or closes the atmospheric communication passage, and a direction that blocks the atmospheric communication passage
  • An on-off valve oil chamber to which hydraulic oil for energizing the on-off valve is supplied, and an atmosphere release mechanism provided at a position different from the holding mechanism in the circumferential direction of the rotating shaft.
  • the release oil passage supplies hydraulic oil to the on-off valve oil chamber in addition to the release chamber.
  • valve timing is not maintained at a specific time that is an intermediate time when the engine is stopped, the first rotating body and the second rotating body are stopped in a state where the valve timing is at the most retarded time.
  • an alternating torque acts on the camshaft, so the valve timing is advanced to a specific time through a ratchet type autonomous advance mechanism that uses the relative rotation of each rotating body.
  • the hydraulic oil is discharged from the advance chamber and the retard chamber after the engine is stopped, and the oil pressure of each oil chamber is It is desirable that is sufficiently lowered.
  • the atmospheric communication passage that communicates the advance chamber and the retard chamber with the atmospheric space
  • the open / close valve that opens or closes the atmospheric communication passage
  • the open / close valve that biases the open / close valve in a direction that blocks the atmospheric communication passage.
  • an open / close valve oil chamber to which hydraulic oil is supplied.
  • the air release mechanism is provided at a position different from the holding mechanism in the circumferential direction of the rotation shaft. Therefore, when the supply of the hydraulic oil to the on-off valve oil chamber is stopped after the engine is stopped and the hydraulic pressure is lowered, the atmosphere is introduced into the advance chamber and the retard chamber through the atmosphere communication passage.
  • the release chamber of the air release mechanism since the release chamber of the air release mechanism is provided in addition to the release chamber of the holding mechanism described above, the total volume of the release chamber and the oil chamber for the open / close valve is In addition to the increase, since it is necessary to supply hydraulic oil from the release oil passage to the on-off valve oil chamber in addition to the release chamber, the volume of the release oil passage also increases. For this reason, when the release condition as described above is satisfied, a decrease in the responsiveness of the holding mechanism due to a small amount of hydraulic oil remaining in the release chamber and the release oil passage tends to become even more apparent. However, according to the above-described configuration, even when the variable valve operating apparatus has such a tendency, it is possible to improve the responsiveness when the holding mechanism is switched from the locked state to the released state.
  • FIG. 3 is a cross-sectional view showing a cross-sectional structure along the line AA in FIG. 2.
  • FIG. 3 is a cross-sectional view showing a cross-sectional structure along the line BB in FIG. 2. Schematic shown about the structure of the hydraulic-fluid channel
  • FIG. 3 schematically shows a cross-sectional structure taken along line BB in FIG. 2 on a plane, in which (a) to (d) show a valve timing from a most retarded timing to a specific timing when the engine is started. Sectional drawing which shows the process of advancing to the order.
  • FIG. 1 which shows the relationship between the supply / exhaust state of the hydraulic fluid in a variable valve operating apparatus, and each mode of an oil control valve, and the relationship between the state of a variable mechanism, a holding mechanism, and an air release mechanism, and each mode of an oil control valve.
  • A is an end view showing the internal structure of the variable mechanism of the prior art
  • (b) is a cross-sectional view showing a cross-sectional structure taken along line CC of (a).
  • FIG. 1 a crankshaft 12 that converts a reciprocating motion into a rotational motion is connected to a piston 11 that is accommodated in a cylinder of the internal combustion engine 10 so as to be able to reciprocate.
  • an intake camshaft 22 that opens and closes the intake valve 21 and an exhaust camshaft 24 that opens and closes the exhaust valve 23 are provided in the upper part of the internal combustion engine 10.
  • an oil pan 14 that stores hydraulic oil is attached to the lower part of the internal combustion engine 10, and an oil pump 13 that is driven by the rotational force of the crankshaft 12 to assemble the hydraulic oil of the oil pan 14 is provided.
  • This oil pump 13 functions as a hydraulic oil supply source.
  • the variable valve operating device 20 is provided at the tip of the camshaft 22 to change the valve timing of the intake valve 21 and a specific intermediate timing (hereinafter referred to as the most advanced timing). And a hydraulic mechanism 90 that controls the hydraulic pressure of each oil chamber provided in the variable valve operating apparatus 20.
  • the sprocket 31 of the variable mechanism 25 is drivingly connected to the crankshaft 12 through a timing chain (not shown).
  • the sprocket 31 is attached to the housing 32 so as to block one opening of the flat cylindrical housing 32 of the variable mechanism 25.
  • the cover 30 of the variable mechanism 25 is opposite to the side on which the sprocket 31 is provided.
  • the side housing 32 is provided so as to close the opening.
  • the hydraulic mechanism 90 includes an oil control valve (hereinafter referred to as “OCV”) 91 and a hydraulic oil passage 90A.
  • OCV oil control valve
  • the OCV 91 controls the supply / discharge state of the hydraulic oil to / from each oil chamber provided in the variable valve operating apparatus 20.
  • the hydraulic oil passage 90 ⁇ / b> A includes a plurality of oil passages that supply the hydraulic oil of the oil pan 14 to the oil chambers, and a plurality of oil passages that return the hydraulic oil from the oil chambers to the oil pan 14.
  • the internal combustion engine 10 is provided with various sensors for detecting the operating state of the internal combustion engine 10.
  • various sensors for detecting the operating state of the internal combustion engine 10.
  • a crank angle sensor 15 provided in the vicinity of the crankshaft 12 for detecting the crank angle and the engine rotational speed
  • a cam angle provided in the vicinity of the camshaft 22 for detecting the position of the camshaft 22.
  • sensors 16 and the like Signals output from these various sensors are taken into the ECU 17 that comprehensively controls various devices of the internal combustion engine 10.
  • ECU17 is provided with the memory
  • the ECU 17 detects the operating state of the internal combustion engine 10 based on output signals from various sensors and executes various controls. In such variable valve timing control, the valve timing of the intake valve 21 is controlled at a timing according to the engine operating state by appropriately changing the spool position (OCV stroke) of the OCV 91 based on the engine operating state. To do.
  • FIG. 2 shows the internal structure of the variable mechanism 25 when the cover 30 is viewed from the sprocket 31 side with the sprocket 31 removed.
  • the sprocket 31, the housing 32, and the cover 30 described above are fixed to each other by bolts (not shown) and rotate integrally around the rotation axis of the cam shaft 22.
  • the cover 30, the sprocket 31, and the housing 32 function as a first rotating body that is drivingly connected to the crankshaft 12.
  • the cam shaft 22 and the housing 32 are assumed to rotate in the rotation direction RA shown in FIG.
  • the housing 32 is provided with three partition portions 35 extending radially inward.
  • the housing 32 accommodates a vane rotor 33 that rotates about the same rotation axis as the housing 32 so as to be rotatable relative to the housing 32.
  • the vane rotor 33 includes a boss 33A coupled to the camshaft 22 so as to be integrally rotatable, and three vanes 33B projecting radially outward from the boss 33A.
  • the boss 33 ⁇ / b> A is fixed to the end of the cam shaft 22 by a center bolt 34.
  • Three compartments 36 are defined by the compartments 35 of the housing 32 and the bosses 33A of the vane rotor 33, and each compartment 36 is partitioned into an advance chamber 37 and a retard chamber 38 by the vanes 33B. ing.
  • the vane rotor 33 functions as a second rotating body that is drivingly connected to the cam shaft 22.
  • variable mechanism 25 is provided with a holding mechanism 26 that holds the valve timing at a specific time. This specific time is set so that the valve timing is suitable for starting the engine.
  • the holding mechanism 26 is provided in the advance angle holding mechanism 50 provided in one certain vane 33B (lower vane 33B in FIG. 2) and in another vane 33B (upper left vane 33B in FIG. 2). And a retard holding mechanism 70.
  • the advance angle holding mechanism 50 has a function of restricting relative rotation of the housing 32 and the vane rotor 33 in the direction in which the valve timing changes to the advance side with respect to the specific time.
  • the retard holding mechanism 70 has a function of restricting relative rotation of the housing 32 and the vane rotor 33 in a direction in which the valve timing is retarded from a specific timing.
  • the advance angle holding mechanism 50 and the retard angle holding mechanism 70 also function as a ratchet type autonomous advance angle mechanism that advances the valve timing stepwise from a timing that is behind the specific timing to a specific timing.
  • the valve timing is held at a specific time by the cooperation of the advance angle holding mechanism 50 and the retard angle holding mechanism 70.
  • the advance angle holding mechanism 50 is provided with an atmosphere release mechanism 60 that allows the advance chamber 37 and the retard chamber 38 to communicate with the atmospheric space.
  • the retard holding mechanism 70 is provided with an atmosphere release mechanism 80 that allows the advance chamber 37 and the retard chamber 38 to communicate with the atmospheric space.
  • the remaining one vane 33B (the upper right vane 33B in FIG. 2) where the advance angle holding mechanism 50 and the retard angle holding mechanism 70 are not provided is included in the advance angle chamber 37 and the retard angle chamber.
  • An air release mechanism 40 is provided for communicating the air with the air space.
  • the center bolt 34 incorporates the OCV 91 described above.
  • the variable mechanism 25 is provided with a plurality of oil passages extending in the radial direction of the vane rotor 33 from the OCV 91 to the oil chambers of the advance chamber 37, the retard chamber 38, the holding mechanism 26, and the atmosphere release mechanism 40. ing.
  • the advance oil passage 95 communicates the OCV 91 and the advance chamber 37.
  • the retard oil path 96 communicates the OCV 91 and the retard chamber 38.
  • the first release oil passage 97 ⁇ / b> A communicates the OCV 91 and the first release chamber 57 of the advance angle holding mechanism 50.
  • the second release oil passage 97 ⁇ / b> B communicates the OCV 91 and the second release chamber 77 of the retard holding mechanism 70.
  • the third release oil passage 97C communicates the OCV 91 and the third release chamber 44 of the atmosphere release mechanism 40.
  • the OCV 91 functions as an oil passage control unit that controls the supply / discharge state of hydraulic oil to the advance chamber 37, the retard chamber 38, and the release chambers 57, 77, and 44.
  • the configuration of the atmosphere release mechanism 40 will be described with reference to FIG.
  • the side where the cover 30 of the variable mechanism 25 is disposed in the axial direction of the cam shaft 22 is referred to as “front end side ZA”
  • the side where the sprocket 31 is disposed is referred to as “base end side ZB”.
  • the air release mechanism 40 is opened or closed by a bottomed cylindrical open / close pin 41 accommodated in a vane hole 33C formed in the vane 33B so as to extend in the axial direction of the cam shaft 22 and a open / close pin 41. And a third release chamber 44 into which hydraulic oil is supplied or discharged.
  • the open / close pin 41 reciprocates in the vane hole 33C to the distal end side ZA and the proximal end side ZB.
  • the opening / closing pin 41 divides the vane hole 33 ⁇ / b> C into a third release chamber 44 on the cover 30 side and a third spring chamber 45 on the sprocket 31 side.
  • the atmosphere communication path 42 includes a third spring chamber 45, an advance communication path 46, a retard communication path 47, and an atmosphere release path 48.
  • the third spring chamber 45 accommodates a third spring 43 that biases the open / close pin 41 toward the distal end side ZA.
  • the advance communication passage 46 communicates the third spring chamber 45 and the advance chamber 37.
  • the retard communication passage 47 communicates the third spring chamber 45 and the retard chamber 38.
  • the air release passage 48 communicates the third spring chamber 45 and the air space.
  • the hydraulic oil is supplied to or discharged from the third release chamber 44 through the third release oil passage 97C.
  • the opening / closing pin 41 is urged toward the base end side ZB by the urging force based on the hydraulic pressure in the third release chamber 44.
  • the outer peripheral surface of the open / close pin 41 in a state adjacent to the sprocket 31 closes the advance communication passage 46, the retard communication passage 47, and the air release passage 48, so that these passages are blocked from the third spring chamber 45.
  • the outer peripheral surface of the open / close pin 41 in a state adjacent to the cover 30 opens the advance communication passage 46, the retard communication passage 47, and the air release passage 48, so that these passages communicate with the third spring chamber 45.
  • the open / close pin 41 functions as an open / close valve that opens or closes the atmosphere communication path 42, and the third release chamber 44 operates to urge the open / close pin 41 in a direction to close the atmosphere communication path 42. It functions as an oil chamber for an on-off valve to which oil is supplied.
  • FIG. 4 shows the advance angle holding mechanism 50 on the left side and the retard angle holding mechanism 70 on the right side.
  • the advance holding mechanism 50 includes a first pin 51, a first recess 53 into which the first pin 51 is inserted or removed, and an urging member that urges the first pin 51 toward the distal end ZA.
  • a first spring 52 and a first release chamber 57 into which hydraulic oil is supplied or discharged are provided.
  • the first pin 51, the first spring 52, and the first release chamber 57 are all provided in the vane 33B.
  • the first recess 53 is formed in the cover 30.
  • the first pin 51 includes an outer pin 51A formed in a bottomed cylindrical shape, and a columnar inner pin 51B disposed inside the outer pin 51A while penetrating the bottom plate 51C of the outer pin 51A. .
  • the outer pin 51A reciprocates to the distal end side ZA and the proximal end side ZB in a vane hole 56 as a space formed in the vane 33B so as to extend in the axial direction of the cam shaft 22. That is, the outer pin 51A partitions the vane hole 56 into a first release chamber 57 on the cover 30 side and a first spring chamber 58 on the sprocket 31 side.
  • the inner pin 51B reciprocates in the vane hole 56 to the distal end side ZA and the proximal end side ZB, and further, the inner pin 51B protrudes outside the vane 33B in a state adjacent to the cover 30 and enters the first recess 53. Insert. Further, a flange-like stopper 51D is formed on the outer periphery of the inner pin 51B so as to protrude so as to abut or separate from the bottom plate 51C of the outer pin 51A.
  • the first recess 53 has an arc shape extending along the circumferential direction of the cover 30. Specifically, the bottom surface of the first recess 53 is stepped in the circumferential direction of the cover 30, that is, the first recess 53 includes a first upper step portion 54 formed with a relatively shallow depth, The first lower step portion 55 is formed with a relatively deep depth. The first upper stage portion 54 is located on the retard side with respect to the first lower stage portion 55.
  • the first spring chamber 58 accommodates a first spring 52 that biases the first pin 51 toward the distal end side ZA.
  • the first spring 52 is a general term for an outer spring 52A that biases the outer pin 51A toward the distal end ZA and an inner spring 52B that biases the inner pin 51B toward the distal end ZA.
  • the outer spring 52A and the inner spring 52B are arrange
  • hydraulic oil is supplied to the first release chamber 57 through the first release oil passage 97A (see FIG. 2).
  • the first pin 51 is urged toward the base end side ZB by a force based on the pressure of the hydraulic oil supplied to the first release chamber 57.
  • the first release hydraulic pressure P1 the first pin 51 is removed from the first recess 53.
  • the advance angle holding mechanism 50 further includes an atmosphere release mechanism 60 having an atmosphere communication path 62 that communicates the advance chamber 37 and the retard chamber 38 with the atmosphere space.
  • the atmosphere communication passage 62 includes the first spring chamber 58, the advance communication passage 66 that communicates the first spring chamber 58 and the advance chamber 37, the first spring chamber 58, and the retard chamber 38. Are formed by a retard communication passage 67 that communicates with each other, and an air release passage 68 that communicates the first spring chamber 58 with the atmospheric space.
  • the first pin 51 described above has a function of fitting or removing from the first recess 53, and also functions as an on-off valve that opens or shuts off the air communication path 62. That is, the first pin 51 is configured to close the advance communication passage 66, the retard communication passage 67, and the air release passage 68 at the outer peripheral surface when adjacent to the proximal end side ZB. Yes.
  • the retard holding mechanism 70 includes a second pin 71, a second recess 73 in which the second pin 71 is inserted or removed, and the second pin 71 on the distal side ZA.
  • a second spring 72 as a biasing member that biases the hydraulic oil and a second release chamber 77 into which hydraulic oil is supplied or discharged.
  • the second pin 71, the second spring 72, and the second release chamber 77 are all provided in the vane 33B.
  • the second recess 73 is formed in the cover 30.
  • the second pin 71 includes an outer pin 71A formed in a bottomed cylindrical shape, and a columnar inner pin 71B disposed inside the outer pin 71A while penetrating the bottom plate 71C of the outer pin 71A. .
  • the outer pin 71A reciprocates to the distal end side ZA and the proximal end side ZB in a vane hole 76 as a space formed in the vane 33B so as to extend in the axial direction of the cam shaft 22. That is, the outer pin 71A partitions the vane hole 76 into a second release chamber 77 on the cover 30 side and a second spring chamber 78 on the sprocket 31 side.
  • the inner pin 71B reciprocates in the vane hole 76 to the distal end side ZA and the proximal end side ZB, and the inner pin 71B protrudes outside the vane 33B in a state adjacent to the cover 30 to form a second recess. 73.
  • a flange-like stopper 71D is formed on the outer periphery of the inner pin 71B so as to protrude so as to abut against or separate from the bottom plate 71C of the outer pin 71A.
  • the second recess 73 has an arc shape extending along the circumferential direction of the cover 30. Specifically, the bottom surface of the second recess 73 forms a step in the circumferential direction of the cover 30, that is, the second recess 73 is formed with a second upper step portion 74 formed with a relatively shallow depth. The second lower step 75 is formed with a relatively deep depth. The second upper stage portion 74 is located on the retard side with respect to the second lower stage portion 75.
  • the second spring chamber 78 accommodates a second spring 72 that biases the second pin 71 toward the distal end side ZA.
  • the second spring 72 is a generic term for an outer spring 72A that biases the outer pin 71A toward the distal end ZA and an inner spring 72B that biases the inner pin 71B toward the distal end ZA.
  • the outer spring 72A and the inner spring 72B are arranged independently of each other.
  • hydraulic oil is supplied to the second release chamber 77 through the second release oil passage 97B (see FIG. 2). Due to the force based on the pressure of the hydraulic oil supplied to the second release chamber 77, the second pin 71 is urged toward the base end side ZB. Specifically, when the hydraulic pressure in the second release chamber 77 reaches the second release hydraulic pressure P ⁇ b> 2, the second pin 71 is removed from the second recess 73.
  • the retard holding mechanism 70 further includes an atmosphere release mechanism 80 having an atmosphere communication passage 82 that communicates the advance chamber 37 and the retard chamber 38 with the atmosphere space.
  • the air communication passage 82 includes the second spring chamber 78, the advance communication passage 86 that communicates the second spring chamber 78 and the advance chamber 37, the second spring chamber 78, and the retard chamber 38. Are formed by a retarded angle communication passage 87 that communicates with the second spring chamber 78 and an air release passage 88 that communicates between the second spring chamber 78 and the atmospheric space.
  • the above-described second pin 71 has a function of fitting or removing from the second recess 73, and also functions as an on-off valve that opens or shuts off the air communication path 82. That is, the second pin 71 is configured to close the advance communication passage 86, the retard communication passage 87, and the air release passage 88 at the outer peripheral surface when adjacent to the base end side ZB. Yes.
  • the unit 75 functions as a ratchet type autonomous advance mechanism. That is, the first upper step portion 54 and the first lower step portion 55 of the first recess 53 are moved toward the retard side of the pin 51 when the first pin 51 is fitted into the step portions 54 and 55, respectively. Each displacement is regulated.
  • the second upper step portion 74 and the second lower step portion 75 of the second recess 73 are moved toward the retard side of the pin 71 when the second pin 71 is fitted into the step portions 74 and 75, respectively. Each displacement is regulated.
  • FIG. 4 shows a state where the holding mechanism 26 is in a locked state and the valve timing is held at a specific time.
  • the hydraulic oil passage 90 ⁇ / b> A includes a supply oil passage 92, an advance oil passage 95, a retard oil passage 96, a release oil passage 97, a communication oil passage 98, and a discharge oil passage 99.
  • each oil passage through which the hydraulic oil supplied from the oil pump 13 is supplied to the OCV 91 is referred to as “upstream side” of the OCV 91, and the hydraulic oil through the OCV 91 is supplied from the OCV 91 to each oil.
  • Each oil passage that circulates until it is supplied to the chamber is referred to as the “downstream side” of the OCV 91.
  • the supply oil path 92 is provided on the upstream side of the OCV 91 and communicates with the oil pump 13 and the OCV 91.
  • the supply oil passage 92 has a first supply oil passage 93 connected to the advance / retard angle supply port 93P of the OCV 91 and a second supply connected to the release supply port 94P of the OCV 91 at the branch point 92D. Branches to an oil passage 94.
  • the advance oil passage 95 is provided on the downstream side of the OCV 91, and communicates the advance port 95 ⁇ / b> P of the OCV 91 and the advance chamber 37.
  • the retard oil passage 96 is provided on the downstream side of the OCV 91, and communicates the retard port 96 ⁇ / b> P of the OCV 91 with the retard chamber 38.
  • the first supply oil passage 93, the advance oil passage 95, and the retard oil passage 96 described above supply hydraulic oil from the oil pump 13 to the OCV 91, and the advance chamber 37 and the retard chamber 38 from the OCV 91. It functions as a supply oil passage which supplies hydraulic oil selectively to.
  • the release oil passage 97 is provided on the downstream side of the OCV 91 independently of the first supply oil passage 93, the advance oil passage 95, and the retard oil passage 96 described above, and the first release chamber 57, the second The release chamber 77 and the third release chamber 44 communicate with the release port 97P of the OCV 91, respectively.
  • the release oil passage 97 includes a first release oil passage 97A connected to the first release chamber 57, a second release oil passage 97B connected to the second release chamber 77, and a third release chamber. Branching to a third release oil passage 97C connected to 44 at a branch point 97D.
  • the communication oil path 98 communicates the upstream side of the branch point 97 ⁇ / b> D in the release oil path 97 and the first supply oil path 93.
  • the flow path resistance of the communication oil path 98 is such that the hydraulic oil having a hydraulic pressure smaller than the first release hydraulic pressure P1 is supplied to the first release chamber 57 and the hydraulic pressure smaller than the second release hydraulic pressure P2 is operated. It is preset to allow oil to be supplied to the second release chamber 77.
  • the flow resistance of the communication oil path 98 is set so that an appropriate amount of hydraulic oil is supplied to the release chambers 57 and 77 in consideration of the pressure of the hydraulic oil flowing through the supply oil path 93 and the like. .
  • the discharge oil passage 99 is connected to the discharge port 99P of the OCV 91 and extends to the oil pan 14.
  • the vertical axis in FIG. 6 indicates the flow rate of the hydraulic oil
  • the horizontal axis in FIG. 6 indicates the OCV stroke.
  • the advance port 95P and the advance / retard supply port 93P are communicated.
  • hydraulic fluid is supplied from the first supply oil passage 93 to the advance oil passage 95 (shown as “93 ⁇ 95”).
  • the retard port 96P and the discharge port 99P are communicated.
  • the hydraulic oil is discharged from the retard oil passage 96 to the discharge oil passage 99 (“96 ⁇ 99”).
  • the release port 97P and the discharge port 99P communicate with each other.
  • the hydraulic oil is discharged from the release oil passage 97 to the discharge oil passage 99 (“97 ⁇ 99”).
  • the advance port 95P communicates with the advance / retard supply port 93P.
  • hydraulic fluid is supplied from the first supply oil passage 93 to the advance oil passage 95 (“93 ⁇ 95”).
  • the first supply oil passage 93 is supplied to the advance oil passage 95.
  • the retard port 96P and the discharge port 99P are communicated. As a result, the hydraulic oil is discharged from the retard oil passage 96 to the discharge oil passage 99 (“96 ⁇ 99”).
  • the second mode is set when engine operation is stopped and during idle operation.
  • the advance port 95P and the advance / retard supply port 93P are communicated with each other.
  • hydraulic fluid is supplied from the first supply oil passage 93 to the advance oil passage 95 (“93 ⁇ 95”).
  • the retard port 96P and the discharge port 99P are communicated.
  • the hydraulic oil is discharged from the retard oil passage 96 to the discharge oil passage 99 (“96 ⁇ 99”).
  • the release port 97P and the release supply port 94P communicate with each other.
  • the hydraulic oil is supplied from the second supply oil passage 94 to the release oil passage 97 (“94 ⁇ 97”).
  • the advance port 95P and the retard port 96P are maintained in the closed state. As a result, the supply and discharge of hydraulic oil to and from the advance oil passage 95 and the retard oil passage 96 are stopped.
  • the release port 97P communicates with the release supply port 94P. As a result, the hydraulic oil is supplied from the second supply oil passage 94 to the release oil passage 97 (“94 ⁇ 97”).
  • the fourth mode is set when the valve timing is held at the target time and when the holding mechanism 26 is switched from the locked state to the released state.
  • the advance port 95P and the discharge port 99P are communicated.
  • the hydraulic oil is discharged from the advance oil passage 95 to the discharge oil passage 99 (“95 ⁇ 99”).
  • the retard port 96P and the advance / retard supply port 93P are communicated with each other.
  • hydraulic fluid is supplied from the first supply oil passage 93 to the retarded oil passage 96 (“93 ⁇ 96”).
  • the release port 97P and the release supply port 94P communicate with each other.
  • the hydraulic oil is supplied from the second supply oil passage 94 to the release oil passage 97 (“94 ⁇ 97”).
  • This fifth mode is set when the valve timing is retarded.
  • variable valve apparatus 20 including the variable mechanism 25, the holding mechanism 26, and the hydraulic mechanism 90 described above will be described.
  • the crankshaft 12 rotates as the engine operates
  • the driving force is transmitted to the variable mechanism 25 via a timing chain (not shown), and the camshaft 22 rotates together with the variable mechanism 25.
  • the intake valve 21 is opened and closed by a cam (not shown) provided on the cam shaft 22.
  • the vane 33 ⁇ / b> B is formed in the storage chamber 36 based on the hydraulic pressure of the advance chamber 37 and the retard chamber 38. Displace. Thereby, the relative rotational position of the vane rotor 33 with respect to the sprocket 31 and the housing 32, that is, the relative rotational position of the cam shaft 22 with respect to the crankshaft 12 is changed, and the valve timing of the intake valve 21 is changed.
  • the OCV 91 when the OCV 91 is set to the fifth mode, the working oil is supplied to the retarding chamber 38 while the working oil in the advance chamber 37 is discharged. Thereby, when the vane rotor 33 rotates relative to the housing 32 in the retarding direction, the valve timing is retarded. When the vane 33B comes into contact with the inner wall on the retard side of the advance chamber 37, the valve timing becomes the most retarded timing.
  • the OCV 91 when the OCV 91 is set to the fourth mode, the supply and discharge of the hydraulic oil from the advance chamber 37 and the retard chamber 38 are stopped. As a result, the relative rotation between the vane rotor 33 and the housing 32 stops, and the valve timing is maintained at a predetermined target time.
  • valve timing is set to the most retarded angle timing and the most advanced angle timing by controlling the hydraulic pressure in the advance chamber 37 and the retard chamber 38.
  • the first pin 51 and the second pin 71 are maintained in the state of being accommodated in the vane 33B (released state).
  • the advance angle holding mechanism 50, the retard angle holding mechanism 70, and the atmosphere release mechanism when the OCV 91 is set to the third mode, the fourth mode, or the fifth mode. 40 states will be described. Since the retard holding mechanism 70 has the same structure as the advance holding mechanism 50, the illustration is omitted and the description is simplified (the same applies hereinafter).
  • the advance communication passage 66, the retard communication passage 67, and the atmosphere release passage 68 are closed by the outer pin 51A, and the atmosphere communication passage 62 is blocked. Therefore, the flow of air between the first spring chamber 58 and the advance chamber 37, between the first spring chamber 58 and the retard chamber 38, and between the first spring chamber 58 and the atmospheric space is as follows. Blocked.
  • the working oil is supplied to the third release chamber 44 through the third release oil passage 97 ⁇ / b> C, whereby the third release chamber 44.
  • the urging force based on the hydraulic pressure is maintained to be larger than the urging force of the third spring 43.
  • the open / close pin 41 has moved to the base end side ZB, so that the advance communication path 46, the retard communication path 47, and the atmosphere release path 48 are closed by the open / close pin 41, and the atmosphere communication path 42 is blocked. ing. Therefore, the flow of air between the third spring chamber 45 and the advance chamber 37, between the third spring chamber 45 and the retard chamber 38, and between the third spring chamber 45 and the atmospheric space is reduced. Blocked.
  • the OCV 91 is controlled so that the holding mechanism 26 is switched to the locked state. That is, when the valve timing is on the retard side with respect to the specific timing, the OCV 91 is set to the second mode. On the other hand, when the valve timing is more advanced than the specific timing, the OCV 91 is once set to the fifth mode, and the valve timing is retarded. Thereafter, the OCV 91 is set to the second mode. As a result, the valve timing is gradually advanced, and hydraulic oil is discharged from the first release chamber 57, the second release chamber 77, and the third release chamber 44, respectively. As a result, when the valve timing reaches a specific time, the first pin 51 is fitted into the first recess 53, the second pin 71 is fitted into the second recess 73, and the holding mechanism 26 is locked. Become.
  • the hydraulic oil is discharged from the first release chamber 57 of the advance holding mechanism 50 through the first release oil passage 97A, and the first release is performed.
  • the first pin 51 biased by the first spring 52 is fitted into the first recess 53 (first lower step portion 55).
  • the second pin 71 urged by the second spring 72 is fitted into the second recess 73 (second lower step 75).
  • the displacement of the first pin 51 toward the advance side is restricted by the end portion of the first lower step 55 on the advance side, and the displacement of the second pin 71 toward the retard side is the second.
  • the valve timing is held at a specific time by being regulated at the retarded end of the lower step 75.
  • both the outer pin 51A and the inner pin 51B, which are the first pins 51, are on the distal end side ZA. Has moved. Therefore, the advance communication path 66, the retard communication path 67, and the atmosphere release path 68 are not closed by the outer pin 51A, and the atmosphere communication path 62 is opened. Therefore, in the atmosphere release mechanism 60, the first spring chamber 58 and the advance chamber 37, the first spring chamber 58 and the retard chamber 38, and the first spring chamber 58 and the atmosphere space are separated. Air flow between them is allowed (open to the atmosphere).
  • the advance communication path 86, the retard communication path 87, and the atmosphere release path 88 are not closed by the outer pin 71A, and the atmosphere communication path 82 is opened. Accordingly, in the atmosphere release mechanism 80, the second spring chamber 78 and the advance chamber 37, the second spring chamber 78 and the retard chamber 38, and the second spring chamber 78 and the atmosphere space are separated. Air flow between them is allowed (open to the atmosphere).
  • the advance angle holding mechanism when the engine stop is executed in a state where the holding mechanism 26 has not been switched to the locked state (hereinafter referred to as “when the engine is abnormally stopped”). 50 and the state of the retard holding mechanism 70 will be described.
  • the outer pin 51A is attached to the distal end ZA by the outer spring 52A. Moved with force.
  • the first spring chamber 58 and the advance chamber 37, the first spring chamber 58 and the retard chamber 38, and the first spring chamber 58 and the atmospheric space are provided.
  • the air flow between the two is allowed (open to the atmosphere).
  • the second spring chamber 78 is interposed between the second spring chamber 78 and the advance chamber 37 in the atmosphere release mechanism 80 as the hydraulic pressure in the second release chamber 77 decreases. And the retardation chamber 38 and between the second spring chamber 78 and the atmospheric space are allowed to flow (atmospheric release state).
  • the state of the atmosphere release mechanism 40 when the holding mechanism 26 is in a locked state and when the engine is stopped will be described with reference to FIG.
  • the OCV 91 is set to the second mode and the release port 97P and the discharge port 99P communicate with each other, so that the hydraulic oil is discharged from the third release chamber 44. Therefore, when the holding mechanism 26 is in the locked state, the open / close pin 41 is moved to the distal end side ZA in the air release mechanism 40. As a result, the advance communication path 46, the retard communication path 47, and the atmosphere release path 48 are not closed by the open / close pin 41, and the atmosphere communication path 42 is opened. Therefore, in the atmosphere release mechanism 40, the third spring chamber 45 and the advance chamber 37, the third spring chamber 45 and the retard chamber 38, and the third spring chamber 45 and the atmosphere space are separated. Air flow between them is allowed (open to the atmosphere).
  • the holding mechanism 26 since the holding mechanism 26 is switched to the locked state during the idle operation, the valve timing is held at a specific time when the engine is stopped once the engine operation is temporarily stopped via the idle operation. The engine operation is stopped in a state where the holding mechanism 26 is in a locked state. And if the cancellation
  • the 1st pin 51 and the 2nd pin 71 are extracted from the 1st recessed part 53 and the 2nd recessed part 73, respectively. Thereafter, as described above, the control of the OCV 91 is executed so that the valve timing becomes a desired time suitable for the engine operating state.
  • the valve timing changes to the most retarded timing due to the relative rotation of the vane rotor 33 and the housing 32 until the stop of the internal combustion engine 10 is completed.
  • the crankshaft 12 and the camshaft 22 rotate relative to each other in the direction in which the valve timing is retarded as the supply of hydraulic oil to the advance chamber 37 and the retard chamber 38 is stopped.
  • the relative rotation of the vane rotor 33 and the housing 32 changes their directions so that the valve timing is changed to the retard side and the advance side by the alternating torque acting on the camshaft 22. Will come to do. Specifically, a negative torque acting in the direction in which the valve timing is advanced and a positive torque acting in the direction in which the valve timing is retarded alternately act on the cam shaft 22.
  • the holding mechanism 26 is in a locked state at the time of cranking and the valve timing is at a specific time. Therefore, in the present embodiment, the ratchet type autonomous advance angle mechanism described above is provided. As a result, the housing 32 and the vane rotor 33 are rotated relative to each other based on the alternating torque acting on the camshaft 22 to gradually advance the valve timing step by step from the state where the valve timing is at the most retarded timing to the specific timing. The holding mechanism 26 is quickly switched to the locked state.
  • FIGS. 9A to 9D sequentially show the process in which the valve timing is advanced from the most retarded timing to the specific timing.
  • the first pin 51 and the second pin are shown so that the relationship between the operating state of the advance holding mechanism 50 and the operating state of the retard holding mechanism 70 can be easily grasped.
  • 71 is shown to protrude from the same vane 33B in opposite directions, and the first concave portion 53 and the second concave portion 73 are shown to face each other in the axial direction.
  • the vane rotor 33 and the housing 32 rotate relative to each other based on the negative torque acting on the cam shaft 22.
  • the first pin 51 is fitted into the first upper step portion 54 in a period in which the first pin 51 can protrude toward the first upper step portion 54 (FIG. 9A).
  • the second pin 71 is fitted into the second upper stage portion 74 (FIG. 9B), and the first pin 51 is the first The second pin 71 is fitted into the second lower step 75 (FIG. 9D).
  • the holding mechanism 26 is switched to the locked state and the valve timing is held at a specific time, so that the internal combustion engine 10 is started well.
  • the air release mechanisms 60, 80, 40 are provided in any of the three vanes 33B of the variable mechanism 25, the air release mechanisms 60, 80, 40, after the engine is stopped. At least one of 40 stops at a position above the center bolt 34 in the vertical direction. Further, these atmospheric release mechanisms 60, 80, 40 are in an open atmosphere state while the engine is stopped. Therefore, the atmosphere is introduced into the advance chamber 37 and the retard chamber 38 through the atmosphere communication passages 62, 82, 42 in the atmosphere release mechanisms 60, 80, 40 stopped above the center bolt 34 in the vertical direction.
  • the OCV 91 is set to the second mode.
  • the release port 97P and the discharge port 99P are communicated with each other, the first release chamber 57, the second release chamber 77, and the third release chamber 44 are opened through the release oil passage 97.
  • the hydraulic oil is discharged from the release chambers 57, 77, 44 and the release oil passages 97A, 97B, 97C, respectively, so that the inside of the hydraulic oil is not filled, so that there is almost no hydraulic oil. It may become a state that does not.
  • the OCV 91 is set to the fourth mode in order to switch the holding mechanism 26 to the released state.
  • the release port 97P and the release supply port 94P communicate with each other, and the supply of hydraulic oil from the second supply oil passage 94 to the release oil passage 97 is started.
  • the second release chamber 77 and the second release oil passage 97B are not filled with the hydraulic oil, even if the supply of hydraulic oil through the second supply oil passage 94 is started, the second The urging force based on the pressure of the hydraulic oil does not act on the second pin 71 until the release chamber 77 and the second release oil passage 97B are in an oil-tight state filled with the hydraulic oil. Since there is a time during which the urging force based on such hydraulic pressure does not act, the time required for the pins 51 and 71 to be removed from the recesses 53 and 73 becomes longer, and the holding mechanism 26 is changed from the locked state to the released state. The problem arises that it cannot be migrated quickly.
  • the hydraulic mechanism 90 of the present embodiment is provided with a communication oil passage 98 that communicates the upstream side of the branch point 97D in the release oil passage 97 and the first supply oil passage 93. Therefore, even when the OCV 91 is set to the first mode or the second mode and the holding mechanism 26 is switched to the locked state, the OCV 91 is always supplied to the release oil passage 97 through the communication oil passage 98. .
  • the oil is supplied to the passage 97B and the third release oil passage 97C.
  • the hydraulic oil supplied to the first release oil passage 97A, the second release oil passage 97B, and the third release oil passage 97C is supplied to the first release chamber 57, the second release chamber 77, and Each is supplied to the third release chamber 44.
  • the flow resistance of the communication oil passage 98 is such that hydraulic fluid having a hydraulic pressure smaller than the first release hydraulic pressure P1 described above is supplied to the first release chamber 57 and from the second release hydraulic pressure P2.
  • the hydraulic oil is set in advance so that a small hydraulic fluid is supplied to the second release chamber 77. For this reason, the first pin 51 is prevented from being detached from the first recess 53 based on the hydraulic pressure of the hydraulic oil supplied through the communication oil passage 98. Further, the second pin 71 is prevented from being pulled out from the second recess 73 based on the hydraulic pressure of the hydraulic oil supplied through the communication oil passage 98.
  • the holding mechanism 26 is maintained in the locked state and remains in the release chambers 57 and 77 and the release oil passages 97A and 97B.
  • the amount of hydraulic oil can be increased. Therefore, when the release condition is satisfied, if the OCV 91 is set to the fourth mode and hydraulic fluid is supplied from the second supply oil passage 94 to the release oil passage 97, the first release chamber 57 is quickly The hydraulic pressure in the release chamber 57 quickly rises in an oil-tight state. Thereby, the urging force based on the hydraulic pressure of the first release chamber 57 immediately acts on the first pin 51, and the first pin 51 quickly moves to the proximal side ZB.
  • the urging force based on the hydraulic pressure in the second release chamber 77 immediately acts on the second pin 71, and the second pin 71 quickly moves to the proximal side ZB.
  • the hydraulic oil supplied through the communication oil passage 98 is also supplied to the third release chamber 44 through the third release oil passage 97C, and thus the third release chamber 44 and the third release oil passage. The amount of hydraulic oil remaining inside 97C also increases.
  • the OCV 91 when the OCV 91 is set to the third mode or the fifth mode, the hydraulic oil is being supplied to the advance chamber 37 or the retard chamber 38 through the first supply oil passage 93. Accordingly, the hydraulic oil flowing through the first supply oil passage 93 is supplied to the release oil passage 97 through the communication oil passage 98. Furthermore, since hydraulic oil is supplied to the release oil passage 97 through the second supply oil passage 94, the first release chamber 57, the second release chamber 77, and the third release chamber 44 are all hydraulic oil. It is kept in an oil-tight state filled with.
  • the OCV 91 when the OCV 91 is set to the fourth mode, the supply of hydraulic oil to the advance chamber 37 and the retard chamber 38 through the first supply oil passage 93 is stopped, so that the communication oil passage 98 is provided. The supply of the hydraulic oil to the release oil passage 97 through is also stopped. However, at this time, since hydraulic oil is supplied to the release oil passage 97 through the second supply oil passage 94, the first release chamber 57, the second release chamber 77, and the third release chamber 44 are Is also kept in an oil-tight state filled with hydraulic oil.
  • the following operational effects can be achieved. (1) Since the communication oil path 98 that connects the first supply oil path 93 and the release oil path 97 is provided, the holding mechanism 26 is in a locked state, and the release chambers 57, 77, 44 and the release oil path Even when the hydraulic oil is discharged from 97A, 97B, and 97C, the hydraulic oil is supplied to the release chambers 57, 77, and 44 and the release oil passages 97A, 97B, and 97C through the communication oil passage 98. Is supplied.
  • the hydraulic pressure in the first release chamber 57 can be quickly raised to the first release hydraulic pressure P1, and the hydraulic pressure in the second release chamber 77 can be quickly raised to the second release hydraulic pressure P2. Can do. Therefore, it is possible to improve the responsiveness when the holding mechanism is switched from the locked state to the released state.
  • the oil pressure in the advance oil passage 95 and the retard oil passage 96 varies depending on the valve timing control request. That is, the oil pressure in the advance oil passage 95 and the retard oil passage 96 varies depending on each mode of the OCV 91. For example, when the OCV 91 is set to the first mode, the amount of hydraulic oil flowing through the advance oil passage 95 is larger than when the OCV 91 is set to the second mode. When the OCV 91 is set to the fifth mode and the valve timing is retarded, the supply of hydraulic oil to the advance oil passage 95 is stopped, while the hydraulic oil is supplied to the retard oil passage 96. Supplied.
  • the hydraulic pressure in the first supply oil passage 93 does not depend on the valve timing control request described above, that is, in each mode of the OCV 91, so that the release oil passages 97A and 97B and the release chambers 57 and 77
  • the hydraulic oil can be stably supplied through the communication oil passage 98. Accordingly, the hydraulic oil can be suitably left inside the release oil passages 97A and 97B and the release chambers 57 and 77, and the responsiveness of the holding mechanism 26 can be further improved.
  • the holding mechanism 26 includes an advance angle holding mechanism 50 and a retard angle holding mechanism 70, respectively. Therefore, when the holding mechanism 26 is switched from the locked state to the released state, the first pin 51 has the first recess 53 during the period in which the valve timing is about to change to the retard side due to the alternating torque acting on the cam shaft 22. It becomes easy to pull out from. On the other hand, the second pin 71 is easily pulled out from the second recess 73 during the period when the valve timing is about to change to the advance side by the alternating torque acting on the cam shaft 22. Therefore, when starting the engine, these pins 51 and 71 can be quickly removed from the recesses 53 and 73, respectively.
  • the advance holding mechanism 50 and the retard holding mechanism 70 are provided in different vanes 33B. Further, the advance angle holding mechanism 50 is provided with an atmosphere release mechanism 60, while the retard angle hold mechanism 70 is provided with an atmosphere release mechanism 80. For this reason, when any one of the atmosphere release mechanism 60 and the atmosphere release mechanism 80 stops at the upper position in the vertical direction of the center bolt when the engine is stopped, the atmosphere release mechanisms 60 and 80 stopped at the upper position in the vertical direction.
  • the atmosphere is introduced into the advance chamber 37 and the retard chamber 38 through the atmosphere communication passages 62 and 82, respectively.
  • the release oil passage 97 supplies hydraulic oil to both the first release chamber 57 and the second release chamber 77
  • the release oil passage 97 is compared with a configuration having a single holding mechanism as the holding mechanism 26.
  • the total volume of the release chambers 57 and 77 and the release oil passage 97 increases. Therefore, compared with the configuration having a single holding mechanism as the holding mechanism 26, the responsiveness of the holding mechanism 26 is reduced due to the small amount of hydraulic oil remaining in the release chambers 57 and 77 and the release oil passage 97. It tends to become more apparent.
  • the hydraulic oil is supplied to the release oil passage 97 from the first supply oil passage 93 through the communication oil passage 98, the responsiveness when the holding mechanism 26 is switched from the locked state to the released state is improved. Can do.
  • the air release mechanism 40 is provided in the remaining one vane 33B where the advance angle holding mechanism 50 and the retard angle holding mechanism 70 are not provided.
  • all three vanes 33B of the vane rotor 33 are provided with atmospheric release mechanisms 60, 80, 40. Therefore, when the engine is stopped, at least one of the atmospheric release mechanisms 60, 80, 40 stops at the upper part of the center bolt 34 in the vertical direction. Further, these atmospheric release mechanisms 60, 80, 40 are opened to the atmosphere after the engine is stopped. Therefore, after the engine is stopped, the atmosphere is introduced into the advance chamber 37 and the retard chamber 38 through the atmosphere communication passages 62, 82, 42 of the atmosphere release mechanisms 60, 80, 40 stopped above the center bolt 34 in the vertical direction.
  • the release oil passage 97 has a third release chamber 44 (atmospheric release mechanism) in addition to the first release chamber 57 (advance angle holding mechanism 50) and the second release chamber 77 (retard angle holding mechanism 70). 40) is supplied with hydraulic oil. Therefore, the total volume of the release chambers 57, 77, and 44 and the release oil passage 97 is increased as compared with the configuration in which the atmosphere release mechanism 40 is not provided. Therefore, compared with a configuration in which the atmosphere release mechanism 40 is not provided, the responsiveness deterioration when the holding mechanism 26 is switched from the locked state to the released state tends to become even more apparent.
  • hydraulic oil is supplied to the release oil passage 97 through the communication oil passage 98, and the inside of the first release chamber 57, the second release chamber 77, the third release chamber 44, and the release oil passage 97. Therefore, it is possible to improve the responsiveness when switching the holding mechanism 26 from the locked state to the released state.
  • variable valve operating apparatus 20 is provided with a single OCV 91, and the oil pressure of each oil chamber of the variable mechanism 25, the holding mechanism 26, and the atmosphere opening mechanism 40 is controlled by this OCV 91. Therefore, the number of parts can be reduced and the production cost of the variable valve apparatus 20 can be reduced as compared with a configuration in which a plurality of OCVs are provided.
  • variable valve operating apparatus for an internal combustion engine is not limited to the configuration exemplified in the above-described embodiment, and can be implemented as, for example, the following forms appropriately modified.
  • a communication oil passage 198 that connects the advance oil passage 95 and the release oil passage 97 may be provided as shown by a one-dot chain line in FIG.
  • the hydraulic oil is supplied to the advance oil passage 95 when the OCV 91 is set to the first mode or the second mode and the holding mechanism 26 is in the locked state. Therefore, the hydraulic oil flowing through the advance oil passage 95 is supplied to the release oil passage 97 through the communication oil passage 98. Therefore, the effects shown in the above (1) and (3) to (8) can be achieved. Furthermore, you may make it provide both the communication oil path 98 shown by the said embodiment, and the communication oil path 198 shown by the one point difference line of FIG.
  • each mode of the OCV 91 shown in the above embodiment and the supply / discharge state of the hydraulic oil in the hydraulic oil passage 90A is an example, and can be changed as appropriate. Even in this case, by providing the communication oil path 98 that communicates the first supply oil path 93 and the release oil path 97 provided on the upstream side of the OCV 91, the above-described functions and effects can be achieved. . Further, in the case of providing a communication oil path that communicates the supply oil path and the release oil path provided on the downstream side of the OCV 91, the supply oil path is supplied with hydraulic oil when the holding mechanism 26 is in the locked state. And the release oil passage may be communicated with each other.
  • the OCV 91 when the OCV 91 is set so that the hydraulic oil is discharged from the first release chamber 57 and the second release chamber 77, the supply oil passage to which the hydraulic oil is supplied and the release oil passage are communicated with each other. You just have to do it. For example, if the OCV 91 is controlled so that hydraulic oil is supplied to the retard chamber 38 when the holding mechanism 26 is in the locked state, the retard oil passage 96 and the release oil passage 97 What is necessary is just to provide a communication oil path so that it may communicate. Even in this case, the effects shown in the above (1) and (3) to (8) can be achieved.
  • the OCV 91 is set to the fourth mode when the holding mechanism 26 is switched from the locked state to the released state.
  • the holding mechanism 26 may be switched to the release state while the valve timing is advanced by controlling the OCV 91 in the third mode.
  • the OCV 91 may be set to the fifth mode so that the holding mechanism 26 is switched to the released state while the valve timing is retarded.
  • the example in which the communication oil path 98 is connected to the upstream side of the branch point 97D of the release oil path 97 is shown.
  • the connection location of the communication oil passage 98 can be changed. For example, it is branched in the middle of the communication oil passage 98, and one of the branched oil passages is connected to the first release oil passage 97A, and the other oil passage is connected to the second release oil passage 97B. Also good. Even in this case, the amount of hydraulic oil remaining in the first release chamber 57, the second release chamber 77, the first release oil passage 97A, and the second release oil passage 97B can be increased. Therefore, each effect mentioned above can be produced.
  • hydraulic fluid having a flow path resistance of the communication oil passage 98 smaller than the first release hydraulic pressure P1 is supplied to the first release chamber 57, and from the second release hydraulic pressure P2.
  • An example is shown in which a small hydraulic fluid is supplied to the second release chamber 77.
  • the flow resistance of the communication oil passage can be changed as appropriate. For example, in addition to setting the entire length of the communication oil path to the same flow path cross-sectional area, the hydraulic oil that flows through the communication oil path by providing a throttle in the middle of the communication oil path to form a portion having a small flow path cross-sectional area It is also possible to adjust the amount.
  • the hydraulic oil having a hydraulic pressure smaller than the first release hydraulic pressure P1 described above is supplied to the first release chamber 57 and the flow resistance of the communication oil path 98 from the second release hydraulic pressure P2.
  • An example is shown in which a small hydraulic fluid is supplied to the second release chamber 77. This is because the hydraulic pressure of the release chamber involved when the holding mechanism 26 switches from the locked state to the released state is the hydraulic pressure of the first release chamber 57 and the hydraulic pressure of the second release chamber 77.
  • the hydraulic pressure of the third release chamber 44 when the opening / closing pin 41 is urged to the base end side ZB is set as the third release hydraulic pressure P3, and the third release hydraulic pressure P3 is also considered and described above.
  • the flow resistance of the communication oil path 98 may be set.
  • the example in which the hydraulic oil is always supplied to the release oil path 97 through the communication oil path 98 while the hydraulic oil is flowing through the first supply oil path 93 has been described. It is not necessary to be supplied to the release oil passage 97. That is, it is only necessary that the hydraulic oil be supplied to the release oil passage 97 when the engine is operating and the holding mechanism 26 is in the locked state. As a result, the release chambers 57 and 77 and the release oil passage 97 are always filled with the hydraulic oil, and thus the above-described effects can be achieved.
  • a valve that opens or shuts off the communication oil passage may be provided, and the valve may be appropriately opened and closed so that the hydraulic oil flows through the communication oil passage as appropriate.
  • the example is shown in which the OCV 91 is set to the second mode and the holding mechanism 26 is switched to the locked state during the idling operation of the internal combustion engine 10.
  • the idle state it is possible to adopt a mode in which the valve timing is held at a target time suitable for the idle operation and the holding mechanism 26 is held in the released state.
  • the holding mechanism 26 is switched to the locked state as the supply of hydraulic oil to each oil chamber is stopped. Therefore, when the holding mechanism 26 is in the locked state at the next engine start. Cranking is started.
  • the hydraulic oil can be supplied to the release oil passage 97 through the communication oil passage 98 from the period in which the holding mechanism 26 is in the locked state before the release mechanism is switched to the release state.
  • the example in which the atmosphere release mechanism 60 is provided in the advance angle holding mechanism 50 and the atmosphere release mechanism 80 is provided in the retard angle holding mechanism 70 has been described.
  • a mode in which neither of the atmosphere release mechanism 60 and the atmosphere release mechanism 80 is provided, or a mode in which only one of them is provided can be adopted. Even in this case, at least the effects shown in the above (1) to (3), (5), and (8) can be achieved.
  • the vane 33B having the air release mechanism is stopped above the center bolt 34 in the vertical direction so that the hydraulic oil stored in the advance chamber 37 and the retard chamber 38 can be quickly discharged. Then, it is desirable to provide more atmospheric release mechanisms.
  • the vane rotor 33 has the three vanes 33B, and the air release mechanism 60, the air release mechanism 80, and the air release mechanism 40 are provided in each of the three vanes 33B.
  • the number of vanes 33B included in the vane rotor 33 is not limited to three.
  • the advance angle holding mechanism 50 and the atmosphere release mechanism 60, the retard angle hold mechanism 70 and the atmosphere release mechanism 80 are provided in different vanes, respectively, and the remaining two vanes include: What is necessary is just to provide the atmospheric release mechanism 40 provided separately from the holding mechanism 26, respectively.
  • any one of the vanes 33B having the air release mechanism stops after the engine is stopped in the vertical direction above the center bolt 34, so that the hydraulic oil stored in the advance chamber 37 and the retard chamber 38 can be quickly discharged. Can do. Further, by applying the present invention, it is possible to improve the responsiveness when the holding mechanism 26 is switched from the locked state to the released state.
  • the example in which the advance angle holding mechanism 50 and the retard angle holding mechanism 70 are provided in the different vanes 33B has been described.
  • a configuration in which the advance angle holding mechanism 50 and the retard angle holding mechanism 70 are provided in the same vane 33B may be employed.
  • the vane 33B having the air release mechanism is stopped above the center bolt 34 in the vertical direction so that the hydraulic oil stored in the advance chamber 37 and the retard chamber 38 can be quickly discharged.
  • release state can be improved.
  • the first concave portion 53 is configured by the plurality of step portions 54 and 55 and the second concave portion 73 is configured by the plurality of step portions 74 and 75 has been described.
  • the recessed part in which such a some step part is not formed is also employable. Even in this case, at least the actions and effects shown in (1) and (2) above can be achieved.
  • a plurality of step portions 54, 55, 74, and 75 are formed in the holding mechanism 26 as shown in the above embodiment. It is desirable that
  • the holding mechanism 26 includes the advance angle holding mechanism 50 and the retard angle holding mechanism 70.
  • the holding mechanism may be configured by a single holding mechanism that holds the valve timing at a specific time with a single pin and a single recess. Even in this case, by applying the present invention, the responsiveness when the holding mechanism 26 is switched from the locked state to the released state can be improved.
  • a holding mechanism is configured by a single holding mechanism, and an air release mechanism 40 provided separately from the holding mechanism is provided in each vane 33B different from the vane 33B provided with the holding mechanism. Also good. Even in this case, by applying the present invention, the responsiveness when the holding mechanism is switched from the locked state to the released state can be improved.
  • the specific time when the holding mechanism 26 holds the valve timing is an intermediate time, but the specific time can be changed.
  • the present invention can also be applied to a variable valve apparatus having a holding mechanism that holds the valve timing at the most retarded timing. Even in this case, there may be a problem that when the holding mechanism is locked, the hydraulic oil flows out from the release chamber and the release oil passage, and the release chamber is not filled with the hydraulic oil. Therefore, by applying the present invention, it is possible to improve the responsiveness when the holding mechanism 26 is switched from the locked state to the released state.
  • the concave portions 53 and 73 are formed on the cover 30, but the concave portions 53 and 73 may be formed on the sprocket 31.
  • the sprocket 31 is drivingly connected to the crankshaft 12 and the vane rotor 33 is drivingly connected to the camshaft 22.
  • the variable mechanism 25 may be configured such that the sprocket 31 is drivingly connected to the camshaft 22 and the vane rotor 33 is drivingly connected to the crankshaft 12. Even in this case, the above-described effects can be achieved.
  • variable valve device of the present invention is embodied as the variable valve device 20 that changes the valve timing of the intake valve 21.
  • the variable valve valve that changes the valve timing of the exhaust valve 23 is shown. It is also possible to embody the present invention as a mechanism. The present invention can also be applied to each of a variable valve mechanism that changes the valve timing of the intake valve 21 and a variable valve mechanism that changes the valve timing of the exhaust valve 23.
  • Hydraulic mechanism 90A ... Hydraulic oil passage, 91 ... Oil control valve (OCV, oil passage control unit), 92 ... Supply oil passage, 92D ... Branch point, 93 ... First supply oil passage, 93P ... Advance / Delay Angle supply port, 94 ... second supply oil passage, 94P ... release supply port, 95 ... advance oil passage, 95P ... advance port, 96 ... retard oil passage, 96P ... retard port, 97 ... release oil , 97A ... first release oil passage, 97B ... second release oil passage, 97C ... third release oil passage, 97D ... branch point, 97P ... release port, 98, 198 ... communication oil passage, 99 ... Drain oil passage, 99P ... discharge port, 111 ... pin, 112 ... recess, 113 ... spring, 114 ... release chamber.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve Device For Special Equipments (AREA)

