WO2012077193A1 - 投射型表示装置 - Google Patents

投射型表示装置 Download PDF

Info

Publication number
WO2012077193A1
WO2012077193A1 PCT/JP2010/071994 JP2010071994W WO2012077193A1 WO 2012077193 A1 WO2012077193 A1 WO 2012077193A1 JP 2010071994 W JP2010071994 W JP 2010071994W WO 2012077193 A1 WO2012077193 A1 WO 2012077193A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
mirror
reflecting
emitted
light pipe
Prior art date
Application number
PCT/JP2010/071994
Other languages
English (en)
French (fr)
Inventor
政美 高内
Original Assignee
Necディスプレイソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Necディスプレイソリューションズ株式会社 filed Critical Necディスプレイソリューションズ株式会社
Priority to PCT/JP2010/071994 priority Critical patent/WO2012077193A1/ja
Publication of WO2012077193A1 publication Critical patent/WO2012077193A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2026Gas discharge type light sources, e.g. arcs
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2013Plural light sources

Definitions

  • the present invention relates to a projection display device, and more particularly to a multi-lamp projection display device.
  • This projection type display device uses a reflective display element such as a DMD (Digital Micromirror Device).
  • DMD Digital Micromirror Device
  • FIG. 1 shows a schematic configuration diagram of an example of a reflective projection display device.
  • the reflective projection display device includes a lamp 103 having an arc tube 101 having a bright spot 101 ′ that emits light and a concave elliptical reflecting mirror 102 that reflects light emitted by the bright spot 101 ′, and a hollow columnar shape.
  • the inner surface is covered with a mirror, the light pipe 104 that reflects the light incident from the incident port on the inner surface and exits from the exit port, the color wheel 105 that time-divides the light, and the light emitted from the light pipe 104
  • a mirror 106 for adjusting the direction, a lens 107 for adjusting the magnitude of light, a reflective display element 108 for capturing image information into the light, and a projection lens 109 for projecting light from the reflective display element 108 Are provided in order in the light traveling direction.
  • the lamp 103 and the light pipe 104 are arranged so that the optical axis of the light emitted from the lamp 103 matches the optical axis of the light pipe 104.
  • Reflective projection type display devices have a high light utilization efficiency, so their use environment has expanded compared to conventional cases.
  • As one of the methods for brightening the display image of the reflective projection display device there is a method in which a plurality of arc tubes are provided in the projection display device, that is, a plurality of lamps are provided (for example, Patent Document 1).
  • FIG. 2 shows a schematic configuration diagram of a main part of a projection display device provided with two lamps 113.
  • the two lamps 113 are arranged so that the light emission surfaces face each other.
  • a reflecting element 120 such as a mirror is provided near the focal point of the elliptical reflecting mirror 112 located outside the lamp 113.
  • the light pipe 114 is arranged so that the optical axes X and Y of the reflected light produced by reflecting the light emitted from the lamp 113 by the reflecting element 120 and the optical axis Z of the light pipe 114 are parallel to each other.
  • each lamp 113 is reflected by the reflecting element 120, enters the light pipe 114 from the entrance of the light pipe 114, and the two lights are repeatedly reflected and combined in the light pipe 114. In this state, the light is emitted from the emission port, so that a brighter image can be displayed than when one lamp 113 is used.
  • the optical axes X and Y of the light radiated from each lamp 113, reflected by the reflecting element 120, and incident on the light pipe 114 are parallel to the optical axis Z of the light pipe 114 and are spaced apart from each other. have. That is, the condensing point 121 of the light reflected by the reflecting element 120 and the optical axis Z of the light pipe 114 are spaced apart.
  • the condensing point 121 and the optical axis Z of the light pipe 114 do not coincide with each other, for example, the number of reflections of the light emitted from each lamp 113 on the side surface facing inside the light pipe 114 is different.
  • the distance between the light condensing point 121 of the light reflected by the reflecting element 120 and the optical axis Z of the light pipe 114 is large, it is necessary to increase the area of the light incident port of the light pipe 114.
  • the area of the entrance of the light pipe 114 increases, for example, the light path length in which the light incident on the inside of the light pipe 114 proceeds in the optical axis Z direction after being reflected on one side of the opposite side and reflected on the other side is long. Become. Therefore, when the area of the entrance of the light pipe 114 is large, the number of times the light incident on the light pipe 114 is reflected inside the light pipe 114 is smaller than when the area of the entrance of the light pipe 114 is small.
  • the number of times of light reflection inside the light pipe 114 is small, the lights incident from the lamps 113 into the light pipe 114 are not sufficiently combined. Therefore, light is emitted from the light pipe 114 in a state where the luminance distribution of the light is not uniform, and as a result, luminance unevenness occurs in the display image.
  • An object of the present invention is to provide a projection display device that solves the problem that it is difficult to suppress uneven brightness in a display image in a multi-lamp projection display device.
  • the projection display device of the present invention has a light emitting tube having a bright spot that emits light, a concave reflecting mirror that reflects light, a plurality of lamps each having an emission surface from which light is emitted, and a hollow columnar shape.
  • a light pipe that reflects the light incident from the entrance through the inner surface and exits from the exit, and a plurality of lamps, and the light from each lamp enters the entrance of the light pipe.
  • a reflective element that reflects the light toward the screen.
  • the reflecting mirror is formed of a spheroid mirror and a rotating paraboloid mirror that share a rotation axis. The first focal point of the spheroid mirror and the focal point of the rotating parabolic mirror coincide with the bright spot of the arc tube. Light from the ellipse is reflected by the reflecting element and enters from the entrance of the light pipe.
  • the present invention since the area of the entrance of the light pipe is reduced, the number of reflections of light within the light pipe is increased, the light luminance distribution is made uniform, and luminance unevenness is less likely to occur in the display image.
  • FIG. 3 shows a schematic configuration diagram of a main part of the first embodiment of the projection display device according to the present invention.
  • an example of the path of light emitted when the luminescent spot 1 ′ of the arc tube 1 emits light is shown.
  • the projection display device includes two lamps 6 each including a luminous tube 1, a reflecting mirror 4 including a spheroid mirror 2 and a rotating parabolic mirror 3, and a cover glass 5 provided on a light emission surface.
  • the lamps 6 are arranged so that the emission surfaces from which the light is emitted face each other.
  • the projection type display device of the present invention has a reflecting surface composed of a mirror for reflecting the light from the lamp 6 in the direction of the light pipe 7 to be described later in the order of the traveling direction of the light emitted from the lamp 6.
  • the reflecting element 8 having a hollow column shape, the inner surface of which is covered with a mirror, the light pipe 7 that reflects the light incident from the incident port on the inner surface and exits from the output port, and the time-divided light (not shown)
