WO2012076445A1 - Dispositif de production d'electricite par pile a combustible - Google Patents

Dispositif de production d'electricite par pile a combustible Download PDF

Info

Publication number
WO2012076445A1
WO2012076445A1 PCT/EP2011/071700 EP2011071700W WO2012076445A1 WO 2012076445 A1 WO2012076445 A1 WO 2012076445A1 EP 2011071700 W EP2011071700 W EP 2011071700W WO 2012076445 A1 WO2012076445 A1 WO 2012076445A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
gas
generation device
fuel
storage
Prior art date
Application number
PCT/EP2011/071700
Other languages
English (en)
Inventor
David Olsommer
Original Assignee
Societe De Technologie Michelin
Michelin Recherche Et Technique S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Societe De Technologie Michelin, Michelin Recherche Et Technique S.A. filed Critical Societe De Technologie Michelin
Priority to JP2013542486A priority Critical patent/JP6022474B2/ja
Priority to CN201180058693.4A priority patent/CN103250292B/zh
Priority to US13/989,005 priority patent/US20130302706A1/en
Priority to EP11802308.4A priority patent/EP2649663A1/fr
Publication of WO2012076445A1 publication Critical patent/WO2012076445A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04126Humidifying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/70Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by fuel cells
    • B60L50/72Constructional details of fuel cells specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • B60L58/32Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load
    • B60L58/33Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load by cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04156Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
    • H01M8/04171Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal using adsorbents, wicks or hydrophilic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/186Regeneration by electrochemical means by electrolytic decomposition of the electrolytic solution or the formed water product
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04126Humidifying
    • H01M8/04141Humidifying by water containing exhaust gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04156Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
    • H01M8/04164Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal by condensers, gas-liquid separators or filters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/60Electric or hybrid propulsion means for production processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the invention relates to a device for producing electricity by fuel cell.
  • the invention relates more particularly to a fuel cell type of electricity generation device "closed loop” or “integrated system”, that is to say in which the means for producing gas supplying the battery fuel, the means of packaging and storage of these gases, as well as the fuel cell itself are combined in the same device.
  • closed loop or “integrated system”
  • the invention is more particularly described, but not limited to, for applications in the automotive field, in which this technology is the subject of important research and looks promising.
  • the invention can also be used advantageously in the naval or aeronautical fields.
  • These applications may be mobile, in the case where the fuel cell electricity generation device is embedded in the vehicle, or stationary, in the case where the fuel cell electricity generation device is a means outside the vehicle and for supplying energy to a vehicle in a station.
  • the application can also be used in the stationary field for energy storage.
  • the fuel cell electricity generation device is generally associated with another source of energy which may be of an electrical nature, for example and in a nonlimiting manner, originating from photovoltaic panels.
  • a fuel cell electricity generating device thus makes it possible to produce and store energy, and to supply electrical energy on demand when the main source of energy is not available or insufficient.
  • fuel cells allow the direct production of electrical energy by an electrochemical oxidation-reduction reaction from a fuel gas, such as hydrogen gas, and an oxidizing gas, such as gaseous oxygen or air, without going through a conversion to mechanical energy.
  • the fuel cells are called hydrogen-oxygen type when the gas respectively fuel and oxidant are hydrogen gas and oxygen gas, or hydrogen-air type when the gas respectively fuel and oxidant are hydrogen gas and the air.
  • a fuel cell generally comprises a series association of unitary elements, each unitary element consisting essentially of an anode and a cathode separated by an electrolyte.
  • a typical type of electrolyte used in automotive applications is a solid electrolyte consisting essentially of a polymer membrane, allowing the passage of ions from the anode to the cathode.
  • a particular type of these membranes is proposed for example by the company DuPont under the trade name "Nafion". These membranes must have good ionic conductivity because they are traversed by the hydrogen protons and they must be electrically insulating so that the electrons go through the electrical circuit outside the battery.
  • the first step in the case of a hydrogen-oxygen fuel cell, consists in producing hydrogen gas and gaseous oxygen, using a means for producing gas by electrolysis of water or electrolyser, the water that can be recovered at the fuel cell outlet, as described in document WO 2010/024594.
  • the gaseous hydrogen and the gaseous oxygen from the electrolyser are then saturated with water vapor.
  • the hydrogen and oxygen gases are packaged separately and the steps described below are described for a given gas.
  • the second step consists in desiccating each gas before storage under pressure, that is to say at least a partial drying or extraction of the water contained in the gas. Desiccation of the gas is necessary because the water condensates are detrimental both to the life of the compressors, possibly used to compress the gas before storage, and to that of the gas storage tanks.
  • the gas is dried either by cooling and condensing the gas, or by passing the gas through a desiccant means. Drying by cooling and condensing the gas requires an energy input. Drying by passing the gas through a desiccant means usually uses a desiccant means comprising a solid phase desiccant material.
  • the drying means may be a desiccation column, generally filled with desiccant granules, for example of the silica gel type, as mentioned in the document WO2007050447. Drying by passing the gas through a desiccant column requires maintenance of the desiccant granules. Indeed, desiccant granules, after a number of passages of the gas to be dried, become saturated with water and therefore inoperative in their desiccation function.
  • desiccant granules are then either renewed periodically, which requires a normal maintenance intervention, or regenerated, that is to say dried automatically, by purging a portion of the gas produced by electrolyser and passing through the desiccation column, resulting in a loss of gas volume produced by electrolyser of about 10%.
  • the third step is to compress the dried gas from the desiccant means, by means of a compressor and to store the dried compressed gas in a storage tank under pressure.
  • the storage pressure of the hydrogen gas, after desiccation is between 200 bars and 350 bars, whereas the storage pressure of the gaseous oxygen, after desiccation, is about 130 bars.
  • An alternative solution for the storage of hydrogen is the storage, in the form of metal hydrides, at low pressure, that is to say at a pressure of between 5 bars and 15 bars. This storage pressure corresponds substantially to the pressure of the hydrogen gas at the outlet of the desiccation means, which makes the use of a compressor superfluous.
  • the metal hydrides composed, for example, of nickel and lanthanum, and in the form of fine powder, have the particularity of absorbing hydrogen gas under a certain pressure, with a slight release of heat. To then release the hydrogen, a heat input is necessary: for example, by using the thermal losses of the fuel cell. Once released, the hydrogen is again in the form of pure gaseous hydrogen.
  • the fourth step is to destock the compressed dried gas and relax by means of a pressure reducer, optionally coupled to a safety valve.
  • this step consists in releasing hydrogen, absorbed by the metal hydrides, in gaseous form, as described above.
  • the fifth step is to humidify the dried gas expanded to supply the fuel cell with wet hydrogen fuel gas and wet oxygen oxidizing gas.
  • a wet gas is indeed necessary for the operation of the fuel cell, in particular to not reduce its life.
  • the sixth and last step is the supply of the battery with wet hydrogen and oxygen gas from their respective humidifying means.
  • the hydrogen gas follows the six process steps previously described.
  • gaseous oxygen produced simultaneously but not intended for For example, fueling the fuel cell can be released into the atmosphere.
  • the air usually from an air compressor, can be humidified, before entering the fuel cell, by the moist air coming out of the fuel cell, via a moisture exchanger.
  • the invention aims to overcome the disadvantages of the desiccation means described above, in particular the periodic maintenance and / or non-optimized regeneration of the desiccant means, and the complexity and cost of the humidifying means.
  • the object of the invention is to provide a device for producing electricity by fuel cell, ensuring both an automatic maintenance and efficient drying means and the use of simplified humidification means.
  • a fuel cell power generation device comprising:
  • a fuel gas production means and an oxidizing gas production means the fuel and oxidant gases being intended to feed a fuel cell in which they chemically react with each other to produce electrical energy
  • At least one conditioning unit for one of the fuel or oxidant gases comprising at least one desiccating means, intended to extract at least part of the water contained in the gas passing through it before storage under pressure of the gas, at least two valves respectively upstream and downstream of the desiccant means, at least one means for storage under pressure of the gas and at least one humidification means after destocking and decompression of the gas,
  • valves in a first state, making it possible to configure the electricity generating device in the gas production-storage operating mode, by connecting in series the means for producing the gas, the drying means and the storage means under gas pressure,
  • valves in a second state, for configuring the power generation device in fuel cell operation mode, allowing passing one of the fuel or oxidant gases through the desiccant means for supplying the fuel cell,
  • drying means being configured such that, in the fuel cell operating mode, it operates at a temperature of at least 60 ° C and at least partly ensures the humidification of the gas passing therethrough in battery operation mode fuel, by at least partial return of the water extracted from the gas passing therethrough in the production-gas storage operation mode.
  • a fuel cell electricity production device comprises, firstly, a fuel gas production means and a combustion gas production means. These means of production are usually combined into a single means for producing gas, in the case of a hydrogen-oxygen cell.
  • This means of producing common gas is conventionally an electrolyzer, producing hydrogen and gaseous oxygen by electrolysis of water.
  • the water subjected to electrolysis is generally stored in a water tank, which may possibly be supplied at least partly with recycle water, from a condenser possibly disposed downstream of the electrolyser and / or from the fuel cell.
  • the gas production means are distinct: the gaseous hydrogen is usually derived from an electrolyser while the air generally comes from an air compressor.
  • a device for producing electricity by hydrogen-oxygen fuel cell further comprises a packaging unit for each of the hydrogen and oxygen gases.
  • This packaging assembly comprises at least one desiccation means before storage under pressure of the gas, at least one means for storage under pressure of the gas and at least one humidifying means after destocking the gas.
  • hydrogen gas has a priori a packaging assembly within the meaning of the invention.
  • a drying means is a means of drying the gas, that is to say at least partial extraction of the water contained in the gas, before its compression by a compressor and then its compressor.
  • storage in compressed form in a pressurized storage means such as a storage tank storage.
  • a compressor and a storage tank generally comprising metal parts, have a sensitivity to corrosion by water possibly present in the gas in contact, hence the need to dry the gas to ensure the durability of the parts metal compressor and storage tank.
  • the storage can be carried out in the form of hydrides at low pressure, that is to say between 5 bars and 15 bars, without resorting to a compressor. For hydrides, it is also necessary to first dry the gas, to ensure a long life of the storage means.
  • a gas, resulting from the electrolysis of water and saturated with water vapor, may optionally be partially dried by passage through a condenser intended to remove some of the water from the gas before passing through the medium. desiccation.
  • This condenser may have as a cold source ambient air, or more advantageously for naval application, seawater via a heat exchanger.
  • the pressure storage means of the dry gas is generally a storage tank, sized to withstand the pressure of the gas.