Abstract

A variable valve gear (20) is provided with a varying mechanism (25) for varying the valve timing, a holding mechanism (26) for holding the valve timing at a specific time, and an oil pressure mechanism (80) for controlling the oil pressures of respective oil chambers of the variable valve gear (20). In the oil pressure mechanism (80), a communication oil path (98) through which a first supply oil path (93) and a release oil path (97) communicate with each other is provided. The first supply oil path (93) is provided on the upstream side from an oil control valve (91) and selectively supplies operating oil to either an advance chamber (37) or a retard chamber (38). The release oil path (97) is provided on the downstream side from the oil control valve (91) and supplies the operating oil to a first release chamber (57), a second release chamber (77), and a third release chamber (44). The communication oil path (98) supplies oil pressure that generates biasing force smaller than that of the release oil pressure (P1) of the first release chamber (57) to the release chamber (57), and supplies oil pressure that generates biasing force smaller than that of the release oil pressure (P2) of the second release chamber (77) to the release chamber (77).

Description

内燃機関の可変動弁装置Variable valve operating device for internal combustion engine
 本発明は、バルブタイミングを変更する可変機構と同バルブタイミングを特定時期に保持する保持機構と、それら可変機構及び保持機構の各油室に対する作動油の給排状態を制御する油路制御部を有する油圧機構とを備える内燃機関の可変動弁装置に関する。 The present invention includes a variable mechanism that changes the valve timing, a holding mechanism that holds the valve timing at a specific time, and an oil passage control unit that controls the supply and discharge states of hydraulic oil to and from the oil chambers of the variable mechanism and the holding mechanism. The present invention relates to a variable valve operating apparatus for an internal combustion engine including a hydraulic mechanism.
 内燃機関に搭載される装置として、カム軸により開閉駆動されるバルブのバルブタイミングを運転状態に応じて変更する可変機構を備えた可変動弁装置が知られている(例えば特許文献1参照)。 As a device mounted on an internal combustion engine, there is known a variable valve operating device provided with a variable mechanism that changes the valve timing of a valve that is driven to open and close by a camshaft according to an operating state (see, for example, Patent Document 1).
 特許文献1に記載される可変機構を含め、従来一般の可変機構の構成を図11(a)に示す。図11(a)は、可変機構100のカバーを取り外した状態で、カバー側からスプロケット101側を見た可変機構100の内部構造を示している。なお、同図11(a)ではカム軸(図示略)の回転方向を矢印RAにて示している。 FIG. 11A shows the configuration of a conventional general variable mechanism including the variable mechanism described in Patent Document 1. FIG. 11A shows the internal structure of the variable mechanism 100 when the sprocket 101 side is viewed from the cover side with the cover of the variable mechanism 100 removed. In FIG. 11A, the rotation direction of the cam shaft (not shown) is indicated by an arrow RA.
 同図11に示す可変機構100は、同一の回転軸周りに回転する2つの回転体として、クランク軸(図示略)に駆動連結されたスプロケット101及びこれに固定されたハウジング102と、カム軸に駆動連結されたベーンロータ103とを備えている。ベーンロータ103の各ベーン103Aは、ハウジング102の内部に形成された収容室105に配置されている。この収容室105はベーン103Aにより進角室106と遅角室107とに区画されている。そして、進角室106及び遅角室107に供給される油圧により収容室105でベーン103Aが変位し、上述したハウジング102とベーンロータ103とが相対回転することにより、クランク軸に対するカム軸の相対回転位相、換言すればバルブタイミングが変更される。 A variable mechanism 100 shown in FIG. 11 includes, as two rotating bodies rotating around the same rotating shaft, a sprocket 101 drivingly connected to a crankshaft (not shown), a housing 102 fixed thereto, and a camshaft. And a vane rotor 103 that is drivingly connected. Each vane 103 </ b> A of the vane rotor 103 is disposed in a storage chamber 105 formed inside the housing 102. The storage chamber 105 is divided into an advance chamber 106 and a retard chamber 107 by a vane 103A. Then, the vane 103A is displaced in the storage chamber 105 by the hydraulic pressure supplied to the advance chamber 106 and the retard chamber 107, and the housing 102 and the vane rotor 103 described above rotate relative to each other, whereby the cam shaft relative to the crankshaft rotates. The phase, in other words, the valve timing is changed.
 また、この可変機構100には、バルブタイミングを特定時期に保持する保持機構110が設けられている。この保持機構110は、図11(b)に示すように、ベーン103Aに設けられたピン111と、ピン111が嵌入又は抜脱するようにスプロケット101に形成された凹部112とを備えている。ピン111は、ばね113により凹部112に嵌入する方向に付勢される一方、解除室114に供給される作動油の圧力によって凹部112から抜脱する方向に付勢される。 Also, the variable mechanism 100 is provided with a holding mechanism 110 that holds the valve timing at a specific time. As shown in FIG. 11B, the holding mechanism 110 includes a pin 111 provided on the vane 103A and a recess 112 formed on the sprocket 101 so that the pin 111 is inserted or removed. The pin 111 is urged in a direction to be fitted into the recess 112 by the spring 113, and is urged in a direction to be removed from the recess 112 by the pressure of the hydraulic oil supplied to the release chamber 114.
 そして、機関停止要求時等、バルブタイミングを特定時期に保持する保持条件が成立した場合、解除室114から作動油が排出される。これに伴い解除室114の油圧が低下してばね113の付勢力によりピン111が凹部112に嵌入すると、ベーンロータ103とハウジング102との相対回転が規制され、バルブタイミングが特定時期に保持される(以下、この状態を「ロック状態」という)。一方、バルブタイミングの変更要求時等、バルブタイミングを特定時期から解除する解除条件が成立した場合、解除室114に対して作動油が供給される。これに伴い解除室114の油圧が上昇してこの油圧に基づく付勢力によりピン111が凹部112から抜脱し、ベーンロータ103とハウジング102との相対回転の規制が解除される(以下、この状態を「解除状態」という)。その後、進角室106及び遅角室107に作動油が給排されることで、特定時期に保持されていたバルブタイミングが機関運転状態に適した所望の時期となるように制御される。なお、可変機構100の進角室106及び遅角室107、並びに保持機構110の解除室114の各油圧に対する作動油の給排状態は油路制御部によって制御される。 Then, when a holding condition for holding the valve timing at a specific time is satisfied, such as when an engine stop is requested, the hydraulic oil is discharged from the release chamber 114. Along with this, when the hydraulic pressure in the release chamber 114 decreases and the pin 111 is fitted into the recess 112 by the biasing force of the spring 113, the relative rotation between the vane rotor 103 and the housing 102 is restricted, and the valve timing is maintained at a specific time ( Hereinafter, this state is referred to as “lock state”). On the other hand, when a release condition for releasing the valve timing from a specific time is satisfied, such as when the valve timing is changed, hydraulic oil is supplied to the release chamber 114. Along with this, the hydraulic pressure in the release chamber 114 rises and the pin 111 is pulled out from the recess 112 by the biasing force based on this hydraulic pressure, and the restriction on the relative rotation between the vane rotor 103 and the housing 102 is released (hereinafter, this state is referred to as “ "Release state"). Thereafter, the hydraulic oil is supplied to and discharged from the advance chamber 106 and the retard chamber 107, so that the valve timing held at the specific timing is controlled to a desired timing suitable for the engine operating state. In addition, the supply / discharge state of the hydraulic fluid with respect to each hydraulic pressure in the advance chamber 106 and the retard chamber 107 of the variable mechanism 100 and the release chamber 114 of the holding mechanism 110 is controlled by the oil passage control unit.
特開2008-286209号公報JP 2008-286209 A
 ところで、上述したような可変動弁装置において、保持機構がロック状態にあるときには、解除室が解除油路を通じて開放されているため、解除室や解除油路から作動油が排出されてそれらの内部に作動油がほとんど存在しない状態になることがある。そして、このように解除室や解除油路に作動油がほとんど存在しないときには、保持機構をロック状態から解除状態に切り替えるために解除室に対する作動油の供給を開始しても、解除室及び解除油路が作動油によって満たされた油密状態となるまでは、作動油の圧力に基づく付勢力がピンに作用しない。そしてこのような油圧に基づく付勢力が作用しない時間が存在するため、ピンが凹部から抜脱するのに要する時間が長くなり、保持機構をロック状態から解除状態に迅速に移行することができないこととなる。すなわち、従来の可変動弁装置にあっては、解除条件が成立したときに、保持機構をロック状態から解除状態に切り替える際の応答性を向上させるうえでなお改善の余地を残すものとなっていた。 By the way, in the variable valve operating apparatus as described above, when the holding mechanism is in the locked state, the release chamber is opened through the release oil passage, so that hydraulic oil is discharged from the release chamber and the release oil passage. In some cases, there is almost no hydraulic oil. And when there is almost no hydraulic oil in the release chamber and the release oil passage in this way, even if supply of hydraulic oil to the release chamber is started to switch the holding mechanism from the locked state to the release state, the release chamber and the release oil The biasing force based on the pressure of the hydraulic oil does not act on the pin until the path is in an oil tight state filled with the hydraulic oil. And since there is a time during which the urging force based on such hydraulic pressure does not act, the time required for the pin to be removed from the recess becomes long, and the holding mechanism cannot be quickly shifted from the locked state to the released state. It becomes. That is, in the conventional variable valve apparatus, there is still room for improvement in improving the responsiveness when the holding mechanism is switched from the locked state to the released state when the release condition is satisfied. It was.
 本発明は、こうした実情に鑑みてなされたものであり、その目的は、バルブタイミングを特定時期に保持する保持機構をロック状態から解除状態に切り替える際の応答性を向上させることのできる内燃機関の可変動弁装置を提供することにある。 The present invention has been made in view of such circumstances, and an object of the present invention is an internal combustion engine capable of improving responsiveness when a holding mechanism that holds a valve timing at a specific time is switched from a locked state to a released state. The object is to provide a variable valve gear.
 ・上記目的を達成するため、本発明に従う内燃機関の可変動弁装置は、クランク軸に駆動連結された第1の回転体と、カム軸に駆動連結されるとともに前記第1の回転体と同一の回転軸周りに回転する第2の回転体と、前記第1の回転体と前記第2の回転体とにより区画形成される進角室及び遅角室とを有し、前記進角室及び前記遅角室に対して選択的に供給される油圧により前記各回転体を相対回転させることにより前記カム軸にて開閉駆動されるバルブのバルブタイミングを変更する可変機構と、前記各回転体の一方に設けられたピンと、前記各回転体の他方に設けられて前記ピンが嵌入する凹部と、前記ピンが前記凹部に嵌入する方向にこれを付勢する付勢部材と、前記ピンが前記凹部から抜脱する方向に前記ピンを付勢するための作動油が供給される解除室とを有し、前記解除室の油圧を低下させて前記ピンを前記凹部に嵌入することでバルブタイミングを特定時期に保持するロック状態と前記解除室の油圧を解除油圧まで上昇させて前記ピンを前記凹部から抜脱することでバルブタイミングを特定時期とは異なる時期に変更可能な解除状態とに切り替えられる保持機構と、前記進角室及び前記遅角室並びに前記解除室に対する作動油の給排状態を制御する油路制御部を有する油圧機構とを備える内燃機関の可変動弁装置であって、前記油圧機構は、作動油供給源の作動油を前記油路制御部に供給するとともに同油路制御部から前記進角室及び前記遅角室に対して作動油を選択的に供給する供給油路と、前記供給油路とは独立して設けられ前記油路制御部から前記解除室に作動油を供給する解除油路と、前記供給油路と前記解除油路とを連通し前記解除油圧より小さい油圧の作動油を前記解除室に供給する連通油路とを備える。 In order to achieve the above object, a variable valve operating apparatus for an internal combustion engine according to the present invention includes a first rotating body drivingly connected to a crankshaft, a driving shaft connected to a camshaft, and the same as the first rotating body. A second rotating body that rotates around the rotation axis of the first rotating body, and an advance chamber and a retard chamber that are defined by the first rotating body and the second rotating body, A variable mechanism that changes the valve timing of the valve that is driven to open and close by the camshaft by relatively rotating each rotating body by hydraulic pressure that is selectively supplied to the retard chamber; A pin provided on one side, a recess provided on the other of the rotating bodies and into which the pin fits, a biasing member for biasing the pin in a direction to fit into the recess, and the pin serving as the recess For urging the pin in the direction of withdrawal from A release chamber to which dynamic oil is supplied, and lowering the hydraulic pressure of the release chamber and fitting the pin into the recess to release the lock timing and the hydraulic pressure of the release chamber to hold the valve timing at a specific time A holding mechanism capable of switching the valve timing to a release state that can be changed to a time different from a specific time by raising the pressure to a hydraulic pressure and removing the pin from the recess; and the advance chamber, the retard chamber, and the A variable valve operating apparatus for an internal combustion engine comprising a hydraulic mechanism having an oil passage control unit that controls a supply / discharge state of the hydraulic oil with respect to the release chamber, wherein the hydraulic mechanism supplies hydraulic oil from a hydraulic oil supply source to the oil passage. A supply oil passage that supplies the control oil to the advance chamber and the retard chamber from the oil passage control portion and the oil passage control portion; From the road controller to the release chamber Comprising a release oil passage for supplying hydraulic oil, and a communicating oil passage for supplying the oil supply passage and said release oil passage and a small hydraulic pressure of the hydraulic fluid from the release oil pressure communicates with the release chamber.
 上記構成によれば、保持機構がロック状態にあって、油路制御部により解除室及び解除油路から作動油が排出される排出状態となっている場合であっても、これら解除油路及び解除室には供給油路から連通油路を通じて解除油圧よりも小さい油圧の作動油が供給される。このため、保持機構をロック状態に維持しつつも、解除油路や解除室の内部に残存する作動油の量を増大させることができる。したがって、保持機構をロック状態から解除状態に切り替える解除条件が成立し、油路制御部から解除油路を介して解除室に作動油が供給され始めると解除室は速やかに油密状態となって同解除室の油圧が速やかに上昇するようになる。そして、このように保持機構の解除条件が成立した場合には解除室の油圧を速やかに上昇させることができるため、保持機構をロック状態から解除状態に切り替える際の応答性を向上させることができる。 According to the above configuration, even when the holding mechanism is in the locked state and the oil passage control unit is in a discharge state in which the hydraulic oil is discharged from the release chamber and the release oil passage, The release chamber is supplied with hydraulic oil having a lower hydraulic pressure than the release hydraulic pressure from the supply oil passage through the communication oil passage. For this reason, it is possible to increase the amount of hydraulic oil remaining in the release oil passage and the release chamber while maintaining the holding mechanism in the locked state. Therefore, when the release condition for switching the holding mechanism from the locked state to the released state is satisfied and hydraulic oil starts to be supplied from the oil passage control unit to the release chamber via the release oil passage, the release chamber quickly becomes oil-tight. The hydraulic pressure in the release chamber rises quickly. When the release condition of the holding mechanism is satisfied in this way, the hydraulic pressure in the release chamber can be quickly increased, so that the responsiveness when switching the holding mechanism from the locked state to the released state can be improved. .
 ・上記連通油路は、前記供給油路において前記作動油供給源から前記油路制御部に至るまでの部分と前記解除油路とを連通することが好ましい。
 供給油路にあって油路制御部から進角室又は遅角室に至るまでの部分における作動油の油圧は、バルブタイミングを進角させるか、遅角させるか、あるいは現在のタイミングのまま保持するか、といったバルブタイミングの制御要求によってその都度異なるものとなる。これに対して、供給油路にあって作動油供給源から油路制御部に至るまでの部分における作動油の油圧は、こうしたバルブタイミングの制御要求に依存することがないため、連通油路を通じて解除油路や解除室に安定して作動油を供給することができる。このため、上述した構成によれば、解除油路や解除室の内部に好適に作動油を残存させることができ、保持機構の応答性を一層向上させることができるようになる。
-It is preferable that the said communicating oil path connects the part from the said hydraulic oil supply source to the said oil path control part in the said supply oil path, and the said cancellation | release oil path.
The hydraulic pressure of the hydraulic oil in the part of the supply oil path from the oil path control unit to the advance chamber or retard chamber is advanced, retarded, or kept at the current timing. It depends on the valve timing control request such as whether or not. On the other hand, the hydraulic pressure of the hydraulic oil in the part from the hydraulic oil supply source to the oil path control unit in the supply oil path does not depend on the control timing of such valve timing, The hydraulic oil can be stably supplied to the release oil passage and the release chamber. For this reason, according to the structure mentioned above, hydraulic fluid can remain suitably in the inside of a cancellation | release oil path or a cancellation | release chamber, and the responsiveness of a holding mechanism can be improved further.
 ・上記保持機構は、バルブタイミングが前記特定時期よりも進角側に変化することを規制する第1の保持機構と、バルブタイミングが前記特定時期よりも遅角側に変化することを規制する第2の保持機構とを含み、前記第1の保持機構及び前記第2の保持機構が協働してバルブタイミングを最進角時期と最遅角時期との間の中間時期である前記特定時期に保持するものであり、前記解除油路は、前記解除室として前記第1の保持機構に設けられた第1の解除室と前記解除室として前記第2の保持機構に設けられた第2の解除室との双方に作動油を供給するものであることが好ましい。 The holding mechanism includes a first holding mechanism that restricts the valve timing from changing to the advance side with respect to the specific time, and a first holding mechanism that restricts the valve timing from changing to the retard side from the specific time. 2 holding mechanism, and the first holding mechanism and the second holding mechanism cooperate to set the valve timing to the specific time which is an intermediate time between the most advanced timing and the most retarded timing. The release oil passage is a first release chamber provided in the first holding mechanism as the release chamber and a second release provided in the second holding mechanism as the release chamber. It is preferable to supply hydraulic oil to both the chamber.
 このように第1の保持機構及び第2の保持機構が協働してバルブタイミングを最進角時期と最遅角時期との間の中間時期である特定時期にバルブタイミングを保持する保持機構を備える構成では、単一の保持機構によってバルブタイミングを特定時期に保持する構成と比較して、保持機構をロック状態から解除状態に切り替える際に、ピンが凹部から抜脱しやすくなる。すなわち、カム軸に作用する交番トルクによってバルブタイミングが遅角側に変化しようとしているときには、第1の保持機構のピンが凹部から抜脱しやすくなる。一方、カム軸に作用する交番トルクによってバルブタイミングが進角側に変化しようとしているときには、第2の保持機構のピンが凹部から抜脱しやすくなる。ただし、このように第1の解除室及び第2の解除室といった複数の解除室を有する構成では、それら解除室の総容積が増大する他、解除油路から第1の解除室と第2の解除室との双方に作動油を供給する必要があることから解除油路の容積も増大することとなる。このため、上述したような解除条件の成立時において解除室及び解除油路に残存する作動油の量が少ないことに起因する保持機構の応答性低下が一層顕在化する傾向にある。しかしながら、上述した構成によれば、こうした傾向を有する可変動弁装置であっても、保持機構をロック状態から解除状態に切り替える際の応答性を向上させることができる。 As described above, the first holding mechanism and the second holding mechanism cooperate to hold the valve timing at a specific timing which is an intermediate timing between the most advanced timing and the most retarded timing. In the configuration provided, the pin can be easily pulled out of the recess when the holding mechanism is switched from the locked state to the released state as compared with a configuration in which the valve timing is held at a specific time by a single holding mechanism. That is, when the valve timing is about to change to the retard side due to the alternating torque acting on the camshaft, the pin of the first holding mechanism is easily pulled out of the recess. On the other hand, when the valve timing is about to change to the advance side due to the alternating torque acting on the camshaft, the pin of the second holding mechanism is easily pulled out of the recess. However, in the configuration having a plurality of release chambers such as the first release chamber and the second release chamber in this way, the total volume of these release chambers is increased and the first release chamber and the second release chamber are released from the release oil passage. Since it is necessary to supply hydraulic oil to both the release chamber, the volume of the release oil path is also increased. For this reason, when the release conditions as described above are satisfied, the responsiveness of the holding mechanism tends to be further reduced due to the small amount of hydraulic oil remaining in the release chamber and the release oil passage. However, according to the above-described configuration, even when the variable valve operating apparatus has such a tendency, it is possible to improve the responsiveness when the holding mechanism is switched from the locked state to the released state.
 ・上記保持機構は、前記カム軸に作用する交番トルクにより前記各回転体を相対回転させることによりバルブタイミングを前記特定時期よりも遅角側の時期から同特定時期まで段階的に進角させるラチェット式自律進角機構を含むものであり、前記保持機構は前記進角室及び前記遅角室と大気空間とを連通する大気連通路をさらに有し、前記ピンは、前記大気連通路を開放又は遮断する開閉弁を兼ねるものであり、前記解除室の各油圧の低下に伴い前記ピンは前記大気連通路を開放するものであることが好ましい。 The holding mechanism is a ratchet that advances the valve timing stepwise from a timing retarded from the specific timing to the specific timing by relatively rotating the rotating bodies with an alternating torque acting on the camshaft. The holding mechanism further includes an atmospheric communication path that communicates the advance chamber and the retard chamber with the atmospheric space, and the pin opens the atmospheric communication path or It also serves as an on-off valve that shuts off, and it is preferable that the pin opens the atmosphere communication path as the hydraulic pressure in the release chamber decreases.
 機関停止時に、中間時期である特定時期にバルブタイミングが保持されなかった場合には、バルブタイミングが最遅角時期になった状態で第1の回転体及び第2の回転体は停止する。そして、次の機関始動時には、カム軸に対して交番トルクが作用するため、これに伴う各回転体の相対回転を利用したラチェット式自律進角機構を通じてバルブタイミングを特定時期にまで進角させることが可能である。ただし、このように、機関始動時に第1の回転体及び第2の回転体を相対回転させるためには、機関停止後に進角室及び遅角室から作動油が排出されて各油室の油圧が十分低下していることが望ましい。 If the valve timing is not maintained at a specific time that is an intermediate time when the engine is stopped, the first rotating body and the second rotating body are stopped in a state where the valve timing is at the most retarded time. At the next engine start, an alternating torque acts on the camshaft, so the valve timing is advanced to a specific time through a ratchet type autonomous advance mechanism that uses the relative rotation of each rotating body. Is possible. However, in this way, in order to relatively rotate the first rotating body and the second rotating body when the engine is started, the hydraulic oil is discharged from the advance chamber and the retard chamber after the engine is stopped, and the oil pressure of each oil chamber is It is desirable that is sufficiently lowered.
 上記構成では、保持機構は、進角室及び遅角室と大気空間とを連通する大気連通路をさらに有し、解除室の油圧低下に伴ってピンはこの大気連通路を開放する。したがって、機関停止後に解除室に対する作動油の供給が停止されて各油圧が低下すると、大気連通路を通じて進角室及び遅角室に対して大気が導入される。これにより進角室及び遅角室から作動油が迅速にそれぞれ排出されると、機関始動時にカム軸に作用する交番トルクにより第1の回転体及び第2の回転体が相対回転しやすくなり、バルブタイミングを迅速に特定時期にまで進角させることができる。 In the above configuration, the holding mechanism further includes an atmospheric communication path that communicates the advance chamber and the retard chamber with the atmospheric space, and the pin opens the atmospheric communication path as the hydraulic pressure in the release chamber decreases. Accordingly, when the supply of hydraulic oil to the release chamber is stopped after the engine is stopped and each hydraulic pressure is reduced, the atmosphere is introduced into the advance chamber and the retard chamber through the atmosphere communication path. As a result, when the hydraulic oil is quickly discharged from the advance chamber and the retard chamber, the first rotating body and the second rotating body easily rotate relative to each other due to the alternating torque acting on the camshaft when the engine is started. The valve timing can be rapidly advanced to a specific time.
 ・本発明の一態様では、前記進角室及び前記遅角室と大気空間とを連通する大気連通路と、同大気連通路を開放又は遮断する開閉弁と、前記大気連通路を遮断する方向に前記開閉弁を付勢するための作動油が供給される開閉弁用油室とを有し、前記回転軸の周方向において前記保持機構とは異なる位置に設けられた大気開放機構とをさらに備え、前記解除油路は前記解除室に加えて前記開閉弁用油室に作動油を供給するものである。 In one aspect of the present invention, an atmospheric communication passage that communicates the advance chamber and the retard chamber with the atmospheric space, an on-off valve that opens or closes the atmospheric communication passage, and a direction that blocks the atmospheric communication passage An on-off valve oil chamber to which hydraulic oil for energizing the on-off valve is supplied, and an atmosphere release mechanism provided at a position different from the holding mechanism in the circumferential direction of the rotating shaft. The release oil passage supplies hydraulic oil to the on-off valve oil chamber in addition to the release chamber.
 機関停止時に、中間時期である特定時期にバルブタイミングが保持されなかった場合には、バルブタイミングが最遅角時期になった状態で第1の回転体及び第2の回転体は停止する。そして、次の機関始動時には、カム軸に対して交番トルクが作用するため、これに伴う各回転体の相対回転を利用したラチェット式自律進角機構を通じてバルブタイミングを特定時期にまで進角させることが可能である。ただし、このように、機関始動時に第1の回転体及び第2の回転体を相対回転させるためには、機関停止後に進角室及び遅角室から作動油が排出されて各油室の油圧が十分低下していることが望ましい。 If the valve timing is not maintained at a specific time that is an intermediate time when the engine is stopped, the first rotating body and the second rotating body are stopped in a state where the valve timing is at the most retarded time. At the next engine start, an alternating torque acts on the camshaft, so the valve timing is advanced to a specific time through a ratchet type autonomous advance mechanism that uses the relative rotation of each rotating body. Is possible. However, in this way, in order to relatively rotate the first rotating body and the second rotating body when the engine is started, the hydraulic oil is discharged from the advance chamber and the retard chamber after the engine is stopped, and the oil pressure of each oil chamber is It is desirable that is sufficiently lowered.
 上記構成では、進角室及び遅角室と大気空間とを連通する大気連通路と、同大気連通路を開放又は遮断する開閉弁と、大気連通路を遮断する方向に開閉弁を付勢するための作動油が供給される開閉弁用油室とを有する大気開放機構をさらに備えている。また、この大気開放機構は、回転軸の周方向において保持機構とは異なる位置に設けられている。したがって、機関停止後に開閉弁用油室に対する作動油の供給が停止されて油圧が低下すると、大気連通路を通じて進角室及び遅角室に対して大気が導入される。これにより進角室及び遅角室から作動油が排出されると、機関始動時にカム軸に作用する交番トルクにより第1の回転体及び第2の回転体が相対回転しやすくなり、バルブタイミングを迅速に特定時期にまで進角させることができる。 In the above configuration, the atmospheric communication passage that communicates the advance chamber and the retard chamber with the atmospheric space, the open / close valve that opens or closes the atmospheric communication passage, and the open / close valve that biases the open / close valve in a direction that blocks the atmospheric communication passage. And an open / close valve oil chamber to which hydraulic oil is supplied. Further, the air release mechanism is provided at a position different from the holding mechanism in the circumferential direction of the rotation shaft. Therefore, when the supply of the hydraulic oil to the on-off valve oil chamber is stopped after the engine is stopped and the hydraulic pressure is lowered, the atmosphere is introduced into the advance chamber and the retard chamber through the atmosphere communication passage. As a result, when the hydraulic oil is discharged from the advance chamber and the retard chamber, the first rotating body and the second rotating body easily rotate relative to each other due to the alternating torque acting on the camshaft when the engine is started. You can quickly advance to a specific time.
 ただし、このように大気開放機構を備えた構成では、上述した保持機構の解除室に加えて大気開放機構の開閉弁用油室を有するため、それら解除室及び開閉弁用油室の総容積が増大する他、解除室に加えて開閉弁用油室に対しても解除油路から作動油を供給する必要があることから解除油路の容積も増大することとなる。このため、上述したような解除条件の成立時において解除室及び解除油路に残存する作動油の量が少ないことに起因する保持機構の応答性低下が、さらにより一層顕在化する傾向にある。しかしながら、上述した構成によれば、こうした傾向を有する可変動弁装置であっても、保持機構をロック状態から解除状態に切り替える際の応答性を向上させることができる。 However, in the configuration provided with the air release mechanism as described above, since the release chamber of the air release mechanism is provided in addition to the release chamber of the holding mechanism described above, the total volume of the release chamber and the oil chamber for the open / close valve is In addition to the increase, since it is necessary to supply hydraulic oil from the release oil passage to the on-off valve oil chamber in addition to the release chamber, the volume of the release oil passage also increases. For this reason, when the release condition as described above is satisfied, a decrease in the responsiveness of the holding mechanism due to a small amount of hydraulic oil remaining in the release chamber and the release oil passage tends to become even more apparent. However, according to the above-described configuration, even when the variable valve operating apparatus has such a tendency, it is possible to improve the responsiveness when the holding mechanism is switched from the locked state to the released state.
