WO2019171720A1 - Variable valve device for internal combustion engines - Google Patents

Variable valve device for internal combustion engines Download PDF

Info

Publication number
WO2019171720A1
WO2019171720A1 PCT/JP2018/047792 JP2018047792W WO2019171720A1 WO 2019171720 A1 WO2019171720 A1 WO 2019171720A1 JP 2018047792 W JP2018047792 W JP 2018047792W WO 2019171720 A1 WO2019171720 A1 WO 2019171720A1
Authority
WO
WIPO (PCT)
Prior art keywords
internal combustion
variable valve
combustion engine
camshaft
valve operating
Prior art date
Application number
PCT/JP2018/047792
Other languages
French (fr)
Japanese (ja)
Inventor
秀憲 田坂
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2019171720A1 publication Critical patent/WO2019171720A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/356Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear making the angular relationship oscillate, e.g. non-homokinetic drive

Definitions

  • the present invention relates to a variable valve operating apparatus for an internal combustion engine that variably controls the operating characteristics of an engine valve that is an intake valve or an exhaust valve.
  • variable valve operating apparatus two intake valves are provided in one cylinder, an inner cam shaft integrally provided with an inner cam for driving one intake valve on the outer periphery, and a relative rotation on the outer periphery of the inner cam shaft. And an outer camshaft that is disposed in an outer periphery and that is integrally provided with an outer cam that drives the other intake valve.
  • a hydraulic actuator including a valve timing control device is provided at each end of the inner cam shaft and the outer cam shaft.
  • This hydraulic actuator has a stator and a rotor that can rotate relative to the stator, and an outer cam shaft is inserted and fixed to the stator. On the other hand, an inner cam shaft is inserted and fixed to the rotor.
  • the hydraulic actuator controls the operating angle and opening / closing timing of each intake valve by relatively rotating the inner cam shaft and the outer cam shaft by the supplied hydraulic pressure.
  • variable valve device uses a timing chain wound around a sprocket as means for transmitting the rotation from the crankshaft to the outer camshaft, but in addition to this, it is wound around a timing pulley (toothed pulley).
  • a timing pulley teethed pulley
  • a timing belt dry belt mainly made of the synthetic rubber.
  • An object of the present invention is to provide a variable valve device that can effectively suppress oil leakage from the inside of a timing pulley of the variable valve device using a timing belt.
  • the outer camshaft is fixed to one end in the rotational axis direction of the outer camshaft, the rotational force from the crankshaft is transmitted, and has an operation chamber inside, and the outer camshaft A timing pulley having a through hole at a position in the rotational axis direction of the inner camshaft, and fixed to one end portion of the inner camshaft in the rotational axis direction, and disposed inside the timing pulley so as to be rotatable relative to the timing pulley.
  • a vane rotor that divides the chamber into a plurality of parts, a base part that is attached to the vane rotor, and a target part that is disposed outside the timing pulley from the base part, and between the timing pulley and the base part of the sensor target, or the timing Arranged between the pulley and the vane rotor, It is characterized in that it comprises a sealing member for sealing between the through hole and the outside.
  • oil leakage from the housing can be effectively suppressed.
  • FIG. 6 is a cross-sectional view taken along line AA of FIG.
  • the first and second drive cams used in this embodiment are shown, A shows the state where both drive cams have the same rotation phase, and B shows the second drive cam changing the rotation phase with respect to the first drive cam. Shows the state.
  • the lift characteristic diagram of the intake valve in the present embodiment is shown, A is a lift characteristic diagram in the case of relative rotation in the most retarded angle direction shown in FIG. 5, B is the lift in the case of relative rotation in the most advanced angle direction shown in FIG. FIG. It is a longitudinal cross-sectional view of the main structure of the variable valve apparatus in 2nd Embodiment of this invention.
  • FIG. 1 is an overall schematic view showing a main configuration of a first embodiment of a variable valve operating apparatus according to the present invention in a longitudinal section
  • FIG. 2 is an exploded perspective view showing a main part of the present embodiment
  • FIG. 4 is the perspective view which looked at the variable valve apparatus of this embodiment from the back side.
  • the internal combustion engine is provided with two intake valves for each cylinder, and a variable valve operating device for changing the operation of at least one of the two intake valves. That is, in this embodiment, the variable valve operating device variably controls the operating angle of the intake valve in accordance with the engine operating state.
  • the operating angle refers to the open period from when the intake valve is opened to when it is closed.
  • the variable valve operating apparatus includes a timing pulley 1 that is rotationally driven by a crankshaft of an engine via a timing belt 01 (dry belt specification), and the timing pulley.
  • a camshaft 2 having an inner and outer double outer camshaft 5 and an inner camshaft 6 linked to the pulley 1, a vane rotor 3 for converting the relative rotational phase of the outer camshaft 5 and the inner camshaft 6, and the vane rotor 3;
  • a hydraulic circuit 4 that rotates relative to the timing pulley 1.
  • Each intake valve opens and closes each cylinder end of two intake ports (not shown) on the cylinder side of each intake valve, and is closed by the spring force of the valve spring via the valve lifter arranged at the upper end of each intake valve. Is being energized.
  • the outer camshaft 5 is formed in a hollow shape having a shaft insertion hole 5b inside, and is rotatably supported by a cylinder head (not shown) via a cam bearing.
  • the outer camshaft 5 is integrally fixed to a predetermined position on the outer peripheral surface by press-fitting a first drive cam 7 that opens the intake valve on one side of each cylinder against the spring force of the valve spring. .
  • the outer camshaft 5 is provided with a flange portion 8 on the one end portion 5a side in the rotation axis direction, and is fixed to a rear plate 15 to be described later via the flange portion 8.
  • the flange portion 8 is formed in a disk shape from a ferrous metal that is a metal material, and is fixed to the outer peripheral surface of the one end portion 5a of the outer camshaft 5 by shrink fitting through an insertion hole 8a formed through the center. . Further, three bolt insertion holes 8b into which a plurality of (three in this embodiment) fastening bolts 9 as fixing means for the rear plate 15 to be described later are inserted in the outer peripheral portion of the flange portion 8 in the circumferential direction. It is formed penetrating at an interval position (about 120 ° position in the circumferential direction).
  • the flange portion 8 has an outer diameter that is set to be substantially the same as that of the rear plate 15, and a wall thickness that is also set to be substantially the same as that of the rear plate 15.
  • a pin (not shown) for positioning in the circumferential direction with the rear plate 15 is provided on the outer peripheral portion of the flange portion 8 so as to protrude toward the rear plate 15.
  • the inner camshaft 6 is formed in a solid shape and is rotatably supported on the inner peripheral surface of the outer camshaft 5.
  • the inner cam shaft 6 has a first end portion 6 a in the rotation axis direction slightly protruding from one end opening of the one end portion 5 a of the outer cam shaft 5.
  • the inner camshaft 6 is integrally provided with a small-diameter flange portion 6b at the tip of one end portion 6a.
  • the inner end surface of the small-diameter flange portion 6b is in liquid-tight contact with the distal end surface 5c of the one end portion 5a of the outer camshaft 5 from the rotational axis direction of the inner camshaft 6. Further, the small-diameter flange portion 6b is formed with an annular communication passage 6c communicating with a retarded oil hole 26 (described later) of the hydraulic circuit 4 on the inner end face side. In the communication path 6c, the inner peripheral wall surface 6f on the distal end side of the small-diameter flange portion 6b is formed as a tapered surface having an outer diameter increased.
  • the inner camshaft 6 is formed with an insertion hole 6d into which the cam bolt 10 is inserted in the direction of the internal axis on the one end 6a side.
  • a female screw 6e to which a male screw 10c formed on the outer peripheral tip side of the shaft portion 10b of the cam bolt 10 is screwed is formed on the inner tip side of the insertion hole 6d.
  • the second intake valve is opened against the spring force of the valve spring through the valve lifter while sliding on the outer peripheral surface of the outer camshaft 5.
  • a two-drive cam 11 is fixed.
  • the second drive cam 11 is fixed to the inner camshaft 6 by a connecting shaft 12 inserted through a through hole 6g formed in the diameter direction passing through the center of the rotation axis of the inner camshaft 6. That is, both ends 12 a and 12 b of the connecting shaft 12 are press-fitted and fixed inside the second drive cam 11, whereby the second drive cam 11 is fixed to the inner cam shaft 6. . Further, the connecting shaft 12 passes through a pair of insertion holes 5 d and 5 e formed so as to penetrate in a diameter direction orthogonal to the rotation axis of the outer camshaft 5.
  • the two insertion holes 5d and 5e are formed in a slit shape along the circumferential direction of the outer camshaft 5, and the second drive cam 11 is connected to the outer camshaft 5 through a connecting shaft 12 within a predetermined angle range. It is designed to allow relative rotation.
  • the first drive cam 7 and the second drive cam 11 are arranged adjacent to each other with a slight gap between them.
  • Each of the outer peripheral surfaces 7a and 11a is formed in the same egg-shaped cam profile so that one intake valve in one cylinder can be opened and closed independently with the spring force of each valve spring. .
  • the cam bolt 10 includes a hexagonal head portion 10a, a shaft portion 10b extending in the axial direction from a center of one end surface of the head portion 10a via a hook-shaped seat portion 10d, and a tip portion on the shaft portion 10b. And a male screw 10c formed on the outer periphery.
  • the timing pulley 1 includes a cylindrical pulley body 13 that is open at both ends in the rotation axis direction, and a front plate that closes the openings at the front and rear ends of the pulley body 13 in the axial direction. 14 and a rear plate 15. Further, the front plate 14 and the rear plate 15 are coupled to the pulley body 13 from the axial direction by the axial force of a plurality of (four in this embodiment) bolts 16.
  • FIG. 5 is an operation explanatory view showing a state in which the vane rotor in the present embodiment is relatively rotated in the most retarded angle direction
  • FIG. 6 is an operation explanatory view showing a state in which the vane rotor in the same embodiment is relatively rotated in the most advanced angle direction. is there.
  • the pulley body 13 is integrally formed in a cylindrical shape by, for example, a metal material formed by a sintering method. As shown in FIGS. 5 and 6, four first to fourth shoes 13a to 13d are formed on the inner peripheral surface. Projecting inward. Further, the pulley body 13 is integrally provided with a gear 1a around which the timing belt 01 is wound.
  • the four shoes 13a to 13d are each formed in a substantially trapezoidal shape when viewed from the side, and are arranged at a position of approximately 90 ° in the circumferential direction of the pulley body 13.
  • a substantially U-shaped seal member 19 is fitted and fixed in a seal groove formed along the axial direction at the tip of each of the shoes 13a to 13d.
  • the first shoe 13a has a flat first convex surface 13f formed on one side surface in the circumferential direction.
  • the second shoe 13b has a second convex surface 13g that is also flat on one side surface that faces the one side surface of the first shoe 13a in the circumferential direction.
  • the convex surfaces 13 f and 13 g are formed so that the respective side surfaces facing each other when the vane rotor 3 rotates counterclockwise (leftward in the figure) or clockwise (rightward in the figure). Abut.
  • the vane rotor 3 is restricted to the maximum rotational position (maximum retard angle, advance angle position) in the left-right direction in the drawing.
  • the pulley body 13 has first and second annular grooves 13h and 13i formed on one side surface and the other side surface in the rotation axis direction.
  • Each of the annular grooves 13h and 13i has an inner diameter slightly larger than the outer diameter of the front plate 14 and the rear plate 15, and the depth of each of the annular grooves 13h and 13i is substantially the same as the thickness of the plates 14 and 15. Is set. Therefore, the outer peripheral portions of both plates 14 and 15 can be fitted in the annular grooves 13h and 13i.
  • the pulley body 13 has a compound leaf on both one side surface (the outer surface of the first annular groove 13h) and the other side surface (the outer surface of the second annular groove 13i) including the shoes 13a to 13d in the rotation axis direction.
  • First and second seal grooves 13j and 13k are respectively formed.
  • Each of the seal grooves 13j and 13k is formed into an endless four-leaf shape along the outer shape of the pulley body 13 and the shoes 13a to 13d.
  • two first and second seal rings 20 and 21 having a circular cross section are fitted.
  • Each of the seal rings 20 and 21 is formed of a synthetic rubber material or the like, and is formed between the outer surface of the first annular groove 13h of the pulley body 13 and the front plate 14, and the second annular groove 13h of the pulley body 13. , 13i and the rear plate 15 are sealed.
  • the front plate 14 is formed into a relatively thin disk by pressing a metal plate. Further, a through hole 14a into which a shaft portion 10b of the cam bolt 10 and a base portion 35a of a sensor target 35 described later are inserted is formed in the center of the front plate 14. Further, the front plate 14 has four bolt insertion holes 14b through which the bolts 16 are inserted at equally spaced positions in the circumferential direction on the outer peripheral side (90 ° positions in the circumferential direction).
  • the front plate 14 is integrally provided with a cylindrical first boss portion 22 protruding in the opposite direction to the rear plate 15 at a position slightly outside the hole edge of the through hole 14a.
  • the first boss portion 22 is molded together when the front plate 14 is press-molded.
  • the inner peripheral surface 22a has a flat circular shape, and the diameter of the front end edge of the inner peripheral surface 22a is increased from the inside to the outside.
  • An annular tapered surface 22b is formed.
  • the rear plate 15 is formed of a metal material formed by sintering as with the pulley body 13, and is formed in a thicker disk shape than the front plate 14. Further, the rear plate 15 has an insertion hole 15a through which the one end portion 5a of the outer cam shaft 5 is inserted.
  • the insertion hole 15a is formed with an inner diameter slightly larger than the outer diameter of the one end portion 5a of the outer camshaft 5, and the one end portion 5a is inserted tightly and accurately. That is, the outer peripheral surface of the one end portion 5a and the inner peripheral surface of the insertion hole 15a are closely fitted to each other so as to be close to press-fitting without a gap.
  • four female screw holes 15b are formed on the outer peripheral portion of the rear plate 15 to which the male screws 16b at the front ends of the shaft portions 16a of the respective bolts 16 are screwed.
  • the four female screw holes 15b are formed so as to penetrate the rear plate 15 at approximately 90 ° positions, which are equidistant positions in the circumferential direction.
  • a lock hole 31 which is a lock recess of the lock mechanism 28 described later is formed at a predetermined position on the outer peripheral portion of the rear plate 15.
  • Three external thread holes 15c into which three fastening bolts 9 are screwed are formed on the outer surface of the outer peripheral portion of the rear plate 15 on the flange portion 8 side.
  • the female screw hole 15c is formed at a position of approximately 120 ° in the circumferential direction of the rear plate 15 and has a bottomed shape without being penetrated.
  • the rear plate 15 is formed with an annular third seal groove 15d on the inner side of each female screw hole 15c on the inner peripheral surface.
  • a third seal ring 45 having a circular cross section for sealing between the rear end surface of the rear plate 15 and the front end surface of the flange portion 8 is fitted and held in the third seal groove 15d.
  • the rear plate 15 has a positioning hole (not shown) that is positioned on the outer surface of the rear plate 15 so that the positioning pin of the flange portion 8 is engaged with the rear plate 15.
  • the vane rotor 3 is integrally formed of a metal material formed by a sintering method. As shown in FIGS. 1, 2, 5, and 6, the rotor 17 on the center side and the outer periphery of the rotor 17 are formed. A plurality of (four in this embodiment) first to fourth vanes 18a to 18d projecting in the radial direction.
  • the rotor 17 is formed in a substantially cylindrical shape as a whole, and is formed in a stepped diameter shape having a large and small outer diameter, and a passage forming hole 17a into which the shaft portion 10b of the cam bolt 10 is inserted is formed in the center. Yes.
  • the rotor 17 has a circular first fitting groove 17b into which the base portion 35a of the sensor target 35 enters at the center position on the outer surface of the cam bolt 10 on the head 10a side.
  • the passage constituting hole 17a is formed such that the inner diameter of the inner peripheral surface is larger than the outer diameter of the shaft portion 10b of the cam bolt 10, and constitutes a part of the hydraulic circuit 4 between the inner peripheral surface and the outer peripheral surface of the shaft portion 10b. doing.
  • the rotor 17 has a concave second fitting groove 17c formed at the center of the inner surface on the rear plate 15 side in the rotation axis direction.
  • the second fitting groove 17c is formed in a columnar shape having a depth larger than that of the first fitting groove 17b, and the one end portion 5a of the outer camshaft 5, the one end portion 6a of the inner camshaft 6, and the small-diameter flange portion. 6b can be inserted from the direction of the rotation axis.
  • the second fitting groove 17c is formed so that its inner diameter is slightly larger than the outer diameter of the small-diameter flange portion 6b of the inner camshaft 6, and the front end surface of the small-diameter flange portion 6b is in contact with the bottom surface 17d.
  • the inner diameter of the second fitting groove 17c is slightly larger than the outer diameter of the one end portion 5a of the outer camshaft 5, and the outer peripheral surface of the one end portion 5a is in close contact with the inner peripheral surface from the rotation axis direction. It comes to fit in.
  • the front end surface of the one end portion 5a of the outer camshaft 5 is disposed in contact with the rear end surface of the small-diameter flange portion 6b of the inner camshaft 6 from the rotational axis direction in the second fitting groove 17c.
  • the one end portion 5a of the outer cam shaft 5 is restrained from generating play in the axial direction and the radial direction in the second fitting groove 17c.
  • the inner diameter of the second fitting groove 17c is set slightly smaller than the inner diameter of the insertion hole 15a.
  • the outer camshaft 5 has one end 5a fitted in the second fitting groove 17c
  • the outer camshaft 5 and the vane rotor 3 (rotor 17) are not coupled to each other and can freely rotate relative to each other. Yes.
  • the outer peripheral surface of the one end portion 5a and the inner peripheral surface of the second fitting groove 17c can slide with a minute gap.
  • the second fitting groove 17c is in communication with the passage constituting hole 17a, with one end of the passage constituting hole 17a being opened in the bottom surface 17d.
  • the rotor 17 is coupled to the other end portion of the inner cam shaft 6 from the rotational axis direction together with the sensor target 35 of the rotation angle detection mechanism by the axial force of the cam bolt 10.
  • the first to fourth vanes 18a to 18d are arranged between the shoes 13a to 13d of the pulley body 13.
  • the working chamber is divided into four retard-side hydraulic chambers 23 and advance-side hydraulic chambers 24 between the first to fourth vanes 18a to 18d and the first to fourth shoes 13a to 13d, respectively. Yes.
  • One first vane 18a is formed so that the circumferential width and thickness are larger than those of the other three vanes 18b to 18d.
  • the other vanes 18b to 18d are set to have substantially the same width and thickness in the circumferential direction.
  • the rotor 17 has four retard oil holes 26 penetrating along the radial direction in the inner radial direction where the small-diameter flange portion 6b of the inner camshaft 6 is located. Is formed. Each retard oil hole 26 communicates with the four retard hydraulic chambers 23 through a communication passage 6c formed in the small diameter flange portion 6b.
  • the rotor 17 has four advance oil holes 25 penetratingly formed along the radial direction in the inner radial direction ahead of each retard oil hole 26.
  • Each of the advance angle oil holes 25 communicates with the four advance angle side hydraulic chambers 24 via the passage structure holes 17a.
  • a seal member 27 is slidably contacted with the inner peripheral surface of the pulley body 13 to seal each retarded-side hydraulic chamber 23 and each advanced-side hydraulic chamber 24.
  • the vane rotor 3 rotates relative to the clockwise direction or the counterclockwise direction, the first vane 18a comes into contact with the first convex surface 13f or the second convex surface 13g. That is, when one side surface of the first vane 18a in FIG. 5 or 6 in the counterclockwise direction (retarding-side hydraulic chamber 23 side) contacts the first convex surface 13f, the maximum relative to the one direction side of the vane rotor 3 is obtained.
  • the rotational position most retarded angle position
  • is regulated see FIG. 5).
  • the rotation angle detection mechanism is a general magnetic sensor (cam angle sensor) that detects the rotation position of the inner camshaft 6, a detector (not shown) that detects the rotation position, and a detector that is fixed to the rotor 17. And a sensor target 35 disposed in proximity to each other.
  • the detector outputs a rotational position detection signal of the inner camshaft 6 detected via the sensor target 35 to a control unit (ECU 41) of the internal combustion engine.
  • the sensor target 35 is integrally formed of an iron-based metal thin plate material, and has a bottomed cylindrical base portion 35a and a radially outer side from the opening edge in the rotation axis direction of the base portion 35a. And a plurality of (three in the present embodiment) target portions 35b protruding in the shape.
  • the base portion 35a has a bolt insertion hole 35d through which the shaft portion 10b of the cam bolt 10 is inserted in the center of the bottom portion 35c. Further, the base 35 a has a bottom 35 c fixed to the bottom surface of the first fitting groove 17 b of the rotor 17 by the axial force of the cam bolt 10.
