WO2016021328A1 - Hydraulic control valve and valve-timing control device for internal-combustion engine using hydraulic control valve - Google Patents

Hydraulic control valve and valve-timing control device for internal-combustion engine using hydraulic control valve Download PDF

Info

Publication number
WO2016021328A1
WO2016021328A1 PCT/JP2015/068489 JP2015068489W WO2016021328A1 WO 2016021328 A1 WO2016021328 A1 WO 2016021328A1 JP 2015068489 W JP2015068489 W JP 2015068489W WO 2016021328 A1 WO2016021328 A1 WO 2016021328A1
Authority
WO
WIPO (PCT)
Prior art keywords
control valve
hydraulic control
valve
hydraulic
axial direction
Prior art date
Application number
PCT/JP2015/068489
Other languages
French (fr)
Japanese (ja)
Inventor
保英 ▲高▼田
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to JP2016540111A priority Critical patent/JPWO2016021328A1/en
Publication of WO2016021328A1 publication Critical patent/WO2016021328A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/356Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear making the angular relationship oscillate, e.g. non-homokinetic drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • F16K11/06Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements
    • F16K11/065Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with linearly sliding closure members
    • F16K11/07Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with linearly sliding closure members with cylindrical slides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K3/00Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing
    • F16K3/22Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with sealing faces shaped as surfaces of solids of revolution
    • F16K3/24Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with sealing faces shaped as surfaces of solids of revolution with cylindrical valve members