  • the dry gas - hydrogen gas or gaseous oxygen - is removed from its storage tank, decompressed through a pressure regulator before passing through a humidifying means, before feeding the Fuel cell.
  • a valve system comprising at least two valves positioned respectively upstream and downstream of the desiccation means, makes it possible to configure the power generation device according to two modes of operation: a mode of production operation - storage of gas and a fuel cell operating mode.
  • These valves are for example three-way valves.
  • valves configured in a first state, connect in series the gas production means, the drying means before storage under pressure of the gas, and the means of storage under pressure of the gas.
  • This connection makes it possible to store each of the gases produced by electrolysis, then dried and compressed to be stored in a storage tank.
  • hydrogen gas it may alternatively be stored in a tank, in the form of metal hydrides, without prior compression.
  • the valves configured in a second state, allow the passage of one of the fuel or oxidant gases through the desiccation means for the supply of the fuel cell.
  • the drying means is configured such that, in the fuel cell operating mode, it operates at a temperature at least equal to 60 ° C and at least partially ensures the humidification of the fuel cell. gas passing therethrough in fuel cell operation mode, by at least partial return of the water extracted from the gas flowing through it in the gas production-storage operating mode.
  • the desiccating means is used as a humidifying means.
  • the desiccation means has the advantage of providing both desiccation and humidification functions, which simplifies the device for producing electricity by a fuel cell.
  • the water stored by the desiccant means during the passage of the wet gas, gas production-storage mode of operation, is at least partly restored to the gas passing through the desiccant means in fuel cell operation mode. Consequently, the at least partial elimination of the water stored by the desiccation means allows automatic maintenance, that is to say without human intervention, of the desiccation means and the maintenance or regeneration of its capacity. desiccation.
  • a beneficial consequence is the increase in the overall energy efficiency of the fuel cell electricity generating device, since the regeneration of the desiccant means is carried out using the free energy lost from the fuel cell.
  • the humidification mode operation of the desiccation means allows to desorb the same amount of water than that which is absorbed in operation in drying mode, at a temperature between 5 ° C and 25 ° C.
  • the temperature of the gas to be humidified must be higher than that of the gas to be dried.
  • a preferred embodiment of the invention is a device for generating electricity in which the desiccating means, at least partially ensuring the humidification of the gas passing through it in fuel cell operation mode, driven by a pump, is configured so that its operating temperature is between 60 ° C and 100 ° C, preferably between 60 ° C and 80 ° C.
  • the preferred temperature range [60 ° C, 80 ° C] corresponds to the usual operating temperatures of a fuel cell.
  • the temperature range [80 ° C., 100 ° C.] corresponds to the operating temperatures at which the membranes of the fuel cells in development tend, as these higher temperatures advantageously make it possible, for example, to reduce the amount of platinum required for operation. of the fuel cell or to cool the fuel cell more easily.
  • An alternative embodiment of the previous preferred embodiment is an electricity generating device, comprising a cooling circuit of the fuel cell, driven by a pump, wherein the desiccating means, at least partially ensuring the humidification of the gas passing therethrough in the fuel cell operating mode, is configured such that its operating temperature is obtained at least in part by heat exchange with the cooling circuit of the fuel cell.
  • this alternative embodiment allows the use of an existing heat source, the cooling circuit of the fuel cell, resulting in an economic advantage. It also makes it possible to reach the operating temperature level, between 60 ° C. and 100 ° C., preferably between 60 ° C. and 80 ° C., necessary for the vaporization of the water stored in the desiccation means.
  • the power generation device is configured so that the temperature of the gas entering the desiccating means, at least partially ensuring the humidification of the gas passing through it in the operating mode. fuel, is between 60 ° C and 100 ° C, preferably between 60 ° C and 80 ° C.
  • the dry and expanded gas entering the desiccation means is preheated to a temperature allowing the vaporization of the stored water.
  • the heating of the gas can be combined with the heating of the desiccation means described above.
  • the fuel cell electricity generating device comprises a fuel cell cooling circuit
  • the electricity generating device is advantageously configured so that the temperature of the gas entering the fuel cell is reduced.
  • drying means at least partially ensuring the humidification of the gas passing through it in the fuel cell operating mode, is obtained at least partly by heat exchange with the cooling circuit of the fuel cell.
  • This embodiment makes it possible to use an existing heat source, the cooling circuit of the fuel cell, and also makes it possible to reach the temperature level, between 60 ° C. and 100 ° C., preferably between 60 ° C and 80 ° C, necessary for the vaporization of water stored in the desiccant means.
  • the fuel cell electricity generation device comprises a conditioning unit for each of the fuel and combustion gas respectively. Two separate conditioning units thus make it possible to avoid any contact and therefore any chemical reaction between the gases respectively fuel and oxidant before feeding the fuel cell.
  • the fuel cell electricity generation device comprises a packaging assembly only for the fuel gas.
  • the desiccating means intended to extract at least part of the water contained in the gas passing through it, before the gas is stored under pressure, in the production-operating mode. gas storage, is configured such that it is crossed by the same gas in fuel cell operation mode.
  • the drying means ensuring the drying of the gas passing therethrough, in the gas production-storage mode of operation, before being stored under pressure, ensures the humidification of this same gas after its destocking and before feeding of the fuel cell, in fuel cell operation mode.
  • the desiccation means provides both desiccation and humidification functions for the same gas.
  • the drying means is therefore traversed by a gas of the same chemical nature, which avoids any risk of chemical reaction within the desiccation means.
  • the gaseous hydrogen and gaseous oxygen circuits are thus perfectly separated.
  • the desiccating means intended to extract at least partly the water contained in a first gas passing through it, before storage under pressure of the gas, in operating mode production-storage of gas, is configured such that it is crossed by a second gas in fuel cell operation mode.
  • the drying means ensuring the drying of a first gas passing through it, in the gas production-storage operating mode, before being stored under pressure, ensures the humidification of a second gas after its destocking and before feeding the fuel cell, in fuel cell operation mode.
  • the desiccation means provides both desiccation and humidification functions but for different gases.
  • first gas is meant the gas passing through the desiccant means in gas production-storage mode of operation
  • the second gas means the gas passing through the desiccant means in fuel cell operation mode.
  • the means for desiccating the hydrogen gas can ensure the humidification of the compressed air, which in return ensures the drying of the medium. desiccation, which could make redundant the heating of the means of desiccation.
  • the hydrogen gas which is not wetted by its own drying means, it can then be humidified by recirculating the surplus of humid hydrogen gas leaving the fuel cell.
  • drying means consists of at least one drying column comprising desiccant granules, which is a known and mastered technology.
  • the desiccant granules of a desiccation column are silica gel type, which is a material usually used in this type of application. It is also advantageous for the hydrogen storage means to be in the form of metal hydrides, since this storage means makes superfluous the use of a compressor downstream of the desiccation means.
  • the invention also relates to the use of a device for generating electricity from a fuel cell electricity generation device according to the invention for a motor vehicle.
  • FIG. 1 shows the circuit of one of the two feed gases of the fuel cell, in the gas production-storage operating mode, in the case where the fuel cell electricity generation device comprises a set each of the fuel and oxidant gases respectively
  • FIG. 2 shows the circuit of one of the two fuel cell feed gases, in the fuel cell operating mode, in the case where the device for producing fuel fuel cell electricity comprises a conditioning unit for each of the respective fuel and combustion gases
  • FIG. 3 shows the circuits of the two fuel cell feed gases, in the fuel cell operating mode, the fuel cell Fuel cell power generation includes a conditioning package only for the fuel gas.
  • Figures 1 and 2 show schematically the circuit of only one of the two gases respectively fuel and oxidant, this circuit being similar for each gas.
  • FIG. 1 shows the circuit of one of the two feed gases of the fuel cell, in the gas production-storage operating mode, between the gas production means (1) and the storage means under pressure (5).
  • This circuit is described below with reference to the hydrogen gas supplying a hydrogen-oxygen fuel cell.
  • the circuit portion in operation, for a given operating mode is shown in phantom while the non-operating circuit portion is shown in dashed lines.
  • Hydrogen and gaseous oxygen are produced using the gas production means (1), by electrolysis of the water stored in the water tank (12).
  • the water tank (12) is fed at least in part by a recycle water from the condenser (2) disposed downstream of the electrolyser (1) and a recycle water from the fuel cell (8) .
  • the hydrogen gas, from the gas production means (1) and saturated with water vapor, is partially dried in a condenser (2).
  • the effective desiccation is carried out at room temperature, that is to say between 20 ° C and 25 ° C, in the desiccation means (3).
  • a compressor (4) typically between 200 bar and 350 bar for hydrogen gas
  • the use of the compressor (4) may be superfluous if the gas is stored in a tank (5) in the form of hydrides, at a pressure of between 5 bars and 15 bars.
  • Three-way valves (6) and (7), respectively arranged upstream and downstream of the drying means (3), are configured in production-storage operating mode, that is to say they connect in series the means for producing gas (1), the drying means before storage under pressure of the gas (3) and the pressurized storage means of the gas (5).
  • FIG. 2 shows the circuit of one of the two feed gases of the fuel cell, in fuel cell operating mode, ranging from the pressurized storage means (5) to the fuel cell (8). .
  • this circuit is described below with reference to the hydrogen gas supplying a hydrogen-oxygen fuel cell.
  • the dry hydrogen gas is removed from its pressure storage means (5), decompressed through an expander (9), this expander being associated with a safety valve (10). disposed downstream of the expander (9).
  • the decompressed dry hydrogen gas is then humidified during its passage through the desiccant means (3) at a temperature of operating between 60 ° C and 100 ° C, preferably between 60 ° C and 80 ° C.
  • This operating temperature is obtained by heat exchange between the desiccant means (3) and the cooling circuit (11) of the fuel cell (8).
  • the liquid of this cooling circuit is driven by the pump (14).
  • FIG. 3 shows the circuits of the two feed gases of the fuel cell, in the fuel cell operating mode.
  • the dry hydrogen gas is removed from its pressure storage means (5), decompressed through an expander (9), this expander being associated with a safety valve (10) disposed downstream of the expander (9).
  • the decompressed dry hydrogen gas is then humidified by recirculation of excess wet hydrogen gas leaving the fuel cell (8).
  • the air coming from a compressor (13), enters the desiccant means (3) of the hydrogen gas, via the valve (7), to be humidified therein, before supplying the fuel cell (8). ).
  • This embodiment comprising a single packaging assembly only for hydrogen gas, in which the hydrogen gas is humidified by its own drying means and the air is moistened by the moist air leaving the battery fuel, via a moisture exchanger, is not shown.
  • a fuel cell electricity production device comprising a desiccation means for a column comprising desiccant granules, other than silica gel type,
  • a fuel cell electricity generation device comprising a desiccation means comprising a solid phase desiccant material, other than desiccant granules, a fuel cell electricity production device comprising several desiccation and storage means as well as several fuel cells.
  • Such a fuel cell electricity production device is not limited to the supply of electrical energy for a motor vehicle but can be extended to any device requiring a supply of electrical energy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Fuel Cell (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