  • Each target portion 35b is formed in an elongated rectangular shape, and is arranged so that the tip surface is close to the detector in the radial direction.
  • the detector detects the position of each target portion 35b as the vane rotor 3 (inner cam shaft 6) rotates, and detects the rotational position of the inner cam shaft 6.
  • a seal washer 43 is disposed between the inner bottom surface of the bottom portion 35c of the base portion 35a and the bowl-shaped seat portion 10d of the head portion 10a of the cam bolt 10.
  • the seal washer 43 is formed in an annular shape by, for example, a soft metal material, and is strongly sandwiched by the axial force of the cam bolt 10 to seal between the passage constituting hole 17a and the head portion 10a.
  • an oil seal 44 made of synthetic rubber as a seal member is disposed in a liquid-tight manner.
  • the oil seal 44 is formed in a substantially rectangular shape when viewed from the direction perpendicular to the axis.
  • the oil seal 44 has a cylindrical shape that is long in the axial direction corresponding to the axial lengths of the outer peripheral surface of the base portion 35 a that is relatively long in the axial direction and the inner peripheral surface 22 a of the first boss portion 22. Is formed. Accordingly, the oil seal 44 seals between the through hole 14a of the front plate 14 and the outside.
  • the oil seal 44 is press-fitted and fixed to the outer peripheral surface of the base part 35a in advance. In this state, the oil seal 44 and the base portion 35a are smoothly inserted together into the inner peripheral surface 22a of the first boss portion 22 via the tapered surface 22b.
  • FIG. 7 is a cross-sectional view taken along the line AA in FIG. 5 and shows a locking mechanism provided in the present embodiment.
  • the lock mechanism 28 includes a sliding hole 29 formed in the first vane 18 a of the vane rotor 3, and is accommodated in the sliding hole 29 so as to be opposed to the rear plate 15 side.
  • a lock pin 30 provided so as to be able to advance and retreat, a lock hole 31 formed on the inner surface of the rear plate 15 and into which the tip 30a of the lock pin 30 is inserted to lock the vane rotor 3, and a lock pin according to the engine operating state
  • the distal end portion 30a of 30 is inserted into the lock hole 31, or an insertion / release mechanism for releasing the insertion state.
  • the sliding hole 29 has an inner diameter formed in a stepped shape at substantially the center in the axial direction, and has a small diameter portion 29a on the rear plate 15 side and a large diameter portion 29b on the front plate 14 side.
  • the lock pin 30 has a flange-shaped rear end portion 30 b having an outer diameter slightly larger than the inner diameter of the inner peripheral surface of the sliding hole 29, and a tip portion 30 a having a truncated conical shape slightly smaller than the inner diameter of the lock hole 31. Is formed.
  • the lock holes 31 are formed in a conical shape with a bottom, and are formed at a predetermined interval in the circumferential direction of the inner peripheral surface of the rear plate 15.
  • the lock hole 31 is formed at a position where the tip portion 30a of the lock pin 30 is inserted from the axial direction when the vane rotor 3 is relatively rotated in the maximum left direction shown in FIG.
  • the insertion / release mechanism is formed between the coil spring 32 that urges the lock pin 30 in the advance direction (in the direction of the lock hole 31), and the large diameter portion 29b of the sliding hole 29 and the rear end portion 30b of the lock pin 30.
  • the first pressure receiving chamber 34a that receives the hydraulic pressure at the rear end 30b
  • the second pressure receiving chamber 34b that is formed in the lock hole 31 and receives the hydraulic pressure at the tip 30a of the lock pin 30, and the first and second pressure receiving pressures.
  • Two first and second release oil holes 33a and 33b for releasing hydraulic lock by supplying hydraulic pressure to the chambers 34a and 34b to retract the lock pin 30 from the lock hole 31 are provided.
  • the first release oil hole 33a is formed in a side portion of the first vane 18a on the retarded-side hydraulic chamber 23 side so as to penetrate one retarded-side hydraulic chamber 23 and the first pressure receiving chamber. 34a is communicated.
  • the second release oil hole 33b is formed on one side surface (outer surface) in the axial direction of the first vane 18a, and communicates one advance side hydraulic chamber 24 and the second pressure receiving chamber 34b.
  • the large-diameter portion 29b of the sliding hole 29 communicates with the outside through a rectangular breathing groove 29c formed continuously on the outer surface of the rotor 17 and the first vane 18a and the through hole 14a of the front plate 14. doing. Thereby, the stable slidability of the lock pin 30 is ensured at all times.
  • the hydraulic circuit 4 selectively supplies or discharges the hydraulic pressure to each retard side hydraulic chamber 23 and each advance side hydraulic chamber 24.
  • a first oil passage 36 that communicates with each retarded hydraulic chamber 23, a second oil passage 37 that communicates with each advanced hydraulic chamber 24, and each oil passage
  • An oil pump 39 that selectively supplies hydraulic pressure to the fluid passages 36 and 37 via the electromagnetic switching valve 38; and a drain passage 40 that selectively communicates with the oil passages 36 and 37 via the electromagnetic switching valve 38.
  • the first oil passage 36 is mainly formed between the inner peripheral surface of the outer cam shaft 5 and the outer peripheral surface of the inner cam shaft 6.
  • One end of the first oil passage 36 is connected to the supply / discharge port of the electromagnetic switching valve 38, and the other end communicates with each retarded-side hydraulic chamber 23 via the communication passage 6 c and each retarded oil hole 26. ing.
  • the second oil passage 37 is mainly formed between the outer peripheral surface of the shaft portion 10 b of the cam bolt 10 and the inner peripheral surface of the insertion hole 6 d of the inner cam shaft 6.
  • One end of the second oil passage 37 is connected to the supply / discharge port of the electromagnetic switching valve 38, and the other end communicates with each advance side hydraulic chamber 24 via the passage constituting hole 17 a and each advance oil hole 25. doing.
  • the electromagnetic switching valve 38 is a four-port two-position valve, and is provided inside the control unit (ECU) 41 by energizing or de-energizing a coil (not shown) or changing the energizing amount of the control current (pulse current).
  • a spool valve (not shown) moves in the axial direction.
  • the electromagnetic switching valve 38 selectively controls the discharge passage 39a and the drain passage 40 of the oil pump 39 for each of the oil passages 36 and 37.
  • the discharge passage 39a and the first oil passage 36 are communicated, and at the same time, the drain passage 40 and the second oil passage 37 are communicated.
  • the discharge passage 39a and the second oil passage 37 are communicated, and at the same time, the drain passage 40 and the first oil passage 36 are communicated.
  • the spool valve moves forward and backward in accordance with the amount of current supplied from the ECU 41 to continuously vary the opening area of the supply / discharge port communicating with the oil passages 36 and 37.
  • an internal computer inputs information signals from various sensors such as a crank angle sensor, an air flow meter, a water temperature sensor, a throttle valve opening sensor, etc., not shown, and detects the current engine operating state.
  • a control current (pulse current) is output to the electromagnetic coil of the electromagnetic switching valve 38 based on the engine operating state, the rotational position information of the inner camshaft 6 detected by the rotation angle detection mechanism described above, and the like.
  • the rotation angle position of the outer cam shaft 5 is detected by a rotation angle detection mechanism provided separately, and this detection signal is output to the ECU 41.
  • the outer cam shaft 5 rotates synchronously
  • the inner cam shaft 6 also rotates synchronously via the pulley body 13 and the vane rotor 3.
  • the first drive cam 7 of the outer camshaft 5 and the second drive cam 11 of the inner camshaft 6 basically rotate synchronously to open and close the two intake valves together with the spring force of the valve spring.
  • FIG. 8 shows the first and second drive cams 7 and 11 used in this embodiment, A shows the state where both drive cams 7 and 11 are in the same rotational phase, and B shows the first drive cam 7. A state in which the second drive cam 11 changes the rotation phase is shown.
  • A is a lift characteristic diagram when the vane rotor rotates relative to the most retarded angle direction shown in FIG. 5, and B is relative to the most advanced angle direction shown in FIG. It is a lift characteristic figure at the time of rotating.
  • the tip 30 a of the lock pin 30 is inserted into the lock hole 31 in advance by the spring force of the coil spring 32 of the lock mechanism 28. That is, the vane rotor 3 is relatively rotated in one direction (position shown in FIG. 5) based on the alternating torque acting on the camshaft 2 when the engine is stopped. As a result, the vane rotor 3 is locked at a relative rotational position on the most retarded angle optimum for starting, for example, relative to the timing pulley 1.
  • the two drive cams 7 and 11 are in the same rotational phase via the outer cam shaft 5 and the inner cam shaft 6 as shown in FIG. Therefore, the two intake valves are held at the same phase on the most retarded angle side, as shown in FIG. 9A, in the opening / closing timing characteristics (valve timing).
  • each advance side hydraulic chamber 24 When the hydraulic pressure in each advance side hydraulic chamber 24 rises, it is supplied from each advance side hydraulic chamber 24 to the second pressure receiving chamber 34b through the second release oil hole 33b. As a result, the lock pin 30 moves backward against the spring force of the coil spring 32 by the high hydraulic pressure acting on the outer surface of the distal end portion 30a. Therefore, the tip 30a of the lock pin 30 comes out of the lock hole 31, and the lock of the vane rotor 3 with respect to the timing pulley 1 is released. Therefore, the vane rotor 3 is allowed to rotate freely.
  • the vane rotor 3 rotates relative to the timing pulley 1 in the clockwise direction shown in FIG. 6 as the advance angle hydraulic chambers 24 are increased in pressure.
  • the other side surface of the first vane 18a comes into contact with the second convex surface 13g and is regulated to the most advanced position in the clockwise direction (see FIG. 6).
  • the inner cam shaft 6 rotates relative to the outer cam shaft 5 in the clockwise direction, that is, the most advanced angle side.
  • the first drive cam 7 on the outer camshaft 5 side is held at the initial rotational position.
  • the second drive cam 11 on the inner cam shaft 6 side further rotates relative to the rotation position in the clockwise direction with respect to the rotation direction indicated by the arrow.
  • the second drive cam 11 is opened to the advance side with respect to the first drive cam 7 (open angle state).
  • one intake valve has an opening / closing timing characteristic such that the opening timing is further advanced as shown in FIG. 9B.
  • the two drive cams 7 and 11 push the valve lifter for a longer time than the time when the valve lifter is pushed in the initial phase.
  • the time during which one intake valve is open becomes longer, and the amount of intake air into the combustion chamber increases continuously. Thereby, for example, the output torque at the time of high engine speed or sudden acceleration can be improved.
  • the vane rotor 3 rotates relative to the timing pulley 1 in the clockwise direction from the rotational position of FIG.
  • the inner cam shaft 6 is also rotated relative to the outer cam shaft 5 in the clockwise direction, so that the second drive cam 11 is in the same phase as the first drive cam 7. Therefore, the operating angle of the two intake valves is reduced, and the amount of intake air is reduced. For example, the fuel consumption can be improved in the low engine speed range.
  • the relative rotational displacement between the first drive cam 7 and the second drive cam 11, that is, the expansion / contraction displacement of the second drive cam 11 is continuously performed by the ECU 41 and the electromagnetic switching valve 38. ing.
  • the oil seal 44 is disposed between the inner peripheral surface 22a of the first boss portion 22 of the front plate 14 and the outer peripheral surface of the base portion 35a of the sensor target 35. For this reason, since the through hole 14a of the front plate 14 is sealed in a liquid-tight manner, it is possible to effectively prevent the oil in each retard side hydraulic chamber 23 and the advance side hydraulic chamber 24 from leaking from the through hole 14a. Can be suppressed.
  • first and second seal rings 20 and 21 are provided in two side clearances between the pulley body 13 and the front plate 14 and the rear plate 15. For this reason, since the pulley body 13 and the plates 14 and 15 are also sealed in a liquid-tight manner, oil leakage from each retarding-side hydraulic chamber 23 and each advance-side hydraulic chamber 24 is sufficiently suppressed. it can.
  • a third seal ring 45 is also provided between the rear plate 15 and the flange portion 8 of the outer camshaft 5, and this space is also liquid-tightly sealed. Therefore, even if the oil in each of the hydraulic chambers 23 and 24 leaks from between the inner peripheral surface of the insertion hole 15a of the rear plate 15 and the outer peripheral surface of the outer camshaft 5, the third seal ring 45 It is possible to sufficiently suppress leakage into the water.
  • the oil seal 44 is slidably disposed between the outer peripheral surface of the base portion 35 a of the sensor target 35 and the inner peripheral surface 22 a of the first boss portion 22. For this reason, when the vane rotor 3 rotates relative to the timing pulley 1, a sliding frictional resistance is generated by the oil seal 44 between the sensor target 35 and the first boss portion 22. Thereby, flapping of the vane rotor 3 due to cam torque fluctuation can be suppressed.
  • the inner peripheral surface of the first boss portion 22 with the oil seal 44 attached in advance to the outer peripheral surface of the base portion 35a. 22a is inserted. For this reason, the coaxiality (centering) between the sensor target 35 and the inner camshaft 6 can be ensured.
  • the sensor target 35 can be fixed together with the mounting operation of the vane rotor 3 to the inner camshaft 6 by the cam bolt 10, the mounting operation of the sensor target 35 is facilitated. That is, the sensor work 35 is not required to be separately attached by press fitting or the like, so that the attachment work is facilitated.
  • the head portion 10a of the cam bolt 10 can be arranged in the base portion 35a of the sensor target 35 via the first boss portion 22, the axial length of the cam bolt 10 can be shortened accordingly.
  • the seal washer 43 is sandwiched between the head portion 10a (the bowl-shaped seat portion 10d) of the cam bolt 10 and the base portion 35a, the gap between both the portions 10a and 35a can be reduced. Oil leakage can be suppressed.
  • the oil seal 44 can be formed longer in the axial direction by providing the cylindrical first boss portion 22, the sealing performance can be improved.
  • each target portion 35 b of the sensor target 35 is disposed close to the tip edge of the first boss portion 22. For this reason, when the oil seal 44 moves from the inside of the first boss portion 22 to the outside in the axial direction, each target portion 35b regulates its movement, so that inadvertent dropout can be suppressed.
  • the inner camshaft 6 is attached to the rotor 17 by the cam bolt 10 in a state where one end portion 6 a is fitted in the second fitting groove 17 c. Fastened and fixed from the direction of the rotation axis.
  • the outer camshaft 5 is fastened and fixed to the rear plate 15 (pulley body 13) by the fastening bolts 9 via the flange portions 8. Further, the outer cam shaft 5 has one end portion 5a fitted into the insertion hole 15a of the rear plate 15 and the second fitting groove 17c of the rotor 17 from the direction of the rotation axis. That is, the outer camshaft 5 is tightly fitted to the rear plate 15 via the insertion hole 15a, while the rotor 17 of the vane rotor 3 is rotatable relative to the outer camshaft 5 by the second fitting groove 17c. It fits tightly in the state.
  • both the timing pulley 1 and the vane rotor 3 are coaxial with a single outer camshaft 5.
  • FIG. 10 shows the second embodiment, and the basic configuration is the same as that of the first embodiment, except that the second portion is located at the center of one end surface of the vane rotor 3 on the front plate 14 side in the rotation axis direction of the rotor 17.
  • a boss portion 46 is provided integrally.
  • the second boss portion 46 is formed in a cylindrical shape, and its axial length L is slightly larger than the first boss portion 22 of the front plate 14.
  • the entire sensor target 35 of the rotation angle detection mechanism is formed in a flat shape, and the base portion 35a is fixed to the tip of the second boss portion 46 by the cam bolt 10. That is, the sensor target 35 has a base portion 35a formed in a flat disk shape, and three target portions 35b project radially outward from the outer peripheral edge of the base portion 35a. Further, the base portion 35a is formed with a bolt insertion hole 35d through which the shaft portion 10b of the cam bolt 10 is inserted at a central position.
  • cam bolt 10 is formed so that the axial length of the shaft portion 10 b is increased by the length L of the second boss portion 46.
  • a seal washer 43 is interposed between the hook-shaped seat portion 10d of the head portion 10a of the cam bolt 10 and the base portion 35a.
  • a cylindrical oil seal 44 made of synthetic rubber is disposed between the inner peripheral surface 22a of the first boss portion 22 and the outer peripheral surface 46a of the second boss portion 46.
  • the sensor target 35 is also formed in a flat shape as a whole, the molding operation is easy.
  • the first to third seal rings 20, 21, 45 and the oil seal 44 can suppress oil leakage from the hydraulic chambers 23, 24. Moreover, since each target part 35b of the sensor target 35 is disposed close to the leading edge of the first boss part 22, inadvertent dropping of the oil seal 44 can be suppressed.
  • the present invention is not limited to the configuration of each embodiment.
  • the oil seal 44 is connected to the outer peripheral surface of the through hole 14a of the front plate 14 and the cylindrical base portion 35a of the sensor target 35. It is also possible to arrange between them.
  • the oil seal 44 can be disposed between the outer peripheral surface of the second boss portion 46 and the inner peripheral surface of the through hole 14a.
  • the structure of the sensor target 35 can be further changed.
  • variable valve operating apparatus based on the embodiment described above, for example, the following modes can be considered.
  • an internal combustion engine comprising: a hollow outer camshaft having an outer cam on the outer periphery; and an inner camshaft disposed in the outer camshaft so as to be relatively rotatable and having an inner cam on the outer periphery.
  • a sensor target that is attached to the vane rotor and the target portion is disposed outside the timing pulley from the base, and is disposed between the timing pulley and the base of the sensor target, or between the timing pulley and the vane rotor,
  • the seal member is disposed between the through hole of the timing pulley and the base of the sensor target.
  • the sensor target is formed in a bottomed cylindrical shape in which the base portion extends along the rotation axis direction of each camshaft, and the seal member includes an outer peripheral surface of the base portion and an inner peripheral surface of the through hole. Arranged between.
  • the seal member when the sensor target is attached, the seal member is inserted into the inner peripheral surface of the through hole in a state of being attached in advance to the outer peripheral surface of the base portion. (Centering) can be secured.
  • the cam bolt is inserted into a bolt insertion hole provided at substantially the center of the base, and the vane rotor is attached to the inner cam shaft by the cam bolt in a state where the head of the cam bolt is disposed in the base. It is fastened together with the base.
  • the sensor target can be fixed together with the attachment of the vane rotor to the inner camshaft by the cam bolt, so that work such as separate press fitting is not required. Accordingly, the sensor target can be easily attached. Further, since the head of the cam bolt can be disposed in the base, the cam bolt can be shortened in the axial direction.
  • a seal washer is disposed between the bottom of the base and the head of the cam bolt.
  • oil leakage from between the cam bolt head and the sensor target can be suppressed by the seal washer.
  • the timing pulley has a cylindrical first boss portion that protrudes from a hole edge of the through hole toward an outer side in a rotation axis direction of the timing pulley, and the seal member includes the first boss. It arrange
  • the sealing member can be extended in the axial direction, so that the sealing effect by the sealing member is improved.
  • the sensor target has a target portion extending radially outward from the base portion with respect to the rotational axis of the timing pulley, and the target portion is connected to the seal member in the rotational axis direction of the timing pulley. Closely arranged.
  • the seal member is disposed between the timing pulley and the vane rotor.
  • the vane rotor has a rotor coupled to one end of the camshaft in the rotational axis direction, and a cylindrical second boss extending from the rotor toward the inner peripheral surface of the through hole of the timing pulley.
  • the seal member is disposed between the outer peripheral surface of the second boss portion and the inner peripheral surface of the through hole.
  • the timing pulley has a cylindrical first boss portion that protrudes from a hole edge of the through hole toward an outer side in a rotation axis direction of the timing pulley, and the vane rotor rotates the camshaft.
  • a rotor coupled to one end portion in the axial direction; a cylindrical second boss portion extending from the rotor toward an inner peripheral surface of the through hole of the timing pulley; It arrange
  • the sensor target is fixed to a tip portion of the second boss portion.
  • the present invention is used in an internal combustion engine including an outer camshaft having a hollow interior and an inner camshaft disposed in the outer camshaft so as to be relatively rotatable, the outer camshaft and the A variable valve operating apparatus for an internal combustion engine that relatively rotates an inner camshaft, A timing at which the outer camshaft is fixed to one end of the outer camshaft in the rotational axis direction, a rotational force is transmitted from the crankshaft, has a working chamber inside, and has a through hole at a position in the rotational axis direction of the outer camshaft.
  • a pulley a vane rotor that is fixed to one end of the inner camshaft in the rotational axis direction, and is disposed in the timing pulley so as to be relatively rotatable with the timing pulley, and divides the working chamber into a plurality of chambers;
  • a seal member disposed between a member attached to the vane rotor and an inner peripheral surface of the through hole.
  • the oil leakage by the seal member is suppressed by the cam-in cam structure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve Device For Special Equipments (AREA)