Definitions

  • the present invention relates to, for example, a hydraulic control valve used in a valve timing control device that variably controls the valve timing of an intake valve or an exhaust valve of an internal combustion engine according to an operating state.
  • this hydraulic control valve is a cylindrical valve body that is inserted and disposed inside a vane rotor that is fixed from one axial end of the camshaft in the axial direction, and is accommodated and fixed inside the valve body.
  • a solenoid to be pressed.
  • a plurality of ports communicating with the advance hydraulic chamber, the retard hydraulic chamber, and the like are formed through the peripheral wall along the radial direction.
  • the plurality of communication passages are formed along the axial direction in the axial direction of the outer peripheral surface, and a plurality of communication holes are formed in the end portions and peripheral walls in the axial direction of the communication passages.
  • the spool valve slides in the axial direction by a control current output from the control unit to the solenoid, and controls each communication hole of the sleeve and the opening area of the communication hole via an oil hole formed in the peripheral wall. It is like that.
  • the communication passage and each port are appropriately communicated, so that the oil pumped from the oil pump is retarded from the advance hydraulic chamber of the vane rotor.
  • the hydraulic chamber is selectively supplied and discharged to change the relative rotational phase of the camshaft with respect to the crankshaft.
  • An object of the present invention is to provide a hydraulic control valve that does not require high dimensional accuracy of components while improving the degree of freedom of the layout in the axial direction of the port.
  • the invention according to claim 1 is provided with a cylindrical valve body in which a plurality of ports through which hydraulic fluid flows in the radial direction of the peripheral wall is formed, and is slidable in the axial direction inside the valve body.
  • a cylindrical shape in which a plurality of communication holes communicating with the plurality of ports are formed along the radial direction according to the sliding position, and a communication path communicating with each communication hole is formed along the inner axial direction.
  • a partition member that is housed and fixed in the inner axial direction of the spool valve and partitions the communication passage into a plurality of passage portions from the radial direction.
  • the present invention it is possible to reduce the manufacturing cost because high dimensional accuracy of the component parts is not required while improving the degree of freedom of the layout in the axial direction of the port.
  • FIG. 1 is an overall configuration diagram showing a cross section of a valve timing control apparatus to which a hydraulic control valve according to the present invention is applied. It is a front view which shows the state by which the vane rotor provided to this embodiment was hold
  • FIG. 5 is a sectional view taken along line AA in FIG. 4. It is a front view of the valve body provided for this embodiment.
  • FIG. 6 is a longitudinal sectional view on the valve body side showing a state in which the spool valve of the electromagnetic switching valve provided in the present embodiment has moved to the maximum rightward position, where A is a sectional view taken along line BB in FIG.
  • FIG. 6 is a sectional view taken along line CC of FIG. 6 is a longitudinal sectional view on the valve body side showing a state in which the spool valve of the electromagnetic switching valve provided in the present embodiment has moved to an intermediate position in the axial direction, where A is a sectional view taken along line BB in FIG.
  • FIG. 6 is a sectional view taken along line CC of FIG.
  • FIG. 6 is a longitudinal sectional view on the valve body side showing a state where the spool valve of the electromagnetic switching valve provided in the present embodiment has moved to the maximum leftward position, where A is a sectional view taken along line BB in FIG. FIG. 6 is a sectional view taken along line CC of FIG.
  • the valve timing control device is arranged along a longitudinal direction of the engine, and a sprocket 1 that is a driving rotary body that is rotationally driven by a crankshaft of the engine via a timing chain (not shown). And is arranged between the intake side camshaft 2 provided so as to be rotatable relative to the sprocket 1 and between the sprocket 1 and the camshaft 2, and converts the relative rotational phase of the both 1 and 2.
  • the sprocket 1 is formed in a substantially thick disk shape, has a gear portion 1a around which the timing chain is wound, and is configured as a rear cover that closes a rear end opening of the housing described later. In the center, a support hole 1b through which the one end 2a of the camshaft 2 is rotatably supported is formed.
  • the camshaft 2 is rotatably supported by a cylinder head 01 via a plurality of cam bearings 02, and a plurality of egg-shaped rotary cams for opening an intake valve, which is an unillustrated engine valve, are shafts on the outer peripheral surface.
  • a bolt hole 6 into which a cam bolt 50 to be described later is screwed is formed in the direction of the internal axis of the one end portion 2a.
  • the bolt hole 6 is formed along the internal axial direction from the distal end side of the one end portion 2a, and is formed to have a stepped diameter from the opened front end side toward the inner bottom portion.
  • a large diameter portion 6a having a diameter, a stepped portion 6b formed in a tapered shape from the rear end of the large diameter portion 6a, and a female screw portion 6c formed from the rear end to the rear end portion of the stepped portion 6b. And is composed of.
  • the phase change mechanism 3 includes a housing 7 that is integrally provided on the sprocket 1 in the axial direction, and a later-described valve body that becomes a cam bolt at one end 2 a of the camshaft 2.
  • a vane rotor 9 which is a driven rotating body fixed in an axial direction through 50 and rotatably accommodated in the housing 7 and an operation chamber inside the housing 7 are arranged on an inner peripheral surface of a housing body 7a described later.
  • a retarded hydraulic chamber 11 and an advanced hydraulic chamber 12 which are a retarded working chamber and an advanced working chamber, respectively, which are separated by four protruding shoes 10 and the vane rotor 9.
  • the housing 7 includes a cylindrical housing body 7a integrally formed of sintered metal, a front cover 13 that is formed by press molding and closes the front end opening of the housing body 7a, and a rear cover that closes the rear end opening. It is comprised from the said sprocket 1 which is.
  • the housing body 7a, the front cover 13, and the sprocket 1 are fastened and fixed together by four bolts 14 that pass through the bolt insertion holes 10a of the shoes 10.
  • the front cover 13 has a relatively large-diameter insertion hole 13a formed through the center thereof, and seals the inside of each hydraulic chamber 11, 12 with the outer peripheral side inner peripheral surface of the insertion hole 13a. .
  • the vane rotor 9 is integrally formed of a metal material, and has a rotor portion 15 fixed to one end portion 2a of the camshaft 2 by a valve body 50; It consists of four vanes 16a to 16d projecting radially at the interval positions.
  • the rotor portion 15 is formed in a cylindrical shape having a relatively large diameter, and has a bolt insertion hole 15a continuous with the female screw hole 6c of the camshaft 2 in the central internal axial direction. The tip end surface of the one end portion 2a of the shaft 2 is in contact.
  • each of the vanes 16a to 16d is formed with a relatively short protruding length, and is disposed between the shoes 10 and has a circumferential width that is set to be substantially the same. It is formed in a plate shape. Seal members 17a and 17b for sealing between the inner peripheral surface of the housing body 7a and the outer peripheral surface of the rotor portion 15 are provided on the outer peripheral surfaces of the vanes 16a to 16d and the tips of the shoes 10, respectively. .
  • the vane rotor 9 rotates relative to the retard side as shown by a one-dot chain line in FIG. 2, the projecting surface 10b formed on the opposing side surface of the one shoe 10 that the one side surface of the first vane 16a faces.
  • the rotational position on the maximum retarding angle side is regulated in contact with.
  • the other side surface of the first vane 16a is in contact with the opposite side surface 10c of the other shoe 10 and the maximum advance angle side rotation is performed.
  • the position is regulated.
  • the other vanes 16b to 16d are in a separated state without coming into contact with the facing surfaces of the shoes 10 whose both side surfaces face each other in the circumferential direction. Therefore, the contact accuracy between the vane rotor 9 and the shoe 10 is improved, and the supply speed of hydraulic pressure to each of the hydraulic chambers 11 and 12 to be described later is increased, and the forward / reverse rotation response of the vane rotor 9 is increased.
  • the retard hydraulic chambers 11 and the advance hydraulic chambers 12 described above are defined between both side surfaces of the vanes 16a to 16d in the forward / reverse rotation direction and both side surfaces of the shoes 10, respectively.
  • the angle hydraulic chamber 11 and each advance hydraulic chamber 12 are respectively connected to a hydraulic circuit 5 described later via a retard side communication passage 11a and an advance side communication passage 12a formed substantially radially inside the rotor portion 15. Communicating with
  • the lock mechanism 4 holds the vane rotor 9 at the most retarded angle rotation position (the one-dot chain line position in FIG. 2) with respect to the housing 7.
  • the lock mechanism 4 includes a lock hole constituting portion 1c (described only in FIG. 1) that is press-fitted and fixed at a predetermined position on the inner peripheral side of the sprocket 1, and the lock hole.
  • the lock hole 24 formed in the component 1c and the sliding hole 27 formed in the inner axial direction of the first vane 16a having the maximum width of the vane rotor 9 are provided so as to be capable of moving forward and backward, and a small-diameter distal end portion 25a is provided.
  • a lock pin 25 that engages and disengages with each lock hole 24, a coil spring 26 that urges the lock pin 25 toward the lock hole 24, and the lock pin 25 that is formed inside the lock hole 24 and that is supplied with hydraulic pressure.
  • a release pressure receiving chamber (not shown) that releases the engagement by retreating each lock hole 24 against the spring force of the coil spring 26, and a lock passage for supplying hydraulic pressure to the release pressure receiving chamber , It is composed mainly from.
  • the lock hole 24 is formed in a circular shape having a diameter sufficiently larger than the outer diameter of the small-diameter tip portion 25a of the lock pin 25, and the rotation of the inner side surface of the sprocket 1 on the most retarded side of the vane rotor 9 is performed. It is formed at a position corresponding to the position.
  • the lock pin 25 is moved backward by receiving the hydraulic pressure supplied to the pressure receiving chamber for release on the pressure receiving surface of the tip portion 25a, and the tip portion 25a is moved by the spring force of the coil spring 26 provided on the rear end side.
  • the vane rotor 9 is locked into the housing 7 by engaging with the lock hole 24.
  • release pressure receiving chamber is supplied with the same hydraulic pressure as that supplied to the retard hydraulic chamber 11, and the lock pin 25 is moved backward against the spring force of the coil spring 26 by this hydraulic pressure. It is like that.
  • the hydraulic circuit 5 includes a retard passage 18 for supplying and exhausting hydraulic pressure to and from each retard hydraulic chamber 11 via a retard communication passage 11a, and each advance hydraulic pressure.
  • An advance passage 19 for supplying and discharging hydraulic pressure to and from the chamber 12 via the advance side communication passage 12a, the lock passage for supplying and discharging hydraulic pressure to and from the release pressure receiving chamber, and the respective retard and advance angles
  • An oil pump 20 that selectively supplies hydraulic oil to the passages 18 and 19, and a single electromagnetic switching valve that is a hydraulic control valve that switches between the retard passage 18 and the advance passage 19 according to the engine operating state. 21.
  • each of the retard passage 18 and the advance passage 19 is connected to a retard port 18a and an advance port 19a of a valve body 50, which will be described later, of the electromagnetic switching valve 21, while the other end is disposed on the other end side.
  • the retard angle advance chambers 11a and 12a communicate with the retard angle hydraulic chambers 11 and the advance angle hydraulic chambers 12 respectively.
  • the lock passage communicates with the retard passage 18 so that the hydraulic pressure supplied to and discharged from the retard hydraulic chamber 11 is supplied to and discharged from the release pressure receiving chamber.
  • the oil pump 20 is a general one such as a trochoid pump that is rotationally driven by an engine crankshaft, and hydraulic oil sucked from the oil pan 23 through the suction passage 20b by rotation of the outer and inner rotors. It is discharged through the discharge passage 20a, a part of which is supplied from the main oil gallery M / G to each sliding part of the internal combustion engine, and the other is supplied to the electromagnetic switching valve 21 side. ing.
  • a filtration filter (not shown) is provided on the downstream side of the discharge passage 20a, and excess hydraulic oil discharged from the discharge passage 20a is returned to the oil pan 23 through the drain passage 22 to be appropriate.
  • a non-illustrated flow rate control valve for controlling the flow rate is provided.
  • the electromagnetic switching valve 21 is a three-port, three-position proportional valve, and slides in a bottomed cylindrical valve body 50 and an internal axis direction of the valve body 50.
  • a cylindrical spool valve 51 provided movably, a columnar sleeve 52 that is a partition member inserted and fixed inside the spool valve 51, and a disk-like shape that is press-fitted into one end opening of the spool valve 51.
  • the retainer 53, a valve spring 54 which is elastically mounted between the retainer 53 and the bottom surface of the valve body 50 and biases the spool valve body 51 in the right direction in FIG.
  • a solenoid part 55 which is an actuator provided at one end of the valve body 50 and moves the spool valve 51 in the left direction in the figure against the spring force of the valve spring 54, is mainly constituted. It has been.
  • the valve body 50 is formed of a ferrous metal material and functions as a cam bolt as described above.
  • the hexagonal head 50a on the solenoid part 55 side, and the head A cylindrical shaft portion 50b that extends in the axial direction from the base portion of 50a, and an outer diameter that is formed on the distal end side of the cylindrical shaft portion 50b and that opposes the reduced diameter step portion 6b of the camshaft 2 from the radial direction.
  • the sliding hole 50e is formed mainly in the direction.
  • annular stopper 56 for restricting the maximum sliding position of the spool valve 51 toward the solenoid 55 is press-fitted and fixed to the inner peripheral surface of a large-diameter groove formed on the inner tip side.
  • the cylindrical shaft portion 50b is provided with four retard ports 18a and advance ports 19a formed in the peripheral wall so as to penetrate each other along the cross radial direction.
  • the conical portion 50c has a step-conical introduction chamber 57 formed between the outer peripheral surface and the large-diameter portion 6a and the step portion 6b of the camshaft 2, and a portion of the peripheral wall near the cylindrical shaft portion 50b.
  • An introduction port 58 communicating with the introduction chamber 57 is formed penetrating along the radial direction.
  • the spool valve 51 is made of an aluminum alloy material, and has a holding hole 59 that is a communication path through which the sleeve 52 is inserted and held in the inner axial direction.
  • a first groove groove 60 is formed on the outer peripheral surface between the one side guide portion 51a on the retainer 53 side and the first land portion 51c adjacent to the one guide portion 51a.
  • a second groove groove 61 is formed between the first land portion 51c and the second land portion 51d adjacent thereto so as to communicate with the advance port 19a as appropriate.
  • a third groove groove 62 is formed between the second land portion 51d and the third land portion 51e adjacent to the second land portion 51d.
  • the third groove groove 62 communicates appropriately with the retard port 18a and the advance port 19a.
  • a fourth groove groove 63 communicating with the retard port 18a as appropriate is formed.
  • the first communication hole 60a to the fourth communication hole 63a which are always in communication with the holding hole 59 at predetermined angular positions in the circumferential direction, are radially formed on the respective bottom walls. Each is formed through.
  • the first to fourth communication holes 60a to 63a are formed at predetermined angular positions in the circumferential direction of the groove grooves 60 to 63, and the first and third communication holes 60 and 62 are formed at substantially the same angular position.
  • the second and fourth communication holes 61 and 63 are formed at an angular position of about 90 °.
  • a drain plug 64 is press-fitted and fixed to the open end of the spool valve 51 opposite to the retainer 53.
  • the drain plug 64 is formed in a bottomed cylindrical shape, and the spool valve 51 is disposed at one end in the axial direction.
  • An annular flange portion 64a that is press-fitted and fixed in one end opening of 51 is integrally provided, and a drain hole 64b is formed in the inner axial direction.
  • a pair of opening holes 64c communicating with the drain hole 64b and the outside are formed at a substantially central position in the axial direction of the drain plug 64 along the radial direction.
  • the flange portion 64 a is press-fitted and fixed to one end opening portion of the spool valve 51, and cooperates with the retainer 53 to hold both end edges of the sleeve 52 from the axial direction to hold the sleeve 52 in the spool valve 51.
  • the movement in the axial direction is regulated.
  • the sleeve 52 is integrally formed of a synthetic resin material in an elongated rod shape, and the outer peripheral surfaces of both axial end portions 52a and 52b formed in a cylindrical shape are held by the spool valve 51.
  • the hole 59 is inserted into and fixed to the inner peripheral surface of the hole 59 through a small clearance or by fitting with a gap, and between the both end portions 52a and 52b, four first to fourth four partition walls 52c having a substantially cross-shaped cross section are provided. It is partitioned into fourth passage portions 65a to 65d.
  • each of the passage portions 65a to 65d is formed in a substantially V-shaped cross section by the partition wall 52c, and is formed long along the axial direction between the both end portions 52a and 52b. ing. Further, both end portions in the axial direction of the first passage portion 65a and the second passage portion 65b formed in an axially symmetric position with the first passage portion 65a are closed by the built-up portions 52d.
  • the third passage portion 65c and the fourth passage portion 65d that is axially symmetric with the third passage portion 65c have a pair of discharge holes 66a and 66b at both ends in the axial direction. The discharge hole 66a on the end side always communicates with the drain hole 64b of the drain plug 64.
  • Each of the passage portions 65a to 65d appropriately communicates with the fourth communication hole 63a of the fourth groove groove 63 on the retard passage 18 side according to the axial sliding position of the spool valve 51.
  • the second communication groove 61a of the second groove groove 61 on the advance angle passage 19 side communicates with the second communication hole 61a as appropriate.
  • the retainer 53 is press-fitted and fixed to the inner peripheral surface of the open end of the one end portion 51a of the spool valve 51, and a through hole 53a is formed through the center of the retainer 53.
  • the solenoid portion 55 includes a solenoid casing 71 fixed to a chain cover (not shown) with a bolt 70 via a bolt 70, and is housed and held inside the solenoid casing 71, so as to control the engine.
  • ECU A coil 72 from which a control current is output from 37, a cylindrical fixed yoke 73 fixed to the inner peripheral side of the coil 72, and an axially slidable inside the fixed yoke 73
  • the movable plunger 74 is integrally formed with the distal end portion of the movable plunger 74, and the distal end portion 75 a abuts against the drain plug 64 in the axial direction, and resists the spring force of the valve spring 54.
  • 1 mainly includes a drive rod 75 that presses 51 in the left direction in FIG.
  • the solenoid casing 71 is held in the holding hole of the chain cover by a seal ring 76, and a synthetic resin connector 77 having a terminal 78 electrically connected to the ECU 37 at the rear end side. Is attached.
  • the solenoid unit 55 moves the spool valve 51 to three positions in the front-rear axis direction by the relative pressure between the control current of the ECU 37 and the valve spring 54, and
  • the spool valve 51 communicates with the second groove groove 61 to the fourth groove groove 63 (second communication hole 61a to fourth communication hole 63a) and the retardation port 18a and the advance port 19a corresponding to the radial groove in the radial direction.
  • the open ends of the retard port 18a and the advance port 19a are closed by the land portions 51c to 51e to block communication.
  • the first groove groove 60 and the introduction port 58 are always in communication at any sliding position of the spool valve 51. Therefore, the hydraulic pressure discharged from the oil pump 20 is introduced from the introduction chamber 57 to the introduction port 58.
  • the first groove groove 60 (first communication hole 60a) is always supplied into the first and second passage portions 65a and 65b of the sleeve 52.
  • an internal computer detects a crank angle sensor (engine speed detection), an air flow meter, an engine water temperature sensor, an engine temperature sensor, a throttle valve opening sensor, and a current rotation phase of the camshaft 2 which are not shown.
  • Information signals from various sensors such as a cam angle sensor are input to detect the current engine operating state, and as described above, a control current is output to the coil 72 of the electromagnetic switching valve 21 or the current supply is cut off.
  • the movement position of the spool valve 51 is controlled to selectively switch the ports.
  • the energization to the solenoid unit 55 is also cut off, so that the spool valve 51 has a spring force of the valve spring 54 as shown in FIG. Is held at the maximum rightward position (first position).
  • the advance port 19a of the valve body 50 is communicated with the second groove groove 61 (second communication hole 61a) of the spool valve 51 by the spool valve 51, and the third and fourth passage portions 65c of the sleeve 52 are communicated. , D are communicated (see FIG. 7A).
  • the introduction port 58 communicates with the first groove groove 60 (first communication hole 60a), the first and second passage portions 65a and 65b, and the passage portions 65a and 65b and the retardation port 18a. Communication is made (see FIG. 7B).
  • the hydraulic oil in the advance hydraulic chamber 12 passes through the second communication hole 61a from the advance port 19a and is discharged from the third and fourth passage portions 65c and 65d. It is discharged to the outside through the drain hole 64b and the opening hole 64c of the drain plug 64 through 66a. Thereby, the inside of each advance hydraulic chamber 12 becomes a low pressure.
  • the oil pump 20 is also stopped, so that no hydraulic pressure is supplied to the retard / advance hydraulic chambers 11 and 12, so that the vane rotor 9 is connected to the camshaft 2. Due to the negative alternating torque acting, as shown by the one-dot chain line in FIG. 2, the sprocket 1 rotates relative to the counterclockwise direction (most retarded angle direction). Therefore, the intake valve is controlled so that the valve timing is the most retarded phase.
  • each retarded hydraulic chamber 11 is in a high pressure state. Accordingly, since the vane rotor 9 is maintained in the state of relative rotation to the most retarded position, the valve timing of the intake valve is controlled to the retard side. Therefore, the engine startability is improved.
  • each of the retarded hydraulic chamber 11 and the advanced hydraulic chamber 12 has no hydraulic oil discharged from the inside thereof, and at the same time, the hydraulic fluid pumped from the oil pump 20 As shown in FIG. 8B, the supply to the hydraulic chambers 11 and 12 is interrupted.
  • the vane rotor 9 is held at an intermediate position between the most retarded angle and the most advanced angle, as shown by the solid line in FIG. Therefore, the valve timing of the intake valve is controlled to an intermediate phase between the most retarded angle and the most advanced angle, so that the engine rotation can be stabilized and fuel consumption can be improved during steady operation.
  • the introduction port 58 and the first groove groove 60 communicate with each other, and the first communication hole 60a communicates with the first and second passage portions 65a and 65b and the advance port 19a.
  • each retarded hydraulic chamber 11 passes through the fourth communication hole 63a, the third and fourth passage portions 65c, 65d from the retard port 18a, and the discharge hole 66a.
  • the water is discharged to the outside through the drain hole 64b and the opening hole 64c.
  • the inside of each retarded hydraulic chamber 11 becomes a low pressure.
  • the hydraulic fluid pumped from the oil pump 20 to each advance hydraulic chamber 12 passes through the first passage hole 60a, the first and second passage portions 65a, 65b, etc., as indicated by arrows in FIG. 9B. When supplied, each advance hydraulic chamber 12 becomes high pressure.
  • the vane rotor 9 rotates in the clockwise direction and relatively rotates to the maximum advance side, as indicated by the two-dot chain line in FIG.
  • the valve timing of the intake valve becomes the most advanced angle phase
  • the valve overlap of the exhaust valve increases
  • the intake charging efficiency increases
  • the output torque of the engine can be improved.
  • the ECU 37 controls the movement of the spool valve 51 in the axial direction by energizing or shutting off the electromagnetic switching valve 21 with a predetermined energization amount in accordance with the operating state of the engine, thereby controlling the first position. Control to the third position. As a result, the phase change mechanism 3 and the lock mechanism 4 are controlled to control the camshaft 2 to the optimum relative rotational position with respect to the sprocket 1, so that the valve timing control accuracy can be improved.
  • the spool valve 51 is slidably provided in the valve body 50, and the sleeve 52 having a relatively simple passage portion is fixed inside the spool valve 51.
  • the entire structure of the switching valve 21 can be simplified.
  • the sleeve 52 is merely fixed in the spool valve 51, high dimensional accuracy is not required for the sleeve 52, so that the manufacturing work cost can be reduced also in this respect.
  • the sleeve 52 does not require the high dimensional accuracy and can be formed of a synthetic resin material, so that the weight of the electromagnetic switching valve 21 can be reduced.
  • the metal spool valve 51 and the synthetic resin sleeve 52 have different coefficients of thermal expansion, when the temperature of the hydraulic oil (engine oil) is low at the time of cold start, for example, Although the clearance between 51 and 52 increases, when the temperature becomes higher than a predetermined temperature during steady operation, the thermal expansion coefficient on the sleeve 52 side increases and the clearance decreases. That is, the outer peripheral surfaces of both end portions 52a and 52b of the sleeve 52 and the outer end surfaces of the four cross-shaped partition walls 52c are in close contact with the inner peripheral surface of the spool valve 51, thereby reducing the clearance.
  • first passage portion 65a and the second passage portion 65b partitioned by the sleeve 52, and the third passage portion 65c and the fourth passage portion 65d are respectively formed at axially symmetric positions, and these first and second passage portions are formed. Since the hydraulic pressure flowing through the passage portions 65a and 65b is for supply and the hydraulic pressure flowing through the third and fourth passage portions 65c and 65d is for discharge and the hydraulic pressure is of the same system, it acts on the sleeve 52. You can balance the pressure.
  • the axial length of the bolt hole 6 of the one end portion 2a of the camshaft 2 can be shortened. For this reason, it is possible to suppress a decrease in rigidity on the one end 2a side of the camshaft 2, and in particular, it is possible to suppress a decrease in torsional rigidity.
  • valve body 50 is formed such that the outer diameter of the tip end portion (conical portion 50c) is smaller than the inner diameter of the bolt hole 6 of the camshaft 2, the introduction chamber 57 and the like are formed using this space portion. It becomes possible to do. For this reason, the flow path structure comprised by the said introduction chamber 57, the introduction port 58, etc. can be simplified.
  • the single electromagnetic switching valve 21 performs two functions for controlling the hydraulic pressure to the retard hydraulic chamber 11 and the advanced hydraulic chamber 12 and controlling the hydraulic pressure to the release pressure receiving chamber. Therefore, the degree of freedom of layout on the engine body is improved and the cost can be reduced.
  • each passage hole is closed by the sliding position of the spool valve 51 of the electromagnetic switching valve 21 and the vane rotor 9 is held at the intermediate phase position, this holding property is improved.
  • the present invention is not limited to the configuration of the above embodiment, and the case where the hydraulic control valve is applied to a valve timing control device has been shown.
  • a valve timing control device for example, an automatic transmission of a vehicle, etc. It is also possible to apply to other devices.
  • valve timing control device can be applied not only to the intake side but also to the exhaust side.
  • the spool valve 51 from an iron-based metal and the sleeve 52 from an aluminum alloy material.
  • the holding hole 59 of the spool valve 51 is divided into four first to fourth passage portions 65a to 65d by the four partition walls 52c having a substantially cross-shaped cross section as described above. If the holding hole 59 is divided into at least two passage portions by the sleeve 52, the hydraulic pressure can be supplied to and discharged from the hydraulic chambers 11 and 12, respectively.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Valve Device For Special Equipments (AREA)
  • Sliding Valves (AREA)
  • Multiple-Way Valves (AREA)

Abstract

Provided is a hydraulic control valve wherein the degree of freedom with which ports are laid out in the axial direction is improved and wherein structural components need not have high dimensional precision. A solenoid selector valve (21) that is provided with: a valve body (50) that is a cam bolt that connects a vane rotor (9) to one end part (2a) of a cam shaft (2); a cylindrical metal spool valve (51) that is provided inside the valve body so as to be slidable in the axial direction and that switches the state of the supply/discharge of a working fluid to and from a retard hydraulic chamber (11) and an advance hydraulic chamber (12); a sleeve (52) that comprises a synthetic resin material and that is inserted into and affixed inside the spool valve; and a solenoid (55) that moves the spool valve in the axial direction. The sleeve has a partitioning wall (52c) that has a cross-shaped cross-section and that radially partitions the inside of a retaining hole (59) that is inside the spool valve into four passageways (65a-65d) that are formed for the purpose of supply to and discharge from the hydraulic chambers.