L'invention concerne un dispositif de production d'électricité par pile à combustible, comprenant des moyens de production (1) de gaz carburant et comburant, au moins un ensemble de conditionnement (2, 3, 4, 5, 6, 7, 9, 10), pour l'un des gaz carburant ou comburant. L'ensemble de conditionnement comprend au moins un moyen de dessiccation (3) avant stockage sous pression du gaz, au moins un moyen de stockage sous pression du gaz (5) et au moins un moyen d'humidification après déstockage du gaz. Selon l'invention, le moyen de dessiccation (3) est configuré de telle sorte que, en mode de fonctionnement pile à combustible, il fonctionne à une température au moins égale à 60°C et assure au moins en partie l'humidification du gaz le traversant en mode de fonctionnement pile à combustible, par restitution au moins partielle de l'eau extraite du gaz le traversant en mode de fonctionnement production- stockage de gaz.

Description

DISPOSITIF DE PRODUCTION D'ELECTRICITE PAR PILE A
COMBUSTIBLE
[0001] L'invention concerne un dispositif de production d'électricité par pile à combustible.
[0002] L'invention concerne plus particulièrement un dispositif de production d'électricité par pile à combustible de type « boucle fermée » ou « système intégré », c'est-à-dire dans lequel les moyens de production des gaz alimentant la pile à combustible, les moyens de conditionnement et de stockage de ces gaz, ainsi que la pile à combustible elle-même sont réunis dans un même dispositif. Les documents US2004126641 et WO03041204 présentent de tels systèmes intégrés.
[0003] L'invention est plus particulièrement décrite, mais de manière non limitative, pour des applications dans le domaine de l'automobile, dans lequel cette technologie fait l'objet d'importantes recherches et semble prometteuse. L'invention peut aussi être utilisée avantageusement dans les domaines naval ou aéronautique.
[0004] Ces applications peuvent être mobiles, dans le cas où le dispositif de production d'électricité par pile à combustible est embarqué dans le véhicule, ou stationnaires, dans le cas où le dispositif de production d'électricité par pile à combustible est un moyen extérieur au véhicule et destiné à fournir de l'énergie à un véhicule dans une station. L'application peut également être utilisée dans le domaine stationnaire pour le stockage d'énergie.
[0005] Dans le cas d'une application mobile, le dispositif de production d'électricité par pile à combustible est généralement associé à une autre source d'énergie qui peut être de nature électrique, par exemple et de manière non limitative, provenant de panneaux photovoltaïques. Un tel dispositif de production d'électricité par pile à combustible permet ainsi de produire et de stocker de l'énergie, et de fournir de l'énergie électrique à la demande lorsque la source principale d'énergie n'est pas disponible ou insuffisante. [0006] Il est connu que les piles à combustible permettent la production directe d'énergie électrique par une réaction électrochimique d'oxydoréduction à partir d'un gaz carburant, tel que l'hydrogène gazeux, et d'un gaz comburant, tels que l'oxygène gazeux ou l'air, sans passer par une conversion en énergie mécanique. [0007] Les piles à combustible sont dites de type hydrogène-oxygène lorsque les gaz respectivement carburant et comburant sont l'hydrogène gazeux et l'oxygène gazeux, ou de type hydrogène-air lorsque les gaz respectivement carburant et comburant sont l'hydrogène gazeux et l'air.
[0008] Une pile à combustible comporte généralement une association en série d'éléments unitaires, chaque élément unitaire étant constitué essentiellement d'une anode et d'une cathode séparées par un électrolyte. Un type classique d' électrolyte, utilisé dans les applications du domaine de l'automobile est un électrolyte solide constitué essentiellement par une membrane polymère, permettant le passage d'ions de l'anode à la cathode. Un type particulier de ces membranes est proposé par exemple par la société DuPont sous l'appellation commerciale « Nafion ». Ces membranes doivent présenter une bonne conductivité ionique car elles sont traversées par les protons hydrogènes et elles doivent être électriquement isolantes afin que les électrons cheminent par le circuit électrique extérieur à la pile. On sait que, non seulement pour les membranes du type indiqué ci-dessus mais également pour d'autres membranes utilisées comme électrolyte solide dans des piles à combustible, la conductibilité des membranes est fonction de leur teneur en eau. C'est la raison pour laquelle les gaz d'alimentation de la pile doivent être suffisamment humides. Ainsi une pile à combustible doit être alimentée en gaz carburant et comburant avec une teneur en eau suffisante, mais pas excessive. [0009] A cette fin, les gaz carburant et comburant humides alimentant la pile à combustible peuvent résulter d'un procédé en plusieurs étapes, décrites ci après dans le cas d'une pile à combustible de type hydrogène-oxygène.
[0010] La première étape, dans le cas d'une pile à combustible de type hydrogène-oxygène, consiste à produire de l'hydrogène gazeux et de l'oxygène gazeux, à l'aide d'un moyen de production de gaz par électrolyse d'eau ou électrolyseur, l'eau pouvant être récupérée en sortie de pile à combustible, tel que décrit dans le document WO 2010/024594. L'hydrogène gazeux et l'oxygène gazeux issus de électrolyseur sont alors saturés en vapeur d'eau. A l'issue de cette première étape, les gaz hydrogène et oxygène sont conditionnés séparément et les étapes décrites ci- après sont décrites pour un gaz donné.
[0011] La deuxième étape consiste en une dessiccation de chaque gaz avant son stockage sous pression, c'est-à-dire un séchage ou une extraction au moins partielle de l'eau contenue dans le gaz. La dessiccation du gaz est nécessaire, car les condensais d'eau sont préjudiciables à la fois à la durée de vie des compresseurs, éventuellement utilisés pour comprimer le gaz avant stockage, et à celle des réservoirs de stockage du gaz. Habituellement, le gaz est séché soit par refroidissement et condensation du gaz, soit par passage du gaz dans un moyen de dessiccation. Le séchage par refroidissement et condensation du gaz nécessite un apport en énergie. Le séchage par passage du gaz dans un moyen de dessiccation utilise, usuellement, un moyen de dessiccation comprenant un matériau dessiccatif en phase solide. En particulier, le moyen de dessiccation peut être une colonne de dessiccation, généralement remplie de granulés dessiccatifs, par exemple, de type silicagel, tels que mentionnés dans le document WO2007050447. Le séchage par passage du gaz dans une colonne de dessiccation nécessite un entretien des granulés dessiccatifs. En effet, les granulés dessiccatifs, après un certain nombre de passages du gaz à sécher, deviennent saturés en eau et donc inopérants dans leur fonction de dessiccation. Ces granulés dessiccatifs sont alors soit renouvelés périodiquement, ce qui nécessite une intervention normale d'entretien, soit régénérés, c'est-à-dire séchés de manière automatique, en purgeant une partie du gaz produit par électrolyseur et traversant la colonne de dessiccation, ce qui entraîne une perte en volume de gaz produit par électrolyseur d'environ 10%.
[0012] La troisième étape consiste à comprimer le gaz séché, issu du moyen de dessiccation, au moyen d'un compresseur et à stocker le gaz séché comprimé dans un réservoir de stockage sous pression. Typiquement, la pression de stockage de l'hydrogène gazeux, après dessiccation, est comprise entre 200 bars et 350 bars, alors que la pression de stockage de l'oxygène gazeux, après dessiccation, est d'environ 130 bars. Une solution alternative pour le stockage de l'hydrogène est le stockage, sous forme d'hydrures métalliques, à basse pression, c'est-à-dire à une pression comprise entre 5 bars et 15 bars. Cette pression de stockage correspond sensiblement à la pression de l'hydrogène gazeux en sortie du moyen de dessiccation, ce qui rend superflu l'usage d'un compresseur. Les hydrures métalliques, composés, à titre d'exemple, de nickel et de lanthane, et sous forme de fine poudre, ont la particularité d'absorber l'hydrogène gazeux sous une certaine pression, avec un léger dégagement de chaleur. Pour libérer ensuite l'hydrogène, un apport de chaleur est nécessaire : par exemple, par utilisation des pertes thermiques de la pile à combustible. Une fois libéré, l'hydrogène est donc à nouveau sous forme d'hydrogène gazeux pur.