本発明の実施形態にかかる内燃機関の可変動弁装置及びこれを備える内燃機関を示す概略構成図。BRIEF DESCRIPTION OF THE DRAWINGS The schematic block diagram which shows the variable valve operating apparatus of the internal combustion engine concerning embodiment of this invention, and an internal combustion engine provided with the same. 同可変動弁装置の可変機構について、そのスプロケットを取り外した状態でスプロケット側からカバー側を見た内部構造を示す端面図。The end view which shows the internal structure which looked at the cover side from the sprocket side in the state which removed the sprocket about the variable mechanism of the variable valve apparatus. 図2のA-A線に沿う断面構造を示す断面図。FIG. 3 is a cross-sectional view showing a cross-sectional structure along the line AA in FIG. 2. 図2のB-B線に沿う断面構造を示す断面図。FIG. 3 is a cross-sectional view showing a cross-sectional structure along the line BB in FIG. 2. 油圧機構の作動油通路の構成について示す概略図。Schematic shown about the structure of the hydraulic-fluid channel | path of a hydraulic mechanism. オイルコントロールバルブを通じて可変機構、保持機構、及び大気開放機構にそれぞれ供給される作動油の量とオイルコントロールバルブのストロークとの関係について説明する図。The figure explaining the relationship between the quantity of the hydraulic fluid each supplied to a variable mechanism, a holding mechanism, and an air release mechanism through an oil control valve, and the stroke of an oil control valve. オイルコントロールバルブが第3のモード、第4のモード、第5のモードに設定されているときの進角保持機構及び大気開放機構の状態を説明する断面図であって、(a)は進角保持機構の断面図、(b)は大気開放機構の断面図。It is sectional drawing explaining the state of an advance angle holding | maintenance mechanism and an atmospheric release mechanism when an oil control valve is set to the 3rd mode, the 4th mode, and the 5th mode, (a) is an advance angle Sectional drawing of a holding mechanism, (b) is sectional drawing of an air release mechanism. 機関停止中又は保持機構がロック状態であるときの進角保持機構及び大気開放機構の状態を説明する断面図であって、(a)は保持機構がロック状態にあるときの進角保持機構の断面構造を示す断面図、(b)は保持機構がロック状態になく機関停止されたときの進角保持機構の断面構造を示す断面図、(c)は保持機構がロック状態にあるとき及び機関停止中における大気開放機構の断面構造を示す断面図。It is sectional drawing explaining the state of an advance angle holding mechanism and an air release mechanism when an engine is stopped or a holding mechanism is locked, (a) is an advance angle holding mechanism when the holding mechanism is in a locked state. A sectional view showing a sectional structure, (b) is a sectional view showing a sectional structure of the advance holding mechanism when the holding mechanism is not locked and the engine is stopped, and (c) is a sectional view showing when the holding mechanism is in the locked state and the engine. Sectional drawing which shows the cross-section of the air release mechanism during a stop. 図2のB-B線に沿う断面構造を平面上に展開して模式的に示すものであって、(a)~(d)は、機関始動時においてバルブタイミングが最遅角時期から特定時期まで進角する過程を順に示す断面図。FIG. 3 schematically shows a cross-sectional structure taken along line BB in FIG. 2 on a plane, in which (a) to (d) show a valve timing from a most retarded timing to a specific timing when the engine is started. Sectional drawing which shows the process of advancing to the order. 可変動弁装置における作動油の給排状態とオイルコントロールバルブの各モードとの関係、並びに可変機構、保持機構、及び大気開放機構の状態とオイルコントロールバルブの各モードとの関係を示す図。The figure which shows the relationship between the supply / exhaust state of the hydraulic fluid in a variable valve operating apparatus, and each mode of an oil control valve, and the relationship between the state of a variable mechanism, a holding mechanism, and an air release mechanism, and each mode of an oil control valve. (a)は従来技術の可変機構の内部構造を示す端面図であり、(b)は(a)のC-C線に沿う断面構造を示す断面図。(A) is an end view showing the internal structure of the variable mechanism of the prior art, (b) is a cross-sectional view showing a cross-sectional structure taken along line CC of (a).
 以下、図1~図10を参照して、本発明を内燃機関の吸気バルブのバルブタイミングを変更する可変動弁装置として具体化した一実施形態を説明する。
 図1に示すように、内燃機関10の気筒内に往復動可能に収容されたピストン11には、その往復運動を回転運動に変換するクランク軸12が連結されている。また、内燃機関10の上部には、吸気バルブ21を開閉する吸気用のカム軸22と、排気バルブ23を開閉する排気用のカム軸24とが設けられている。
Hereinafter, an embodiment in which the present invention is embodied as a variable valve operating apparatus that changes the valve timing of an intake valve of an internal combustion engine will be described with reference to FIGS. 1 to 10.
As shown in FIG. 1, a crankshaft 12 that converts a reciprocating motion into a rotational motion is connected to a piston 11 that is accommodated in a cylinder of the internal combustion engine 10 so as to be able to reciprocate. Further, an intake camshaft 22 that opens and closes the intake valve 21 and an exhaust camshaft 24 that opens and closes the exhaust valve 23 are provided in the upper part of the internal combustion engine 10.
 一方、内燃機関10の下部には、作動油を貯留するオイルパン14が取り付けられるとともに、クランク軸12の回転力により駆動されてオイルパン14の作動油を組み上げるオイルポンプ13が設けられている。このオイルポンプ13が作動油供給源として機能する。 On the other hand, an oil pan 14 that stores hydraulic oil is attached to the lower part of the internal combustion engine 10, and an oil pump 13 that is driven by the rotational force of the crankshaft 12 to assemble the hydraulic oil of the oil pan 14 is provided. This oil pump 13 functions as a hydraulic oil supply source.
 可変動弁装置20は、カム軸22の先端に設けられて吸気バルブ21のバルブタイミングを変更する可変機構25と、最遅角時期と最進角時期との間の特定の中間時期(以下、「特定時期」と称する)にバルブタイミングを保持する保持機構26と、可変動弁装置20に設けられた各油室の油圧を制御する油圧機構90とを備えている。なお、可変機構25のスプロケット31は、図示しないタイミングチェーンを介して、クランク軸12と駆動連結されている。スプロケット31は、可変機構25の扁平な筒状のハウジング32の一方の開口を塞ぐようにハウジング32に取り付けられており、可変機構25のカバー30は、スプロケット31が設けられている側とは反対側のハウジング32の開口を塞ぐように設けられている。 The variable valve operating device 20 is provided at the tip of the camshaft 22 to change the valve timing of the intake valve 21 and a specific intermediate timing (hereinafter referred to as the most advanced timing). And a hydraulic mechanism 90 that controls the hydraulic pressure of each oil chamber provided in the variable valve operating apparatus 20. The sprocket 31 of the variable mechanism 25 is drivingly connected to the crankshaft 12 through a timing chain (not shown). The sprocket 31 is attached to the housing 32 so as to block one opening of the flat cylindrical housing 32 of the variable mechanism 25. The cover 30 of the variable mechanism 25 is opposite to the side on which the sprocket 31 is provided. The side housing 32 is provided so as to close the opening.
 油圧機構90は、オイルコントロールバルブ(以下、「OCV」と称する)91と作動油通路90Aとを備えている。OCV91は、可変動弁装置20に設けられた各油室に対する作動油の給排状態を制御する。また、作動油通路90Aは、オイルパン14の作動油を各油室に供給する複数の油路、及び各油室から作動油をオイルパン14に戻す複数の油路から構成される。 The hydraulic mechanism 90 includes an oil control valve (hereinafter referred to as “OCV”) 91 and a hydraulic oil passage 90A. The OCV 91 controls the supply / discharge state of the hydraulic oil to / from each oil chamber provided in the variable valve operating apparatus 20. The hydraulic oil passage 90 </ b> A includes a plurality of oil passages that supply the hydraulic oil of the oil pan 14 to the oil chambers, and a plurality of oil passages that return the hydraulic oil from the oil chambers to the oil pan 14.
 内燃機関10には、同内燃機関10の運転状態を検出するための各種センサが設けられている。例えば、こうした各種センサとして、クランク軸12の近傍に設けられてクランク角及び機関回転速度を検出するクランク角センサ15、カム軸22の近傍に設けられて同カム軸22の位置を検出するカム角センサ16等がある。これら各種センサから出力される信号は、内燃機関10の各種装置を総括的に制御するECU17に取り込まれる。 The internal combustion engine 10 is provided with various sensors for detecting the operating state of the internal combustion engine 10. For example, as such various sensors, a crank angle sensor 15 provided in the vicinity of the crankshaft 12 for detecting the crank angle and the engine rotational speed, and a cam angle provided in the vicinity of the camshaft 22 for detecting the position of the camshaft 22. There are sensors 16 and the like. Signals output from these various sensors are taken into the ECU 17 that comprehensively controls various devices of the internal combustion engine 10.
 ECU17は、演算装置、駆動回路の他、各種制御の演算結果やその演算に用いられる関数マップ等を記憶する記憶装置等を備えている。そして、このECU17は、各種センサからの出力信号に基づき内燃機関10の運転状態を検出するとともに、各種制御を実行する。こうした制御の一つであるバルブタイミング可変制御では、機関運転状態に基づいてOCV91のスプール位置(OCVストローク)を適宜変更することにより、吸気バルブ21のバルブタイミングを機関運転状態に応じた時期に制御する。 ECU17 is provided with the memory | storage device etc. which memorize | store the arithmetic result of various controls, the function map used for the calculation, etc. other than an arithmetic unit and a drive circuit. The ECU 17 detects the operating state of the internal combustion engine 10 based on output signals from various sensors and executes various controls. In such variable valve timing control, the valve timing of the intake valve 21 is controlled at a timing according to the engine operating state by appropriately changing the spool position (OCV stroke) of the OCV 91 based on the engine operating state. To do.
 次に、図2を参照して、可変機構25の構成について説明する。同図2は、スプロケット31を取り外した状態で、スプロケット31側からカバー30側を見た可変機構25の内部構造を示している。上述したスプロケット31、ハウジング32、カバー30は図示しないボルトによって互いに固定され、カム軸22の回転軸周りに一体回転する。これらカバー30、スプロケット31及びハウジング32は、クランク軸12に駆動連結された第1の回転体として機能する。なお、カム軸22及びハウジング32は、図2に示す回転方向RAに回転するものとする。 Next, the configuration of the variable mechanism 25 will be described with reference to FIG. FIG. 2 shows the internal structure of the variable mechanism 25 when the cover 30 is viewed from the sprocket 31 side with the sprocket 31 removed. The sprocket 31, the housing 32, and the cover 30 described above are fixed to each other by bolts (not shown) and rotate integrally around the rotation axis of the cam shaft 22. The cover 30, the sprocket 31, and the housing 32 function as a first rotating body that is drivingly connected to the crankshaft 12. The cam shaft 22 and the housing 32 are assumed to rotate in the rotation direction RA shown in FIG.
 ハウジング32には、その径方向内側に延びる3つの区画部35が設けられている。また、ハウジング32には、ハウジング32と同一の回転軸周りに回転するベーンロータ33がハウジング32に対して相対回動可能に収容されている。ベーンロータ33は、カム軸22に一体回転可能に連結されるボス33Aと、ボス33Aから径方向外側に突出する3つのベーン33Bを有している。ボス33Aは、センターボルト34によりカム軸22の端部に固定されている。そして、ハウジング32の各区画部35とベーンロータ33のボス33Aによって3つの収容室36が区画形成されるとともに、それぞれ収容室36は各ベーン33Bにより進角室37と遅角室38とに区画されている。なお、ベーンロータ33は、カム軸22に駆動連結された第2の回転体として機能する。 The housing 32 is provided with three partition portions 35 extending radially inward. The housing 32 accommodates a vane rotor 33 that rotates about the same rotation axis as the housing 32 so as to be rotatable relative to the housing 32. The vane rotor 33 includes a boss 33A coupled to the camshaft 22 so as to be integrally rotatable, and three vanes 33B projecting radially outward from the boss 33A. The boss 33 </ b> A is fixed to the end of the cam shaft 22 by a center bolt 34. Three compartments 36 are defined by the compartments 35 of the housing 32 and the bosses 33A of the vane rotor 33, and each compartment 36 is partitioned into an advance chamber 37 and a retard chamber 38 by the vanes 33B. ing. The vane rotor 33 functions as a second rotating body that is drivingly connected to the cam shaft 22.
 可変機構25には、バルブタイミングを特定時期に保持する保持機構26が設けられている。この特定時期は、バルブタイミングが機関始動に適した時期となるように設定されている。 The variable mechanism 25 is provided with a holding mechanism 26 that holds the valve timing at a specific time. This specific time is set so that the valve timing is suitable for starting the engine.
 保持機構26は、或る1つのベーン33B(図2では下のベーン33B)に設けられた進角保持機構50と、別の1つのベーン33B(図2では左上のベーン33B)に設けられた遅角保持機構70とを備えている。進角保持機構50は、バルブタイミングが特定時期よりも進角側に変化する方向にハウジング32とベーンロータ33とが相対回転することを規制する機能を有している。一方、遅角保持機構70は、バルブタイミングが特定時期よりも遅角する方向にハウジング32とベーンロータ33とが相対回転することを規制する機能を有している。また、進角保持機構50及び遅角保持機構70は、バルブタイミングを特定時期よりも遅角側の時期から特定時期まで段階的に進角させるラチェット式自律進角機構としても機能する。そして、これら進角保持機構50及び遅角保持機構70の協働によりバルブタイミングが特定時期に保持される。さらに、進角保持機構50には、進角室37及び遅角室38と大気空間とを連通させる大気開放機構60が設けられている。また、遅角保持機構70には、進角室37及び遅角室38と大気空間とを連通させる大気開放機構80が設けられている。 The holding mechanism 26 is provided in the advance angle holding mechanism 50 provided in one certain vane 33B (lower vane 33B in FIG. 2) and in another vane 33B (upper left vane 33B in FIG. 2). And a retard holding mechanism 70. The advance angle holding mechanism 50 has a function of restricting relative rotation of the housing 32 and the vane rotor 33 in the direction in which the valve timing changes to the advance side with respect to the specific time. On the other hand, the retard holding mechanism 70 has a function of restricting relative rotation of the housing 32 and the vane rotor 33 in a direction in which the valve timing is retarded from a specific timing. Further, the advance angle holding mechanism 50 and the retard angle holding mechanism 70 also function as a ratchet type autonomous advance angle mechanism that advances the valve timing stepwise from a timing that is behind the specific timing to a specific timing. The valve timing is held at a specific time by the cooperation of the advance angle holding mechanism 50 and the retard angle holding mechanism 70. Further, the advance angle holding mechanism 50 is provided with an atmosphere release mechanism 60 that allows the advance chamber 37 and the retard chamber 38 to communicate with the atmospheric space. The retard holding mechanism 70 is provided with an atmosphere release mechanism 80 that allows the advance chamber 37 and the retard chamber 38 to communicate with the atmospheric space.
 さらに、3つのベーン33Bのうち、進角保持機構50及び遅角保持機構70が設けられていない残り1つのベーン33B(図2では右上のベーン33B)には、進角室37及び遅角室38と大気空間とを連通させる大気開放機構40が設けられている。 Further, among the three vanes 33B, the remaining one vane 33B (the upper right vane 33B in FIG. 2) where the advance angle holding mechanism 50 and the retard angle holding mechanism 70 are not provided is included in the advance angle chamber 37 and the retard angle chamber. An air release mechanism 40 is provided for communicating the air with the air space.
 センターボルト34には、上述したOCV91が内蔵されている。そして、可変機構25には、OCV91から進角室37、遅角室38、保持機構26及び大気開放機構40の各油室に対して、ベーンロータ33の径方向に延びる複数の油路が設けられている。具体的には、進角油路95は、OCV91と進角室37とを連通する。遅角油路96は、OCV91と遅角室38とを連通する。また、第1の解除油路97Aは、OCV91と進角保持機構50の第1の解除室57とを連通する。第2の解除油路97Bは、OCV91と遅角保持機構70の第2の解除室77とを連通する。第3の解除油路97Cは、OCV91と大気開放機構40の第3の解除室44とを連通する。またOCV91は、進角室37及び遅角室38並びに解除室57,77,44に対する作動油の給排状態を制御する油路制御部として機能する。 The center bolt 34 incorporates the OCV 91 described above. The variable mechanism 25 is provided with a plurality of oil passages extending in the radial direction of the vane rotor 33 from the OCV 91 to the oil chambers of the advance chamber 37, the retard chamber 38, the holding mechanism 26, and the atmosphere release mechanism 40. ing. Specifically, the advance oil passage 95 communicates the OCV 91 and the advance chamber 37. The retard oil path 96 communicates the OCV 91 and the retard chamber 38. Further, the first release oil passage 97 </ b> A communicates the OCV 91 and the first release chamber 57 of the advance angle holding mechanism 50. The second release oil passage 97 </ b> B communicates the OCV 91 and the second release chamber 77 of the retard holding mechanism 70. The third release oil passage 97C communicates the OCV 91 and the third release chamber 44 of the atmosphere release mechanism 40. The OCV 91 functions as an oil passage control unit that controls the supply / discharge state of hydraulic oil to the advance chamber 37, the retard chamber 38, and the release chambers 57, 77, and 44.
 次に、図3を参照して、大気開放機構40の構成について説明する。なお、以下では、カム軸22の軸方向において可変機構25のカバー30が配置される側を「先端側ZA」とし、スプロケット31が配置される側を「基端側ZB」と称する。 Next, the configuration of the atmosphere release mechanism 40 will be described with reference to FIG. Hereinafter, the side where the cover 30 of the variable mechanism 25 is disposed in the axial direction of the cam shaft 22 is referred to as “front end side ZA”, and the side where the sprocket 31 is disposed is referred to as “base end side ZB”.
 大気開放機構40は、ベーン33Bにカム軸22の軸方向に延びるように形成されたベーン孔33Cに往復動可能に収容された有底円筒状の開閉ピン41と、開閉ピン41により開放又は遮断される大気連通路42と、作動油が供給又は排出される第3の解除室44とを備えている。 The air release mechanism 40 is opened or closed by a bottomed cylindrical open / close pin 41 accommodated in a vane hole 33C formed in the vane 33B so as to extend in the axial direction of the cam shaft 22 and a open / close pin 41. And a third release chamber 44 into which hydraulic oil is supplied or discharged.
 開閉ピン41は、ベーン孔33Cにおいて先端側ZA及び基端側ZBに往復動する。開閉ピン41は、ベーン孔33Cを、カバー30側の第3の解除室44と、スプロケット31側の第3のばね室45とに区画する。大気連通路42は、第3のばね室45、進角連通路46、遅角連通路47、及び大気開放通路48により構成される。第3のばね室45には、開閉ピン41を先端側ZAに付勢する第3のばね43が収容されている。また、進角連通路46は、第3のばね室45と進角室37とを連通する。遅角連通路47は、第3のばね室45と遅角室38とを連通する。大気開放通路48は、第3のばね室45と大気空間とを連通する。 The open / close pin 41 reciprocates in the vane hole 33C to the distal end side ZA and the proximal end side ZB. The opening / closing pin 41 divides the vane hole 33 </ b> C into a third release chamber 44 on the cover 30 side and a third spring chamber 45 on the sprocket 31 side. The atmosphere communication path 42 includes a third spring chamber 45, an advance communication path 46, a retard communication path 47, and an atmosphere release path 48. The third spring chamber 45 accommodates a third spring 43 that biases the open / close pin 41 toward the distal end side ZA. The advance communication passage 46 communicates the third spring chamber 45 and the advance chamber 37. The retard communication passage 47 communicates the third spring chamber 45 and the retard chamber 38. The air release passage 48 communicates the third spring chamber 45 and the air space.
 第3の解除室44には、第3の解除油路97Cを通じて作動油が供給又は排出される。そして、第3の解除室44の油圧に基づく付勢力により、開閉ピン41は基端側ZBに付勢される。スプロケット31に隣接する状態の開閉ピン41の外周面は、進角連通路46、遅角連通路47、及び大気開放通路48を閉鎖するため、これら通路を第3のばね室45に対して遮断する。一方、カバー30に隣接する状態の開閉ピン41の外周面は、進角連通路46、遅角連通路47、及び大気開放通路48を開放するため、これら通路を第3のばね室45に連通させる。このように開閉ピン41は、大気連通路42を開放又は遮断する開閉弁として機能し、第3の解除室44は、大気連通路42を遮断する方向に開閉ピン41を付勢するための作動油が供給される開閉弁用油室として機能する。 The hydraulic oil is supplied to or discharged from the third release chamber 44 through the third release oil passage 97C. The opening / closing pin 41 is urged toward the base end side ZB by the urging force based on the hydraulic pressure in the third release chamber 44. The outer peripheral surface of the open / close pin 41 in a state adjacent to the sprocket 31 closes the advance communication passage 46, the retard communication passage 47, and the air release passage 48, so that these passages are blocked from the third spring chamber 45. To do. On the other hand, the outer peripheral surface of the open / close pin 41 in a state adjacent to the cover 30 opens the advance communication passage 46, the retard communication passage 47, and the air release passage 48, so that these passages communicate with the third spring chamber 45. Let Thus, the open / close pin 41 functions as an open / close valve that opens or closes the atmosphere communication path 42, and the third release chamber 44 operates to urge the open / close pin 41 in a direction to close the atmosphere communication path 42. It functions as an oil chamber for an on-off valve to which oil is supplied.
 次に、図4を参照して、保持機構26の構成について説明する。図4は、左側に進角保持機構50を示し、右側に遅角保持機構70を示す。
 進角保持機構50は、第1のピン51と、第1のピン51が嵌入又は抜脱する第1の凹部53と、第1のピン51を先端側ZAに付勢する付勢部材としての第1のばね52と、作動油が供給又は排出される第1の解除室57とを備えている。第1のピン51、第1のばね52、第1の解除室57はいずれもベーン33Bに設けられている。一方、第1の凹部53はカバー30に形成されている。
Next, the configuration of the holding mechanism 26 will be described with reference to FIG. FIG. 4 shows the advance angle holding mechanism 50 on the left side and the retard angle holding mechanism 70 on the right side.
The advance holding mechanism 50 includes a first pin 51, a first recess 53 into which the first pin 51 is inserted or removed, and an urging member that urges the first pin 51 toward the distal end ZA. A first spring 52 and a first release chamber 57 into which hydraulic oil is supplied or discharged are provided. The first pin 51, the first spring 52, and the first release chamber 57 are all provided in the vane 33B. On the other hand, the first recess 53 is formed in the cover 30.
 第1のピン51は、有底円筒状に形成された外側ピン51Aと、外側ピン51Aの底板51Cを貫通しつつ外側ピン51Aの内側に配置された円柱状の内側ピン51Bとを備えている。外側ピン51Aは、ベーン33Bにカム軸22の軸方向に延びるように形成された空間としてのベーン孔56において、先端側ZA及び基端側ZBに往復動する。つまり外側ピン51Aは、ベーン孔56を、カバー30側の第1の解除室57と、スプロケット31側の第1のばね室58とに区画する。内側ピン51Bも同様に、ベーン孔56において先端側ZA及び基端側ZBに往復動し、さらに内側ピン51Bは、カバー30に隣接する状態ではベーン33Bの外部に突出して第1の凹部53に嵌入する。さらに、内側ピン51Bの外周には、外側ピン51Aの底板51Cに当接又は離間するように突出するフランジ状のストッパ51Dが形成されている。 The first pin 51 includes an outer pin 51A formed in a bottomed cylindrical shape, and a columnar inner pin 51B disposed inside the outer pin 51A while penetrating the bottom plate 51C of the outer pin 51A. . The outer pin 51A reciprocates to the distal end side ZA and the proximal end side ZB in a vane hole 56 as a space formed in the vane 33B so as to extend in the axial direction of the cam shaft 22. That is, the outer pin 51A partitions the vane hole 56 into a first release chamber 57 on the cover 30 side and a first spring chamber 58 on the sprocket 31 side. Similarly, the inner pin 51B reciprocates in the vane hole 56 to the distal end side ZA and the proximal end side ZB, and further, the inner pin 51B protrudes outside the vane 33B in a state adjacent to the cover 30 and enters the first recess 53. Insert. Further, a flange-like stopper 51D is formed on the outer periphery of the inner pin 51B so as to protrude so as to abut or separate from the bottom plate 51C of the outer pin 51A.
 第1の凹部53は、カバー30の周方向に沿って延びる円弧状をなしている。詳しくは、第1の凹部53の底面はカバー30の周方向に段を成しており、つまり第1の凹部53は、相対的に深さが浅く形成された第1の上段部54と、相対的に深さが深く形成された第1の下段部55とから構成されている。第1の上段部54は、第1の下段部55よりも遅角側に位置している。 The first recess 53 has an arc shape extending along the circumferential direction of the cover 30. Specifically, the bottom surface of the first recess 53 is stepped in the circumferential direction of the cover 30, that is, the first recess 53 includes a first upper step portion 54 formed with a relatively shallow depth, The first lower step portion 55 is formed with a relatively deep depth. The first upper stage portion 54 is located on the retard side with respect to the first lower stage portion 55.
 第1のばね室58には、第1のピン51を先端側ZAに付勢する第1のばね52が収容されている。この第1のばね52は、外側ピン51Aを先端側ZAに付勢する外側ばね52Aと、内側ピン51Bを先端側ZAに付勢する内側ばね52Bとの総称であり、外側ばね52Aと内側ばね52Bは互いに独立して配置されている。一方、第1の解除室57には、第1の解除油路97A(図2参照)を通じて作動油が供給される。この第1の解除室57に供給される作動油の圧力に基づく力により、第1のピン51は基端側ZBに付勢される。そして、第1の解除室57の油圧が第1の解除油圧P1まで達したときに、第1のピン51は第1の凹部53から抜脱する。 The first spring chamber 58 accommodates a first spring 52 that biases the first pin 51 toward the distal end side ZA. The first spring 52 is a general term for an outer spring 52A that biases the outer pin 51A toward the distal end ZA and an inner spring 52B that biases the inner pin 51B toward the distal end ZA. The outer spring 52A and the inner spring 52B are arrange | positioned mutually independently. On the other hand, hydraulic oil is supplied to the first release chamber 57 through the first release oil passage 97A (see FIG. 2). The first pin 51 is urged toward the base end side ZB by a force based on the pressure of the hydraulic oil supplied to the first release chamber 57. When the hydraulic pressure in the first release chamber 57 reaches the first release hydraulic pressure P1, the first pin 51 is removed from the first recess 53.
 進角保持機構50はさらに、進角室37及び遅角室38と大気空間とを連通する大気連通路62を有する大気開放機構60を備えている。大気連通路62は、上述した第1のばね室58と、第1のばね室58と進角室37とを連通する進角連通路66と、第1のばね室58と遅角室38とを連通する遅角連通路67と、第1のばね室58と大気空間とを連通する大気開放通路68とにより構成される。 The advance angle holding mechanism 50 further includes an atmosphere release mechanism 60 having an atmosphere communication path 62 that communicates the advance chamber 37 and the retard chamber 38 with the atmosphere space. The atmosphere communication passage 62 includes the first spring chamber 58, the advance communication passage 66 that communicates the first spring chamber 58 and the advance chamber 37, the first spring chamber 58, and the retard chamber 38. Are formed by a retard communication passage 67 that communicates with each other, and an air release passage 68 that communicates the first spring chamber 58 with the atmospheric space.
 上述した第1のピン51は、第1の凹部53に対して嵌入又は抜脱する機能を有する他、大気連通路62を開放又は遮断する開閉弁としても機能する。すなわち、第1のピン51は、基端側ZBに隣接しているときに、進角連通路66、遅角連通路67、及び大気開放通路68をその外周面で閉鎖するように構成されている。 The first pin 51 described above has a function of fitting or removing from the first recess 53, and also functions as an on-off valve that opens or shuts off the air communication path 62. That is, the first pin 51 is configured to close the advance communication passage 66, the retard communication passage 67, and the air release passage 68 at the outer peripheral surface when adjacent to the proximal end side ZB. Yes.
 図4の右側に示すように、遅角保持機構70は、第2のピン71と、第2のピン71が嵌入又は抜脱する第2の凹部73と、第2のピン71を先端側ZAに付勢する付勢部材としての第2のばね72と、作動油が供給又は排出される第2の解除室77とを備えている。第2のピン71、第2のばね72、第2の解除室77はいずれもベーン33Bに設けられている。一方、第2の凹部73はカバー30に形成されている。 As shown on the right side of FIG. 4, the retard holding mechanism 70 includes a second pin 71, a second recess 73 in which the second pin 71 is inserted or removed, and the second pin 71 on the distal side ZA. A second spring 72 as a biasing member that biases the hydraulic oil and a second release chamber 77 into which hydraulic oil is supplied or discharged. The second pin 71, the second spring 72, and the second release chamber 77 are all provided in the vane 33B. On the other hand, the second recess 73 is formed in the cover 30.
 第2のピン71は、有底円筒状に形成された外側ピン71Aと、外側ピン71Aの底板71Cを貫通しつつ外側ピン71Aの内側に配置された円柱状の内側ピン71Bとを備えている。外側ピン71Aは、ベーン33Bにカム軸22の軸方向に延びるように形成された空間としてのベーン孔76において、先端側ZA及び基端側ZBに往復動する。つまり外側ピン71Aは、ベーン孔76を、カバー30側の第2の解除室77と、スプロケット31側の第2のばね室78とに区画する。また、内側ピン71Bも同様に、ベーン孔76において先端側ZA及び基端側ZBに往復動し、さらに内側ピン71Bは、カバー30に隣接する状態ではベーン33Bの外部に突出して第2の凹部73に嵌入する。さらに、内側ピン71Bの外周には、外側ピン71Aの底板71Cに当接又は離間するように突出するフランジ状のストッパ71Dが形成されている。 The second pin 71 includes an outer pin 71A formed in a bottomed cylindrical shape, and a columnar inner pin 71B disposed inside the outer pin 71A while penetrating the bottom plate 71C of the outer pin 71A. . The outer pin 71A reciprocates to the distal end side ZA and the proximal end side ZB in a vane hole 76 as a space formed in the vane 33B so as to extend in the axial direction of the cam shaft 22. That is, the outer pin 71A partitions the vane hole 76 into a second release chamber 77 on the cover 30 side and a second spring chamber 78 on the sprocket 31 side. Similarly, the inner pin 71B reciprocates in the vane hole 76 to the distal end side ZA and the proximal end side ZB, and the inner pin 71B protrudes outside the vane 33B in a state adjacent to the cover 30 to form a second recess. 73. Further, a flange-like stopper 71D is formed on the outer periphery of the inner pin 71B so as to protrude so as to abut against or separate from the bottom plate 71C of the outer pin 71A.
 第2の凹部73は、カバー30の周方向に沿って延びる円弧状をなしている。詳しくは、第2の凹部73の底面は、カバー30の周方向に段を成しており、つまり第2の凹部73は、相対的に深さが浅く形成された第2の上段部74と、相対的に深さが深く形成された第2の下段部75とから構成されている。第2の上段部74は、第2の下段部75よりも遅角側に位置している。 The second recess 73 has an arc shape extending along the circumferential direction of the cover 30. Specifically, the bottom surface of the second recess 73 forms a step in the circumferential direction of the cover 30, that is, the second recess 73 is formed with a second upper step portion 74 formed with a relatively shallow depth. The second lower step 75 is formed with a relatively deep depth. The second upper stage portion 74 is located on the retard side with respect to the second lower stage portion 75.
 第2のばね室78には、第2のピン71を先端側ZAに付勢する第2のばね72が収容されている。この第2のばね72は、外側ピン71Aを先端側ZAに付勢する外側ばね72Aと、内側ピン71Bを先端側ZAに付勢する内側ばね72Bとの総称であり、外側ばね72Aと内側ばね72Bは互いに独立して配置されている。一方、第2の解除室77には、第2の解除油路97B(図2参照)を通じて作動油が供給される。この第2の解除室77に供給される作動油の圧力に基づく力により、第2のピン71は基端側ZBに付勢される。具体的には、第2の解除室77の油圧が第2の解除油圧P2まで達したときに、第2のピン71は第2の凹部73から抜脱する。 The second spring chamber 78 accommodates a second spring 72 that biases the second pin 71 toward the distal end side ZA. The second spring 72 is a generic term for an outer spring 72A that biases the outer pin 71A toward the distal end ZA and an inner spring 72B that biases the inner pin 71B toward the distal end ZA. The outer spring 72A and the inner spring 72B are arranged independently of each other. On the other hand, hydraulic oil is supplied to the second release chamber 77 through the second release oil passage 97B (see FIG. 2). Due to the force based on the pressure of the hydraulic oil supplied to the second release chamber 77, the second pin 71 is urged toward the base end side ZB. Specifically, when the hydraulic pressure in the second release chamber 77 reaches the second release hydraulic pressure P <b> 2, the second pin 71 is removed from the second recess 73.
 遅角保持機構70はさらに、進角室37及び遅角室38と大気空間とを連通する大気連通路82を有する大気開放機構80を備えている。大気連通路82は、上述した第2のばね室78と、第2のばね室78と進角室37とを連通する進角連通路86と、第2のばね室78と遅角室38とを連通する遅角連通路87と、第2のばね室78と大気空間とを連通する大気開放通路88とにより構成される。 The retard holding mechanism 70 further includes an atmosphere release mechanism 80 having an atmosphere communication passage 82 that communicates the advance chamber 37 and the retard chamber 38 with the atmosphere space. The air communication passage 82 includes the second spring chamber 78, the advance communication passage 86 that communicates the second spring chamber 78 and the advance chamber 37, the second spring chamber 78, and the retard chamber 38. Are formed by a retarded angle communication passage 87 that communicates with the second spring chamber 78 and an air release passage 88 that communicates between the second spring chamber 78 and the atmospheric space.