Description

油圧制御弁及び該油圧制御弁が用いられた内燃機関のバルブタイミング制御装置Hydraulic control valve and valve timing control device for an internal combustion engine using the hydraulic control valve
 本発明は、例えば、内燃機関の吸気弁や排気弁のバルブタイミングを運転状態に応じて可変制御するバルブタイミング制御装置に用いられる油圧制御弁に関する。 The present invention relates to, for example, a hydraulic control valve used in a valve timing control device that variably controls the valve timing of an intake valve or an exhaust valve of an internal combustion engine according to an operating state.
 従来から内燃機関のバルブタイミング制御装置に用いられる油圧制御弁としては種々提供されており、その一つとして以下の特許文献1に記載されたものがある。 Various hydraulic control valves conventionally used in valve timing control devices for internal combustion engines have been provided, and one of them is described in Patent Document 1 below.
 概略を説明すれば、この油圧制御弁は、カムシャフトの軸方向一端部に軸方向から固定されたベーンロータの内部に挿通配置された円筒状のバルブボディと、該バルブボディの内部に収容固定された円筒状のスリーブと、該スリーブの内部に軸方向に沿って摺動自在に設けられたスプール弁と、該スプール弁を一方向に付勢するバルブスプリングのばね力に抗して他方向へ押圧するソレノイドと、を備えている。 Briefly, this hydraulic control valve is a cylindrical valve body that is inserted and disposed inside a vane rotor that is fixed from one axial end of the camshaft in the axial direction, and is accommodated and fixed inside the valve body. A cylindrical sleeve, a spool valve slidably provided along the axial direction inside the sleeve, and a valve spring that biases the spool valve in one direction in the other direction. And a solenoid to be pressed.
 前記バルブボディは、周壁に進角油圧室や遅角油圧室などに連通する複数のポートが径方向に沿って貫通形成されている。一方、前記スリーブは、外周面の軸方向に前記複数の連通路が軸方向に沿って形成されていると共に、該各連通路の軸方向の端部や周壁に複数の連通孔が形成されている。 In the valve body, a plurality of ports communicating with the advance hydraulic chamber, the retard hydraulic chamber, and the like are formed through the peripheral wall along the radial direction. On the other hand, in the sleeve, the plurality of communication passages are formed along the axial direction in the axial direction of the outer peripheral surface, and a plurality of communication holes are formed in the end portions and peripheral walls in the axial direction of the communication passages. Yes.
 前記スプール弁は、コントロールユニットから前記ソレノイドに出力された制御電流によって軸方向に摺動して、周壁に形成された油孔などを介してスリーブの各連通孔や連通孔の開口面積を制御するようになっている。 The spool valve slides in the axial direction by a control current output from the control unit to the solenoid, and controls each communication hole of the sleeve and the opening area of the communication hole via an oil hole formed in the peripheral wall. It is like that.
 そして、機関運転状態に応じて前記スプール弁を軸方向へ移動させることにより、前記連通路と各ポートを適宜連通させることにより、オイルポンプから圧送されたオイルをベーンロータの進角油圧室と遅角油圧室に選択的に給排して、クランクシャフトに対するカムシャフトの相対回転位相を変更するようになっている。 Then, by moving the spool valve in the axial direction according to the engine operation state, the communication passage and each port are appropriately communicated, so that the oil pumped from the oil pump is retarded from the advance hydraulic chamber of the vane rotor. The hydraulic chamber is selectively supplied and discharged to change the relative rotational phase of the camshaft with respect to the crankshaft.
US 7,389,756 B2US 7,389,756 B2
 しかしながら、特許文献1に記載の油圧制御弁にあっては、ボディ本体の各ポートの軸方向のレイアウトの自由度を向上させるために、前記スリーブの外面に軸方向に沿った複数の連通路を形成すると共に、該連通路の軸方向端部などに前記ポートに連通する連通孔が形成され、前記スリーブの内部にスプール弁を摺動自在に設ける構造になっていることから、全体の構造が複雑になると共に、スリーブに連通路を形成すると共に、該スリーブの内周面にスプール弁の摺動性を確保する必要上、スリーブに高い寸法精度が要求されている。この結果、製造作業コストの高騰が余儀なくされている。 However, in the hydraulic control valve described in Patent Document 1, in order to improve the degree of freedom of the layout in the axial direction of each port of the body body, a plurality of communication paths along the axial direction are provided on the outer surface of the sleeve. In addition, a communication hole communicating with the port is formed at an axial end portion of the communication path, and a spool valve is slidably provided inside the sleeve. In addition to being complicated, it is necessary to form a communication path in the sleeve, and to ensure the slidability of the spool valve on the inner peripheral surface of the sleeve, so that high dimensional accuracy is required for the sleeve. As a result, the manufacturing work cost is inevitably increased.
 本発明は、ポートの軸方向のレイアウトの自由度の向上を図りつつ構成部品の高い寸法精度を要求されることのない油圧制御弁を提供することを目的としている。 An object of the present invention is to provide a hydraulic control valve that does not require high dimensional accuracy of components while improving the degree of freedom of the layout in the axial direction of the port.
 請求項1記載の発明は、周壁の径方向に作動液を通流させる複数のポートが貫通形成された筒状のバルブボディと、該バルブボディの内部に軸方向へ摺動自在に設けられ、摺動位置に応じて前記複数のポートと連通する複数の連通孔が径方向に沿って形成されていると共に、該各連通孔に連通する連通路が内部軸方向に沿って形成された筒状のスプール弁と、前記スプール弁の内部軸方向に収容固定されて、前記連通路を径方向から複数の通路部に仕切る仕切り部材と、を備えたことを特徴としている。 The invention according to claim 1 is provided with a cylindrical valve body in which a plurality of ports through which hydraulic fluid flows in the radial direction of the peripheral wall is formed, and is slidable in the axial direction inside the valve body. A cylindrical shape in which a plurality of communication holes communicating with the plurality of ports are formed along the radial direction according to the sliding position, and a communication path communicating with each communication hole is formed along the inner axial direction. And a partition member that is housed and fixed in the inner axial direction of the spool valve and partitions the communication passage into a plurality of passage portions from the radial direction.
 本発明によれば、ポートの軸方向のレイアウトの自由度の向上を図りつつ構成部品の高い寸法精度を要求されることがないことから、製造コストの低減化が図れる。 According to the present invention, it is possible to reduce the manufacturing cost because high dimensional accuracy of the component parts is not required while improving the degree of freedom of the layout in the axial direction of the port.
本発明に係る油圧制御弁が適用されるバルブタイミング制御装置を断面して示す全体構成図である。1 is an overall configuration diagram showing a cross section of a valve timing control apparatus to which a hydraulic control valve according to the present invention is applied. 本実施形態に供されるベーンロータが中間位相の回転位置に保持された状態を示す正面図である。It is a front view which shows the state by which the vane rotor provided to this embodiment was hold | maintained in the rotation position of the intermediate phase. 本実施形態に供される電磁切換弁のバルブボディなどの各構成部品を分解して示す斜視図である。It is a perspective view which decomposes | disassembles and shows each components, such as a valve body of the electromagnetic switching valve provided for this embodiment. 本実施形態に供される電磁切換弁のバルブボディ側を示す側面図である。It is a side view which shows the valve body side of the electromagnetic switching valve provided for this embodiment. 図4のA-A線断面図である。FIG. 5 is a sectional view taken along line AA in FIG. 4. 本実施形態に供されるバルブボディの正面図である。It is a front view of the valve body provided for this embodiment. 本実施形態に供される電磁切換弁のスプール弁が最大右方向の位置に移動した状態を示すバルブボディ側の縦断面であって、Aは図6のB-B線断面図、Bは図6のC-C線断面図である。6 is a longitudinal sectional view on the valve body side showing a state in which the spool valve of the electromagnetic switching valve provided in the present embodiment has moved to the maximum rightward position, where A is a sectional view taken along line BB in FIG. FIG. 6 is a sectional view taken along line CC of FIG. 本実施形態に供される電磁切換弁のスプール弁が軸方向の中間位置に移動した状態を示すバルブボディ側の縦断面であって、Aは図6のB-B線断面図、Bは図6のC-C線断面図である。6 is a longitudinal sectional view on the valve body side showing a state in which the spool valve of the electromagnetic switching valve provided in the present embodiment has moved to an intermediate position in the axial direction, where A is a sectional view taken along line BB in FIG. FIG. 6 is a sectional view taken along line CC of FIG. 本実施形態に供される電磁切換弁のスプール弁が最大左方向の位置に移動した状態を示すバルブボディ側の縦断面であって、Aは図6のB-B線断面図、Bは図6のC-C線断面図である。6 is a longitudinal sectional view on the valve body side showing a state where the spool valve of the electromagnetic switching valve provided in the present embodiment has moved to the maximum leftward position, where A is a sectional view taken along line BB in FIG. FIG. 6 is a sectional view taken along line CC of FIG.
 以下、本発明に係る油圧制御弁を内燃機関のバルブタイミング制御装置に適用した実施形態を図面に基づいて説明する。 Hereinafter, an embodiment in which a hydraulic control valve according to the present invention is applied to a valve timing control device for an internal combustion engine will be described with reference to the drawings.
 前記バルブタイミング制御装置は、図1及び図2に示すように、機関のクランクシャフトにより図外のタイミングチェーンを介して回転駆動される駆動回転体であるスプロケット1と、機関前後方向に沿って配置されて、前記スプロケット1に対して相対回転可能に設けられた吸気側のカムシャフト2と、前記スプロケット1とカムシャフト2との間に配置されて、該両者1,2の相対回転位相を変換する位相変更機構3と、該位相変更機構3を最遅角位相位置でロックさせるロック機構4と、前記位相変更機構3とロック機構4をそれぞれ別個独立に作動させる油圧回路5と、を備えている。 As shown in FIGS. 1 and 2, the valve timing control device is arranged along a longitudinal direction of the engine, and a sprocket 1 that is a driving rotary body that is rotationally driven by a crankshaft of the engine via a timing chain (not shown). And is arranged between the intake side camshaft 2 provided so as to be rotatable relative to the sprocket 1 and between the sprocket 1 and the camshaft 2, and converts the relative rotational phase of the both 1 and 2. A phase changing mechanism 3, a lock mechanism 4 that locks the phase changing mechanism 3 at the most retarded phase position, and a hydraulic circuit 5 that operates the phase changing mechanism 3 and the lock mechanism 4 independently of each other. Yes.
 前記スプロケット1は、ほぼ肉厚円板状に形成されて、外周に前記タイミングチェーンが巻回された歯車部1aを有していると共に、後述するハウジングの後端開口を閉塞するリアカバーとして構成され、中央には前記カムシャフト2の一端部2aが回転自在に支持される支持孔1bが貫通形成されている。 The sprocket 1 is formed in a substantially thick disk shape, has a gear portion 1a around which the timing chain is wound, and is configured as a rear cover that closes a rear end opening of the housing described later. In the center, a support hole 1b through which the one end 2a of the camshaft 2 is rotatably supported is formed.
 前記カムシャフト2は、シリンダヘッド01に複数のカム軸受02を介して回転自在に支持され、外周面には図外の機関弁である吸気弁を開作動させる複数の卵型の回転カムが軸方向の位置に一体的に固定されていると共に、一端部2aの内部軸心方向に後述するカムボルト50が螺着されるボルト孔6が形成されている。 The camshaft 2 is rotatably supported by a cylinder head 01 via a plurality of cam bearings 02, and a plurality of egg-shaped rotary cams for opening an intake valve, which is an unillustrated engine valve, are shafts on the outer peripheral surface. A bolt hole 6 into which a cam bolt 50 to be described later is screwed is formed in the direction of the internal axis of the one end portion 2a.
 このボルト孔6は、一端部2aの先端側から内部軸線方向に沿って穿設されていると共に、開口された前端側から内底部に向かって段差縮径状に形成されて、先端側の均一径の大径部6aと、該大径部6aの後端から縮径テーパ状に形成された段差部6bと、該段差部6bの後端から後端部に亘って形成された雌ねじ部6cと、から構成されている。 The bolt hole 6 is formed along the internal axial direction from the distal end side of the one end portion 2a, and is formed to have a stepped diameter from the opened front end side toward the inner bottom portion. A large diameter portion 6a having a diameter, a stepped portion 6b formed in a tapered shape from the rear end of the large diameter portion 6a, and a female screw portion 6c formed from the rear end to the rear end portion of the stepped portion 6b. And is composed of.
 前記位相変更機構3は、図1及び図2に示すように、前記スプロケット1に軸方向から一体的に設けられたハウジング7と、前記カムシャフト2の一端部2aにカムボルトとなる後述のバルブボディ50を介して軸方向から固定され、前記ハウジング7内に回転自在に収容された従動回転体であるベーンロータ9と、前記ハウジング7の内部の作動室を、後述するハウジング本体7aの内周面に突設された4つのシュー10と前記ベーンロータ9とによって隔成された遅角作動室及び進角作動室であるそれぞれ4つの遅角油圧室11及び進角油圧室12と、を備えている。 As shown in FIGS. 1 and 2, the phase change mechanism 3 includes a housing 7 that is integrally provided on the sprocket 1 in the axial direction, and a later-described valve body that becomes a cam bolt at one end 2 a of the camshaft 2. A vane rotor 9 which is a driven rotating body fixed in an axial direction through 50 and rotatably accommodated in the housing 7 and an operation chamber inside the housing 7 are arranged on an inner peripheral surface of a housing body 7a described later. There are provided a retarded hydraulic chamber 11 and an advanced hydraulic chamber 12 which are a retarded working chamber and an advanced working chamber, respectively, which are separated by four protruding shoes 10 and the vane rotor 9.
 前記ハウジング7は、焼結金属によって一体に形成された円筒状のハウジング本体7aと、プレス成形によって形成され、前記ハウジング本体7aの前端開口を閉塞するフロントカバー13と、後端開口を閉塞するリアカバーである前記スプロケット1と、から構成されている。前記ハウジング本体7aとフロントカバー13及びスプロケット1とは、前記各シュー10の各ボルト挿通孔10aを貫通する4本のボルト14によって共締め固定されている。前記フロントカバー13は、中央に比較的大径な挿通孔13aが貫通形成されていると共に、該挿通孔13aの外周側内周面で各油圧室11,12内をシールするようになっている。 The housing 7 includes a cylindrical housing body 7a integrally formed of sintered metal, a front cover 13 that is formed by press molding and closes the front end opening of the housing body 7a, and a rear cover that closes the rear end opening. It is comprised from the said sprocket 1 which is. The housing body 7a, the front cover 13, and the sprocket 1 are fastened and fixed together by four bolts 14 that pass through the bolt insertion holes 10a of the shoes 10. The front cover 13 has a relatively large-diameter insertion hole 13a formed through the center thereof, and seals the inside of each hydraulic chamber 11, 12 with the outer peripheral side inner peripheral surface of the insertion hole 13a. .
 前記ベーンロータ9は、金属材によって一体に形成され、前記カムシャフト2の一端部2aにバルブボディ50によって固定されたロータ部15と、該ロータ部15の外周面に円周方向のほぼ90°等間隔位置に放射状に突設された4つのベーン16a~16dとから構成されている。 The vane rotor 9 is integrally formed of a metal material, and has a rotor portion 15 fixed to one end portion 2a of the camshaft 2 by a valve body 50; It consists of four vanes 16a to 16d projecting radially at the interval positions.
 前記ロータ部15は、比較的大径な円筒状に形成され、中央の内部軸方向に前記カムシャフト2の雌ねじ孔6cと連続するボルト挿通孔15aが貫通形成されていると共に、後端面にカムシャフト2の一端部2a先端面が当接している。 The rotor portion 15 is formed in a cylindrical shape having a relatively large diameter, and has a bolt insertion hole 15a continuous with the female screw hole 6c of the camshaft 2 in the central internal axial direction. The tip end surface of the one end portion 2a of the shaft 2 is in contact.
