WO2012075959A1 - 半甲基化接头及其用途 - Google Patents

半甲基化接头及其用途 Download PDF

Info

Publication number
WO2012075959A1
WO2012075959A1 PCT/CN2011/083723 CN2011083723W WO2012075959A1 WO 2012075959 A1 WO2012075959 A1 WO 2012075959A1 CN 2011083723 W CN2011083723 W CN 2011083723W WO 2012075959 A1 WO2012075959 A1 WO 2012075959A1
Authority
WO
WIPO (PCT)
Prior art keywords
strand
linker
molecular entity
complementary
dna
Prior art date
Application number
PCT/CN2011/083723
Other languages
English (en)
French (fr)
Inventor
孙继华
罗慧娟
闫淑静
王君文
燕慧
杨焕明
Original Assignee
深圳华大基因科技有限公司
深圳华大基因研究院
张秀清
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳华大基因科技有限公司, 深圳华大基因研究院, 张秀清 filed Critical 深圳华大基因科技有限公司
Publication of WO2012075959A1 publication Critical patent/WO2012075959A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6827Hybridisation assays for detection of mutation or polymorphism

Definitions

  • the invention relates to the field of molecular biology, in particular to the field of methylation detection technology.
  • the invention relates to hemimethylated linkers and uses thereof. More specifically, the present invention provides a hemimethylated linker, a method of determining methylation information in a sample DNA, and a kit. Background technique
  • DNA methylation is the most in-depth epigenetic mechanism in research. DNA methylation maintains normal cell function, inhibits parasitic DNA components from dying integrity, chromatin structure modification, X chromosome inactivation, genomic imprinting, and embryos. It plays an important role in development and human tumorigenesis and is one of the new research hotspots.
  • Method 3 combining methylation sensitive (non-sensitive) restriction enzymes with method one, and studying DNA methylation by comparing the cleavage site information.
  • Such methods mainly include the RRBS method and the MMSDK method, which can only Methylation studies of sites on the genome that can be recognized by the restriction enzymes used cannot be used for accurate methylation studies across the genome.
  • Method 4 enrichment of genome-wide methylated DNA using methylated DNA-specific binding antibodies or methylation-specific binding proteins, followed by high-throughput sequencing to study methylation information.
  • Such methods mainly include the MeDIP-SEQ method and the MBD-SEQ method, which are only capable of selectively studying methylated DNA on the genome, and cannot be used for accurate methylation studies within the genome-wide range, and the reproducibility is not Well, accurate methylation studies of individual bases cannot be achieved [see, for example, Ning Li et al. Whole genome DNA methylation analysis based on high throughput sequencing technology. Methods, 2010, Apr. (doi:10.10 16/j.ymeth. 2010.04.009), which is incorporated herein by reference in its entirety.
  • the present invention aims to solve at least one of the technical problems existing in the prior art. To this end, the present invention provides a hemimethylated linker and uses thereof.
  • the invention provides a hemimethylated linker (sometimes simply referred to as a "linker").
  • the hemimethylated linker has a first strand and a second strand, wherein the cytosines in the first strand are both methylated and the cytosines in the second strand are not methylated Modification, the 3, end sequence of the first strand is interdigitated with the 5, end sequence of the second strand.
  • the inventors have surprisingly found that the use of a hemimethylated linker (also sometimes referred to as "linker” in this specification) in connection with sample DNA can be effectively applied to steps such as bisulfite treatment and sequencing. Thereby, the methylation information in the sample DNA can be determined comprehensively and accurately.
  • the hemimethylated linker of the present invention can not only avoid self-association and misconnection with a DNA fragment, but also can significantly increase the linkage of a linker to a DNA fragment when applied to bisulfite treatment.
  • the accuracy and efficiency of conversion of unmethylated cytosine to uracil in the product, and the specificity and accuracy of the synthesis reaction can be significantly improved when the primers that specifically recognize the linker are used for complementary strand synthesis reactions.
  • the quality of the obtained product is very good, so that the efficiency of determining methylation information in the sample DNA can be effectively improved.
  • the cytosine in the first strand of the linker may be methylated to form 5-methylcytosine or 5-hydroxymethylcytosine.
  • the structure of the hemimethylated linker is not particularly limited.
  • the 3, end sequence of the first strand of the linker is complementary to the 5, end sequence of the second strand, and the 5, end sequence of the first strand is not complementary to the 3, end sequence of the second strand
  • the length of the complementary portion of the joint may be up to 10 bases less, at least 20 bases, at least 30 bases, at least 40 bases or at least 50 bases.
  • the hemimethylated linker of this structure facilitates the control of the orientation of the linker to the DNA segment and avoids unnecessary misconnections.
  • the first strand of the hemimethylated linker is fully complementary to the second strand.
  • the hemimethylated linker may have an overhang at the 3, end of the first strand or at the 5' end of the second strand.
  • the number of bases of the overhang is not particularly limited.
  • the length of the overhang may be 1, 2, 3, 4, 5, 6 Or more bases.
  • the hemimethylated linker has a single base overhang at the 3' end of the first strand.
  • the hemimethylated linker has a single base T overhang at the 3' end of the first strand.
  • the linker of the invention is a double stranded nucleic acid molecule which may be at least 20 bases in length, at least 30 bases in length, at least 40 bases in length, at least 50 bases in length, and at least 60 bases in length. , at least 70 bases, at least 80 bases or more.
  • the first strand and the second strand of the hemimethylated linker of the present invention are separately present in a single-stranded form, respectively, and the first strand and the second strand are doubled by annealing before use. Chain connector.
  • the hemimethylated linkers of the invention are present in a double-stranded form.
  • the invention provides a method of determining methylation information in a sample DNA. According to an embodiment of the invention, the method comprises the following steps:
  • the sample DNA is fragmented to obtain a DNA fragment.
  • the sample DNA is at least one selected from the group consisting of library DNA and genomic DNA.
  • the source of the genomic DNA is not particularly limited, and according to a specific example of the present invention, the source of the genomic DNA may be at least one selected from the group consisting of an animal, a plant, and a microorganism.
  • the animal is a mammal.
  • the mammal is a human.
  • the method of fragmenting the sample DNA is not particularly limited, and according to a specific example of the present invention, the sample may be selected using at least one selected from the group consisting of an atomization method, an ultrasonic fragmentation method, a HydroShear, and a digestion treatment. DNA fragmentation.
  • fragmenting the sample DNA can be performed using an ultrasonic fragmentation method.
  • the ultrasonic fragmentation method is performed using a Covaris ultrasound system.
  • the length of the DNA fragment is not particularly limited and may be 100 to 400 bp, and according to a specific example of the present invention, preferably, the length of the DNA fragment is 200 to 350 bp.
  • a linker according to an embodiment of the present invention is ligated to at least one end of a DNA fragment to obtain a ligation product having a linker.
  • the expression "connected to at least one end of a DNA fragment” means that the linker can be ligated to the 3' end of the DNA fragment, or to the 5' end, or to the 3, 5 and 5 of the DNA fragment. Both ends are connected to the joint.
  • the method of attaching the linker to at least one end of the DNA fragment is not particularly limited, and a blunt end joining method or a sticky end joining method may be utilized.
  • the connection is made by the sticky end connection method TA
  • the linker is ligated to at least one end of the DNA fragment.
  • TA linkage refers to a method in which a DNA fragment is subjected to terminal repair and a base A is added at the end, and a DNA fragment to which a base A is added is linked to a linker by DNA ligase. Since the base A on the DNA fragment to which the base A is added is complementary to the overhang base T which is present on the linker, it is possible to easily and accurately connect the linker to at least one end of the DNA fragment by this method.
  • the ligation product is subjected to bisulfite treatment to convert the unmethylated cytosine in the ligation product to uracil to obtain a converted ligation product.
  • the first complementary strand synthesis reaction is carried out on the converted ligation product using the first primer pair using the converted ligation product as a template to obtain a first complementary strand synthesis product, wherein the first primer specifically recognizes the hemimethyl group The second strand of the joint.
  • the first complementary strand synthesis product is digested with uracil glycosylase to remove uracil-containing products.
  • the second complementary strand synthesis reaction is performed on the digested product by using the second primer to obtain a second complementary strand synthesis product, wherein the second complementary strand synthesis reaction uses dCTP modified by the first molecular entity
  • the second primer specifically recognizes the complementary strand of the first strand of the hemimethylated linker, and the cytosine in the second complementary strand synthesis product is modified by the first molecular entity.
  • the second complementary strand synthesis product is separated using a second molecular entity to obtain a fragment of interest, wherein the second molecular entity specifically recognizes the first molecular entity.