  • a color wheel, a reflective display element (not shown) for capturing image information into the light, and a projection lens (not shown) for projecting light from the reflective display element are provided.
  • a mirror that adjusts the direction of the light and a lens that adjusts the size of the light are arranged.
  • An example of the configuration from the light pipe 7 to a projection lens (not shown) is the same as that of a general reflection type projection display device (see FIG. 1).
  • the reflecting mirror 4 is concave and shares the rotation axis A, and is formed by rotating the elliptic curve 2 that is a reflecting mirror formed by rotating an elliptic curve around the rotation axis, and rotating a parabola around the rotation axis. It is formed with a rotating parabolic mirror 3 which is a reflecting mirror (see FIG. 4). In addition, the rotary parabolic mirror 3 is located in the front and the spheroid mirror 2 is located in the rear in the traveling direction of the light reflected by the reflecting element 8.
  • the focal point (hereinafter referred to as "first focal point") located inside the lamp 6 and the focal point of the rotary parabolic mirror 3 are the same position, and the arc tube 1 is located at this position.
  • the bright spot 1 ′ (where light is actually emitted) is located.
  • the portion of the cover glass 5 corresponding to the spheroid mirror 2 is transparent, and the portion of the cover glass 5 corresponding to the rotary parabolic mirror 3 is provided with a reflective coating so that light is reflected.
  • the portion of the cover glass 5 on which the reflective coating is applied is hereinafter referred to as a “flat reflector”.
  • the two lamps 6 configured as described above are arranged so that the emission surfaces from which the light is emitted from the lamps 6 face each other and the rotation axis A coincides. Then, the light from the spheroid mirror 2 of each lamp 6 is not located at the first focus of the spheroid mirror 2 but is closer to the first focus side than the focus located outside the lamp 6 (hereinafter referred to as “second focus”).
  • a reflection element 8 that reflects toward the entrance of the light pipe 7 is disposed.
  • the reflective element 8 is more preferably closer to the second focal point.
  • the light pipe 7 is disposed in front of the reflecting element 8 in the light traveling direction.
  • the light pipe 7 is arranged so that the optical axis of the light pipe 7 is located at the center between the reflecting surfaces of the reflecting element 8. Further, it is preferable that the optical axis B of the light pipe 7 and the rotation axis A of the lamp 6 intersect at 90 °.
  • the luminescent spot 1 ′ of the arc tube 1 emits light
  • a part of the light emitted from the luminescent spot 1 ′ is reflected by the spheroid mirror 2 of the reflecting mirror 4, passes through the transparent part of the cover glass 5, and It proceeds toward two focal points, that is, toward the reflecting element 8.
  • the light reflected by the reflecting element 8 enters the light pipe 7 from the entrance of the light pipe 7. Further, the other part of the light emitted from the bright spot 1 ′ is reflected by the rotary parabolic mirror 3 of the reflecting mirror 4, becomes parallel light, travels perpendicularly to the flat reflecting mirror, and is reflected.
  • the reflected light travels back along the traveling path, passes through the bright spot 1 ′ of the arc tube 1 that is the focal point of the rotary parabolic mirror 3, and is similar to a part of the light emitted from the bright spot 1 ′ described above. Then, it enters the light pipe 7 from the entrance of the light pipe 7. That is, the light traveling from the luminescent spot 1 ′ of the arc tube 1 to the spheroid mirror 2 of the reflecting mirror 4 and the light traveling to the rotating paraboloid mirror 3 of the reflecting mirror 4 are emitted from the light 6 in an overlapping state.
  • the width of the light traveling from the lamp 6 to the reflecting element 8 is reduced, and the cross-sectional area of this light is halved compared to the projection display device of the related art. Therefore, the width and cross-sectional area of the light reflected from the reflecting element 8 and incident from the incident port of the light pipe 7 are reduced, so that the area of the light incident port of the light pipe 7 can be reduced. As a result, the number of times the light incident inside the light pipe 7 is reflected inside the light pipe 7 increases.
  • the two lights incident on the inside of the light pipe 7 can be sufficiently combined, and the light can be emitted from the emission port of the light pipe 7 in a state where the luminance distribution of the light is made uniform. Luminance unevenness can be reduced. Furthermore, since the number of times that the light incident on the inside of the light pipe 7 is reflected inside the light pipe 7 increases, the light pipe 7 can be shortened. This leads to downsizing of the projection display device.
  • the directions of the optical axes C and D of the light emitted from each light 6 and reflected by the reflecting element 8 are directions closer to the optical axis B of the light pipe 7 as the light travels. Located near the optical axis B of the pipe 7. Therefore, the light radiated from each lamp 6 and reflected by the reflecting element 8 becomes a form close to the light condensed at the same one point. Therefore, since the light emitted from each lamp 6 enters the light pipe 7 in a state close to one light, the difference in the number of times of reflection in the light pipe 7 can be reduced, and thereby, the luminance unevenness of the display image can be reduced. Can be further reduced.
  • FIG. 5 the schematic block diagram of the principal part of 2nd Embodiment of the projection type display apparatus which concerns on this invention is shown.
  • an example of the path of light emitted when the luminescent spot 11 ′ of the arc tube 11 emits light is shown.
  • the description of the same configuration as that in the above embodiment is omitted.
  • the cover glass 15 in the present embodiment is not provided with a reflective coating and is all transparent. Other configurations are the same as those of the first embodiment.
  • the luminescent spot 11 ′ of the arc tube 11 When the luminescent spot 11 ′ of the arc tube 11 is caused to emit light in the projection display device configured as described above, a part of the light emitted from the luminescent spot 11 ′ is reflected by the spheroid 12 of the reflecting mirror 14. It passes through the cover glass 15 and proceeds in the direction of the second focal point, that is, the reflective element 18. The light reflected by the reflection element 18 enters the light pipe 17 from the entrance of the light pipe 17. Further, another part of the light emitted from the bright spot 11 ′ is reflected by the rotary parabolic mirror 13 of the reflecting mirror 14, becomes parallel light, passes through the cover glass 15, and proceeds to the facing lamp 6.
  • the light is reflected by the rotary paraboloid mirror 13 of the reflecting mirror 14 of the lamp 16 facing the lamp 16.
  • This reflected light passes through the bright spot 11 ′ of the arc tube 11, which is the focal point of the rotary parabolic mirror 13.
  • the light that has passed through the bright spot 11 ′ of the arc tube 11 is reflected by the reflecting element 18 in the same manner as part of the light emitted from the arc tube 11 described above, and the light pipe 17 from the entrance of the light pipe 17. Is incident on.
  • the light traveling from the bright spot 11 ′ of one arc tube 11 to the spheroid mirror 12 of the reflecting mirror 14 and the luminous spot 11 ′ of the arc tube 11 of the other lamp 16 proceeds to the paraboloid mirror 13 of the reflecting mirror 14.
  • the light to be emitted is emitted from the light 16 in an overlapping state.