[0013] La quatrième étape consiste à déstocker le gaz séché comprimé et à le détendre au moyen d'un détendeur, éventuellement couplé à une vanne de sécurité. Dans le cas particulier du déstockage d'hydrogène, stocké sous forme d'hydrures métalliques, cette étape consiste à libérer l'hydrogène, absorbé par les hydrures métalliques, sous forme gazeuse, tel que décrit précédemment.
[0014] La cinquième étape consiste à humidifier le gaz séché détendu en vue de l'alimentation de la pile à combustible en gaz carburant hydrogène humide et en gaz comburant oxygène humide. Un gaz humide est en effet nécessaire au fonctionnement de la pile à combustible, en particulier pour ne pas réduire sa durée de vie. Il existe plusieurs techniques d'humidification qui peuvent être complexes, lourdes et coûteuses. On peut citer notamment, et de manière non exhaustive, la recirculation sur le circuit hydrogène, tel que décrite dans le document US2003031906, l'échangeur d'humidité à microtubes de Nafion, la roue enthalpique, l'injection de brouillard d'eau. [0015] La sixième et dernière étape est l'alimentation de la pile en hydrogène et oxygène gazeux humides issus de leurs moyens d'humidification respectifs.
[0016] Dans le cas d'une pile à combustible de type hydrogène-air, seul l'hydrogène gazeux suit les six étapes de procédé précédemment décrites. Concernant la première étape relative à la production d'hydrogène gazeux par électrolyse de l'eau, l'oxygène gazeux, produit simultanément mais non destiné à alimenter la pile à combustible, peut, par exemple, être rejeté dans l'atmosphère. En ce qui concerne le gaz comburant, l'air, généralement issu d'un compresseur d'air, il peut être humidifié, avant d'entrer dans la pile à combustible, par l'air humide sortant de la pile à combustible, via un échangeur d'humidité. [0017] L'invention a pour objet de remédier aux désavantages des moyens de dessiccation décrits ci-dessus, en particulier à l'entretien périodique et/ou à la régénération non optimisée du moyen de dessiccation, ainsi qu'à la complexité et au coût du moyen d'humidification.
[0018] Le but de l'invention est de proposer un dispositif de production d'électricité par pile à combustible, garantissant à la fois un entretien automatique et performant des moyens de dessiccation et l'utilisation de moyens d'humidification simplifiés.
[0019] Ce but est atteint grâce à un dispositif de production d'électricité par pile à combustible, comprenant :
-un moyen de production de gaz carburant et un moyen de production de gaz comburant, les gaz respectivement carburant et comburant étant destinés à alimenter une pile à combustible dans laquelle ils réagissent chimiquement entre eux pour produire de l'énergie électrique,
-au moins un ensemble de conditionnement pour l'un des gaz carburant ou comburant, comprenant au moins un moyen de dessiccation, destiné à extraire au moins en partie l'eau contenue dans le gaz le traversant avant un stockage sous pression du gaz, au moins deux vannes respectivement en amont et en aval du moyen de dessiccation, au moins un moyen de stockage sous pression du gaz et au moins un moyen d'humidification après déstockage et décompression du gaz,
-les vannes, dans un premier état, permettant de configurer le dispositif de production d'électricité en mode de fonctionnement production-stockage du gaz, en connectant en série le moyen de production du gaz, le moyen de dessiccation et le moyen de stockage sous pression du gaz,
-les vannes, dans un deuxième état, permettant de configurer le dispositif de production d'électricité en mode de fonctionnement pile à combustible, en autorisant le passage de l'un des gaz carburant ou comburant à travers le moyen de dessiccation en vue de l'alimentation de la pile à combustible,
et le moyen de dessiccation étant configuré de telle sorte que, en mode de fonctionnement pile à combustible, il fonctionne à une température au moins égale à 60°C et assure au moins en partie l'humidification du gaz le traversant en mode de fonctionnement pile à combustible, par restitution au moins partielle de l'eau extraite du gaz le traversant en mode de fonctionnement production- stockage de gaz.
[0020] Un dispositif de production d'électricité par pile à combustible comprend, en premier lieu, un moyen de production de gaz carburant et un moyen de production de gaz comburant. Ces moyens de production sont usuellement réunis en un seul moyen de production de gaz, dans le cas d'une pile à hydrogène-oxygène. Ce moyen de production de gaz commun est classiquement un électrolyseur, produisant l'hydrogène et l'oxygène gazeux par électrolyse de l'eau. L'eau soumise à électrolyse est généralement stockée dans un réservoir d'eau, pouvant être éventuellement alimenté au moins en partie par une eau de recyclage, issue d'un condenseur éventuellement disposé en aval de électrolyseur et/ou issue de la pile à combustible. Dans le cas d'une pile à combustible hydrogène-air, les moyens de production de gaz sont distincts : l'hydrogène gazeux est usuellement issu d'un électrolyseur alors que l'air provient généralement d'un compresseur d'air. [0021] Un dispositif de production d'électricité par pile à combustible de type hydrogène-oxygène comprend de plus un ensemble de conditionnement, pour chacun des gaz hydrogène et oxygène. Cet ensemble de conditionnement comprend au moins un moyen de dessiccation avant stockage sous pression du gaz, au moins un moyen de stockage sous pression du gaz et au moins un moyen d'humidification après déstockage du gaz. Dans le cas d'une pile à combustible hydrogène-air, seul l'hydrogène gazeux dispose a priori d'un ensemble de conditionnement au sens de l'invention.
[0022] Comme décrit précédemment, un moyen de dessiccation est un moyen de séchage du gaz, c'est-à-dire d'extraction au moins partielle de l'eau contenue dans le gaz, avant sa compression éventuelle par un compresseur puis son stockage sous forme comprimé dans un moyen de stockage sous pression tel qu'un réservoir de stockage. En effet, un compresseur et un réservoir de stockage, comprenant généralement des parties métalliques, présentent une sensibilité à la corrosion par l'eau éventuellement présente dans le gaz en contact, d'où la nécessité de sécher le gaz pour garantir la pérennité des parties métalliques du compresseur et du réservoir de stockage. En alternative pour l'hydrogène, le stockage peut être réalisé sous forme d'hydrures à basse pression, c'est-à-dire entre 5 bars et 15 bars, sans avoir recours à un compresseur. Pour les hydrures, il est également nécessaire de sécher au préalable le gaz, pour garantir une durée de vie élevée du moyen de stockage.
[0023] Un gaz, issu de l'électrolyse de l'eau et saturé en vapeur d'eau, peut éventuellement être partiellement séché par un passage dans un condenseur destiné à enlever une partie de l'eau du gaz avant passage dans le moyen de dessiccation. Ce condenseur peut avoir comme source froide l'air ambiant, ou alors plus avantageusement pour une application navale, l'eau de mer par l'intermédiaire d'un échangeur de chaleur. [0024] Le moyen de stockage sous pression du gaz sec est généralement un réservoir de stockage, dimensionné pour résister à la pression du gaz.
[0025] Pour alimenter ensuite la pile à combustible, le gaz sec - hydrogène gazeux ou oxygène gazeux - est déstocké de son réservoir de stockage, décomprimé à travers un détendeur avant de passer à travers un moyen d'humidification, avant d'alimenter la pile à combustible.
[0026] Selon l'invention, un système de vannes, comprenant au moins deux vannes, positionnées respectivement en amont et en aval du moyen de dessiccation, permet de configurer le dispositif de production d'électricité selon deux modes de fonctionnement : un mode de fonctionnement production -stockage de gaz et un mode de fonctionnement pile à combustible. Ces vannes sont par exemple des vannes à trois voies.
[0027] Dans le mode de fonctionnement production-stockage de gaz, les vannes, configurées dans un premier état, connectent en série le moyen de production de gaz, le moyen de dessiccation avant stockage sous pression du gaz, et le moyen de stockage sous pression du gaz. Cette connexion permet de stocker chacun des gaz produits par électrolyse, puis séché et comprimé d'être stocké dans un réservoir de stockage. Dans le cas de l'hydrogène gazeux, celui-ci peut être stocké, de façon alternative, dans un réservoir, sous formes d'hydrures métalliques, sans compression préalable.