Abstract

This variable valve device for internal combustion engines is provided with: a timing pulley 1 affixed to one end of an outer camshaft 5 in the rotation axis direction thereof and having a through-hole 15a at the center of a rear plate 15; a vane rotor 3 affixed to one end of an inner camshaft 6 in the rotation axis direction thereof and disposed within the timing pulley in a relatively rotatable manner; and a sensor target 35 having a base section 35a which is mounted to a rotor and having a target section 35b which is positioned further toward the outside of the timing pulley than the base section. An oil seal 44 which seals between a through-hole 15a and the outside is provided between the inner peripheral surface 22a of a first boss section 22 provided on a front plate 14 and the outer peripheral surface of the base section 35a. The abovementioned configurations can effectively prevent oil from leaking from the inside of the timing pulley of the variable valve device using a timing belt.

Description

内燃機関の可変動弁装置Variable valve operating device for internal combustion engine
 本発明は、吸気弁や排気弁である機関弁の作動特性を可変制御する内燃機関の可変動弁装置に関する。 The present invention relates to a variable valve operating apparatus for an internal combustion engine that variably controls the operating characteristics of an engine valve that is an intake valve or an exhaust valve.
 従来の可変動弁装置としては、例えば以下の特許文献1に記載されたものが知られている。 As a conventional variable valve operating device, for example, one described in Patent Document 1 below is known.
 この可変動弁装置は、一気筒に2つの吸気弁が設けられ、外周に一方の吸気弁を駆動するインナーカムが一体的に設けられたインナーカムシャフトと、該インナーカムシャフトの外周に相対回転可能に配置され、外周に他方の吸気弁を駆動するアウターカムが一体的に設けられたアウターカムシャフトと、を有している。 In this variable valve operating apparatus, two intake valves are provided in one cylinder, an inner cam shaft integrally provided with an inner cam for driving one intake valve on the outer periphery, and a relative rotation on the outer periphery of the inner cam shaft. And an outer camshaft that is disposed in an outer periphery and that is integrally provided with an outer cam that drives the other intake valve.
 インナーカムシャフトとアウターカムシャフトのそれぞれの端部には、バルブタイミング制御装置を含む油圧アクチュエータが設けられている。 A hydraulic actuator including a valve timing control device is provided at each end of the inner cam shaft and the outer cam shaft.
 この油圧アクチュエータは、固定子と、該固定子に相対回転可能な回転子とを有し、固定子にアウターカムシャフトが挿通固定されている。一方、回転子には、インナーカムシャフトが挿通固定されている。 This hydraulic actuator has a stator and a rotor that can rotate relative to the stator, and an outer cam shaft is inserted and fixed to the stator. On the other hand, an inner cam shaft is inserted and fixed to the rotor.
 油圧アクチュエータは、供給された油圧によってインナーカムシャフトとアウターカムシャフトを相対回転させて、各吸気弁の作動角と開閉タイミングを制御するようになっている。 The hydraulic actuator controls the operating angle and opening / closing timing of each intake valve by relatively rotating the inner cam shaft and the outer cam shaft by the supplied hydraulic pressure.
特表2010-502884号公報Japanese translation of PCT publication No. 2010-502884
 ところで、前記可変動弁装置は、クランクシャフトからアウターカムシャフトに対する回転伝達手段として、スプロケットに巻回されたタイミングチェーンが用いられているが、この他に、タイミングプーリ(歯付きプーリ)に巻回された合成ゴムを主体とした例えばタイミングベルト(ドライベルト)がある。 By the way, the variable valve device uses a timing chain wound around a sprocket as means for transmitting the rotation from the crankshaft to the outer camshaft, but in addition to this, it is wound around a timing pulley (toothed pulley). For example, there is a timing belt (dry belt) mainly made of the synthetic rubber.
 このタイミングベルトを用いた場合には、飛散したオイルが、タイミングプーリとタイミングベルトの間に付着して、この両者間にスリップが発生するおそれがある。このスリップ現象によって、クランクシャフトからの回転伝達効率が低下すると共に、前記固定子と回転子間での相対回転位相のずれを招くおそれがある。 When this timing belt is used, the scattered oil adheres between the timing pulley and the timing belt, and a slip may occur between the two. Due to this slip phenomenon, the rotation transmission efficiency from the crankshaft is lowered, and there is a risk of causing a relative rotational phase shift between the stator and the rotor.
 本発明は、タイミングベルトを用いた可変動弁装置のタイミングプーリ内部からのオイルの漏れを効果的に抑制し得る可変動弁装置を提供することを目的の1つとしている。 An object of the present invention is to provide a variable valve device that can effectively suppress oil leakage from the inside of a timing pulley of the variable valve device using a timing belt.
 本発明の好ましい一態様としては、とりわけ、アウターカムシャフトの回転軸方向の一端部に固定されていると共に、クランクシャフトからの回転力が伝達され、内部に作動室を有すると共に、前記アウターカムシャフトの回転軸方向位置に貫通孔を有するタイミングプーリと、インナーカムシャフトの回転軸方向の一端部に固定されていると共に、前記タイミングプーリの内部に該タイミングプーリと相対回転可能に配置され、前記作動室を複数に分けるベーンロータと、基部が前記ベーンロータに取り付けられ、ターゲット部が前記基部からタイミングプーリの外側に配置されたセンサターゲットと、前記タイミングプーリと前記センサターゲットの基部との間、又は前記タイミングプーリと前記ベーンロータとの間に配置され、前記貫通孔と外部との間をシールするシール部材と、を備えていることを特徴としている。 As a preferred embodiment of the present invention, in particular, the outer camshaft is fixed to one end in the rotational axis direction of the outer camshaft, the rotational force from the crankshaft is transmitted, and has an operation chamber inside, and the outer camshaft A timing pulley having a through hole at a position in the rotational axis direction of the inner camshaft, and fixed to one end portion of the inner camshaft in the rotational axis direction, and disposed inside the timing pulley so as to be rotatable relative to the timing pulley. A vane rotor that divides the chamber into a plurality of parts, a base part that is attached to the vane rotor, and a target part that is disposed outside the timing pulley from the base part, and between the timing pulley and the base part of the sensor target, or the timing Arranged between the pulley and the vane rotor, It is characterized in that it comprises a sealing member for sealing between the through hole and the outside.
 本発明の好ましい一態様によれば、ハウジングからのオイル漏れを効果的に抑制することが可能になる。 According to a preferred aspect of the present invention, oil leakage from the housing can be effectively suppressed.
本発明に係る可変動弁装置の第1実施形態の主たる構成を縦断面して示す全体概略図である。BRIEF DESCRIPTION OF THE DRAWINGS It is the whole schematic which shows the main structure of 1st Embodiment of the variable valve apparatus which concerns on this invention longitudinally. 本実施形態の要部を分解して示す斜視図である。It is a perspective view which decomposes | disassembles and shows the principal part of this embodiment. 本実施形態の可変動弁装置を正面側からみた斜視図である。It is the perspective view which looked at the variable valve apparatus of this embodiment from the front side. 本実施形態の可変動弁装置を背面側からみた斜視図である。It is the perspective view which looked at the variable valve apparatus of this embodiment from the back side. 同実施形態におけるベーンロータを最遅角方向へ相対回転させた状態を示す作用説明図である。It is an effect | action explanatory drawing which shows the state which rotated the vane rotor in the same embodiment to the most retarded angle direction. 同実施形態におけるベーンロータを最進角方向へ相対回転させた状態を示す作用説明図である。It is an effect | action explanatory drawing which shows the state which rotated the vane rotor in the same embodiment to the most advanced angle direction. 本実施形態に供されるロック機構を示す図5のA-A線断面図である。FIG. 6 is a cross-sectional view taken along line AA of FIG. 本実施形態に供される第1、第2駆動カムを示し、Aは両駆動カムが同一回転位相の状態を示し、Bは第1駆動カムに対して第2駆動カムが回転位相を変化させた状態を示している。The first and second drive cams used in this embodiment are shown, A shows the state where both drive cams have the same rotation phase, and B shows the second drive cam changing the rotation phase with respect to the first drive cam. Shows the state. 本実施形態における吸気弁のリフト特性図を示し、Aは図5に示す最遅角方向へ相対回転した場合のリフト特性図、Bは図6に示す最進角方向へ相対回転した場合のリフト特性図である。The lift characteristic diagram of the intake valve in the present embodiment is shown, A is a lift characteristic diagram in the case of relative rotation in the most retarded angle direction shown in FIG. 5, B is the lift in the case of relative rotation in the most advanced angle direction shown in FIG. FIG. 本発明の第2実施形態における可変動弁装置の主たる構成の縦断面図である。It is a longitudinal cross-sectional view of the main structure of the variable valve apparatus in 2nd Embodiment of this invention.
 以下、本発明に係る内燃機関の可変動弁装置の実施形態を図面に基づいて説明する。この実施形態では、ガソリン仕様の例えば直列4気筒の内燃機関の吸気弁側に適用したものを示している。
〔第1実施形態〕
 図1は本発明に係る可変動弁装置の第1実施形態の主たる構成を縦断面して示す全体概略図、図2は本実施形態の要部を分解して示す斜視図、図3は本実施形態の可変動弁装置を正面側からみた斜視図、図4は本実施形態の可変動弁装置を背面側からみた斜視図である。
Embodiments of a variable valve operating apparatus for an internal combustion engine according to the present invention will be described below with reference to the drawings. In this embodiment, a gasoline specification, for example, applied to the intake valve side of an in-line four-cylinder internal combustion engine is shown.
[First Embodiment]
FIG. 1 is an overall schematic view showing a main configuration of a first embodiment of a variable valve operating apparatus according to the present invention in a longitudinal section, FIG. 2 is an exploded perspective view showing a main part of the present embodiment, and FIG. The perspective view which looked at the variable valve apparatus of embodiment from the front side, FIG. 4: is the perspective view which looked at the variable valve apparatus of this embodiment from the back side.
 内燃機関は、一つの気筒に吸気弁がそれぞれ2つずつ設けられ、この2つの吸気弁のうち少なくとも一つの吸気弁の作動を可変する可変動弁装置が設けられている。つまり、この可変動弁装置は、この実施形態では機関運転状態に応じて吸気弁の作動角を可変制御するものである。ここで、作動角とは、吸気弁の開時から閉時までの開いている期間をいう。 The internal combustion engine is provided with two intake valves for each cylinder, and a variable valve operating device for changing the operation of at least one of the two intake valves. That is, in this embodiment, the variable valve operating device variably controls the operating angle of the intake valve in accordance with the engine operating state. Here, the operating angle refers to the open period from when the intake valve is opened to when it is closed.
 具体的に説明すれば、可変動弁装置は、図1及び図2に示すように、機関のクランクシャフトによってタイミングベルト01(ドライベルト仕様)を介して回転駆動されるタイミングプーリ1と、該タイミングプーリ1に連係した内外二重のアウターカムシャフト5及びインナーカムシャフト6を備えたカムシャフト2と、アウターカムシャフト5とインナーカムシャフト6の相対回動位相を変換するベーンロータ3と、該ベーンロータ3をタイミングプーリ1に対して相対回転させる油圧回路4と、を備えている。 More specifically, as shown in FIGS. 1 and 2, the variable valve operating apparatus includes a timing pulley 1 that is rotationally driven by a crankshaft of an engine via a timing belt 01 (dry belt specification), and the timing pulley. A camshaft 2 having an inner and outer double outer camshaft 5 and an inner camshaft 6 linked to the pulley 1, a vane rotor 3 for converting the relative rotational phase of the outer camshaft 5 and the inner camshaft 6, and the vane rotor 3; And a hydraulic circuit 4 that rotates relative to the timing pulley 1.
 各吸気弁は、それぞれの傘部が図外の2つの吸気ポートのシリンダ側の各開口端を開閉するもので、それぞれの上端部に配置されたバルブリフタを介してバルブスプリングのばね力によって閉方向に付勢されている。 Each intake valve opens and closes each cylinder end of two intake ports (not shown) on the cylinder side of each intake valve, and is closed by the spring force of the valve spring via the valve lifter arranged at the upper end of each intake valve. Is being energized.
 アウターカムシャフト5は、内部にシャフト挿入孔5bを有する中空状に形成され、図外のシリンダヘッドにカム軸受を介して回転自在に支持されている。このアウターカムシャフト5は、外周面所定位置に各気筒中のそれぞれ一方側の吸気弁をバルブスプリングのばね力に抗して開作動させる第1駆動カム7が圧入によって一体的に固定されている。 The outer camshaft 5 is formed in a hollow shape having a shaft insertion hole 5b inside, and is rotatably supported by a cylinder head (not shown) via a cam bearing. The outer camshaft 5 is integrally fixed to a predetermined position on the outer peripheral surface by press-fitting a first drive cam 7 that opens the intake valve on one side of each cylinder against the spring force of the valve spring. .
 また、アウターカムシャフト5は、回転軸方向の一端部5a側にフランジ部8が設けられており、このフランジ部8を介して後述するリアプレート15に固定されている。 Further, the outer camshaft 5 is provided with a flange portion 8 on the one end portion 5a side in the rotation axis direction, and is fixed to a rear plate 15 to be described later via the flange portion 8.
 フランジ部8は、金属材である鉄系金属によって円盤状に形成されて、中央に貫通形成された挿入孔8aを介してアウターカムシャフト5の一端部5a外周面に焼き嵌めによって固定されている。また、フランジ部8の外周部には、後述するリアプレート15に対する固定手段としての複数(本実施形態では3本)の締結ボルト9が挿入させる3つのボルト挿入孔8bが円周方向のほぼ等間隔位置(円周方向の約120°位置)に貫通形成されている。また、このフランジ部8は、外径がリアプレート15とほぼ同一に設定されていると共に、肉厚もリアプレート15とほぼ同一に設定されている。 The flange portion 8 is formed in a disk shape from a ferrous metal that is a metal material, and is fixed to the outer peripheral surface of the one end portion 5a of the outer camshaft 5 by shrink fitting through an insertion hole 8a formed through the center. . Further, three bolt insertion holes 8b into which a plurality of (three in this embodiment) fastening bolts 9 as fixing means for the rear plate 15 to be described later are inserted in the outer peripheral portion of the flange portion 8 in the circumferential direction. It is formed penetrating at an interval position (about 120 ° position in the circumferential direction). The flange portion 8 has an outer diameter that is set to be substantially the same as that of the rear plate 15, and a wall thickness that is also set to be substantially the same as that of the rear plate 15.
 なお、フランジ部8の外周部には、リアプレート15との周方向の位置決めを行う図外のピンがリアプレート15側に突出して設けられている。 Note that a pin (not shown) for positioning in the circumferential direction with the rear plate 15 is provided on the outer peripheral portion of the flange portion 8 so as to protrude toward the rear plate 15.
 インナーカムシャフト6は、中実状に形成されて、アウターカムシャフト5の内周面に回転自在に支持されている。このインナーカムシャフト6は、回転軸方向の一端部6aがアウターカムシャフト5の一端部5aの一端開口から僅かに突出している。また、インナーカムシャフト6は、一端部6aの先端に小径フランジ部6bが一体に設けられている。 The inner camshaft 6 is formed in a solid shape and is rotatably supported on the inner peripheral surface of the outer camshaft 5. The inner cam shaft 6 has a first end portion 6 a in the rotation axis direction slightly protruding from one end opening of the one end portion 5 a of the outer cam shaft 5. The inner camshaft 6 is integrally provided with a small-diameter flange portion 6b at the tip of one end portion 6a.
 この小径フランジ部6bは、内端面がアウターカムシャフト5の一端部5aの先端面5cにインナーカムシャフト6の回転軸方向から液密的に当接している。また、この小径フランジ部6bは、内端面側に油圧回路4の後述する遅角油孔26に連通する円環状の連通路6cが形成されている。この連通路6cは、小径フランジ部6b先端側の内周壁面6fが外側拡径状のテーパ面に形成されている。 The inner end surface of the small-diameter flange portion 6b is in liquid-tight contact with the distal end surface 5c of the one end portion 5a of the outer camshaft 5 from the rotational axis direction of the inner camshaft 6. Further, the small-diameter flange portion 6b is formed with an annular communication passage 6c communicating with a retarded oil hole 26 (described later) of the hydraulic circuit 4 on the inner end face side. In the communication path 6c, the inner peripheral wall surface 6f on the distal end side of the small-diameter flange portion 6b is formed as a tapered surface having an outer diameter increased.
 さらに、このインナーカムシャフト6は、一端部6a側の内部軸方向にカムボルト10が挿入される挿入孔6dが形成されている。この挿入孔6dの内部先端側には、カムボルト10の軸部10bの外周先端側に形成された雄ねじ10cが螺着する雌ねじ6eが形成されている。 Furthermore, the inner camshaft 6 is formed with an insertion hole 6d into which the cam bolt 10 is inserted in the direction of the internal axis on the one end 6a side. A female screw 6e to which a male screw 10c formed on the outer peripheral tip side of the shaft portion 10b of the cam bolt 10 is screwed is formed on the inner tip side of the insertion hole 6d.
 また、インナーカムシャフト6の軸方向の所定位置には、アウターカムシャフト5の外周面に摺動しつつバルブリフタを介して他方側の吸気弁をバルブスプリングのばね力に抗して開作動させる第2駆動カム11が固定されている。 Further, at a predetermined position in the axial direction of the inner camshaft 6, the second intake valve is opened against the spring force of the valve spring through the valve lifter while sliding on the outer peripheral surface of the outer camshaft 5. A two-drive cam 11 is fixed.
 この第2駆動カム11は、インナーカムシャフト6の回転軸中心を通る直径方向に形成された貫通孔6gに挿通された連結軸12によってインナーカムシャフト6に固定されている。つまり、この連結軸12は、両端部12a、12bが第2駆動カム11の内部に圧入固定されており、これによって、第2駆動カム11がインナーカムシャフト6に固定されるようになっている。また、連結軸12は、アウターカムシャフト5の回転軸線に対して直交する直径方向に貫通形成された一対の挿通孔5d、5eを貫通している。この両挿通孔5d、5eは、アウターカムシャフト5の円周方向に沿ってスリット状に形成されて、連結軸12を介して第2駆動カム11をアウターカムシャフト5に対して所定角度範囲内で相対回転を許容するようになっている。 The second drive cam 11 is fixed to the inner camshaft 6 by a connecting shaft 12 inserted through a through hole 6g formed in the diameter direction passing through the center of the rotation axis of the inner camshaft 6. That is, both ends 12 a and 12 b of the connecting shaft 12 are press-fitted and fixed inside the second drive cam 11, whereby the second drive cam 11 is fixed to the inner cam shaft 6. . Further, the connecting shaft 12 passes through a pair of insertion holes 5 d and 5 e formed so as to penetrate in a diameter direction orthogonal to the rotation axis of the outer camshaft 5. The two insertion holes 5d and 5e are formed in a slit shape along the circumferential direction of the outer camshaft 5, and the second drive cam 11 is connected to the outer camshaft 5 through a connecting shaft 12 within a predetermined angle range. It is designed to allow relative rotation.
 第1駆動カム7と第2駆動カム11は、両者間の僅かな隙間を介して隣接配置されている。また、それぞれ外周面7a、11aは、互いに卵形の同一のカムプロフィールに形成されて、一気筒中の一つの吸気弁を各バルブスプリングのばね力と共に独立して開閉作動させるようになっている。 The first drive cam 7 and the second drive cam 11 are arranged adjacent to each other with a slight gap between them. Each of the outer peripheral surfaces 7a and 11a is formed in the same egg-shaped cam profile so that one intake valve in one cylinder can be opened and closed independently with the spring force of each valve spring. .
 カムボルト10は、六角形状の頭部10aと、該頭部10aの一端面中央から座面としての鍔状座部10dを介して軸方向に延びた軸部10bと、該軸部10bに先端部外周に形成された雄ねじ10cと、から構成されている。 The cam bolt 10 includes a hexagonal head portion 10a, a shaft portion 10b extending in the axial direction from a center of one end surface of the head portion 10a via a hook-shaped seat portion 10d, and a tip portion on the shaft portion 10b. And a male screw 10c formed on the outer periphery.
 タイミングプーリ1は、図1~図4に示すように、回転軸方向の両端が開口した円筒状のプーリ本体13と、該プーリ本体13の軸方向の前後端に有する各開口を閉塞するフロントプレート14及びリアプレート15と、を備えている。また、フロントプレート14とリアプレート15は、プーリ本体13に対して複数(本実施形態では4本)のボルト16の軸力によって軸方向から結合されている。 As shown in FIGS. 1 to 4, the timing pulley 1 includes a cylindrical pulley body 13 that is open at both ends in the rotation axis direction, and a front plate that closes the openings at the front and rear ends of the pulley body 13 in the axial direction. 14 and a rear plate 15. Further, the front plate 14 and the rear plate 15 are coupled to the pulley body 13 from the axial direction by the axial force of a plurality of (four in this embodiment) bolts 16.
 図5は本実施形態におけるベーンロータを最遅角方向へ相対回転させた状態を示す作用説明図、図6は同実施形態におけるベーンロータを最進角方向へ相対回転させた状態を示す作用説明図である。 FIG. 5 is an operation explanatory view showing a state in which the vane rotor in the present embodiment is relatively rotated in the most retarded angle direction, and FIG. 6 is an operation explanatory view showing a state in which the vane rotor in the same embodiment is relatively rotated in the most advanced angle direction. is there.
 プーリ本体13は、例えば焼結成形法により成形された金属材によって円筒状一体に形成され、図5及び図6にも示すように、内周面に4つの第1~第4シュー13a~13dが内方へ一体に突設されている。また、プーリ本体13は、外周面にタイミングベルト01が巻回される歯車1aが一体に設けられている。 The pulley body 13 is integrally formed in a cylindrical shape by, for example, a metal material formed by a sintering method. As shown in FIGS. 5 and 6, four first to fourth shoes 13a to 13d are formed on the inner peripheral surface. Projecting inward. Further, the pulley body 13 is integrally provided with a gear 1a around which the timing belt 01 is wound.
 この4つのシュー13a~13dは、それぞれが側面視ほぼ台形状に形成されて、プーリ本体13の円周方向のほぼ90°の位置に配置されている。該各シュー13a~13dのそれぞれの先端部に軸方向に沿って形成されたシール溝内には、ほぼコ字形状のシール部材19がそれぞれ嵌着固定されている。 The four shoes 13a to 13d are each formed in a substantially trapezoidal shape when viewed from the side, and are arranged at a position of approximately 90 ° in the circumferential direction of the pulley body 13. A substantially U-shaped seal member 19 is fitted and fixed in a seal groove formed along the axial direction at the tip of each of the shoes 13a to 13d.
 また、各シュー13a~13dの径方向外周側には、各ボルト16が挿通する4つのボルト挿通孔13eが貫通形成されている。 Further, four bolt insertion holes 13e through which the respective bolts 16 are inserted are formed through the radially outer peripheral sides of the respective shoes 13a to 13d.