 上述した第2のピン71は、第2の凹部73に対して嵌入又は抜脱する機能を有する他、大気連通路82を開放又は遮断する開閉弁としても機能する。すなわち、第2のピン71は、基端側ZBに隣接しているときに、進角連通路86、遅角連通路87、及び大気開放通路88をその外周面で閉鎖するように構成されている。 The above-described second pin 71 has a function of fitting or removing from the second recess 73, and also functions as an on-off valve that opens or shuts off the air communication path 82. That is, the second pin 71 is configured to close the advance communication passage 86, the retard communication passage 87, and the air release passage 88 at the outer peripheral surface when adjacent to the base end side ZB. Yes.
 第1のピン51、第2のピン72、第1の凹部53の第1の上段部54及び第1の下段部55、並びに第2の凹部73の第2の上段部74及び第2の下段部75は、ラチェット式自律進角機構として機能する。すなわち、第1の凹部53の第1の上段部54及び第1の下段部55は、第1のピン51がこれら段部54,55にそれぞれ嵌入したときに同ピン51の遅角側への変位をそれぞれ規制する。一方、第2の凹部73の第2の上段部74及び第2の下段部75は、第2のピン71がこれら段部74,75にそれぞれ嵌入したときに同ピン71の遅角側への変位をそれぞれ規制する。そして、第1のピン51が第1の下段部55に嵌入するとともに第2のピン71が第2の下段部75に嵌入するときには、第1の下段部55の進角側の端部により第1のピン51の進角側への変位が規制され、併せて第2の下段部75の遅角側の端部により第2のピン71の遅角側への変位が規制される。これにより、バルブタイミングが特定時期で保持される。なお、図4は、保持機構26がロック状態であって、バルブタイミングが特定時期で保持された状態を示している。 The first pin 51, the second pin 72, the first upper step 54 and the first lower step 55 of the first recess 53, and the second upper step 74 and the second lower step of the second recess 73 The unit 75 functions as a ratchet type autonomous advance mechanism. That is, the first upper step portion 54 and the first lower step portion 55 of the first recess 53 are moved toward the retard side of the pin 51 when the first pin 51 is fitted into the step portions 54 and 55, respectively. Each displacement is regulated. On the other hand, the second upper step portion 74 and the second lower step portion 75 of the second recess 73 are moved toward the retard side of the pin 71 when the second pin 71 is fitted into the step portions 74 and 75, respectively. Each displacement is regulated. When the first pin 51 is fitted into the first lower step portion 55 and the second pin 71 is fitted into the second lower step portion 75, the first lower step portion 55 is moved by the end of the advance side. The displacement of the first pin 51 toward the advance side is restricted, and at the same time, the displacement of the second pin 71 toward the retard side is restricted by the end of the second lower step 75 on the retard side. Thereby, the valve timing is held at a specific time. FIG. 4 shows a state where the holding mechanism 26 is in a locked state and the valve timing is held at a specific time.
 次に、図5を参照して、油圧機構90の作動油通路90Aの構成について説明する。作動油通路90Aは、供給油路92、進角油路95、遅角油路96、解除油路97、連通油路98、及び排出油路99により構成される。なお、以下の説明において、オイルポンプ13から供給された作動油がOCV91に供給されるまでに流通する各油路を、OCV91の「上流側」と称し、OCV91を通じた作動油がOCV91から各油室に供給されるまでに流通する各油路を、OCV91の「下流側」と称する。 Next, the configuration of the hydraulic oil passage 90A of the hydraulic mechanism 90 will be described with reference to FIG. The hydraulic oil passage 90 </ b> A includes a supply oil passage 92, an advance oil passage 95, a retard oil passage 96, a release oil passage 97, a communication oil passage 98, and a discharge oil passage 99. In the following description, each oil passage through which the hydraulic oil supplied from the oil pump 13 is supplied to the OCV 91 is referred to as “upstream side” of the OCV 91, and the hydraulic oil through the OCV 91 is supplied from the OCV 91 to each oil. Each oil passage that circulates until it is supplied to the chamber is referred to as the “downstream side” of the OCV 91.
 供給油路92は、OCV91の上流側に設けられて、オイルポンプ13とOCV91とを連通している。また、この供給油路92は、分岐点92Dにおいて、OCV91の進遅角供給ポート93Pに接続された第1の供給油路93と、OCV91の解除用供給ポート94Pに接続された第2の供給油路94とに分岐している。 The supply oil path 92 is provided on the upstream side of the OCV 91 and communicates with the oil pump 13 and the OCV 91. In addition, the supply oil passage 92 has a first supply oil passage 93 connected to the advance / retard angle supply port 93P of the OCV 91 and a second supply connected to the release supply port 94P of the OCV 91 at the branch point 92D. Branches to an oil passage 94.
 進角油路95は、OCV91の下流側に設けられて、OCV91の進角ポート95Pと進角室37とを連通している。遅角油路96は、OCV91の下流側に設けられて、OCV91の遅角ポート96Pと遅角室38とを連通している。なお、上述した第1の供給油路93、進角油路95、及び遅角油路96が、オイルポンプ13から作動油をOCV91に供給するととともに、OCV91から進角室37及び遅角室38に対して作動油を選択的に供給する供給油路として機能する。 The advance oil passage 95 is provided on the downstream side of the OCV 91, and communicates the advance port 95 </ b> P of the OCV 91 and the advance chamber 37. The retard oil passage 96 is provided on the downstream side of the OCV 91, and communicates the retard port 96 </ b> P of the OCV 91 with the retard chamber 38. The first supply oil passage 93, the advance oil passage 95, and the retard oil passage 96 described above supply hydraulic oil from the oil pump 13 to the OCV 91, and the advance chamber 37 and the retard chamber 38 from the OCV 91. It functions as a supply oil passage which supplies hydraulic oil selectively to.
 解除油路97は、上述した第1の供給油路93、進角油路95及び遅角油路96とは独立してOCV91の下流側に設けられて、第1の解除室57、第2の解除室77、及び第3の解除室44と、OCV91の解除用ポート97Pとをそれぞれ連通している。この解除油路97は、第1の解除室57に接続された第1の解除油路97Aと、第2の解除室77に接続された第2の解除油路97Bと、第3の解除室44に接続された第3の解除油路97Cとに、分岐点97Dにおいて分岐している。 The release oil passage 97 is provided on the downstream side of the OCV 91 independently of the first supply oil passage 93, the advance oil passage 95, and the retard oil passage 96 described above, and the first release chamber 57, the second The release chamber 77 and the third release chamber 44 communicate with the release port 97P of the OCV 91, respectively. The release oil passage 97 includes a first release oil passage 97A connected to the first release chamber 57, a second release oil passage 97B connected to the second release chamber 77, and a third release chamber. Branching to a third release oil passage 97C connected to 44 at a branch point 97D.
 連通油路98は、解除油路97における分岐点97Dの上流側と第1の供給油路93とを連通する。なお、この連通油路98の流路抵抗は、上述した第1の解除油圧P1より小さい油圧の作動油を第1の解除室57に供給するとともに、第2の解除油圧P2より小さい油圧の作動油を第2の解除室77に供給することを許容するように予め設定されている。詳しくは、保持機構26がロック状態にあるときに各解除室57,77から排出される作動油の量、各ばね52,72の付勢力、各解除室57,77の容積、及び第1の供給油路93を流通する作動油の圧力等を考慮した上で、適切な量の作動油が解除室57,77に供給されるように、連通油路98の流路抵抗が設定されている。 The communication oil path 98 communicates the upstream side of the branch point 97 </ b> D in the release oil path 97 and the first supply oil path 93. The flow path resistance of the communication oil path 98 is such that the hydraulic oil having a hydraulic pressure smaller than the first release hydraulic pressure P1 is supplied to the first release chamber 57 and the hydraulic pressure smaller than the second release hydraulic pressure P2 is operated. It is preset to allow oil to be supplied to the second release chamber 77. Specifically, when the holding mechanism 26 is in the locked state, the amount of hydraulic oil discharged from each release chamber 57, 77, the urging force of each spring 52, 72, the volume of each release chamber 57, 77, and the first The flow resistance of the communication oil path 98 is set so that an appropriate amount of hydraulic oil is supplied to the release chambers 57 and 77 in consideration of the pressure of the hydraulic oil flowing through the supply oil path 93 and the like. .
 排出油路99は、OCV91の排出ポート99Pに接続されるとともに、オイルパン14まで延びている。
 次に、図6を参照して、OCV91を通じて可変機構25、保持機構26、及び大気開放機構40にそれぞれ供給される作動油の量とOCVストロークとの関係について説明する。図6の縦軸は、作動油の流量を示し、図6の横軸は、OCVストロークを示す。
The discharge oil passage 99 is connected to the discharge port 99P of the OCV 91 and extends to the oil pan 14.
Next, the relationship between the amount of hydraulic oil supplied to the variable mechanism 25, the holding mechanism 26, and the atmosphere release mechanism 40 through the OCV 91 and the OCV stroke will be described with reference to FIG. The vertical axis in FIG. 6 indicates the flow rate of the hydraulic oil, and the horizontal axis in FIG. 6 indicates the OCV stroke.
 OCVストロークの制御を通じてOCV91が第1のモードから第5のモードの各モード間で切り替えられて、上述したOCV91の各ポート間の開口面積が変化すると、作動油通路90Aにおける作動油の給排状態が変更される。 When the OCV 91 is switched between the first mode to the fifth mode through the control of the OCV stroke, and the opening area between the ports of the OCV 91 changes, the hydraulic oil supply / discharge state in the hydraulic oil passage 90A. Is changed.
 第1のモードでは、進角ポート95Pと進遅角供給ポート93Pとが連通される。これにより、第1の供給油路93から進角油路95に対して作動油が供給される(「93→95」として図示)。一方、遅角ポート96Pと排出ポート99Pとが連通される。これにより、遅角油路96から排出油路99に対して作動油が排出される(「96→99」)。さらに、解除用ポート97Pと排出ポート99Pとが連通される。これにより、解除油路97から排出油路99に対して作動油が排出される(「97→99」)。この第1のモードは、機関始動時に設定される。 In the first mode, the advance port 95P and the advance / retard supply port 93P are communicated. As a result, hydraulic fluid is supplied from the first supply oil passage 93 to the advance oil passage 95 (shown as “93 → 95”). On the other hand, the retard port 96P and the discharge port 99P are communicated. As a result, the hydraulic oil is discharged from the retard oil passage 96 to the discharge oil passage 99 (“96 → 99”). Further, the release port 97P and the discharge port 99P communicate with each other. As a result, the hydraulic oil is discharged from the release oil passage 97 to the discharge oil passage 99 (“97 → 99”). This first mode is set when the engine is started.
 第2のモードでは、進角ポート95Pと進遅角供給ポート93Pとが連通される。これにより、第1の供給油路93から進角油路95に対して作動油が供給される(「93→95」)。なお、これら進角ポート95Pと進遅角供給ポート93Pとの開口面積は、上述した第1のモードと比較して小さい面積に設定されるため、第1のモードよりも少ない量の作動油が、第1の供給油路93から進角油路95に対して供給される。一方、遅角ポート96Pと排出ポート99Pとが連通される。これにより、遅角油路96から排出油路99に対して作動油が排出される(「96→99」)。さらに、解除用ポート97Pと排出ポート99Pとが連通される。これにより、解除油路97から排出油路99に対して作動油が排出される(「97→99」)。この第2のモードは、機関運転を停止するとき、及びアイドル運転中に設定される。 In the second mode, the advance port 95P communicates with the advance / retard supply port 93P. As a result, hydraulic fluid is supplied from the first supply oil passage 93 to the advance oil passage 95 (“93 → 95”). In addition, since the opening area of these advance port 95P and advance / retard supply port 93P is set to a smaller area as compared with the first mode described above, a smaller amount of hydraulic oil than in the first mode is used. The first supply oil passage 93 is supplied to the advance oil passage 95. On the other hand, the retard port 96P and the discharge port 99P are communicated. As a result, the hydraulic oil is discharged from the retard oil passage 96 to the discharge oil passage 99 (“96 → 99”). Further, the release port 97P and the discharge port 99P communicate with each other. As a result, the hydraulic oil is discharged from the release oil passage 97 to the discharge oil passage 99 (“97 → 99”). The second mode is set when engine operation is stopped and during idle operation.
 第3のモードでは、進角ポート95Pと進遅角供給ポート93Pとが連通される。これにより、第1の供給油路93から進角油路95に対して作動油が供給される(「93→95」)。一方、遅角ポート96Pと排出ポート99Pとが連通される。これにより、遅角油路96から排出油路99に対して作動油が排出される(「96→99」)。さらに、解除用ポート97Pと解除用供給ポート94Pとが連通される。これにより、第2の供給油路94から解除油路97に対して作動油が供給される(「94→97」)。この第3のモードは、バルブタイミングを進角させるときに設定される。 In the third mode, the advance port 95P and the advance / retard supply port 93P are communicated with each other. As a result, hydraulic fluid is supplied from the first supply oil passage 93 to the advance oil passage 95 (“93 → 95”). On the other hand, the retard port 96P and the discharge port 99P are communicated. As a result, the hydraulic oil is discharged from the retard oil passage 96 to the discharge oil passage 99 (“96 → 99”). Further, the release port 97P and the release supply port 94P communicate with each other. As a result, the hydraulic oil is supplied from the second supply oil passage 94 to the release oil passage 97 (“94 → 97”). This third mode is set when the valve timing is advanced.
 第4のモードでは、進角ポート95P及び遅角ポート96Pが閉鎖状態に維持される。これにより、進角油路95及び遅角油路96に対する作動油の供給及び排出はいずれも停止される。一方、解除用ポート97Pと解除用供給ポート94Pとが連通される。これにより、第2の供給油路94から解除油路97に対して作動油が供給される(「94→97」)。この第4のモードは、バルブタイミングを目標時期に保持するとき、及び保持機構26をロック状態から解除状態に切り替えるときに設定される。 In the fourth mode, the advance port 95P and the retard port 96P are maintained in the closed state. As a result, the supply and discharge of hydraulic oil to and from the advance oil passage 95 and the retard oil passage 96 are stopped. On the other hand, the release port 97P communicates with the release supply port 94P. As a result, the hydraulic oil is supplied from the second supply oil passage 94 to the release oil passage 97 (“94 → 97”). The fourth mode is set when the valve timing is held at the target time and when the holding mechanism 26 is switched from the locked state to the released state.
 第5のモードでは、進角ポート95Pと排出ポート99Pとが連通される。これにより、進角油路95から排出油路99に対して作動油が排出される(「95→99」)。また、遅角ポート96Pと進遅角供給ポート93Pとが連通される。これにより、第1の供給油路93から遅角油路96に対して作動油が供給される(「93→96」)。さらに、解除用ポート97Pと解除用供給ポート94Pとが連通される。これにより、第2の供給油路94から解除油路97に対して作動油が供給される(「94→97」)。この第5のモードは、バルブタイミングを遅角させるときに設定される。 In the fifth mode, the advance port 95P and the discharge port 99P are communicated. As a result, the hydraulic oil is discharged from the advance oil passage 95 to the discharge oil passage 99 (“95 → 99”). Further, the retard port 96P and the advance / retard supply port 93P are communicated with each other. As a result, hydraulic fluid is supplied from the first supply oil passage 93 to the retarded oil passage 96 (“93 → 96”). Further, the release port 97P and the release supply port 94P communicate with each other. As a result, the hydraulic oil is supplied from the second supply oil passage 94 to the release oil passage 97 (“94 → 97”). This fifth mode is set when the valve timing is retarded.
 次に、上述した可変機構25、保持機構26、及び油圧機構90を備えた可変動弁装置20の作用について説明する。
 機関運転に伴いクランク軸12が回転するとその駆動力がタイミングチェーン(図示略)を介して可変機構25に伝達され、この可変機構25とともに、カム軸22が回転する。これにより、吸気バルブ21はカム軸22に設けられたカム(図示略)により開閉される。
Next, the operation of the variable valve apparatus 20 including the variable mechanism 25, the holding mechanism 26, and the hydraulic mechanism 90 described above will be described.
When the crankshaft 12 rotates as the engine operates, the driving force is transmitted to the variable mechanism 25 via a timing chain (not shown), and the camshaft 22 rotates together with the variable mechanism 25. Thus, the intake valve 21 is opened and closed by a cam (not shown) provided on the cam shaft 22.
 また、可変機構25の進角室37及び遅角室38に対する作動油の供給又は排出がOCV91を通じて制御されると、進角室37及び遅角室38の油圧に基づき収容室36でベーン33Bが変位する。これにより、スプロケット31及びハウジング32に対するベーンロータ33の相対回転位置、すなわちクランク軸12に対するカム軸22の相対回転位置が変更され、吸気バルブ21のバルブタイミングが変更される。 Further, when the supply or discharge of the hydraulic oil to or from the advance chamber 37 and the retard chamber 38 of the variable mechanism 25 is controlled through the OCV 91, the vane 33 </ b> B is formed in the storage chamber 36 based on the hydraulic pressure of the advance chamber 37 and the retard chamber 38. Displace. Thereby, the relative rotational position of the vane rotor 33 with respect to the sprocket 31 and the housing 32, that is, the relative rotational position of the cam shaft 22 with respect to the crankshaft 12 is changed, and the valve timing of the intake valve 21 is changed.
 すなわち、図6に示すように、OCV91が第3のモードに設定されると、可変機構25の進角室37に対して作動油が供給される一方で遅角室38の作動油が排出される。これにより、ベーンロータ33がハウジング32に対して進角方向に相対回転すると、バルブタイミングが進角される。そして、ベーン33Bが遅角室38の進角側の内壁に当接すると、バルブタイミングは最進角時期となる。 That is, as shown in FIG. 6, when the OCV 91 is set to the third mode, the working oil is supplied to the advance chamber 37 of the variable mechanism 25 while the retard chamber 38 is discharged. The Thus, when the vane rotor 33 rotates relative to the housing 32 in the advance direction, the valve timing is advanced. When the vane 33B comes into contact with the inner wall on the advance side of the retard chamber 38, the valve timing becomes the most advanced timing.
 一方、OCV91が第5のモードに設定されると、遅角室38に対して作動油が供給される一方で進角室37の作動油が排出される。これにより、ベーンロータ33がハウジング32に対して遅角方向に相対回転すると、バルブタイミングは遅角される。そして、ベーン33Bが進角室37の遅角側の内壁に当接すると、バルブタイミングは最遅角時期となる。 On the other hand, when the OCV 91 is set to the fifth mode, the working oil is supplied to the retarding chamber 38 while the working oil in the advance chamber 37 is discharged. Thereby, when the vane rotor 33 rotates relative to the housing 32 in the retarding direction, the valve timing is retarded. When the vane 33B comes into contact with the inner wall on the retard side of the advance chamber 37, the valve timing becomes the most retarded timing.
 また、OCV91が第4のモードに設定されると、進角室37及び遅角室38からの作動油の供給及び排出がいずれも停止される。これにより、ベーンロータ33とハウジング32との相対回転が停止し、バルブタイミングは所定の目標時期に保持される。 Further, when the OCV 91 is set to the fourth mode, the supply and discharge of the hydraulic oil from the advance chamber 37 and the retard chamber 38 are stopped. As a result, the relative rotation between the vane rotor 33 and the housing 32 stops, and the valve timing is maintained at a predetermined target time.
 なお、OCV91が第3のモード、第4のモード、又は第5のモードにあって、進角室37及び遅角室38の油圧の制御によりバルブタイミングが最遅角時期と最進角時期との間で変更されるときには、第1のピン51及び第2のピン71はベーン33B内に収容された状態(解除状態)に維持されている。 When the OCV 91 is in the third mode, the fourth mode, or the fifth mode, the valve timing is set to the most retarded angle timing and the most advanced angle timing by controlling the hydraulic pressure in the advance chamber 37 and the retard chamber 38. The first pin 51 and the second pin 71 are maintained in the state of being accommodated in the vane 33B (released state).
 次に、図7を参照して、OCV91が第3のモード、第4のモード、又は第5のモードに設定されているときの進角保持機構50、遅角保持機構70、及び大気開放機構40の状態を説明する。なお、遅角保持機構70は進角保持機構50と同様の構造を有しているため、図示を省略するとともに説明を簡略化する(以下、同様)。 Next, referring to FIG. 7, the advance angle holding mechanism 50, the retard angle holding mechanism 70, and the atmosphere release mechanism when the OCV 91 is set to the third mode, the fourth mode, or the fifth mode. 40 states will be described. Since the retard holding mechanism 70 has the same structure as the advance holding mechanism 50, the illustration is omitted and the description is simplified (the same applies hereinafter).
 図7(a)に示すように、進角保持機構50では、第1の解除室57に対して第1の解除油路97Aを通じて作動油が供給されている。これにより、第1の解除室57の油圧に基づく付勢力が第1のばね52の付勢力(外側ばね52Aの付勢力と内側ばね52Aの付勢力との合力)よりも大きくなるように維持されている。すなわち、第1の解除室57の油圧が第1の解除油圧P1よりも大きくなるように維持されている。このとき、外側ピン51Aの底板51Cが内側ピン51Bのストッパ51Dに当接して、外側ピン51Aとともに内側ピン51Bが基端側ZBに移動しているため、内側ピン51Bが第1の凹部53から抜脱している。また、進角連通路66、遅角連通路67、及び大気開放通路68は、外側ピン51Aにより閉鎖されて、大気連通路62が遮断されている。そのため、第1のばね室58と進角室37との間、第1のばね室58と遅角室38との間、及び第1のばね室58と大気空間との間における空気の流れが遮断されている。 As shown in FIG. 7A, in the advance angle holding mechanism 50, hydraulic oil is supplied to the first release chamber 57 through the first release oil passage 97A. Thereby, the biasing force based on the hydraulic pressure of the first release chamber 57 is maintained to be larger than the biasing force of the first spring 52 (the resultant force of the biasing force of the outer spring 52A and the biasing force of the inner spring 52A). ing. That is, the hydraulic pressure in the first release chamber 57 is maintained so as to be larger than the first release hydraulic pressure P1. At this time, the bottom plate 51C of the outer pin 51A is in contact with the stopper 51D of the inner pin 51B, and the inner pin 51B is moved to the base end side ZB together with the outer pin 51A. It has been pulled out. Further, the advance communication passage 66, the retard communication passage 67, and the atmosphere release passage 68 are closed by the outer pin 51A, and the atmosphere communication passage 62 is blocked. Therefore, the flow of air between the first spring chamber 58 and the advance chamber 37, between the first spring chamber 58 and the retard chamber 38, and between the first spring chamber 58 and the atmospheric space is as follows. Blocked.
 一方、遅角保持機構70では、第2の解除室77に対して第2の解除油路97Bを通じて作動油が供給されることにより、第2の解除室77の油圧が第2の解除油圧P2よりも大きくなるように維持されている。これにより、内側ピン71Bが第2の凹部73から抜脱している。また、進角連通路86、遅角連通路87、及び大気開放通路88は、外側ピン71Aにより閉鎖されて、大気連通路82が遮断されている。そのため、第2のばね室78と進角室37との間、第2のばね室78と遅角室38との間、及び第2のばね室78と大気空間との間における空気の流れが遮断されている。 On the other hand, in the retard holding mechanism 70, hydraulic oil is supplied to the second release chamber 77 through the second release oil passage 97B, whereby the hydraulic pressure in the second release chamber 77 is changed to the second release hydraulic pressure P2. Is maintained to be larger. As a result, the inner pin 71 </ b> B is removed from the second recess 73. Further, the advance communication path 86, the retard communication path 87, and the atmosphere release path 88 are closed by the outer pin 71A, and the atmosphere communication path 82 is blocked. Therefore, the flow of air between the second spring chamber 78 and the advance chamber 37, between the second spring chamber 78 and the retard chamber 38, and between the second spring chamber 78 and the atmospheric space is reduced. Blocked.
 また、図7(b)に示すように、大気開放機構40では、第3の解除室44に対して第3の解除油路97Cを通じて作動油が供給されることにより、第3の解除室44の油圧に基づく付勢力が第3のばね43の付勢力よりも大きくなるように維持されている。これにより、開閉ピン41が基端側ZBに移動しているため、進角連通路46、遅角連通路47、大気開放通路48が開閉ピン41により閉鎖されて、大気連通路42が遮断されている。そのため、第3のばね室45と進角室37との間、及び第3のばね室45と遅角室38との間、第3のばね室45と大気空間との間における空気の流れが遮断されている。 Further, as shown in FIG. 7B, in the atmosphere release mechanism 40, the working oil is supplied to the third release chamber 44 through the third release oil passage 97 </ b> C, whereby the third release chamber 44. The urging force based on the hydraulic pressure is maintained to be larger than the urging force of the third spring 43. As a result, the open / close pin 41 has moved to the base end side ZB, so that the advance communication path 46, the retard communication path 47, and the atmosphere release path 48 are closed by the open / close pin 41, and the atmosphere communication path 42 is blocked. ing. Therefore, the flow of air between the third spring chamber 45 and the advance chamber 37, between the third spring chamber 45 and the retard chamber 38, and between the third spring chamber 45 and the atmospheric space is reduced. Blocked.
 次に、先の図4及び図8(a)を併せて参照して、保持機構26がロック状態に切り替わるとき、及び保持機構26がロック状態にあるときの進角保持機構50及び遅角保持機構70の状態を説明する。 Next, referring to FIG. 4 and FIG. 8A, the advance angle holding mechanism 50 and the retard angle holding when the holding mechanism 26 is switched to the locked state and when the holding mechanism 26 is in the locked state. The state of the mechanism 70 will be described.
 内燃機関10がアイドル運転に移行するときには、保持機構26がロック状態に切り替わるようにOCV91が制御される。すなわち、バルブタイミングが特定時期よりも遅角側にある場合には、OCV91が第2のモードに設定される。一方、バルブタイミングが特定時期よりも進角側にある場合には、OCV91が一旦第5のモードに設定されて、バルブタイミングが遅角される。その後、OCV91が第2のモードに設定される。これにより、バルブタイミングが徐々に進角するとともに、第1の解除室57、第2の解除室77、及び第3の解除室44からそれぞれ作動油が排出される。その結果、バルブタイミングが特定時期になるときに第1のピン51が第1の凹部53に嵌入するとともに、第2のピン71が第2の凹部73に嵌入し、保持機構26がロック状態になる。 When the internal combustion engine 10 shifts to idle operation, the OCV 91 is controlled so that the holding mechanism 26 is switched to the locked state. That is, when the valve timing is on the retard side with respect to the specific timing, the OCV 91 is set to the second mode. On the other hand, when the valve timing is more advanced than the specific timing, the OCV 91 is once set to the fifth mode, and the valve timing is retarded. Thereafter, the OCV 91 is set to the second mode. As a result, the valve timing is gradually advanced, and hydraulic oil is discharged from the first release chamber 57, the second release chamber 77, and the third release chamber 44, respectively. As a result, when the valve timing reaches a specific time, the first pin 51 is fitted into the first recess 53, the second pin 71 is fitted into the second recess 73, and the holding mechanism 26 is locked. Become.
 詳しくは、先の図4及び図8(a)に示すように、進角保持機構50の第1の解除室57から第1の解除油路97Aを通じて作動油が排出されて、第1の解除室57の油圧が第1の解除油圧P1よりも低下すると、第1のばね52で付勢された第1のピン51が第1の凹部53(第1の下段部55)に嵌入する。併せて、遅角保持機構70の第2の解除室77から作動油が排出されて、第2の解除室77の油圧が第2の解除油圧P2よりも低下すると、先の図4に示すように、第2のばね72で付勢された第2のピン71が第2の凹部73(第2の下段部75)に嵌入する。これにより、第1のピン51の進角側への変位が第1の下段部55の進角側の端部で規制されるとともに、第2のピン71の遅角側への変位が第2の下段部75の遅角側の端部で規制されて、バルブタイミングが特定時期に保持される。 Specifically, as shown in FIGS. 4 and 8A, the hydraulic oil is discharged from the first release chamber 57 of the advance holding mechanism 50 through the first release oil passage 97A, and the first release is performed. When the hydraulic pressure in the chamber 57 is lower than the first release hydraulic pressure P1, the first pin 51 biased by the first spring 52 is fitted into the first recess 53 (first lower step portion 55). At the same time, when hydraulic oil is discharged from the second release chamber 77 of the retard holding mechanism 70 and the hydraulic pressure in the second release chamber 77 is lower than the second release hydraulic pressure P2, as shown in FIG. In addition, the second pin 71 urged by the second spring 72 is fitted into the second recess 73 (second lower step 75). Thereby, the displacement of the first pin 51 toward the advance side is restricted by the end portion of the first lower step 55 on the advance side, and the displacement of the second pin 71 toward the retard side is the second. The valve timing is held at a specific time by being regulated at the retarded end of the lower step 75.
 また、図8(a)に示すように、保持機構26がロック状態にあるときには、進角保持機構50において、第1のピン51である外側ピン51A及び内側ピン51Bの双方が先端側ZAに移動している。したがって、進角連通路66、遅角連通路67、及び大気開放通路68は外側ピン51Aにより閉鎖されることなく、大気連通路62が開放されることとなる。したがって、大気開放機構60において、第1のばね室58と進角室37との間、第1のばね室58と遅角室38との間、及び第1のばね室58と大気空間との間における空気の流れが許容される(大気開放状態)。一方、遅角保持機構70においても、進角連通路86、遅角連通路87、及び大気開放通路88は外側ピン71Aにより閉鎖されることなく、大気連通路82が開放されることとなる。したがって、大気開放機構80において、第2のばね室78と進角室37との間、第2のばね室78と遅角室38との間、及び第2のばね室78と大気空間との間における空気の流れが許容される(大気開放状態)。 Further, as shown in FIG. 8A, when the holding mechanism 26 is in the locked state, in the advance holding mechanism 50, both the outer pin 51A and the inner pin 51B, which are the first pins 51, are on the distal end side ZA. Has moved. Therefore, the advance communication path 66, the retard communication path 67, and the atmosphere release path 68 are not closed by the outer pin 51A, and the atmosphere communication path 62 is opened. Therefore, in the atmosphere release mechanism 60, the first spring chamber 58 and the advance chamber 37, the first spring chamber 58 and the retard chamber 38, and the first spring chamber 58 and the atmosphere space are separated. Air flow between them is allowed (open to the atmosphere). On the other hand, also in the retard holding mechanism 70, the advance communication path 86, the retard communication path 87, and the atmosphere release path 88 are not closed by the outer pin 71A, and the atmosphere communication path 82 is opened. Accordingly, in the atmosphere release mechanism 80, the second spring chamber 78 and the advance chamber 37, the second spring chamber 78 and the retard chamber 38, and the second spring chamber 78 and the atmosphere space are separated. Air flow between them is allowed (open to the atmosphere).
 次に、図8(b)を参照して、保持機構26がロック状態に切り替わらなかった状態で機関停止が実行されたとき(以下、「機関異常停止時」と称する)における、進角保持機構50及び遅角保持機構70の状態を説明する。機関停止後に、進角保持機構50の第1の解除室57に対する作動油の供給が停止されて第1の解除室57の油圧が低下すると、外側ピン51Aが外側ばね52Aにより先端側ZAに付勢されて移動する。これにより、大気開放機構60において、第1のばね室58と進角室37との間、第1のばね室58と遅角室38との間、及び第1のばね室58と大気空間との間における空気の流れが許容される(大気開放状態)。一方、遅角保持機構70においても、第2の解除室77の油圧の低下に伴い、大気開放機構80において、第2のばね室78と進角室37との間、第2のばね室78と遅角室38との間、及び第2のばね室78と大気空間との間における空気の流れが許容される(大気開放状態)。 Next, referring to FIG. 8B, the advance angle holding mechanism when the engine stop is executed in a state where the holding mechanism 26 has not been switched to the locked state (hereinafter referred to as “when the engine is abnormally stopped”). 50 and the state of the retard holding mechanism 70 will be described. After the engine is stopped, when the hydraulic oil supply to the first release chamber 57 of the advance angle holding mechanism 50 is stopped and the hydraulic pressure in the first release chamber 57 decreases, the outer pin 51A is attached to the distal end ZA by the outer spring 52A. Moved with force. Thereby, in the atmospheric release mechanism 60, the first spring chamber 58 and the advance chamber 37, the first spring chamber 58 and the retard chamber 38, and the first spring chamber 58 and the atmospheric space are provided. The air flow between the two is allowed (open to the atmosphere). On the other hand, also in the retard holding mechanism 70, the second spring chamber 78 is interposed between the second spring chamber 78 and the advance chamber 37 in the atmosphere release mechanism 80 as the hydraulic pressure in the second release chamber 77 decreases. And the retardation chamber 38 and between the second spring chamber 78 and the atmospheric space are allowed to flow (atmospheric release state).