 一方、前記各ベーン16a~16dは、その突出長さが比較的短く形成されて、それぞれが各シュー10の間に配置されていると共に、円周方向の巾がほぼ同一に設定されて厚肉なプレート状に形成されている。前記各ベーン16a~16dの外周面と各シュー10の先端には、それぞれハウジング本体7aの内周面とロータ部15の外周面との間をシールするシール部材17a、17bがそれぞれ設けられている。 On the other hand, each of the vanes 16a to 16d is formed with a relatively short protruding length, and is disposed between the shoes 10 and has a circumferential width that is set to be substantially the same. It is formed in a plate shape. Seal members 17a and 17b for sealing between the inner peripheral surface of the housing body 7a and the outer peripheral surface of the rotor portion 15 are provided on the outer peripheral surfaces of the vanes 16a to 16d and the tips of the shoes 10, respectively. .
 また、前記ベーンロータ9は、図2の一点鎖線で示すように、遅角側へ相対回転すると、第1ベーン16aの一側面が対向する前記一つのシュー10の対向側面に形成された突起面10bに当接して最大遅角側の回転位置が規制されるようになっている。また、図2の二点鎖線で示すように、進角側へ相対回転すると、同じく第1ベーン16aの他側面が対向する他のシュー10の対向側面10cに当接して最大進角側の回転位置が規制されるようになっている。 As the vane rotor 9 rotates relative to the retard side as shown by a one-dot chain line in FIG. 2, the projecting surface 10b formed on the opposing side surface of the one shoe 10 that the one side surface of the first vane 16a faces. The rotational position on the maximum retarding angle side is regulated in contact with. In addition, as shown by a two-dot chain line in FIG. 2, when the relative rotation is performed toward the advance angle side, the other side surface of the first vane 16a is in contact with the opposite side surface 10c of the other shoe 10 and the maximum advance angle side rotation is performed. The position is regulated.
 このとき、他のベーン16b~16dは、両側面が円周方向から対向する各シュー10の対向面に当接せずに離間状態にある。したがって、ベーンロータ9とシュー10との当接精度が向上すると共に、後述する各油圧室11,12への油圧の供給速度が速くなってベーンロータ9の正逆回転応答性が高くなる。 At this time, the other vanes 16b to 16d are in a separated state without coming into contact with the facing surfaces of the shoes 10 whose both side surfaces face each other in the circumferential direction. Therefore, the contact accuracy between the vane rotor 9 and the shoe 10 is improved, and the supply speed of hydraulic pressure to each of the hydraulic chambers 11 and 12 to be described later is increased, and the forward / reverse rotation response of the vane rotor 9 is increased.
 前記各ベーン16a~16dの正逆回転方向の両側面と各シュー10の両側面との間に、前述した各遅角油圧室11と各進角油圧室12が隔成されており、各遅角油圧室11と各進角油圧室12とは、前記ロータ部15の内部にほぼ放射状に形成された遅角側連通路11aと進角側連通路12aを介して後述する油圧回路5にそれぞれに連通している。 The retard hydraulic chambers 11 and the advance hydraulic chambers 12 described above are defined between both side surfaces of the vanes 16a to 16d in the forward / reverse rotation direction and both side surfaces of the shoes 10, respectively. The angle hydraulic chamber 11 and each advance hydraulic chamber 12 are respectively connected to a hydraulic circuit 5 described later via a retard side communication passage 11a and an advance side communication passage 12a formed substantially radially inside the rotor portion 15. Communicating with
 前記ロック機構4は、ハウジング7に対してベーンロータ9を最遅角側の回転位置(図2の一点鎖線位置)に保持するものである。 The lock mechanism 4 holds the vane rotor 9 at the most retarded angle rotation position (the one-dot chain line position in FIG. 2) with respect to the housing 7.
 すなわち、このロック機構4は、図1及び図2に示すように、前記スプロケット1の内周側の所定位置に圧入固定されたロック穴構成部1c(図1のみに記載)と、該ロック穴構成部1cに形成されたロック穴24と、前記ベーンロータ9の最大巾の第1ベーン16aの内部軸方向に形成された摺動孔27に進退動自在に設けられ、小径な先端部25aが前記各ロック穴24にそれぞれ係脱するロックピン25と、該ロックピン25をロック穴24方向へ付勢するコイルスプリング26と、前記ロック穴24の内部に形成され、供給された油圧によって前記ロックピン25を前記コイルスプリング26のばね力に抗して前記各ロック穴24を後退移動させて係合を解除する図外の解除用受圧室と、該解除用受圧室に油圧を供給するロック通路と、から主として構成されている。 That is, as shown in FIGS. 1 and 2, the lock mechanism 4 includes a lock hole constituting portion 1c (described only in FIG. 1) that is press-fitted and fixed at a predetermined position on the inner peripheral side of the sprocket 1, and the lock hole. The lock hole 24 formed in the component 1c and the sliding hole 27 formed in the inner axial direction of the first vane 16a having the maximum width of the vane rotor 9 are provided so as to be capable of moving forward and backward, and a small-diameter distal end portion 25a is provided. A lock pin 25 that engages and disengages with each lock hole 24, a coil spring 26 that urges the lock pin 25 toward the lock hole 24, and the lock pin 25 that is formed inside the lock hole 24 and that is supplied with hydraulic pressure. 25, a release pressure receiving chamber (not shown) that releases the engagement by retreating each lock hole 24 against the spring force of the coil spring 26, and a lock passage for supplying hydraulic pressure to the release pressure receiving chamber , It is composed mainly from.
 前記ロック穴24は、ロックピン25の小径な先端部25aの外径よりも十分に大径な円形状に形成されていると共に、スプロケット1の内側面の前記ベーンロータ9の最遅角側の回転位置に対応した位置に形成されている。 The lock hole 24 is formed in a circular shape having a diameter sufficiently larger than the outer diameter of the small-diameter tip portion 25a of the lock pin 25, and the rotation of the inner side surface of the sprocket 1 on the most retarded side of the vane rotor 9 is performed. It is formed at a position corresponding to the position.
 前記ロックピン25は、先端部25aの受圧面に前記解除用受圧室に供給された油圧を受けて後退移動すると共に、後端側に設けられた前記コイルスプリング26のばね力によって先端部25aが前記ロック穴24の内部に係入してベーンロータ9をハウジング7に対してロックするようになっている。 The lock pin 25 is moved backward by receiving the hydraulic pressure supplied to the pressure receiving chamber for release on the pressure receiving surface of the tip portion 25a, and the tip portion 25a is moved by the spring force of the coil spring 26 provided on the rear end side. The vane rotor 9 is locked into the housing 7 by engaging with the lock hole 24.
 また、前記解除用受圧室には、前記遅角油圧室11に供給される油圧と同じ油圧が供給され、この油圧によって、前記コイルスプリング26のばね力に抗してロックピン25を後退移動させるようになっている。 Further, the release pressure receiving chamber is supplied with the same hydraulic pressure as that supplied to the retard hydraulic chamber 11, and the lock pin 25 is moved backward against the spring force of the coil spring 26 by this hydraulic pressure. It is like that.
 前記油圧回路5は、図1及び図2に示すように、前記各遅角油圧室11に対して遅角側連通路11aを介して油圧を給排する遅角通路18と、各進角油圧室12に対して進角側連通路12aを介して油圧を給排する進角通路19と、前記解除用受圧室に対して油圧を給排する前記ロック通路と、前記各遅角、進角通路18,19に作動油を選択的に供給するオイルポンプ20と、機関運転状態に応じて前記遅角通路18と進角通路19の流路を切り換える油圧制御弁である単一の電磁切換弁21と、を備えている。 As shown in FIGS. 1 and 2, the hydraulic circuit 5 includes a retard passage 18 for supplying and exhausting hydraulic pressure to and from each retard hydraulic chamber 11 via a retard communication passage 11a, and each advance hydraulic pressure. An advance passage 19 for supplying and discharging hydraulic pressure to and from the chamber 12 via the advance side communication passage 12a, the lock passage for supplying and discharging hydraulic pressure to and from the release pressure receiving chamber, and the respective retard and advance angles An oil pump 20 that selectively supplies hydraulic oil to the passages 18 and 19, and a single electromagnetic switching valve that is a hydraulic control valve that switches between the retard passage 18 and the advance passage 19 according to the engine operating state. 21.
 前記遅角通路18と進角通路19とは、それぞれの一端部が前記電磁切換弁21の後述するバルブボディ50の遅角ポート18a及び進角ポート19aに接続されている一方、他端側が前記遅角、進角側連通路11a、12aとを介して前記各遅角油圧室11と各進角油圧室12にそれぞれ連通している。 One end of each of the retard passage 18 and the advance passage 19 is connected to a retard port 18a and an advance port 19a of a valve body 50, which will be described later, of the electromagnetic switching valve 21, while the other end is disposed on the other end side. The retard angle advance chambers 11a and 12a communicate with the retard angle hydraulic chambers 11 and the advance angle hydraulic chambers 12 respectively.
 前記ロック通路は、前記遅角通路18に連通して、前記遅角油圧室11に給排される油圧が前記解除用受圧室に給排されるようになっている。 The lock passage communicates with the retard passage 18 so that the hydraulic pressure supplied to and discharged from the retard hydraulic chamber 11 is supplied to and discharged from the release pressure receiving chamber.
 前記オイルポンプ20は、機関のクランクシャフトによって回転駆動するトロコイドポンプなどの一般的なものであって、アウター、インナーロータの回転によってオイルパン23内から吸入通路20bを介して吸入された作動油が吐出通路20aを介して吐出されて、その一部がメインオイルギャラリーM/Gから内燃機関の各摺動部などに供給されると共に、他が前記電磁切換弁21側に供給されるようになっている。なお、吐出通路20aの下流側には、図外の濾過フィルタが設けられていると共に、該吐出通路20aから吐出された過剰な作動油を、ドレン通路22を介してオイルパン23に戻して適正な流量に制御する図外の流量制御弁が設けられている。 The oil pump 20 is a general one such as a trochoid pump that is rotationally driven by an engine crankshaft, and hydraulic oil sucked from the oil pan 23 through the suction passage 20b by rotation of the outer and inner rotors. It is discharged through the discharge passage 20a, a part of which is supplied from the main oil gallery M / G to each sliding part of the internal combustion engine, and the other is supplied to the electromagnetic switching valve 21 side. ing. In addition, a filtration filter (not shown) is provided on the downstream side of the discharge passage 20a, and excess hydraulic oil discharged from the discharge passage 20a is returned to the oil pan 23 through the drain passage 22 to be appropriate. A non-illustrated flow rate control valve for controlling the flow rate is provided.
 前記電磁切換弁21は、図1及び図3などに示すように、3ポート3位置の比例型弁であって、有底円筒状のバルブボディ50と、該バルブボディ50の内部軸方向に摺動自在に設けられた円筒状のスプール弁51と、該スプール弁51の内部に挿通固定された仕切り部材である円柱状のスリーブ52と、前記スプール弁51の一端開口に圧入固定された円盤状のリテーナ53と、該リテーナ53と前記バルブボディ50の底面との間に弾装されて、該スプール弁体51を図1中右方向へ付勢する付勢部材であるバルブスプリング54と、前記バルブボディ50の外側一端部に設けられて、前記スプール弁51をバルブスプリング54のばね力に抗して図中左方向へ移動させるアクチュエータであるソレノイド部55と、から主として構成されている。 As shown in FIG. 1 and FIG. 3, the electromagnetic switching valve 21 is a three-port, three-position proportional valve, and slides in a bottomed cylindrical valve body 50 and an internal axis direction of the valve body 50. A cylindrical spool valve 51 provided movably, a columnar sleeve 52 that is a partition member inserted and fixed inside the spool valve 51, and a disk-like shape that is press-fitted into one end opening of the spool valve 51. The retainer 53, a valve spring 54 which is elastically mounted between the retainer 53 and the bottom surface of the valve body 50 and biases the spool valve body 51 in the right direction in FIG. A solenoid part 55, which is an actuator provided at one end of the valve body 50 and moves the spool valve 51 in the left direction in the figure against the spring force of the valve spring 54, is mainly constituted. It has been.
 前記バルブボディ50は、鉄系金属材によって形成されて前述のようにカムボルトとして機能し、図1及び図4に示すように、前記ソレノイド部55側の六角状の頭部50aと、該頭部50aの付け根部から軸方向へ延出した円筒軸部50bと、該円筒軸部50bの先端側に形成されて、前記カムシャフト2の縮径段差部6bと径方向から対向した外径に異なる段差テーパ状の円錐部50cと、該円錐部50cの先端部に形成されて、前記カムシャフト2の雌ねじ孔6cに螺着する小径な雄ねじ部50dと、前記頭部50a先端面側から内部軸方向に形成された摺動用孔50eと、から主として構成されている。 The valve body 50 is formed of a ferrous metal material and functions as a cam bolt as described above. As shown in FIGS. 1 and 4, the hexagonal head 50a on the solenoid part 55 side, and the head A cylindrical shaft portion 50b that extends in the axial direction from the base portion of 50a, and an outer diameter that is formed on the distal end side of the cylindrical shaft portion 50b and that opposes the reduced diameter step portion 6b of the camshaft 2 from the radial direction. A stepped tapered cone portion 50c, a small-diameter male screw portion 50d formed at the tip portion of the cone portion 50c and screwed into the female screw hole 6c of the camshaft 2, and an inner shaft from the tip surface side of the head portion 50a. The sliding hole 50e is formed mainly in the direction.
 前記頭部50aは、内部先端側に形成された大径溝部の内周面に前記スプール弁51のソレノイド部55側への最大摺動位置を規制する円環状のストッパ56が圧入固定されている。 In the head 50a, an annular stopper 56 for restricting the maximum sliding position of the spool valve 51 toward the solenoid 55 is press-fitted and fixed to the inner peripheral surface of a large-diameter groove formed on the inner tip side. .
 前記円筒軸部50bは、周壁に前記遅角ポート18aと進角ポート19aが十字径方向に沿ってそれぞれ貫通形成されて、それぞれ4つ設けられている。 The cylindrical shaft portion 50b is provided with four retard ports 18a and advance ports 19a formed in the peripheral wall so as to penetrate each other along the cross radial direction.
 前記円錐部50cは、外周面と前記カムシャフト2の大径部6a及び段差部6bとの間に段差円錐状の導入室57が形成されていると共に、周壁の前記円筒軸部50b寄りの部位には前記導入室57と連通する導入ポート58が径方向に沿って貫通形成されている。 The conical portion 50c has a step-conical introduction chamber 57 formed between the outer peripheral surface and the large-diameter portion 6a and the step portion 6b of the camshaft 2, and a portion of the peripheral wall near the cylindrical shaft portion 50b. An introduction port 58 communicating with the introduction chamber 57 is formed penetrating along the radial direction.
 前記スプール弁51は、アルミ合金材により形成され、内部軸方向に前記スリーブ52が挿通保持される連通路である保持孔59が貫通形成されていると共に、外周の軸方向両端側に円柱状の2つのガイド部51a、51bと、該両ガイド部51a、51bの間に設けられ、これらと外径が同一の3つの第1~第3ランド部51c、51d、51eを有している。また、前記リテーナ53側の一方側ガイド部51aとこれに隣接する第1ランド部51cとの間の外周面に、前記導入ポート58に適宜連通する第1グルーブ溝60が形成されている。また、前記第1ランド部51cとこれに隣接する第2ランド部51dとの間に、前記進角ポート19aと適宜連通する第2グルーブ溝61が形成されている。また、第2ランド部51dとこれに隣接する第3ランド部51eとの間に、前記遅角ポート18a及び前記進角ポート19aと適宜連通する第3グルーブ溝62が形成されていると共に、第3ランド部51eとこれに隣接する他方側ガイド部51bとの間には、前記遅角ポート18aに適宜連通する第4グルーブ溝63が形成されている。 The spool valve 51 is made of an aluminum alloy material, and has a holding hole 59 that is a communication path through which the sleeve 52 is inserted and held in the inner axial direction. There are two guide parts 51a, 51b and three first to third land parts 51c, 51d, 51e which are provided between the two guide parts 51a, 51b and have the same outer diameter. Further, a first groove groove 60 is formed on the outer peripheral surface between the one side guide portion 51a on the retainer 53 side and the first land portion 51c adjacent to the one guide portion 51a. In addition, a second groove groove 61 is formed between the first land portion 51c and the second land portion 51d adjacent thereto so as to communicate with the advance port 19a as appropriate. A third groove groove 62 is formed between the second land portion 51d and the third land portion 51e adjacent to the second land portion 51d. The third groove groove 62 communicates appropriately with the retard port 18a and the advance port 19a. Between the three land portions 51e and the other side guide portion 51b adjacent to the third land portion 51e, a fourth groove groove 63 communicating with the retard port 18a as appropriate is formed.