 第1シュー13aは、周方向一側面に平坦な第1凸面13fが形成されている。一方、第2シュー13bは、第1シュー13aの一側面と周方向で対向する一側面に同じく平坦な第2凸面13gが形成されている。この各凸面13f、13gは、ベーンロータ3が図5及び図6に示すように、反時計方向(図中左方向)あるいは時計方向(図中右方向)へ回転した際に、対向する各側面が当接する。これによって、ベーンロータ3を、図中、左右方向の最大回転位置(最大遅角、進角位置)に規制するようになっている。 The first shoe 13a has a flat first convex surface 13f formed on one side surface in the circumferential direction. On the other hand, the second shoe 13b has a second convex surface 13g that is also flat on one side surface that faces the one side surface of the first shoe 13a in the circumferential direction. As shown in FIGS. 5 and 6, the convex surfaces 13 f and 13 g are formed so that the respective side surfaces facing each other when the vane rotor 3 rotates counterclockwise (leftward in the figure) or clockwise (rightward in the figure). Abut. As a result, the vane rotor 3 is restricted to the maximum rotational position (maximum retard angle, advance angle position) in the left-right direction in the drawing.
 また、プーリ本体13は、回転軸方向の一側面と他側面に第1、第2円環溝13h、13iが形成されている。この各円環溝13h、13iは、それぞれの内径がフロントプレート14とリアプレート15の外径よりも僅かに大きく形成され、それぞれの深さも各プレート14,15の肉厚とほぼ同じ大きさに設定されている。したがって、この各円環溝13h、13iには、両プレート14、15の外周部がはめ込み可能になっている。 The pulley body 13 has first and second annular grooves 13h and 13i formed on one side surface and the other side surface in the rotation axis direction. Each of the annular grooves 13h and 13i has an inner diameter slightly larger than the outer diameter of the front plate 14 and the rear plate 15, and the depth of each of the annular grooves 13h and 13i is substantially the same as the thickness of the plates 14 and 15. Is set. Therefore, the outer peripheral portions of both plates 14 and 15 can be fitted in the annular grooves 13h and 13i.
 さらに、プーリ本体13は、各シュー13a~13dを含む回転軸方向の一側面(第1円環溝13hの外側面)と他側面(第2円環溝13iの外側面)の両方に、複葉状の第1、第2シール溝13j、13kがそれぞれ形成されている。この各シール溝13j、13kは、プーリ本体13と各シュー13a~13dの外形状に沿って無端状の四つ葉状に折曲形成されている。この各シール溝13j、13kには、横断面円形状の2つの第1、第2シールリング20、21が嵌め込まれている。この各シールリング20、21は、合成ゴム材などから形成されて、プーリ本体13の第1円環溝13hの外側面とフロントプレート14との間と、プーリ本体13の第2円環溝13h、13iの外側面とリアプレート15との間をシールするようになっている。 Further, the pulley body 13 has a compound leaf on both one side surface (the outer surface of the first annular groove 13h) and the other side surface (the outer surface of the second annular groove 13i) including the shoes 13a to 13d in the rotation axis direction. First and second seal grooves 13j and 13k are respectively formed. Each of the seal grooves 13j and 13k is formed into an endless four-leaf shape along the outer shape of the pulley body 13 and the shoes 13a to 13d. In each of the seal grooves 13j and 13k, two first and second seal rings 20 and 21 having a circular cross section are fitted. Each of the seal rings 20 and 21 is formed of a synthetic rubber material or the like, and is formed between the outer surface of the first annular groove 13h of the pulley body 13 and the front plate 14, and the second annular groove 13h of the pulley body 13. , 13i and the rear plate 15 are sealed.
 フロントプレート14は、金属板をプレス成形によって比較的薄肉な円板状に形成されている。また、フロントプレート14の中央には、カムボルト10の軸部10bや後述するセンサターゲット35の基部35aが挿入される貫通孔14aが形成されている。また、フロントプレート14は、外周側の円周方向の等間隔位置(円周方向の90°位置)に各ボルト16が挿通する4つのボルト挿通孔14bが貫通形成されている。 The front plate 14 is formed into a relatively thin disk by pressing a metal plate. Further, a through hole 14a into which a shaft portion 10b of the cam bolt 10 and a base portion 35a of a sensor target 35 described later are inserted is formed in the center of the front plate 14. Further, the front plate 14 has four bolt insertion holes 14b through which the bolts 16 are inserted at equally spaced positions in the circumferential direction on the outer peripheral side (90 ° positions in the circumferential direction).
 さらに、フロントプレート14は、貫通孔14aの孔縁よりも僅かに外側の部位にリアプレート15と反対方向へ突出した円筒状の第1ボス部22が一体に設けられている。この第1ボス部22は、フロントプレート14のプレス成形時に一緒に成形されて、内周面22aが平坦な円形状されていると共に、内周面22aの先端縁に内側から外側へ拡径した環状のテーパ面22bが形成されている。 Further, the front plate 14 is integrally provided with a cylindrical first boss portion 22 protruding in the opposite direction to the rear plate 15 at a position slightly outside the hole edge of the through hole 14a. The first boss portion 22 is molded together when the front plate 14 is press-molded. The inner peripheral surface 22a has a flat circular shape, and the diameter of the front end edge of the inner peripheral surface 22a is increased from the inside to the outside. An annular tapered surface 22b is formed.
 リアプレート15は、図2及び図3に示すように、プーリ本体13と同じく焼結成形によって成形された金属材によって成形され、フロントプレート14よりも肉厚な円盤状に形成されている。また、リアプレート15は、中央にアウターカムシャフト5の一端部5aが挿入される挿入孔15aが貫通形成されている。 2 and 3, the rear plate 15 is formed of a metal material formed by sintering as with the pulley body 13, and is formed in a thicker disk shape than the front plate 14. Further, the rear plate 15 has an insertion hole 15a through which the one end portion 5a of the outer cam shaft 5 is inserted.
 この挿入孔15aは、内径がアウターカムシャフト5の一端部5aの外径より僅かに大きく形成されて、該一端部5aが緊密かつ精度良く挿入されている。つまり、一端部5aの外周面と挿入孔15aの内周面とは、隙間なく圧入に近い程度に緊密に嵌合している。 The insertion hole 15a is formed with an inner diameter slightly larger than the outer diameter of the one end portion 5a of the outer camshaft 5, and the one end portion 5a is inserted tightly and accurately. That is, the outer peripheral surface of the one end portion 5a and the inner peripheral surface of the insertion hole 15a are closely fitted to each other so as to be close to press-fitting without a gap.
 また、リアプレート15の外周部には、各ボルト16の軸部16aの先端部に有する雄ねじ16bが螺着する4つの雌ねじ孔15bが形成されている。この4つの雌ねじ孔15bは、リアプレート15の円周方向の等間隔位置である約90°位置にそれぞれ貫通形成されている。 Further, four female screw holes 15b are formed on the outer peripheral portion of the rear plate 15 to which the male screws 16b at the front ends of the shaft portions 16a of the respective bolts 16 are screwed. The four female screw holes 15b are formed so as to penetrate the rear plate 15 at approximately 90 ° positions, which are equidistant positions in the circumferential direction.
 さらに、リアプレート15の外周部の所定位置には、図2に示すように、後述するロック機構28のロック凹部であるロック穴31が形成されている。 Further, as shown in FIG. 2, a lock hole 31 which is a lock recess of the lock mechanism 28 described later is formed at a predetermined position on the outer peripheral portion of the rear plate 15.
 リアプレート15の外周部のフランジ部8側の外面には、3つの締結ボルト9が螺着する3つの雌ねじ穴15cが形成されている。この雌ねじ穴15cは、リアプレート15の円周方向のほぼ120°位置に形成されて、貫通されることなく有底状に形成されている。 Three external thread holes 15c into which three fastening bolts 9 are screwed are formed on the outer surface of the outer peripheral portion of the rear plate 15 on the flange portion 8 side. The female screw hole 15c is formed at a position of approximately 120 ° in the circumferential direction of the rear plate 15 and has a bottomed shape without being penetrated.
 リアプレート15は、内周面の各雌ねじ穴15cよりも内側に円環状の第3シール溝15dが形成されている。この第3シール溝15dには、リアプレート15の後端面とフランジ部8の前端面との間をシールする横断面円形状の第3シールリング45が嵌合保持されている。 The rear plate 15 is formed with an annular third seal groove 15d on the inner side of each female screw hole 15c on the inner peripheral surface. A third seal ring 45 having a circular cross section for sealing between the rear end surface of the rear plate 15 and the front end surface of the flange portion 8 is fitted and held in the third seal groove 15d.
 なお、リアプレート15は、外側面にフランジ部8の位置決め用ピンが係入してフランジ部8と位置決めされる図外の位置決め用の孔が形成されている。 The rear plate 15 has a positioning hole (not shown) that is positioned on the outer surface of the rear plate 15 so that the positioning pin of the flange portion 8 is engaged with the rear plate 15.
 ベーンロータ3は、焼結成形法により成形された金属材によって一体に形成されており、図1、図2及び図5、図6に示すように、中央側のロータ17と、該ロータ17の外周から放射方向へ突設された複数(本実施形態では4枚の)第1~第4ベーン18a~18dとから構成されている。 The vane rotor 3 is integrally formed of a metal material formed by a sintering method. As shown in FIGS. 1, 2, 5, and 6, the rotor 17 on the center side and the outer periphery of the rotor 17 are formed. A plurality of (four in this embodiment) first to fourth vanes 18a to 18d projecting in the radial direction.
 ロータ17は、全体がほぼ円筒状に形成されていると共に、外径が大小の段差径状に形成されて、中央にカムボルト10の軸部10bが挿入される通路構成孔17aが貫通形成されている。また、ロータ17は、カムボルト10の頭部10a側の外側面中央位置に、センサターゲット35の基部35aが入り込む円形状の第1嵌合溝17bが形成されている。 The rotor 17 is formed in a substantially cylindrical shape as a whole, and is formed in a stepped diameter shape having a large and small outer diameter, and a passage forming hole 17a into which the shaft portion 10b of the cam bolt 10 is inserted is formed in the center. Yes. In addition, the rotor 17 has a circular first fitting groove 17b into which the base portion 35a of the sensor target 35 enters at the center position on the outer surface of the cam bolt 10 on the head 10a side.
 通路構成孔17aは、内周面の内径がカムボルト10の軸部10bの外径よりも大きく形成されて、内周面と軸部10bの外周面との間で油圧回路4の一部を構成している。 The passage constituting hole 17a is formed such that the inner diameter of the inner peripheral surface is larger than the outer diameter of the shaft portion 10b of the cam bolt 10, and constitutes a part of the hydraulic circuit 4 between the inner peripheral surface and the outer peripheral surface of the shaft portion 10b. doing.
 また、ロータ17は、回転軸方向のリアプレート15側の内側面中央に、凹状の第2嵌合溝17cが形成されている。この第2嵌合溝17cは、深さが第1嵌合溝17bよりも大きな円柱状に形成されて、アウターカムシャフト5の一端部5aと、インナーカムシャフト6の一端部6a及び小径フランジ部6bがそれぞれ回転軸方向から挿入可能になっている。 Further, the rotor 17 has a concave second fitting groove 17c formed at the center of the inner surface on the rear plate 15 side in the rotation axis direction. The second fitting groove 17c is formed in a columnar shape having a depth larger than that of the first fitting groove 17b, and the one end portion 5a of the outer camshaft 5, the one end portion 6a of the inner camshaft 6, and the small-diameter flange portion. 6b can be inserted from the direction of the rotation axis.
 第2嵌合溝17cは、内径がインナーカムシャフト6の小径フランジ部6bの外径よりも僅かに大きく形成されて、底面17dに小径フランジ部6bの前端面が当接配置されている。 The second fitting groove 17c is formed so that its inner diameter is slightly larger than the outer diameter of the small-diameter flange portion 6b of the inner camshaft 6, and the front end surface of the small-diameter flange portion 6b is in contact with the bottom surface 17d.
 また、同じく第2嵌合溝17cの内径は、アウターカムシャフト5の一端部5aの外径よりも僅かに大きく形成されて、内周面に一端部5aの外周面が回転軸方向から緊密状態で嵌入するようになっている。また、アウターカムシャフト5の一端部5aの先端面が、第2嵌合溝17c内でインナーカムシャフト6の小径フランジ部6bの後端面に回転軸方向から当接配置されている。 Similarly, the inner diameter of the second fitting groove 17c is slightly larger than the outer diameter of the one end portion 5a of the outer camshaft 5, and the outer peripheral surface of the one end portion 5a is in close contact with the inner peripheral surface from the rotation axis direction. It comes to fit in. The front end surface of the one end portion 5a of the outer camshaft 5 is disposed in contact with the rear end surface of the small-diameter flange portion 6b of the inner camshaft 6 from the rotational axis direction in the second fitting groove 17c.
 したがって、アウターカムシャフト5の一端部5aは、第2嵌合溝17c内において軸方向と径方向のガタの発生が抑制されている。 Therefore, the one end portion 5a of the outer cam shaft 5 is restrained from generating play in the axial direction and the radial direction in the second fitting groove 17c.
 なお、第2嵌合溝17cの内径は、挿入孔15aの内径より若干小さく設定されている。 The inner diameter of the second fitting groove 17c is set slightly smaller than the inner diameter of the insertion hole 15a.
 アウターカムシャフト5は、一端部5aが第2嵌合溝17cに嵌合されているものの、該アウターカムシャフト5とベーンロータ3(ロータ17)とは結合されず互いに自由に相対回転可能になっている。換言すれば、一端部5aの外周面と第2嵌合溝17cの内周面は、微小隙間をもって摺動可能になっている。 Although the outer camshaft 5 has one end 5a fitted in the second fitting groove 17c, the outer camshaft 5 and the vane rotor 3 (rotor 17) are not coupled to each other and can freely rotate relative to each other. Yes. In other words, the outer peripheral surface of the one end portion 5a and the inner peripheral surface of the second fitting groove 17c can slide with a minute gap.
 また、第2嵌合溝17cは、底面17dに通路構成孔17aの軸方向の一端が開口形成されて、該通路構成孔17aと連通状態になっている。 Further, the second fitting groove 17c is in communication with the passage constituting hole 17a, with one end of the passage constituting hole 17a being opened in the bottom surface 17d.
 また、ロータ17は、カムボルト10の軸力によって回転角検出機構のセンサターゲット35と一緒にインナーカムシャフト6の他端部に回転軸方向から結合されている。 Further, the rotor 17 is coupled to the other end portion of the inner cam shaft 6 from the rotational axis direction together with the sensor target 35 of the rotation angle detection mechanism by the axial force of the cam bolt 10.
 第1~第4ベーン18a~18dは、プーリ本体13の各シュー13a~13dの間に配置されている。これによって、第1~第4ベーン18a~18dと第1~第4シュー13a~13dとの間に、作動室がそれぞれ4つの遅角側油圧室23と進角側油圧室24に分けられている。 The first to fourth vanes 18a to 18d are arranged between the shoes 13a to 13d of the pulley body 13. Thus, the working chamber is divided into four retard-side hydraulic chambers 23 and advance-side hydraulic chambers 24 between the first to fourth vanes 18a to 18d and the first to fourth shoes 13a to 13d, respectively. Yes.
 一つの第1ベーン18aは、周方向の幅厚さが他の3つのベーン18b~18dよりも大きく形成されている。他のベーン18b~18dは、周方向の幅厚さがほぼ同じ大きさに設定されている。 One first vane 18a is formed so that the circumferential width and thickness are larger than those of the other three vanes 18b to 18d. The other vanes 18b to 18d are set to have substantially the same width and thickness in the circumferential direction.
 また、ロータ17は、図2、図5及び図6で示すように、インナーカムシャフト6の小径フランジ部6bが位置する内部径方向に、4つの遅角油孔26が放射方向に沿って貫通形成されている。この各遅角油孔26は、小径フランジ部6bに形成された連通路6cを介して4つの遅角側油圧室23に連通している。 Further, as shown in FIGS. 2, 5 and 6, the rotor 17 has four retard oil holes 26 penetrating along the radial direction in the inner radial direction where the small-diameter flange portion 6b of the inner camshaft 6 is located. Is formed. Each retard oil hole 26 communicates with the four retard hydraulic chambers 23 through a communication passage 6c formed in the small diameter flange portion 6b.
 さらに、ロータ17は、各遅角油孔26よりも前方の内部径方向に、4つの進角油孔25が放射方向に沿って貫通形成されている。この各進角油孔25は、通路構成孔17aを介して4つの進角側油圧室24に連通している。 Further, the rotor 17 has four advance oil holes 25 penetratingly formed along the radial direction in the inner radial direction ahead of each retard oil hole 26. Each of the advance angle oil holes 25 communicates with the four advance angle side hydraulic chambers 24 via the passage structure holes 17a.
 各ベーン18a~18dの先端部に形成された保持溝内には、プーリ本体13の内周面に摺接して各遅角側油圧室23及び各進角側油圧室24をシールするシール部材27がそれぞれ設けられている。 In a holding groove formed at the tip of each of the vanes 18a to 18d, a seal member 27 is slidably contacted with the inner peripheral surface of the pulley body 13 to seal each retarded-side hydraulic chamber 23 and each advanced-side hydraulic chamber 24. Are provided.
 また、ベーンロータ3は、前述したように、時計方向あるいは反時計方向へ相対回転した際に、第1ベーン18aが第1凸面13fか、あるいは第2凸面13gに当接する。つまり、第1ベーン18aの図5、図6中、反時計方向側(遅角側油圧室23側)の一側面が、第1凸面13fに当接するとベーンロータ3の一方向側への最大相対回転位置(最遅角位置)が規制されるようになっている(図5参照)。一方、第1ベーン18aの時計方向側(進角側油圧室24側)の他側面が、第2凸面13gに当接して、他方向側への最大相対回転位置(最進角位置)が規制されるようになっている(図6参照)。 Further, as described above, when the vane rotor 3 rotates relative to the clockwise direction or the counterclockwise direction, the first vane 18a comes into contact with the first convex surface 13f or the second convex surface 13g. That is, when one side surface of the first vane 18a in FIG. 5 or 6 in the counterclockwise direction (retarding-side hydraulic chamber 23 side) contacts the first convex surface 13f, the maximum relative to the one direction side of the vane rotor 3 is obtained. The rotational position (most retarded angle position) is regulated (see FIG. 5). On the other hand, the other side surface of the first vane 18a in the clockwise direction (advance side hydraulic chamber 24 side) abuts on the second convex surface 13g, and the maximum relative rotational position (the most advanced angle position) in the other direction side is restricted. (See FIG. 6).
 回転角検出機構は、インナーカムシャフト6の回転位置を検出する一般的な磁気センサ(カム角センサ)であって、回転位置を検出する図外の検出器と、ロータ17に固定されつつ検出器に近接配置されたセンサターゲット35と、から構成されている。 The rotation angle detection mechanism is a general magnetic sensor (cam angle sensor) that detects the rotation position of the inner camshaft 6, a detector (not shown) that detects the rotation position, and a detector that is fixed to the rotor 17. And a sensor target 35 disposed in proximity to each other.
 検出器は、センサターゲット35を介して検出されたインナーカムシャフト6の回転位置検出信号を内燃機関のコントロールユニット(ECU41)に出力するようになっている。 The detector outputs a rotational position detection signal of the inner camshaft 6 detected via the sensor target 35 to a control unit (ECU 41) of the internal combustion engine.
 センサターゲット35は、図1~図3に示すように、鉄系の金属薄板材によって一体に形成され、有底円筒状の基部35aと、該基部35aの回転軸方向の開口縁から径方向外側に突出された複数(本実施形態では3つ)のターゲット部35bと、から構成されている。 As shown in FIGS. 1 to 3, the sensor target 35 is integrally formed of an iron-based metal thin plate material, and has a bottomed cylindrical base portion 35a and a radially outer side from the opening edge in the rotation axis direction of the base portion 35a. And a plurality of (three in the present embodiment) target portions 35b protruding in the shape.
 基部35aは、底部35cの中央にカムボルト10の軸部10bが挿通されるボルト挿通孔35dが貫通形成されている。また、基部35aは、底部35cがロータ17の第1嵌合溝17bの底面にカムボルト10の軸力によって固定されている。各ターゲット部35bは、細長い矩形状に形成されて先端面が検出器に径方向から近接するように配置されている。 The base portion 35a has a bolt insertion hole 35d through which the shaft portion 10b of the cam bolt 10 is inserted in the center of the bottom portion 35c. Further, the base 35 a has a bottom 35 c fixed to the bottom surface of the first fitting groove 17 b of the rotor 17 by the axial force of the cam bolt 10. Each target portion 35b is formed in an elongated rectangular shape, and is arranged so that the tip surface is close to the detector in the radial direction.
 そして、検出器は、ベーンロータ3(インナーカムシャフト6)の回転に伴って各ターゲット部35bの位置を検出して、インナーカムシャフト6の回転位置を検出するようになっている。 The detector detects the position of each target portion 35b as the vane rotor 3 (inner cam shaft 6) rotates, and detects the rotational position of the inner cam shaft 6.
 また、基部35aの底部35cの内底面とカムボルト10の頭部10aの鍔状座部10dとの間には、シールワッシャ43が配置されている。このシールワッシャ43は、例えば軟質な金属材によって円環状に形成されて、カムボルト10の軸力によって強く挟み込まれて、通路構成孔17aと頭部10aとの間をシールするようになっている。 Further, a seal washer 43 is disposed between the inner bottom surface of the bottom portion 35c of the base portion 35a and the bowl-shaped seat portion 10d of the head portion 10a of the cam bolt 10. The seal washer 43 is formed in an annular shape by, for example, a soft metal material, and is strongly sandwiched by the axial force of the cam bolt 10 to seal between the passage constituting hole 17a and the head portion 10a.
 さらに、基部35aの筒状の外周面と第1ボス部22の内周面22aとの間には、シール部材である合成ゴムからなるオイルシール44が液密的に配置されている。 Furthermore, between the cylindrical outer peripheral surface of the base portion 35a and the inner peripheral surface 22a of the first boss portion 22, an oil seal 44 made of synthetic rubber as a seal member is disposed in a liquid-tight manner.
 オイルシール44は、軸直角方向から断面した形状がほぼ矩形状に形成されている。また、このオイルシール44は、比較的軸方向に長い基部35aの外周面と第1ボス部22の内周面22aとのそれぞれの軸方向の長さに対応して、軸方向に長い円筒状に形成されている。これによって、オイルシール44は、フロントプレート14の貫通孔14aと外部との間をシールするようになっている。 The oil seal 44 is formed in a substantially rectangular shape when viewed from the direction perpendicular to the axis. The oil seal 44 has a cylindrical shape that is long in the axial direction corresponding to the axial lengths of the outer peripheral surface of the base portion 35 a that is relatively long in the axial direction and the inner peripheral surface 22 a of the first boss portion 22. Is formed. Accordingly, the oil seal 44 seals between the through hole 14a of the front plate 14 and the outside.
 なお、基部35aをロータ17に組み付ける際には、オイルシール44を、予め基部35aの外周面に圧入固定しておく。この状態で、オイルシール44と基部35aを一緒に第1ボス部22の内周面22aにテーパ面22bを介してスムーズに挿入する。 In addition, when assembling the base part 35a to the rotor 17, the oil seal 44 is press-fitted and fixed to the outer peripheral surface of the base part 35a in advance. In this state, the oil seal 44 and the base portion 35a are smoothly inserted together into the inner peripheral surface 22a of the first boss portion 22 via the tapered surface 22b.
 図7は図5のA-A線断面図であって、本実施形態に供されるロック機構を示している。 FIG. 7 is a cross-sectional view taken along the line AA in FIG. 5 and shows a locking mechanism provided in the present embodiment.
 ロック機構28は、図2及び図7に示すように、ベーンロータ3の第1ベーン18aに形成された摺動用孔29と、該摺動用孔29内に収容されて、リアプレート15側に対して進退可能に設けられたロックピン30と、リアプレート15の内側面に形成され、ロックピン30の先端部30aが挿入されてベーンロータ3をロックするロック穴31と、機関運転状態に応じてロックピン30の先端部30aをロック穴31に挿入、あるいは挿入状態を解除する挿入・解除機構と、から構成されている。 As shown in FIGS. 2 and 7, the lock mechanism 28 includes a sliding hole 29 formed in the first vane 18 a of the vane rotor 3, and is accommodated in the sliding hole 29 so as to be opposed to the rear plate 15 side. A lock pin 30 provided so as to be able to advance and retreat, a lock hole 31 formed on the inner surface of the rear plate 15 and into which the tip 30a of the lock pin 30 is inserted to lock the vane rotor 3, and a lock pin according to the engine operating state The distal end portion 30a of 30 is inserted into the lock hole 31, or an insertion / release mechanism for releasing the insertion state.