  • the second molecular entity may be formed on the magnetic beads.
  • the kinds of the first molecular entity and the second molecular entity are not particularly limited as long as the two can specifically recognize each other, and the first molecular entity and the second molecular entity can be used to effectively separate the second complementary
  • the chain synthesis product can be used.
  • the first molecular entity and the second molecular entity may be any one selected from the group consisting of an antigen and an antibody, an antigen and an antigen-binding fragment, a ligand and a receptor, and biotin and avidin, respectively.
  • the first molecular entity is biotin and the second molecular entity is streptavidin.
  • the dCTP modified by the first molecular entity is biotin-11-dCTP and the second molecular entity is streptavidin formed on the magnetic beads.
  • the target fragment is sequenced to obtain a sequencing result, and based on the sequencing result, the methylation information of the sample DNA is determined.
  • the target fragment can be subjected to PCR amplification before sequencing the target fragment.
  • PCR amplification is performed using a third primer, wherein the third primer specifically recognizes the trans-sulfite-treated hemimethylated linker.
  • the method of sequencing is not particularly limited and can be performed using a high-throughput sequencing platform.
  • sequencing can be performed using at least one sequencing platform selected from the group consisting of Solexa, Solid and Roche-454.
  • the product may be further recovered and purified.
  • the expression “recovering and purifying the product” means recovering and purifying the product obtained in the previous step between any two adjacent steps, for example, in the step of fragmenting the sample DNA, And the step of connecting the linker according to the embodiment of the present invention to at least one end of the DNA fragment, recovering and purifying the product DNA fragment obtained in the previous step, thereby improving the processing efficiency and effect of the latter step, thereby The efficiency of determining methylation information of the sample DNA can be improved.
  • recovery and purification of the product can be carried out between all steps.
  • the method of determining methylation information in a sample DNA enables rapid, comprehensive and accurate determination of methylation information of a sample DNA, which is capable of not only methylation of a CpG site. Capture studies are also performed, and the methylation of non-CpG sites can be well captured and analyzed, and the methylation status of a single base can be accurately determined, thereby enabling single base methylation profiling. Further, according to the embodiment of the present invention, the method is used to determine the methylation information in the sample DNA, which can be applied to the methylation study of a large number of samples, and has good repeatability, low cost, and low time.
  • the method of determining methylation information in a sample DNA may include the following steps:
  • the sample DNA includes, but is not limited to, library DNA and genomic DNA, such as genomic DNA of bacteria, viruses, plants or animals, preferably mammalian genomic DNA, particularly human genes. Group DNA.
  • the sample DNA is a double stranded nucleic acid molecule.
  • the sample DNA may be subjected to fragmentation treatment before step 1).
  • the fragmentation treatment method may include, but is not limited to, an atomization method, an ultrasonic fragmentation method, a HydroShear method, or a restriction enzyme treatment method, and is preferably an ultrasonic fragmentation method.
  • the sample DNA is disrupted into a 200-400 bp DNA fragment using ultrasonic fragmentation.
  • the linker of the present invention may be attached to both ends of the sample DNA using a ligation method known in the art, and the linker attached to both ends of the sample DNA may be the same or different, wherein
  • the joining methods that can be used include, but are not limited to, a flat end joining method, a TA joining method or a sticky end joining method, and a TA joining method is preferred.
  • step 1) is carried out by: fragmenting the sample DNA, and then filling the end of the DNA fragment with a polymerase such as Klenow DNase, T4 DNA polymerase and T4 polynucleotide kinase, The polymerase is used to fill the end of the DNA fragment at the 3' end, plus the base A, and then the DNA fragment of the base A-added base A is ligated to the linker using T4 DNA ligase.
  • a polymerase such as Klenow DNase, T4 DNA polymerase and T4 polynucleotide kinase
  • the first molecular entity and the second molecular entity that specifically binds to the first molecular entity may be paired molecular entities well known in the art to specifically bind to each other, for example, antigen and antibody or antigen binding Fragments, ligands and receptors, biotin and avidin, etc.
  • the first molecular entity is an antigen (or antibody) and the second molecular entity is an antibody (or antigen) that specifically binds to the antigen (or antibody).
  • the first molecular entity is a ligand (or receptor) and the second molecular entity is a receptor (or ligand) that specifically binds to the ligand (or receptor).
  • the first molecular entity is biotin (or avidin) and the second molecular entity is avidin (or biotin) that specifically binds to biotin (or avidin).
  • the first molecular entity is biotin and the second molecular entity is streptavidin.
  • the dCTP modified by the first molecular entity is a biotin-modified dCTP, such as biotin-11-dCTP, and the second molecular entity is a streptavidin magnetic bead.
  • a primer specially designed for the trans-sulfite-treated hemimethylated linker ie the third primer, is used prior to sequencing analysis of the isolated product in step 6)
  • the isolated product was subjected to PCR amplification.
  • the isolated products in step 6) are subjected to high throughput sequencing analysis, for example, using the Solexa, Solid and Roche 454 sequencing platforms for high throughput sequencing.
  • the recovery and purification of the product is optionally carried out between any two adjacent steps.
  • recovery and purification of the product is carried out between all steps.
  • the present invention provides a kit.
  • the kit comprises a hemimethylated linker in accordance with an embodiment of the invention.
  • the first strand in the kit and The second strands can each independently be in a single stranded form.
  • the linker in the kit may be in a double stranded form.
  • the kit may further comprise at least one selected from the group consisting of: a first primer that specifically recognizes a second strand of the hemimethylated linker; and a second primer that specifically recognizes the hemi-A a complementary strand of the first strand of the linker; a third primer that specifically recognizes the hemi-methylated linker after bisulfite treatment; dCTP modified by the first molecular entity; and a second molecular entity, specific sexual recognition of the first molecular entity.
  • a second molecular entity in the kit is formed on the magnetic beads.
  • the kinds of the first molecular entity and the second molecular entity are not particularly limited as long as the two can specifically recognize each other, and the first molecular entity and the second molecular entity can be used to effectively separate the second complementary
  • the chain synthesis product can be used.
  • the first molecular entity and the second molecular entity in the kit may be any one selected from the group consisting of an antigen and an antibody, an antigen and an antigen-binding fragment, a ligand and a receptor, and biotin and avidin, respectively.
  • the first molecular entity in the kit is biotin and the second molecular entity is streptavidin.
  • the dCTP modified by the first molecular entity in the kit is biotin-11-dCTP and the second molecular entity is streptavidin formed on the magnetic beads.
  • the methylation information of the sample DNA can be determined conveniently, rapidly, comprehensively and accurately, and the methylation information of the CpG site and the non-CpG site can be Capture and determine, and be able to accurately determine the methylation status of a single base. Further, according to the embodiment of the present invention, the kit of the present invention can determine the methylation information in the DNA of a large number of samples, and is reproducible, less time-consuming, and low in cost.
  • a kit according to an embodiment of the present invention can be used to analyze the methylation status of sample DNA.
  • the first strand and the second strand of the hemimethylated linker in the kit of the present invention are separately present in a single-stranded form, respectively, and the first strand and the second strand are used before use.
  • a double-stranded linker is formed by annealing.
  • the hemimethylated linker in the kit of the invention is in the form of a double strand (i.e., the first strand and the second strand that are annealed together).
  • other reagents may be included in the kit, such as other reagents for analyzing the methylation status of the sample DNA, for example, a second capable of being combined with a bisulfite-treated hemimethylated linker.
  • a second capable of being combined with a bisulfite-treated hemimethylated linker for example, a second capable of being combined with a bisulfite-treated hemimethylated linker.
  • Chain-annealed primers primers capable of annealing to the complementary strand of the first strand of the hemimethylated linker, primers specifically designed for the bisulfite-treated hemimethylated linker, dCTP modified by the first molecular entity
  • a second molecular entity that specifically binds to the first molecular entity that specifically binds to the first molecular entity.
  • the dCTP modified by the first molecular entity is a biotinylated dCTP, such as biotin-11-dCTP, and the second molecular entity is a streptavidin magnetic bead.
  • first, second and similar descriptions used herein are used for descriptive purposes only and are not to be construed as indicating or implying relative importance or implicit indication of the indicated technical features. quantity. Thus, features defining “first” and “second” may include one or more explicitly or implicitly. This feature. Further, in the description of the present invention, the meaning of “plurality” is two or more unless otherwise stated.
  • Figure 1 shows a method for determining methylation information of sample DN A according to one embodiment of the present invention.
  • Figure 2 A graph showing the relationship between methylation rate and sequencing depth in reference data (40G) of sample DNA.
  • Figure 3 shows the relationship between methylation rate and sequencing depth in the reference data (1.4G) of sample DNA.
  • Fig. 4 is a graph showing the relationship between the methylation rate and the sequencing depth in the sequencing data (1.4G) obtained by the method for determining the methylation information of the sample DNA according to an embodiment of the present invention.
  • the sample DNA is fragmented to obtain a DNA fragment; a linker according to an embodiment of the present invention is ligated to at least one end of the DNA fragment to obtain a ligation product having a linker; the ligation product is subjected to bisulfite treatment so that the ligation product is The unmethylated cytosine is converted to uracil to obtain a converted ligation product; the first complementary strand synthesis reaction is performed on the converted ligation product using the first primer using the converted ligation product as a template to obtain the first a complementary strand synthesis product, wherein the first primer specifically recognizes the second strand of the hemimethylated linker; the first complementary strand synthesis product is digested with a uracil glycosylase to remove the uracil-containing DNA strand Obtaining a digested product; using the digested product as a template, using the second primer to perform a second complementary strand of the digested product Synthesizing reaction to obtain a second complementary
  • Cm represents methylated cytosine
  • Cb represents biotin-modified cytosine
  • A, U, T, C, and G represent adenine, uracil, thymine, and cytosine, respectively.
  • cockles are examples of cytosine, cytosine, cytosine, thymine, and cytosine, respectively.
  • the sample DNA is a peripheral blood DNA of a Chinese male (10 ⁇ ⁇ ) [The complete genome-wide methylation sequencing has been completed, see Li Y, et al. (2010) The DNA Methylome of Human Peripheral Blood Mononuclear Cells. PLoS Biol 8 ( 11): el000533. doi: 10.1371/ journal.pbio.1000533, by reference
  • Illumina Hiseq 2000 (for the method of operation, see the product preview provided by the manufacturer: Illumina sequencing. Pub.no. 7702009-732, which is incorporated herein by reference in its entirety):
  • the parameters of the Covaris ultrasound system are as follows:
  • the DNA fragment was purified using QIAquick PCR Purification Kit (QIAGEN) and dissolved in 35 L of elution buffer for later use.
  • the prepared reaction mixture was incubated at 20 °C for 30 minutes using a Thermomixer to obtain a terminal-repaired DNA fragment, which was then purified using a QIAquick PCR purification kit and dissolved in 32 L of elution buffer. , spare.
  • the prepared reaction mixture was incubated at 37 °C for 30 minutes using a Thermomixer to obtain a DNA fragment in which the base A was added at the 3' end, and then purified and dissolved in 1 C L using a MiniElute PCR Purification Kit (QIAGEN). In the elution buffer, spare.
  • the prepared reaction mixture was incubated at 20 °C for 15 minutes using a Thermomixer to obtain a ligation product, which was then purified using a QIAquick PCR purification kit and dissolved in 30 ⁇ M elution buffer for use.
  • the ligation product was separated using a 2% agarose gel, and the ligation product of 200-450 bp in length was recovered, which was then transferred to a 1.5 mL centrifuge tube and gelled using a QIAquick Glue Recovery Kit (QIAGEN). Purification was recovered to obtain the isolated product, which was then dissolved in 30 ⁇ L of elution buffer for use.
  • the first complementary strand synthesis reaction mixture was prepared according to the following ratio:
  • the prepared first complementary strand synthesis reaction mixture is subjected to a PCR reaction to obtain a first complementary strand synthesis product, wherein the PCR reaction conditions are: 95 ° C, 30 seconds; 95, 2 minutes; 58 ° C, 2 minutes; 72 ° C, 5 minutes; save at 4 °C.
  • the first complementary strand synthesis product was then purified using a MiniElute PCR purification kit and dissolved in 20.5 L of elution buffer for later use.
  • the prepared reaction mixture was incubated at 37 °C for 30 minutes using a Thermomixer to obtain a digestion product, which was then purified using a MiniElute PCR purification kit using a centrifugal purification column and dissolved in 20 elution buffer. Medium, spare.
  • the prepared second complementary strand synthesis reaction mixture is subjected to a PCR reaction to obtain a second complementary strand synthesis product, wherein the PCR reaction conditions are: 95 ° C, 30 seconds; 95, 2 minutes; 58 ° C, 2 minutes; 72 ° C, 5 minutes; 4 ° C preservation.
  • the second complementary strand synthesis product was then purified using a MiniElute PCR purification kit and dissolved in 5C of elution buffer for later use.
  • the second complementary strand synthesis product is separated by a second molecular entity to obtain a target fragment, wherein the second molecular entity is streptavidin formed on the magnetic beads, and the specific method is as follows:
  • the prepared reaction mixture was subjected to PCR amplification to obtain an amplification product, wherein the conditions for PCR amplification were: 94 ° C, 30 seconds; 15 cycles of 94 ° C, 30 seconds, 60 ° C, 30 seconds, 72 °C, 30 seconds; 72 ° C, 1 minute; 4 ° C storage.
  • the amplified product is then purified using the MiniElute PCR Purification Kit to obtain a methylated sequencing library of sample DNA, which is dissolved in 35 L of elution buffer for use.
  • the Agilent 2100 Bioanalyzer showed that the mass concentration of the library was 5.85 ng ⁇ L and the molar concentration was 34.6 nM.
  • the quantitative results of QPCR showed that the molar concentration of the library was 38.2 nM.
  • Table 2 shows the high-throughput sequencing results of the methylated sequencing library of the sample DNA obtained above.
  • the ratio of the original data is 95.6 %, which indicates that the original data is basically available; the repeat sequence ratio is only 5.31%, which indicates the proportion of the repeated sequences generated by PCR amplification. Very low, there is basically no sequencing bias problem; the conversion efficiency of the bisulfite treatment is 99.2%, which indicates that the unmethylated cytosine site is almost completely converted to uracil.
  • sequencing depth and methylation rate is a good reflection of the enrichment of methylated DNA, ie Separation of the second complementary strand synthesis product to obtain the effect of the desired fragment: If the sequencing depth of the target fragment increases correspondingly with the increase of the methylation rate, it indicates that the method used for methylated DNA Very good enrichment.
  • the inventors performed whole-genome methylation sequencing data of the sample DNA obtained before the experiment (see Li Y, et al. (2010) The DNA Methylome of Human Peripheral Blood Mononuclear Cells. PLoS Biol 8(11): el000533. doi:10.1371/journal.pbio.l000533, which is incorporated herein by reference in its entirety as reference data, and the relationship between the depth of sequencing and the methylation rate is analyzed by studying the reference data. . Specifically, the sequencing data covering chromosome 12 is used, and the average sequencing depth and site methylation rate of all Cs in each interval are counted in the interval of 5 kbp, and then the relationship between the two is analyzed.
  • Figures 2 and 3 show the relationship between methylation rate and sequencing depth in the reference data (40G and 1.4G) of the sample DNA, respectively. As can be seen from Figures 2 and 3, there is no statistically significant correlation between sequencing depth and methylation rate when sequencing sample DNA using conventional techniques.
  • Fig. 4 shows the relationship between the methylation rate and the sequencing depth in the sequencing data (1.4G) obtained by the method for determining the methylation information of the sample DNA according to an embodiment of the present invention. As can be seen from FIG. 4, there is a statistically significant correlation between the sequencing depth and the fragment methylation rate in the sequencing results of the sample obtained by the method for determining the methylation information of the sample DNA according to an embodiment of the present invention: Sequencing The depth increases as the fragment methylation rate increases. From the above analysis, it was found that the methylation DNA in the sample DNA was significantly and efficiently enriched by the method for determining the methylation information of the sample DNA of the present invention, and the methylation information was successfully determined.
  • the hemimethylated linker of the present invention a method for determining methylation information in a sample DNA, and a kit can be applied to a high-throughput sequencing platform, and can be effectively applied to genome-wide methylation of sample DNA.
  • Particular features, structures, materials or features described in the examples or examples are included in at least one embodiment or example of the invention.
  • the schematic representation of the above terms does not necessarily mean the same embodiment or example.
  • the particular features, structures, materials, or characteristics described may be combined in a suitable manner in any one or more embodiments or examples.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

提供了半甲基化接头、确定样品DNA中甲基化信息的方法以及试剂盒。其中,该半甲基化接头具有第一链和第二链,其中所述第一链中的胞嘧啶均被甲基化修饰,所述第二链中的胞嘧啶均未被甲基化修饰,所述第一链的3'端序列与所述第二链的5'端序列互补。

Description

半甲基化接头及其用途
优先权信息
本申请请求 2010 年 12 月 10 日向中国国家知识产权局提交的、 专利申请号为 201010582865.5的专利申请的优先权和权益, 并且通过参照将其全文并入此处。 技术领域
本发明涉及分子生物学领域, 特别是甲基化检测技术领域。 具体地, 本发明涉及半 甲基化接头及其用途。 更具体地, 本发明提供了一种半甲基化接头、 一种确定样品 DNA 中甲基化信息的方法以及一种试剂盒。 背景技术
DNA甲基化是研究最为深入的表观遗传学机制, DNA甲基化在维持正常细胞功能、抑 制寄生 DNA成分对基因组完整性的损害、 染色质结构修饰、 X染色体失活、 基因组印迹、 胚胎发育以及人类肿瘤发生中起着重要作用, 是目前新的研究热点之一。
目前研究 DNA甲基化的方法主要包括以下几类:
方法一, 利用重亚硫酸盐处理 DNA, 并结合测序来研究 DNA甲基化。 对于一些大 基因组而言, 釆用该方法进行 DNA甲基化研究, 由于测序规模庞大, 成本过高, 而不 能进行大量样本的比较性研究 [例如参见 Ning Li等人. Whole genome DNA methylation analysis based on high throughput sequencing technology. Methods, 2010, Apr. (doi:10.10 16/j.ymeth. 2010.04.009) , 通过参照将其全文并入本文]。
方法二, 利用全基因组芯片杂交技术来研究全基因组甲基化。 由于杂交技术本身的 缺陷, 导致该方法的灵敏度和重复性不好, 不能应用于进行精确的甲基化研究和大量样 本的比较' !·生研究 [例^口参见 Serre D 等人. MBD-isolated Genome Sequencing provides a high-throughput and comprehensive survey of DNA methylation in the human genome. Nucleic Acids Res. 2010 Jan; 38(2): 391-9. ; Lister R等人. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature. 2009 Nov 19;462(7271): 315-22. ; Gu H等人. Genome- scale DNA methylation mapping of clinical samples at single-nucleotide resolution. Nat Methods. 2010 Feb;7(2): 133-6. , 通过参照将其全文并入本文]。
方法三, 将甲基化敏感(非敏感)类限制性内切酶与方法一结合起来, 通过比较酶 切位点信息来研究 DNA的甲基化。 此类方法主要包括 RRBS法和 MMSDK法, 其只能 对基因组上能够被所使用的限制性内切酶识别的位点进行甲基化研究,无法用于对全基 因组范围内的精确甲基化研究。
方法四, 利用甲基化 DNA特异性结合抗体或甲基化特异性结合蛋白对全基因组范 围的甲基化 DNA进行富集, 然后通过高通量测序来研究甲基化信息。 此类方法主要包 括 MeDIP-SEQ法和 MBD-SEQ法, 其只能够对基因组上的甲基化 DNA进行选择性研 究, 无法用于对全基因组范围内的精确甲基化研究, 且重复性不好, 不能实现对单个碱 基进行精确甲基化研究 [例如参见 Ning Li等人. Whole genome DNA methylation analysis based on high throughput sequencing technology. Methods, 2010, Apr. (doi:10.10 16/j.ymeth. 2010.04.009) , 通过参照将其全文并入本文]。
因此, 目前对 DNA甲基化的研究仍有待改进。 发明内容
本发明旨在至少解决现有技术中存在的技术问题之一。 为此, 本发明提供了半甲基 化接头及其用途。
根据本发明的一个方面,本发明提供了一种半甲基化接头(有时也简单称为 "接头")。 根据本发明的实施例, 该半甲基化接头具有第一链和第二链, 其中第一链中的胞嘧啶均被 甲基化修饰, 第二链中的胞嘧啶均未被甲基化修饰, 第一链的 3,端序列与第二链的 5,端序 列互 卜。
发明人惊奇地发现, 利用根据本发明实施例的半甲基化接头 (在本说明书中有时也称 为 "接头") 与样品 DNA相连, 能够有效地应用于重亚硫酸盐处理和测序等步骤, 从而能 够全面精确地确定样品 DNA中的甲基化信息。 具体地, 根据本发明的实施例, 本发明的半 甲基化接头不仅能够避免自联和与 DNA片段的错连, 而且应用于重亚硫酸盐处理时, 能够 显著提高接头与 DNA片段的连接产物中非甲基化的胞嘧啶转换为尿嘧啶的准确度和效率, 并且, 当釆用能够特异性识别该接头的引物进行互补链合成反应时, 能够显著提高合成反 应的特异性和准确度, 所得产物质量非常好, 从而能够有效地提高确定样品 DNA中甲基化 信息的效率。
根据本发明的实施例, 接头的第一链中的胞嘧啶经甲基化修饰后, 可以形成 5-甲 基胞嘧啶或 5-羟甲基胞嘧啶。
根据本发明的实施例, 半甲基化接头的结构不受特别限制。根据本发明的一个实施 例, 该接头的第一链的 3,端序列与第二链的 5,端序列互补, 且第一链的 5,端序列与第二链 的 3,端序列不互补, 并且, 根据本发明的一些具体示例, 接头的互补部分的长度可以为至 少 10个碱基, 至少 20个碱基, 至少 30个碱基, 至少 40个碱基或至少 50个碱基。 这 种结构的半甲基化接头有利于控制接头与 DNA片段连接的方向, 能够避免不必要的错 连。 根据本发明的另一个实施例, 半甲基化接头的第一链与第二链完全互补。
根据本发明的实施例, 半甲基化接头可以在第一链的 3,端或第二链的 5,端具有悬突。 根据本发明的实施例, 悬突的碱基个数不受特别限制, 根据本发明的一些具体示例, 悬突 的长度可以为 1个, 2个, 3个, 4个, 5个, 6个或更多个碱基。 根据本发明的实施例, 半甲基化接头在第一链的 3,端具有单个碱基的悬突。 根据本发明的一些实施例, 半甲基化 接头在第一链的 3,端具有单个碱基 T的悬突。
根据本发明的实施例, 本发明的接头为双链核酸分子, 其长度可以为至少 20个碱 基, 至少 30个碱基, 至少 40个碱基, 至少 50个碱基, 至少 60个碱基, 至少 70个碱 基, 至少 80个碱基或更多个碱基。
根据本发明的实施例,本发明的半甲基化接头的第一链和第二链分别以单链形式单 独存在, 并且在使用前, 所述第一链和第二链通过退火而形成双链的接头。 根据本发明 的另一个实施例, 本发明的半甲基化接头以双链形式存在。
根据本发明的又一方面,本发明提供了一种确定样品 DNA中甲基化信息的方法。根据 本发明的实施例, 该方法包括下列步骤:
首先, 将样品 DNA片段化, 以便获得 DNA片段。 根据本发明的实施例, 所述样品 DNA为选自文库 DNA和基因组 DNA的至少一种。根据本发明的实施例,所述基因组 DNA 的来源不受特别限制, 根据本发明的具体示例, 基因组 DNA的来源可以为选自动物、 植物 和微生物的至少一种。 根据本发明的一些实施例, 动物为哺乳动物。 根据本发明的一个 实施例, 哺乳动物为人。 根据本发明的实施例, 将样品 DNA片段化的方法不受特别限制, 根据本发明的具体示例, 可以利用选自雾化法、 超声片段化法、 HydroShear和酶切处理的 至少一种将样品 DNA片段化。根据本发明的一些实施例,将样品 DNA片段化可以利用超 声片段化法进行。 根据本发明的实施例, 该超声片段化法是利用 Covaris 超声仪进行的。 根据本发明的实施例, DNA片段的长度不受特别限制, 可以为 100-400bp, 根据本发明的 具体示例, 优选, DNA片段的长度为 200-350bp。
其次, 将根据本发明实施例的接头与 DNA片段的至少一端相连, 以便获得具有接头的 连接产物。 在这里所使用的表达方式 "与 DNA片段的至少一端相连", 是指可以将接头与 DNA片段的 3,端相连,也可以与 5,端相连,还可以在 DNA片段的 3,端和 5,端均连接接头。 根据本发明的实施例, 将接头与 DNA片段的至少一端相连的方法不受特别限制, 可以利 用平端连接法或粘性末端连接法。 根据本发明的具体示例, 利用粘性末端连接法 TA连接 将接头与 DNA片段的至少一端相连。 其中, 在这里所使用的术语 "TA连接" 是指这样一 种方法, 将 DNA片段进行末端修复和末端添加碱基 A后, 利用 DNA连接酶将添加碱基 A 的 DNA片段与接头相连。由于添加碱基 A的 DNA片段上的碱基 A与接头上具有的悬突碱 基 T互补, 因此利用该方法能够方便准确地将接头与 DNA片段的至少一端相连。
接着, 将连接产物进行重亚硫酸盐处理, 以便将连接产物中非甲基化的胞嘧啶转换为 尿嘧啶, 获得经过转换的连接产物。
接下来, 以经过转换的连接产物为模板, 利用第一引物对经过转换的连接产物进行第 一互补链合成反应, 以便获得第一互补链合成产物, 其中第一引物特异性地识别半甲基化 接头的第二链。
然后, 利用尿嘧啶糖基化酶对第一互补链合成产物进行消化, 以便去除含有尿嘧啶的
DNA链, 获得消化产物。
接着, 以消化产物为模板, 利用第二引物对消化产物进行第二互补链合成反应, 以便 获得第二互补链合成产物,其中,第二互补链合成反应中使用经第一分子实体修饰的 dCTP, 第二引物特异性识别半甲基化接头的第一链的互补链, 第二互补链合成产物中的胞嘧啶被 第一分子实体修饰。
接下来, 利用第二分子实体分离第二互补链合成产物, 以便获得目的片段, 其中第二 分子实体特异性识别第一分子实体。 根据本发明的实施例, 第二分子实体可以形成于磁珠 上。 根据本发明的实施例, 第一分子实体和第二分子实体的种类不受特别限制, 只要两者 能够特异性识别对方, 并且使用第一分子实体和第二分子实体能够有效地分离第二互补链 合成产物即可。 根据本发明的一些实施例, 第一分子实体和第二分子实体可以分别为选自 抗原和抗体、 抗原和抗原结合片段、 配体和受体, 以及生物素和亲和素的任意一组。 根据 本发明的具体示例, 第一分子实体为生物素, 第二分子实体为链霉亲和素。 根据本发明的 实施例, 经第一分子实体修饰的 dCTP 为生物素 -11-dCTP, 第二分子实体为形成于磁珠上 的链霉亲和素。
然后, 对目的片段进行测序, 以获得测序结果, 基于测序结果, 确定样品 DNA的甲基 化信息。根据本发明的实施例, 在对目的片段进行测序之前, 可以对目的片段进行 PCR扩 增。根据本发明的实施例, 使用第三引物进行 PCR扩增, 其中第三引物特异性识别经过重 亚硫酸盐处理后的半甲基化接头。 根据本发明的实施例, 测序的方法不受特别限制, 可 以利用高通量测序平台进行。 根据本发明的实施例, 可以利用选自 Solexa、 Solid 和 Roche-454的至少一种测序平台进行测序。 根据本发明的实施例, 任意两个相邻步骤之间, 可以进一步包括将产物进行回收和纯 化。 在这里所使用的表达方式 "将产物进行回收和纯化", 是指在任意两个相邻步骤之间, 将前一个步骤获得的产物进行回收和纯化, 例如在将样品 DNA片段化的步骤, 以及将根据 本发明实施例的接头与 DNA 片段的至少一端相连的步骤之间, 将前一个步骤获得的产物 DNA片段进行回收和纯化, 由此, 可以提高后一个步骤的处理效率和效果, 从而能够提高 确定样品 DNA的甲基化信息的效率。 根据本发明的一些实施例, 可以在所有步骤之间进 行产物的回收和纯化。
发明人惊奇地发现, 利用根据本发明实施例的确定样品 DNA中甲基化信息的方法, 能 够快速、 全面、 精确地确定样品 DNA的甲基化信息, 其不仅能够对 CpG位点的甲基化进 行捕获研究, 而且也能够很好的对非 CpG位点的甲基化进行捕获分析, 并且能够精确地确 定单个碱基的甲基化状况, 从而能够进行单碱基甲基化图谱分析。 此外, 根据本发明的实 施例, 利用该方法确定样品 DNA中甲基化信息, 能够应用于大量样本的甲基化研究, 并且 可重复性好, 成本低、 需时少。
具体地, 根据本发明实施例的确定样品 DNA 中甲基化信息的方法可以包括以下步 骤:
1) 将根据本发明实施例的接头连接至样品 DNA的两端, 从而得到连接产物;
2) 利用重亚硫酸盐处理连接产物, 以便将连接产物中非甲基化的胞嘧啶转换为尿 嘧啶;
3) 以重亚硫酸盐处理后的产物为模板, 用能够与经重亚硫酸盐处理的半甲基化接 头的第二链退火的引物, 即第一引物, 进行第一互补链合成, 从而得到第一互补链合成 产物;
4) 用尿嘧啶糖基化酶处理第一互补链合成产物, 以除去含有尿嘧啶的 DNA链;
5) 以用尿嘧啶糖基化酶处理后的产物为模板, 力。入 dTTP、 dATP、 dGTP以及经第 一分子实体修饰的 dCTP, 并使用能够与半甲基化接头的第一链的互补链退火的引物, 即第二引物, 进行第二互补链合成, 以便得到第二互补链合成产物;
6) 使用能够与第一分子实体特异性结合的第二分子实体, 富集并分离掺入了经第 一分子实体修饰的 dCTP的第二互补链合成产物, 以便得到分离产物;
7) 对分离产物进行测序分析, 其中, 除了所使用的接头序列外, 分离产物中的胞 嘧啶即为样品 DNA中被甲基化的胞嘧啶。
根据本发明的实施例, 样品 DNA包括但不限于文库 DNA和基因组 DNA, 例如细 菌, 病毒, 植物或动物的基因组 DNA, 优选哺乳动物的基因组 DNA, 特别是人的基因 组 DNA。 根据本发明的实施例, 样品 DNA为双链核酸分子。
根据本发明的实施例, 在步骤 1)之前, 可以对样品 DNA进行片段化处理。 进行片 段化处理方法可以包括但不限于雾化法、 超声片段化法、 HydroShear法或酶切处理法, 并且优选超声片段化法。 根据本发明的实施例, 使用超声片段化法将样品 DNA打断为 200-400bp的 DNA片段。
根据本发明的实施例,可以使用本领域已知的连接方法将本发明的接头连接到样品 DNA的两端, 并且连接到样品 DNA的两端的接头可以是相同的, 也可以是不同的, 其 中, 可使用的连接方法包括但不限于平端连接法, TA连接法或粘性末端连接法, 并且 优选 TA连接法。
根据本发明的实施例, 通过以下方法实现步骤 1): 将样品 DNA片段化, 接着利用 聚合酶如 Klenow DNA酶、 T4 DNA聚合酶和 T4多聚核苷酸激酶补平 DNA片段的末端, 接下来使用聚合酶在补平了末端的 DNA片段的 3,末端加上碱基 A, 然后使用 T4 DNA 连接酶将 3,末端添加碱基 A的 DNA片段连接至接头。
根据本发明的实施例, 第一分子实体和特异性结合第一分子实体的第二分子实体, 可以是本领域熟知的彼此特异性结合的成对的分子实体, 例如, 抗原和抗体或抗原结合 片段, 配体和受体, 生物素和亲和素等等。 根据本发明的具体示例, 第一分子实体是抗 原 (或抗体), 第二分子实体是特异性结合该抗原 (或抗体) 的抗体(或抗原)。 根据本 发明的一些实施例, 第一分子实体是配体 (或受体), 第二分子实体是特异性结合该配 体 (或受体) 的受体 (或配体)。 根据本发明的一些具体示例, 第一分子实体是生物素 (或亲和素), 第二分子实体是特异性结合生物素 (或亲和素) 的亲和素 (或生物素)。 根据本发明的一个实施例, 第一分子实体是生物素, 第二分子实体是链霉亲和素。 根据 本发明的另一个实施例, 经第一分子实体修饰的 dCTP是生物素修饰的 dCTP, 例如生 物素 - 11 -dCTP , 并且第二分子实体是链霉亲和素磁珠。
根据本发明的实施例, 任选地, 在对步骤 6)中的分离产物进行测序分析之前, 使 用针对经过重亚硫酸盐处理后的半甲基化接头而特别设计的引物,即第三引物对分离产 物进行 PCR扩增。 根据本发明的一些实施例, 对步骤 6)中的分离产物进行高通量测序 分析, 例如使用 Solexa、 Solid和 Roche 454测序平台进行高通量测序。
根据本发明的实施例,任选地,在任意两个相邻步骤之间,进行产物的回收和纯化。 优选, 在所有步骤之间进行产物的回收与纯化。
根据本发明的再一方面, 本发明提供了一种试剂盒。 根据本发明的实施例, 该试剂盒 包括根据本发明实施例的半甲基化接头。根据本发明的一些实施例, 试剂盒中的第一链和 第二链可以分别独立地呈单链形式。根据本发明的一些具体示例, 试剂盒中的接头可以呈 双链形式。
根据本发明的实施例, 试剂盒中可以进一步包括选自下列的至少一种: 第一引物, 其 特异性地识别半甲基化接头的第二链; 第二引物, 其特异性识别半甲基化接头的第一链的 互补链; 第三引物, 其特异性识别经过重亚硫酸盐处理后的半甲基化接头; 经第一分子实 体修饰的 dCTP; 以及第二分子实体, 其特异性识别第一分子实体。 根据本发明的实施例, 试剂盒中的第二分子实体形成于磁珠上。根据本发明的实施例, 第一分子实体和第二分子 实体的种类不受特别限制, 只要两者能够特异性识别对方, 并且使用第一分子实体和第二 分子实体能够有效地分离第二互补链合成产物即可。根据本发明的一些实施例, 试剂盒中 的第一分子实体和第二分子实体可以分别为选自抗原和抗体、 抗原和抗原结合片段、 配体 和受体, 以及生物素和亲和素的任意一组。 根据本发明的具体示例, 试剂盒中的第一分子 实体为生物素, 第二分子实体为链霉亲和素。根据本发明的一个实施例, 试剂盒中的经第 一分子实体修饰的 dCTP为生物素 -11-dCTP, 第二分子实体为形成于磁珠上的链霉亲和素。
发明人发现, 利用根据本发明实施例的试剂盒, 能够方便、 快速、 全面、 精确地确定 样品 DNA的甲基化信息,且其对 CpG位点以及非 CpG位点的甲基化信息均能捕获并确定, 并且能够精确地确定单个碱基的甲基化状况。 此外, 根据本发明的实施例, 利用本发明的 试剂盒能够确定大量样本的 DNA中甲基化信息, 并且可重复性好, 需时少、 成本低。
进一步, 根据本发明实施例的试剂盒可以用于分析样品 DNA的甲基化状况。 根据 本发明的一个实施例,本发明的试剂盒中的半甲基化接头的第一链和第二链分别以单链 形式单独存在, 并且在使用前, 所述第一链和第二链通过退火而形成双链的接头。 根据 本发明的另一个实施例, 本发明的试剂盒中的半甲基化接头以双链(即退火在一起的第 一链和第二链) 形式存在。
根据本发明的实施例, 试剂盒中还可以包括其他试剂, 例如用于分析样品 DNA的 甲基化状况的其他试剂, 例如, 能够与经重亚硫酸盐处理的半甲基化接头的第二链退火 的引物, 能够与半甲基化接头的第一链的互补链退火的引物,针对重亚硫酸盐处理后的 半甲基化接头而特别设计的引物, 经第一分子实体修饰的 dCTP, 以及与第一分子实体 特异性结合的第二分子实体。 根据本发明的实施例, 经第一分子实体修饰的 dCTP是生 物素修饰的 dCTP, 例如生物素 -11-dCTP, 并且第二分子实体是链霉亲和素磁珠。
需要说明的是, 在本文中所使用的术语 "第一" 、 "第二" 以及类似的描述仅用于 描述目的, 而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数 量。 由此, 限定有 "第一" 、 "第二" 的特征可以明示或者隐含地包括一个或者更多个 该特征。 进一步地, 在本发明的描述中, 除非另有说明, "多个" 的含义是两个或两个 以上。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得 明显, 或通过本发明的实践了解到。 附图说明
本发明的上述和 /或附加的方面和优点从结合下面附图对实施例的描述中将变得明 显和容易理解, 其中:
图 1: 显示了根据本发明一个实施例的确定样品 DN A的甲基化信息的方法 图 2: 显示了样品 DNA的参照数据(40G ) 中甲基化率与测序深度的关系图。
图 3: 显示了样品 DNA的参照数据 ( 1.4G)中甲基化率与测序深度的关系图。
图 4:显示了利用根据本发明实施例的确定样品 DNA的甲基化信息的方法获得的测序 数据 (1.4G ) 中甲基化率与测序深度的关系图。 具体实施方式
下面将结合实施例对本发明的实施方案进行详细描述, 但是本领域技术人员将会理解, 下列实施例仅用于说明本发明, 而不应视为限定本发明的范围。 实施例中未注明具体技术 或条件的, 按照本领域内的文献所描述的技术或条件(例如参考 J.萨姆布鲁克等著, 黄培堂 等译的 《分子克隆实验指南》, 第三版, 科学出版社)或者按照产品说明书进行。 所用试剂 或仪器未注明生产厂商者, 均为可以通过市购获得的常规产品。 实施例 1 :
一般方法:
参考图 1 , 按照下列步骤确定样品 DNA的甲基化信息:
将样品 DNA片段化, 以便获得 DNA片段; 将根据本发明实施例的接头与 DNA片段 的至少一端相连, 以便获得具有接头的连接产物; 将连接产物进行重亚硫酸盐处理, 以 便将连接产物中非甲基化的胞嘧啶转换为尿嘧啶, 获得经过转换的连接产物; 以经过转 换的连接产物为模板, 利用第一引物对经过转换的连接产物进行第一互补链合成反应, 以便获得第一互补链合成产物, 其中第一引物特异性地识别所述半甲基化接头的第二 链; 利用尿嘧啶糖基化酶对第一互补链合成产物进行消化,以便去除含有尿嘧啶的 DNA 链, 获得消化产物; 以消化产物为模板, 利用第二引物对所述消化产物进行第二互补链 合成反应, 以便获得第二互补链合成产物, 其中, 第二互补链合成反应中使用经第一分 子实体修饰的 dCTP, 第二引物特异性识别所述半甲基化接头的第一链的互补链, 第二 互补链合成产物中的胞嘧啶被第一分子实体修饰;利用第二分子实体分离第二互补链合 成产物, 以便获得目的片段, 其中第二分子实体特异性识别第一分子实体; 对目的片段 进行测序, 以便获得测序结果; 以及基于测序结果, 确定样品 DNA的甲基化信息。 其 中, 如图 1所示, Cm表示甲基化的胞嘧啶, Cb表示经过生物素修饰的的胞嘧啶, A、 U、 T、 C和 G分别表示腺嘌呤, 尿嘧啶, 胸腺嘧啶, 胞嘧啶和鸟嘌呤。
样品 DNA为一个中国男性的外周血 DNA ( 10μδ ) [已完成其全基因组甲基化测序, 可参见 Li Y, 等人. (2010) The DNA Methylome of Human Peripheral Blood Mononuclear Cells. PLoS Biol 8(11): el000533. doi: 10.1371/ journal.pbio.1000533 , 通过参照将其全文
Figure imgf000010_0001
测序设备:
Illumina Hiseq 2000 (操作方法可参见制造商所提供的 Product preview: Illumina sequencing. Pub.no. 7702009-732 , 通过参照将其全文并入本文 ):
所使用的其它材料和具体条件如下:
1、 接头及引物的序列
表 1 : 接头及引物的序列
Figure imgf000010_0002
2、 实验方法
(1) 样品 DNA片段化
使用 Covaris超声仪将 l(^g的样品 DNA ( lOOng^L ) 打断成 100-350 bp左右的 DNA片段。
其中, Covaris超声仪的参数设置如下:
Figure imgf000011_0001
利用 QIAquick PCR纯化试剂盒 (QIAGEN)将 DNA片段进行纯化并溶于 35 L的洗 脱緩冲液中, 备用。
(2)末端修复
按照下列的配比准备末端修复反应混合物:
Figure imgf000011_0002
利用 Thermomixer将准备的反应混合物在 20 °C下进行温育 30分钟, 以便获得经过 末端修复的 DNA片段, 然后利用 QIAquick PCR纯化试剂盒将其进行纯化并溶于 32 L 的洗脱緩冲液中, 备用。
(3) 3,端添加碱基 A 按照下列的配比准备反应混合物
Figure imgf000012_0001
使用 Thermomixer将准备的反应混合物在 37 °C下进行温育 30分钟, 以便获得 3, 端添加碱基 A的 DNA片段,然后利用 MiniElute PCR纯化试剂盒 (QIAGEN)将其进行纯 化并溶于 1C L洗脱緩冲液中, 备用。
(4)连接接头
将 1 C L ΙΟΟμΜ的接头第一链和 1 C L ΙΟΟμΜ的接头第二链混合,然后在 94 °C下进 行温育 5分钟, 再在 65 °C下进行温育 15分钟, 然后自然冷却, 从而得到 50μΜ的半甲 基化接头, 备用。
然后按照下列的配比准备连接反应混合物:
Figure imgf000012_0002
使用 Thermomixer将准备的反应混合物在 20 °C下进行温育 15分钟, 以便获得连接 产物, 然后利用 QIAquick PCR纯化试剂盒将其进行纯化并溶于 30μΙ^洗脱緩冲液中, 备用。
(5) 分离回收连接产物
利用 2%的琼脂糖凝胶将连接产物进行分离, 回收长度为 200-450bp的连接产物, 然后将其转移至 1.5 mL的离心管中, 利用 QIAquick胶回收试剂盒 (QIAGEN)将其进行 凝胶回收纯化, 以便获得分离产物, 然后将其溶于 30 μL洗脱緩冲液中, 备用。
(6)重亚 υ酸盐处理 根据制造商的说明书, 利用 ZYMO EZ DNA甲基化 -Gold试剂盒 ( ZYMO RESEARCH , 美国)将上述所得的分离产物进行重亚硫酸盐处理, 以便将分离产物中非 甲基化的胞嘧啶转换为尿嘧啶, 获得经过转换的产物, 然后将其溶于 30 洗脱緩冲液中。
(7) 第一互补链合成反应
按照下列的配比制备第一互补链合成反应混合物:
Figure imgf000013_0001
将制备的第一互补链合成反应混合物进行 PCR 反应, 以便获得第一互补链合成产 物, 其中 PCR反应条件为: 95 °C , 30秒; 95 , 2分钟; 58 °C , 2分钟; 72 °C , 5分钟; 4 °C保存。 然后利用 MiniElute PCR纯化试剂盒将第一互补链合成产物进行纯化并溶于 20.5 L的洗脱緩冲液中, 备用。
(8) 尿嘧啶 DNA糖基化酶消化
按照下列的配比准备反应混合物:
Figure imgf000013_0002
使用 Thermomixer将准备的反应混合物在 37 °C下进行温育 30分钟, 以便获得消化 产物, 然后利用 MiniElute PCR纯化试剂盒, 使用一个离心纯化柱将其进行纯化并溶于 20 的洗脱緩冲液中, 备用。
(9) 第二互补链合成反应
按照下列配比准备第二互补链合成反应混合物:
Figure imgf000013_0003
dATP (lOmM) 0.3μL
dTTP (lOmM) 0.3μL
dGTP (lOmM) 0.3μL
生物素 -l l-dCTP (lmM) 3μL
Jump Start™ Taq緩冲液( 10X ) 5μL
JumpStart™ Taq DNA 聚合酶 0·5μ
水 19.6μί 总体积 50 μL
将制备的第二互补链合成反应混合物进行 PCR 反应, 以便获得第二互补链合成产 物, 其中 PCR反应条件为: 95 °C , 30秒; 95 , 2分钟; 58 °C , 2分钟; 72°C , 5分钟; 4°C保存。 然后利用 MiniElute PCR纯化试剂盒将第二互补链合成产物进行纯化并溶于 5C L的洗脱緩冲液中, 备用。
(10) 分离第二互补链合成产物
利用第二分子实体分离第二互补链合成产物, 以便获得目的片段, 其中第二分子实体 为形成于磁珠上的链霉亲和素, 具体方法如下:
1) 振荡重悬链霉亲和素磁珠 ( Streptavidin Magnetic Beads ), 并吸取 20 μL重悬的 磁珠置于 1.5 ml离心管中。 然后将离心管放置在磁分离架上静置 1分钟后, 弃去上清。
2) 用 50 的磁珠结合緩冲液( Bead Binding Buffer ) 洗涤磁珠, 然后将磁珠进行 重悬, 并于磁分离架上静置 1分钟后, 弃去上清。
重复步骤 2)。
3) 利用 50 μL的磁珠结合緩冲液将磁珠进行重悬,然后添加 50 μL的第二互补链合 成产物, 于 20 °C下进行温育 15分钟, 并且每 2分钟将磁珠进行重悬一次, 其中重悬是 将磁珠在 600 rpm下震荡 15秒进行的。
4) 弃去上清,将磁珠洗涤四次,每次洗涤后均利用 200 μL的磁珠洗涤緩冲液( Bead Wash Buffer ) 轻轻吹打重悬磁珠五次。
5) 弃去上清, 添加 38.5 的洗脱緩冲液 (EB) 将磁珠进行重悬, 然后转移至新的 1.5 ml离心管中, 由此获得目的片段, 备用。
(ll) PCR扩增
按照下列配比准备反应混合物:
目的片段 38.5μί
dNTP混合物 (2.5mM) JumpStart™ Taq緩冲液 ( 10X ) 5μL
JumpStart™ Taq DNA聚合酶 0·5μ
第三引物_正向 Ιμί
第三引物_反向 Ιμί
总体积 50μL
将准备的反应混合物进行 PCR扩增, 以便获得扩增产物, 其中 PCR扩增的条件为: 94 °C , 30秒; 15个循环的 94°C , 30秒、 60 °C , 30秒、 72 °C , 30秒; 72°C , 1分钟; 4 °C保存。 然后利用 MiniElute PCR纯化试剂盒将扩增产物进行纯化, 以便获得样品 DNA 的甲基化测序文库, 将其溶于 35 L的洗脱緩冲液中, 备用。
(12) 文库的检测与测序
1) 分别利用 Agilent 2100 Bioanalyzer和 QPCR对获得的样品 DNA的甲基化测序文 库进行检测 (例如参见 Bernd Buehler, 等人. Rapid quantificat ion of DNA libraries for next-generation sequencing. Methods. 2010. 50:S15_S18 , 通过参照将其全文并入本文)。
其中, Agilent 2100 Bioanalyzer的检测结果表明, 文库的质量浓度为 5.85 ng^L, 摩尔浓度为 34.6 nM; QPCR的定量结果表明, 文库的摩尔浓度为 38.2 nM。
2) 利用 Illumina Hiseq 2000对本实施例构建的样品 DNA的甲基化测序文库进行高 通量 vji'J序 ( vjS'J序操作 方 法可参见 Product preview: Illumina sequencing. Pub.no.7702009-732 , 通过参照将其全文并入本文), 以便获得测序结果。
3、 实验结果
(1) 测序结果
本实施例的样品 DNA的甲基化测序文库的测序结果
Figure imgf000015_0001
表 2显示了上述获得的样品 DNA的甲基化测序文库的高通量测序结果。 由表 2可 知, 测序结果中, 原始数据的比对率达到 95.6 % , 这表明原始数据基本都是可用的; 重 复序列比例仅为 5.31% , 这表明由 PCR扩增所产生的重复序列的比例很低, 基本不存 在测序偏向性问题; 经过重亚硫酸盐处理的转换效率达到 99.2% , 这表明非甲基化的胞 嘧啶位点基本完全转换为尿嘧啶。
(2) 测序深度与甲基化率的关系
通常, 测序深度与甲基化率之间的关系能很好地反映对甲基化 DNA的富集的效果, 即 对第二互补链合成产物进行分离, 获得目的片段的效果: 如果目的片段的测序深度随着其 甲基化率的增加而相应增加,则表明,所釆用的方法对甲基化 DNA起到了很好的富集作用。
因此, 在本实施例中, 发明人以实验前已获得的样品 DNA的全基因组甲基化测序数据 (可参见 Li Y, 等人. (2010) The DNA Methylome of Human Peripheral Blood Mononuclear Cells. PLoS Biol 8(11): el000533. doi:10.1371/journal.pbio.l000533,通过参照将其全文并入本 文)作为参照数据, 通过对参照数据进行研究, 分析了测序深度与甲基化率之间的关系。 具体地, 釆用覆盖 12号染色体的测序数据, 以 5kbp为区间, 统计每个区间内的所有 C的平均 测序深度以及位点甲基化率, 然后分析二者的关系, 结果见图 2和图 3。 同时, 发明人还对 利用根据本发明实施例的确定样品 DNA的甲基化信息的方法获得的该样品的测序结果进行 了研究, 分析了其中的测序深度与甲基化率之间的关系, 结果见图 4。
图 2和图 3分别显示了样品 DNA的参照数据 (40G和 1.4G ) 中甲基化率与测序深度的 关系。 由图 2和图 3可知, 利用常规技术对样品 DNA进行测序时, 测序深度与甲基化率之 间不存在显著的统计学相关性。 图 4显示了利用根据本发明实施例的确定样品 DNA的甲基 化信息的方法获得的测序数据 (1.4G ) 中甲基化率与测序深度的关系。 由图 4可知, 利用根 据本发明实施例的确定样品 DNA的甲基化信息的方法获得的该样品的测序结果中,测序深 度与片段甲基化率之间存在显著的统计学相关性: 测序深度随着片段甲基化率的增加而相 应增加。 由以上分析可知, 利用本发明的确定样品 DNA的甲基化信息的方法, 显著且有效 地富集了样品 DNA中的甲基化 DNA, 并成功确定了其甲基化信息。 工业实用性
本发明的半甲基化接头、 确定样品 DNA 中甲基化信息的方法以及试剂盒, 能够应用 于高通量测序平台, 进而能够有效地应用于对样品 DNA的全基因组范围的甲基化研究。 在本说明书的描述中, 参考术语 "一个实施例"、 "一些实施例"、 "示意性实施例"、 "示 例"、 "具体示例"、 或 "一些示例" 等的描述意指结合该实施例或示例描述的具体特征、 结 构、 材料或者特点包含于本发明的至少一个实施例或示例中。 在本说明书中, 对上述术语 的示意性表述不一定指的是相同的实施例或示例。 而且, 描述的具体特征、 结构、 材料或 者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本发明的实施例, 本领域的普通技术人员可以理解: 在不脱离 本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、 修改、 替换和变型, 本发 明的范围由权利要求及其等同物限定。

Claims

权利要求书
1、 一种半甲基化接头, 其特征在于, 所述接头具有第一链和第二链, 其中所述第一链 中的胞嘧啶均被甲基化修饰, 所述第二链中的胞嘧啶均未被甲基化修饰, 所述第一链的 3' 端序列与所述第二链的 5'端序列互补。
2、 根据权利要求 1所述的接头, 其特征在于, 所述第一链的 5'端序列与所述第二链的 3'端序列不互补。
3、 根据权利要求 1所述的接头, 其特征在于, 所述第一链与所述第二链完全互补。
4、 根据权利要求 1所述的接头, 其特征在于, 所述半甲基化接头在第一链的 3'端或所 述第二链的 5'端具有悬突。
5、 根据权利要求 4所述的接头, 其特征在于, 所述半甲基化接头在第一链的 3'端具有 单个碱基的悬突。
6、 根据权利要求 5所述的接头, 其特征在于, 所述半甲基化接头在第一链的 3'端具有 单个碱基 T的悬突。
7、 一种确定样品 DNA中甲基化信息的方法, 其特征在于, 包括下列步骤:
将样品 DNA片段化, 以便获得 DNA片段;
将权利要求 1-6任一项所述的接头与所述 DNA片段的至少一端相连, 以便获得具有接 头的连接产物;
将所述连接产物进行重亚硫酸盐处理, 以便将所述连接产物中非甲基化的胞嘧啶转换 为尿嘧啶, 获得经过转换的连接产物;
以所述经过转换的连接产物为模板, 利用第一引物对所述经过转换的连接产物进行第 一互补链合成反应, 以便获得第一互补链合成产物, 其中所述第一引物与所述半甲基化接 头的第二链互补或局部互补;
利用尿嘧啶糖基化酶对所述第一互补链合成产物进行消化, 以便去除含有尿嘧啶的 DNA链, 获得消化产物;
以所述消化产物为模板, 利用第二引物对所述消化产物进行第二互补链合成反应, 以 便获得第二互补链合成产物, 其中, 所述第二互补链合成反应中使用经第一分子实体修饰 的 dCTP, 所述第二引物与所述半甲基化接头的第二链互补或局部互补, 所述第二互补链合 成产物中的胞嘧啶被第一分子实体修饰;
利用第二分子实体分离所述第二互补链合成产物, 以便获得目的片段, 其中所述第二 分子实体特异性识别所述第一分子实体; 对所述目的片段进行测序, 以便获得测序结果; 以及
基于所述测序结果, 确定所述样品 DNA的甲基化信息。
8、根据权利要求 7所述的方法,其特征在于,所述样品 DNA为任意物种的基因组 DNA。
9、 根据权利要求 8所述的方法, 其特征在于, 所述基因组 DNA来源于选自动物、 植 物和^:生物的至少一种。
10、 根据权利要求 9所述的方法, 其特征在于, 所述动物为哺乳动物。
11、 根据权利要求 10所述的方法, 其特征在于, 所述哺乳动物为人。
12、 根据权利要求 7所述的方法, 其特征在于, 所述将样品 DNA片段化是利用选自雾 化法、 超声片段化法、 HydroShear和酶切处理的至少一种进行的。
13、 根据权利要求 12所述的方法, 其特征在于, 所述将样品 DNA片段化是利用超声 片段化法进行的。
14、 根据权利要求 13所述的方法, 其特征在于, 所述超声片段化法是利用 Covaris 超 声仪进行的。
15、 根据权利要求 7所述的方法, 其特征在于, 所述 DNA片段的长度为 100-400bp。
16、 根据权利要求 15所述的方法, 其特征在于, 所述 DNA片段的长度为 200-350bp。
17、 根据权利要求 7所述的方法, 其特征在于, 将所述接头与所述 DNA片段的至少一 端相连, 是利用平端连接法或粘性末端连接法进行的。
18、 根据权利要求 17所述的方法, 其特征在于, 所述粘性末端连接法为 TA连接。
19、 据权利要求 7所述的方法, 其特征在于, 所述第二分子实体形成于磁珠上。
20、 根据权利要求 7 所述的方法, 其特征在于, 所述第一分子实体和所述第二分子实 体分别为选自抗原和抗体、 抗原和抗原结合片段、 配体和受体, 以及生物素和亲和素的任 意一组。
21、 据权利要求 21所述的方法, 其特征在于, 所述第一分子实体为生物素, 所述第二 分子实体为链霉亲和素。
22、 据权利要求 21所述的方法, 其特征在于, 所述经第一分子实体修饰的 dCTP为生 物素 -11-dCTP, 所述第二分子实体为形成于磁珠上的链霉亲和素。
23、 根据权利要求 7 所述的方法, 其特征在于, 在对所述目的片段进行测序之前, 对 所述目的片段进行 PCR扩增。
24、根据权利要求 23所述的方法, 其特征在于, 使用第三引物进行所述 PCR扩增, 其 中所述第三引物与重亚硫酸盐处理后的半甲基化接头互补或局部互补。
25、 根据权利要求 7 所述的方法, 其特征在于, 所述测序是利用高通量测序平台进行 的。
26、 根据权利要求 25 所述的方法, 其特征在于, 所述测序是利用选自 Solexa、 Solid 和 Roche-454的至少一种测序平台进行的。
27、 根据权利要求 7 所述的方法, 其特征在于, 在任意两个相邻步骤之间, 进一步包 括将产物进行回收和纯化。
28、 根据权利要求 27所述的方法, 其特征在于, 在所有步骤之间进行产物的回收和纯 化。
29、 一种试剂盒, 其特征在于, 包括: 权利要求 1-6任一项所述的半甲基化接头。
30、 根据权利要求 29所述的试剂盒, 其特征在于, 所述第一链和第二链分别独立地呈 单链形式。
31、 根据权利要求 29所述的试剂盒, 其特征在于, 所述接头呈双链形式。
32、 根据权利要求 29所述的试剂盒, 其特征在于, 进一步包括选自下列的至少一种: 第一引物, 所述第一引物与所述半甲基化接头的第二链互补或局部互补;
第二引物, 所述第二引物与所述半甲基化接头的第二链互补或局部互补;
第三引物, 所述第三引物与经过重亚硫酸盐处理后的半甲基化接头互补或局部互补; 经第一分子实体修饰的 dCTP; 以及
第二分子实体, 所述第二分子实体特异性识别所述第一分子实体。
33、 据权利要求 32所述的试剂盒, 其特征在于, 所述第二分子实体形成于磁珠上。
34、 根据权利要求 32所述的试剂盒, 其特征在于, 所述第一分子实体和所述第二分子 实体分别为选自抗原和抗体、 抗原和抗原结合片段、 配体和受体, 以及生物素和亲和素的 任意一组。
35、 据权利要求 34所述的试剂盒, 其特征在于, 所述第一分子实体为生物素, 所述第 二分子实体为链霉亲和素。
36、 据权利要求 35所述的试剂盒, 其特征在于, 所述经第一分子实体修饰的 dCTP为 生物素 -11-dCTP, 所述第二分子实体为形成于磁珠上的链霉亲和素。
PCT/CN2011/083723 2010-12-10 2011-12-08 半甲基化接头及其用途 WO2012075959A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010582865.5 2010-12-10
CN201010582865.5A CN102533944B (zh) 2010-12-10 2010-12-10 用于甲基化dna的富集和测序的半甲基化接头及其用途

Publications (1)

Publication Number Publication Date
WO2012075959A1 true WO2012075959A1 (zh) 2012-06-14

Family

ID=46206633

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/083723 WO2012075959A1 (zh) 2010-12-10 2011-12-08 半甲基化接头及其用途

Country Status (2)

Country Link
CN (1) CN102533944B (zh)
WO (1) WO2012075959A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103088433B (zh) * 2011-11-02 2014-09-24 深圳华大基因科技服务有限公司 全基因组甲基化高通量测序文库的构建方法及其应用
CN103571822B (zh) * 2012-07-20 2016-03-30 中国科学院植物研究所 一种用于新一代测序分析的多重目的dna片段富集方法
CN105400776B (zh) * 2014-09-12 2019-12-31 深圳华大智造科技有限公司 寡核苷酸接头及其在构建核酸测序单链环状文库中的应用
CN108048915A (zh) * 2017-12-01 2018-05-18 北京科迅生物技术有限公司 用于ctDNA文库构建的接头混合物、包括其的试剂盒及应用
CN108753771B (zh) * 2018-06-20 2020-05-12 深圳市海普洛斯生物科技有限公司 一种Hemi-M甲基化修饰引物及其应用
CN108796039B (zh) * 2018-06-29 2021-10-08 上海交通大学 一种用于dna甲基化检测的试剂盒与方法及应用
CN111154837B (zh) * 2019-09-02 2021-05-18 浙江大学 一种全转录组范围单碱基分辨率检测rna n6-甲基腺嘌呤修饰的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002046452A2 (de) * 2000-12-06 2002-06-13 Epigenomics Ag Verfahren zur quantifizierung von cytosin-methylierungen in komplex amplifizierter genomischer dna
CN101124338A (zh) * 2004-11-29 2008-02-13 雷根斯堡大学临床中心 用于检测甲基化dna的试剂盒和方法
US20100273164A1 (en) * 2009-03-24 2010-10-28 President And Fellows Of Harvard College Targeted and Whole-Genome Technologies to Profile DNA Cytosine Methylation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002046452A2 (de) * 2000-12-06 2002-06-13 Epigenomics Ag Verfahren zur quantifizierung von cytosin-methylierungen in komplex amplifizierter genomischer dna
CN101124338A (zh) * 2004-11-29 2008-02-13 雷根斯堡大学临床中心 用于检测甲基化dna的试剂盒和方法
US20100273164A1 (en) * 2009-03-24 2010-10-28 President And Fellows Of Harvard College Targeted and Whole-Genome Technologies to Profile DNA Cytosine Methylation

Also Published As

Publication number Publication date
CN102533944A (zh) 2012-07-04
CN102533944B (zh) 2014-04-09

Similar Documents

Publication Publication Date Title
US20200165650A1 (en) Polynucleotide enrichment using crispr-cas system
JP5986572B2 (ja) 固定化プライマーを使用した標的dnaの直接的な捕捉、増幅、および配列決定
WO2012075959A1 (zh) 半甲基化接头及其用途
US20140045706A1 (en) Methods and systems for haplotype determination
EP2844766B1 (en) Targeted dna enrichment and sequencing
WO2013064066A1 (zh) 全基因组甲基化高通量测序文库的构建方法及其应用
CA2892646A1 (en) Methods for targeted genomic analysis
WO2013075629A1 (zh) 一种检测核酸羟甲基化修饰的方法及其应用
WO2018031808A1 (en) Methods of analyzing nucleic acid fragments
AU2014279672A1 (en) Improved NGS workflow
US20230193380A1 (en) Systems and methods for targeted nucleic acid capture
WO2013143133A1 (zh) 全基因组扩增方法及其应用
JP2022145606A (ja) 核酸の正確な並行定量のための高感度な方法
JP2023537850A (ja) 核酸の配列特異的標的化転位並びに選択及び選別
TW202302861A (zh) 用於準確的平行定量稀釋或未純化樣品中的核酸的方法
WO2012083845A1 (zh) 用于除去测序文库中载体片段的方法及其用途
CN114929896A (zh) 用于多重靶扩增pcr的有效方法和组合物
CN114787385A (zh) 用于检测核酸修饰的方法和系统
JP2024035110A (ja) 変異核酸の正確な並行定量するための高感度方法
JP2024035109A (ja) 核酸の正確な並行検出及び定量のための方法
TW202411431A (zh) 準確地平行定量變體核酸的高靈敏度方法
JP2023517571A (ja) シーケンシングのための新規核酸鋳型構造
WO2023159250A1 (en) Systems and methods for targeted nucleic acid capture and barcoding
CN116478985A (zh) Dna单碱基变异捕获探针及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11846242

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11846242

Country of ref document: EP

Kind code of ref document: A1