 前記第1~第4グルーブ溝60~63は、これらの各底壁に円周方向の所定角度位置に前記保持孔59と常時連通する第1連通孔60a~第4連通孔63aが径方向に沿ってそれぞれ貫通形成されている。この第1~第4連通孔60a~63aは、各グルーブ溝60~63の円周方向の所定角度位置に形成され、ほぼ同一の角度位置に形成された第1、第3連通孔60、62に対して第2、第4連通孔61,63は約90°の角度位置に形成されている。 In the first to fourth groove grooves 60 to 63, the first communication hole 60a to the fourth communication hole 63a, which are always in communication with the holding hole 59 at predetermined angular positions in the circumferential direction, are radially formed on the respective bottom walls. Each is formed through. The first to fourth communication holes 60a to 63a are formed at predetermined angular positions in the circumferential direction of the groove grooves 60 to 63, and the first and third communication holes 60 and 62 are formed at substantially the same angular position. On the other hand, the second and fourth communication holes 61 and 63 are formed at an angular position of about 90 °.
 また、前記スプール弁51は、前記リテーナ53と反対側の開口端にドレンプラグ64が圧入固定されており、このドレンプラグ64は、有底円筒状に形成されて、軸方向一端に前記スプール弁51の一端開口部内に圧入固定される円環のフランジ部64aが一体に設けられていると共に、内部軸方向にはドレン穴64bが形成されている。また、このドレンプラグ64の軸方向のほぼ中央位置には、前記ドレン穴64bと外部を連通する一対の開口孔64cが径方向に沿って貫通形成されている。 In addition, a drain plug 64 is press-fitted and fixed to the open end of the spool valve 51 opposite to the retainer 53. The drain plug 64 is formed in a bottomed cylindrical shape, and the spool valve 51 is disposed at one end in the axial direction. An annular flange portion 64a that is press-fitted and fixed in one end opening of 51 is integrally provided, and a drain hole 64b is formed in the inner axial direction. In addition, a pair of opening holes 64c communicating with the drain hole 64b and the outside are formed at a substantially central position in the axial direction of the drain plug 64 along the radial direction.
 前記フランジ部64aは、前記スプール弁51の一端開口部に圧入固定されて、前記リテーナ53と協働して前記スリーブ52の両端縁を軸方向から保持して前記スプール弁51内でのスリーブ52の軸方向の移動を規制するようになっている。 The flange portion 64 a is press-fitted and fixed to one end opening portion of the spool valve 51, and cooperates with the retainer 53 to hold both end edges of the sleeve 52 from the axial direction to hold the sleeve 52 in the spool valve 51. The movement in the axial direction is regulated.
 前記スリーブ52は、図3及び図5に示すように、合成樹脂材によって細長い棒状一体に形成され、円筒状に形成された軸方向の両端部52a、52bの外周面が前記スプール弁51の保持孔59の内周面に微少クリアランスを介して圧入あるいは隙間嵌めによって挿通固定されていると共に、前記両端部52a、52bの間は横断面ほぼ十字形状の4つの仕切り壁52cによって4つの第1~第4通路部65a~65dに仕切られている。 As shown in FIGS. 3 and 5, the sleeve 52 is integrally formed of a synthetic resin material in an elongated rod shape, and the outer peripheral surfaces of both axial end portions 52a and 52b formed in a cylindrical shape are held by the spool valve 51. The hole 59 is inserted into and fixed to the inner peripheral surface of the hole 59 through a small clearance or by fitting with a gap, and between the both end portions 52a and 52b, four first to fourth four partition walls 52c having a substantially cross-shaped cross section are provided. It is partitioned into fourth passage portions 65a to 65d.
 前記各通路部65a~65dは、図5に示すように、前記各仕切り壁52cによってそれぞれ横断面ほぼV字形状に形成されて、前記両端部52a、52b間で軸方向に沿って長く形成されている。また、前記第1通路部65aと該第1通路部65aと軸対称位置に形成された第2通路部65bの軸方向両端部が肉盛り部52dによって閉止されている。一方、前記第3通路部65cと、該第3通路部65cと軸対称位置にある第4通路部65dは、軸方向両端部に各一対の排出孔66a、66bがそれぞれ形成されており、一方端部側の排出孔66aが前記ドレンプラグ64のドレン孔64bと常時連通するようになっている。 As shown in FIG. 5, each of the passage portions 65a to 65d is formed in a substantially V-shaped cross section by the partition wall 52c, and is formed long along the axial direction between the both end portions 52a and 52b. ing. Further, both end portions in the axial direction of the first passage portion 65a and the second passage portion 65b formed in an axially symmetric position with the first passage portion 65a are closed by the built-up portions 52d. On the other hand, the third passage portion 65c and the fourth passage portion 65d that is axially symmetric with the third passage portion 65c have a pair of discharge holes 66a and 66b at both ends in the axial direction. The discharge hole 66a on the end side always communicates with the drain hole 64b of the drain plug 64.
 また、前記各通路部65a~65dは、前記スプール弁51の軸方向の摺動位置に応じて、前記遅角通路18側の前記第4グルーブ溝63の第4連通孔63aに適宜連通すると共に、進角通路19側の前記第2グルーブ溝61の第2連通孔61aに適宜連通するようになっている。 Each of the passage portions 65a to 65d appropriately communicates with the fourth communication hole 63a of the fourth groove groove 63 on the retard passage 18 side according to the axial sliding position of the spool valve 51. The second communication groove 61a of the second groove groove 61 on the advance angle passage 19 side communicates with the second communication hole 61a as appropriate.
 前記リテーナ53は、外周面が前記スプール弁51の一端部51aの開口端の内周面に圧入固定されていると共に、中央に通孔53aが貫通形成されている。 The retainer 53 is press-fitted and fixed to the inner peripheral surface of the open end of the one end portion 51a of the spool valve 51, and a through hole 53a is formed through the center of the retainer 53.
 前記ソレノイド部55は、図1に示すように、図外のチェーンカバーにブラケット70を介してボルトによって固定されたソレノイドケーシング71と、該ソレノイドケーシング71の内部に収容保持されて、機関のコントロールユニット(ECU)37から制御電流が出力されるコイル72と、該コイル72の内周側に固定された筒状の固定ヨーク73と、該固定ヨーク73の内部に軸方向へ摺動自在に設けられた可動プランジャ74と、該可動プランジャ74の先端部に一体に形成されて、先端部75aが前記ドレンプラグ64に軸方向から当接して、前記バルブスプリング54のばね力に抗して前記スプール弁51を図1中、左方向へ押圧する駆動ロッド75と、から主として構成されている。 As shown in FIG. 1, the solenoid portion 55 includes a solenoid casing 71 fixed to a chain cover (not shown) with a bolt 70 via a bolt 70, and is housed and held inside the solenoid casing 71, so as to control the engine. (ECU) A coil 72 from which a control current is output from 37, a cylindrical fixed yoke 73 fixed to the inner peripheral side of the coil 72, and an axially slidable inside the fixed yoke 73 The movable plunger 74 is integrally formed with the distal end portion of the movable plunger 74, and the distal end portion 75 a abuts against the drain plug 64 in the axial direction, and resists the spring force of the valve spring 54. 1 mainly includes a drive rod 75 that presses 51 in the left direction in FIG.
 前記ソレノイドケーシング71は、シールリング76によって前記チェーンカバーの保持孔内に保持されていると共に、後端側には、ECU37に電気的に接続される端子78を内部に有する合成樹脂製のコネクタ77が取り付けられている。 The solenoid casing 71 is held in the holding hole of the chain cover by a seal ring 76, and a synthetic resin connector 77 having a terminal 78 electrically connected to the ECU 37 at the rear end side. Is attached.
 前記ソレノイド部55は、図7~図9に示すように、ECU37の制御電流と前記バルブスプリング54との相対的な圧力によって、前記スプール弁51を前後軸方向の3つのポジジョンに移動させて、スプール弁51の前記第2グルーブ溝61~第4グルーブ溝63(第2連通孔61a~第4連通孔63a)と、これに径方向で対応する前記遅角ポート18a及び進角ポート19aに連通させるか、あるいは前記各ランド部51c~51eによって遅角ポート18a及び進角ポート19aの開口端を閉止して連通を遮断するようになっている。 As shown in FIGS. 7 to 9, the solenoid unit 55 moves the spool valve 51 to three positions in the front-rear axis direction by the relative pressure between the control current of the ECU 37 and the valve spring 54, and The spool valve 51 communicates with the second groove groove 61 to the fourth groove groove 63 (second communication hole 61a to fourth communication hole 63a) and the retardation port 18a and the advance port 19a corresponding to the radial groove in the radial direction. Alternatively, the open ends of the retard port 18a and the advance port 19a are closed by the land portions 51c to 51e to block communication.
 前記第1グルーブ溝60と前記導入ポート58は、スプール弁51のいずれの摺動位置においても常時連通されており、したがって、オイルポンプ20から吐出された油圧は、前記導入室57から導入ポート58、第1グルーブ溝60(第1連通孔60a)を通ってスリーブ52の第1、第2通路部65a、65b内に常時供給されるようになっている。 The first groove groove 60 and the introduction port 58 are always in communication at any sliding position of the spool valve 51. Therefore, the hydraulic pressure discharged from the oil pump 20 is introduced from the introduction chamber 57 to the introduction port 58. The first groove groove 60 (first communication hole 60a) is always supplied into the first and second passage portions 65a and 65b of the sleeve 52.
 前記ECU37は、内部のコンピュータが図外のクランク角センサ(機関回転数検出)やエアーフローメータ、機関水温センサ、機関温度センサ、スロットルバルブ開度センサおよびカムシャフト2の現在の回転位相を検出するカム角センサなどの各種センサ類からの情報信号を入力して現在の機関運転状態を検出すると共に、前述したように、前記電磁切換弁21のコイル72に制御電流を出力、または通電を遮断して前記スプール弁51の移動位置を制御し、前記各ポートを選択的に切換制御するようになっている。
〔本実施形態の作動〕
 以下、本実施形態のバルブタイミング制御装置の具体的な作動を説明する。
In the ECU 37, an internal computer detects a crank angle sensor (engine speed detection), an air flow meter, an engine water temperature sensor, an engine temperature sensor, a throttle valve opening sensor, and a current rotation phase of the camshaft 2 which are not shown. Information signals from various sensors such as a cam angle sensor are input to detect the current engine operating state, and as described above, a control current is output to the coil 72 of the electromagnetic switching valve 21 or the current supply is cut off. Thus, the movement position of the spool valve 51 is controlled to selectively switch the ports.
[Operation of this embodiment]
Hereinafter, a specific operation of the valve timing control device of this embodiment will be described.
 まず、例えば、イグニッションスイッチをオフ操作して機関を停止した場合には、ソレノイド部55への通電も遮断されることから、スプール弁51は、図7に示すように、バルブスプリング54のばね力によって最大右方向の位置に保持される(第1ポジジョン)。このとき、スプール弁51によってバルブボディ50の進角ポート19aが、スプール弁51の第2グルーブ溝61(第2連通孔61a)が連通されると共に、スリーブ52の第3、第4通路部65c、dが連通される(図7A参照)。同時に、導入ポート58が、第1グルーブ溝60(第1連通孔60a)、第1、第2通路部65a、65bに連通されると共に、該各通路部65a、65bと前記遅角ポート18aに連通される(図7B参照)。 First, for example, when the engine is stopped by turning off the ignition switch, the energization to the solenoid unit 55 is also cut off, so that the spool valve 51 has a spring force of the valve spring 54 as shown in FIG. Is held at the maximum rightward position (first position). At this time, the advance port 19a of the valve body 50 is communicated with the second groove groove 61 (second communication hole 61a) of the spool valve 51 by the spool valve 51, and the third and fourth passage portions 65c of the sleeve 52 are communicated. , D are communicated (see FIG. 7A). At the same time, the introduction port 58 communicates with the first groove groove 60 (first communication hole 60a), the first and second passage portions 65a and 65b, and the passage portions 65a and 65b and the retardation port 18a. Communication is made (see FIG. 7B).
 このため、前記進角油圧室12内の作動油は、図7Aの矢印で示すように、進角ポート19aから第2連通孔61aを通って第3、第4通路部65c、65dから排出孔66aを介してドレンプラグ64の前記ドレン穴64b及び開口孔64cから外部に排出される。これによって、各進角油圧室12の内部が低圧になる。 Therefore, as shown by the arrow in FIG. 7A, the hydraulic oil in the advance hydraulic chamber 12 passes through the second communication hole 61a from the advance port 19a and is discharged from the third and fourth passage portions 65c and 65d. It is discharged to the outside through the drain hole 64b and the opening hole 64c of the drain plug 64 through 66a. Thereby, the inside of each advance hydraulic chamber 12 becomes a low pressure.
 この機関停止時は、前記オイルポンプ20の駆動も停止されることから、前記遅角、進角油圧室11,12には油圧が供給されることがないので、前記ベーンロータ9はカムシャフト2に作用する交番トルクの負のトルクによって、図2の一点鎖線で示すように、スプロケット1に対して反時計方向(最遅角方向)へ相対回転する。よって、吸気弁は、バルブタイミングが最遅角の位相に制御される。 When the engine is stopped, the oil pump 20 is also stopped, so that no hydraulic pressure is supplied to the retard / advance hydraulic chambers 11 and 12, so that the vane rotor 9 is connected to the camshaft 2. Due to the negative alternating torque acting, as shown by the one-dot chain line in FIG. 2, the sprocket 1 rotates relative to the counterclockwise direction (most retarded angle direction). Therefore, the intake valve is controlled so that the valve timing is the most retarded phase.
 なお、この時点においてベーンロータ9が最遅角位置に保持されると、ロックピン25がコイルスプリング26のばね力によって進出して、ロック穴24に係入してベーンロータ9はハウジング7にロックされた状態になる。 At this time, when the vane rotor 9 is held at the most retarded position, the lock pin 25 is advanced by the spring force of the coil spring 26 and is engaged with the lock hole 24 so that the vane rotor 9 is locked to the housing 7. It becomes a state.
 次に、イグニッションスイッチをオン操作して機関を始動させると、これに伴いオイルポンプ20も駆動して、該オイルポンプ20から吐出された油圧は、図7Bの矢印で示すように、前記導入ポート58から各第1連通孔60aを通って第1、第2通路部65a、65bに流入し、ここから各第3連通孔62a及び遅角ポート18a、各遅角連通路11aを介して各遅角油圧室11に供給されて、該各遅角油圧室11内が高圧状態になる。したがって、前記ベーンロータ9は、最遅角の位置に相対回転した状態が維持されていることから、吸気弁のバルブタイミングが遅角側に制御された状態になる。よって、機関始動性が良好になる。 Next, when the engine is started by turning on the ignition switch, the oil pump 20 is also driven, and the hydraulic pressure discharged from the oil pump 20 is changed to the introduction port as shown by the arrow in FIG. 7B. 58 flows into the first and second passage portions 65a and 65b through the first communication holes 60a, and from there through the third communication holes 62a, the retard ports 18a, and the retard communication passages 11a. Supplied to the angular hydraulic chamber 11, each retarded hydraulic chamber 11 is in a high pressure state. Accordingly, since the vane rotor 9 is maintained in the state of relative rotation to the most retarded position, the valve timing of the intake valve is controlled to the retard side. Therefore, the engine startability is improved.
 また、この時点では、前記ロック通路を介して解除用受圧室に遅角油圧室11と同じ油圧が供給されるが、クランキング初期の時点では解除用受圧室内の油圧が上昇しないことから、ロックピン25はロック穴24内に係入してロックされた状態となる。したがって、前記交番トルクによるベーンロータ9のばたつきなどを抑制することできる。 At this time, the same hydraulic pressure as that of the retarded hydraulic chamber 11 is supplied to the release pressure receiving chamber through the lock passage. However, since the hydraulic pressure in the release pressure receiving chamber does not increase at the initial stage of cranking, The pin 25 is engaged with the lock hole 24 and locked. Therefore, flapping of the vane rotor 9 due to the alternating torque can be suppressed.
 その後、ロック通路を介して解除用受圧室に供給された油圧が高くなると、前記ロックピン25をコイルスプリング26のばね力に抗して後退移動させロック穴24とのロック状態が解除され、これによって、ベーンロータ9はフリーな状態になる。 Thereafter, when the hydraulic pressure supplied to the release pressure receiving chamber via the lock passage becomes high, the lock pin 25 is moved backward against the spring force of the coil spring 26 to release the lock state with the lock hole 24. As a result, the vane rotor 9 becomes free.
 次に、機関が例えばアイドリング運転から定常運転に移行すると、前記ECU37からソレノイド部55のコイル72に所定量の電流が供給される。これにより、スプール弁51は、駆動ロッド75の押圧力によって、図8に示すように、バルブスプリング54のばね力に抗して図中左方向へ僅かに移動する(第2ポジション)。この状態では、第2,第3ランド部51d、51eによって遅角ポート18aと進角ポート19aを閉止すると共に、第2グルーブ溝61及び第3グルーブ溝62がバルブボディ50の内周面によって閉止する。 Next, when the engine shifts from, for example, an idling operation to a steady operation, a predetermined amount of current is supplied from the ECU 37 to the coil 72 of the solenoid unit 55. As a result, the spool valve 51 is slightly moved in the left direction in the drawing against the spring force of the valve spring 54 as shown in FIG. 8 by the pressing force of the drive rod 75 (second position). In this state, the retard port 18a and the advance port 19a are closed by the second and third land portions 51d and 51e, and the second groove groove 61 and the third groove groove 62 are closed by the inner peripheral surface of the valve body 50. To do.
 このため、前記各遅角油圧室11と進角油圧室12は、図8Aに示すように、それぞれの内部からの作動油の排出がなくなると同時に、オイルポンプ20から圧送された作動油も、図8Bに示すように、各油圧室11,12への供給が遮断される。 Therefore, as shown in FIG. 8A, each of the retarded hydraulic chamber 11 and the advanced hydraulic chamber 12 has no hydraulic oil discharged from the inside thereof, and at the same time, the hydraulic fluid pumped from the oil pump 20 As shown in FIG. 8B, the supply to the hydraulic chambers 11 and 12 is interrupted.
 このため、ベーンロータ9は、図2の実線で示すように、最遅角と最進角の間の中間位置に保持される。したがって、吸気弁は、バルブタイミングが最遅角と最進角の間の中間位相に制御され、定常運転時の機関回転の安定化と燃費の向上が図れる。 Therefore, the vane rotor 9 is held at an intermediate position between the most retarded angle and the most advanced angle, as shown by the solid line in FIG. Therefore, the valve timing of the intake valve is controlled to an intermediate phase between the most retarded angle and the most advanced angle, so that the engine rotation can be stabilized and fuel consumption can be improved during steady operation.
 次に、例えば、機関の定常運転から高回転高負荷域に移行した場合は、ECU37からソレノイド部55のコイル72にさらに大きな電流が供給されて、駆動ロッド75の押圧力によってスプール弁51が、図9に示すように、バルブスプリング54のばね力に抗して最大左方向へ移動する(第3ポジション)。これによって、遅角ポート18aが、第4グルーブ溝63(第4連通孔63a)に連通すると共に、第3,第4通路部65c、65dに連通する。 Next, for example, when the engine shifts from a steady operation to a high rotation / high load region, a larger current is supplied from the ECU 37 to the coil 72 of the solenoid unit 55, and the spool valve 51 is moved by the pressing force of the drive rod 75. As shown in FIG. 9, the valve spring 54 moves to the left in the maximum direction against the spring force (third position). Accordingly, the retard port 18a communicates with the fourth groove groove 63 (fourth communication hole 63a) and also communicates with the third and fourth passage portions 65c and 65d.
 一方、導入ポート58と第1グルーブ溝60(第1連通孔60a)が連通すると共に、該第1連通孔60aと第1、第2通路部65a、65b及び進角ポート19aが連通する。 On the other hand, the introduction port 58 and the first groove groove 60 (first communication hole 60a) communicate with each other, and the first communication hole 60a communicates with the first and second passage portions 65a and 65b and the advance port 19a.
 したがって、各遅角油圧室11内の油圧が、図9Aの矢印で示すように、前記遅角ポート18aから第4連通孔63a、第3、第4通路部65c、65dを通って排出孔66a、ドレン穴64b、開口孔64cから外部に排出される。このため、各遅角油圧室11内が低圧になる。一方、各進角油圧室12にオイルポンプ20から圧送された作動油が、図9Bの矢印で示すように、前記第1通路孔60aや第1、第2通路部65a、65bなどを介して供給されて、各進角油圧室12が高圧になる。 Accordingly, as shown by the arrow in FIG. 9A, the hydraulic pressure in each retarded hydraulic chamber 11 passes through the fourth communication hole 63a, the third and fourth passage portions 65c, 65d from the retard port 18a, and the discharge hole 66a. The water is discharged to the outside through the drain hole 64b and the opening hole 64c. For this reason, the inside of each retarded hydraulic chamber 11 becomes a low pressure. On the other hand, the hydraulic fluid pumped from the oil pump 20 to each advance hydraulic chamber 12 passes through the first passage hole 60a, the first and second passage portions 65a, 65b, etc., as indicated by arrows in FIG. 9B. When supplied, each advance hydraulic chamber 12 becomes high pressure.
 よって、ベーンロータ9は、図2の二点鎖線で示すように、時計方向へ回転して最大進角側へ相対回転する。これによって、吸気弁のバルブタイミングが最進角位相になって排気弁のバルブオーバーラップが大きくなり、吸気充填効率が高くなって機関の出力トルクの向上が図れる。 Therefore, the vane rotor 9 rotates in the clockwise direction and relatively rotates to the maximum advance side, as indicated by the two-dot chain line in FIG. As a result, the valve timing of the intake valve becomes the most advanced angle phase, the valve overlap of the exhaust valve increases, the intake charging efficiency increases, and the output torque of the engine can be improved.
 このように、機関の運転状態に応じて、ECU37が電磁切換弁21に所定の通電量で通電、あるいは通電を遮断して前記スプール弁51の軸方向の移動を制御して、前記第1ポジション~第3ポジション、の位置に制御する。これによって、前記位相変更機構3とロック機構4を制御してスプロケット1に対するカムシャフト2の最適な相対回転位置に制御することから、バルブタイミングの制御精度の向上が図れる。 As described above, the ECU 37 controls the movement of the spool valve 51 in the axial direction by energizing or shutting off the electromagnetic switching valve 21 with a predetermined energization amount in accordance with the operating state of the engine, thereby controlling the first position. Control to the third position. As a result, the phase change mechanism 3 and the lock mechanism 4 are controlled to control the camshaft 2 to the optimum relative rotational position with respect to the sprocket 1, so that the valve timing control accuracy can be improved.
 以上のように、本実施形態では、前記バルブボディ50にスプール弁51が摺動自在に設けられ、該スプール弁51の内部に、比較的単純な通路部を形成したスリーブ52を固定したため、電磁切換弁21の全体構造を簡素することができる。 As described above, in the present embodiment, the spool valve 51 is slidably provided in the valve body 50, and the sleeve 52 having a relatively simple passage portion is fixed inside the spool valve 51. The entire structure of the switching valve 21 can be simplified.
 また、前記スリーブ52は、単にスプール弁51内に固定されているだけであるから、スリーブ52に高い寸法精度が要求されることがなくなるので、この点でも製造作業コストの低減が図れる。 Further, since the sleeve 52 is merely fixed in the spool valve 51, high dimensional accuracy is not required for the sleeve 52, so that the manufacturing work cost can be reduced also in this respect.
 しかも、前記スリーブ52は、前記高い寸法精度が要求されず、合成樹脂材によって形成することができるので、電磁切換弁21の軽量化が図れる。 Moreover, the sleeve 52 does not require the high dimensional accuracy and can be formed of a synthetic resin material, so that the weight of the electromagnetic switching valve 21 can be reduced.
 また、前記金属製のスプール弁51と合成樹脂製のスリーブ52は、互いの熱膨張係数が異なっていることから、冷機始動時などにおいて前記作動油(エンジンオイル)の温度が低い場合は、両者51,52間のクリアランスが大きくなるものの、定常運転時などで所定以上の高温になると、スリーブ52側の熱膨張率が大きくなって前記クリアランスが小さくなる。つまり、前記スリーブ52の両端部52a、52bの外周面と十字形状の4つの仕切り壁52c各外端面が、前記スプール弁51の内周面に液密的に密着してクリアランスが小さくなる。 Further, since the metal spool valve 51 and the synthetic resin sleeve 52 have different coefficients of thermal expansion, when the temperature of the hydraulic oil (engine oil) is low at the time of cold start, for example, Although the clearance between 51 and 52 increases, when the temperature becomes higher than a predetermined temperature during steady operation, the thermal expansion coefficient on the sleeve 52 side increases and the clearance decreases. That is, the outer peripheral surfaces of both end portions 52a and 52b of the sleeve 52 and the outer end surfaces of the four cross-shaped partition walls 52c are in close contact with the inner peripheral surface of the spool valve 51, thereby reducing the clearance.
 このため、前記スプール弁51内の2系統間のオイル漏れ、つまり第1、第2通路部65a、65bと第3、第4通路部65c、65dの2系統間のオイル漏れを十分に抑制することが可能になる。 Therefore, oil leakage between the two systems in the spool valve 51, that is, oil leakage between the two systems of the first and second passage portions 65a and 65b and the third and fourth passage portions 65c and 65d is sufficiently suppressed. It becomes possible.
 この結果、スリーブ52のスプール弁51の内周面に対する過度な寸法公差を必要としないことから、前記スプール弁51の各グルーブ溝60~63の軸方向のレイアウトの自由度が向上すると共に、製造コストの低減化が図れる。 As a result, an excessive dimensional tolerance of the sleeve 52 with respect to the inner peripheral surface of the spool valve 51 is not required, so that the degree of freedom in the axial layout of the groove grooves 60 to 63 of the spool valve 51 is improved and the manufacturing is performed. Cost can be reduced.
 また、前記スリーブ52によって仕切られた第1通路部65aと第2通路部65b、並びに第3通路部65cと第4通路部65dはそれぞれ軸対称位置にそれぞれ形成されて、これら第1、第2通路部65a、65bを通流する油圧が供給用、第3、第4通路部65c、65dを通流する油圧が排出用となって該油圧が同一系統のものになることからスリーブ52に作用する圧力バランスを取ることができる。 Further, the first passage portion 65a and the second passage portion 65b partitioned by the sleeve 52, and the third passage portion 65c and the fourth passage portion 65d are respectively formed at axially symmetric positions, and these first and second passage portions are formed. Since the hydraulic pressure flowing through the passage portions 65a and 65b is for supply and the hydraulic pressure flowing through the third and fourth passage portions 65c and 65d is for discharge and the hydraulic pressure is of the same system, it acts on the sleeve 52. You can balance the pressure.
 また、前記バルブボディ50の特異な構成によって、前記カムシャフト2の一端部2aのボルト孔6の軸方向長さを短くすることができる。このため、前記カムシャフト2の一端部2a側の剛性の低下を抑制することができ、特に捩れ剛性の低下を抑制することができる。 Further, due to the unique configuration of the valve body 50, the axial length of the bolt hole 6 of the one end portion 2a of the camshaft 2 can be shortened. For this reason, it is possible to suppress a decrease in rigidity on the one end 2a side of the camshaft 2, and in particular, it is possible to suppress a decrease in torsional rigidity.
 これによって、ベーンロータ9に対する支持剛性も高くなって、安定した支持が可能になると共に、該ベーンロータ9からカムシャフト2への回転伝達性も向上する。 Thereby, the support rigidity with respect to the vane rotor 9 is also increased, stable support is possible, and the rotation transmission from the vane rotor 9 to the camshaft 2 is also improved.
 さらに、前記ボルト孔6の軸方向の長さの短尺化と共に、縦断面形状の単純化によって、カムシャフト2の孔開け加工作業が容易になる。 Furthermore, drilling of the camshaft 2 is facilitated by shortening the axial length of the bolt hole 6 and simplifying the longitudinal sectional shape.
 また、バルブボディ50は、先端部(円錐部50c)の外径を、カムシャフト2のボルト孔6の内径よりも小さく形成したことから、この空間部を利用して前記導入室57などを形成することが可能になる。このため、前記導入室57や導入ポート58などによって構成される流路構成を簡素化することができる。 Further, since the valve body 50 is formed such that the outer diameter of the tip end portion (conical portion 50c) is smaller than the inner diameter of the bolt hole 6 of the camshaft 2, the introduction chamber 57 and the like are formed using this space portion. It becomes possible to do. For this reason, the flow path structure comprised by the said introduction chamber 57, the introduction port 58, etc. can be simplified.
 また、本実施形態では、前記遅角油圧室11や進角油圧室12への油圧制御用と解除用受圧室への油圧制御用の2つの機能を単一の電磁切換弁21によって行うようにしたため、機関本体へのレイアウトの自由度が向上すると共に、コストの低減化が図れる。 Further, in the present embodiment, the single electromagnetic switching valve 21 performs two functions for controlling the hydraulic pressure to the retard hydraulic chamber 11 and the advanced hydraulic chamber 12 and controlling the hydraulic pressure to the release pressure receiving chamber. Therefore, the degree of freedom of layout on the engine body is improved and the cost can be reduced.
 さらに、電磁切換弁21のスプール弁51の摺動位置によって各通路孔を閉止してベーンロータ9を中間位相位置に保持することから、この保持性が向上する。 Furthermore, since each passage hole is closed by the sliding position of the spool valve 51 of the electromagnetic switching valve 21 and the vane rotor 9 is held at the intermediate phase position, this holding property is improved.
 本発明は、前記実施形態の構成に限定されるものではなく、前記油圧制御弁をバルブタイミング制御装置に適用した場合を示したが、バルブタイミング制御装置以外の例えば車両の自動変速機などの他の機器類に適用することも可能である。 The present invention is not limited to the configuration of the above embodiment, and the case where the hydraulic control valve is applied to a valve timing control device has been shown. However, other than the valve timing control device, for example, an automatic transmission of a vehicle, etc. It is also possible to apply to other devices.
 また、アクチュエータとしてソレノイド部55の電磁力以外に油圧力を用いることも可能である。 Also, it is possible to use an oil pressure other than the electromagnetic force of the solenoid unit 55 as an actuator.
 さらに、バルブタイミング制御装置を吸気側ばかりか排気側に適用することも可能である。 Furthermore, the valve timing control device can be applied not only to the intake side but also to the exhaust side.
 前記スプール弁51を鉄系金属によって形成すると共に、前記スリーブ52をアルミ合金材によって形成することも可能である。 It is possible to form the spool valve 51 from an iron-based metal and the sleeve 52 from an aluminum alloy material.
 また、前記スリーブ52は、前述のように前記スプール弁51の保持孔59を横断面ほぼ十字形状の4つの仕切り壁52cによって4つの第1~第4通路部65a~65dに仕切られているが、前記保持孔59を前記スリーブ52にて最低2つの通路部に仕切れば、前記各油圧室11、12に対する油圧の供給と排出は可能である。 In the sleeve 52, the holding hole 59 of the spool valve 51 is divided into four first to fourth passage portions 65a to 65d by the four partition walls 52c having a substantially cross-shaped cross section as described above. If the holding hole 59 is divided into at least two passage portions by the sleeve 52, the hydraulic pressure can be supplied to and discharged from the hydraulic chambers 11 and 12, respectively.