 摺動用孔29は、内径が軸方向のほぼ中央で段差径状に形成されて、リアプレート15側の小径部29aと、フロントプレート14側の大径部29bとを有している。 The sliding hole 29 has an inner diameter formed in a stepped shape at substantially the center in the axial direction, and has a small diameter portion 29a on the rear plate 15 side and a large diameter portion 29b on the front plate 14 side.
 ロックピン30は、フランジ状の後端部30bが摺動用孔29の内周面の内径よりもやや大きな外径に形成され、先端部30aがロック穴31の内径よりもやや小さな截頭円錐状に形成されている。 The lock pin 30 has a flange-shaped rear end portion 30 b having an outer diameter slightly larger than the inner diameter of the inner peripheral surface of the sliding hole 29, and a tip portion 30 a having a truncated conical shape slightly smaller than the inner diameter of the lock hole 31. Is formed.
 ロック穴31は、有底円錐状に形成されて、リアプレート15の内周面の円周方向へ所定間隔をもって形成されている。ロック穴31は、ベーンロータ3が図5に示す最大左方向へ相対回転した際に、ロックピン30の先端部30aが軸方向から挿入する位置に形成されている。 The lock holes 31 are formed in a conical shape with a bottom, and are formed at a predetermined interval in the circumferential direction of the inner peripheral surface of the rear plate 15. The lock hole 31 is formed at a position where the tip portion 30a of the lock pin 30 is inserted from the axial direction when the vane rotor 3 is relatively rotated in the maximum left direction shown in FIG.
 挿入・解除機構は、ロックピン30を進出方向(ロック穴31方向)へ付勢するコイルスプリング32と、摺動用孔29の大径部29bとロックピン30の後端部30bとの間に形成されて、後端部30bが油圧を受ける第1受圧室34aと、ロック穴31内に形成されてロックピン30の先端部30aが油圧を受ける第2受圧室34bと、第1、第2受圧室34a、34bに油圧を供給してロックピン30をロック穴31から後退させてロックを解除する2つの第1、第2解除用油孔33a、33bと、を備えている。 The insertion / release mechanism is formed between the coil spring 32 that urges the lock pin 30 in the advance direction (in the direction of the lock hole 31), and the large diameter portion 29b of the sliding hole 29 and the rear end portion 30b of the lock pin 30. The first pressure receiving chamber 34a that receives the hydraulic pressure at the rear end 30b, the second pressure receiving chamber 34b that is formed in the lock hole 31 and receives the hydraulic pressure at the tip 30a of the lock pin 30, and the first and second pressure receiving pressures. Two first and second release oil holes 33a and 33b for releasing hydraulic lock by supplying hydraulic pressure to the chambers 34a and 34b to retract the lock pin 30 from the lock hole 31 are provided.
 第1解除用油孔33aは、図7に示すように、第1ベーン18aの遅角側油圧室23側の側部内に貫通形成されて、一つの遅角側油圧室23と第1受圧室34aを連通している。一方、第2解除用油孔33bは、第1ベーン18aの軸方向の一側面(外側面)に形成されて、一つの進角側油圧室24と第2受圧室34bを連通している。 As shown in FIG. 7, the first release oil hole 33a is formed in a side portion of the first vane 18a on the retarded-side hydraulic chamber 23 side so as to penetrate one retarded-side hydraulic chamber 23 and the first pressure receiving chamber. 34a is communicated. On the other hand, the second release oil hole 33b is formed on one side surface (outer surface) in the axial direction of the first vane 18a, and communicates one advance side hydraulic chamber 24 and the second pressure receiving chamber 34b.
 なお、摺動用孔29の大径部29bは、ロータ17と第1ベーン18aの外側面に連続して形成された矩形状の呼吸溝29cとフロントプレート14の貫通孔14aを介して外部に連通している。これによって、ロックピン30の常時安定した摺動性を確保するようになっている。 The large-diameter portion 29b of the sliding hole 29 communicates with the outside through a rectangular breathing groove 29c formed continuously on the outer surface of the rotor 17 and the first vane 18a and the through hole 14a of the front plate 14. doing. Thereby, the stable slidability of the lock pin 30 is ensured at all times.
 油圧回路4は、各遅角側油圧室23と各進角側油圧室24に対して油圧を選択的に供給あるいは排出するものである。具体的には、図2に示すように、各遅角側油圧室23に連通する第1油通路36と、各進角側油圧室24に連通する第2油通路37と、該各油通路36,37に電磁切換弁38を介して油圧を選択的に供給するオイルポンプ39と、電磁切換弁38を介して各油通路36,37に選択的に連通するドレン通路40と、を備えている。 The hydraulic circuit 4 selectively supplies or discharges the hydraulic pressure to each retard side hydraulic chamber 23 and each advance side hydraulic chamber 24. Specifically, as shown in FIG. 2, a first oil passage 36 that communicates with each retarded hydraulic chamber 23, a second oil passage 37 that communicates with each advanced hydraulic chamber 24, and each oil passage An oil pump 39 that selectively supplies hydraulic pressure to the fluid passages 36 and 37 via the electromagnetic switching valve 38; and a drain passage 40 that selectively communicates with the oil passages 36 and 37 via the electromagnetic switching valve 38. Yes.
 第1油通路36は、主としてアウターカムシャフト5の内周面とインナーカムシャフト6の外周面との間に形成されている。この第1油通路36は、一端部が電磁切換弁38の給排ポートに接続され、他端部が連通路6cと各遅角油孔26を介して各遅角側油圧室23に連通している。 The first oil passage 36 is mainly formed between the inner peripheral surface of the outer cam shaft 5 and the outer peripheral surface of the inner cam shaft 6. One end of the first oil passage 36 is connected to the supply / discharge port of the electromagnetic switching valve 38, and the other end communicates with each retarded-side hydraulic chamber 23 via the communication passage 6 c and each retarded oil hole 26. ing.
 第2油通路37は、主としてカムボルト10の軸部10bの外周面とインナーカムシャフト6の挿入孔6dの内周面との間に形成されている。この第2油通路37は、一端部が電磁切換弁38の給排ポートに接続され、他端部が通路構成孔17aと各進角油孔25を介して各進角側油圧室24に連通している。 The second oil passage 37 is mainly formed between the outer peripheral surface of the shaft portion 10 b of the cam bolt 10 and the inner peripheral surface of the insertion hole 6 d of the inner cam shaft 6. One end of the second oil passage 37 is connected to the supply / discharge port of the electromagnetic switching valve 38, and the other end communicates with each advance side hydraulic chamber 24 via the passage constituting hole 17 a and each advance oil hole 25. doing.
 電磁切換弁38は、4ポート2位置弁であって、コントロールユニット(ECU)41から図外のコイルへの通電、非通電や制御電流(パルス電流)の通電量の変化によって内部に設けられた図外のスプール弁が軸方向へ移動する。これによって、電磁切換弁38は、各油通路36,37に対して、オイルポンプ39の吐出通路39aとドレン通路40とを選択的に切り換え制御するようになっている。 The electromagnetic switching valve 38 is a four-port two-position valve, and is provided inside the control unit (ECU) 41 by energizing or de-energizing a coil (not shown) or changing the energizing amount of the control current (pulse current). A spool valve (not shown) moves in the axial direction. As a result, the electromagnetic switching valve 38 selectively controls the discharge passage 39a and the drain passage 40 of the oil pump 39 for each of the oil passages 36 and 37.
 つまり、ECU41から例えば通電されると、吐出通路39aと第1油通路36とを連通すると同時に、ドレン通路40と第2油通路37とを連通する。一方、例えば非通電されると、吐出通路39aと第2油通路37とを連通すると同時に、ドレン通路40と第1油通路36とを連通するようになっている。 That is, for example, when the ECU 41 is energized, the discharge passage 39a and the first oil passage 36 are communicated, and at the same time, the drain passage 40 and the second oil passage 37 are communicated. On the other hand, for example, when de-energized, the discharge passage 39a and the second oil passage 37 are communicated, and at the same time, the drain passage 40 and the first oil passage 36 are communicated.
 なお、スプール弁は、ECU41からの通電量に応じて進退移動して、各油通路36,37に連通する給排ポートの開口面積を連続的に可変するようになっている。 Note that the spool valve moves forward and backward in accordance with the amount of current supplied from the ECU 41 to continuously vary the opening area of the supply / discharge port communicating with the oil passages 36 and 37.
 ECU41は、内部のコンピュータが図外のクランク角センサやエアーフローメータ、水温センサ、スロットルバルブ開度センサなどの各種センサ類からの情報信号を入力して現在の機関運転状態を検出している。かかる機関運転状態や、前述した回転角検出機構によって検出されたインナーカムシャフト6の回転位置情報などに基づいて電磁切換弁38の電磁コイルに制御電流(パルス電流)を出力するようになっている。なお、アウターカムシャフト5は、別に設けられた回転角検出機構によってその回転角度位置が検出されて、この検出信号がECU41に出力されるようになっている。
〔本実施形態の作用〕
 まず、機関の駆動中には、クランクシャフトからタイミングベルト01を介してタイミングプーリ1全体が回転する。そうすると、アウターカムシャフト5が、同期回転すると共に、インナーカムシャフト6もプーリ本体13とベーンロータ3を介して同期回転する。これによって、基本的にアウターカムシャフト5の第1駆動カム7とインナーカムシャフト6の第2駆動カム11が同期回転して、2つの吸気弁をバルブスプリングのばね力と共に開閉作動させる。
In the ECU 41, an internal computer inputs information signals from various sensors such as a crank angle sensor, an air flow meter, a water temperature sensor, a throttle valve opening sensor, etc., not shown, and detects the current engine operating state. A control current (pulse current) is output to the electromagnetic coil of the electromagnetic switching valve 38 based on the engine operating state, the rotational position information of the inner camshaft 6 detected by the rotation angle detection mechanism described above, and the like. . Note that the rotation angle position of the outer cam shaft 5 is detected by a rotation angle detection mechanism provided separately, and this detection signal is output to the ECU 41.
[Operation of this embodiment]
First, during the driving of the engine, the entire timing pulley 1 rotates from the crankshaft through the timing belt 01. Then, the outer cam shaft 5 rotates synchronously, and the inner cam shaft 6 also rotates synchronously via the pulley body 13 and the vane rotor 3. As a result, the first drive cam 7 of the outer camshaft 5 and the second drive cam 11 of the inner camshaft 6 basically rotate synchronously to open and close the two intake valves together with the spring force of the valve spring.
 図8は本実施形態に供される第1、第2駆動カム7,11を示し、Aは両駆動カム7,11が同一回転位相の状態を示し、Bは第1駆動カム7に対して第2駆動カム11が回転位相を変化させた状態を示している。 FIG. 8 shows the first and second drive cams 7 and 11 used in this embodiment, A shows the state where both drive cams 7 and 11 are in the same rotational phase, and B shows the first drive cam 7. A state in which the second drive cam 11 changes the rotation phase is shown.
 図9は本実施形態における吸気弁のリフト特性図を示し、Aはベーンロータが図5に示す最遅角方向へ相対回転した場合のリフト特性図、Bは図5に示す最進角方向へ相対回転した場合のリフト特性図である。 9 is a lift characteristic diagram of the intake valve in the present embodiment, A is a lift characteristic diagram when the vane rotor rotates relative to the most retarded angle direction shown in FIG. 5, and B is relative to the most advanced angle direction shown in FIG. It is a lift characteristic figure at the time of rotating.
 そして、例えば、機関始動時は、ロック機構28のコイルスプリング32のばね力によって、予めロックピン30の先端部30aがロック穴31内に挿入している。つまり、機関停止時においてカムシャフト2に作用する交番トルクに基づいてベーンロータ3が一方向側(図5に示す位置)に相対回転している。これによって、ベーンロータ3は、タイミングプーリ1との相対関係で、例えば始動に最適な最遅角側の相対回転位置にロックされている。 For example, when the engine is started, the tip 30 a of the lock pin 30 is inserted into the lock hole 31 in advance by the spring force of the coil spring 32 of the lock mechanism 28. That is, the vane rotor 3 is relatively rotated in one direction (position shown in FIG. 5) based on the alternating torque acting on the camshaft 2 when the engine is stopped. As a result, the vane rotor 3 is locked at a relative rotational position on the most retarded angle optimum for starting, for example, relative to the timing pulley 1.
 よって、2つの駆動カム7、11は、矢印で示す回転方向に対して、図8Aに示すように、アウターカムシャフト5とインナーカムシャフト6を介して同一の回転位相になっている。したがって、2つの吸気弁は、開閉時期特性(バルブタイミング)が図9Aで示すように、最遅角側の同一の位相に保持されている。 Thus, the two drive cams 7 and 11 are in the same rotational phase via the outer cam shaft 5 and the inner cam shaft 6 as shown in FIG. Therefore, the two intake valves are held at the same phase on the most retarded angle side, as shown in FIG. 9A, in the opening / closing timing characteristics (valve timing).
 このため、この状態からイグニッションスイッチをオン操作して機関を始動させると、スムーズなクランキングによって良好な始動性が得られる。 Therefore, when the engine is started by turning on the ignition switch from this state, good startability can be obtained by smooth cranking.
 その後、機関運転状態が所定の運転域に移行すると、電磁切換弁38にECU41から制御電流が出力されて、まず、吐出通路39aと第2油通路37を連通させる。したがって、オイルポンプ39から吐出された作動油は、第2油通路37から各進角油孔25を介して各進角側油圧室24に供給される。これにより、各油圧室24内の油圧が上昇する。 Thereafter, when the engine operating state shifts to a predetermined operating range, a control current is output from the ECU 41 to the electromagnetic switching valve 38, and first, the discharge passage 39a and the second oil passage 37 are communicated. Therefore, the hydraulic oil discharged from the oil pump 39 is supplied from the second oil passage 37 to each advance side hydraulic chamber 24 via each advance oil hole 25. Thereby, the hydraulic pressure in each hydraulic chamber 24 increases.
 同時に、第1油通路36とドレン通路40を連通させる。このため、各遅角側油圧室23内の油圧がオイルパン42に排出されて内部が低圧になる。 At the same time, the first oil passage 36 and the drain passage 40 are connected. For this reason, the hydraulic pressure in each retarded-side hydraulic chamber 23 is discharged to the oil pan 42, and the inside becomes a low pressure.
 各進角側油圧室24内の油圧が上昇すると、該各進角側油圧室24から第2解除用油孔33bを通って第2受圧室34bに供給される。これにより、ロックピン30は、先端部30aの外面に作用する高油圧によってコイルスプリング32のばね力に抗して後退移動する。したがって、ロックピン30の先端部30aが、ロック穴31から抜け出てタイミングプーリ1に対するベーンロータ3のロックが解除される。よって、ベーンロータ3は、自由な相対回転が許容される。 When the hydraulic pressure in each advance side hydraulic chamber 24 rises, it is supplied from each advance side hydraulic chamber 24 to the second pressure receiving chamber 34b through the second release oil hole 33b. As a result, the lock pin 30 moves backward against the spring force of the coil spring 32 by the high hydraulic pressure acting on the outer surface of the distal end portion 30a. Therefore, the tip 30a of the lock pin 30 comes out of the lock hole 31, and the lock of the vane rotor 3 with respect to the timing pulley 1 is released. Therefore, the vane rotor 3 is allowed to rotate freely.
 そして、ベーンロータ3は、各進角側油圧室24の高圧化に伴って、タイミングプーリ1に対して図6に示す時計方向へ相対回転する。この相対回転によって第1ベーン18aの他側面が第2凸面13gに当接して時計方向の最進角位置に規制される(図6参照)。これに伴い、インナーカムシャフト6が、アウターカムシャフト5に対して時計方向、つまり最進角側へ相対回転する。 The vane rotor 3 rotates relative to the timing pulley 1 in the clockwise direction shown in FIG. 6 as the advance angle hydraulic chambers 24 are increased in pressure. By this relative rotation, the other side surface of the first vane 18a comes into contact with the second convex surface 13g and is regulated to the most advanced position in the clockwise direction (see FIG. 6). Accordingly, the inner cam shaft 6 rotates relative to the outer cam shaft 5 in the clockwise direction, that is, the most advanced angle side.
 したがって、アウターカムシャフト5側の第1駆動カム7は、図8Bに示すように、初期の回転位置に保持されている。これに対して、インナーカムシャフト6側の第2駆動カム11は、矢印で示す回転方向に対して、さらに時計方向の回転位置に相対回転する。これにより、第2駆動カム11は、第1駆動カム7に対して進角側へ開いた状態になる(開角状態)。 Therefore, as shown in FIG. 8B, the first drive cam 7 on the outer camshaft 5 side is held at the initial rotational position. On the other hand, the second drive cam 11 on the inner cam shaft 6 side further rotates relative to the rotation position in the clockwise direction with respect to the rotation direction indicated by the arrow. As a result, the second drive cam 11 is opened to the advance side with respect to the first drive cam 7 (open angle state).
 よって、一つの吸気弁は、その開閉時期特性が図9Bに示すように開時期がさらに進角側になる特性となる。この結果、2つの駆動カム7,11によって、初期位相時のバルブリフタを押している時間よりも長く時間押すことになる。 Therefore, one intake valve has an opening / closing timing characteristic such that the opening timing is further advanced as shown in FIG. 9B. As a result, the two drive cams 7 and 11 push the valve lifter for a longer time than the time when the valve lifter is pushed in the initial phase.
 つまり、一つの吸気弁の開いている時間(作動角)が長くなって、燃焼室への吸入空気量が連続的に増加することになる。これにより、例えば、機関高回転時や急加速時における出力トルクを向上させることができる。 That is, the time during which one intake valve is open (operating angle) becomes longer, and the amount of intake air into the combustion chamber increases continuously. Thereby, for example, the output torque at the time of high engine speed or sudden acceleration can be improved.
 また、機関運転状態がさらに変化すると、ECU41から電磁切換弁38への大きな通電量に応じてスプール弁がさらに移動する。このため、第2油通路37とドレン通路40を連通させると共に、第1油通路36と吐出通路39aを連通させる。これにより、各遅角側油圧室23が高圧になる一方、各進角側油圧室24が低圧になる。 Further, when the engine operating state further changes, the spool valve further moves in accordance with a large energization amount from the ECU 41 to the electromagnetic switching valve 38. Therefore, the second oil passage 37 and the drain passage 40 are communicated, and the first oil passage 36 and the discharge passage 39a are communicated. Thereby, each retard side hydraulic chamber 23 becomes high pressure, while each advance side hydraulic chamber 24 becomes low pressure.
 したがって、ベーンロータ3は、タイミングプーリ1に対して図6の回転位置から時計方向へ相対回転する。これにより、インナーカムシャフト6は、同じくアウターカムシャフト5に対して時計方向へ相対回転して、第2駆動カム11が第1駆動カム7と同一位相になる。よって、2つの吸気弁の作動角が小さくなって、吸入空気量が減少することになり、例えば、機関低回転域での燃費の向上を図ることができる。 Therefore, the vane rotor 3 rotates relative to the timing pulley 1 in the clockwise direction from the rotational position of FIG. As a result, the inner cam shaft 6 is also rotated relative to the outer cam shaft 5 in the clockwise direction, so that the second drive cam 11 is in the same phase as the first drive cam 7. Therefore, the operating angle of the two intake valves is reduced, and the amount of intake air is reduced. For example, the fuel consumption can be improved in the low engine speed range.
 なお、第1駆動カム7と第2駆動カム11の相対回転変位、つまり第2駆動カム11の拡開、縮閉の変位は、ECU41と電磁切換弁38とによって連続的に行われようになっている。 The relative rotational displacement between the first drive cam 7 and the second drive cam 11, that is, the expansion / contraction displacement of the second drive cam 11 is continuously performed by the ECU 41 and the electromagnetic switching valve 38. ing.
 そして、本実施形態では、フロントプレート14の第1ボス部22の内周面22aとセンサターゲット35の基部35aの外周面との間に、オイルシール44が配置されている。このため、フロントプレート14の貫通孔14aが液密的に封止されることから、各遅角側油圧室23や進角側油圧室24内のオイルが貫通孔14aから漏れるのを効果的に抑制できる。 In this embodiment, the oil seal 44 is disposed between the inner peripheral surface 22a of the first boss portion 22 of the front plate 14 and the outer peripheral surface of the base portion 35a of the sensor target 35. For this reason, since the through hole 14a of the front plate 14 is sealed in a liquid-tight manner, it is possible to effectively prevent the oil in each retard side hydraulic chamber 23 and the advance side hydraulic chamber 24 from leaking from the through hole 14a. Can be suppressed.
 しかも、プーリ本体13とフロントプレート14及びリアプレート15の間の2つのサイドクリアランスには、第1、第2シールリング20、21が設けられている。このため、プーリ本体13と各プレート14,15間も液密的に封止されていることから、各遅角側油圧室23及び各進角側油圧室24からのオイルの漏れも十分に抑制できる。 In addition, first and second seal rings 20 and 21 are provided in two side clearances between the pulley body 13 and the front plate 14 and the rear plate 15. For this reason, since the pulley body 13 and the plates 14 and 15 are also sealed in a liquid-tight manner, oil leakage from each retarding-side hydraulic chamber 23 and each advance-side hydraulic chamber 24 is sufficiently suppressed. it can.
 さらに、リアプレート15とアウターカムシャフト5のフランジ部8との間にも、第3シールリング45が設けられて、この間も液密的に封止されている。したがって、各油圧室23,24内のオイルが、リアプレート15の挿入孔15aの内周面とアウターカムシャフト5の外周面との間からオイルが漏れたとしても、第3シールリング45によって外部への漏れを十分に抑制することが可能になる。 Furthermore, a third seal ring 45 is also provided between the rear plate 15 and the flange portion 8 of the outer camshaft 5, and this space is also liquid-tightly sealed. Therefore, even if the oil in each of the hydraulic chambers 23 and 24 leaks from between the inner peripheral surface of the insertion hole 15a of the rear plate 15 and the outer peripheral surface of the outer camshaft 5, the third seal ring 45 It is possible to sufficiently suppress leakage into the water.
 したがって、タイミングプーリ1(プーリ本体13)の外周の歯車1aにオイルの付着が抑制される。この結果、歯車1aとタイミングベルト01との間のスリップなどが抑制されて、クランクシャフトからの回転伝達効率の低下や、アウターカムシャフト5とインナーカムシャフト6間での相対回転位相のずれを抑制できる。 Therefore, the adhesion of oil to the outer peripheral gear 1a of the timing pulley 1 (pulley body 13) is suppressed. As a result, slippage between the gear 1a and the timing belt 01 is suppressed, and a decrease in rotation transmission efficiency from the crankshaft and a shift in relative rotation phase between the outer camshaft 5 and the inner camshaft 6 are suppressed. it can.
 また、前記オイルシール44は、センサターゲット35の基部35aの外周面と第1ボス部22の内周面22aとの間に摺動可能に配置されている。このため、ベーンロータ3が、タイミングプーリ1に対して相対回転した際に、センサターゲット35と第1ボス部22との間にオイルシール44によって摺動摩擦抵抗が発生する。これによって、カムトルク変動に伴うベーンロータ3のばたつきを抑制することができる。 The oil seal 44 is slidably disposed between the outer peripheral surface of the base portion 35 a of the sensor target 35 and the inner peripheral surface 22 a of the first boss portion 22. For this reason, when the vane rotor 3 rotates relative to the timing pulley 1, a sliding frictional resistance is generated by the oil seal 44 between the sensor target 35 and the first boss portion 22. Thereby, flapping of the vane rotor 3 due to cam torque fluctuation can be suppressed.