 次に、図8(c)を参照して、保持機構26がロック状態にあるとき、及び機関停止中における大気開放機構40の状態を説明する。
 保持機構26がロック状態に切り替わるときには、OCV91が第2のモードに設定されて解除用ポート97Pと排出ポート99Pが連通されるため、第3の解除室44から作動油が排出される。したがって、保持機構26がロック状態にあるときには、大気開放機構40において開閉ピン41が先端側ZAに移動している。これにより、進角連通路46、遅角連通路47、及び大気開放通路48は開閉ピン41により閉鎖されることなく、大気連通路42が開放されることとなる。したがって、大気開放機構40において、第3のばね室45と進角室37との間、第3のばね室45と遅角室38との間、及び第3のばね室45と大気空間との間における空気の流れが許容される(大気開放状態)。
Next, the state of the atmosphere release mechanism 40 when the holding mechanism 26 is in a locked state and when the engine is stopped will be described with reference to FIG.
When the holding mechanism 26 is switched to the locked state, the OCV 91 is set to the second mode and the release port 97P and the discharge port 99P communicate with each other, so that the hydraulic oil is discharged from the third release chamber 44. Therefore, when the holding mechanism 26 is in the locked state, the open / close pin 41 is moved to the distal end side ZA in the air release mechanism 40. As a result, the advance communication path 46, the retard communication path 47, and the atmosphere release path 48 are not closed by the open / close pin 41, and the atmosphere communication path 42 is opened. Therefore, in the atmosphere release mechanism 40, the third spring chamber 45 and the advance chamber 37, the third spring chamber 45 and the retard chamber 38, and the third spring chamber 45 and the atmosphere space are separated. Air flow between them is allowed (open to the atmosphere).
 また、機関停止中には、機関停止に伴い第3の解除室44に対する作動油の供給が停止されて油圧が低下するため、開閉ピン41が先端側ZAに移動している。これにより、大気開放機構40は大気開放状態となる。 In addition, when the engine is stopped, the supply of hydraulic oil to the third release chamber 44 is stopped and the hydraulic pressure is lowered with the stop of the engine, so that the open / close pin 41 is moved to the tip side ZA. Thereby, the atmosphere release mechanism 40 will be in an atmosphere release state.
 なお、上述したように、アイドル運転中は保持機構26がロック状態に切り替えられるため、一旦アイドル運転を経由して機関運転が停止される通常の機関停止時には、バルブタイミングは特定時期に保持された状態、すなわち保持機構26がロック状態にある状態で機関運転が停止される。そして、機関運転中にバルブタイミングを特定時期から解除する解除条件が成立すると、保持機構26が解除状態に切り替えられる。具体的には、OCV91が第4のモードに設定されることにより、第1の解除室57、第2の解除室77、及び第3の解除室44に対して、解除油路97を通じて作動油がそれぞれ供給される。これにより、第1のピン51及び第2のピン71が第1の凹部53及び第2の凹部73からそれぞれ抜脱する。その後、上述したように、バルブタイミングが機関運転状態に適した所望の時期となるように、OCV91の制御が実行される。 As described above, since the holding mechanism 26 is switched to the locked state during the idle operation, the valve timing is held at a specific time when the engine is stopped once the engine operation is temporarily stopped via the idle operation. The engine operation is stopped in a state where the holding mechanism 26 is in a locked state. And if the cancellation | release condition which cancels | releases valve timing from specific time is satisfied during engine operation, the holding mechanism 26 will be switched to a cancellation | release state. Specifically, when the OCV 91 is set to the fourth mode, the hydraulic oil is supplied to the first release chamber 57, the second release chamber 77, and the third release chamber 44 through the release oil passage 97. Are supplied respectively. Thereby, the 1st pin 51 and the 2nd pin 71 are extracted from the 1st recessed part 53 and the 2nd recessed part 73, respectively. Thereafter, as described above, the control of the OCV 91 is executed so that the valve timing becomes a desired time suitable for the engine operating state.
 これに対し、上述した機関異常停止時には、内燃機関10の停止が完了するまでのベーンロータ33とハウジング32との相対回転によりバルブタイミングが最遅角時期まで変化する。これは、進角室37及び遅角室38への作動油の供給停止に伴い、バルブタイミングが遅角する方向に向かってクランク軸12とカム軸22とが相対回転するためである。そして、その後の機関始動時には、カム軸22に対して作用する交番トルクにより、バルブタイミングが遅角側及び進角側に変化するようにベーンロータ33とハウジング32とがその向きを変化させつつ相対回転するようになる。詳しくは、カム軸22に対して、バルブタイミングが進角する方向に作用する負トルクと、バルブタイミングが遅角する方向に作用する正トルクとが交互に作用する。 On the other hand, at the time of the abnormal engine stop described above, the valve timing changes to the most retarded timing due to the relative rotation of the vane rotor 33 and the housing 32 until the stop of the internal combustion engine 10 is completed. This is because the crankshaft 12 and the camshaft 22 rotate relative to each other in the direction in which the valve timing is retarded as the supply of hydraulic oil to the advance chamber 37 and the retard chamber 38 is stopped. Then, when the engine is subsequently started, the relative rotation of the vane rotor 33 and the housing 32 changes their directions so that the valve timing is changed to the retard side and the advance side by the alternating torque acting on the camshaft 22. Will come to do. Specifically, a negative torque acting in the direction in which the valve timing is advanced and a positive torque acting in the direction in which the valve timing is retarded alternately act on the cam shaft 22.
 ここで、内燃機関10の始動性を確保する上では、クランキング時に保持機構26がロック状態にあってバルブタイミングが特定時期にあることが望ましい。そこで、本実施形態では、上述したラチェット式自律進角機構が設けられている。これにより、カム軸22に作用する交番トルクに基づいてハウジング32とベーンロータ33とを相対回転させることによりバルブタイミングが最遅角時期にある状態から同バルブタイミングを特定時期まで段階的に順次進角させ、保持機構26を迅速にロック状態に切り替えるようにしている。 Here, in order to ensure the startability of the internal combustion engine 10, it is desirable that the holding mechanism 26 is in a locked state at the time of cranking and the valve timing is at a specific time. Therefore, in the present embodiment, the ratchet type autonomous advance angle mechanism described above is provided. As a result, the housing 32 and the vane rotor 33 are rotated relative to each other based on the alternating torque acting on the camshaft 22 to gradually advance the valve timing step by step from the state where the valve timing is at the most retarded timing to the specific timing. The holding mechanism 26 is quickly switched to the locked state.
 次に、図9を参照して、機関始動時においてバルブタイミングが最遅角時期から特定時期まで進角する過程について説明する。図9(a)~(d)は、バルブタイミングが最遅角時期から特定時期にまで進角する過程について、順に示したものである。なお、図9(a)~(d)では、進角保持機構50の動作状態と遅角保持機構70の動作状態との関係を容易に把握できるよう、第1のピン51と第2のピン71とを同一のベーン33Bから互いに逆向きに突出するように示しているとともに、第1の凹部53と第2の凹部73とを軸方向に向き合うように示している。 Next, the process in which the valve timing is advanced from the most retarded timing to the specific timing when the engine is started will be described with reference to FIG. FIGS. 9A to 9D sequentially show the process in which the valve timing is advanced from the most retarded timing to the specific timing. 9A to 9D, the first pin 51 and the second pin are shown so that the relationship between the operating state of the advance holding mechanism 50 and the operating state of the retard holding mechanism 70 can be easily grasped. 71 is shown to protrude from the same vane 33B in opposite directions, and the first concave portion 53 and the second concave portion 73 are shown to face each other in the axial direction.
 内燃機関10においてクランキングが開始されると、カム軸22に対して作用する負トルクに基づきベーンロータ33とハウジング32とが相対回転する。そして、第1のピン51が第1の上段部54に向けて突出可能である期間において第1のピン51が第1の上段部54に嵌入する(図9(a))。この状態で、カム軸22に対してさらに作用する負トルクに基づき、第2のピン71が第2の上段部74に嵌入し(図9(b))、第1のピン51が第1の下段部55に嵌入し(図9(c))、第2のピン71が第2の下段部75に嵌入する(図9(d))。これにより、保持機構26がロック状態に切り替えられて、バルブタイミングが特定時期に保持されるため、内燃機関10の始動が良好に実行される。 When cranking is started in the internal combustion engine 10, the vane rotor 33 and the housing 32 rotate relative to each other based on the negative torque acting on the cam shaft 22. Then, the first pin 51 is fitted into the first upper step portion 54 in a period in which the first pin 51 can protrude toward the first upper step portion 54 (FIG. 9A). In this state, based on the negative torque further acting on the camshaft 22, the second pin 71 is fitted into the second upper stage portion 74 (FIG. 9B), and the first pin 51 is the first The second pin 71 is fitted into the second lower step 75 (FIG. 9D). As a result, the holding mechanism 26 is switched to the locked state and the valve timing is held at a specific time, so that the internal combustion engine 10 is started well.
 しかし、機関異常停止後の機関始動時において、全ての進角室37及び遅角室38に多くの作動油が残留している状況下では、カム軸22に交番トルクが作用している場合であっても、ベーンロータ33とハウジング32との相対回転が進角室37及び遅角室38の油圧により抑制される。そのため、上述したように保持機構26がロック状態に迅速に切り替えることが困難になる場合がある。 However, when a large amount of hydraulic oil remains in all the advance chambers 37 and retard chambers 38 when the engine is started after an abnormal engine stop, there is an alternating torque acting on the camshaft 22. Even in this case, the relative rotation between the vane rotor 33 and the housing 32 is suppressed by the hydraulic pressure of the advance chamber 37 and the retard chamber 38. For this reason, as described above, it may be difficult to quickly switch the holding mechanism 26 to the locked state.
 この点、本実施形態では、可変機構25の3つのベーン33Bのいずれにも、大気開放機構60,80,40がそれぞれ設けられているため、機関停止後には、これら大気開放機構60,80,40の少なくとも1つがセンターボルト34の鉛直方向上方にて停止する。また、これら大気開放機構60,80,40は、機関停止中において大気開放状態にある。そのため、センターボルト34の鉛直方向上方に停止した大気開放機構60,80,40において、大気連通路62,82,42を通じて進角室37及び遅角室38に大気がそれぞれ導入される。これにより進角油路95及び遅角油路96を通じて進角室37及び遅角室38から作動油が排出されると、機関始動時において、全ての進角室37及び遅角室38に多くの作動油が残留している状況が生じる頻度は低減されるようになる。したがって、機関異常停止後の機関始動時に、ベーンロータ33とハウジング32との相対回転を抑制する進角室37及び遅角室38の油圧が低減され、保持機構26を迅速にロック状態に切り替えてバルブタイミング特定時期に保持することができる。 In this regard, in the present embodiment, since the air release mechanisms 60, 80, 40 are provided in any of the three vanes 33B of the variable mechanism 25, the air release mechanisms 60, 80, 40, after the engine is stopped. At least one of 40 stops at a position above the center bolt 34 in the vertical direction. Further, these atmospheric release mechanisms 60, 80, 40 are in an open atmosphere state while the engine is stopped. Therefore, the atmosphere is introduced into the advance chamber 37 and the retard chamber 38 through the atmosphere communication passages 62, 82, 42 in the atmosphere release mechanisms 60, 80, 40 stopped above the center bolt 34 in the vertical direction. As a result, when the hydraulic oil is discharged from the advance chamber 37 and the retard chamber 38 through the advance oil passage 95 and the retard oil passage 96, a large amount of oil is supplied to all the advance chambers 37 and the retard chambers 38 when the engine is started. The frequency of occurrence of the situation in which the hydraulic oil remains is reduced. Therefore, when the engine is started after an abnormal engine stop, the hydraulic pressure in the advance chamber 37 and the retard chamber 38 that suppresses the relative rotation between the vane rotor 33 and the housing 32 is reduced, and the holding mechanism 26 is quickly switched to the locked state and the valve It can be held at a specific timing.
 ところで、上述したように、内燃機関10がアイドル状態であって、保持機構26をロック状態に維持するときには、OCV91が第2のモードに設定されている。このときには、解除用ポート97Pと排出ポート99Pとが連通されているため、第1の解除室57、第2の解除室77、及び第3の解除室44が解除油路97を通じて開放されている。したがって、解除室57,77,44や解除油路97A,97B,97Cからそれぞれ作動油が排出されることにより、それらの内部に作動油が満たされてない状態になり、ひいては作動油がほとんど存在しない状態になることがある。 Incidentally, as described above, when the internal combustion engine 10 is in the idle state and the holding mechanism 26 is maintained in the locked state, the OCV 91 is set to the second mode. At this time, since the release port 97P and the discharge port 99P are communicated with each other, the first release chamber 57, the second release chamber 77, and the third release chamber 44 are opened through the release oil passage 97. . Accordingly, the hydraulic oil is discharged from the release chambers 57, 77, 44 and the release oil passages 97A, 97B, 97C, respectively, so that the inside of the hydraulic oil is not filled, so that there is almost no hydraulic oil. It may become a state that does not.
 ここで、保持機構26がロック状態にあるときに解除条件が成立すると、保持機構26を解除状態に切り替えるべく、OCV91が第4のモードに設定される。これにより、解除用ポート97Pと解除用供給ポート94Pとが連通されて、第2の供給油路94から解除油路97に対する作動油の供給が開始される。 Here, when the release condition is satisfied when the holding mechanism 26 is in the locked state, the OCV 91 is set to the fourth mode in order to switch the holding mechanism 26 to the released state. As a result, the release port 97P and the release supply port 94P communicate with each other, and the supply of hydraulic oil from the second supply oil passage 94 to the release oil passage 97 is started.
 しかしながら、第1の解除室57及び第1の解除油路97Aが作動油で満たされていない上述したような状況下では、第2の供給油路94を通じた作動油供給が開始されたとしても、第1の解除室57及び第1の解除油路97Aが作動油によって満たされた油密状態となるまでは、作動油の圧力に基づく付勢力が第1のピン51に作用しない。同様に、第2の解除室77及び第2の解除油路97Bが作動油で満たされていない状況下では、第2の供給油路94を通じた作動油供給が開始されたとしても、第2の解除室77及び第2の解除油路97Bが作動油によって満たされた油密状態となるまでは、作動油の圧力に基づく付勢力が第2のピン71に作用しない。そして、このような油圧に基づく付勢力が作用しない時間が存在するため、ピン51,71が凹部53,73から抜脱するのに要する時間が長くなり、保持機構26をロック状態から解除状態に迅速に移行することができないという問題が生じる。 However, even if the first supply chamber 57 and the first release oil passage 97A are not filled with the hydraulic oil under the above-described situation, the supply of the hydraulic oil through the second supply oil passage 94 is started. The urging force based on the pressure of the hydraulic oil does not act on the first pin 51 until the first release chamber 57 and the first release oil passage 97A are in an oil-tight state filled with the hydraulic oil. Similarly, in a situation where the second release chamber 77 and the second release oil passage 97B are not filled with the hydraulic oil, even if the supply of hydraulic oil through the second supply oil passage 94 is started, the second The urging force based on the pressure of the hydraulic oil does not act on the second pin 71 until the release chamber 77 and the second release oil passage 97B are in an oil-tight state filled with the hydraulic oil. Since there is a time during which the urging force based on such hydraulic pressure does not act, the time required for the pins 51 and 71 to be removed from the recesses 53 and 73 becomes longer, and the holding mechanism 26 is changed from the locked state to the released state. The problem arises that it cannot be migrated quickly.
 そこで、本実施形態の油圧機構90には、解除油路97における分岐点97Dの上流側と第1の供給油路93とを連通する連通油路98が設けられている。これにより、OCV91が第1のモード又は第2のモードに設定されて、保持機構26がロック状態に切り替えられているときであっても、連通油路98を通じて解除油路97に常に供給される。 Therefore, the hydraulic mechanism 90 of the present embodiment is provided with a communication oil passage 98 that communicates the upstream side of the branch point 97D in the release oil passage 97 and the first supply oil passage 93. Thereby, even when the OCV 91 is set to the first mode or the second mode and the holding mechanism 26 is switched to the locked state, the OCV 91 is always supplied to the release oil passage 97 through the communication oil passage 98. .
 次に、図10を参照して、OCV91の各モードと、連通油路98における作動油の供給との関係を説明する。保持機構26がロック状態にあってOCV91が第1のモード又は第2のモードに設定されるときには、第1の供給油路93、OCV91、及び進角油路95を通じて作動油が進角室37に供給されているため、第1の供給油路93を流通する作動油が連通油路98を通じて解除油路97に供給される。この連通油路98は、解除油路97の分岐点97Dの上流側に接続されているため、解除油路97に供給された作動油は、第1の解除油路97A、第2の解除油路97B、及び第3の解除油路97Cにそれぞれ供給される。そして、これら第1の解除油路97A、第2の解除油路97B、及び第3の解除油路97Cに供給された作動油は、第1の解除室57、第2の解除室77、及び第3の解除室44にそれぞれ供給される。 Next, the relationship between each mode of the OCV 91 and the supply of hydraulic oil in the communication oil passage 98 will be described with reference to FIG. When the holding mechanism 26 is in the locked state and the OCV 91 is set to the first mode or the second mode, the hydraulic oil is advanced through the first supply oil passage 93, the OCV 91, and the advance oil passage 95. Therefore, the hydraulic oil flowing through the first supply oil passage 93 is supplied to the release oil passage 97 through the communication oil passage 98. Since this communication oil path 98 is connected to the upstream side of the branch point 97D of the release oil path 97, the hydraulic oil supplied to the release oil path 97 is the first release oil path 97A, the second release oil. The oil is supplied to the passage 97B and the third release oil passage 97C. The hydraulic oil supplied to the first release oil passage 97A, the second release oil passage 97B, and the third release oil passage 97C is supplied to the first release chamber 57, the second release chamber 77, and Each is supplied to the third release chamber 44.
 なお、上述したように、連通油路98の流路抵抗は、上述した第1の解除油圧P1より小さい油圧の作動油を第1の解除室57に供給するとともに、第2の解除油圧P2より小さい油圧の作動油を第2の解除室77に供給するように予め設定されている。このため、連通油路98を通じて供給された作動油の油圧に基づいて第1のピン51が第1の凹部53から抜脱することは抑えられる。また、連通油路98を通じて供給された作動油の油圧に基づいて第2のピン71が第2の凹部73から抜脱することは抑えられる。これにより、OCV91が第1のモード又は第2のモードに設定されているときには、保持機構26はロック状態に維持されるとともに、解除室57,77及び解除油路97A,97Bの内部に残存する作動油の量を増大させることができる。そのため、解除条件が成立したときに、OCV91が第4のモードに設定されて第2の供給油路94から作動油が解除油路97に供給されると、第1の解除室57は速やかに油密状態となって同解除室57の油圧が速やかに上昇する。これにより、第1の解除室57の油圧に基づく付勢力が第1のピン51に速やかに作用し、第1のピン51が速やかに基端側ZBに移動する。また、第2の解除室77の油圧に基づく付勢力が第2のピン71に速やかに作用し、第2のピン71が速やかに基端側ZBに移動する。なお、連通油路98を通じて供給される作動油は、第3の解除油路97Cを通じて第3の解除室44に対しても供給されるため、第3の解除室44及び第3の解除油路97Cの内部に残存する作動油の量も増大する。 Note that, as described above, the flow resistance of the communication oil passage 98 is such that hydraulic fluid having a hydraulic pressure smaller than the first release hydraulic pressure P1 described above is supplied to the first release chamber 57 and from the second release hydraulic pressure P2. The hydraulic oil is set in advance so that a small hydraulic fluid is supplied to the second release chamber 77. For this reason, the first pin 51 is prevented from being detached from the first recess 53 based on the hydraulic pressure of the hydraulic oil supplied through the communication oil passage 98. Further, the second pin 71 is prevented from being pulled out from the second recess 73 based on the hydraulic pressure of the hydraulic oil supplied through the communication oil passage 98. Accordingly, when the OCV 91 is set to the first mode or the second mode, the holding mechanism 26 is maintained in the locked state and remains in the release chambers 57 and 77 and the release oil passages 97A and 97B. The amount of hydraulic oil can be increased. Therefore, when the release condition is satisfied, if the OCV 91 is set to the fourth mode and hydraulic fluid is supplied from the second supply oil passage 94 to the release oil passage 97, the first release chamber 57 is quickly The hydraulic pressure in the release chamber 57 quickly rises in an oil-tight state. Thereby, the urging force based on the hydraulic pressure of the first release chamber 57 immediately acts on the first pin 51, and the first pin 51 quickly moves to the proximal side ZB. In addition, the urging force based on the hydraulic pressure in the second release chamber 77 immediately acts on the second pin 71, and the second pin 71 quickly moves to the proximal side ZB. Note that the hydraulic oil supplied through the communication oil passage 98 is also supplied to the third release chamber 44 through the third release oil passage 97C, and thus the third release chamber 44 and the third release oil passage. The amount of hydraulic oil remaining inside 97C also increases.
 また、OCV91が第3のモード又は第5のモードに設定されているときには、第1の供給油路93を通じて進角室37又は遅角室38に作動油が供給されている状態である。したがって、連通油路98を通じて、第1の供給油路93を流通する作動油が解除油路97に供給される。さらに、第2の供給油路94を通じて作動油が解除油路97に供給されるため、第1の解除室57、第2の解除室77、及び第3の解除室44は、いずれも作動油で満たされた油密状態に保たれる。 Further, when the OCV 91 is set to the third mode or the fifth mode, the hydraulic oil is being supplied to the advance chamber 37 or the retard chamber 38 through the first supply oil passage 93. Accordingly, the hydraulic oil flowing through the first supply oil passage 93 is supplied to the release oil passage 97 through the communication oil passage 98. Furthermore, since hydraulic oil is supplied to the release oil passage 97 through the second supply oil passage 94, the first release chamber 57, the second release chamber 77, and the third release chamber 44 are all hydraulic oil. It is kept in an oil-tight state filled with.
 さらに、OCV91が第4のモードに設定されているときには、第1の供給油路93を通じた進角室37及び遅角室38への作動油の供給が停止されているため、連通油路98を通じた解除油路97への作動油の供給も停止される。しかし、このときには、第2の供給油路94を通じて作動油が解除油路97に供給されるため、第1の解除室57、第2の解除室77、及び第3の解除室44は、いずれも作動油で満たされた油密状態に保たれる。 Further, when the OCV 91 is set to the fourth mode, the supply of hydraulic oil to the advance chamber 37 and the retard chamber 38 through the first supply oil passage 93 is stopped, so that the communication oil passage 98 is provided. The supply of the hydraulic oil to the release oil passage 97 through is also stopped. However, at this time, since hydraulic oil is supplied to the release oil passage 97 through the second supply oil passage 94, the first release chamber 57, the second release chamber 77, and the third release chamber 44 are Is also kept in an oil-tight state filled with hydraulic oil.
 以上説明した実施形態によれば、以下の作用効果を奏することができる。
 (1)第1の供給油路93と解除油路97とを連通する連通油路98を備えているため、保持機構26がロック状態にあって、解除室57,77,44及び解除油路97A,97B,97Cから作動油が排出される排出状態となっている場合であっても、これら解除室57,77,44及び解除油路97A,97B,97Cには連通油路98を通じて作動油が供給される。このため、保持機構26をロック状態に維持しつつも解除室57,77,44や解除油路97A,97B,97Cの内部に残存する作動油の量を増大させることができる。これにより、保持機構26をロック状態から解除状態に切り替える解除条件が成立し、OCV91から解除油路97を介して解除室57,77に作動油が供給され始めると、解除室57,77は速やかに油密状態となって解除室57,77の各油圧が速やかに上昇するようになる。すなわち、第1の解除室57の油圧を第1の解除油圧P1にまで速やかに上昇させることができるとともに、第2の解除室77の油圧を第2の解除油圧P2にまで速やかに上昇させることができる。したがって、保持機構をロック状態から解除状態に切り替える際の応答性を向上させることができる。
According to the embodiment described above, the following operational effects can be achieved.
(1) Since the communication oil path 98 that connects the first supply oil path 93 and the release oil path 97 is provided, the holding mechanism 26 is in a locked state, and the release chambers 57, 77, 44 and the release oil path Even when the hydraulic oil is discharged from 97A, 97B, and 97C, the hydraulic oil is supplied to the release chambers 57, 77, and 44 and the release oil passages 97A, 97B, and 97C through the communication oil passage 98. Is supplied. For this reason, it is possible to increase the amount of hydraulic oil remaining in the release chambers 57, 77, 44 and the release oil passages 97A, 97B, 97C while maintaining the holding mechanism 26 in the locked state. Accordingly, a release condition for switching the holding mechanism 26 from the locked state to the released state is established, and when the hydraulic oil starts to be supplied from the OCV 91 to the release chambers 57 and 77 through the release oil passage 97, the release chambers 57 and 77 are quickly As a result, the hydraulic pressure in the release chambers 57 and 77 rises quickly. That is, the hydraulic pressure in the first release chamber 57 can be quickly raised to the first release hydraulic pressure P1, and the hydraulic pressure in the second release chamber 77 can be quickly raised to the second release hydraulic pressure P2. Can do. Therefore, it is possible to improve the responsiveness when the holding mechanism is switched from the locked state to the released state.
 (2)進角油路95及び遅角油路96における油圧は、バルブタイミングの制御要求によってその都度異なる。すなわち、進角油路95及び遅角油路96の油圧はOCV91の各モードにより異なる。例えば、OCV91が第1のモードに設定されているときには、OCV91が第2のモードに設定されているときよりも進角油路95を流通する作動油の量が大きくなる。また、OCV91が第5のモードに設定されてバルブタイミングが遅角されているときには、進角油路95への作動油の供給は停止される一方、遅角油路96に対して作動油が供給される。これに対し、第1の供給油路93における油圧は、上述したバルブタイミングの制御要求、すなわちOCV91の各モードに依存することがないため、解除油路97A,97Bや解除室57,77に対して連通油路98を通じて安定して作動油を供給することができる。したがって、解除油路97A,97Bや解除室57,77の内部に好適に作動油を残存させることができ、保持機構26の応答性を一層向上させることができるようになる。 (2) The oil pressure in the advance oil passage 95 and the retard oil passage 96 varies depending on the valve timing control request. That is, the oil pressure in the advance oil passage 95 and the retard oil passage 96 varies depending on each mode of the OCV 91. For example, when the OCV 91 is set to the first mode, the amount of hydraulic oil flowing through the advance oil passage 95 is larger than when the OCV 91 is set to the second mode. When the OCV 91 is set to the fifth mode and the valve timing is retarded, the supply of hydraulic oil to the advance oil passage 95 is stopped, while the hydraulic oil is supplied to the retard oil passage 96. Supplied. On the other hand, the hydraulic pressure in the first supply oil passage 93 does not depend on the valve timing control request described above, that is, in each mode of the OCV 91, so that the release oil passages 97A and 97B and the release chambers 57 and 77 Thus, the hydraulic oil can be stably supplied through the communication oil passage 98. Accordingly, the hydraulic oil can be suitably left inside the release oil passages 97A and 97B and the release chambers 57 and 77, and the responsiveness of the holding mechanism 26 can be further improved.
 (3)保持機構26は、進角保持機構50及び遅角保持機構70を各別に備えている。そのため、保持機構26をロック状態から解除状態に切り替えるときに、カム軸22に作用する交番トルクによりバルブタイミングが遅角側に変化しようとしている期間において、第1のピン51は第1の凹部53から抜脱しやすくなる。一方、カム軸22に作用する交番トルクによりバルブタイミングが進角側に変化しようとしている期間において、第2のピン71が第2の凹部73から抜脱しやすくなる。したがって、機関始動時において、これらピン51,71を凹部53,73から速やかにそれぞれ抜脱させることができるようになる。 (3) The holding mechanism 26 includes an advance angle holding mechanism 50 and a retard angle holding mechanism 70, respectively. Therefore, when the holding mechanism 26 is switched from the locked state to the released state, the first pin 51 has the first recess 53 during the period in which the valve timing is about to change to the retard side due to the alternating torque acting on the cam shaft 22. It becomes easy to pull out from. On the other hand, the second pin 71 is easily pulled out from the second recess 73 during the period when the valve timing is about to change to the advance side by the alternating torque acting on the cam shaft 22. Therefore, when starting the engine, these pins 51 and 71 can be quickly removed from the recesses 53 and 73, respectively.
 (4)進角保持機構50及び遅角保持機構70は互いに異なるベーン33Bに設けられている。また、進角保持機構50には大気開放機構60が設けられる一方、遅角保持機構70には大気開放機構80が設けられている。このため、これら大気開放機構60及び大気開放機構80のいずれか一方が機関停止時においてセンターボルトの鉛直方向上方にて停止した場合には、その鉛直方向上方に停止した大気開放機構60,80において、大気連通路62,82を通じて進角室37及び遅角室38に大気がそれぞれ導入される。これにより進角室37及び遅角室38から作動油が迅速にそれぞれ排出されると、機関始動時にカム軸22に作用する交番トルクによりハウジング32とベーンロータ33とが相対回転しやすくなり、バルブタイミングを迅速に特定時期にまで進角させることができる。 (4) The advance holding mechanism 50 and the retard holding mechanism 70 are provided in different vanes 33B. Further, the advance angle holding mechanism 50 is provided with an atmosphere release mechanism 60, while the retard angle hold mechanism 70 is provided with an atmosphere release mechanism 80. For this reason, when any one of the atmosphere release mechanism 60 and the atmosphere release mechanism 80 stops at the upper position in the vertical direction of the center bolt when the engine is stopped, the atmosphere release mechanisms 60 and 80 stopped at the upper position in the vertical direction. The atmosphere is introduced into the advance chamber 37 and the retard chamber 38 through the atmosphere communication passages 62 and 82, respectively. As a result, when the hydraulic oil is quickly discharged from the advance chamber 37 and the retard chamber 38, the housing 32 and the vane rotor 33 easily rotate relative to each other due to the alternating torque acting on the cam shaft 22 when the engine is started. Can be quickly advanced to a specific time.
 (5)解除油路97は、第1の解除室57と第2の解除室77との双方に作動油を供給するものであるため、保持機構26として単一の保持機構を有する構成と比較して、解除室57,77や解除油路97の総容積が増大する。したがって、保持機構26として単一の保持機構を有する構成と比較して、解除室57,77及び解除油路97に残存する作動油の量が少ないことに起因する保持機構26の応答性低下が一層顕在化する傾向にある。この点、解除油路97には、連通油路98を通じて第1の供給油路93から作動油が供給されるため、保持機構26をロック状態から解除状態に切り替える際の応答性を向上させることができる。 (5) Since the release oil passage 97 supplies hydraulic oil to both the first release chamber 57 and the second release chamber 77, the release oil passage 97 is compared with a configuration having a single holding mechanism as the holding mechanism 26. Thus, the total volume of the release chambers 57 and 77 and the release oil passage 97 increases. Therefore, compared with the configuration having a single holding mechanism as the holding mechanism 26, the responsiveness of the holding mechanism 26 is reduced due to the small amount of hydraulic oil remaining in the release chambers 57 and 77 and the release oil passage 97. It tends to become more apparent. In this respect, since the hydraulic oil is supplied to the release oil passage 97 from the first supply oil passage 93 through the communication oil passage 98, the responsiveness when the holding mechanism 26 is switched from the locked state to the released state is improved. Can do.