[0028] Dans le mode de fonctionnement pile à combustible, les vannes, configurées dans un deuxième état, autorisent le passage de l'un des gaz carburant ou comburant à travers le moyen de dessiccation en vue de l'alimentation de la pile à combustible. [0029] Selon l'invention également, le moyen de dessiccation est configuré de telle sorte que, en mode de fonctionnement pile à combustible, il fonctionne à une température au moins égale à 60°C et assure au moins en partie l'humidification du gaz le traversant en mode de fonctionnement pile à combustible, par restitution au moins partielle de l'eau extraite du gaz le traversant en mode de fonctionnement production-stockage de gaz. En d'autres termes, le moyen de dessiccation est utilisé comme moyen d'humidification. Ainsi le moyen de dessiccation présente l'avantage d'assurer les deux fonctions de dessiccation et d'humidification, ce qui simplifie le dispositif de production d'électricité par pile à combustible. Corrélativement l'eau stockée par le moyen de dessiccation, lors du passage du gaz humide, en mode de fonctionnement production- stockage de gaz, est au moins en partie restituée au gaz traversant le moyen de dessiccation, en mode de fonctionnement pile à combustible. Par conséquent, l'élimination au moins partielle de l'eau stockée par le moyen de dessiccation permet l'entretien automatique, c'est-à-dire sans intervention humaine, du moyen de dessiccation et au maintien ou à la régénération de sa capacité de dessiccation. Une conséquence bénéfique est l'augmentation du rendement énergétique global du dispositif de production d'électricité par pile à combustible, car la régénération du moyen de dessiccation est réalisée en utilisant l'énergie gratuite perdue de la pile à combustible.
[0030] Le fonctionnement en mode humidification du moyen de dessiccation, à une température au moins égale à 60°C, permet de désorber la même quantité d'eau que celle qui est absorbée en fonctionnement en mode séchage, à une température comprise entre 5°C et 25°C. Ainsi, pour pouvoir désorber la même quantité d'eau que celle absorbée durant la phase de stockage, la température du gaz a humidifier doit être supérieure a celle du gaz à sécher. [0031] Un mode de réalisation préféré de l'invention est un dispositif de production d'électricité dans lequel le moyen de dessiccation, assurant au moins en partie l'humidification du gaz le traversant en mode de fonctionnement pile à combustible, entraîné par une pompe, est configuré de telle sorte que sa température de fonctionnement est comprise entre 60°C et 100°C, de préférence entre 60°C et 80°C. En effet, cette température de fonctionnement permet de transformer en vapeur d'eau, l'eau récupérée par le moyen de dessiccation, au cours de l'étape de dessiccation. L'intervalle de températures préférentiel [60°C, 80°C] correspond aux températures de fonctionnement usuelles d'une pile à combustible. L'intervalle de températures [80°C, 100°C] correspond aux températures de fonctionnement vers lesquelles tendent les membranes des piles à combustible en développement, ces températures plus élevées permettant avantageusement, par exemple, de réduire la quantité de platine nécessaire au fonctionnement de la pile à combustible ou de refroidir plus facilement la pile à combustible.
[0032] Une variante du mode de réalisation préféré précédent est un dispositif de production d'électricité, comprenant un circuit de refroidissement de la pile à combustible, entraîné par une pompe, dans lequel le moyen de dessiccation, assurant au moins en partie l'humidification du gaz le traversant en mode de fonctionnement pile à combustible, est configuré de telle sorte que sa température de fonctionnement est obtenue au moins en partie par échange thermique avec le circuit de refroidissement de la pile à combustible. En effet, cette variante de mode de réalisation permet d'utiliser une source de chaleur existante, le circuit de refroidissement de la pile à combustible, d'où un avantage économique. Il permet par ailleurs d'atteindre le niveau de température de fonctionnement, entre 60°C et 100°C, de préférence entre 60°C et 80°C, nécessaire à la vaporisation de l'eau stockée dans le moyen de dessiccation. [0033] Il est encore avantageux que le dispositif de production d'électricité soit configuré de telle sorte que la température du gaz entrant dans le moyen de dessiccation, assurant au moins en partie l'humidification du gaz le traversant en mode de fonctionnement pile à combustible, est comprise entre 60°C et 100°C, de préférence entre 60°C et 80°C. En d'autres termes, le gaz sec et détendu entrant dans le moyen de dessiccation est préalablement chauffé jusqu'à une température permettant la vaporisation de l'eau stockée. Le chauffage du gaz peut être combiné au chauffage du moyen de dessiccation précédemment décrit.
[0034] Dans le cas où le dispositif de production d'électricité par pile à combustible comprend un circuit de refroidissement de la pile à combustible, le dispositif de production d'électricité est avantageusement configuré de telle sorte que la température du gaz entrant dans le moyen de dessiccation, assurant au moins en partie l'humidification du gaz le traversant en mode de fonctionnement pile à combustible, est obtenue au moins en partie par échange thermique avec le circuit de refroidissement de la pile à combustible. Ce mode de réalisation permet d'utiliser une source de chaleur existante, le circuit de refroidissement de la pile à combustible, et permet, par ailleurs, d'atteindre le niveau de température, entre 60°C et 100°C, de préférence entre 60°C et 80°C, nécessaire à la vaporisation de l'eau stockée dans le moyen de dessiccation. [0035] Selon un mode de réalisation de l'invention, le dispositif de production d'électricité par pile à combustible comprend un ensemble de conditionnement pour chacun des gaz respectivement carburant et comburant. Deux ensembles de conditionnement distincts permettent ainsi d'éviter tout contact et donc toute réaction chimique entre les gaz respectivement carburant et comburant avant l'alimentation de la pile à combustible.
[0036] C'est le cas en particulier d'un dispositif de production d'électricité par pile à combustible de type hydrogène-oxygène, dans lequel le gaz carburant - hydrogène gazeux- et le gaz comburant -oxygène gazeux- sont conditionnés par leurs ensembles de conditionnement respectifs. [0037] Dans le cas d'un dispositif de production d'électricité par pile à combustible de type hydrogène-oxygène, les moyens de production de l'hydrogène gazeux et de l'oxygène gazeux sont confondus en un seul moyen de production par électrolyse de l'eau provenant d'un réservoir de stockage d'eau connecté à la pile à combustible. Ce moyen de production par électrolyse de l'eau est le moyen usuel et économique de production simultanée de l'hydrogène gazeux et de l'oxygène gazeux.
[0038] Selon un autre mode de réalisation de l'invention, le dispositif de production d'électricité par pile à combustible comprend un ensemble de conditionnement seulement pour le gaz carburant.
[0039] C'est le cas notamment d'une pile à combustible de type hydrogène-air, dans laquelle seul l'hydrogène gazeux, produit par électrolyse de l'eau, a un ensemble de conditionnement au sens de l'invention. L'air, issu généralement d'un compresseur, donc d'un moyen de production distinct de celui de l'hydrogène gazeux, n'a pas besoin d'un tel ensemble de conditionnement.
[0040] Selon un mode de réalisation préféré de l'invention, le moyen de dessiccation, destiné à extraire au moins en partie l'eau contenue dans le gaz le traversant, avant le stockage sous pression du gaz, en mode de fonctionnement production-stockage de gaz, est configuré de telle sorte qu'il est traversé par le même gaz en mode de fonctionnement pile à combustible. En d'autres termes, le moyen de dessiccation assurant le séchage du gaz le traversant, en mode de fonctionnement production-stockage de gaz, avant son stockage sous pression, assure l'humidification de ce même gaz après son déstockage et avant l'alimentation de la pile à combustible, en mode de fonctionnement pile à combustible. Ainsi, le moyen de dessiccation assure les deux fonctions de dessiccation et d'humidification pour le même gaz. Avantageusement, le moyen de dessiccation est donc traversé par un gaz de même nature chimique, ce qui évite tout risque de réaction chimique au sein du moyen de dessiccation. Dans le cas d'une pile à combustible de type hydrogène- oxygène, les circuits d'hydrogène gazeux et d'oxygène gazeux sont ainsi parfaitement séparés. [0041] Selon un autre mode de réalisation avantageux de l'invention, le moyen de dessiccation, destiné à extraire au moins en partie l'eau contenue dans un premier gaz le traversant, avant le stockage sous pression du gaz, en mode de fonctionnement production-stockage de gaz, est configuré de telle sorte qu'il est traversé par un deuxième gaz en mode de fonctionnement pile à combustible. En d'autres termes, le moyen de dessiccation assurant le séchage d'un premier gaz le traversant, en mode de fonctionnement production- stockage de gaz, avant son stockage sous pression, assure l'humidification d'un deuxième gaz après son déstockage et avant l'alimentation de la pile à combustible, en mode de fonctionnement pile à combustible. Ainsi, le moyen de dessiccation assure les deux fonctions de dessiccation et d'humidification mais pour des gaz différents. Par premier gaz, on entend le gaz traversant le moyen de dessiccation en en mode de fonctionnement production-stockage de gaz, et, par deuxième gaz, on entend le gaz traversant le moyen de dessiccation en en mode de fonctionnement pile à combustible. A titre d'exemple, dans le cas d'une pile à combustible de type hydrogène-air, le moyen de dessiccation de l'hydrogène gazeux peut assurer l'humidification de l'air comprimé, qui assure en contrepartie le séchage du moyen de dessiccation, ce qui pourrait rendre superflu le chauffage du moyen de dessiccation. Concernant l'hydrogène gazeux, qui n'est pas humidifié par son propre moyen de dessiccation, il peut alors être humidifié par recirculation du surplus d'hydrogène gazeux humide sortant de la pile à combustible.
[0042] Un autre mode de réalisation préféré de l'invention est un dispositif de production d'électricité par pile à combustible, dans lequel le moyen de dessiccation est constitué d'au moins une colonne de dessiccation comprenant des granulés dessiccatifs, qui est une technologie connue et maîtrisée.
[0043] Selon une variante du mode de réalisation préféré précédent, les granulés dessiccatifs d'une colonne de dessiccation sont de type silicagel, qui est un matériau usuellement utilisé dans ce type d'application. [0044] Il est encore avantageux que le moyen de stockage de l'hydrogène soit réalisé sous forme d'hydrures métalliques, car ce moyen de stockage rend superflu l'utilisation d'un compresseur, en aval du moyen de dessiccation.
[0045] L'invention a également pour objet l'utilisation d'un dispositif de production d'électricité d'un dispositif de production d'électricité par pile à combustible selon l'invention pour un véhicule automobile.
[0046] Les caractéristiques et autres avantages de l'invention seront mieux compris à l'aide des figures annexées 1 à 3 :
-la figure 1 présente le circuit d'un des deux gaz d'alimentation de la pile à combustible, en mode de fonctionnement production-stockage de gaz, dans le cas où le dispositif de production d'électricité par pile à combustible comprend un ensemble de conditionnement pour chacun des gaz respectivement carburant et comburant, -la figure 2 présente le circuit d'un des deux gaz d'alimentation de la pile à combustible, en mode de fonctionnement pile à combustible, dans le cas où le dispositif de production d'électricité par pile à combustible comprend un ensemble de conditionnement pour chacun des gaz respectivement carburant et comburant, -la figure 3 présente les circuits des deux gaz d'alimentation de la pile à combustible, en mode de fonctionnement pile à combustible, le dispositif de production d'électricité par pile à combustible comprend un ensemble de conditionnement seulement pour le gaz carburant.
[0047] Les figures 1 et 2 présentent schématiquement le circuit d'un seul des deux gaz respectivement carburant et comburant, ce circuit étant similaire pour chacun des gaz.
[0048] La figure 1 présente le circuit d'un des deux gaz d'alimentation de la pile à combustible, en mode de fonctionnement production-stockage de gaz, entre le moyen de production de gaz (1) et le moyen de stockage sous pression (5). Ce circuit est décrit ci-dessous en référence à l'hydrogène gazeux alimentant une pile à combustible de type hydrogène-oxygène. En outre, la partie de circuit en fonctionnement, pour un mode de fonctionnement donné, est représentée en traits pleins alors que la partie de circuit non en fonctionnement est représentée en traits pointillés.
[0049] L'hydrogène et l'oxygène gazeux sont produits à l'aide du moyen de production de gaz (1), par électrolyse de l'eau stockée dans le réservoir d'eau (12). Le réservoir d'eau (12) est alimenté au moins en partie par une eau de recyclage issue du condenseur (2) disposé en aval de l'électrolyseur (1) et par une eau de recyclage issue de la pile à combustible (8). L'hydrogène gazeux, issu du moyen de production de gaz (1) et saturé de vapeur d'eau, est partiellement séché dans un condenseur (2). Puis, la dessiccation effective est réalisée à température ambiante, c'est-à-dire entre 20°C et 25°C, dans le moyen de dessiccation (3). Le gaz ainsi séché, issu du moyen de dessiccation (3), est comprimé dans un compresseur (4), typiquement entre 200 bars et 350 bars pour l'hydrogène gazeux, puis stocké dans un moyen de stockage sous pression ou réservoir (5). En alternative pour l'hydrogène, l'utilisation du compresseur (4) peut être superflue si le gaz est stocké dans un réservoir (5) sous forme d'hydrures, à une pression comprise entre 5 bars et 15 bars. Des vannes trois voies (6) et (7), respectivement disposées en amont et en aval du moyen de dessiccation (3), sont configurées en mode de fonctionnement production-stockage, c'est-à-dire qu'elles connectent en série le moyen de production de gaz (1), le moyen de dessiccation avant stockage sous pression du gaz (3) et le moyen de stockage sous pression du gaz (5).
[0050] La figure 2 présente le circuit d'un des deux gaz d'alimentation de la pile à combustible, en mode de fonctionnement pile à combustible, allant du moyen de stockage sous pression (5) à la pile à combustible (8). Comme pour la figure 1, ce circuit est décrit ci-dessous en référence à l'hydrogène gazeux alimentant une pile à combustible de type hydrogène-oxygène.
[0051] En mode de fonctionnement pile à combustible, l'hydrogène gazeux sec est déstocké de son moyen de stockage sous pression (5), décomprimé à travers un détendeur (9), ce détendeur étant associé à une vanne de sécurité (10) disposée en aval du détendeur (9). L'hydrogène gazeux sec décomprimé est alors humidifié lors de son passage dans le moyen de dessiccation (3) à une température de fonctionnement comprise entre 60°C et 100°C, de préférence entre 60°C et 80°C. Cette température de fonctionnement est obtenue par échange thermique entre le moyen de dessiccation (3) et le circuit de refroidissement (11) de la pile à combustible (8). Le liquide de ce circuit de refroidissement est entraîné par la pompe (14).
[0052] La figure 3 présente les circuits des deux gaz d'alimentation de la pile à combustible, en mode de fonctionnement pile à combustible. C'est par exemple le cas d'une pile à combustible de type hydrogène-air. Selon ce mode de réalisation, l'hydrogène gazeux sec est déstocké de son moyen de stockage sous pression (5), décomprimé à travers un détendeur (9), ce détendeur étant associé à une vanne de sécurité (10) disposée en aval du détendeur (9). L'hydrogène gazeux sec décomprimé est alors humidifié par recirculation du surplus d'hydrogène gazeux humide sortant de la pile à combustible (8). L'air, issu d'un compresseur (13), entre dans le moyen de dessiccation (3) de l'hydrogène gazeux, via la vanne (7), pour y être humidifié, avant d'alimenter la pile à combustible (8).
[0053] Cette variante de réalisation, comprenant un seul ensemble de conditionnement uniquement pour l'hydrogène gazeux, dans laquelle l'hydrogène gazeux est humidifié par son propre moyen de dessiccation et l'air est humidifié par l'air humide sortant de la pile à combustible, via un échangeur d'humidité, n'est pas représentée.
[0054] L'invention ne doit pas être interprétée comme étant limitée aux modes de réalisation, présentés précédemment et illustrés sur les figures 1 à 3, mais peut être étendue à d'autres modes de réalisation, tels qu'à titre d'exemple et de manière non exhaustive:
-un dispositif de production d'électricité par pile à combustible comprenant un moyen de dessiccation d'une colonne comprenant des granulés dessiccatifs, autres que de type silicagel,
-un dispositif de production d'électricité par pile à combustible comprenant un moyen de dessiccation comprenant un matériau dessiccatif en phase solide, autre que des granulés dessiccatifs, -un dispositif de production d'électricité par pile à combustible comprenant plusieurs moyens de dessiccation, de stockage ainsi que plusieurs piles à combustible.
[0055] Enfin, un tel dispositif de production d'électricité par pile à combustible n'est pas limité à la fourniture d'énergie électrique pour un véhicule automobile mais peut être étendu à tout dispositif requérant une alimentation en énergie électrique.

Claims

REVENDICATIONS
1— Dispositif de production d'électricité par pile à combustible, comprenant:
-un moyen de production (1) de gaz carburant et un moyen de production (1, 13) de gaz comburant, les gaz respectivement carburant et comburant étant destinés à alimenter une pile à combustible (8) dans laquelle ils réagissent chimiquement entre eux pour produire de l'énergie électrique,
-au moins un ensemble de conditionnement (2, 3, 4, 5, 6, 7, 9, 10) pour l'un des gaz carburant ou comburant, comprenant au moins un moyen de dessiccation (3), destiné à extraire au moins en partie l'eau contenue dans le gaz le traversant avant un stockage sous pression du gaz, au moins deux vannes (6, 7) respectivement en amont et en aval du moyen de dessiccation (3), au moins un moyen de stockage sous pression du gaz (5) et au moins un moyen d'humidification après déstockage et décompression du gaz, -les vannes (6, 7), dans un premier état, permettant de configurer le dispositif de production d'électricité en mode de fonctionnement production-stockage du gaz, en connectant en série le moyen de production (1) du gaz, le moyen de dessiccation (3) et le moyen de stockage sous pression du gaz (5),
caractérisé en ce que les vannes (6, 7), dans un deuxième état, permettent de configurer le dispositif de production d'électricité en mode de fonctionnement pile à combustible, en autorisant le passage de l'un des gaz carburant ou comburant à travers le moyen de dessiccation (3) en vue de l'alimentation de la pile à combustible (8), et en ce que le moyen de dessiccation (3) est configuré de telle sorte que, en mode de fonctionnement pile à combustible, il fonctionne à une température au moins égale à 60°C et assure au moins en partie l'humidification du gaz le traversant, par restitution au moins partielle de l'eau extraite du gaz le traversant en mode de fonctionnement production-stockage de gaz.
2— Dispositif de production d'électricité par pile à combustible selon la revendication 1, caractérisé en ce que le moyen de dessiccation (3), assurant au moins en partie l'humidification du gaz le traversant en mode de fonctionnement pile à combustible, est configuré de telle sorte que sa température de fonctionnement, est comprise entre 60°C et 100°C, de préférence entre 60°C et 80°C. 3— Dispositif de production d'électricité par pile à combustible selon l'une des revendications 1 ou 2, comprenant un circuit de refroidissement (11) de la pile à combustible (8), entraîné par une pompe (14), caractérisé en ce que le moyen de dessiccation (3), assurant au moins en partie l'humidification du gaz le traversant en mode de fonctionnement pile à combustible, est configuré de telle sorte que sa température de fonctionnement est obtenue au moins en partie par échange thermique avec le circuit de refroidissement (11) de la pile à combustible (8). 4— Dispositif de production d'électricité par pile à combustible selon l'une quelconque des revendications 1 à 3, caractérisé en ce que le dispositif de production d'électricité est configuré de telle sorte que la température du gaz entrant dans le moyen de dessiccation (3), assurant au moins en partie l'humidification du gaz le traversant en mode de fonctionnement pile à combustible, est comprise entre 60°C et 100°C, de préférence entre 60°C et 80°C.
5— Dispositif de production d'électricité par pile à combustible selon l'une quelconque des revendications 1 à 4 , comprenant un circuit de refroidissement (11) de la pile à combustible (8), entraîné par une pompe (14), caractérisé en ce que le dispositif de production d'électricité est configuré de telle sorte que la température du gaz entrant dans le moyen de dessiccation (3), assurant au moins en partie l'humidification du gaz le traversant en mode de fonctionnement pile à combustible, est obtenue au moins en partie par échange thermique avec le circuit de refroidissement (11) de la pile à combustible (8).
6— Dispositif de production d'électricité par pile à combustible l'une quelconque des revendications 1 à 5, caractérisé en ce que le dispositif de production d'électricité par pile à combustible comprend un ensemble de conditionnement (2, 3, 4, 5, 6, 7, 9, 10) pour chacun des gaz respectivement carburant et comburant. 7— Dispositif de production d'électricité par pile à combustible selon la revendication
6, caractérisé en ce que les gaz respectivement carburant et comburant sont l'hydrogène gazeux et l'oxygène gazeux. 8— Dispositif de production d'électricité par pile à combustible selon la revendication
7, caractérisé en ce que les moyens de production de l'hydrogène gazeux et de l'oxygène gazeux sont confondus en un moyen de production (1) par électrolyse de l'eau provenant d'un réservoir de stockage d'eau (12) connecté à la pile à combustible (8)·
9— Dispositif de production d'électricité par pile à combustible l'une quelconque des revendications 1 à 5, caractérisé en ce que le dispositif de production d'électricité par pile à combustible comprend un ensemble de conditionnement (2, 3, 4, 5, 6, 7, 9, 10) seulement pour le gaz carburant.
10— Dispositif de production d'électricité par pile à combustible selon la revendication
9, caractérisé en ce que les gaz respectivement carburant et comburant sont l'hydrogène gazeux et l'air. 11— Dispositif de production d'électricité par pile à combustible selon la revendication
10, caractérisé en ce que le moyen de production de l'hydrogène gazeux est un moyen de production (1) par électrolyse de l'eau provenant d'un réservoir de stockage d'eau (12) connecté à la pile à combustible (8), et en ce que le moyen de production de l'air est un compresseur d'air (13).
12— Dispositif de production d'électricité par pile à combustible selon l'une quelconque des revendications 1 à 11, caractérisé en ce que le moyen de dessiccation (3), destiné à extraire au moins en partie l'eau contenue dans le gaz le traversant, avant le stockage sous pression du gaz, en mode de fonctionnement production- stockage de gaz, est configuré de telle sorte qu'il est traversé par le même gaz en mode de fonctionnement pile à combustible. 13— Dispositif de production d'électricité par pile à combustible selon l'une quelconque des revendications 1 à 1 1, caractérisé en ce que le moyen de dessiccation (3), destiné à extraire au moins en partie l'eau contenue dans un premier gaz le traversant, avant le stockage sous pression du gaz, en mode de fonctionnement production-stockage de gaz, est configuré de telle sorte qu'il est traversé par un deuxième gaz en mode de fonctionnement pile à combustible.
14— Dispositif de production d'électricité par pile à combustible selon l'une quelconque des revendications 1 à 13, caractérisé en ce que le moyen de dessiccation (3) est constitué d'au moins une colonne de dessiccation comprenant des granulés dessiccatifs.
15— Dispositif de production d'électricité par pile à combustible selon la revendication 14, caractérisé en ce que les granulés dessiccatifs d'une colonne de dessiccation (3) sont de type silicagel.
16— Dispositif de production d'électricité par pile à combustible selon l'une quelconque des revendications 1 à 15, caractérisé en ce que le moyen de stockage de l'hydrogène est réalisé sous forme d'hydrures métalliques.
17— Utilisation d'un dispositif de production d'électricité par pile à combustible selon l'une quelconque des revendications 1 à 16 pour un véhicule automobile.
PCT/EP2011/071700 2010-12-06 2011-12-05 Dispositif de production d'electricite par pile a combustible WO2012076445A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013542486A JP6022474B2 (ja) 2010-12-06 2011-12-05 燃料電池を用いて発電を行う装置
CN201180058693.4A CN103250292B (zh) 2010-12-06 2011-12-05 利用燃料电池发电的设备
US13/989,005 US20130302706A1 (en) 2010-12-06 2011-12-05 Device for generating electricity using a fuel cell
EP11802308.4A EP2649663A1 (fr) 2010-12-06 2011-12-05 Dispositif de production d'electricite par pile a combustible

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1060097A FR2968462B1 (fr) 2010-12-06 2010-12-06 Dispositif de production d'electricite par pile a combustible.
FR1060097 2010-12-06

Publications (1)

Publication Number Publication Date
WO2012076445A1 true WO2012076445A1 (fr) 2012-06-14

Family

ID=44245684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/071700 WO2012076445A1 (fr) 2010-12-06 2011-12-05 Dispositif de production d'electricite par pile a combustible

Country Status (6)

Country Link
US (1) US20130302706A1 (fr)
EP (1) EP2649663A1 (fr)
JP (1) JP6022474B2 (fr)
CN (1) CN103250292B (fr)
FR (1) FR2968462B1 (fr)
WO (1) WO2012076445A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2985859A1 (fr) * 2012-01-17 2013-07-19 Helion Systeme d'alimentation d'une pile a combustible en gaz
JP2014125644A (ja) * 2012-12-25 2014-07-07 Takasago Thermal Eng Co Ltd 充放電システム

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3120082A4 (fr) * 2014-02-16 2018-04-18 BE Power Tech, Inc. Système de régénération de dessicant liquide, et procédé de fonctionnement de ce système de régénération
JP6247954B2 (ja) * 2014-02-19 2017-12-13 エイディシーテクノロジー株式会社 電源装置
JP6490787B2 (ja) 2014-07-10 2019-03-27 アーベーベー・シュバイツ・アーゲー ガス絶縁された器具を備える電気装置、特にガス絶縁されたトランスまたはリアクタ
FR3037082B1 (fr) * 2015-06-02 2017-06-23 Electricite De France Systeme de production de dihydrogene, et procede associe
CN108349730B (zh) * 2015-11-24 2021-08-20 通用电气航空系统有限公司 固态递送系统
EP3428317A1 (fr) 2017-07-12 2019-01-16 Airbus Defence and Space Système de production et de distribution d'hydrogène sous pression
DE102019101884A1 (de) * 2019-01-25 2020-07-30 Airbus Operations Gmbh Brennstoffzellenanordnung mit Wirbelrohr, Brennstoffzellensystem und Fahrzeug mit einer Brennstoffzellenanordnung
GB2582607B (en) * 2019-03-27 2023-12-06 H2Go Power Ltd Power supply

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020017463A1 (en) * 2000-06-05 2002-02-14 Merida-Donis Walter Roberto Method and apparatus for integrated water deionization, electrolytic hydrogen production, and electrochemical power generation
US20020100682A1 (en) * 2001-01-29 2002-08-01 Kelley Ronald J. Hydrogen recharging system for fuel cell hydride storage reservoir
US6492044B1 (en) * 2000-06-29 2002-12-10 Plug Power Inc. Reactant conditioning for high temperature fuel cells
US20030031906A1 (en) 2001-06-13 2003-02-13 Hydrogenics Corporation Regenerative dryer device and method for water recovery, primarily in the cathode side, of a proton exchange membrane fuel cell
WO2003041204A1 (fr) 2001-11-09 2003-05-15 Hydrogenics Corporation Combinaison de pile a combustible et electrolyseur a echange thermique bidirectionnel
US20040013923A1 (en) * 2002-02-19 2004-01-22 Trent Molter System for storing and recoving energy and method for use thereof
US20040028966A1 (en) * 2002-04-17 2004-02-12 Hibbs Bart D. Energy storage system
WO2004049479A2 (fr) * 2002-11-27 2004-06-10 Hydrogenics Corporation Systeme d'alimentation regeneratif et composants de celui-ci
US20040126641A1 (en) 2002-12-27 2004-07-01 Pearson Martin T. Regenerative fuel cell electric power plant and operating method
WO2007050447A1 (fr) 2005-10-25 2007-05-03 Honeywell International Inc. Empilement de piles a combustible
US7410714B1 (en) * 2004-07-15 2008-08-12 The United States Of America As Represented By The Administration Of Nasa Unitized regenerative fuel cell system
WO2010024594A2 (fr) 2008-08-27 2010-03-04 씨제이 제일제당㈜ Composition pour prévenir ou guérir l'obésité ou le diabète

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001026401A (ja) * 1999-07-13 2001-01-30 Honda Motor Co Ltd 水素を燃料とする機器への水素供給システム
JP2001313050A (ja) * 2000-04-28 2001-11-09 Japan Metals & Chem Co Ltd 水素を燃料とする機器への水素供給システム及び装置
US6436563B1 (en) * 2000-06-13 2002-08-20 Hydrogenics Corporation Water recovery, primarily in the cathode side, of a proton exchange membrane fuel cell
JP2003105577A (ja) * 2001-09-25 2003-04-09 Mitsubishi Heavy Ind Ltd ガス発生装置及び燃料電池ハイブリッドシステム
US6890676B2 (en) * 2002-02-05 2005-05-10 Sony Corporation Fullerene based proton conductive materials
US6824036B2 (en) * 2002-07-18 2004-11-30 William V. Walter Adapter for nail gun for installing siding
US20100024954A1 (en) * 2006-09-27 2010-02-04 Fujifilm Corporation Apparatus and method for manufacturing photosensitive laminate, photosensitive transfer material, rib and method for forming the same, method for manufacturing laminate, member for display device, color filter for display device, method for manufacturing color filter, and display device
JP5207230B2 (ja) * 2007-11-15 2013-06-12 独立行政法人産業技術総合研究所 固体高分子形燃料電池の性能回復方法を実施するためのシステム
US7837765B2 (en) * 2007-12-12 2010-11-23 Idatech, Llc Systems and methods for supplying auxiliary fuel streams during intermittent byproduct discharge from pressure swing adsorption assemblies
JP5101444B2 (ja) * 2008-09-10 2012-12-19 三菱重工業株式会社 電力貯蔵装置
IT1394308B1 (it) * 2009-05-21 2012-06-06 Genport S R L Gruppo di generazione elettrica di tipo trasportabile/carrellabile e metodo impiegante tale gruppo di generazione elettrica.

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020017463A1 (en) * 2000-06-05 2002-02-14 Merida-Donis Walter Roberto Method and apparatus for integrated water deionization, electrolytic hydrogen production, and electrochemical power generation
US6492044B1 (en) * 2000-06-29 2002-12-10 Plug Power Inc. Reactant conditioning for high temperature fuel cells
US20020100682A1 (en) * 2001-01-29 2002-08-01 Kelley Ronald J. Hydrogen recharging system for fuel cell hydride storage reservoir
US20030031906A1 (en) 2001-06-13 2003-02-13 Hydrogenics Corporation Regenerative dryer device and method for water recovery, primarily in the cathode side, of a proton exchange membrane fuel cell
WO2003041204A1 (fr) 2001-11-09 2003-05-15 Hydrogenics Corporation Combinaison de pile a combustible et electrolyseur a echange thermique bidirectionnel
US20040013923A1 (en) * 2002-02-19 2004-01-22 Trent Molter System for storing and recoving energy and method for use thereof
US20040028966A1 (en) * 2002-04-17 2004-02-12 Hibbs Bart D. Energy storage system
WO2004049479A2 (fr) * 2002-11-27 2004-06-10 Hydrogenics Corporation Systeme d'alimentation regeneratif et composants de celui-ci
US20040126641A1 (en) 2002-12-27 2004-07-01 Pearson Martin T. Regenerative fuel cell electric power plant and operating method
US7410714B1 (en) * 2004-07-15 2008-08-12 The United States Of America As Represented By The Administration Of Nasa Unitized regenerative fuel cell system
WO2007050447A1 (fr) 2005-10-25 2007-05-03 Honeywell International Inc. Empilement de piles a combustible
WO2010024594A2 (fr) 2008-08-27 2010-03-04 씨제이 제일제당㈜ Composition pour prévenir ou guérir l'obésité ou le diabète

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2985859A1 (fr) * 2012-01-17 2013-07-19 Helion Systeme d'alimentation d'une pile a combustible en gaz
JP2014125644A (ja) * 2012-12-25 2014-07-07 Takasago Thermal Eng Co Ltd 充放電システム

Also Published As

Publication number Publication date
CN103250292B (zh) 2016-03-02
JP6022474B2 (ja) 2016-11-09
US20130302706A1 (en) 2013-11-14
JP2014506375A (ja) 2014-03-13
FR2968462B1 (fr) 2013-06-07
FR2968462A1 (fr) 2012-06-08
EP2649663A1 (fr) 2013-10-16
CN103250292A (zh) 2013-08-14

Similar Documents

Publication Publication Date Title
EP2649663A1 (fr) Dispositif de production d'electricite par pile a combustible
CN101019264B (zh) 包括燃料电池和金属氢化物的电力发电机
Appleby Recent developments and applications of the polymer fuel cell
US6416891B1 (en) Operating system for a direct antifreeze cooled fuel cell power plant
WO2006012953A2 (fr) Controle de l'humidification de la membrane polymere d'une pile a combustible
CN101325263A (zh) 从燃料电池废气流中回收惰性气体
CA2392823A1 (fr) Systeme de cellule electrochimique integree et d'adsorption modulee en pression
JP2001185179A (ja) 減圧乾燥による燃料電池の凍結−保護
EP3499626B1 (fr) Systeme reversible de stockage et destockage d'electricite comprenant un convertisseur electrochimique (sofc/soec) couple a un systeme de stockage/destockage d'air comprime (caes)
KR20090082282A (ko) 연료전지 시스템
JP5492460B2 (ja) 可逆セルの運転方法
CN115036539A (zh) 一种燃料电池发电系统及其控制方法
JP4333112B2 (ja) 燃料電池システム
WO2010041332A1 (fr) Pile à combustible
JP5735312B2 (ja) 固体酸化物形燃料電池システム
WO2014191386A1 (fr) Système à pile à combustible
JP2007053015A (ja) 燃料電池システム
JP2000123846A (ja) 燃料電池システム
TW202312544A (zh) 用於形成氫泵質子交換膜電化學電池的催化劑油墨組合物和方法
KR102358856B1 (ko) 전기 에너지를 생산하기 위한 충전가능한 전기화학 디바이스
Jamb et al. Polymer electrolyte membrane fuel cells for sustainable energy production
FR2870641A1 (fr) Generateur electrochimique avec systeme de transfert d'eau sous forme vapeur
JPH07135015A (ja) 燃料電池の運転方法
WO2022028991A1 (fr) Dispositif d'alimentation de cathode d'une pile à combustible en air sous pression, à refroidissement optimisé
Barbir Progress in PEM fuel cell systems development

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11802308

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013542486

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011802308

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011802308

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13989005

Country of ref document: US