 さらに、本実施形態では、センサターゲット35を、基部35aを介してロータ17に取り付ける際に、オイルシール44が基部35aの外周面に予め取り付けられた状態で、第1ボス部22の内周面22aに挿入されるようになっている。このため、センサターゲット35とインナーカムシャフト6の同軸性(芯出し)を確保することができる。 Further, in the present embodiment, when the sensor target 35 is attached to the rotor 17 via the base portion 35a, the inner peripheral surface of the first boss portion 22 with the oil seal 44 attached in advance to the outer peripheral surface of the base portion 35a. 22a is inserted. For this reason, the coaxiality (centering) between the sensor target 35 and the inner camshaft 6 can be ensured.
 また、センサターゲット35を、カムボルト10によってベーンロータ3のインナーカムシャフト6への取り付け作業と一緒に固定できるので、センサターゲット35の取り付け作業が容易になる。つまり、センサターゲット35を別途圧入などによる取り付け作業が不要になるので、その取り付け作業が容易になる。 Moreover, since the sensor target 35 can be fixed together with the mounting operation of the vane rotor 3 to the inner camshaft 6 by the cam bolt 10, the mounting operation of the sensor target 35 is facilitated. That is, the sensor work 35 is not required to be separately attached by press fitting or the like, so that the attachment work is facilitated.
 また、カムボルト10の頭部10aを、第1ボス部22を介してセンサターゲット35の基部35a内に配置できるので、この分、カムボルト10の軸方向の長さを短くすることが可能になる。 Further, since the head portion 10a of the cam bolt 10 can be arranged in the base portion 35a of the sensor target 35 via the first boss portion 22, the axial length of the cam bolt 10 can be shortened accordingly.
 また、カムボルト10の頭部10a(鍔状座部10d)と前記基部35aとの間に、シールワッシャ43が挟持状態に配置されていることから、両者10a、35aとの間からの外部へのオイル漏れを抑制できる。 Further, since the seal washer 43 is sandwiched between the head portion 10a (the bowl-shaped seat portion 10d) of the cam bolt 10 and the base portion 35a, the gap between both the portions 10a and 35a can be reduced. Oil leakage can be suppressed.
 さらに、円筒状の第1ボス部22を設けたことによって、オイルシール44を軸方向へ長く形成することが可能になることから、シール性能の向上が図れる。 Furthermore, since the oil seal 44 can be formed longer in the axial direction by providing the cylindrical first boss portion 22, the sealing performance can be improved.
 また、センサターゲット35の各ターゲット部35bは、第1ボス部22の先端縁に対して近接配置されている。このため、オイルシール44が、第1ボス部22内から軸方向外側へ移動した場合に、各ターゲット部35bがその移動規制することから、不用意な脱落を抑制できる。 Further, each target portion 35 b of the sensor target 35 is disposed close to the tip edge of the first boss portion 22. For this reason, when the oil seal 44 moves from the inside of the first boss portion 22 to the outside in the axial direction, each target portion 35b regulates its movement, so that inadvertent dropout can be suppressed.
 また、本実施形態では、前記各構成部品を組み付けるに際して、図1に示すように、インナーカムシャフト6は、一端部6aが第2嵌合溝17cに嵌入された状態でカムボルト10によってロータ17に回転軸方向から締め付け固定される。 Further, in the present embodiment, when assembling the respective components, as shown in FIG. 1, the inner camshaft 6 is attached to the rotor 17 by the cam bolt 10 in a state where one end portion 6 a is fitted in the second fitting groove 17 c. Fastened and fixed from the direction of the rotation axis.
 一方、アウターカムシャフト5は、フランジ部8を介して各締結ボルト9によってリアプレート15(プーリ本体13)に締め付け固定される。また、このアウターカムシャフト5は、一端部5aがリアプレート15の挿入孔15aとロータ17の第2嵌合溝17cにそれぞれ回転軸方向から嵌合する。つまり、アウターカムシャフト5は、リアプレート15に挿入孔15aを介して緊密に嵌合している一方、ベーンロータ3のロータ17は、第2嵌合溝17cでアウターカムシャフト5に相対回転可能な状態で緊密に嵌合している。 On the other hand, the outer camshaft 5 is fastened and fixed to the rear plate 15 (pulley body 13) by the fastening bolts 9 via the flange portions 8. Further, the outer cam shaft 5 has one end portion 5a fitted into the insertion hole 15a of the rear plate 15 and the second fitting groove 17c of the rotor 17 from the direction of the rotation axis. That is, the outer camshaft 5 is tightly fitted to the rear plate 15 via the insertion hole 15a, while the rotor 17 of the vane rotor 3 is rotatable relative to the outer camshaft 5 by the second fitting groove 17c. It fits tightly in the state.
 換言すれば、この実施形態では、単一のアウターカムシャフト5によって、タイミングプーリ1とベーンロータ3の両方の同軸性を取るようになっている。 In other words, in this embodiment, both the timing pulley 1 and the vane rotor 3 are coaxial with a single outer camshaft 5.
 したがって、タイミングプーリ1とベーンロータ3の精度の高い同軸性を得ることができる。このため、たとえ、アウターカムシャフト5とインナーカムシャフト6の両軸心の間にガタが発生したとしても、タイミングプーリ1とベーンロータ3の同軸性に対する影響を十分に抑制することができる。 Therefore, highly accurate coaxiality between the timing pulley 1 and the vane rotor 3 can be obtained. For this reason, even if backlash occurs between the axial centers of the outer cam shaft 5 and the inner cam shaft 6, the influence on the coaxiality of the timing pulley 1 and the vane rotor 3 can be sufficiently suppressed.
 また、アウターカムシャフト5は、フランジ部8を介してリアプレート15に結合されていることから、タイミングプーリ1との一体化が図れる。これによって、タイミングプーリ1とベーンロータ3との同軸性への影響がさらに少なくなる。 Further, since the outer camshaft 5 is coupled to the rear plate 15 via the flange portion 8, integration with the timing pulley 1 can be achieved. Thereby, the influence on the coaxiality between the timing pulley 1 and the vane rotor 3 is further reduced.
 また、本実施形態では、アウターカムシャフト5を利用した簡単な構造でタイミングプーリ1とベーンロータ3の同軸性を精度良く確保できるので、製造作業が容易になると共に、コストの低減化が図れる。
〔第2実施形態〕
 図10は第2実施形態を示し、基本構成は第1実施形態のもと同じであるが、異なるところは、ベーンロータ3のロータ17の回転軸方向のフロントプレート14側の一端面中央に第2ボス部46が一体に設けられている。この第2ボス部46は、円筒状に形成されて、その軸方向の長さLがフロントプレート14の第1ボス部22よりも僅かに大きく形成されている。
In the present embodiment, since the coaxiality of the timing pulley 1 and the vane rotor 3 can be ensured with a simple structure using the outer camshaft 5, the manufacturing operation is facilitated and the cost can be reduced.
[Second Embodiment]
FIG. 10 shows the second embodiment, and the basic configuration is the same as that of the first embodiment, except that the second portion is located at the center of one end surface of the vane rotor 3 on the front plate 14 side in the rotation axis direction of the rotor 17. A boss portion 46 is provided integrally. The second boss portion 46 is formed in a cylindrical shape, and its axial length L is slightly larger than the first boss portion 22 of the front plate 14.
 また、回転角検出機構のセンサターゲット35は、全体が平坦状に形成されて、基部35aが第2ボス部46の先端にカムボルト10によって固定されている。つまり、センサターゲット35は、基部35aが平坦な円盤状に形成されて、該基部35aの外周縁から径方向外側へ3つのターゲット部35bが突出している。また、基部35aは、中央位置にカムボルト10の軸部10bが挿通されるボルト挿通孔35dが貫通形成されている。 Further, the entire sensor target 35 of the rotation angle detection mechanism is formed in a flat shape, and the base portion 35a is fixed to the tip of the second boss portion 46 by the cam bolt 10. That is, the sensor target 35 has a base portion 35a formed in a flat disk shape, and three target portions 35b project radially outward from the outer peripheral edge of the base portion 35a. Further, the base portion 35a is formed with a bolt insertion hole 35d through which the shaft portion 10b of the cam bolt 10 is inserted at a central position.
 また、カムボルト10は、軸部10bの軸方向の長さを第2ボス部46の長さL分だけ長く形成されている。なお、このカムボルト10の頭部10aの鍔状座部10dと基部35aとの間には、シールワッシャ43が介装されている。 Further, the cam bolt 10 is formed so that the axial length of the shaft portion 10 b is increased by the length L of the second boss portion 46. A seal washer 43 is interposed between the hook-shaped seat portion 10d of the head portion 10a of the cam bolt 10 and the base portion 35a.
 さらに、第1ボス部22の内周面22aと第2ボス部46の外周面46aとの間には、合成ゴムからなる円筒状のオイルシール44が配置されている。 Furthermore, a cylindrical oil seal 44 made of synthetic rubber is disposed between the inner peripheral surface 22a of the first boss portion 22 and the outer peripheral surface 46a of the second boss portion 46.
 また、この第2実施形態によれば、平坦状のセンサターゲット35を、カムボルト10によって第2ボス部46の先端に固定するようになっていることから、その固定作業が容易になる。 Further, according to the second embodiment, since the flat sensor target 35 is fixed to the tip of the second boss portion 46 by the cam bolt 10, the fixing work is facilitated.
 さらに、センサターゲット35も全体的に平坦状に形成されていることから、その成形作業も容易である。 Furthermore, since the sensor target 35 is also formed in a flat shape as a whole, the molding operation is easy.
 他の構成は第1実施形態と同じであるから、基本的に同じ作用効果が得られる。例えば、第1~第3シールリング20,21,45やオイルシール44によって各油圧室23,24からのオイルの漏れを抑制できる。また、センサターゲット35の各ターゲット部35bが第1ボス部22の先端縁に近接配置されていることから、オイルシール44の不用意な脱落を抑制できる。 Since other configurations are the same as those of the first embodiment, basically the same operational effects can be obtained. For example, the first to third seal rings 20, 21, 45 and the oil seal 44 can suppress oil leakage from the hydraulic chambers 23, 24. Moreover, since each target part 35b of the sensor target 35 is disposed close to the leading edge of the first boss part 22, inadvertent dropping of the oil seal 44 can be suppressed.
 本発明は、各実施形態の構成に限定されるものではなく、第1実施形態であれば、オイルシール44を、フロントプレート14の貫通孔14aとセンサターゲット35の円筒状の基部35aの外周面との間に配置することも可能である。また、第2実施形態であれば、オイルシール44を、第2ボス部46の外周面と貫通孔14aの内周面との間に配置することも可能である。 The present invention is not limited to the configuration of each embodiment. In the first embodiment, the oil seal 44 is connected to the outer peripheral surface of the through hole 14a of the front plate 14 and the cylindrical base portion 35a of the sensor target 35. It is also possible to arrange between them. In the second embodiment, the oil seal 44 can be disposed between the outer peripheral surface of the second boss portion 46 and the inner peripheral surface of the through hole 14a.
 さらに、例えば、センサターゲット35の構造をさらに変更することも可能である。 Furthermore, for example, the structure of the sensor target 35 can be further changed.
 以上説明した実施形態に基づく可変動弁装置としては、例えば、以下に述べる態様のものが考えられる。 As the variable valve operating apparatus based on the embodiment described above, for example, the following modes can be considered.
 その一つの態様において、外周にアウターカムを有する中空状のアウターカムシャフトと、該アウターカムシャフトの内部に相対回転可能に配置され、外周にインナーカムを有するインナーカムシャフトと、を備えた内燃機関に用いられる可変動弁装置であって、
 前記アウターカムシャフトの回転軸方向の一端部に固定されると共に、クランクシャフトからの回転力が伝達され、内部に作動室を有すると共に、前記アウターカムシャフトの回転軸方向位置に貫通孔を有するタイミングプーリと、前記インナーカムシャフトの回転軸方向の一端部に固定されると共に、前記タイミングプーリの内部に該タイミングプーリと相対回転可能に配置され、前記作動室を複数に分けるベーンロータと、基部が前記ベーンロータに取り付けられ、ターゲット部が前記基部からタイミングプーリの外側に配置されたセンサターゲットと、前記タイミングプーリと前記センサターゲットの基部との間、又は前記タイミングプーリと前記ベーンロータとの間に配置され、前記貫通孔と外部との間をシールするシール部材と、を備えている。
In one aspect thereof, an internal combustion engine comprising: a hollow outer camshaft having an outer cam on the outer periphery; and an inner camshaft disposed in the outer camshaft so as to be relatively rotatable and having an inner cam on the outer periphery. A variable valve operating device used for
A timing at which the outer camshaft is fixed to one end of the outer camshaft in the rotational axis direction, a rotational force is transmitted from the crankshaft, has a working chamber inside, and has a through hole at a position in the rotational axis direction of the outer camshaft. A pulley, a vane rotor that is fixed to one end of the inner camshaft in the rotational axis direction, is disposed in the timing pulley so as to be rotatable relative to the timing pulley, and divides the working chamber into a plurality of parts; A sensor target that is attached to the vane rotor and the target portion is disposed outside the timing pulley from the base, and is disposed between the timing pulley and the base of the sensor target, or between the timing pulley and the vane rotor, A sealing member that seals between the through hole and the outside; It is provided.
 カム角センサのセンサターゲットを、タイミングベルト仕様でかつ油圧式のバルブタイミング制御装置に取り付けた場合に、前記センサターゲットの取り付け態様によっては、バルブタイミング制御装置からリークしたオイルが前記タイミングベルトに付着するおそれがある。 When the sensor target of the cam angle sensor is mounted on a timing valve specification and hydraulic valve timing control device, oil leaked from the valve timing control device adheres to the timing belt depending on the mounting mode of the sensor target. There is a fear.
 本願発明は、シール部材によって貫通孔と外部との間がシールされてことによって、作動室内のオイルが貫通孔を通って外部へのオイルのリークを抑制できる。 In the present invention, since the gap between the through hole and the outside is sealed by the seal member, oil in the working chamber can be prevented from leaking to the outside through the through hole.
 さらに好ましくは、前記シール部材は、前記タイミングプーリの貫通孔と前記センサターゲットの基部との間に配置されている。 More preferably, the seal member is disposed between the through hole of the timing pulley and the base of the sensor target.
 さらに好ましくは、前記センサターゲットは、前記基部が各カムシャフトの回転軸方向に沿って延びる有底円筒状に形成され、前記シール部材は、前記基部の外周面と貫通孔の内周面との間に配置されている。 More preferably, the sensor target is formed in a bottomed cylindrical shape in which the base portion extends along the rotation axis direction of each camshaft, and the seal member includes an outer peripheral surface of the base portion and an inner peripheral surface of the through hole. Arranged between.
 この発明によれば、センサターゲットを取り付ける際に、シール部材が基部の外周面に予め取り付けられた状態で貫通孔の内周面に挿入されることから、センサターゲットとインナーカムシャフトとの同軸性(芯出し)を確保できる。 According to the present invention, when the sensor target is attached, the seal member is inserted into the inner peripheral surface of the through hole in a state of being attached in advance to the outer peripheral surface of the base portion. (Centering) can be secured.
 さらに好ましくは、前記基部のほぼ中央に設けられたボルト挿入孔に、カムボルトが挿入されて、該カムボルトの頭部が前記基部内に配置された状態で、前記ベーンロータをインナーカムシャフトに前記カムボルトによって前記基部と一緒に共締め固定される。 More preferably, the cam bolt is inserted into a bolt insertion hole provided at substantially the center of the base, and the vane rotor is attached to the inner cam shaft by the cam bolt in a state where the head of the cam bolt is disposed in the base. It is fastened together with the base.
 この発明によれば、センサターゲットを、カムボルトによってベーンロータのインナーカムシャフトへの取り付けと一緒に固定できるので、別途圧入などの作業が不要となる。したがって、センサターゲットの取り付け作業が容易になる。また、カムボルトの頭部を基部内に配置できるので、カムボルトの軸方向の長さを短くすることが可能になる。 According to the present invention, the sensor target can be fixed together with the attachment of the vane rotor to the inner camshaft by the cam bolt, so that work such as separate press fitting is not required. Accordingly, the sensor target can be easily attached. Further, since the head of the cam bolt can be disposed in the base, the cam bolt can be shortened in the axial direction.
 さらに好ましくは、前記基部の底部と前記カムボルトの頭部との間に、シールワッシャが配置されている。 More preferably, a seal washer is disposed between the bottom of the base and the head of the cam bolt.
 この発明によれば、シールワッシャによってカムボルト頭部とセンサターゲットとの間からオイル漏れを抑制できる。 According to this invention, oil leakage from between the cam bolt head and the sensor target can be suppressed by the seal washer.
 さらに好ましくは、前記タイミングプーリは、前記貫通孔の孔縁から前記タイミングプーリの回転軸方向の外側に向かって突出した円筒状の第1ボス部を有し、前記シール部材は、前記第1ボス部の内周面と前記基部の外周面との間に配置されている。 More preferably, the timing pulley has a cylindrical first boss portion that protrudes from a hole edge of the through hole toward an outer side in a rotation axis direction of the timing pulley, and the seal member includes the first boss. It arrange | positions between the internal peripheral surface of a part, and the outer peripheral surface of the said base.
 この発明によれば、第1ボスを設けることによって、シール部材を軸方向へ長く延ばすことができるので、シール部材によるシール効果が向上する。 According to the present invention, by providing the first boss, the sealing member can be extended in the axial direction, so that the sealing effect by the sealing member is improved.
 さらに好ましくは、前記センサターゲットは、前記基部から前記タイミングプーリの回転軸心に対して径方向外側へ延びるターゲット部を有し、前記ターゲット部は、前記タイミングプーリの回転軸方向で前記シール部材と近接配置されている。 More preferably, the sensor target has a target portion extending radially outward from the base portion with respect to the rotational axis of the timing pulley, and the target portion is connected to the seal member in the rotational axis direction of the timing pulley. Closely arranged.
 この発明によれば、ターゲット部によって、シール部材の不用意な抜け出しを規制できる。 According to the present invention, it is possible to regulate inadvertent withdrawal of the seal member by the target portion.
 さらに好ましくは、前記シール部材は、前記タイミングプーリとベーンロータとの間に配置されている。 More preferably, the seal member is disposed between the timing pulley and the vane rotor.
 さらに好ましくは、前記ベーンロータは、前記カムシャフトの回転軸方向の一端部に結合されるロータを有し、該ロータから前記タイミングプーリの前記貫通孔の内周面方向に延びる円筒状の第2ボス部を有し、前記シール部材は、前記第2ボス部の外周面と前記貫通孔の内周面との間に配置されている。 More preferably, the vane rotor has a rotor coupled to one end of the camshaft in the rotational axis direction, and a cylindrical second boss extending from the rotor toward the inner peripheral surface of the through hole of the timing pulley. The seal member is disposed between the outer peripheral surface of the second boss portion and the inner peripheral surface of the through hole.
 さらに好ましくは、前記タイミングプーリは、前記貫通孔の孔縁から前記タイミングプーリの回転軸方向の外側に向かって突出した円筒状の第1ボス部を有し、前記ベーンロータは、前記カムシャフトの回転軸方向の一端部に結合されるロータを有し、該ロータから前記タイミングプーリの前記貫通孔の内周面方向に延びる円筒状の第2ボス部を有し、前記シール部材は、前記第1ボス部の内周面と前記第2ボス部の外周面との間に配置されている。 More preferably, the timing pulley has a cylindrical first boss portion that protrudes from a hole edge of the through hole toward an outer side in a rotation axis direction of the timing pulley, and the vane rotor rotates the camshaft. A rotor coupled to one end portion in the axial direction; a cylindrical second boss portion extending from the rotor toward an inner peripheral surface of the through hole of the timing pulley; It arrange | positions between the internal peripheral surface of a boss | hub part, and the outer peripheral surface of the said 2nd boss | hub part.
 さらに好ましくは、前記センサターゲットは、前記第2ボス部の先端部に固定されている。 More preferably, the sensor target is fixed to a tip portion of the second boss portion.
 別の好ましい態様として、内部が中空状のアウターカムシャフトと、前記アウターカムシャフトの内部に相対回転可能に配置されたインナーカムシャフトと、を備えた内燃機関に用いられ、前記アウターカムシャフトと前記インナーカムシャフトを相対回転させる内燃機関の可変動弁装置であって、
 前記アウターカムシャフトの回転軸方向の一端部に固定されると共に、クランクシャフトからの回転力が伝達され、内部に作動室を有すると共に、前記アウターカムシャフトの回転軸方向位置に貫通孔を有するタイミングプーリと、前記インナーカムシャフトの回転軸方向の一端部に固定されると共に、前記タイミングプーリの内部に該タイミングプーリと相対回転可能に配置され、前記作動室を複数に分けるベーンロータと、前記ベーンロータまたは前記ベーンロータに取り付けられる部材と前記貫通孔の内周面との間に配置されたシール部材と、を備えている。
As another preferred aspect, the present invention is used in an internal combustion engine including an outer camshaft having a hollow interior and an inner camshaft disposed in the outer camshaft so as to be relatively rotatable, the outer camshaft and the A variable valve operating apparatus for an internal combustion engine that relatively rotates an inner camshaft,
A timing at which the outer camshaft is fixed to one end of the outer camshaft in the rotational axis direction, a rotational force is transmitted from the crankshaft, has a working chamber inside, and has a through hole at a position in the rotational axis direction of the outer camshaft. A pulley, a vane rotor that is fixed to one end of the inner camshaft in the rotational axis direction, and is disposed in the timing pulley so as to be relatively rotatable with the timing pulley, and divides the working chamber into a plurality of chambers; A seal member disposed between a member attached to the vane rotor and an inner peripheral surface of the through hole.
 この発明によれば、カムインカム構造でシール部材によるオイルの漏出を抑制する。 According to the present invention, the oil leakage by the seal member is suppressed by the cam-in cam structure.
 1…タイミングプーリ、2…カムシャフト、3…ベーンロータ、4…油圧回路、5…アウターカムシャフト、5a…一端部、6…インナーカムシャフト、6a…一端部、6b…小径フランジ部、6c…連通溝、6d…挿入孔、7…第1駆動カム(アウターカム)、8…フランジ部、8a…挿入孔、10…カムボルト、10a…頭部、10b…軸部、10c…雄ねじ、11…第2駆動カム(インナーカム)、13a~13d…第1~第4シュー、14…フロントプレート、14a…貫通孔、15…リアプレート、17…ロータ、18a~18d…第1ベーン~第4ベーン、20…第1シールリング、21…第2シールリング、22…第1ボス部、22a…内周面、22b…テーパ面、23…遅角側油圧室、24…進角側油圧室、25…進角油孔、26…遅角油孔、28…ロック機構、35…センサターゲット、35a…基部、35b…ターゲット部、35c…底部、36…第1油通路、37…第2油通路、38…電磁切換弁、39…オイルポンプ、39a…吐出通路、40…ドレン通路、41…ECU(コントロールユニット)、43…シールワッシャ、44…オイルシール(シール部材)、45…第3シールリング、46…第2ボス部。 DESCRIPTION OF SYMBOLS 1 ... Timing pulley, 2 ... Cam shaft, 3 ... Vane rotor, 4 ... Hydraulic circuit, 5 ... Outer cam shaft, 5a ... One end part, 6 ... Inner cam shaft, 6a ... One end part, 6b ... Small diameter flange part, 6c ... Communication Groove, 6d ... insertion hole, 7 ... first drive cam (outer cam), 8 ... flange, 8a ... insertion hole, 10 ... cam bolt, 10a ... head, 10b ... shaft, 10c ... male screw, 11 ... second Drive cam (inner cam), 13a to 13d ... 1st to 4th shoes, 14 ... Front plate, 14a ... Through hole, 15 ... Rear plate, 17 ... Rotor, 18a-18d ... 1st vane to 4th vane, 20 DESCRIPTION OF SYMBOLS 1st seal ring, 21 ... 2nd seal ring, 22 ... 1st boss | hub part, 22a ... Inner peripheral surface, 22b ... Tapered surface, 23 ... Delay angle side hydraulic chamber, 24 ... Advance angle side hydraulic chamber, 25 ... Advance Square oil , 26 ... retarded oil hole, 28 ... lock mechanism, 35 ... sensor target, 35a ... base, 35b ... target part, 35c ... bottom, 36 ... first oil passage, 37 ... second oil passage, 38 ... electromagnetic switching valve 39 ... Oil pump, 39a ... Discharge passage, 40 ... Drain passage, 41 ... ECU (control unit), 43 ... Seal washer, 44 ... Oil seal (seal member), 45 ... Third seal ring, 46 ... Second boss Department.