 (6)進角保持機構50及び遅角保持機構70が設けられていない残りの1つのベーン33Bには、大気開放機構40が設けられている。すなわち、ベーンロータ33の3つのベーン33Bのすべてに大気開放機構60,80,40が設けられている。そのため、機関停止時には、これら大気開放機構60,80,40の少なくとも1つがセンターボルト34の鉛直方向上方にて停止する。また、これら大気開放機構60,80,40は、機関停止後に大気開放状態になる。したがって、機関停止後には、センターボルト34の鉛直方向上方で停止した大気開放機構60,80,40の大気連通路62,82,42を通じて、進角室37及び遅角室38に大気が導入される。これにより進角室37及び遅角室38から作動油が迅速にそれぞれ排出されると、機関始動時にカム軸22に作用する交番トルクによりハウジング32とベーンロータ33とが相対回転しやすくなり、バルブタイミングを迅速に特定時期にまで進角させることができる。 (6) The air release mechanism 40 is provided in the remaining one vane 33B where the advance angle holding mechanism 50 and the retard angle holding mechanism 70 are not provided. In other words, all three vanes 33B of the vane rotor 33 are provided with atmospheric release mechanisms 60, 80, 40. Therefore, when the engine is stopped, at least one of the atmospheric release mechanisms 60, 80, 40 stops at the upper part of the center bolt 34 in the vertical direction. Further, these atmospheric release mechanisms 60, 80, 40 are opened to the atmosphere after the engine is stopped. Therefore, after the engine is stopped, the atmosphere is introduced into the advance chamber 37 and the retard chamber 38 through the atmosphere communication passages 62, 82, 42 of the atmosphere release mechanisms 60, 80, 40 stopped above the center bolt 34 in the vertical direction. The As a result, when the hydraulic oil is quickly discharged from the advance chamber 37 and the retard chamber 38, the housing 32 and the vane rotor 33 easily rotate relative to each other due to the alternating torque acting on the cam shaft 22 when the engine is started. Can be quickly advanced to a specific time.
 (7)解除油路97は、第1の解除室57(進角保持機構50)と第2の解除室77(遅角保持機構70)に加えて、第3の解除室44(大気開放機構40)に作動油を供給するものである。そのため、大気開放機構40が設けられていない構成と比較して、解除室57,77,44及び解除油路97の総容積が増大する。そのため、大気開放機構40が設けられていない構成と比較して、保持機構26をロック状態から解除状態に切り替える際の応答性低下が、さらにより一層顕在化する傾向にある。この点、解除油路97には、連通油路98を通じて作動油が供給されて、第1の解除室57、第2の解除室77、第3の解除室44、及び解除油路97の内部に好適に作動油を残存させることができるため、保持機構26をロック状態から解除状態に切り替える際の応答性を向上させることができる。 (7) The release oil passage 97 has a third release chamber 44 (atmospheric release mechanism) in addition to the first release chamber 57 (advance angle holding mechanism 50) and the second release chamber 77 (retard angle holding mechanism 70). 40) is supplied with hydraulic oil. Therefore, the total volume of the release chambers 57, 77, and 44 and the release oil passage 97 is increased as compared with the configuration in which the atmosphere release mechanism 40 is not provided. Therefore, compared with a configuration in which the atmosphere release mechanism 40 is not provided, the responsiveness deterioration when the holding mechanism 26 is switched from the locked state to the released state tends to become even more apparent. In this regard, hydraulic oil is supplied to the release oil passage 97 through the communication oil passage 98, and the inside of the first release chamber 57, the second release chamber 77, the third release chamber 44, and the release oil passage 97. Therefore, it is possible to improve the responsiveness when switching the holding mechanism 26 from the locked state to the released state.
 (8)可変動弁装置20には、単一のOCV91が設けられるとともに、このOCV91により可変機構25、保持機構26、大気開放機構40の各油室の油圧が制御される。したがって、複数のOCVが設けられる構成と比較して、部品点数を削減することができ、可変動弁装置20の生産コストを削減することができる。 (8) The variable valve operating apparatus 20 is provided with a single OCV 91, and the oil pressure of each oil chamber of the variable mechanism 25, the holding mechanism 26, and the atmosphere opening mechanism 40 is controlled by this OCV 91. Therefore, the number of parts can be reduced and the production cost of the variable valve apparatus 20 can be reduced as compared with a configuration in which a plurality of OCVs are provided.
 (その他の実施形態)
 なお、この発明にかかる内燃機関の可変動弁装置は、上述した実施形態にて例示した構成に限定されるものではなく、これを適宜変更した例えば次のような形態として実施することもできる。
(Other embodiments)
Note that the variable valve operating apparatus for an internal combustion engine according to the present invention is not limited to the configuration exemplified in the above-described embodiment, and can be implemented as, for example, the following forms appropriately modified.
 ・上記実施形態では、OCV91の上流側に設けられた第1の供給油路93と解除油路97とを連通する連通油路98を設ける例を示した。これに対し、図5の一点鎖線で示すように、進角油路95と解除油路97とを連通する連通油路198を設けるようにしてもよい。進角油路95には、OCV91が第1のモード又は第2のモードに設定されて保持機構26がロック状態にあるときに作動油が供給されている。そのため、進角油路95を流通する作動油が、連通油路98を通じて解除油路97に供給される。したがって、上記(1)、(3)~(8)に示した各作用効果を奏することができる。さらに、上記実施形態で示した連通油路98と、図5の一点差線で示した連通油路198の双方を設けるようにしてもよい。 In the above embodiment, an example in which the communication oil path 98 that connects the first supply oil path 93 and the release oil path 97 provided on the upstream side of the OCV 91 is provided is shown. On the other hand, a communication oil passage 198 that connects the advance oil passage 95 and the release oil passage 97 may be provided as shown by a one-dot chain line in FIG. The hydraulic oil is supplied to the advance oil passage 95 when the OCV 91 is set to the first mode or the second mode and the holding mechanism 26 is in the locked state. Therefore, the hydraulic oil flowing through the advance oil passage 95 is supplied to the release oil passage 97 through the communication oil passage 98. Therefore, the effects shown in the above (1) and (3) to (8) can be achieved. Furthermore, you may make it provide both the communication oil path 98 shown by the said embodiment, and the communication oil path 198 shown by the one point difference line of FIG.
 ・上記実施形態で示したOCV91の各モードと作動油通路90Aにおける作動油の給排状態との関係は一例であって、適宜変更することができる。この場合であっても、OCV91の上流側に設けられた第1の供給油路93と解除油路97とを連通する連通油路98を設けることにより、上述した各作用効果を奏することができる。さらに、OCV91の下流側に設けられた供給油路と解除油路とを連通する連通油路を設ける場合には、保持機構26がロック状態にあるときに、作動油が供給される供給油路と解除油路とを連通するようにすればよい。換言すると、第1の解除室57及び第2の解除室77から作動油が排出されるようにOCV91が設定されているときに、作動油が供給される供給油路と解除油路とを連通するようにすればよい。例えば、保持機構26がロック状態にあるときに、遅角室38に対して作動油が供給されるようにOCV91が制御されている構成であれば、遅角油路96と解除油路97とを連通するように連通油路を設ければよい。この場合であっても、上記(1)、(3)~(8)に示した各作用効果を奏することができる。 The relationship between each mode of the OCV 91 shown in the above embodiment and the supply / discharge state of the hydraulic oil in the hydraulic oil passage 90A is an example, and can be changed as appropriate. Even in this case, by providing the communication oil path 98 that communicates the first supply oil path 93 and the release oil path 97 provided on the upstream side of the OCV 91, the above-described functions and effects can be achieved. . Further, in the case of providing a communication oil path that communicates the supply oil path and the release oil path provided on the downstream side of the OCV 91, the supply oil path is supplied with hydraulic oil when the holding mechanism 26 is in the locked state. And the release oil passage may be communicated with each other. In other words, when the OCV 91 is set so that the hydraulic oil is discharged from the first release chamber 57 and the second release chamber 77, the supply oil passage to which the hydraulic oil is supplied and the release oil passage are communicated with each other. You just have to do it. For example, if the OCV 91 is controlled so that hydraulic oil is supplied to the retard chamber 38 when the holding mechanism 26 is in the locked state, the retard oil passage 96 and the release oil passage 97 What is necessary is just to provide a communication oil path so that it may communicate. Even in this case, the effects shown in the above (1) and (3) to (8) can be achieved.
 ・上記実施形態では、保持機構26をロック状態から解除状態に切り替えるときにOCV91を第4のモードに設定する例を示した。しかし、OCV91を第3のモードに設定してバルブタイミングを進角制御しつつ保持機構26を解除状態に切り替えるようにしてもよい。また、OCV91を第5のモードに設定してバルブタイミングを遅角制御しつつ保持機構26を解除状態に切り替えるようにしてもよい。 In the above-described embodiment, the OCV 91 is set to the fourth mode when the holding mechanism 26 is switched from the locked state to the released state. However, the holding mechanism 26 may be switched to the release state while the valve timing is advanced by controlling the OCV 91 in the third mode. Alternatively, the OCV 91 may be set to the fifth mode so that the holding mechanism 26 is switched to the released state while the valve timing is retarded.
 ・上記実施形態では、連通油路98が解除油路97の分岐点97Dの上流側に接続されている例を示した。しかし、第1の解除室57及び第2の解除室77に対して作動油を供給することのできる構成であれば、連通油路98の接続箇所を変更することも可能である。例えば、連通油路98の途中で分岐させ、分岐された一方の油路を第1の解除油路97Aに接続するとともに、他方の油路を第2の解除油路97Bに接続するようにしてもよい。この場合であっても、第1の解除室57、第2の解除室77、第1の解除油路97A、第2の解除油路97Bの内部に残存する作動油の量を増大させることができるため、上述した各作用効果を奏することができる。 In the above embodiment, the example in which the communication oil path 98 is connected to the upstream side of the branch point 97D of the release oil path 97 is shown. However, if the hydraulic oil can be supplied to the first release chamber 57 and the second release chamber 77, the connection location of the communication oil passage 98 can be changed. For example, it is branched in the middle of the communication oil passage 98, and one of the branched oil passages is connected to the first release oil passage 97A, and the other oil passage is connected to the second release oil passage 97B. Also good. Even in this case, the amount of hydraulic oil remaining in the first release chamber 57, the second release chamber 77, the first release oil passage 97A, and the second release oil passage 97B can be increased. Therefore, each effect mentioned above can be produced.
 ・上記実施形態では、連通油路98の流路抵抗が、上述した第1の解除油圧P1より小さい油圧の作動油が第1の解除室57に供給されるとともに、第2の解除油圧P2より小さい油圧の作動油が第2の解除室77に供給されるように設定する例を示した。しかし、この連通油路の流路抵抗については、適宜変更することができる。例えば、連通油路の全長を同一の流路断面積に設定する他、連通油路の途中に絞りを設けて流路断面積が小さい箇所を形成することにより、連通油路を流通する作動油の量を調整するようにすることもできる。 In the above-described embodiment, hydraulic fluid having a flow path resistance of the communication oil passage 98 smaller than the first release hydraulic pressure P1 is supplied to the first release chamber 57, and from the second release hydraulic pressure P2. An example is shown in which a small hydraulic fluid is supplied to the second release chamber 77. However, the flow resistance of the communication oil passage can be changed as appropriate. For example, in addition to setting the entire length of the communication oil path to the same flow path cross-sectional area, the hydraulic oil that flows through the communication oil path by providing a throttle in the middle of the communication oil path to form a portion having a small flow path cross-sectional area It is also possible to adjust the amount.
 ・上記実施形態では、連通油路98の流路抵抗を、上述した第1の解除油圧P1より小さい油圧の作動油が第1の解除室57に供給されるとともに、第2の解除油圧P2より小さい油圧の作動油が第2の解除室77に供給されるように設定する例を示した。これは、保持機構26がロック状態から解除状態に切り替える際に関与する解除室の油圧が第1の解除室57の油圧及び第2の解除室77の油圧であるからである。これに対し、開閉ピン41が基端側ZBに付勢されるときの第3の解除室44の油圧を第3の解除油圧P3とし、この第3の解除油圧P3も考慮した上で上述した連通油路98の流路抵抗を設定するようにしてもよい。 In the above embodiment, the hydraulic oil having a hydraulic pressure smaller than the first release hydraulic pressure P1 described above is supplied to the first release chamber 57 and the flow resistance of the communication oil path 98 from the second release hydraulic pressure P2. An example is shown in which a small hydraulic fluid is supplied to the second release chamber 77. This is because the hydraulic pressure of the release chamber involved when the holding mechanism 26 switches from the locked state to the released state is the hydraulic pressure of the first release chamber 57 and the hydraulic pressure of the second release chamber 77. On the other hand, the hydraulic pressure of the third release chamber 44 when the opening / closing pin 41 is urged to the base end side ZB is set as the third release hydraulic pressure P3, and the third release hydraulic pressure P3 is also considered and described above. The flow resistance of the communication oil path 98 may be set.
 ・上記実施形態では、第1の供給油路93を作動油が流通している間、常に連通油路98を通じて作動油が解除油路97に供給される例を示したが、作動油は常に解除油路97に供給されていることは要しない。すなわち、機関運転中であって保持機構26がロック状態にあるときに作動油が解除油路97に供給されていればよい。これにより、解除室57,77及び解除油路97が常に作動油に満たされた状態になるため、上述した各作用効果を奏することができる。例えば、連通油路を開放又は遮断する弁を設けるとともに、この弁を適宜開閉することにより、連通油路を作動油が適宜流通するように構成してもよい。 In the above-described embodiment, the example in which the hydraulic oil is always supplied to the release oil path 97 through the communication oil path 98 while the hydraulic oil is flowing through the first supply oil path 93 has been described. It is not necessary to be supplied to the release oil passage 97. That is, it is only necessary that the hydraulic oil be supplied to the release oil passage 97 when the engine is operating and the holding mechanism 26 is in the locked state. As a result, the release chambers 57 and 77 and the release oil passage 97 are always filled with the hydraulic oil, and thus the above-described effects can be achieved. For example, a valve that opens or shuts off the communication oil passage may be provided, and the valve may be appropriately opened and closed so that the hydraulic oil flows through the communication oil passage as appropriate.
 ・上記実施形態では、内燃機関10のアイドル運転時には、OCV91が第2のモードに設定されて、保持機構26をロック状態に切り替える例を示した。これに対し、アイドル状態にはバルブタイミングをアイドル運転時に適した目標時期に保持するとともに、保持機構26は解除状態に保持する態様を採用することもできる。この場合であっても、機関停止時には、各油室への作動油の供給停止に伴い保持機構26がロック状態に切り替えられるため、次回の機関始動時には、保持機構26がロック状態にあるときにクランキングが開始される。したがって、保持機構26が解除状態に切り替わる以前のロック状態にある期間から、連通油路98を通じて作動油を解除油路97に供給することができ、これにより、解除室57,77を早期に油密状態にすることができる。そのため、機関始動後に解除条件が成立するときに、保持機構26をロック状態から解除状態に切り替える際の応答性を向上させることができる。 In the above embodiment, the example is shown in which the OCV 91 is set to the second mode and the holding mechanism 26 is switched to the locked state during the idling operation of the internal combustion engine 10. On the other hand, in the idle state, it is possible to adopt a mode in which the valve timing is held at a target time suitable for the idle operation and the holding mechanism 26 is held in the released state. Even in this case, when the engine is stopped, the holding mechanism 26 is switched to the locked state as the supply of hydraulic oil to each oil chamber is stopped. Therefore, when the holding mechanism 26 is in the locked state at the next engine start. Cranking is started. Therefore, the hydraulic oil can be supplied to the release oil passage 97 through the communication oil passage 98 from the period in which the holding mechanism 26 is in the locked state before the release mechanism is switched to the release state. Can be dense. Therefore, it is possible to improve the responsiveness when the holding mechanism 26 is switched from the locked state to the released state when the release condition is satisfied after the engine is started.
 ・上記実施形態では、進角保持機構50に大気開放機構60を設けるとともに、遅角保持機構70に大気開放機構80を設ける例を示した。これに対し、これら大気開放機構60及び大気開放機構80のどちらも設けない態様や、どちらか一方のみ設ける態様を採用することもできる。この場合であっても、少なくとも上記(1)~(3)、(5)、(8)に示した各作用効果を奏することができる。なお、上述したように、機関停止後において大気開放機構を有するベーン33Bをセンターボルト34の鉛直方向上方で停止させ、進角室37及び遅角室38に貯留する作動油を迅速に排出させる上では、大気開放機構をより多く設けることが望ましい。 In the above embodiment, the example in which the atmosphere release mechanism 60 is provided in the advance angle holding mechanism 50 and the atmosphere release mechanism 80 is provided in the retard angle holding mechanism 70 has been described. On the other hand, a mode in which neither of the atmosphere release mechanism 60 and the atmosphere release mechanism 80 is provided, or a mode in which only one of them is provided can be adopted. Even in this case, at least the effects shown in the above (1) to (3), (5), and (8) can be achieved. As described above, after stopping the engine, the vane 33B having the air release mechanism is stopped above the center bolt 34 in the vertical direction so that the hydraulic oil stored in the advance chamber 37 and the retard chamber 38 can be quickly discharged. Then, it is desirable to provide more atmospheric release mechanisms.
 ・上記実施形態では、進角保持機構50又は遅角保持機構70が設けられていないベーン33Bに、大気開放機構40を設ける例を示したが、大気開放機構40を割愛してもよい。この場合であっても、上記(1)~(5)、(8)に示した各作用効果を奏することができる。 In the above embodiment, an example in which the atmosphere release mechanism 40 is provided in the vane 33B that is not provided with the advance angle holding mechanism 50 or the retard angle holding mechanism 70 has been described, but the atmosphere release mechanism 40 may be omitted. Even in this case, the effects shown in the above (1) to (5) and (8) can be achieved.
 ・上記実施形態では、ベーンロータ33が3つのベーン33Bを有し、これら3つのベーン33Bのそれぞれに大気開放機構60、大気開放機構80、及び大気開放機構40を設ける例を示した。しかし、ベーンロータ33が有するベーン33Bの個数については、3つに限られない。例えば4つのベーンを有するベーンロータを設ける場合には、互いに異なるベーンに進角保持機構50及び大気開放機構60、遅角保持機構70及び大気開放機構80をそれぞれ設けるとともに、残り2つのベーンには、保持機構26とは別に設けられる大気開放機構40をそれぞれ設けるようにすればよい。これにより、機関停止後において大気開放機構を有するいずれかのベーン33Bがセンターボルト34の鉛直方向上方で停止するため、進角室37及び遅角室38に貯留する作動油を迅速に排出させることができる。また、本発明を適用することにより、保持機構26をロック状態から解除状態に切り替える際の応答性を向上させることができる。 In the above embodiment, the vane rotor 33 has the three vanes 33B, and the air release mechanism 60, the air release mechanism 80, and the air release mechanism 40 are provided in each of the three vanes 33B. However, the number of vanes 33B included in the vane rotor 33 is not limited to three. For example, when providing a vane rotor having four vanes, the advance angle holding mechanism 50 and the atmosphere release mechanism 60, the retard angle hold mechanism 70 and the atmosphere release mechanism 80 are provided in different vanes, respectively, and the remaining two vanes include: What is necessary is just to provide the atmospheric release mechanism 40 provided separately from the holding mechanism 26, respectively. As a result, any one of the vanes 33B having the air release mechanism stops after the engine is stopped in the vertical direction above the center bolt 34, so that the hydraulic oil stored in the advance chamber 37 and the retard chamber 38 can be quickly discharged. Can do. Further, by applying the present invention, it is possible to improve the responsiveness when the holding mechanism 26 is switched from the locked state to the released state.
 ・上記実施形態では、進角保持機構50及び遅角保持機構70を互いに異なるベーン33Bにそれぞれ設ける例を示した。これに対し、同一のベーン33Bに進角保持機構50及び遅角保持機構70を設ける構成を採用することもできる。ただし、上述したように、機関停止後において大気開放機構を有するベーン33Bをセンターボルト34の鉛直方向上方で停止させ、進角室37及び遅角室38に貯留する作動油を迅速に排出させる上では、大気開放機構をより多く設けることが望ましい。したがって、進角保持機構50及び遅角保持機構70を同一のベーン33Bに設ける場合には、残りのベーン33Bには、保持機構とは別に設けられる大気開放機構40をそれぞれ設けることが望ましい。そして、本発明を適用することにより、保持機構をロック状態から解除状態に切り替える際の応答性を向上させることができる。 In the above embodiment, the example in which the advance angle holding mechanism 50 and the retard angle holding mechanism 70 are provided in the different vanes 33B has been described. On the other hand, a configuration in which the advance angle holding mechanism 50 and the retard angle holding mechanism 70 are provided in the same vane 33B may be employed. However, as described above, after stopping the engine, the vane 33B having the air release mechanism is stopped above the center bolt 34 in the vertical direction so that the hydraulic oil stored in the advance chamber 37 and the retard chamber 38 can be quickly discharged. Then, it is desirable to provide more atmospheric release mechanisms. Therefore, when the advance angle holding mechanism 50 and the retard angle holding mechanism 70 are provided in the same vane 33B, it is desirable that the remaining vane 33B is provided with an air release mechanism 40 provided separately from the holding mechanism. And by applying this invention, the responsiveness at the time of switching a holding | maintenance mechanism from a locked state to a cancellation | release state can be improved.
 ・上記実施形態では、第1の凹部53が複数の段部54,55により構成されるとともに、第2の凹部73が複数の段部74,75により構成される例を示した。これに対し、こうした複数の段部が形成されていない凹部を採用することもできる。この場合であっても、少なくとも上記(1)及び(2)に示した各作用効果を奏することができる。しかし、機関異常停止後の機関始動時において、保持機構26を迅速にロック状態に切り替える上では、上記実施形態に示したように複数の段部54,55,74,75が保持機構26に形成されていることが望ましい。 In the above embodiment, an example in which the first concave portion 53 is configured by the plurality of step portions 54 and 55 and the second concave portion 73 is configured by the plurality of step portions 74 and 75 has been described. On the other hand, the recessed part in which such a some step part is not formed is also employable. Even in this case, at least the actions and effects shown in (1) and (2) above can be achieved. However, when the engine is started after an abnormal engine stop, in order to quickly switch the holding mechanism 26 to the locked state, a plurality of step portions 54, 55, 74, and 75 are formed in the holding mechanism 26 as shown in the above embodiment. It is desirable that
 ・上記実施形態では、保持機構26が進角保持機構50及び遅角保持機構70を備える例を示した。これに対し、単一のピンと単一の凹部とでバルブタイミングを特定時期に保持する単一の保持機構により保持機構を構成するようにしてもよい。この場合であっても、本発明を適用することにより、保持機構26をロック状態から解除状態に切り替える際の応答性を向上させることができる。 In the above embodiment, the holding mechanism 26 includes the advance angle holding mechanism 50 and the retard angle holding mechanism 70. On the other hand, the holding mechanism may be configured by a single holding mechanism that holds the valve timing at a specific time with a single pin and a single recess. Even in this case, by applying the present invention, the responsiveness when the holding mechanism 26 is switched from the locked state to the released state can be improved.
 ・また、単一の保持機構により保持機構を構成するとともに、この保持機構が設けられたベーン33Bとは異なるベーン33Bには、保持機構とは別に設けられる大気開放機構40をそれぞれ設けるようにしてもよい。この場合であっても、本発明を適用することにより、保持機構をロック状態から解除状態に切り替える際の応答性を向上させることができる。 In addition, a holding mechanism is configured by a single holding mechanism, and an air release mechanism 40 provided separately from the holding mechanism is provided in each vane 33B different from the vane 33B provided with the holding mechanism. Also good. Even in this case, by applying the present invention, the responsiveness when the holding mechanism is switched from the locked state to the released state can be improved.
 ・上記実施形態では、保持機構26がバルブタイミングを保持する特定時期が中間時期である例を示したが、この特定時期については変更することもできる。例えば、バルブタイミングを最遅角時期で保持する保持機構を有する可変動弁装置に本発明を適用することも可能である。この場合であっても、保持機構をロック状態にしたときに解除室及び解除油路から作動油が流出し、解除室が作動油で満たされないという問題は起こりうる。そのため、本発明を適用することにより、保持機構26をロック状態から解除状態に切り替える際の応答性を向上させることができる。 In the above embodiment, an example is shown in which the specific time when the holding mechanism 26 holds the valve timing is an intermediate time, but the specific time can be changed. For example, the present invention can also be applied to a variable valve apparatus having a holding mechanism that holds the valve timing at the most retarded timing. Even in this case, there may be a problem that when the holding mechanism is locked, the hydraulic oil flows out from the release chamber and the release oil passage, and the release chamber is not filled with the hydraulic oil. Therefore, by applying the present invention, it is possible to improve the responsiveness when the holding mechanism 26 is switched from the locked state to the released state.
 ・上記実施形態では、単一のOCV91を設ける例を示したが、複数のオイルコントロールバルブを設けるようにしてもよい。この場合であっても、オイルコントロールバルブの下流側に設けられた解除油路と供給油路とを連通する連通油路を設けることにより、上記(1)~(7)に示した各作用効果を奏することができる。 In the above embodiment, an example in which a single OCV 91 is provided has been described, but a plurality of oil control valves may be provided. Even in this case, by providing a communication oil passage that communicates the release oil passage and the supply oil passage provided on the downstream side of the oil control valve, the functions and effects described in the above (1) to (7) are provided. Can be played.
 ・上記実施形態では、凹部53,73がカバー30に形成された例を示したが、凹部53,73をスプロケット31に形成するようにしてもよい。
 ・上記実施形態では、スプロケット31がクランク軸12に駆動連結され、ベーンロータ33がカム軸22に駆動連結された例を示した。しかし、スプロケット31がカム軸22に駆動連結され、ベーンロータ33がクランク軸12に駆動連結されるように可変機構25を構成してもよい。この場合であっても、上述した各作用効果を奏することができる。
In the above embodiment, the concave portions 53 and 73 are formed on the cover 30, but the concave portions 53 and 73 may be formed on the sprocket 31.
In the above embodiment, the sprocket 31 is drivingly connected to the crankshaft 12 and the vane rotor 33 is drivingly connected to the camshaft 22. However, the variable mechanism 25 may be configured such that the sprocket 31 is drivingly connected to the camshaft 22 and the vane rotor 33 is drivingly connected to the crankshaft 12. Even in this case, the above-described effects can be achieved.
 ・上記実施形態では、本発明の可変動弁装置を吸気バルブ21のバルブタイミングを変更する可変動弁装置20として具体化した例を示したが、排気バルブ23のバルブタイミングを変更する可変動弁機構として本発明を具体化することも可能である。また、吸気バルブ21のバルブタイミングを変更する可変動弁機構、及び排気バルブ23のバルブタイミングを変更する可変動弁機構のそれぞれに本発明を適用することも可能である。 In the above embodiment, an example in which the variable valve device of the present invention is embodied as the variable valve device 20 that changes the valve timing of the intake valve 21 is shown. However, the variable valve valve that changes the valve timing of the exhaust valve 23 is shown. It is also possible to embody the present invention as a mechanism. The present invention can also be applied to each of a variable valve mechanism that changes the valve timing of the intake valve 21 and a variable valve mechanism that changes the valve timing of the exhaust valve 23.
 10…内燃機関、11…ピストン、12…クランク軸、13…オイルポンプ(作動油供給源)、14…オイルパン、15…クランク角センサ、16…カム角センサ、17…ECU、20…可変動弁装置、21…吸気バルブ、22…吸気用カム軸、23…排気バルブ、24…排気用カム軸、25,100…可変機構、26,110…保持機構、30…カバー(第1の回転体)、31,101…スプロケット(第1の回転体)、32,102…ハウジング(第1の回転体)、33,103…ベーンロータ(第2の回転体)、33A…ボス、33B,103A…ベーン、34…センターボルト、35…区画部、36,105…収容室、37,106…進角室、38,107…遅角室、40、60,80…大気開放機構、41…開閉ピン(開閉弁)、42,62,82…大気連通路、43…第3のばね、44…第3の解除室(開閉弁用油室)、45…第3のばね室、46,66,86…進角連通路、47,67,87…遅角連通路、48,68,88…大気開放通路、50…進角保持機構(第1の保持機構)、51…第1のピン(ピン、開閉弁)、51A,71A…外側ピン、51B,71B…内側ピン、51C,71C…底板、51D,71D…ストッパ、52…第1のばね(付勢部材)、52A,72A…外側ばね、52B,72B…内側ばね、53…第1の凹部(凹部)、54…第1の上段部、55…第1の下段部、56,76,33C…ベーン孔、57…第1の解除室、58…第1のばね室、70…遅角保持機構(第2の保持機構)、71…第2のピン(ピン、開閉弁)、72…第2のばね(付勢部材)、73…第2の凹部(凹部)、74…第2の上段部、75…第2の下段部、77…第2の解除室、78…第2のばね室、90…油圧機構、90A…作動油通路、91…オイルコントロールバルブ(OCV、油路制御部)、92…供給油路、92D…分岐点、93…第1の供給油路、93P…進遅角供給ポート、94…第2の供給油路、94P…解除用供給ポート、95…進角油路、95P…進角ポート、96…遅角油路、96P…遅角ポート、97…解除油路、97A…第1の解除油路、97B…第2の解除油路、97C…第3の解除油路、97D…分岐点、97P…解除用ポート、98,198…連通油路、99…排出油路、99P…排出ポート、111…ピン、112…凹部、113…ばね、114…解除室。 DESCRIPTION OF SYMBOLS 10 ... Internal combustion engine, 11 ... Piston, 12 ... Crankshaft, 13 ... Oil pump (hydraulic oil supply source), 14 ... Oil pan, 15 ... Crank angle sensor, 16 ... Cam angle sensor, 17 ... ECU, 20 ... Variable motion Valve device, 21 ... intake valve, 22 ... intake camshaft, 23 ... exhaust valve, 24 ... exhaust camshaft, 25, 100 ... variable mechanism, 26, 110 ... holding mechanism, 30 ... cover (first rotating body) ), 31, 101... Sprocket (first rotating body), 32, 102... Housing (first rotating body), 33, 103 .. vane rotor (second rotating body), 33A... Boss, 33B, 103A. 34, center bolt, 35, compartment, 36, 105, accommodating chamber, 37, 106, advance chamber, 38, 107, retard chamber, 40, 60, 80 ... atmosphere release mechanism, 41 ... open / close pin (open / close) valve) 42, 62, 82 ... atmosphere communication passage, 43 ... third spring, 44 ... third release chamber (oil chamber for on-off valve), 45 ... third spring chamber, 46, 66, 86 ... advance communication passage , 47, 67, 87 ... retard communication passage, 48, 68, 88 ... atmosphere release passage, 50 ... advance holding mechanism (first holding mechanism), 51 ... first pin (pin, on-off valve), 51A , 71A ... outer pin, 51B, 71B ... inner pin, 51C, 71C ... bottom plate, 51D, 71D ... stopper, 52 ... first spring (biasing member), 52A, 72A ... outer spring, 52B, 72B ... inner spring 53... First recess (recess) 54. First upper step 55. First lower step 56, 76, 33 C. Vane hole 57. First release chamber 58. First spring Chamber, 70 ... retard holding mechanism (second holding mechanism), 71 ... second pin (pin, on-off valve), 72 ... 2 springs (biasing members), 73 ... second recesses (recesses), 74 ... second upper stage parts, 75 ... second lower stage parts, 77 ... second release chambers, 78 ... second spring chambers , 90 ... Hydraulic mechanism, 90A ... Hydraulic oil passage, 91 ... Oil control valve (OCV, oil passage control unit), 92 ... Supply oil passage, 92D ... Branch point, 93 ... First supply oil passage, 93P ... Advance / Delay Angle supply port, 94 ... second supply oil passage, 94P ... release supply port, 95 ... advance oil passage, 95P ... advance port, 96 ... retard oil passage, 96P ... retard port, 97 ... release oil , 97A ... first release oil passage, 97B ... second release oil passage, 97C ... third release oil passage, 97D ... branch point, 97P ... release port, 98, 198 ... communication oil passage, 99 ... Drain oil passage, 99P ... discharge port, 111 ... pin, 112 ... recess, 113 ... spring, 114 ... release chamber.

Claims (5)

  1.  クランク軸に駆動連結された第1の回転体と、カム軸に駆動連結されるとともに前記第1の回転体と同一の回転軸周りに回転する第2の回転体と、前記第1の回転体と前記第2の回転体とにより区画形成される進角室及び遅角室とを有し、前記進角室及び前記遅角室に対して選択的に供給される油圧により前記各回転体を相対回転させることにより前記カム軸にて開閉駆動されるバルブのバルブタイミングを変更する可変機構と、
     前記各回転体の一方に設けられたピンと、前記各回転体の他方に設けられて前記ピンが嵌入する凹部と、前記ピンが前記凹部に嵌入する方向にこれを付勢する付勢部材と、前記ピンが前記凹部から抜脱する方向に前記ピンを付勢するための作動油が供給される解除室とを有し、前記解除室の油圧を低下させて前記ピンを前記凹部に嵌入することでバルブタイミングを特定時期に保持するロック状態と前記解除室の油圧を解除油圧まで上昇させて前記ピンを前記凹部から抜脱することでバルブタイミングを特定時期とは異なる時期に変更可能な解除状態とに切り替えられる保持機構と、
     前記進角室及び前記遅角室並びに前記解除室に対する作動油の給排状態を制御する油路制御部を有する油圧機構とを備える内燃機関の可変動弁装置であって、
     前記油圧機構は、
     作動油供給源の作動油を前記油路制御部に供給するとともに同油路制御部から前記進角室及び前記遅角室に対して作動油を選択的に供給する供給油路と、
     前記供給油路とは独立して設けられ前記油路制御部から前記解除室に作動油を供給する解除油路と、
     前記供給油路と前記解除油路とを連通し前記解除油圧より小さい油圧の作動油を前記解除室に供給する連通油路とを備える
     ことを特徴とする内燃機関の可変動弁装置。
    A first rotating body that is drivingly connected to the crankshaft; a second rotating body that is drivingly connected to the camshaft and rotates about the same rotation axis as the first rotating body; and the first rotating body And an advance chamber and a retard chamber formed by the second rotor and each of the rotors by hydraulic pressure selectively supplied to the advance chamber and the retard chamber. A variable mechanism that changes the valve timing of a valve that is driven to open and close by the camshaft by relative rotation;
    A pin provided on one side of each of the rotating bodies; a recess provided on the other side of each of the rotating bodies; and a biasing member that biases the pins in a direction in which the pins are fitted into the recesses; A release chamber that is supplied with hydraulic oil for urging the pin in a direction in which the pin is pulled out of the recess, and the pin is inserted into the recess by reducing the hydraulic pressure of the release chamber. In a locked state in which the valve timing is held at a specific time, and a release state in which the valve timing can be changed to a time different from the specific time by raising the hydraulic pressure in the release chamber to the release hydraulic pressure and removing the pin from the recess. A holding mechanism that can be switched to
    A variable valve operating apparatus for an internal combustion engine, comprising: a hydraulic mechanism having an oil passage control unit that controls a supply and discharge state of hydraulic oil to and from the advance chamber, the retard chamber, and the release chamber;
    The hydraulic mechanism is
    A supply oil passage that supplies hydraulic oil from a hydraulic oil supply source to the oil passage control unit and selectively supplies the hydraulic oil from the oil passage control unit to the advance chamber and the retard chamber;
    A release oil path that is provided independently of the supply oil path and supplies hydraulic oil from the oil path control unit to the release chamber;
    A variable valve operating apparatus for an internal combustion engine, comprising: a communication oil passage that communicates the supply oil passage with the release oil passage and supplies hydraulic oil having a hydraulic pressure smaller than the release oil pressure to the release chamber.
  2.  前記連通油路は、前記供給油路において前記作動油供給源から前記油路制御部に至るまでの部分と前記解除油路とを連通する
     請求項1に記載の内燃機関の可変動弁装置。
    2. The variable valve operating apparatus for an internal combustion engine according to claim 1, wherein the communication oil passage communicates a portion of the supply oil passage from the hydraulic oil supply source to the oil passage control unit and the release oil passage.
  3.  前記保持機構は、バルブタイミングが前記特定時期よりも進角側に変化することを規制する第1の保持機構と、バルブタイミングが前記特定時期よりも遅角側に変化することを規制する第2の保持機構とを含み、前記第1の保持機構及び前記第2の保持機構が協働してバルブタイミングを最進角時期と最遅角時期との間の中間時期である前記特定時期に保持するものであり、
     前記解除油路は、前記解除室として前記第1の保持機構に設けられた第1の解除室と前記解除室として前記第2の保持機構に設けられた第2の解除室との双方に作動油を供給するものである
     請求項1又は請求項2に記載の内燃機関の可変動弁装置。
    The holding mechanism restricts the valve timing from changing to the advance side with respect to the specific time, and the second holding mechanism restricts the valve timing from changing to the retard side from the specific time. And the first holding mechanism and the second holding mechanism cooperate to hold the valve timing at the specific timing which is an intermediate timing between the most advanced timing and the most retarded timing. Is what
    The release oil passage operates in both a first release chamber provided in the first holding mechanism as the release chamber and a second release chamber provided in the second holding mechanism as the release chamber. The variable valve operating apparatus for an internal combustion engine according to claim 1 or 2, wherein oil is supplied.
  4.  請求項1~3のいずれか一項に記載の内燃機関の可変動弁装置において、
     前記保持機構は前記カム軸に作用する交番トルクにより前記各回転体を相対回転させることによりバルブタイミングを前記特定時期よりも遅角側の時期から同特定時期まで段階的に進角させるラチェット式自律進角機構を含むものであり、
     前記保持機構は前記進角室及び前記遅角室と大気空間とを連通する大気連通路をさらに有し、
     前記ピンは、前記大気連通路を開放又は遮断する開閉弁を兼ねるものであり、前記解除室の各油圧の低下に伴い前記ピンは前記大気連通路を開放するものである
     ことを特徴とする内燃機関の可変動弁装置。
    The variable valve operating apparatus for an internal combustion engine according to any one of claims 1 to 3,
    The holding mechanism is a ratchet-type autonomous system that advances the valve timing stepwise from a timing retarded from the specific timing to the specific timing by relatively rotating the rotating bodies with an alternating torque acting on the camshaft. Including an advance mechanism,
    The holding mechanism further includes an atmospheric communication path that communicates the advance chamber and the retard chamber with the atmospheric space;
    The pin serves as an on-off valve that opens or shuts off the atmosphere communication path, and the pin opens the atmosphere communication path as the hydraulic pressure in the release chamber decreases. Variable valve gear for engine.
  5.  請求項4に記載の内燃機関の可変動弁装置において、
     前記進角室及び前記遅角室と大気空間とを連通する大気連通路と、同大気連通路を開放又は遮断する開閉弁と、前記大気連通路を遮断する方向に前記開閉弁を付勢するための作動油が供給される開閉弁用油室とを有し、前記回転軸の周方向において前記保持機構とは異なる位置に設けられた大気開放機構とをさらに備え、
     前記解除油路は前記解除室に加えて前記開閉弁用油室に作動油を供給するものである
     ことを特徴とする内燃機関の可変動弁装置。
    The variable valve operating apparatus for an internal combustion engine according to claim 4,
    An atmospheric communication passage that communicates the advance chamber and the retard chamber with the atmospheric space, an open / close valve that opens or closes the atmospheric communication passage, and the open / close valve that biases the open / close valve in a direction that blocks the atmospheric communication passage An on-off valve oil chamber to which hydraulic oil is supplied, and further includes an air release mechanism provided at a position different from the holding mechanism in the circumferential direction of the rotating shaft,
    The release oil passage supplies hydraulic fluid to the on-off valve oil chamber in addition to the release chamber.
PCT/JP2010/072175 2010-12-09 2010-12-09 Variable valve gear for internal combustion engine WO2012077220A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012516429A JP5282850B2 (en) 2010-12-09 2010-12-09 Variable valve operating device for internal combustion engine
PCT/JP2010/072175 WO2012077220A1 (en) 2010-12-09 2010-12-09 Variable valve gear for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/072175 WO2012077220A1 (en) 2010-12-09 2010-12-09 Variable valve gear for internal combustion engine

Publications (1)

Publication Number Publication Date
WO2012077220A1 true WO2012077220A1 (en) 2012-06-14

Family

ID=46206739

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/072175 WO2012077220A1 (en) 2010-12-09 2010-12-09 Variable valve gear for internal combustion engine

Country Status (2)

Country Link
JP (1) JP5282850B2 (en)
WO (1) WO2012077220A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015056617A1 (en) * 2013-10-16 2015-04-23 アイシン精機株式会社 Valve open/close period control device
JP2016061269A (en) * 2014-09-22 2016-04-25 日立オートモティブシステムズ株式会社 Valve timing control device of internal combustion engine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10220207A (en) * 1997-02-06 1998-08-18 Aisin Seiki Co Ltd Valve opening/closing timing control device
JP2002061504A (en) * 2000-08-18 2002-02-28 Mitsubishi Electric Corp Valve timing regulation device for internal combustion engine
JP2010223212A (en) * 2009-02-26 2010-10-07 Aisin Seiki Co Ltd Valve opening/closing timing control device
JP2010248950A (en) * 2009-04-13 2010-11-04 Toyota Motor Corp Variable valve gear for internal combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10220207A (en) * 1997-02-06 1998-08-18 Aisin Seiki Co Ltd Valve opening/closing timing control device
JP2002061504A (en) * 2000-08-18 2002-02-28 Mitsubishi Electric Corp Valve timing regulation device for internal combustion engine
JP2010223212A (en) * 2009-02-26 2010-10-07 Aisin Seiki Co Ltd Valve opening/closing timing control device
JP2010248950A (en) * 2009-04-13 2010-11-04 Toyota Motor Corp Variable valve gear for internal combustion engine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015056617A1 (en) * 2013-10-16 2015-04-23 アイシン精機株式会社 Valve open/close period control device
JP2015078635A (en) * 2013-10-16 2015-04-23 アイシン精機株式会社 Valve opening/closing timing control device
CN105008679A (en) * 2013-10-16 2015-10-28 爱信精机株式会社 Valve open/close period control device
US9708939B2 (en) 2013-10-16 2017-07-18 Aisin Seiki Kabushiki Kaisha Valve open/close timing control device
CN105008679B (en) * 2013-10-16 2017-09-22 爱信精机株式会社 Valve opening/closing timing control device
JP2016061269A (en) * 2014-09-22 2016-04-25 日立オートモティブシステムズ株式会社 Valve timing control device of internal combustion engine

Also Published As

Publication number Publication date
JPWO2012077220A1 (en) 2014-05-19
JP5282850B2 (en) 2013-09-04

Similar Documents

Publication Publication Date Title
JP5579271B2 (en) Device for variably adjusting the control time of a gas exchange valve of an internal combustion engine
JP5876061B2 (en) Cam torque driven phaser with intermediate position lock
US9464542B2 (en) Variable valve timing apparatus for internal combustion engine
JP6308251B2 (en) Engine oil supply device
JP6645448B2 (en) Valve timing adjustment device
US20090107433A1 (en) Valve timing controller
EP2990620B1 (en) Valve timing control apparatus
US6260526B1 (en) Valve movement control system of an internal combustion engine
WO2016021328A1 (en) Hydraulic control valve and valve-timing control device for internal-combustion engine using hydraulic control valve
CN106567752B (en) Camshaft thrust bearing lubricating system
JP2009264133A (en) Variable cam phase type internal combustion engine
JP5282850B2 (en) Variable valve operating device for internal combustion engine
JP2010242714A (en) Variable valve gear for internal combustion engine
JP5288044B2 (en) Variable valve operating device for internal combustion engine
US8578900B2 (en) Valve timing controller for internal combustion engine
JP5288043B2 (en) Variable valve operating device for internal combustion engine
CN104514595A (en) Efficient phaser actuation supply system
JP2010242532A (en) Variable valve gear for internal combustion engine
JP2009079475A (en) Variable valve train for internal combustion engine
JP2012002081A (en) Variable valve gear of internal combustion engine
JP2004245074A (en) Variable valve gear for engine
JP2003278513A (en) Valve opening/closing timing control device
JP4463187B2 (en) Valve timing adjustment device
JP2020094497A (en) Valve opening/closing timing control device
JP2021032092A (en) Valve timing adjustment device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2012516429

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10860581

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10860581

Country of ref document: EP

Kind code of ref document: A1