  • the width of the light traveling from the lamp 16 to the reflecting element 18 is reduced, and the cross-sectional area of the light is halved compared to the projection display device of the related art. Accordingly, the width and cross-sectional area of the light reflected by the reflecting element 18 and incident on the light pipe 17 are reduced, so that the area of the light incident port of the light pipe 17 can be reduced.
  • the direction of the optical axis of the light emitted from each light 16 and reflected by the reflecting element 18 is a direction approaching the optical axis of the light pipe 17 as the light travels. Therefore, the condensing point is located close to the optical axis of the light pipe 17. Therefore, the light emitted from each lamp 16 and reflected by the reflecting element 18 is in a form close to the light collected at the same point. Therefore, since the light emitted from each lamp 16 enters the light pipe 17 in a state close to one light, the difference in the number of times of reflection within the light pipe 17 can be reduced, and thereby, the luminance unevenness of the display image can be reduced. Can be further reduced.
  • FIG. 6 the schematic block diagram of the principal part of 3rd Embodiment of the projection type display apparatus which concerns on this invention is shown.
  • an example of the path of light emitted when the bright spot 21 ′ of the arc tube 21 is caused to emit light is shown.
  • the description of the same configuration as that in the above embodiment is omitted.
  • the reflecting mirror 24 has a rotating ellipsoidal mirror 22 in the front and a rotating parabolic mirror 23 in the rear in the traveling direction of the light reflected by the reflecting element 28.
  • Other configurations are the same as those of the first embodiment.
  • the bright spot 21 ′ of the arc tube 21 is caused to emit light in the projection display device configured in this way, a part of the light emitted from the bright spot 21 ′ is reflected by the spheroid mirror 22 of the reflecting mirror 24, The light passes through the transparent portion of the cover glass 25 and proceeds to the second focal point, that is, the reflective element 28. The light reflected by the reflecting element 28 enters the light pipe 27 from the entrance of the light pipe 27. Further, another part of the light emitted from the bright spot 21 ′ is reflected by the rotary paraboloid mirror 23 of the reflecting mirror 24, becomes parallel light, travels perpendicularly to the flat reflecting mirror, and is reflected.
  • the reflected light travels back along the traveling path, passes through the bright spot 21 ′ of the arc tube 21 that is the focal point of the rotary parabolic mirror 23, and is similar to a part of the light emitted from the arc tube 21 described above.
  • the light pipe 27 enters the light pipe 27 from the entrance. That is, the light traveling from the bright spot 21 ′ of the arc tube 21 to the spheroid mirror 22 of the reflecting mirror 24 and the light traveling to the rotating parabolic mirror 3 of the reflecting mirror 4 are emitted from the light 6 in an overlapping state.
  • the directions of the optical axes E and F of the light emitted from each light 26 and reflected by the reflecting element 8 are the same as the optical axis G of the light pipe 27 as the reflected light advances. Is the direction to leave. Therefore, compared with the above-mentioned embodiment, the condensing point 30 and the optical axis G of the light pipe 27 have a space
  • the width and cross-sectional area of the light reflected by the reflecting element 28 and incident on the light pipe 27 from the light pipe 27 incident port are also reduced, so that the area of the light incident port of the light pipe 27 can be reduced.
  • the number of times the light incident inside the light pipe 27 is reflected inside the light pipe 27 can be increased. Therefore, two lights incident on the inside of the light pipe 7 can be synthesized, and light can be emitted from the exit of the light pipe 27 in a state where the luminance distribution of the light incident on the light pipe 7 is uniform. Therefore, uneven brightness of the display image can be reduced.
  • FIG. 7 the schematic block diagram of the principal part of 4th Embodiment of the projection type display apparatus which concerns on this invention is shown.
  • an example of the path of light emitted when the arc tube 31 is caused to emit light is shown.
  • the description of the same configuration as that in the above embodiment is omitted.
  • the cover glass 35 in this embodiment is not subjected to a reflective coating and is all transparent.
  • Other configurations are the same as those of the third embodiment.
  • the luminescent spot 31 ′ of the arc tube 31 When the luminescent spot 31 ′ of the arc tube 31 is caused to emit light in the projection display device configured as described above, a part of the light emitted from the luminescent spot 31 ′ is reflected by the spheroid mirror 32 of the reflecting mirror 34, It passes through the cover glass 35 and proceeds in the direction of the second focal point, that is, the reflective element 38. The light reflected by the reflecting element 38 enters the light pipe 37 from the entrance of the light pipe 37. Further, another part of the light emitted from the bright spot 31 ′ is reflected by the parabolic mirror 33 of the reflecting mirror 34, becomes parallel light, passes through the cover glass 35, and travels to the facing lamp 36.
  • the light is reflected by the rotary paraboloid 33 of the reflecting mirror 34 of the lamp 36 that is opposed.
  • This reflected light passes through the bright spot 31 ′ of the arc tube 31, which is the focal point of the parabolic mirror 33.
  • the light that has passed through the luminescent spot 31 ′ of the arc tube 31 is reflected by the reflecting element 38 in the same manner as part of the light emitted from the luminescent spot 31 ′ described above, and is transmitted from the incident port of the light pipe 37 to the light pipe. 37 is incident.
  • the light traveling from the bright spot 31 ′ of one arc tube 31 to the spheroid mirror 32 of the reflecting mirror 34 and the bright spot 31 ′ of the arc tube 31 of the other lamp 36 proceeds to the paraboloid mirror 33 of the reflecting mirror 34.
  • the light to be emitted is emitted from the light 36 in an overlapping state.
  • the direction of the optical axis of the light emitted from each light 36 and reflected by the reflecting element 38 is the light of the light pipe 37 as the reflected light advances. It is the direction away from the axis. Therefore, as in the third embodiment, the focal point and the optical axis of the light pipe 37 are spaced apart. However, the width of the light traveling from each lamp 36 to the reflecting element 38 is reduced, and the sectional area of the light is halved compared to the projection display device of the related art. Therefore, the width and cross-sectional area of the light reflected by the reflecting element 38 and incident on the light pipe 37 are also reduced, so that the area of the light entrance of the light pipe 37 can be reduced.
  • the number of times the light incident inside the light pipe 37 is reflected inside the light pipe 37 can be increased. Therefore, two lights incident on the inside of the light pipe 37 can be combined, and light can be emitted from the emission surface of the light pipe 37 with the luminance distribution of the light incident on the light pipe 37 uniform. Therefore, uneven brightness of the display image can be reduced.
  • the reflective projection display device has been described.
  • the present invention is not limited to the reflective type, and the number of lamps 6, 16, 26, and 36 is not limited to two.
  • the cover glasses 5, 15, 25, and 35 need only be provided as necessary, and the shape thereof does not need to be flat, and may be adjusted as appropriate.
  • a reflecting member that reflects light is disposed so as to cover the elliptical portions 2 and 22 of the exit ports of the lamps 6 and 26. It doesn't matter if you do.
  • the reflecting elements 8, 18, 28, and 38 may be prisms instead of mirrors.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Projection Apparatus (AREA)

Abstract

 本発明の投射型表示装置は、光を発する輝点(1')を有する発光管(1)と、光を反射させる凹状の反射鏡(4)と、光が出射する出射面と、をそれぞれ有する複数のランプ(6)と、中空の柱状をしており、入射口より入射された光を内面で反射させて出射口より出射するライトパイプ(7)と、複数のランプ(6)のそれぞれに対応して設けられ、各ランプ(6)からの光をライトパイプ(7)の入射口に向けて反射させる反射素子(8)と、を有する。反射鏡(4)は、回転軸を共有する、回転楕円鏡(2)と回転放物鏡(3)により形成されており、回転楕円鏡(2)の第1焦点と回転放物鏡(3)の焦点は発光管(1)の輝点(1')に一致しており、ランプ(6)の楕円部からの光が反射素子(8)で反射してライトパイプ(7)の入射口から入射する。

Description

投射型表示装置
 本発明は、投射型表示装置、特に多灯式の投射型表示装置に関する。
 大型の画像や映像を表示するための装置の1つとして、投射型表示装置があり、この投射型表示装置には、DMD(Digital Micromirror Device)などの反射型表示素子を用いた反射式の投射型表示装置がある。
 図1に、反射式の投射型表示装置の一例の概略構成図を示す。反射式の投射型表示装置には、光を発する輝点101’を有する発光管101と輝点101’の発する光を反射する凹状の楕円反射鏡102とを有するランプ103と、中空の柱状で内面が鏡で覆われており、入射口から入射された光を内面で反射させて出射口より出射するライトパイプ104と、光を時分割するカラーホイール105と、ライトパイプ104を出射した光の方向を調節するミラー106と、光の大きさを調節するレンズ107と、光に画像情報と取り込むための反射型表示素子108と、反射型表示素子108からの光を投射するための投射レンズ109と、が光の進行方向で順番に設けられている。そして、ランプ103から放射する光の光軸とライトパイプ104の光軸とが一致するようにランプ103とライトパイプ104とが配置されている。
 反射式の投射型表示装置は光の利用効率が高いため、従来に比べてその利用環境が拡大している。それに加えて、多目的ホールや大規模な会議室などで、照明などを使用した状態で画像を表示させることに対するニーズが増えている。そのため、このニーズに対応できるように、反射式の投射型表示装置の表示画像をさらに明るくすることが求められている。反射式の投射型表示装置の表示画像をさらに明るく方法の1つとして、投射型表示装置に発光管を複数設ける、つまりランプを複数設ける方法がある(例えば特許文献1)。
 ランプ113を2つ設けた投射型表示装置の要部の概略構成図を図2に示す。2つのランプ113は、光の放射面が対向するように配置されている。楕円反射鏡112の2つの焦点のうち、ランプ113の外部に位置する楕円反射鏡112の焦点付近に鏡などの反射素子120が設けられている。そして、ランプ113から出射した光を反射素子120で反射してできる反射光の光軸X、Yとライトパイプ114の光軸Zとが平行となるようにライトパイプ114は配置されている。このようにすることで、各ランプ113から放射された光は反射素子120で反射し、ライトパイプ114の入射口からライトパイプ114に入射し、2つの光がライトパイプ114内で反射を繰り返し合成された状態で出射口から出射されるので、ランプ113が1つの場合より明るい画像を表示することができる。
特開2010-26260号公報
 ランプ113が2つの場合、各ランプ113から放射し、反射素子120で反射して、ライトパイプ114に入射する光の光軸X、Yは、ライトパイプ114の光軸Zとは平行であり間隔を有している。つまり、反射素子120で反射した光の集光点121とライトパイプ114の光軸Zとが間隔を有している。集光点121とライトパイプ114の光軸Zとが一致しない場合、例えば、ライトパイプ114内部で対向する側面における、各ランプ113から放射した光の反射回数が異なる。これにより、各ランプ113からライトパイプ114に入射した光がライトパイプ114内部で輝度分布が均一化されない状態でライトパイプ114から出射される。その結果、表示画像に輝度ムラが生じてしまう。この現象は、2灯式の投射型表示装置において、1灯のみを点灯した場合に顕著である。
 また、反射素子120で反射した光の集光点121とライトパイプ114の光軸Zとの間隔が大きいと、ライトパイプ114の光の入射口の面積を大きくする必要がある。ライトパイプ114の入射口の面積が大きくなると、ライトパイプ114内部に入射した光が、例えば、対向する側面の一方で反射してから他方で反射するまでに光軸Z方向に進む光路長が長くなる。そのため、ライトパイプ114の入射口の面積が大きい場合、ライトパイプ114の入射口の面積が小さい場合に比べて、ライトパイプ114に入射した光がライトパイプ114内部で反射する回数が少なくなる。ライトパイプ114内部での光の反射回数が少ないと、各ランプ113からライトパイプ114の内部に入射した光同士が十分に合成されない。そのため、光の輝度分布が均一化されない状態でライトパイプ114から光が出射し、その結果、表示画像に輝度ムラが生じる原因となる。ライトパイプ114内部での光の反射回数を増加させるためには、ライトパイプ114を長くする必要があり、このことは、投射型表示装置の大型化につながる。
 本発明の目的は、多灯式の投射型表示装置において、表示画像に生じる輝度ムラを抑制することは困難である、といった問題を解決する投射型表示装置を提供することである。
 本発明の投射型表示装置は、光を発する輝点を有する発光管と、光を反射させる凹状の反射鏡と、光が出射する出射面と、をそれぞれ有する複数のランプと、中空の柱状をしており、入射口より入射された光を内面で反射させて出射口より出射するライトパイプと、複数のランプのそれぞれに対応して設けられ、各ランプからの光をライトパイプの入射口に向けて反射させる反射素子と、を有する。反射鏡は、回転軸を共有する、回転楕円鏡と回転放物鏡により形成されており、回転楕円鏡の第1焦点と回転放物鏡の焦点は発光管の輝点に一致しており、ランプの楕円部からの光が反射素子で反射してライトパイプの入射口から入射する。
 本発明によると、ライトパイプの入射口の面積が小さくなるので、ライトパイプ内での光の反射回数が増加し、光の輝度分布が均一化され、表示画像に輝度ムラが生じにくくなる。
反射型表示素子を用いた投射型表示装置の一例の概略構成図である。 多灯式の投射型表示装置一例の要部の概略構成図である。 本発明に係る投射型表示装置の第1の実施形態の要部の概略構成図である。 出射面からみた反射鏡の概略構成図である。 本発明に係る投射型表示装置の第2の実施形態の要部の概略構成図である。 本発明に係る投射型表示装置の第3の実施形態の要部の概略構成図である。 本発明に係る投射型表示装置の第4の実施形態の要部の概略構成図である。
 以下に、添付の図面に基づき、本発明の実施の形態を説明する。なお、同一の機能を有する構成には添付図面中、同一の番号を付与し、その説明を省略することがある。
 [実施形態1]
 図3に、本発明に係る投射型表示装置の第1の実施形態の要部の概略構成図を示す。なお、図中には、発光管1の輝点1’を発光させたときに発せられる光の進路の一例が示されている。
 本発明の投射型表示装置には、発光管1と、回転楕円鏡2および回転放物鏡3からなる反射鏡4と、光の出射面に設けられたカバーガラス5と、からなるランプ6が2つ設けられており、ランプ6は、互いの光が出射する出射面が対向するように配置されている。また、本発明の投射型表示装置には、ランプ6から放射される光の進行方向の順に、ランプ6からの光を後述するライトパイプ7の方向に反射させるための鏡などからなる反射面を有する反射素子8と、中空の柱状で、内面が鏡で覆われており、入射口から入射した光を内面で反射させて出射口から出射するライトパイプ7と、光を時分割する不図示のカラーホイールと、光に画像情報と取り込むための不図示の反射型表示素子と、反射型表示素子からの光を投射するための不図示の投射レンズと、が設けられており、必要に応じて光の方向を調節するミラーと、光の大きさを調節するレンズと、が配置される。ライトパイプ7から不図示の投射レンズまでの構成の一例としては、一般的な反射式の投射型表示装置と同様である(図1参照)。
 次に、本発明の投射型表示装置の特徴について説明する。
 反射鏡4は、凹状であり、回転軸Aを共有し、楕円曲線を回転軸回りに回転させて形成される反射鏡である回転楕円鏡2と、放物線を回転軸周りに回転させて形成される反射鏡である回転放物鏡3で形成されている(図4参照)。なお、反射素子8で反射された光の進行方向で前方に回転放物鏡3、後方に回転楕円鏡2が位置する。また、回転楕円鏡2の2つの焦点のうちランプ6の内部に位置する焦点(以降「第1焦点」とする)と回転放物鏡3の焦点は同一の位置であり、この位置に発光管1の輝点1’(実際に発光する場所)が位置する。
 回転楕円鏡2に対応する部分のカバーガラス5は透明で、回転放物鏡3に対応する部分のカバーガラス5は、光が反射するように反射コートが施されている。カバーガラス5の反射コートが施されている部分を以降「平板反射鏡」とする。
 以上のように構成された2つのランプ6は、ランプ6から光が出射する出射面が互いに対向し、回転軸Aが一致するように配置される。そして、回転楕円鏡2の第1焦点ではない、ランプ6の外部に位置する焦点(以降「第2焦点」とする)より第1焦点側に、各ランプ6の回転楕円鏡2からの光をライトパイプ7の入射口に向けて反射する反射素子8が配置されている。反射素子8は、第2焦点に近いほうがより好ましい。
 ライトパイプ7は、光の進行方向で反射素子8よりも前方に配置されている。ライトパイプ7の配置の一例としては、ライトパイプ7の光軸が反射素子8の反射面同士の間の中心に位置するように配置されている。また、ライトパイプ7の光軸Bとランプ6の回転軸Aとが90°に交わることが好ましい。
 次に、発光管1の輝点1’が発光したときの光の進み方について説明する。
 発光管1の輝点1’が発光すると、輝点1’から発せられる光の一部は、反射鏡4の回転楕円鏡2で反射し、カバーガラス5の透明な部分を通過して、第2焦点、つまり反射素子8に向かって進行する。反射素子8で反射した光は、ライトパイプ7の入射口からライトパイプ7に入射する。また、輝点1’から発せられる光の他の一部は、反射鏡4の回転放物鏡3で反射し、平行光となって、平板反射鏡に垂直に進行し反射する。反射した光は、進行してきた経路を戻っていき、回転放物鏡3の焦点である発光管1の輝点1’を通過し、上述した輝点1’から発せられる光の一部と同様にして、ライトパイプ7の入射口からライトパイプ7に入射する。つまり、発光管1の輝点1’から反射鏡4の回転楕円鏡2へ進行する光と反射鏡4の回転放物鏡3へ進行する光は重なり合った状態でライト6から出射される。
 発光管1の輝点1’から発せられる光が上述のような経路で進行するため、反射鏡4で反射する光のうち回転楕円鏡2で反射した光だけが、ランプ6から出射される。そのため、ランプ6から反射素子8に進行する光の幅が小さくなり、この光の断面積は、関連技術の投射型表示装置に比べて半分となる。したがって、反射素子8で反射し、ライトパイプ7の入射口から入射する光の幅や断面積も小さくなるので、ライトパイプ7の光の入射口の面積を小さくすることができる。このことにより、ライトパイプ7内部に入射した光がライトパイプ7の内部で反射する回数が増加する。そのため、ライトパイプ7内部に入射した2つの光を十分に合成することができ、光の輝度分布を均一化した状態でライトパイプ7の出射口から光を出射することができるので、表示画像の輝度ムラを減少させることができる。さらに、ライトパイプ7内部に入射した光がライトパイプ7の内部で反射する回数が増加することから、ライトパイプ7を短くすることも可能となり、このことは、ライトパイプ7の小型化、さらには投射型表示装置の小型化につながる。
 また、各ライト6から出射し反射素子8で反射した光の光軸C、Dの方向は、光が進行するにつれてライトパイプ7の光軸Bに近づく方向であるため、集光点10がライトパイプ7の光軸Bに近くに位置する。そのため、各ランプ6で放射し、反射素子8で反射した光同士が、同じ1つの点に集光する光に近い形態になる。そのため、各ランプ6から出射した光が1つの光に近い状態でライトパイプ7に入射するので、ライトパイプ7内で反射する回数の差を小さくすることができ、これにより、表示画像の輝度ムラをさらに減少させることができる。
 [実施形態2]
 図5に、本発明に係る投射型表示装置の第2の実施形態の要部の概略構成図を示す。なお、図中には、発光管11の輝点11’を発光させたときに発せられる光の進路の一例が示されている。また、上述の実施形態と同様の構成については説明を省略する。
 本実施形態におけるカバーガラス15は、第1の実施形態のカバーガラス5とは異なり反射コーティングが施されておらず、すべて透明になっている。その他の構成は、第1の実施形態と同様である。
 このようにして構成された投射型表示装置において発光管11の輝点11’を発光させると、輝点11’から発せられる光の一部は、反射鏡14の回転楕円鏡12で反射し、カバーガラス15を通過して、第2焦点、つまり反射素子18の方向に進行する。反射素子18で反射した光は、ライトパイプ17の入射口からライトパイプ17内に入射する。また、輝点11’から発せられる光の他の一部は、反射鏡14の回転放物鏡13で反射し、平行光となって、カバーガラス15を通過し、対向しているランプ6に進行し、対向しているランプ16の反射鏡14の回転放物鏡13で反射する。この反射光は、回転放物鏡13の焦点である発光管11の輝点11’を通過する。そして、発光管11の輝点11’を通過した光は、上述した発光管11から発せられる光の一部と同様にして、反射素子18で反射し、ライトパイプ17の入射口からライトパイプ17に入射する。つまり、一方の発光管11の輝点11’から反射鏡14の回転楕円鏡12へ進行する光と他方のランプ16の発光管11の輝点11’から反射鏡14の回転放物鏡13へ進行する光は重なり合った状態でライト16から出射される。
 したがって、第1の実施形態と同様に、ランプ16から反射素子18に進行する光の幅が小さくなり、光の断面積は、関連技術の投射型表示装置に比べて半分となる。それに伴い、反射素子18で反射し、ライトパイプ17に入射する光の幅や断面積が小さくなるので、ライトパイプ17の光の入射口の面積を小さくすることができる。
 また、図3に示す第1の実施形態と同様に、各ライト16から出射し反射素子18で反射した光の光軸の方向は、光が進行するにつれてライトパイプ17の光軸に近づく方向であるため、集光点がライトパイプ17の光軸に近くに位置する。そのため、各ランプ16で出射し、反射素子18で反射した光同士が、同じ1つの点に集光する光に近い形態になる。そのため、各ランプ16から出射した光が1つの光に近い状態でライトパイプ17に入射するので、ライトパイプ17内で反射する回数の差を小さくすることができ、これにより、表示画像の輝度ムラをさらに減少させることができる。
 [実施形態3]
 図6に、本発明に係る投射型表示装置の第3の実施形態の要部の概略構成図を示す。なお、図中には、発光管21の輝点21’を発光させたときに発せられる光の進路の一例が示されている。また、上述の実施形態と同様の構成については説明を省略する。
 本実施形態における反射鏡24は、反射素子28で反射された光の進行方向で前方に回転楕円鏡22、後方に回転放物鏡23が位置する。その他の構成は、第1の実施形態と同様である。
 このようにして構成された投射型表示装置において発光管21の輝点21’を発光させると、輝点21’から発せられる光の一部は、反射鏡24の回転楕円鏡22で反射し、カバーガラス25の透明な部分を通過して、第2焦点、つまり反射素子28に進行する。反射素子28で反射した光は、ライトパイプ27の入射口からライトパイプ27内に入射する。また、輝点21’から発せられる光の他の一部は、反射鏡24の回転放物鏡23で反射し、平行光となって、平板反射鏡に垂直に進行し反射する。反射した光は、進行してきた経路を戻っていき、回転放物鏡23の焦点である発光管21の輝点21’を通過し、上述した発光管21から発せられる光の一部と同様にして、ライトパイプ27の入射口からライトパイプ27に入射する。つまり、発光管21の輝点21’から反射鏡24の回転楕円鏡22へ進行する光と反射鏡4の回転放物鏡3へ進行する光は重なり合った状態でライト6から出射される。
 本実施形態では、上述の実施形態とは異なり、各ライト26から出射し反射素子8で反射した光の光軸E、Fの方向は、反射光が進行するにつれてライトパイプ27の光軸Gとは離れる方向である。そのため、上述の実施形態に比べると集光点30とライトパイプ27の光軸Gとは間隔を有する。しかしながら、上述の実施形態と同様に、ランプ26から反射素子28に進行する光の幅は小さくなり、光の断面積は、関連技術の投射型表示装置に比べて半分となる。したがって、反射素子28で反射し、ライトパイプ27の入射口からライトパイプ27に入射する光の幅や断面積も小さくなるので、ライトパイプ27の光の入射口の面積を小さくすることができる。このことにより、ライトパイプ27内部に入射した光がライトパイプ27内部で反射する回数を増加させることができる。そのため、ライトパイプ7内部に入射した2つの光を合成することができ、ライトパイプ7に入射した光の輝度分布が均一化した状態でライトパイプ27の出射口から光を出射させることができるので、表示画像の輝度ムラを減少させることができる。
 [実施形態4]
 図7に、本発明に係る投射型表示装置の第4の実施形態の要部の概略構成図を示す。なお、図中には、発光管31を発光させたときの発せられる光の進路の一例が示されている。また、上述の実施形態と同様の構成については説明を省略する。
 本実施形態におけるカバーガラス35は、反射コーティングが施されておらず、すべて透明になっている。その他の構成は、第3の実施形態と同様である。
 このようにして構成された投射型表示装置において発光管31の輝点31’を発光させると、輝点31’から発せられる光の一部は、反射鏡34の回転楕円鏡32で反射し、カバーガラス35を通過して、第2焦点、つまり反射素子38の方向に進行する。反射素子38で反射した光は、ライトパイプ37の入射口からライトパイプ37内に入射する。また、輝点31’から発せられる光の他の一部は、反射鏡34の回転放物鏡33で反射し、平行光となって、カバーガラス35を通過し、対向しているランプ36に進行して、対向しているランプ36の反射鏡34の回転放物鏡33で反射する。この反射光は、回転放物鏡33の焦点である発光管31の輝点31’を通過する。そして、発光管31の輝点31’を通過した光は、上述した輝点31’から発せられる光の一部と同様にして、反射素子38で反射し、ライトパイプ37の入射口からライトパイプ37に入射する。つまり、一方の発光管31の輝点31’から反射鏡34の回転楕円鏡32へ進行する光と他方のランプ36の発光管31の輝点31’から反射鏡34の回転放物鏡33へ進行する光は重なり合った状態でライト36から出射される。
 本実施形態では、図6に示す第3の実施形態と同様に、各ライト36から出射し反射素子38で反射された光の光軸の方向は、反射光が進行するにつれてライトパイプ37の光軸とは離れる方向である。そのため、第3の実施形態と同様に集光点とライトパイプ37の光軸とは間隔を有する。しかしながら、各ランプ36から反射素子38に進行する光の幅は小さくなり、光の断面積は、関連技術の投射型表示装置に比べて半分となる。したがって、反射素子38で反射し、ライトパイプ37に入射する光の幅や断面積も小さくなるので、ライトパイプ37の光の入射口の面積を小さくすることができる。このことにより、ライトパイプ37内部に入射した光がライトパイプ37内部で反射する回数を増加させることができる。そのため、ライトパイプ37内部に入射した2つの光を合成することができ、ライトパイプ37に入射した光の輝度分布が均一化した状態でライトパイプ37の出射面から光を出射させることができるので、表示画像の輝度ムラを減少させることができる。
 上記実施形態の説明では、反射式の投射型表示装置として説明したが、本発明は反射式に限定されず、ランプ6、16、26、36の数も2つ限定されない。さらに、カバーガラス5、15、25、35は必要に応じて設けるだけでよく、その形状も平板状である必要はなく、適宜調整すればよい。また、第1および第3の実施形態では、カバーガラス5、25の代わりに、ランプ6、26の出射口の楕円部2、22の部分を覆うように、光を反射する反射部材を配置するようにしても構わない。反射素子8、18、28、38は、鏡ではなく、プリズムなどを用いても構わない。
1、11、21、31 発光管
1’、11’、21’、31’輝点
2、12、22、32 回転楕円鏡
3、13、23、33 回転放物鏡
4、14、24、34 反射鏡
5、15、25、35 カバーガラス
6、16、26、36 ランプ
7、17、27、37 ライトパイプ
8、18、28、38 反射素子
10、30集光点

Claims (8)

  1.  光を発する輝点を有する発光管と、前記光を反射させる凹状の反射鏡と、前記光が出射する出射面と、をそれぞれ有する複数のランプと、
     中空の柱状をしており、入射口より入射された光を内面で反射させて出射口より出射するライトパイプと、
     前記複数のランプのそれぞれに対応して設けられ、各前記ランプからの前記光を前記ライトパイプの前記入射口に向けて反射させる反射素子と、を有し、
     前記反射鏡は、回転軸を共有する、回転楕円鏡と回転放物鏡により形成されており、
     前記回転楕円鏡の第1焦点と前記回転放物鏡の焦点は前記発光管の輝点に一致しており、
     前記ランプの前記回転楕円鏡からの前記光が前記反射素子で反射して前記ライトパイプの前記入射口から入射する、投射型表示装置。
  2.  前記反射素子の反射面は、各前記ランプの前記回転楕円鏡の第2焦点より第1焦点側であり、前記回転楕円鏡に対向して配置されている、請求項1に記載の投射型表示装置。
  3.  請求項1または2に記載の投射型表示装置において、
     前記反射鏡の前記回転放物鏡から前記光が出射される部分を覆うように設けられ、前記輝点で生じて、前記回転放物鏡で反射された前記光を、前記輝点に向けて反射する平板反射鏡が設けられている、投射型表示装置。
  4.  請求項1または2に記載の投射型表示装置において、
     一方の前記ランプの前記回転放物鏡から出射する光が対向する他方の前記ランプの前記回転放物鏡の出射口に入射し、各前記回転楕円鏡から出射する光のみが前記反射素子を介して前記ライトパイプに入射する、投射型表示装置。
  5.  請求項1から4のいずれか1項に記載の投射型表示装置において、
     前記ライトパイプは、前記ライトパイプの光軸が前記反射素子の反射面同士の間に位置するように配置されている、投射型表示装置。
  6.  前記ライトパイプは、前記ライトパイプの光軸に対して前記回転軸が90°となるように配置されている、請求項1から5のいずれか1項に記載の投射型表示装置。
  7.  回転軸を共有する、回転楕円鏡と回転放物鏡で形成された凹状の反射鏡と、前記回転楕円鏡の第1焦点および前記回転放物鏡の焦点が一致する位置に光を発する輝点を設けた発光管と、をそれぞれ有する複数のランプの前記輝点を発光させるステップと、
     前記輝点で発する前記光の一部を、前記反射鏡の前記回転楕円鏡で反射させ、前記輝点で発する前記光の他の一部を前記反射鏡の前記回転放物鏡で反射した光を、前記回転放物鏡からの前記光が出射される部分を覆うようにして設けた平板反射鏡で前記輝点に向けて反射させ、前記輝点で発する前記光の一部と前記光の他の一部とを重ね合わせて各前記ランプから出射させるステップと、
     出射した前記光を反射素子によって中空の柱状をしているライトパイプの入射口に向けて反射させるステップと、
     入射口から入射した前記光を、前記ライトパイプの内部で反射させて出射口から出射するステップと、を有する、光の輝度を均一にする方法。
  8.  回転軸を共有する、回転楕円鏡と回転放物鏡で形成された凹状の反射鏡と、前記回転楕円鏡の第1焦点および前記回転放物鏡の焦点が一致する位置に光を発する輝点を設けた発光管と、をそれぞれ有する複数のランプの前記輝点を発光させるステップと、
     前記輝点で発する前記光の一部を、前記反射鏡の前記回転楕円鏡で反射させ、前記輝点で発する前記光の他の一部を、前記反射鏡の前記回転放物鏡で反射させて、他の前記ランプの前記回転放物鏡に入射させ、前記他の前記ランプの前記輝点で発する前記光の一部と重ね合わせて各前記ランプから出させるステップと、
     出射した前記光を反射素子によって中空の柱状をしているライトパイプの入射口に向けて反射させるステップと、
     入射口から入射した前記光を、前記ライトパイプの内部で反射させて出射口から出射するステップと、を有する、光の輝度を均一にする方法。
     
PCT/JP2010/071994 2010-12-08 2010-12-08 投射型表示装置 WO2012077193A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/071994 WO2012077193A1 (ja) 2010-12-08 2010-12-08 投射型表示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/071994 WO2012077193A1 (ja) 2010-12-08 2010-12-08 投射型表示装置

Publications (1)

Publication Number Publication Date
WO2012077193A1 true WO2012077193A1 (ja) 2012-06-14

Family

ID=46206713

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/071994 WO2012077193A1 (ja) 2010-12-08 2010-12-08 投射型表示装置

Country Status (1)

Country Link
WO (1) WO2012077193A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005115094A (ja) * 2002-10-09 2005-04-28 Matsushita Electric Ind Co Ltd 照明装置及びそれを用いた投写型画像表示装置
JP2007080637A (ja) * 2005-09-13 2007-03-29 Koito Mfg Co Ltd 車両用灯具
JP2007101732A (ja) * 2005-09-30 2007-04-19 Sanyo Electric Co Ltd 照明装置及び投写型表示装置
JP2008288542A (ja) * 2007-04-17 2008-11-27 Nec Corp 紫外線照射装置および紫外線照射方法
JP2009216754A (ja) * 2008-03-07 2009-09-24 Ricoh Co Ltd 照明装置及び投射型表示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005115094A (ja) * 2002-10-09 2005-04-28 Matsushita Electric Ind Co Ltd 照明装置及びそれを用いた投写型画像表示装置
JP2007080637A (ja) * 2005-09-13 2007-03-29 Koito Mfg Co Ltd 車両用灯具
JP2007101732A (ja) * 2005-09-30 2007-04-19 Sanyo Electric Co Ltd 照明装置及び投写型表示装置
JP2008288542A (ja) * 2007-04-17 2008-11-27 Nec Corp 紫外線照射装置および紫外線照射方法
JP2009216754A (ja) * 2008-03-07 2009-09-24 Ricoh Co Ltd 照明装置及び投射型表示装置

Similar Documents

Publication Publication Date Title
US8926109B2 (en) Illumination system
US9022580B2 (en) Illumination optical system and projector using the same
US9325955B2 (en) Light source apparatus and projector apparatus with optical system having reduced color irregularity
JP5766371B2 (ja) 投写装置
JP4667037B2 (ja) マルチランプ照明システム
US6962426B2 (en) Recirculation of reflected source light in an image projection system
JP2018173638A (ja) 投影機及びその照明システム
JP2017120380A (ja) 照明システム及び投影装置
US8491125B2 (en) Lighting device and projection type display apparatus including the same
JP2004524581A (ja) プロジェクタディスプレイ装置
JP2006243603A (ja) 集光素子及び照明装置及び投写型映像表示装置
JPWO2020137749A1 (ja) 光源装置および投写型映像表示装置
CN102906639A (zh) 照明光学系统以及使用其的投影仪
US20130088690A1 (en) Light source module and projector using the same
US20060126031A1 (en) Illumination optical system of projection apparatus
JP2017111287A (ja) 投射装置
US20140078730A1 (en) Lamp system having parabolic reflector with two reflections for recycling light
WO2016016076A1 (en) Light source apparatus and optical imaging and displaying device using the light source apparatus
EP2154567B1 (en) Light source device and projection display device using the same
TW201833653A (zh) 投影系統
WO2013118272A1 (ja) 照明光学系および投写型表示装置
TWI289720B (en) Lighting device and projector
JP2004354493A (ja) 投射型表示装置の光源装置
WO2012077193A1 (ja) 投射型表示装置
JP2010026260A (ja) 照明光学装置及びそれを用いた投写型表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10860597

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 09/09/2013)

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 10860597

Country of ref document: EP

Kind code of ref document: A1