Claims (12)

  1.  外周にアウターカムを有する中空状のアウターカムシャフトと、該アウターカムシャフトの内部に相対回転可能に配置され、外周にインナーカムを有するインナーカムシャフトと、を備えた内燃機関に用いられる可変動弁装置であって、
     前記アウターカムシャフトの回転軸方向の一端部に固定されていると共に、クランクシャフトからの回転力が伝達され、内部に作動室を有すると共に、前記アウターカムシャフトの回転軸方向位置に貫通孔を有するタイミングプーリと、
     前記インナーカムシャフトの回転軸方向の一端部に固定されると共に、前記タイミングプーリの内部に該タイミングプーリと相対回転可能に配置され、前記作動室を複数に分けるベーンロータと、
     基部が前記ベーンロータに取り付けられ、ターゲット部が前記基部からタイミングプーリの外側に配置されたセンサターゲットと、
     前記タイミングプーリと前記センサターゲットの基部との間、又は前記タイミングプーリと前記ベーンロータとの間に配置され、前記貫通孔と外部との間をシールするシール部材と、
     を備えたことを特徴とする内燃機関の可変動弁装置。
    A variable valve for use in an internal combustion engine, comprising: a hollow outer camshaft having an outer cam on the outer periphery; and an inner camshaft disposed in the outer camshaft so as to be relatively rotatable and having an inner cam on the outer periphery. A device,
    The outer camshaft is fixed to one end of the outer camshaft in the direction of the rotation axis, transmits the rotational force from the crankshaft, has a working chamber inside, and has a through hole at the position of the outer camshaft in the direction of the rotation axis. Timing pulley,
    A vane rotor that is fixed to one end of the inner camshaft in the rotational axis direction, is disposed in the timing pulley so as to be relatively rotatable with the timing pulley, and divides the working chamber into a plurality of parts;
    A sensor target in which a base is attached to the vane rotor, and a target part is disposed outside the timing pulley from the base;
    A seal member arranged between the timing pulley and the base of the sensor target, or between the timing pulley and the vane rotor, and sealing between the through hole and the outside;
    A variable valve operating apparatus for an internal combustion engine, comprising:
  2.  請求項1に記載の内燃機関の可変動弁装置であって、
     前記シール部材は、前記タイミングプーリの貫通孔と前記センサターゲットの基部との間に配置されていることを特徴とする内燃機関の可変動弁装置。
    A variable valve operating apparatus for an internal combustion engine according to claim 1,
    The variable valve operating apparatus for an internal combustion engine, wherein the seal member is disposed between a through hole of the timing pulley and a base portion of the sensor target.
  3.  請求項2に記載の内燃機関の可変動弁装置であって、
     前記センサターゲットは、前記基部が各カムシャフトの回転軸方向に沿って延びる有底円筒状に形成され、
     前記シール部材は、前記基部の外周面と貫通孔の内周面との間に配置されていることを特徴とする内燃機関の可変動弁装置。
    A variable valve operating apparatus for an internal combustion engine according to claim 2,
    The sensor target is formed in a bottomed cylindrical shape in which the base portion extends along the rotation axis direction of each camshaft,
    The variable valve operating apparatus for an internal combustion engine, wherein the seal member is disposed between an outer peripheral surface of the base and an inner peripheral surface of the through hole.
  4.  請求項3に記載の内燃機関の可変動弁装置であって、
     前記基部のほぼ中央に設けられたボルト挿入孔に、カムボルトが挿入されて、該カムボルトの頭部が前記基部内に配置された状態で、前記ベーンロータをインナーカムシャフトに前記カムボルトによって前記基部と一緒に共締め固定されることを特徴とする内燃機関の可変動弁装置。
    A variable valve operating apparatus for an internal combustion engine according to claim 3,
    With the cam bolt inserted in the bolt insertion hole provided in the approximate center of the base and the head of the cam bolt being disposed in the base, the vane rotor is attached to the inner cam shaft together with the base by the cam bolt. A variable valve operating apparatus for an internal combustion engine, which is fastened together.
  5.  請求項4に記載の内燃機関の可変動弁装置であって、
     前記基部の底部と前記カムボルトの頭部との間に、シールワッシャが配置されていることを特徴とする内燃機関の可変動弁装置。
    A variable valve operating apparatus for an internal combustion engine according to claim 4,
    A variable valve operating apparatus for an internal combustion engine, wherein a seal washer is disposed between a bottom portion of the base portion and a head portion of the cam bolt.
  6.  請求項3に記載の内燃機関の可変動弁装置であって、
     前記タイミングプーリは、前記貫通孔の孔縁から前記タイミングプーリの回転軸方向の外側に向かって突出した円筒状の第1ボス部を有し、
     前記シール部材は、前記第1ボス部の内周面と前記基部の外周面との間に配置されていることを特徴とする内燃機関の可変動弁装置。
    A variable valve operating apparatus for an internal combustion engine according to claim 3,
    The timing pulley has a cylindrical first boss protruding from the edge of the through hole toward the outside in the rotational axis direction of the timing pulley,
    The variable valve operating apparatus for an internal combustion engine, wherein the seal member is disposed between an inner peripheral surface of the first boss portion and an outer peripheral surface of the base portion.
  7.  請求項1に記載の内燃機関の可変動弁装置であって、
     前記センサターゲットは、前記基部から前記タイミングプーリの回転軸心に対して径方向外側へ延びるターゲット部を有し、前記ターゲット部は、前記タイミングプーリの回転軸方向で前記シール部材と近接配置されていることを特徴とする内燃機関の可変動弁装置。
    A variable valve operating apparatus for an internal combustion engine according to claim 1,
    The sensor target has a target portion extending radially outward from the base portion with respect to the rotational axis of the timing pulley, and the target portion is disposed in proximity to the seal member in the rotational axis direction of the timing pulley. A variable valve operating apparatus for an internal combustion engine characterized by comprising:
  8.  請求項1に記載の内燃機関の可変動弁装置であって、
     前記シール部材は、前記タイミングプーリとベーンロータとの間に配置されていることを特徴とする内燃機関の可変動弁装置。
    A variable valve operating apparatus for an internal combustion engine according to claim 1,
    The variable valve operating apparatus for an internal combustion engine, wherein the seal member is disposed between the timing pulley and the vane rotor.
  9.  請求項8に記載の内燃機関の可変動弁装置であって、
     前記ベーンロータは、前記カムシャフトの回転軸方向の一端部に結合されるロータを有し、該ロータから前記タイミングプーリの前記貫通孔の内周面方向に延びる円筒状の第2ボス部を有し、
     前記シール部材は、前記第2ボス部の外周面と前記貫通孔の内周面との間に配置されていることを特徴とする内燃機関の可変動弁装置。
    A variable valve operating apparatus for an internal combustion engine according to claim 8,
    The vane rotor has a rotor coupled to one end of the camshaft in the rotation axis direction, and has a cylindrical second boss extending from the rotor toward the inner peripheral surface of the through hole of the timing pulley. ,
    The variable valve operating apparatus for an internal combustion engine, wherein the seal member is disposed between an outer peripheral surface of the second boss portion and an inner peripheral surface of the through hole.
  10.  請求項8に記載の内燃機関の可変動弁装置であって、
     前記タイミングプーリは、前記貫通孔の孔縁から前記タイミングプーリの回転軸方向の外側に向かって突出した円筒状の第1ボス部を有し、
     前記ベーンロータは、前記カムシャフトの回転軸方向の一端部に結合されるロータを有し、該ロータから前記タイミングプーリの前記貫通孔の内周面方向に延びる円筒状の第2ボス部を有し、
     前記シール部材は、前記第1ボス部の内周面と前記第2ボス部の外周面との間に配置されていることを特徴とする内燃機関の可変動弁装置。
    A variable valve operating apparatus for an internal combustion engine according to claim 8,
    The timing pulley has a cylindrical first boss protruding from the edge of the through hole toward the outside in the rotational axis direction of the timing pulley,
    The vane rotor has a rotor coupled to one end of the camshaft in the rotation axis direction, and has a cylindrical second boss extending from the rotor toward the inner peripheral surface of the through hole of the timing pulley. ,
    The variable valve operating apparatus for an internal combustion engine, wherein the seal member is disposed between an inner peripheral surface of the first boss portion and an outer peripheral surface of the second boss portion.
  11.  請求項9または10に記載の内燃機関の可変動弁装置であって、
     前記センサターゲットは、前記第2ボス部の先端部に固定されていることを特徴とする内燃機関の可変動弁装置。
    A variable valve operating apparatus for an internal combustion engine according to claim 9 or 10,
    The variable valve operating apparatus for an internal combustion engine, wherein the sensor target is fixed to a distal end portion of the second boss portion.
  12.  内部が中空状のアウターカムシャフトと、前記アウターカムシャフトの内部に相対回転可能に配置されたインナーカムシャフトと、を備えた内燃機関に用いられ、前記アウターカムシャフトと前記インナーカムシャフトを相対回転させる内燃機関の可変動弁装置であって、
     前記アウターカムシャフトの回転軸方向の一端部に固定されると共に、クランクシャフトからの回転力が伝達され、内部に作動室を有すると共に、前記アウターカムシャフトの回転軸方向位置に貫通孔を有するタイミングプーリと、
     前記インナーカムシャフトの回転軸方向の一端部に固定されると共に、前記タイミングプーリの内部に該タイミングプーリと相対回転可能に配置され、前記作動室を複数に分けるベーンロータと、
     前記ベーンロータまたは前記ベーンロータに取り付けられる部材と前記貫通孔の内周面との間に配置されたシール部材と、
     を備えたことを特徴とする内燃機関の可変動弁装置。
    Used in an internal combustion engine having a hollow outer camshaft and an inner camshaft disposed in the outer camshaft so as to be relatively rotatable, and relatively rotating the outer camshaft and the inner camshaft. A variable valve operating device for an internal combustion engine,
    A timing at which the outer camshaft is fixed to one end of the outer camshaft in the rotational axis direction, a rotational force is transmitted from the crankshaft, has a working chamber inside, and has a through hole at a position in the rotational axis direction of the outer camshaft. Pulley,
    A vane rotor that is fixed to one end of the inner camshaft in the rotational axis direction, is disposed in the timing pulley so as to be relatively rotatable with the timing pulley, and divides the working chamber into a plurality of parts;
    A seal member disposed between the vane rotor or a member attached to the vane rotor and an inner peripheral surface of the through hole;
    A variable valve operating apparatus for an internal combustion engine, comprising:
PCT/JP2018/047792 2018-03-08 2018-12-26 Variable valve device for internal combustion engines WO2019171720A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018041386A JP2021080830A (en) 2018-03-08 2018-03-08 Internal combustion engine variable valve device
JP2018-041386 2018-03-08