Claims (16)

  1.  周壁の径方向に作動液を通流させる複数のポートが貫通形成された筒状のバルブボディと、
     該バルブボディの内部に軸方向へ摺動自在に設けられ、摺動位置に応じて前記複数のポートと連通する複数の連通孔が径方向に沿って形成されていると共に、該各連通孔に連通する連通路が内部軸方向に沿って形成された筒状のスプール弁と、
     前記スプール弁の連通路内に収容固定されて、該連通路を軸方向に沿った複数の通路部に仕切る仕切り部材と、
     を備えたことを特徴とする油圧制御弁。
    A cylindrical valve body having a plurality of ports penetrating the working fluid in the radial direction of the peripheral wall;
    A plurality of communication holes are provided in the valve body so as to be slidable in the axial direction and communicate with the plurality of ports according to the sliding position along the radial direction. A cylindrical spool valve in which a communication passage communicating therewith is formed along the internal axial direction;
    A partition member that is housed and fixed in the communication passage of the spool valve and partitions the communication passage into a plurality of passage portions along the axial direction;
    A hydraulic control valve comprising:
  2.  請求項1に記載の油圧制御弁において、
     前記仕切り部材は、熱膨張係数が前記スプール弁よりも大きい材料によって形成されていることを特徴とする油圧制御弁。
    The hydraulic control valve according to claim 1,
    The hydraulic control valve, wherein the partition member is formed of a material having a thermal expansion coefficient larger than that of the spool valve.
  3.  請求項2に記載の油圧制御弁において、
     前記仕切り部材は、合成樹脂材によって形成されているのに対して前記スプール弁は、金属材料によって形成されていることを特徴とする油圧制御弁。
    The hydraulic control valve according to claim 2,
    The partition valve is formed of a synthetic resin material, whereas the spool valve is formed of a metal material.
  4.  請求項3に記載の油圧制御弁において、
     前記仕切り部材は、前記スプール弁の内部に圧入または隙間嵌めによって固定されていることを特徴とする油圧制御弁。
    The hydraulic control valve according to claim 3,
    The hydraulic control valve, wherein the partition member is fixed inside the spool valve by press-fitting or clearance fitting.
  5.  請求項4に記載の油圧制御弁において、
     前記スプール弁は、円筒状に形成されていることを特徴とする油圧制御弁。
    The hydraulic control valve according to claim 4,
    The spool control valve is formed in a cylindrical shape, and is a hydraulic control valve.
  6.  請求項2に記載の油圧制御弁において、
     前記スプール弁は、鉄系金属材によって形成されている一方、前記仕切り部材は、アルミニウム合金材によって形成されていることを特徴とする油圧制御弁。
    The hydraulic control valve according to claim 2,
    The spool valve is formed of an iron-based metal material, and the partition member is formed of an aluminum alloy material.
  7.  請求項1に記載の油圧制御弁において、
     前記連通路の各通路部は、仕切り部材の軸心を中心とした径方向の対称位置に形成されていると共に、対称位置に形成された各通路部は同一系統の作動液が通流することを特徴とする油圧制御弁。
    The hydraulic control valve according to claim 1,
    Each passage portion of the communication passage is formed at a radially symmetrical position around the axis of the partition member, and the same system of hydraulic fluid flows through each of the passage portions formed at the symmetrical position. Hydraulic control valve characterized by
  8.  請求項7に記載の油圧制御弁において、
     前記連通路は、前記仕切り部材によって同一系統の各一対の供給通路部と排出通路部に4つの通路部に仕切られていることを特徴とする油圧制御弁。
    The hydraulic control valve according to claim 7,
    The hydraulic control valve, wherein the communication passage is partitioned into four passage portions by a pair of supply passage portions and discharge passage portions of the same system by the partition member.
  9.  請求項8に記載の油圧制御弁において、
     前記仕切り部材は、横断面ほぼ十字形状に形成されていることを特徴とする油圧制御弁。
    The hydraulic control valve according to claim 8,
    The hydraulic control valve according to claim 1, wherein the partition member has a substantially cross-shaped cross section.
  10.  請求項9に記載の油圧制御弁において、
     前記仕切り部材の軸方向端部側には、径方向から対向配置される前記一対の連通路と連通させるドレン孔が形成されていることを特徴とする油圧制御弁。
    The hydraulic control valve according to claim 9,
    The hydraulic control valve according to claim 1, wherein a drain hole is formed on the axial end portion side of the partition member to communicate with the pair of communication passages arranged to face each other in the radial direction.
  11.  請求項10に記載の油圧制御弁において、
     前記ドレン孔は、前記仕切り部材の十字壁の巾方向の肉厚よりも肉厚に形成された肉厚部位に形成されていることを特徴とする油圧制御弁。
    The hydraulic control valve according to claim 10,
    The hydraulic control valve according to claim 1, wherein the drain hole is formed in a thick portion formed thicker than a width in a width direction of the cross wall of the partition member.
  12.  請求項1に記載の油圧制御弁において、
     前記作動液が前記スプール弁の軸方向の一端側から導入されて他端側から排出されるように配置形成したことを特徴とする油圧制御弁。
    The hydraulic control valve according to claim 1,
    A hydraulic control valve, wherein the hydraulic fluid is arranged and formed so as to be introduced from one end side in the axial direction of the spool valve and discharged from the other end side.
  13.  請求項1に記載の油圧制御弁において、
     前記連通路は、前記仕切り部材によって径方向で2つの通路部に仕切られていることを特徴とする油圧制御弁。
    The hydraulic control valve according to claim 1,
    The hydraulic control valve, wherein the communication passage is partitioned into two passage portions in a radial direction by the partition member.
  14.  作動油を選択的に給排することによって可動部材を作動させてクランクシャフトに対するカムシャフトの相対回転位相を変換させる内燃機関のバルブタイミング制御装置に用いられる油圧制御弁であって、
     前記油圧制御弁は、
     前記可動部材を前記カムシャフトの軸方向端部に固定すると共に、周壁の径方向に作動油を流通させる給排ポートが貫通形成された中空状のカムボルトと、
     該カムボルトの内部軸方向に摺動自在に設けられ、周壁に形成された複数の連通孔と前記給排ポートとを摺動位置に応じて連通あるいは遮断する筒状のスプール弁と、
     該スプール弁の内部軸方向に沿って収容固定されて、該スプール弁の内部を前記各連通孔と連通可能な複数の連通路に径方向から仕切る仕切り部材と、
    を備えたことを特徴とする油圧制御弁。
    A hydraulic control valve used in a valve timing control device of an internal combustion engine that operates a movable member by selectively supplying and discharging hydraulic oil to convert a relative rotational phase of a camshaft with respect to a crankshaft,
    The hydraulic control valve is
    A hollow cam bolt in which the movable member is fixed to the axial end portion of the camshaft, and a supply / discharge port through which hydraulic oil flows in the radial direction of the peripheral wall is formed,
    A cylindrical spool valve that is slidable in the internal axial direction of the cam bolt and communicates or blocks a plurality of communication holes formed in a peripheral wall and the supply / exhaust port according to a sliding position;
    A partition member that is housed and fixed along the internal axial direction of the spool valve and partitions the inside of the spool valve into a plurality of communication passages that can communicate with the communication holes from the radial direction;
    A hydraulic control valve comprising:
  15.  請求項14に記載の油圧制御弁において、
     前記カムシャフトのボルト挿入孔の内周面と前記カムボルトの外周面との間に、前記カムボルトの内部にオイルポンプから圧送された作動油を導入する隙間通路が形成されていることを特徴とする油圧制御弁。
    The hydraulic control valve according to claim 14,
    A gap passage is formed between the inner peripheral surface of the bolt insertion hole of the camshaft and the outer peripheral surface of the cam bolt to introduce hydraulic oil pumped from an oil pump into the cam bolt. Hydraulic control valve.
  16.  クランクシャフトから回転力が伝達され、内部に作動室が形成された駆動回転体と、
     カムシャフトの軸方向の一端部に固定されて、前記駆動回転体内に回転自在に収容されて前記作動室を進角作動室と遅角作動室に隔成すると共に、該両作動室に対して作動油を給排することによって、前記駆動回転体に対して進角側あるいは遅角側に相対回転する従動回転体と、
     オイルポンプから圧送された作動油を前記両作動室に給排制御する油圧制御弁と、
     該油圧制御弁を作動させるアクチュエータと、
     を備えた内燃機関のバルブタイミング制御装置であって、
     前記油圧制御弁は、
     前記従動回転体を前記カムシャフトの軸方向端部に固定すると共に、周壁の径方向に作動油を通流させる給排ポートが貫通形成された中空状のカムボルトと、
     該カムボルトの内部軸方向に摺動自在に設けられ、周壁に形成された複数の連通孔と前記給排ポートとを摺動位置に応じて連通あるいは遮断する筒状のスプール弁と、
     該スプール弁の内部軸方向に沿って収容固定されて、該スプール弁の内部を前記各連通孔と連通可能な複数の連通路に径方向から仕切る仕切り部材と、を備えたことを特徴とする内燃機関のバルブタイミング制御装置。
    A driving rotor in which a rotational force is transmitted from the crankshaft and an operation chamber is formed inside;
    The camshaft is fixed to one end of the camshaft in the axial direction, and is rotatably accommodated in the drive rotating body to separate the working chamber into an advance working chamber and a retard working chamber. A driven rotating body that rotates relative to the advance side or the retard side with respect to the drive rotating body by supplying and discharging hydraulic oil;
    A hydraulic control valve for controlling the supply and discharge of the hydraulic oil pumped from the oil pump to and from the two working chambers;
    An actuator for operating the hydraulic control valve;
    An internal combustion engine valve timing control apparatus comprising:
    The hydraulic control valve is
    A hollow cam bolt in which the driven rotor is fixed to the axial end of the camshaft, and a supply / discharge port through which hydraulic oil flows in the radial direction of the peripheral wall is formed,
    A cylindrical spool valve that is slidable in the internal axial direction of the cam bolt and communicates or blocks a plurality of communication holes formed in a peripheral wall and the supply / exhaust port according to a sliding position;
    And a partition member that is housed and fixed along the internal axial direction of the spool valve and partitions the interior of the spool valve into a plurality of communication passages that can communicate with the communication holes from the radial direction. A valve timing control device for an internal combustion engine.
PCT/JP2015/068489 2014-08-04 2015-06-26 Hydraulic control valve and valve-timing control device for internal-combustion engine using hydraulic control valve WO2016021328A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016540111A JPWO2016021328A1 (en) 2014-08-04 2015-06-26 Hydraulic control valve and valve timing control device for an internal combustion engine using the hydraulic control valve

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014158345 2014-08-04
JP2014-158345 2014-08-04

Publications (1)

Publication Number Publication Date
WO2016021328A1 true WO2016021328A1 (en) 2016-02-11

Family

ID=55263605

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/068489 WO2016021328A1 (en) 2014-08-04 2015-06-26 Hydraulic control valve and valve-timing control device for internal-combustion engine using hydraulic control valve

Country Status (2)

Country Link
JP (1) JPWO2016021328A1 (en)
WO (1) WO2016021328A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018100909A1 (en) * 2016-11-30 2018-06-07 日立オートモティブシステムズ株式会社 Hydraulic control valve and internal-combustion-engine valve-timing control device
JP2020056357A (en) * 2018-10-02 2020-04-09 日立オートモティブシステムズ株式会社 Valve timing control device for internal combustion engine
JP2020159195A (en) * 2019-03-25 2020-10-01 株式会社デンソー Operation oil control valve and valve timing adjustment device
JP2020159198A (en) * 2019-03-25 2020-10-01 株式会社デンソー Operation oil control valve and valve timing adjustment device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7389756B2 (en) * 2005-11-03 2008-06-24 Schaeffler Kg Control valve for an apparatus for variable setting of the control times of gas exchange valves of an internal combustion engine
JP2009063022A (en) * 2007-09-04 2009-03-26 Denso Corp Electric spool valve
JP2013068308A (en) * 2011-09-26 2013-04-18 Hitachi Automotive Systems Ltd Hydraulic control valve, and device for detecting operating condition of spool valve element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7389756B2 (en) * 2005-11-03 2008-06-24 Schaeffler Kg Control valve for an apparatus for variable setting of the control times of gas exchange valves of an internal combustion engine
JP2009063022A (en) * 2007-09-04 2009-03-26 Denso Corp Electric spool valve
JP2013068308A (en) * 2011-09-26 2013-04-18 Hitachi Automotive Systems Ltd Hydraulic control valve, and device for detecting operating condition of spool valve element

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018100909A1 (en) * 2016-11-30 2018-06-07 日立オートモティブシステムズ株式会社 Hydraulic control valve and internal-combustion-engine valve-timing control device
CN109983266A (en) * 2016-11-30 2019-07-05 日立汽车系统株式会社 The valve arrangement for controlling timing of hydraulic control valve and internal combustion engine
JPWO2018100909A1 (en) * 2016-11-30 2019-10-17 日立オートモティブシステムズ株式会社 Hydraulic control valve and valve timing control device for internal combustion engine
CN109983266B (en) * 2016-11-30 2020-11-27 日立汽车系统株式会社 Hydraulic control valve and valve timing control device for internal combustion engine
JP2020056357A (en) * 2018-10-02 2020-04-09 日立オートモティブシステムズ株式会社 Valve timing control device for internal combustion engine
WO2020196403A1 (en) * 2019-03-25 2020-10-01 株式会社デンソー Hydraulic oil control valve and valve timing adjustment device
JP2020159198A (en) * 2019-03-25 2020-10-01 株式会社デンソー Operation oil control valve and valve timing adjustment device
JP2020159195A (en) * 2019-03-25 2020-10-01 株式会社デンソー Operation oil control valve and valve timing adjustment device
CN113631799A (en) * 2019-03-25 2021-11-09 株式会社电装 Working oil control valve and valve timing adjusting device
JP7196712B2 (en) 2019-03-25 2022-12-27 株式会社デンソー Hydraulic oil control valve and valve timing adjustment device
JP7226001B2 (en) 2019-03-25 2023-02-21 株式会社デンソー Hydraulic oil control valve and valve timing adjustment device
US11649741B2 (en) 2019-03-25 2023-05-16 Denso Corporation Hydraulic oil control valve and valve timing adjustment device
CN113631799B (en) * 2019-03-25 2023-10-20 株式会社电装 Working oil control valve and valve timing adjustment device

Also Published As

Publication number Publication date
JPWO2016021328A1 (en) 2017-04-27

Similar Documents

Publication Publication Date Title
JP6373464B2 (en) Valve timing control device for internal combustion engine
US10145273B2 (en) Control valve for valve timing control device and valve timing control device for internal combustion engine
JP5873339B2 (en) Valve timing control device for internal combustion engine
JP5713823B2 (en) Control valve used in valve timing control device
JP5801666B2 (en) Hydraulic control mechanism used in valve timing control device and controller of the hydraulic control mechanism
JP5763432B2 (en) Valve timing control device for internal combustion engine
JP6396851B2 (en) Hydraulic control valve and valve timing control device for an internal combustion engine using the hydraulic control valve
WO2016021328A1 (en) Hydraulic control valve and valve-timing control device for internal-combustion engine using hydraulic control valve
JP2013185442A (en) Valve timing control device of internal combustion engine
JP6110768B2 (en) Variable valve operating device for internal combustion engine
JP2018059415A (en) Hydraulic control valve and valve timing control device of internal combustion engine
JP6295160B2 (en) Electromagnetic valve, electromagnetic valve and electromagnetic actuator used for valve timing control device of internal combustion engine
JP5980086B2 (en) Valve timing control device for internal combustion engine
JP6581475B2 (en) solenoid valve
JP6290068B2 (en) Hydraulic control valve and valve timing control device for an internal combustion engine using the hydraulic control valve
JP6492201B2 (en) Hydraulic control valve used for valve timing control device of internal combustion engine
JP5793107B2 (en) Variable valve operating device for internal combustion engine
WO2019171720A1 (en) Variable valve device for internal combustion engines
JP2019044602A (en) Valve timing control device for internal combustion engine
JP6589342B2 (en) Valve timing control device
WO2018168302A1 (en) Variable valve device for internal combustion engine
JP6720069B2 (en) Valve timing control device for internal combustion engine and manufacturing method thereof
WO2020100556A1 (en) Solenoid valve and valve timing control device for internal combustion engine
JP5897993B2 (en) Variable valve operating device for internal combustion engine
JP2006090141A (en) Valve timing control device of internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15829444

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016540111

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15829444

Country of ref document: EP

Kind code of ref document: A1