Publications (1)

Publication Number Publication Date
WO2019171720A1 true WO2019171720A1 (en) 2019-09-12

Family

ID=67847058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/047792 WO2019171720A1 (en) 2018-03-08 2018-12-26 Variable valve device for internal combustion engines

Country Status (2)

Country Link
JP (1) JP2021080830A (en)
WO (1) WO2019171720A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3001862U (en) * 1994-03-09 1994-09-06 共同カイテック株式会社 Double headed seal bolt
JP2001082115A (en) * 1999-09-17 2001-03-27 Unisia Jecs Corp Valve timing change device for internal combustion engine
JP2006138872A (en) * 2006-02-03 2006-06-01 Jtekt Corp Device for detecting wheel speed
WO2011089809A1 (en) * 2010-01-25 2011-07-28 三菱自動車工業株式会社 Variable valve gear for internal combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3001862U (en) * 1994-03-09 1994-09-06 共同カイテック株式会社 Double headed seal bolt
JP2001082115A (en) * 1999-09-17 2001-03-27 Unisia Jecs Corp Valve timing change device for internal combustion engine
JP2006138872A (en) * 2006-02-03 2006-06-01 Jtekt Corp Device for detecting wheel speed
WO2011089809A1 (en) * 2010-01-25 2011-07-28 三菱自動車工業株式会社 Variable valve gear for internal combustion engine

Also Published As

Publication number Publication date
JP2021080830A (en) 2021-05-27

Similar Documents

Publication Publication Date Title
JP6373464B2 (en) Valve timing control device for internal combustion engine
JP5500350B2 (en) Valve timing control device
US20170022854A1 (en) Control valve for valve timing control device and valve timing control device for internal combustion engine
JP6396851B2 (en) Hydraulic control valve and valve timing control device for an internal combustion engine using the hydraulic control valve
JP4016020B2 (en) Valve timing control device for internal combustion engine
CN113614333A (en) Working oil control valve and valve timing adjusting device
WO2016021328A1 (en) Hydraulic control valve and valve-timing control device for internal-combustion engine using hydraulic control valve
JP5136852B2 (en) Valve timing control device
JP6581475B2 (en) solenoid valve
US7415952B2 (en) Valve timing control device
JP2018059415A (en) Hydraulic control valve and valve timing control device of internal combustion engine
JP6295160B2 (en) Electromagnetic valve, electromagnetic valve and electromagnetic actuator used for valve timing control device of internal combustion engine
WO2019171720A1 (en) Variable valve device for internal combustion engines
JP5811358B2 (en) Valve timing adjustment device
US6935291B2 (en) Variable valve timing controller
WO2018168302A1 (en) Variable valve device for internal combustion engine
JP5793107B2 (en) Variable valve operating device for internal combustion engine
JP2003106113A (en) Valve timing control device of internal combustion engine
JP6290068B2 (en) Hydraulic control valve and valve timing control device for an internal combustion engine using the hydraulic control valve
JPH11270319A (en) Valve timing controller for internal combustion engine
JP2016065534A (en) Valve timing control device for internal combustion engine
JP2019052569A (en) Variable valve gear of internal combustion engine and assembly method of variable valve gear
JP6492201B2 (en) Hydraulic control valve used for valve timing control device of internal combustion engine
WO2022190568A1 (en) Oil pressure control valve and valve timing control device for internal combustion engine
US9995185B2 (en) Valve timing control device for internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18908760

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18908760

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP