WO2012074039A1 - 医用画像処理装置 - Google Patents

医用画像処理装置 Download PDF

Info

Publication number
WO2012074039A1
WO2012074039A1 PCT/JP2011/077761 JP2011077761W WO2012074039A1 WO 2012074039 A1 WO2012074039 A1 WO 2012074039A1 JP 2011077761 W JP2011077761 W JP 2011077761W WO 2012074039 A1 WO2012074039 A1 WO 2012074039A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
image
signal value
brain
slice
Prior art date
Application number
PCT/JP2011/077761
Other languages
English (en)
French (fr)
Inventor
智章 後藤
小野 徹太郎
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Priority to US13/991,012 priority Critical patent/US9042616B2/en
Priority to JP2012546926A priority patent/JP5601378B2/ja
Priority to EP11844823.2A priority patent/EP2647335B1/en
Priority to CN201180058114.6A priority patent/CN103249358B/zh
Publication of WO2012074039A1 publication Critical patent/WO2012074039A1/ja
Priority to HK13114416.2A priority patent/HK1186947A1/xx

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/90Dynamic range modification of images or parts thereof
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/30Determination of transform parameters for the alignment of images, i.e. image registration
    • G06T7/33Determination of transform parameters for the alignment of images, i.e. image registration using feature-based methods
    • G06T7/337Determination of transform parameters for the alignment of images, i.e. image registration using feature-based methods involving reference images or patches
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • G06T7/62Analysis of geometric attributes of area, perimeter, diameter or volume
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20112Image segmentation details
    • G06T2207/20128Atlas-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30016Brain

Definitions

  • the present invention relates to a technique for performing diagnosis support for a brain disease by performing image processing on a brain image obtained by MRI (Magnetic Resonance Imaging), and in particular, a brain image obtained by MRI or the like in a state suitable for diagnosis support. It relates to processing technology.
  • MRI Magnetic Resonance Imaging
  • SPECT Single Photon Emission
  • Information on the state of the brain can be acquired by nuclear medicine examination such as computed tomography (PET) and PET (positron emission tomography), CT (computerized tomography) and MRI.
  • a decrease in blood flow or metabolism in a local region of the brain can be tested by comparing with SPECT or PET images.
  • the volume of a specific part can be obtained from an MRI image, and the relative size can be compared to determine the presence or absence of an abnormality.
  • a brain image obtained by imaging the head of a subject is subjected to image processing in units of voxels that are three-dimensional pixels. Based Morphometry) is known (for example, see Patent Document 1).
  • This VBM method is an effective evaluation method for identifying Alzheimer's disease, and it has been reported that there was 87.8% diagnostic ability in distinguishing between healthy subjects and Alzheimer's disease (see Non-Patent Document 1). .
  • an object of the present invention is to provide a medical image processing apparatus that can determine the state of an acquired brain image and adjust it to a brain image suitable for tissue separation processing.
  • target slice selection means for selecting a slice image to be processed as a target slice from a brain image composed of a plurality of slice images, and brain parenchyma pixels
  • Brain parenchyma measurement means for performing measurement processing of the brain parenchymal effective maximum value which is the effective maximum value of the signal value
  • brain image measurement means for performing measurement processing of the effective maximum value of the signal value of the pixel of the entire brain image, and the skull peripheral region
  • the cranial measurement means that measures and processes the average of the signal values of the pixels that become the peak as the peak average value of the circadian revolution, the effective maximum value of the measured brain parenchyma, the effective maximum value of the entire brain image, the peak average value of the circadian circumference
  • a suppression processing determination unit that determines whether a high signal value suppression process is necessary or not, and executes a high signal value suppression process on the brain image when the suppression process determination unit determines that the high signal value suppression process is necessary.
  • the target slice of the brain image is selected, and for the selected slice, the effective maximum value of the signal value of the pixel of the brain parenchyma, the effective maximum value of the signal value of the pixel of the entire brain image, Measure the peak average value of the circadian circumference, which is the average of the signal values of the pixels that become the peak of the region around the skull, and if necessary, perform high signal value suppression processing on the brain image
  • the state of the acquired brain image can be determined and adjusted to a brain image suitable for tissue separation processing.
  • the suppression processing determination means determines whether or not the peak average value of the circadian circumference is higher than the brain parenchyma effective maximum value by a certain percentage. Performing a skull region determination, which is a determination, and an entire image determination, which is a determination as to whether a signal value of the entire image is higher than the brain parenchyma effective maximum value by a certain percentage, and either the skull region determination or the entire image determination When one of the conditions is satisfied, it is determined that high signal value suppression processing is necessary.
  • the second aspect of the present invention it is determined whether or not the peak average value in the region around the skull and the signal value of the entire image are higher than the brain parenchyma effective maximum value by a certain percentage, the peak average value in the region around the skull, the entire image
  • the high signal value suppression processing is necessary, so if the signal value in the region around the skull is significantly higher than the brain parenchyma, In any case where the signal value in the region other than the brain parenchyma is significantly higher than the brain parenchyma, it is possible to accurately determine that the high signal value suppression processing is necessary.
  • the target slice selecting means sets a predetermined line segment in the image for each slice image, Among the pixels located on the line segment and having a signal value equal to or greater than a predetermined value, the length between the farthest pixels is obtained, and the length between the pixels is a predetermined value compared to the longest of all slice images.
  • a slice image having a ratio or higher is selected as a target slice.
  • a slice image in which pixels having a signal value equal to or greater than a predetermined value are equal to or greater than a predetermined ratio in all slice images is selected as a target slice.
  • the brain parenchyma measuring means determines the center of the brain for each selected target slice. Set a predetermined number of line segments to pass through, divide the signal value distribution of the pixels on the line segment into a predetermined number of areas for each line segment, and set the central predetermined number of areas as the brain parenchymal area, the signal value in the brain parenchymal area The maximum value of the signal obtained by removing the upper predetermined pixels is obtained as the effective maximum value of the brain parenchyma.
  • the signal value distribution for each of a plurality of line segments passing through the central part of the brain is divided into a predetermined number of regions, and the central predetermined number of regions are divided into the brain. Since the histogram of the signal value in the brain parenchyma area is obtained as the real area, and the maximum value of the signal obtained by removing the upper predetermined pixels is obtained as the effective maximum value of the brain parenchyma, the brain that is a value representative of the brain parenchyma It is possible to accurately determine the actual effective maximum value.
  • the brain image measurement means obtains a histogram of signal values of pixels of the entire target slice, The maximum value of the signal from which the predetermined pixels are removed is obtained as the effective maximum value of the entire image.
  • the histogram of the signal values of the pixels of the entire target slice is obtained, and the maximum value of the signal from which the upper predetermined pixels are removed is obtained as the effective maximum value of the entire image. It is possible to accurately obtain the effective maximum value of the entire image, which is a value representing the entire image.
  • the skull measurement means passes through the center of the brain for each selected target slice.
  • Set a predetermined number of line segments divide the signal value distribution of the pixels on the line segment into a predetermined number of areas for each line segment, and use the predetermined number of areas at both ends as the skull peripheral area, and the maximum signal value in the skull peripheral area
  • the average value of all the line segments of all the target slices is obtained as the peak average value of the circadian gyrus.
  • the signal value distribution for each of a plurality of line segments passing through the center of the brain is divided into a predetermined number of regions, and the predetermined number of regions at both ends are used as the skull peripheral region. Since the average value of all signal segments of all target slices of the maximum signal value in the skull peripheral region is obtained as the peak average value of the skull periphery, the peak of the skull periphery that is a value representative of the skull peripheral region The average value can be obtained accurately.
  • the high signal value suppression processing means For a pixel having a signal value equal to or greater than the predetermined value without changing the signal value, relatively high signal value suppression processing is realized by executing processing for setting the signal value to a predetermined value.
  • the signal value is not changed, and for a pixel whose signal value is equal to or greater than a predetermined value, a process of setting the signal value to a predetermined value is executed. As a result, the high signal value of the input image can be suppressed.
  • the high signal value suppression processing means For a pixel whose signal value is not less than the predetermined value without changing the signal value, a process for converting the signal value to be smaller than the original value is executed, thereby realizing a relatively high signal value suppression process. It is characterized by being.
  • the signal value is not changed for a pixel whose signal value is less than the predetermined value, and the signal value is smaller than the original value for a pixel whose signal value is the predetermined value or more. Since the conversion process is executed as described above, the high signal value of the input image can be suppressed.
  • the high signal value suppression processing means does not change a signal value of a pixel having a signal value less than a predetermined value.
  • relatively high signal value suppression processing is realized by executing processing for converting the signal value by a linear function having a slope of zero or more and smaller than 1. It is characterized by being.
  • the signal value is not changed for a pixel whose signal value is less than a predetermined value, and the signal value of the pixel whose signal value is greater than or equal to the predetermined value is 1 or more with a slope of zero or more. Since the process of converting with a small linear function is executed, the high signal value of the input image can be suppressed. Further, the result of the tissue separation process becomes a natural image.
  • the present invention it is possible to determine the state of the acquired brain image and adjust it to a brain image suitable for tissue separation processing.
  • FIG. 1 is a block diagram showing an outline of a medical image processing apparatus according to an embodiment of the present invention.
  • the flowchart which shows the basic process sequence of the medical image processing method by this embodiment
  • the flowchart which shows the pre-processing procedure of the medical image processing method by this embodiment
  • Conceptual diagram showing brain slice images and voxel characteristics
  • Flow chart showing details of preparation process
  • the figure which shows the mode of selection processing of the object slice Diagram showing the distribution of signal values in the brain parenchyma and the area around the skull
  • Conceptual image showing gray matter, white matter age template
  • Conceptual image showing gray matter, white matter gender template
  • Conceptual diagram schematically showing the features of spatial standardization
  • Conceptual diagram showing the characteristics of nonlinear transformation
  • Conceptual diagram showing the results of spatial standardization and smoothing
  • Conceptual diagram showing the characteristics of the comparison test for each voxe
  • FIG. 1 is a block diagram showing a medical image processing apparatus according to an embodiment of the present invention.
  • the medical image processing apparatus according to the present embodiment illustrated in FIG. 1 includes a user interface 10, an image / statistic processing unit 20, and a database unit 30.
  • the user interface 10 includes an image input function 12 for inputting an MRI image as an input image, and a result display function 14 for displaying a result processed by the image / statistic processing unit 20.
  • An image processing function 22 for processing an MRI image input from the user interface 10, a statistical processing function 24 for performing various statistical calculations, and a high signal value for determining whether or not high signal value suppression is necessary or unnecessary for the input image.
  • a suppression necessity / unnecessity determination function 26 is provided.
  • the database unit 30 stores a white matter brain image template 32, a gray matter brain image template 34, a healthy subject image database 36, a disease-specific ROI 38, and the like used for processing to be described later by the image / statistical processing unit 20.
  • FIG. 2 is a flowchart showing an outline of processing of the medical image processing apparatus according to this embodiment
  • FIG. 3 is a flowchart showing a pre-processing procedure of the medical image processing method according to this embodiment.
  • FIG. 2 first, when an MRI brain image of a subject is input, predetermined processing is performed on the brain image to determine whether high signal value suppression processing should be performed, and according to the determination result. High signal value suppression processing is performed (S1). In S1, depending on the determination result, the high signal value suppression process may not be performed.
  • S1 is a feature of the present invention. Details of the processing in S1 will be described later.
  • the brain image after the high signal value suppression process (or the input MRI brain image when the high signal value suppression process is not performed) is aligned to correct spatial deviation (S2). Subsequently, a gray matter image in which the gray matter is extracted together with the white matter image in which the white matter has been extracted by the tissue separation process is created from the brain image after the alignment (S3).
  • each of the processes of S1 to S7 can be implemented by a program in the image / statistical processing unit 20 formed of a computer, and white matter and gray-white by the processes of S11 to S14 described below. Quality templates can be created by the program as well.
  • pre-processing for creating a template used for spatial standardization of S4 is performed in S11 to S14 of FIG.
  • T1-weighted MRI brain images are input from as many healthy subjects as possible.
  • Pre-processing is performed for MRI brain images acquired from each subject. Specifically, as shown in FIG. 4, an image of a slice image obtained by cutting out the entire brain and a part of the brain, for example, 100 to 200 images taken in a slice of a predetermined thickness so as to include the entire brain of the subject.
  • the T1-weighted MRI image is input.
  • the resampling of the slice image is performed so that the length of each side of the voxel in each slice image becomes equal in advance.
  • a voxel is a coordinate unit of an image having “thickness” and corresponds to a pixel in a two-dimensional image.
  • a preparation process is performed (S11).
  • the preparation process determines whether the high signal value suppression process should be performed on the input image so that the tissue separation process is accurately performed. High signal value suppression processing is performed.
  • FIG. 5 is a flowchart showing details of the preparation process.
  • a process of selecting a slice image used as a determination target from the input image as a target slice is performed (S21).
  • FIG. 6 shows how the target slice is selected.
  • As the target slice it is desirable to select a portion that does not include a high signal value other than the region around the skull and the brain parenchyma.
  • a predetermined line segment is set in the image, and the length between the farthest pixels among the pixels located on the line segment and having a signal value equal to or greater than a predetermined value is set.
  • a line segment to be set in the image a line segment passing through most of the imaged region around the skull and the brain parenchyma is set.
  • a diagonal line of the image may be used as the line segment.
  • the predetermined value to be compared with the signal value can be appropriately set. For example, it can be a value obtained by multiplying the average of the signal values of the entire image by a predetermined constant.
  • Pixels with a signal value greater than or equal to a predetermined value indicate the region around the cranium, and among pixels with a signal value equal to or greater than a predetermined value, the distance between the farthest pixels indicates the length of overlap between the line segment and the head. ing.
  • the target slice it is desirable to select a slice image that does not include a high signal value other than the peripheral region of the skull and the brain parenchyma, but that portion is 80 to 95% of the maximum portion of the head. It exists in the position that becomes the length. Therefore, in the present embodiment, a slice image in which the length between the pixels is maximized is specified, and a slice image in which the length between the pixels is 80 to 95% of the specified slice image is targeted. Select as a slice.
  • the measurement process of the effective maximum value of the brain parenchyma is performed (S22).
  • the signal value distribution of the brain parenchyma is acquired.
  • the signal value distribution of the region around the skull is also acquired at the same time.
  • FIG. 7 shows the signal value distribution in the brain parenchyma and the region around the skull.
  • the signal value of the pixel on a line segment is plotted about each line segment. Further, the signal value distribution is divided into a predetermined number of regions according to the line segment, and the central predetermined number of regions is defined as the brain parenchymal region, and the predetermined number of regions at both ends are defined as the skull peripheral region. In this embodiment, as shown in the signal value distribution on the right side of FIG. 7A, the area is divided into 10 areas, the central 4 areas are the brain parenchyma area, and each area on both ends (2 areas in total) is the skull. The surrounding area. A and B in the signal value distribution correspond to A and B on the brain image shown on the left side of FIG.
  • FIG. 8A shows the state of measurement processing of the effective maximum value of the brain parenchyma. As shown in the histogram at the bottom of FIG. 8A, the value of the portion indicated by the arrow excluding the upper 3% shaded pixels is the brain parenchyma effective maximum value Bmax.
  • measurement processing of the effective maximum value of the entire image is performed (S23). Specifically, a histogram of the signal values of the pixels of the entire rectangular target slice is obtained, and the maximum value when a portion affected by the high signal artifact is excluded is obtained as the effective maximum value Imax of the entire image.
  • FIG. 8B shows the state of the measurement process of the peak average value of the cranial orbit.
  • the average of the signal values of the number of target slices ⁇ 20 is calculated as the peak average value Pave of the cranial circle.
  • S25 it is determined whether or not high signal value suppression is necessary (S25). Specifically, when two types of determinations, the skull region determination and the entire image determination, are performed, and if any of these determination conditions is satisfied, it is determined that high signal value suppression is necessary, and neither of the determination conditions is satisfied In addition, it is determined that high signal value suppression is unnecessary.
  • the skull region determination is performed to determine whether or not the signal value in the region around the skull is higher than the brain parenchymal region by a certain percentage. Specifically, processing according to the following [Formula 1] is executed.
  • the whole image determination is to determine whether or not the signal value of the entire image is higher than the brain parenchyma by a certain percentage. Specifically, processing according to the following [Formula 2] is executed.
  • the process proceeds to the high signal value suppression process (S26).
  • the high signal value suppression process is not performed and the preparation is performed. The process ends. This is because the high signal values other than the brain parenchyma are not so high as to hinder the tissue separation process when neither the conditions of the skull region determination or the entire image determination are satisfied, and there is no need for high signal value suppression.
  • either the skull region determination or the entire image determination may be performed first. If the determination is satisfied first, the high signal value suppression process is performed without determining the other determination condition. Proceed to (S26).
  • the high signal value suppression process is a process of suppressing the value of a pixel having a high signal value from pixels of the input image so as not to be relatively high. For this reason, various methods can be used as long as the processing is performed to suppress the value of a pixel having a high signal value so as not to be relatively high as compared to other pixels.
  • the signal value is fixed, and for a pixel that is less than a certain fixed value, processing that does not change the signal value is performed. Relatively high signal value suppression processing is realized.
  • the signal value s (x, y) at each pixel (x, y) of the input image is converted into the signal value s ′ (x, y). To correct.
  • the signal value is converted by a linear function having a slope a larger than zero and smaller than 1, and for a pixel less than a certain fixed value. May execute relatively high signal value suppression processing by executing processing that does not change the signal value. As a result, the rate of change of the signal value above a certain fixed value becomes smaller than the rate of change of the signal value below a certain fixed value, and the value of the pixel having a high signal value can be suppressed so as not to become relatively high. .
  • the second method since the signal value above a certain value is gently increased, the result of the tissue separation process becomes a more natural image.
  • a signal value s (x, y) at each pixel (x, y) of the input image is obtained as a signal value s by executing processing according to the following [Equation 4]. Correct to '(x, y).
  • the high signal value suppression process is realized by the process according to the above [Equation 3] or [Equation 4].
  • the signal value is changed to the original value. Any processing that converts the value to be smaller than the value may be used, and it may be realized by using another known method such as gamma correction.
  • the process returns to the flowchart of FIG. 3 and the subsequent processes are executed.
  • subsequent steps S12 to S14 the image for which high signal value suppression is performed is processed for the corrected image, and the image for which high signal value suppression is not performed is processed for the input image.
  • a spatial alignment process is performed (S12). This is equivalent to correcting the spatial position and angle by linear transformation (affine transformation) in order to increase the accuracy when comparing the brain image to be examined with a standard brain image.
  • linear transformation affine transformation
  • a tissue separation process is performed (S13), and a white matter image and a gray matter image from which white matter and gray matter are extracted are created.
  • the input T1-weighted MRI brain image includes three types of tissues: white matter that exhibits a high signal value corresponding to nerve fibers, gray matter that exhibits an intermediate signal value corresponding to nerve cells, and cerebrospinal fluid that exhibits a low signal value. Therefore, processing for extracting white matter and gray matter is performed by paying attention to the difference.
  • This process is described in Patent Document 1.
  • the integrated tissue separation process is performed with higher extraction accuracy than the method performed in Patent Document 1.
  • the integrated tissue separation process is a tissue separation technique in which standardization, tissue separation, and signal non-uniformity correction are incorporated into one model. Details are described in Non-Patent Document 3.
  • the integrated tissue separation process is characterized in that, in addition to the white matter image and the gray matter image, a conversion field indicating the correspondence between the coordinates of the MRI image and the coordinates of the standard brain is created. The conversion field is used for standardization described later.
  • MRI brain images of many (multiple) healthy subjects are separated from each other, white matter images extracted from the white matter are created as samples, and white matter templates are created by spatial standardization among all the created samples.
  • white matter images extracted from the white matter are created as samples
  • white matter templates are created by spatial standardization among all the created samples.
  • MRI brain images of a large number of healthy subjects are tissue-separated to create a gray matter image from which gray matter has been extracted as a sample, and a gray matter template is created by spatial standardization among all the created samples. .
  • the DARTEL algorithm is applied to the spatial standardization performed here.
  • DARTEL is superior in spatial standardization accuracy compared with the conventional VBM method, and is expected as a technique for improving diagnostic ability by image statistical analysis of Alzheimer's disease. Further, since DARTEL spatial standardization is performed more precisely than conventional methods, not only gray matter that has been evaluated until now but also white matter can be evaluated.
  • a stratified template corresponding to the subject's attributes such as age and sex is created, and the white matter brain image template 32, gray matter brain image are stored in the database unit 30. Save as template 34.
  • the white matter template and gray matter template are prepared according to age as shown in FIG.
  • Gray matter (A) and white matter (C) were prepared based on images of healthy individuals aged 54 to 69 years, gray matter (B) and white matter (D) were 70 to 84 years old.
  • the templates differ depending on the age. Particularly in the case of white matter, the size of the ventricle indicated by the arrow in the sixth template from the left is greatly different between (C) and (D). I understand that.
  • the white matter template and the gray matter template are prepared for each gender as shown in FIG.
  • the shape of the ventricles shows differences depending on gender.
  • the diagnostic support information creation processing according to S1 to S7 is performed.
  • the white and gray matter templates will be referred to as Darter templates.
  • a T1-weighted MRI image captured in a slice shape having a predetermined thickness is input as a subject image, and the slice image is resampled so that the lengths of the sides of the voxel in each slice image are equal in advance. .
  • the tissue separation process of S3 is performed.
  • This tissue separation is the same as in S13, and white matter and gray matter are extracted to create a white matter image and a gray matter image of the subject.
  • the spatial standardization process of S4 is performed on the white matter image and gray matter brain image of the subject created as described above.
  • the Dartel algorithm is applied as in the case of S14.
  • This spatial standardization process is a global correction for the entire brain size and a local correction for the partial size to absorb anatomical differences in brain images that exist between individuals. Is to do.
  • the explanation will focus on gray matter, but substantially the same processing is also performed for white matter.
  • the spatial standardization process at S4 Darter consists of the following three steps. (S4-1) Initial position determination process (S4-2) Conversion process to Darter template (S4-3) Conversion process to standard brain template
  • the initial position is determined for the gray matter image and the white matter image using the conversion field to the standard brain obtained by the integrated tissue separation process described above.
  • rigid body rigid ⁇ body
  • the image subjected to the process in S4-1 is matched with the Darter template using the Darter algorithm.
  • a process of matching the image combined with the Darter template obtained in S4-2 with the standard brain template is performed.
  • a conversion field from the Dartel template to the standard brain template is obtained in advance, and conversion to the standard brain coordinate system is performed using the conversion field.
  • the volume information is retained by performing the standardization while retaining the sum of the signal values of each voxel, the volume can be measured after the standardization.
  • Step 3-2 will be described as an example.
  • the average gray matter prepared in S14 read from the database unit 30 using linear transformation and nonlinear transformation as conceptually shown in FIG.
  • Image processing is performed so that the sum of squares of errors with the brain image template 34 is minimized.
  • a global correction of the position, size, and angle by linear transformation is performed, and then a shape such as local unevenness is corrected by nonlinear transformation.
  • the linear transformation performed here is the same affine transformation as the alignment in S2.
  • the non-linear transformation estimates a deformation field representing a local displacement in each of the x direction and the y direction, and converts the original image using this deformation field.
  • the process of S4-2 is a process of matching the processing target image using the template created in S14 as a model, and the template to be used is created with high accuracy by applying the Dartel algorithm. Its shape is sharp.
  • spatial standardization allows individual objects to be matched to a close shape without individual differences, so that the shape between individuals is almost the same, but atrophy is reflected in local density. As a result, the accuracy of spatial standardization can be improved.
  • the image smoothing process of S5 is performed on the white matter image and the gray matter brain image (hereinafter also referred to as the standardized brain image) subjected to spatial standardization as described above.
  • the FWHM (half width) of the filter used for smoothing is about 8 mm.
  • Patent Document 1 a three-dimensional brain image and a three-dimensional convolution of a three-dimensional Gaussian function are performed. This is possible by sequentially performing one-dimensional convolution in the x, y, and z directions. By performing smoothing in this way, individual differences that do not completely match in the spatial standardization process can be reduced.
  • FIG. 13 shows an image obtained as a result of the spatial standardization process in S4 and the smoothing process in S5 for the white matter image and the gray matter image separated in S3.
  • the statistical comparison of S6 is performed.
  • the MRI brain image of the gray matter (white matter) of the subject that has been standardized through each of the processes of S1 to S5 described above, and the healthy subject that has been collected and stored in the database unit 30 as the healthy subject image database 36
  • a comparison test with the same MRI brain image group is performed. It is desirable that the healthy person image group to be used is composed of a subject close to the age of the subject.
  • N is the total number of healthy subject images
  • the Z score is a value obtained by scaling the difference between the voxel value of the subject image and the average voxel value of the corresponding voxel of the healthy subject image group by the standard deviation, and this is the gray matter (white matter) volume. It indicates the degree of relative decline.
  • an appropriate critical value Z ′ is determined, and the Z score is Z ′ ⁇ Z (2)
  • the voxels that satisfy the above are obtained, and the voxels exhibiting a statistically significant difference are obtained.
  • Z ′ 2 that can be estimated to be abnormal with a probability of about 95% or more is used.
  • the following formula is also used as a method for designating a critical value including all sites whose volume is lower than that of a healthy person. 0 ⁇ Z '(3)
  • the healthy person image database 36 used in S6 has the spatial alignment of S2 to S5 for each of the healthy person image groups separately collected in advance ⁇ gray matter (white matter) tissue separation process ⁇ spatial
  • Each process such as standardization ⁇ smoothing is sequentially performed and similarly created and stored.
  • these collected healthy person images are classified by age, for example, every 5 years or every 10 years, and the average value and standard deviation calculated for each group are stored in a storage device. By storing it, it is possible to perform a test based on the Z score.
  • the age of the subject is 76 years old, 74 to 78 years old (with a width of 5 years old). )) May be collected and compared.
  • the analysis by the ROI in S7 is performed.
  • This is a method of setting a region of interest (ROI) of a predetermined size on an image when determining the presence or absence of an abnormality using a brain image (see, for example, Non-Patent Document 5)
  • ROI region of interest
  • a ROI having a predetermined size is set at a specific part that is attracting attention as related to a specific disease, and comparison is performed.
  • an ROI corresponding to a disease is obtained for a voxel at a coordinate position where a significant difference is found from a healthy person by the statistical processing and its Z score (evaluation value).
  • Z score evaluation value
  • ROI 38 as standardized image data corresponding to each disease such as Alzheimer is prepared, and for each disease considered from the symptoms of the subject, each ROI is included in the subject's brain image data. Is applied (set), and the most significant one is used as the diagnosis result based on the Z score in the ROI.
  • P 1 sum of Z scores of voxels satisfying equation (3) in the ROI portion / number of voxels satisfying equation (3) in the ROI portion
  • P 2 number of voxels satisfying equation (2) in the entire brain / total number of brains
  • P 3 number of voxels satisfying formula (2) in the ROI portion / number of voxels in the ROI portion
  • P 4 P 3 / P 2
  • P 5 maximum Z score among all voxels in the ROI part
  • characteristics in the patient group having the disease A are obtained in advance, and when the parameter value of the subject matches it, the subject is determined to be the disease A.
  • a threshold value pathological condition identification value
  • the subject is disease A when the parameter value obtained from the subject image exceeds the threshold value. That is, if the thresholds for identifying the pathological conditions of P 1 to P 4 are thP 1 to thP 5, respectively, P 1> thP 1, P 2> thP 2, P 3> thP 3, P 4> thP 4, P When at least one of 5> thP 5 is satisfied, the subject is determined as disease A. Specifically, for example, a case where determination is made by paying attention to only one parameter, such as P1, or a case where determination is made with reference to a part or all of P 1 to P 5 as necessary. it can.
  • values limited to the right hemisphere side and the left hemisphere side may be obtained and added as parameters.
  • the right / left ratio obtained by the equation (4) or the right / left difference obtained by the equation (5) may be added to the parameters with respect to the values on the right hemisphere side and the left hemisphere side.
  • Right / left ratio (R ⁇ L) / (R + L) * 200 (4)
  • Left-right difference RL (5)
  • the value on the right hemisphere side is R
  • the value on the left hemisphere side is L.
  • ROI is determined based on statistical processing as follows. For example, in order to determine the ROI of a specific disease A, as shown in FIG. 16, an MRI image group (disease image group) of a patient with disease A and an image group (non- It is obtained by performing a two-sample t-test for statistically testing the significant difference between the two groups in units of voxels. Voxels that are significantly different by this test are regarded as characteristic voxels in the disease, and the set of coordinates is set as the ROI corresponding to the disease.
  • the determination of the disease state identification value is performed by a general ROC (Receiver-Operating Characteristic) analysis for the disease.
  • the ROC analysis is a general technique for quantitatively analyzing the ability to detect a disease for a certain test method.
  • a method for obtaining the threshold thP1 in the case where the presence or absence of a disease is identified by the parameter P ⁇ ⁇ ⁇ ⁇ ⁇ 1 and the threshold thP 1 will be described below.
  • One set of (TPF, FPF) is obtained for a certain thP1, and a plot of (TPF, FPF) obtained by varying this threshold value is the ROC curve illustrated in FIG. is there.
  • the TPF is high and the FPF is low, but in the ROC curve, the upper left point corresponds to it.
  • the threshold corresponding to the point D should be adopted.
  • ⁇ T1-weighted images of the brains of subjects and healthy subjects are taken with the MRI apparatus, and each image is held in the DICOM format.
  • the DICOM format is an image format generally used for medical images including a header portion and an image data portion in one file, and can store parameters and diagnostic information at the time of image capturing.
  • one DICOM image file has information of one slice image, and a three-dimensional brain image is expressed by a plurality of DICOM images. DICOM images are stored on the DICOM server and can be retrieved as needed.
  • the DICOM image file expresses the three-dimensional information of the entire brain by a plurality of sheets, but converts it to the Analyze format, which is a format in which only the header part of the DICOM file and only the image data part are connected.
  • the entire brain for one person can be composed of two files, a header part file and an image data part file.
  • SPM Statistical Parametric Mapping
  • each of the processes of S1 to S7 in FIG. 2 was performed on the MRI brain image input from the subject.
  • the template used for extraction of white matter and gray matter was the one created by ICBM (International Consortium® for Brain Mapping). This template is obtained by calculating the prior occurrence (existence) probabilities of white matter, gray matter, and cerebrospinal fluid from the brain images of a large number of healthy subjects, and has a voxel size of 2 mm square.
  • pre-processing S11 to S14 and diagnostic support information creation processing S1 to S5 were performed.
  • spatial standardization which has not been realized in the past, can be realized with high accuracy for white matter images, and by evaluating both gray matter lesions and white matter lesions, for example, Alzheimer-type dementia and vascular cognition. This is thought to improve the ability to distinguish symptom.
  • an MRI brain image of a subject is input, a white matter image in which the white matter is extracted by separating the input MRI brain image is created.
  • a standardized white matter image is created by spatial standardization based on a white matter template stored in advance, and the white matter of the subject is statistically compared with the white matter of a healthy subject based on the created standardized white matter image. Since the template was created by applying the Dartel algorithm to spatial standardization between white matter images of many healthy subjects, it was possible to create a highly accurate template for white matter, which has not been realized in the past As for white matter, it has become possible to provide objective diagnosis support for specific diseases.
  • the input MRI brain image is tissue-separated to create a gray matter image from which the gray matter has been extracted, and the created gray matter image is spatially standardized based on a pre-stored gray matter template.
  • the standard gray matter image was created using the standard gray matter image, and the subject gray matter was compared with the gray matter of the healthy subject based on the created standard gray matter image.
  • the template can be created in the same way, and it is possible to provide more accurate diagnosis support for gray matter.
  • white and gray matter templates are created and stored for each age and sex, so that spatial standardization is performed using a more appropriate template according to the age and sex of the subject. This makes it possible to achieve more accurate diagnosis support.
  • the Dartel algorithm by using the Dartel algorithm, it has become possible to improve the accuracy of spatial standardization, which is conventionally limited to gray matter only, for white matter.
  • the database unit 30 by creating a template according to age and gender in the database unit 30 and holding it, and selecting and applying a template suitable for the input image, it is possible to consider the influence of the subject's aging and gender. became.
  • test method using a Z score as an evaluation value has been shown, the present invention is not limited to this, and a t score or the like used in other general tests may be used.
  • the preparation processing in the present invention is not limited to the above embodiment, and can be applied to all brain images to be subjected to tissue separation.
  • it can also be used as a pretreatment for gray matter tissue extraction accompanying tissue separation as shown in Patent Document 1.
  • the preparation process (S11, S1) is executed before the spatial alignment (S12, S2) in both the preliminary preparation process and the basic process.
  • the preparation process (S11, S1) may be executed after (S12, S2).
  • the complicated slice image selection as described above is performed. No processing is required, and the upper brain part that is considered not to include high signal values other than the region around the skull and the brain parenchyma is specified. Specifically, what number slice image from the top is to be specified as the target slice.
  • the preparation process shown in S1 and the diagnosis support information creation process shown in S2 to S7 are continuously executed in one medical image processing apparatus, and the preparation process shown in S11 and S12 are executed.
  • the pre-processing shown in S14 is continuously executed in one medical image processing apparatus, but only the preparatory processing shown in S1 and S11 is executed in the medical image processing apparatus, and the result is obtained.
  • the pre-processing and the diagnostic support information creation processing may be executed on the image after the high signal value suppression processing by another device. In this case, when the spatial alignment (S12, S2) is processed first, only the preparatory processes shown in S2, S1, S12, and S11 are executed in the medical image processing apparatus, and the result is obtained. Preprocessing and diagnosis support information creation processing are executed by another device on the image after the high signal value suppression processing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Quality & Reliability (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Geometry (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Image Processing (AREA)

Abstract

 取得した脳画像の状態を判定し、組織分離処理に適した脳画像に調整することが可能な医用画像処理装置を提供する。医用画像処理装置は、複数のスライス画像で構成される脳画像から、処理対象とするスライス画像を対象スライスとして選択し、選択された対象スライスから、脳実質の有効最大値の計測処理、脳画像全体の有効最大値の計測処理、頭蓋周回のピーク平均値の計測処理を実行し、計測された脳実質の有効最大値、脳画像全体の有効最大値、頭蓋周回のピーク平均値に基づいて、高信号値抑制処理が必要か不要かを判定し、高信号値抑制処理が必要と判定された場合に、脳画像に対して高信号値抑制処理を実行する。

Description

医用画像処理装置
 本発明は、MRI(Magnetic Resonance Imaging)等により得られた脳画像を画像処理して脳疾患の診断支援を行う技術に関し、特に、MRI等により得られた脳画像を診断支援に適した状態に処理する技術に関する。
 高齢化社会の到来により、認知症疾患の患者が年々増加している。認知症疾患には様々な種類があり、診断においてはそれらを区別して、疾患に応じた適切な処置を施すことが必要である。
 一方、このような要請に応えるべく、近年、SPECT(Single Photon Emission
Computed Tomography)やPET(Positron Emission Tomography)等の核医学検査や、CT(Computerized Tomography)やMRIによって脳の状態に関する情報が取得可能になってきている。
 その結果、脳の特定部位の血流や代謝が低下したり、組織が萎縮したりする現象が、疾患によって異なることが明らかになってきており、これらに対する定量的な評価方法が求められている。
 例えば、脳の局所的な部位の血流や代謝の低下は、SPECTやPETの画像によって比較することにより検定することができる。
 又、組織の萎縮に関しては、MRI画像によって特定部位の容積を求め、その相対的な大きさを比較して異常の有無を判別できる。
 このような脳画像を用いて脳の萎縮を評価する方法としては、被験者の頭部を撮像して取得された脳画像を3次元の画素であるボクセルを単位に画像処理して行なうVBM(Voxel Based Morphometry)が知られている(例えば、特許文献1参照)。
 このVBM手法は、アルツハイマー病の識別には有効な評価方法であり、健常者とアルツハイマー病の識別において、87.8%の診断能があったという報告がなされている(非特許文献1参照)。
特開2005-237441号公報
Yoko Hirata, Hiroshi Matsuda, Kiyotaka Nemoto, Takashi Ohnishi,Kentaro Hirao, Fumio Yamashita, Takashi Asada, Satoshi Iwabuchi, HirotsuguSamejima, Voxel-based morphometry to discriminate early Alzheimer's diseasefrom controls.Neurosci Lett 382:269-274, 2005 Bookstein FL. "Voxel-based morphometry" should not be usedwith imperfectly registered images. Neuroimage. 2001;14(6):1454-62. J.Ashburner and K.J.Friston. Unified segmentation. NeuroImage. 2005;26: 839-851. Ashburner J, A fast diffeomorphic image registration algorithm.Neuroimage.2007Oct 15 ; 38(1):95-113. 松田博史:SPECTの統計学的画像解析.アルツハイマー型痴呆の画像診断,メジカルビュー社:pp.76-86(2001).
 しかしながら、上記従来の手法による脳画像の処理において、処理対象とする脳画像によっては、組織分離処理が上手く行かず、正しく組織を特定できないという問題がある。
 そこで、本発明は、取得した脳画像の状態を判定し、組織分離処理に適した脳画像に調整することが可能な医用画像処理装置を提供することを課題とする。
 上記課題を解決するため、本発明第1の態様では、複数のスライス画像で構成される脳画像から、処理対象とするスライス画像を対象スライスとして選択する対象スライス選択手段と、脳実質の画素の信号値の有効最大値である脳実質有効最大値の計測処理を行う脳実質計測手段と、脳画像全体の画素の信号値の有効最大値の計測処理を行う脳画像計測手段と、頭蓋周辺領域のピークとなる画素の信号値の平均を頭蓋周回のピーク平均値として計測処理する頭蓋計測手段と、計測された脳実質の有効最大値、脳画像全体の有効最大値、頭蓋周回のピーク平均値に基づいて、高信号値抑制処理が必要か不要かを判定する抑制処理判定手段と、前記抑制処理判定手段により必要と判定された場合に、前記脳画像に対して高信号値抑制処理を実行する高信号値抑制処理手段を有する医用画像処理装置を提供する。
 本発明第1の態様によれば、脳画像の対象スライスを選択し、選択されたスライスについて、脳実質の画素の信号値の有効最大値、脳画像全体の画素の信号値の有効最大値、頭蓋周辺領域のピークとなる画素の信号値の平均である頭蓋周回のピーク平均値を計測し、計測の結果、必要である場合に、脳画像に対して高信号値抑制処理を実行するようにしたので、取得した脳画像の状態を判定し、組織分離処理に適した脳画像に調整することが可能となる。
 また、本発明第2の態様では、本発明第1の態様による医用画像処理装置において、前記抑制処理判定手段は、前記脳実質有効最大値より頭蓋周回のピーク平均値が一定割合高いかどうかの判定である頭蓋領域判定と、前記脳実質有効最大値より画像全体の信号値が一定割合高いかどうかの判定である画像全体判定と、を実行し、前記頭蓋領域判定、画像全体判定のいずれか一方が条件を満たす場合に、高信号値抑制処理が必要と判定するものであることを特徴とする。
 本発明第2の態様によれば、脳実質有効最大値より頭蓋周辺領域のピーク平均値、画像全体の信号値が一定割合高いかどうかの判定を行い、頭蓋周辺領域のピーク平均値、画像全体の信号値のいずれかが脳実質有効最大値より一定割合高い場合に、高信号値抑制処理が必要と判定するようにしたので、頭蓋周辺領域の信号値が脳実質より著しく高い場合、頭蓋周辺領域、脳実質以外の部分における信号値が脳実質より著しく高い場合のいずれにおいても、的確に高信号値抑制処理が必要という判定を行うことが可能となる。
 また、本発明第3の態様では、本発明第1または第2の態様による医用画像処理装置において、前記対象スライス選択手段は、各スライス画像について、画像内に所定の線分を設定し、この線分上に位置し、信号値が所定値以上となる画素のうち、最も離れた画素間の長さを求め、当該画素間の長さが全スライス画像中最長のものと比較して所定の比率以上となるスライス画像を対象スライスとして選択するものであることを特徴とする。
 本発明第3の態様によれば、各スライス画像において、所定値以上の信号値をもつ画素が、全スライス画像において最長のものに比較して所定の比率以上となるスライス画像を対象スライスとして選択するようにしたので、高信号値抑制処理の要不要の判定に適した頭蓋周辺領域と脳実質以外に高信号値が含まれないスライス画像を選択することが可能となる。
 また、本発明第4の態様では、本発明第1から第3のいずれかの態様による医用画像処理装置において、前記脳実質計測手段は、選択された前記各対象スライスについて、脳の中心部を通る線分を所定数設定し、各線分ごとに線分上の画素の信号値分布を所定数の領域に分割し、中央の所定数の領域を脳実質領域として、当該脳実質領域における信号値のヒストグラムを求め、上位の所定の画素を除去した信号の最大値を脳実質の有効最大値として求めるものであることを特徴とする。
 本発明第4の態様によれば、選択された各対象スライスについて、脳の中心部を通る複数の線分ごとの信号値分布を所定数の領域に分割し、中央の所定数の領域を脳実質領域として、脳実質領域における信号値のヒストグラムを求め、上位の所定の画素を除去した信号の最大値を脳実質の有効最大値として求めるようにしたので、脳実質を代表する値である脳実質の有効最大値を的確に求めることが可能となる。
 また、本発明第5の態様では、本発明第1から第4のいずれかの態様による医用画像処理装置において、前記脳画像計測手段は、対象スライス全体の画素の信号値のヒストグラムを求め、上位の所定の画素を除去した信号の最大値を画像全体の有効最大値として求めるものであることを特徴とする。
 本発明第5の態様によれば、対象スライス全体の画素の信号値のヒストグラムを求め、上位の所定の画素を除去した信号の最大値を画像全体の有効最大値として求めるようにしたので、画像全体を代表する値である画像全体の有効最大値を的確に求めることが可能となる。
 また、本発明第6の態様では、本発明第1から第5のいずれかの態様による医用画像処理装置において、前記頭蓋計測手段は、選択された前記各対象スライスについて、脳の中心部を通る線分を所定数設定し、各線分ごとに線分上の画素の信号値分布を所定数の領域に分割し、両端の所定数の領域を頭蓋周辺領域として、当該頭蓋周辺領域における信号最大値の、全ての対象スライスの全ての線分における平均値を頭蓋周回のピーク平均値として求めるものであることを特徴とする。
 本発明第6の態様によれば、各対象スライスについて、脳の中心部を通る複数の線分ごとの信号値分布を所定数の領域に分割し、両端の所定数の領域を頭蓋周辺領域として、当該頭蓋周辺領域における信号最大値の、全ての対象スライスの全ての線分における平均値を頭蓋周回のピーク平均値として求めるようにしたので、頭蓋周辺領域を代表する値である頭蓋周回のピーク平均値を的確に求めることが可能となる。
 また、本発明第7の態様では、本発明第1から第6のいずれかの態様による医用画像処理装置において、前記高信号値抑制処理手段は、信号値が所定値未満の画素については、その信号値を変更せず、信号値が前記所定値以上の画素については、信号値を所定値にする処理を実行することにより、相対的に高信号値抑制処理を実現するものであることを特徴とする。
 本発明第7の態様によれば、信号値が所定値未満の画素については、その信号値を変更せず、信号値が所定値以上の画素については、信号値を所定値にする処理を実行するようにしたので、入力画像の高信号値を抑制することが可能となる。
 また、本発明第8の態様では、本発明第1から第6のいずれかの態様による医用画像処理装置において、前記高信号値抑制処理手段は、信号値が所定値未満の画素については、その信号値を変更せず、信号値が前記所定値以上の画素については、信号値を元の値より小さくなるように変換する処理を実行することにより、相対的に高信号値抑制処理を実現するものであることを特徴とする。
 本発明第8の態様によれば、信号値が所定値未満の画素については、その信号値を変更せず、信号値が前記所定値以上の画素については、信号値を元の値より小さくなるように変換する処理を実行するようにしたので、入力画像の高信号値を抑制することが可能となる。
 また、本発明第9の態様では、本発明第8の態様による医用画像処理装置において、前記高信号値抑制処理手段は、信号値が所定値未満の画素については、その信号値を変更せず、信号値が前記所定値以上の画素については、信号値を傾きが零以上で1より小さい1次関数によって変換する処理を実行することにより、相対的に高信号値抑制処理を実現するものであることを特徴とする。
 本発明第9の態様によれば、信号値が所定値未満の画素については、その信号値を変更せず、信号値が所定値以上の画素については、信号値を傾きが零以上で1より小さい1次関数によって変換する処理を実行するようにしたので、入力画像の高信号値を抑制することが可能となる。また、組織分離処理の結果が自然な画像になる。
 本発明によれば、取得した脳画像の状態を判定し、組織分離処理に適した脳画像に調整することが可能となるという効果を奏する。
本発明に係る一実施形態の医用画像処理装置の概要を示すブロック図 本実施形態による医用画像処理方法の基本処理手順を示すフローチャート 本実施形態による医用画像処理方法の事前処理手順を示すフローチャート 脳のスライス画像とボクセルの特徴を模式的に示す概念図 準備処理の詳細を示すフローチャート 対象スライスの選択処理の様子を示す図 脳実質と頭蓋周辺領域の信号値分布の様子を示す図 脳実質の有効最大値、頭蓋周回のピーク平均値の計測処理の様子を示す図 灰白質、白質の年齢別テンプレートを示す概念図 灰白質、白質の性別テンプレートを示す概念図 空間的標準化の特徴を模式的に示す概念図 非線形変換の特徴を示す概念図 空間的標準化と平滑化の結果を示す概念図 ボクセル毎の比較検定の特徴を示す概念図 ROIによる解析の特徴を示す概念図 ROIを作成する際の特徴を示す概念図 検査の陽陰性と疾患の有無の関係を示す図表 ROC曲線の一例を示す線図 1つのパラメータによる識別方法を示す線図
 以下、本発明の好適な実施形態について図面を参照して詳細に説明する。図1は,本発明の一実施形態における医用画像処理装置を示すブロック図である。図1に示す本実施形態の医用画像処理装置は、ユーザインタフェース10、画像・統計処理部20、データベース部30を有している。
 ユーザインタフェース10は、入力画像としてMRI画像を入力する画像入力機能12と、画像・統計処理部20で処理された結果を表示する結果表示機能14とを有し、画像・統計処理部20は、ユーザインタフェース10から、入力されたMRI画像を処理する画像処理機能22と、各種統計演算等を行う統計処理機能24と、入力画像に対して高信号値抑制要・不要の判定を行う高信号値抑制要・不要判定機能26とを有している。また、データベース部30には画像・統計処理部20による後述する処理に使用する白質脳画像テンプレート32、灰白質脳画像テンプレート34、健常者画像データベース36、疾患特異的ROI38等が保存されている。
 図2は、本実施形態に係る医用画像処理装置の処理概要を示すフローチャート、図3は、本実施形態による医用画像処理方法の事前処理手順を示すフローチャートである。図2において、まず、被験者のMRI脳画像が入力されると、この脳画像に対して所定の処理を行い、高信号値抑制処理を行うべきか否かを判定し、判定の結果に応じて高信号値抑制処理を行う(S1)。S1においては、判定の結果によっては、高信号値抑制処理を行わない場合もある。このS1における処理が本発明の特徴となる部分である。S1における処理の詳細については後述する。
 次に、高信号値抑制処理後の脳画像(高信号値抑制処理を行っていない場合は、入力されたMRI脳画像)に対して空間的なズレを補正する位置合わせを行う(S2)。続いて、位置合わせ後の脳画像から、組織分離処理により白質が抽出された白質画像と共に灰白質が抽出された灰白質画像を作成する(S3)。
 次に、作成された両画像に対して、後述するダーテル(DARTEL)・アルゴリズムを適用する空間的標準化を行なう(S4)と共に、該標準化された白質及び灰白質の画像に対してそれぞれ平滑化を行う(S5)。
 その後、平滑化後の両画像と健常者の白質及び灰白質の画像との間でそれぞれ統計的比較を行い(S6)、更にROIによる解析を行ない(S7)、解析結果を診断結果として出力し、診断の支援に供する。
 本実施形態においては、上記S1~S7の各処理が、コンピュータからなる前記画像・統計処理部20においてプログラムにより実施可能になっていると共に、次に説明するS11~S14の各処理による白質及び灰白質のテンプレートの作成も同様にプログラムにより実施可能になっている。
 上記S1~S7の基本的処理フローを実行する前に、S4の空間的標準化で使用するテンプレートを作成する事前処理を図3のS11~S14で行う。
 まず、出来るだけ多くの健常者からT1強調MRI脳画像(図では被験者画像)を入力する。
 各被験者から取得したMRI脳画像については、前処理を行なっておく。具体的には、図4に脳全体とその一部を切り出したスライス画像のイメージを示すように、被験者の脳全体を含むように所定の厚さのスライス状に撮像した、例えば100~200枚のT1強調MRI画像を入力とする。又、各スライス画像におけるボクセル(voxel)の各辺の長さを予め等しくなるようにスライス画像のリサンプリングを行なっておく。ここでボクセルは、「厚さ」を持つ画像の座標単位であり、2次元画像におけるピクセルに相当する。
 このような前処理を行なったMRI脳画像を入力した後、そのスライス画像の撮像方向や解像度が、予めシステムに設定されている条件に適合しているか否かをチェックする。
 以上のように、MRI脳画像が、設定条件に適合して入力されていることが確認された場合には、準備処理を行う(S11)。準備処理とは、テンプレート作成において、組織分離処理が的確になされるように、入力画像に対して高信号値抑制処理を行うべきかどうかを判定し、必要があると判定された場合には、高信号値抑制処理を行うものである。
 図5は、準備処理の詳細を示すフローチャートである。まず、判定の対象に用いるスライス画像を対象スライスとして、入力画像から選択する処理を行う(S21)。図6に対象スライスの選択処理の様子を示す。対象スライスとしては、頭蓋周辺領域と脳実質以外の高い信号値が含まれない部分を選択するのが望ましい。
 具体的には、各スライス画像について、画像内に所定の線分を設定し、この線分上に位置し、信号値が所定値以上となる画素のうち、最も離れた画素間の長さを求める。画像内に設定する線分としては、撮影された頭蓋周辺領域と脳実質の大部分を通るような線分を設定する。通常、頭蓋周辺領域と脳実質を中心に四角形状の画像が撮影されるため、上記線分として画像の対角線を用いれば良い。信号値と比較する上記所定値としては、適宜設定することが可能であるが、例えば、画像全体の信号値の平均に所定の定数を乗じた値とすることができる。
 信号値が所定以上となる画素は、頭蓋周辺領域を示しており、信号値が所定以上となる画素のうち、最も離れた画素間の長さは、線分と頭部の重なる長さを示している。上述のように、対象スライスとしては、頭蓋周辺領域と脳実質以外の高い信号値が含まれないスライス画像を選択するのが望ましいが、その部分は、頭部の最大部分の80~95%の長さとなる位置に存在している。そこで、本実施形態では、上記画素間の長さが最大となるスライス画像を特定し、その画素間の長さが、特定されたスライス画像の80~95%の長さとなるスライス画像を、対象スライスとして選択する。
 対象スライスが選択されたら、次に、脳実質の有効最大値の計測処理を行う(S22)。脳実質の有効最大値の計測にあたり、まず、脳実質の信号値分布を取得する。脳実質の信号値分布を取得する際には、同時に頭蓋周辺領域の信号値分布も取得する。図7に脳実質と頭蓋周辺領域の信号値分布の様子を示す。信号値分布の取得処理として、まず、選択された各対象スライスについて、脳の中心部を通る線分を所定数設定する。本実施形態では、図7(b)に示すように、10本の線分を設定している。そして、各線分について、線分上の画素の信号値をプロットする。さらに、信号値分布を線分に従って所定数の領域に分割し、中央の所定数の領域を脳実質領域、両端の所定数の領域を頭蓋周辺領域とする。本実施形態では、図7(a)の右側の信号値分布に示すように、10個の領域に分割し、中央の4領域を脳実質領域、各両端それぞれ1領域(計2領域)を頭蓋周辺領域としている。信号値分布におけるA、Bは、図7(a)の左側に示した脳画像上のA、Bに対応している。
 続いて、全ての対象スライスの脳実質領域の信号値のヒストグラムを求め、そのうち、高信号アーチファクト(MRIによるノイズ)の影響を受ける部分を除外したときの最大値を脳実質有効最大値Bmaxとして求める。高信号アーチファクトの影響を受ける部分として、どの部分を除外するかについては、適宜設定可能であるが、具体的には、上記ヒストグラムのうち、上位thHa%の画素を除去している。本実施形態では、thHa=3と設定している。図8(a)に脳実質の有効最大値の計測処理の様子を示す。図8(a)の下部のヒストグラムに示すように網掛けした上位3%の画素を除いた矢印で示した箇所の値が、脳実質有効最大値Bmaxとなる。
 次に、画像全体の有効最大値の計測処理を行う(S23)。具体的には、四角形状の対象スライス全体の画素の信号値のヒストグラムを求め、そのうち、高信号アーチファクトの影響を受ける部分を除外したときの最大値を画像全体の有効最大値Imaxとして求める。高信号アーチファクトの影響を受ける部分として、どの部分を除外するかについては、適宜設定可能であるが、具体的には、上記ヒストグラムのうち、上位thHb%の画素を除去している。本実施形態では、thHb=1と設定している。
 次に、頭蓋周回のピーク平均値の計測処理を行う(S24)。具体的には、上記S22において設定した頭蓋周辺領域から最大の信号値を抽出する。頭蓋周辺領域における最大の信号値は、図7(a)の右側の信号値分布において○で囲った二箇所となる。この抽出処理を、全ての対象スライスの全ての線分について行い、抽出した信号値の平均値を算出する。図8(b)に頭蓋周回のピーク平均値の計測処理の様子を示す。本実施形態の場合、図7(a)(b)に示したように、1つの線分について2つの信号値が抽出されるため、1つの対象スライスについて20個の信号値が抽出される。したがって、対象スライス数×20個の信号値の平均が頭蓋周回のピーク平均値Paveとして算出されることになる。
 次に、高信号値抑制が必要であるか不要であるかの判定処理を行う(S25)。具体的には、頭蓋領域判定と画像全体判定の2通りの判定を行い、このいずれかの判定条件を満たした場合に、高信号値抑制が必要と判定し、いずれの判定条件も満たさない場合に、高信号値抑制は不要と判定する。
 頭蓋領域判定は、脳実質領域より頭蓋周辺領域の信号値が一定割合高いかどうかの判定を行うものである。具体的には、以下の〔数式1〕に従った処理を実行する。
〔数式1〕
 th1×(脳実質有効最大値Bmax)<(ピーク平均値Pave)
 上記〔数式1〕において、th1は、頭蓋周辺領域が脳実質に比べ、どの程度の割合の高さまで許容されるかを定める係数であり、適宜設定可能であるが、本実施形態ではth1=1.8としている。上記〔数式1〕に示した条件を満たすかどうかを判定し、満たす場合には、高信号値抑制が必要であると判定する。頭蓋周辺領域のピーク平均値が一定の割合で、脳実質有効最大値より高い場合、頭蓋周辺領域の高信号値を抑制する必要があるからである。
 一方、画像全体判定は、脳実質領域より画像全体の信号値が一定割合高いかどうかの判定を行うものである。具体的には、以下の〔数式2〕に従った処理を実行する。
〔数式2〕
 th2×(脳実質有効最大値Bmax)<(画像全体の有効最大値Imax)
 上記〔数式2〕において、th2は、脳実質以外も含む画像全体が脳実質に比べ、どの程度の割合の高さまで許容されるかを定める係数であり、適宜設定可能であるが、本実施形態ではth2=1.7としている。上記〔数式2〕に示した条件を満たすかどうかを判定し、満たす場合には、高信号値抑制が必要であると判定する。画像全体の有効最大値が一定の割合で、脳実質有効最大値より高い場合、脳実質以外の高信号値を抑制する必要があるからである。
 頭蓋領域判定と画像全体判定のいずれか一方の条件を満たす場合、すなわち、上記〔数式1〕と〔数式2〕のいずれか一方を満たす場合には、高信号値抑制処理(S26)へと進む。逆に、頭蓋領域判定と画像全体判定のいずれの条件も満たさない場合、すなわち、上記〔数式1〕と〔数式2〕のいずれも満たさない場合には、高信号値抑制処理を行わず、準備処理を終了する。頭蓋領域判定と画像全体判定のいずれの条件も満たさない場合、脳実質以外の高信号値が、組織分離処理を妨げる程高くなく、高信号値抑制の必要性がないためである。S25において、頭蓋領域判定と画像全体判定はどちらを先に実行しても良く、先に実行した方が判定条件を満たした場合、もう一方の判定条件を判断することなく、高信号値抑制処理(S26)へと進む。
 高信号値抑制処理(S26)について説明する。高信号値抑制処理は、入力画像の画素のうち、信号値が高い画素の値を、相対的に高くならないように抑える処理である。このため、信号値が高い画素の値を、他の画素に比べて相対的に高くならないように抑える処理であれば、様々な手法を用いることができる。本実施形態では、第1の手法として、ある一定値以上に高い画素については、その信号値を一定にし、ある一定値未満の画素については、その信号値を変更しない処理を実行することにより、相対的に高信号値抑制処理を実現する。
 本実施形態では、以下の〔数式3〕に従った処理を実行することにより、入力画像の各画素(x,y)における信号値s(x,y)を信号値s’(x,y)に補正する。
〔数式3〕
 s’(x,y)=th3
 ただし、s(x,y)≧th3の場合に限る
 上記〔数式3〕において、th3は、抑制対象となる画素の信号値のしきい値であるが、本実施形態では、th3=(脳実質有効最大値Bmax)と設定している。
 また、本実施形態では、第2の手法として、ある一定値以上に高い画素については、その信号値を傾きaが零より大きく1より小さい1次関数によって変換し、ある一定値未満の画素については、その信号値を変更しない処理を実行することにより、相対的に高信号値抑制処理を実現するようにしても良い。これによって、ある一定値以上の信号値の変化率は、ある一定値未満の信号値の変化率よりも小さくなり、信号値が高い画素の値を、相対的に高くならないように抑えることができる。第2の手法では、ある一定値以上の信号値をなだらかに上昇させているので、組織分離処理の結果がより自然な画像になる。
 本実施形態では、第2の手法として、以下の〔数式4〕に従った処理を実行することにより、入力画像の各画素(x,y)における信号値s(x,y)を信号値s’(x,y)に補正する。
〔数式4〕
 s’(x,y)=th3+a(s(x、y)-th3)
 ただし、s(x,y)≧th3の場合に限る
 上記〔数式4〕において、th3は、抑制対象となる画素の信号値のしきい値であるが、本実施形態では、th3=(脳実質有効最大値Bmax)と設定している。また、本実施形態では、a=0.2の定数としている。
 なお、本実施形態では、高信号値抑制処理を上記〔数式3〕又は〔数式4〕に従った処理によって実現したが、ある一定値以上の信号値の画素については、その信号値を元の値よりも小さくなるように変換する処理であればよく、ガンマ補正など公知の他の手法を用いて実現するようにしても良い。
 準備処理が終わったら、次に、図3のフローチャートに戻って、以降の処理を実行する。以降のS12~S14においては、高信号値抑制が行われた画像については、補正後の画像を対象として、高信号値抑制が行われなかった画像については、入力画像を対象として処理を行う。
 まず、空間的位置合わせ処理を行う(S12)。これは、検査対象の脳画像を、標準的な脳画像と比較する際の精度を上げるために、線形変換(アフィン変換)によって空間的位置と角度の補正を行っていることに相当する。
 以上の空間的位置合わせが終了した後、組織分離処理を行い(S13)、白質と灰白質が抽出された白質画像と灰白質画像をそれぞれ作成する。
 入力されたT1強調MRI脳画像には、神経線維に対応する高い信号値を呈する白質、神経細胞に対応する中間の信号値を呈する灰白質、低い信号値を呈する脳脊髄液の3種類の組織が含まれているため、その差に着目して白質と灰白質とをそれぞれ抽出する処理を行う。この処理については、前記特許文献1に説明されている。更に、本発明では前記特許文献1で行っている手法よりも抽出精度が高い統合型組織分離処理を行う。統合型組織分離処理は、標準化、組織分離、信号不均一の補正を1つのモデルに組み込んだ組織分離手法である。詳しくは非特許文献3に記載されている。統合型組織分離処理では、白質画像および灰白質画像の他に、MRI画像の座標と標準脳の座標の対応関係を示す変換場が作成されるという特徴がある。変換場は後述する標準化で使用する。
 このように、予め多くの健常者のMRI脳画像から組織分離により、白質、灰白質が3次元的に抽出された白質画像、灰白質画像をそれぞれ多数のサンプルとして取得する。
 以上のように多数(複数)の健常者のMRI脳画像をそれぞれ組織分離して白質が抽出された白質画像をサンプルとして作成し、作成された全てのサンプル間における空間的標準化により白質テンプレートを作成する(ステップ14)。同様に、多数の健常者のMRI脳画像をそれぞれ組織分離して灰白質が抽出された灰白質画像をサンプルとして作成し、作成された全てのサンプル間における空間的標準化により灰白質テンプレートを作成する。
 ここで実行される空間的標準化には、ダーテル(DARTEL)・アルゴリズムが適用される。
 前述した従来のVBM手法の精度の悪さを解決するために、John Ashburnerが、新しいVBM手法であるDARTEL(Diffeomorphic Anatomical Registration using Exponentiated Lie algebra)を開発した(非特許文献4参照)。
 DARTELは従来のVBM手法に比べ空間的標準化精度に優れており、アルツハイマー病の画像統計解析による診断能を向上させる技術として期待されている。また、DARTELの空間的標準化は従来の手法よりも精密に行われるため、今まで評価対象としてきた灰白質だけではなく、白質をも評価対象とすることができる。
 前記S14のテンプレート作成処理では、白質と灰白質それぞれについて、年齢や性別などの被験者の属性に応じた層別のテンプレートを作成し、前記データベース部30に前記白質脳画像テンプレート32、灰白質脳画像テンプレート34として保存する。
 前記白質テンプレートと灰白質テンプレートは、図9に示すように年齢別に作成してある。灰白質(A)、白質(C)は54歳~69歳、灰白質(B)、白質(D)は70歳~84歳の各健常者の画像に基づいて作成したものである。この図に示されるようにテンプレートは年齢によって違っており、特に白質の場合は、左から6番目のテンプレートに矢印で示した脳室の大きさが(C)と(D)で大きく異なっていることが分かる。
 又、前記白質テンプレートと灰白質テンプレートは、図10に示すように性別毎に作成してある。この図に四角形で囲んで示した位置のテンプレートを男女で比較すると、特に脳室の形状に性別による違いが見られる。
 以上のようにして作成された白質と灰白質のテンプレートが、年齢別、性別毎に用意されていることを前提として、前記S1~7に従う診断支援情報作成処理を実施する。なお、以下では、上記の白質と灰白質のテンプレートのことをダーテルテンプレートと呼ぶことにする。
 まずは、被験者画像として、所定厚さのスライス状に撮像したT1強調MRI画像を入力し、各スライス画像におけるボクセル(voxel)の各辺の長さを予め等しくなるようにスライス画像のリサンプリングを行う。
 次に、前記S1の高信号値抑制処理を、前記事前処理のS11の場合と同様に行う。
 次に、前記S2の空間的位置合わせの処理を、前記事前処理のS12の場合と同様に行う。
 以上の空間的位置合わせが終了した後、前記S3の組織分離の処理を行う。
 この組織分離は、前記S13の場合と同様であり、白質と灰白質を抽出して被験者の白質画像と灰白質画像をそれぞれ作成する。
 以上のように作成された被験者の白質画像と灰白質脳画像に対して、前記S4の空間的標準化の処理を行なう。ここで行なう空間的標準化には、前記S14の場合と同様に、ダーテル・アルゴリズムが適用される。
 この空間的標準化の処理は、個人の間に存在する脳画像の解剖学的な違いを吸収するために、脳全体の大きさに対する大局的な補正と、部分的な大きさに対する局所的な補正を行うものである。以下、便宜上、灰白質を中心に説明するが、白質の場合も実質的に同一の処理を行なう。
 S4のダーテルでの空間的標準化処理は次の3つのステップの処理で構成されている。
  (S4-1) 初期位置決定処理
  (S4-2) ダーテルテンプレートへの変換処理
  (S4-3) 標準脳テンプレートへの変換処理
 S4-1の初期位置決定処理では、前述した統合型組織分離処理で得られた標準脳への変換場を使用して、灰白質画像、白質画像に対して、初期位置を決める処理を行う。この処理では、剛体(rigid body)変換を行うので、画像の形状は変わらないのが特徴である。
 S4-2のダーテルテンプレートへの変換処理では、S4-1の処理が実施された画像に対して、ダーテル・アルゴリズムを用いて、ダーテルテンプレートに形状を合わせこむ。
 S4-3の標準脳テンプレートへの変換処理では、S4-2で得られたダーテルテンプレートに合わせこんだ画像を、標準脳テンプレートに合わせこむ処理を行う。ダーテルテンプレートから標準脳テンプレートへの変換場をあらかじめ求めておき、その変換場を用いて標準脳座標系への変換を行う。
 S4-2とS4-3の処理では、各ボクセルの信号値の合計を保持したまま標準化を行うことで、体積の情報が保持されるため、標準化後に体積を計測することが可能となる。
 S4-1では線形変換が、S4-2とS4-3では線形変換と非線形が行われる。ステップ3-2を例として説明すると、図11に処理の特徴を概念的に示すように、線形変換と非線形変換を用いて、前記データベース部30から読み出した前記S14で作成した平均的な灰白質脳画像テンプレート34との誤差の平方和が最小になるように画像処理を行なう。この空間的標準化処理では、初めに線形変換による位置や大きさ、角度の大局的な補正を行い、次に非線形変換によって局所的な凹凸等の形状の補正を行う。
 ここで行なう線形変換は、前記S2の位置合わせと同様のアフィン変換である。又、非線形変換は、図12に処理のイメージを示すように、x方向、y方向それぞれについて局所的な変位を表す変形場を推定し、この変形場によって元画像の変換を行なうものである。
 S4-2の処理は、前記S14で作成されたテンプレートを雛形として、処理対象画像を合わせこむ処理であり、使用するテンプレートは、ダーテル・アルゴリズムを適用して高精度に作成してあることから、その形状がシャープである。
 そのため、空間的標準化によって個々の処理対象が、個体差のない近い形に合わせこまれるようになることから、個体間での形状は同一に近くなるが、萎縮などは局所的な密度に反映されるようになるため、空間的標準化の精度を向上できることになる。
 以上のように空間的標準化を施した白質画像と灰白質脳画像(以下、標準化脳画像ともいう)に対して、前記S5の画像平滑化の処理を行う。
 これは、上記標準化脳画像のS/N比を向上させると共に、後に比較を行なう際に標準として使用する健常者の画像群と画像のsmoothnessを等しくするための処理であり、3次元ガウシアンカーネルを使用して行なう。この平滑化に使用するフィルタのFWHM(半値幅)は8mm程度とする。
 具体的には、前記特許文献1に説明されるように、3次元的脳画像と、3次元ガウシアン関数の3次元的な畳み込み(コンボリューション)を行なう。これは、x,y,z各方向における1次元の畳み込みを逐次的に行うことで可能である。このように平滑化を行うことにより、空間的標準化処理で完全に一致しない個体差を低減させることができる。
 図13に、S3で分離された白質画像と灰白質画像について、S4の空間的標準化処理とS5の平滑化処理がされた結果の画像を示す。
 S4の処理では、脳の体積の情報が保存されている。そのため、次の濃度値補正を実施する前に、白質および灰白質の処理結果画像について、全体または後述する関心領域(regions of interest:ROI)の積分値を体積として計測し、診断支援情報として活用してもよい。
 以上のように画像の平滑化を行なった標準化脳画像に対して、図示は省略してあるが、後に比較を行う際に標準として使用する健常者の画像群におけるボクセル値の分布に合わせるために、脳全体のボクセル値を補正する濃度値補正を行う。
 その後、前記S6の統計的比較を行なう。ここでは、以上のS1~5の各処理を通して標準化を行った被験者の灰白質(白質)のMRI脳画像と、予め収集して前記データベース部30に健常者画像データベース36として保存してある健常者の同MRI脳画像群との比較検定を行う。使用する健常者画像群は、被験者の年齢に近いもので構成されていることが望ましい。
 具体的には、図14にイメージを示すように、このような健常者画像群とボクセル単位で1:N(Nは健常者画像の総数)の比較検定を行ない、統計的に有意な差が見られる(異常と推定される)ボクセルを検出する。
 まず、全てのボクセルについて、それぞれ次式で表わされるZスコアを算出する。
Figure JPOXMLDOC01-appb-M000001
 このように、Zスコアは、被験者画像のボクセル値と、健常者画像群の対応するボクセルのボクセル値平均との差を、標準偏差でスケーリングした値であり、これは灰白質(白質)容積の相対的低下の度合を示すものである。
 次に、適当な臨界値Z’を定め、Zスコアが
  Z’<Z          …(2)
となるようなボクセルを求め、統計的に有意な差が見られるボクセルとする。臨界値には、約95%以上の確率で異常と推定できるZ’=2を用いる。また、健常者よりも容積が低下している部位全てを含む臨界値の指定方法として、下記の式も用いる。
  0<Z’          …(3)
 なお、S6で使用した健常者画像データベース36は、予め別途収集した健常者の画像群のそれぞれに対して、前記S2~S5の空間的位置合わせ→灰白質(白質)の組織分離処理→空間的標準化→平滑化等の各処理を順次行なって同様に作成し、保存してあるものである。
 又、この医用画像処理装置においては、収集したこれらの健常者画像を、例えば5歳毎又は10歳毎というように年代別に分類し、それぞれの群について算出した平均値と標準偏差を記憶装置に保存しておくことにより、Zスコアによる検定を行なうことができる。
 又、その際には、被験者の年齢を中心とした一定の年齢幅に区切って、例えば被験者の年齢が76歳の場合であれば、それを中心とした74~78歳(幅を5歳とした)の範囲の健常者画像を収集し、比較するようにしてもよい。
 なお、このようにZスコアを使用する場合には、ボクセル毎に上記平均値と標準偏差のデータだけを持っていればよいので、データ作成後は画像データ自体を保存しておく必要がないという利点もある。
 以上のように、被験者の標準化脳画像に対して統計的比較を行なった後、前記S7のROIによる解析を行なう。
 これは、脳画像を用いて異常の有無を判別する場合に、画像上に所定の大きさの関心領域(regions of interest:ROI)を設定する方法であり(例えば、非特許文献5参照)、脳画像上において、特定の疾患に関係するとして注目されている特定部位に所定の大きさのROIを設定して比較を行なうものである。
 この解析方法は、前記特許文献1に説明されているように、前記統計処理により健常者と有意な差が見られた座標位置のボクセルとそのZスコア(評価値)について、疾患に対応するROI(疾患特異的ROI)を適用することにより、罹患している度合を求めるものである。その特徴は次の2点である。
 (1)アルツハイマー等の疾患毎に対応する標準化された画像データとしてのROI(疾患特異的ROI)38を用意しておき、被験者の症状から考えられる疾患について、被験者の脳画像データにそれぞれのROIを適用(設定)し、該ROIにおけるZスコアに基づいて最も有意性の高いものを診断結果とする。
 (2)ROIの部分のみのZスコアによって疾患を判断するだけでなく、ROIを適用しない場合の脳全体のZスコアマップと、ROIを適用した部分のみのZスコアマップとの比較を行なう。この目的は、脳全体の萎縮に対する注目部位の萎縮の割合を見ることにある。
 ここでは、まず、図15にイメージを示すように、疾患A~Cの疾患別の特異的ROIが用意されている場合を例として、被験者がある疾患Aを罹患しているか否かを判別する方法を説明する。なお、この方法に適用する各ROIについては後述する。
 前記S6の統計的比較で得られた被験者のZスコアマップに対して、疾患Aに対応するROIを用いて、前記(2)および前記(3)式を使って、以下の5つのパラメータを算出する。
  P 1=ROI部分において式(3)を満たすボクセルのZスコアの合計/ROI部分において式(3)を満たすボクセルの数
  P 2=脳全体において式(2)を満たすボクセルの数/脳全体のボクセル数
  P 3=ROI部分において式(2)を満たすボクセルの数/ROI部分のボクセル数
  P 4=P 3/P 2
  P 5=ROI部分における全てのボクセルの中で最大のZスコア
 P 1~P 5の5つのパラメータについて、予め疾患Aを有する患者群における特性を求めておき、被験者のパラメータの値がそれに合致する場合に、被験者は疾患Aであると判別する。
 例えば、5つのパラメータについて疾患Aとみなす閾値(病態識別値)を定めておき、被験者画像から得られたパラメータの値がその閾値を超えた場合に、被験者は疾患Aであるとする。つまり、P 1~P 4のそれぞれの病態識別の閾値をそれぞれthP 1~thP 5とする場合、P 1>thP 1、P 2>thP 2、P 3>thP 3、P 4>thP 4、P 5>thP 5の少なくとも1つが満たされる場合に、被験者を疾患Aと判定する。具体的には、例えばP1のように1つのパラメータのみに注目して判定する場合や、必要に応じてP 1~P 5の一部又は全部を参照して判定する場合を例に挙げることができる。
 また、ここに挙げたP 1~P 5のパラメータの他に、5つのパラメータについて、右半球側および左半球側に限定した値を求めてパラメータとして加えてもよい。更に、右半球側、左半球側の値に対して、式(4)によって求めた左右比又は式(5)によって求めた左右差をパラメータに加えてもよい。
  左右比=(R-L)/(R+L)*200          …(4)
  左右差= R-L                     …(5)
  ただし、右半球側の値をR、左半球側の値をLとする。
 次に、これらの疾患別に設定されるROI(疾患特異的ROI)の作成方法について説明する。
 ROIは、次のようにして統計的処理に基づいて決定される。例えば、ある特定の疾患AのROIを決定するためには、図16にイメージを示すように、疾患Aの患者のMRI画像群(疾患者画像群)と、それ以外の人の画像群(非疾患者画像群)とについて、ボクセル単位で2群間の有意差を統計的に検定する2標本t検定を行なうことで求める。この検定によって有意差が認められたボクセルを、その疾患における特徴的なボクセルとみなし、その座標の集合をその疾患に対応するROIとする。
 病態識別値(閾値)の決定は、その疾患について、一般的なROC(Receiver Operating Characteristic)解析によって行なう。ROC解析とは、ある検査方法について、疾患を検出する能力を定量的に解析するための一般的な手法である。
 その一例として、以下に、パラメータP 1とその閾値thP 1によって疾患の有無を識別する場合について、閾値thP1を求める方法について説明する。
 P 1>thP 1のとき陽性、P 1≦thP 1のとき陰性となる検査を考え、多数のサンプルについて、検査による陽陰性と、実際の疾患の有無についてその組合せを調べると、図17の表に示すような、TP(真陽性),FP(偽陽性),FN(偽陰性),TN(真陰性)の各数値が得られる。更にこれらの値から、真陽性率(TPF:患者を正しく患者と判別した割合)、偽陽性率(FPF:健常者を誤って患者と判定した割合)が次式のように表わされる。
  TPF=TP/(TP+FN)
  FPF=FP/(FP+TN)
 ある1つのthP1に対して、(TPF,FPF)の組が1つ求まるが、この閾値をさまざまに変えることによって得られる(TPF,FPF)をプロットしたものが、図18に例示するROC曲線である。
 検査においては、TPFが高く、FPFが低くなることが望ましいが、ROC曲線においては最も左上の点がそれに対応する。この図で言えば、点Dに対応する閾値を採用するのが良いということになる。
 これを、パラメータと疾患有無の観点から考えると、便宜上パラメータが1つの場合について説明すると、図19に示すように、疾患有りの分布と疾患無しの分布とを、最も良く(誤りなく)分ける境界線が、ここで求められた閾値に対応している。
 MRI装置で被験者と健常者群の脳のT1強調画像を撮像し、各画像を、DICOMフォーマットとして保持しておく。DICOMフォーマットは、1ファイルにヘッダ部と画像データ部を含む医療画像で一般的に用いられる画像フォーマットであり、画像撮影時のパラメータや診断情報を保存しておくことができる。通常、DICOM画像ファイル1つが1枚のスライス画像の情報を有し、複数枚のDICOM画像によって、3次元的な脳画像を表現する。DICOM画像はDICOMサーバに保管され、必要に応じて引き出すことができる。
 DICOM画像ファイルは複数枚によって脳全体の3次元的情報を表現するが、DICOMファイルのヘッダ部のみ、及び画像データ部のみを連結した形式であるAnalyzeフォーマットに変換する。Analyzeフォーマットは1人分の脳全体を、ヘッダ部ファイル、画像データ部ファイルの2ファイルで構成することができる。
 脳画像の画像処理を行なうためのツールをソフトウェアに実装したものとして、SPM(Statistical Parametric Mapping)等が知られている。本実施例における以下の画像処理には、SPMを適用した。
 以上の条件の下、被験者から入力したMRI脳画像に対して、前記図2のS1~7の各処理を行なった。
 白質及び灰白質の抽出に使用するテンプレートは、ICBM(International Consortium for Brain Mapping)が作成したものを用いた。このテンプレートは、多数の健常者の脳画像から白質、灰白質、脳脊髄液の事前生起(存在)確率を計算したもので、1ボクセルサイズが2mm四方のものである。
 アルツハイマー型認知症患者のグループ61例と健常高齢者のグループ82例を用いて、事前処理であるS11~S14と、診断支援情報作成処理であるS1~S5を実施した。
 灰白質画像の処理結果について、S7で求められたP 1を用いてROC解析を行ない、ROC曲線下の面積を表すAUC(Area Under the Curve)を求めた。その結果、前記特許文献1の手法では0.876、本発明の手法では0.943となった。また、前記特許文献1の手法と本発明の手法で正診率を比較した結果、5%程度高い正診率で健康高齢者とアルツハイマー型認知症患者を識別することができた。これらの結果から、本方法はアルツハイマー型認知症の診断に対して有効性が高いと言える。
 又、白質画像についても、従来実現されていなかった空間的標準化を高精度で実現することが可能となり、灰白質病変と白質病変の両方について評価することで、例えばアルツハイマー型認知症と血管性認知症の鑑別力が向上すると考えられる。
 以上詳述した如く、本実施形態によれば、被験者のMRI脳画像を入力し、入力されたMRI脳画像を組織分離して白質が抽出された白質画像を作成し、作成された白質画像を、予め保存されている白質テンプレートに基づく空間的標準化により標準化白質画像を作成し、作成された標準化白質画像に基づいて、被験者の白質と健常者の白質との統計的比較を行う際、前記白質テンプレートを、多数の健常者の白質画像間における空間的標準化にダーテル・アルゴリズムを適用して作成するようにしたので、白質についても精度の高いテンプレートを作成することが可能となり、従来実現されていなかった白質についても特定の疾患について客観的な診断支援を行なうことが可能となった。
 又、入力された前記MRI脳画像を組織分離して灰白質が抽出された灰白質画像を併せて作成し、作成された灰白質画像を、予め保存されている灰白質テンプレートに基づく空間的標準化により標準化灰白質画像を作成し、作成された標準化灰白質画像に基づいて、被験者の灰白質と健常者の灰白質との統計的比較を行うようにしたので、灰白質についても従来より高精度のテンプレートを同様の方法で作成することが可能となり、灰白質についても一段と精度の高い診断支援を行なうことが可能となった。
 更に、本実施形態では、白質、灰白質のテンプレートを年齢別及び性別毎に作成し、保存するようにしたので、被験者の年齢別、性別に応じてより適切なテンプレートを使用して空間的標準化を行なうことが可能となるため、より精度の高い診断支援を実現することが可能となった。
 即ち、本実施形態によれば、ダーテル・アルゴリズムを用いることにより、従来は処理対象が灰白質のみに限定されていた空間的標準化の精度を、白質についても向上させることが可能となった。又、データベース部30に年齢、性別に応じたテンプレートを作成して保持しておき、入力画像に適したテンプレートを選択して適用させることにより、被験者の加齢や性別による影響を考慮できるようになった。
 以上、本発明について具体的に説明したが、本発明は、前記実施形態に示したものに限られるものでなく、その要旨を逸脱しない範囲で種々変更可能である。
 例えば、評価値としてZスコアを使用する検定方法を示したが、これに限定されず、他の一般的な検定で用いられるtスコア等を用いてもよい。
 本発明における準備処理は、上記実施形態に限定されず、組織分離の対象とする脳画像全般に適用可能である。例えば、特許文献1に示したような組織分離に伴う灰白質組織抽出の前処理として用いることもできる。
 また、上記実施形態では、事前準備処理、基本的処理のいずれにおいても、空間的位置合わせ(S12、S2)の前に準備処理(S11、S1)を実行するようにしたが、空間的位置合わせ(S12、S2)の後に準備処理(S11、S1)を実行するようにしても良い。この場合、高信号値抑制の要・不要の判定をする際には、既に空間的位置合わせが行われているため、S21における対象スライス選択処理において、上記説明のようなスライス画像選択の複雑な処理は必要なく、頭蓋周辺領域と脳実質以外の高い信号値が含まれないと考えられる脳上部の部分を特定する。具体的には、上から何番目から何番目までのスライス画像を対象スライスとして選択するかを指定しておけば良い。
 また、上記実施形態では、S1に示した準備処理とS2~S7に示した診断支援情報作成処理とを1つの医用画像処理装置において連続して実行するようにし、S11に示した準備処理とS12~S14に示した事前処理とを1つの医用画像処理装置において連続して実行するようにしたが、医用画像処理装置においてS1、S11に示した準備処理のみを実行するようにし、この結果得られた高信号値抑制処理後の画像に対して、他の装置により、事前処理、診断支援情報作成処理を実行するようにしても良い。この場合、空間的位置合わせ(S12、S2)を先に処理する場合には、医用画像処理装置においてS2およびS1、S12およびS11に示した準備処理のみを実行するようにし、この結果得られた高信号値抑制処理後の画像に対して、他の装置により、事前処理、診断支援情報作成処理を実行する。
 10・・・ユーザインタフェース
 20・・・画像・統計処理部
 30・・・データベース部
 32・・・白質脳画像テンプレート
 34・・・灰白質脳画像テンプレート
 36・・・健常者画像データベース
 38・・・疾患特異的ROI

Claims (10)

  1.  複数のスライス画像で構成される脳画像から、処理対象とするスライス画像を対象スライスとして選択する対象スライス選択手段と、
     脳実質の画素の信号値の有効最大値である脳実質有効最大値の計測処理を行う脳実質計測手段と、
     脳画像全体の画素の信号値の有効最大値の計測処理を行う脳画像計測手段と、
     頭蓋周辺領域のピークとなる画素の信号値の平均を頭蓋周回のピーク平均値として計測処理する頭蓋計測手段と、
     計測された脳実質の有効最大値、脳画像全体の有効最大値、頭蓋周回のピーク平均値に基づいて、高信号値抑制処理が必要か不要かを判定する抑制処理判定手段と、
     前記抑制処理判定手段により必要と判定された場合に、前記脳画像に対して高信号値抑制処理を実行する高信号値抑制処理手段と、
     を有することを特徴とする医用画像処理装置。
  2.  前記抑制処理判定手段は、
     前記脳実質有効最大値より頭蓋周回のピーク平均値が一定割合高いかどうかの判定である頭蓋領域判定と、
     前記脳実質有効最大値より画像全体の信号値が一定割合高いかどうかの判定である画像全体判定と、を実行し、
     前記頭蓋領域判定、画像全体判定のいずれか一方が条件を満たす場合に、高信号値抑制処理が必要と判定するものであることを特徴とする請求項1に記載の医用画像処理装置。
  3.  前記対象スライス選択手段は、各スライス画像について、画像内に所定の線分を設定し、この線分上に位置し、信号値が所定値以上となる画素のうち、最も離れた画素間の長さを求め、当該画素間の長さが全スライス画像中最長のものと比較して所定の比率以上となるスライス画像を対象スライスとして選択するものであることを特徴とする請求項1または請求項2に記載の医用画像処理装置。
  4.  前記脳実質計測手段は、選択された前記各対象スライスについて、脳の中心部を通る線分を所定数設定し、各線分ごとに線分上の画素の信号値分布を所定数の領域に分割し、中央の所定数の領域を脳実質領域として、当該脳実質領域における信号値のヒストグラムを求め、上位の所定の画素を除去した信号の最大値を脳実質の有効最大値として求めるものであることを特徴とする請求項1から請求項3のいずれか一項に記載の医用画像処理装置。
  5.  前記脳画像計測手段は、対象スライス全体の画素の信号値のヒストグラムを求め、上位の所定の画素を除去した信号の最大値を画像全体の有効最大値として求めるものであることを特徴とする請求項1から請求項4のいずれか一項に記載の医用画像処理装置。
  6.  前記頭蓋計測手段は、選択された前記各対象スライスについて、脳の中心部を通る線分を所定数設定し、各線分ごとに線分上の画素の信号値分布を所定数の領域に分割し、両端の所定数の領域を頭蓋周辺領域として、当該頭蓋周辺領域における信号最大値の、全ての対象スライスの全ての線分における平均値を頭蓋周回のピーク平均値として求めるものであることを特徴とする請求項1から請求項5のいずれか一項に記載の医用画像処理装置。
  7.  前記高信号値抑制処理手段は、信号値が所定値未満の画素については、その信号値を変更せず、信号値が前記所定値以上の画素については、信号値を所定値にする処理を実行することにより、相対的に高信号値抑制処理を実現するものであることを特徴とする請求項1から請求項6のいずれか一項に記載の医用画像処理装置。
  8.  前記高信号値抑制処理手段は、信号値が所定値未満の画素については、その信号値を変更せず、信号値が前記所定値以上の画素については、信号値を元の値より小さくなるように変換する処理を実行することにより、相対的に高信号値抑制処理を実現するものであることを特徴とする請求項1から請求項6のいずれか一項に記載の医用画像処理装置。
  9.  前記高信号値抑制処理手段は、信号値が所定値未満の画素については、その信号値を変更せず、信号値が前記所定値以上の画素については、信号値を傾きが零以上で1より小さい1次関数によって変換する処理を実行することにより、相対的に高信号値抑制処理を実現するものであることを特徴とする請求項8に記載の医用画像処理装置。
  10.  請求項1から請求項9のいずれか一項に記載の医用画像処理装置として、コンピュータを機能させるためのプログラム。
PCT/JP2011/077761 2010-12-02 2011-12-01 医用画像処理装置 WO2012074039A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/991,012 US9042616B2 (en) 2010-12-02 2011-12-01 Medical image processing device
JP2012546926A JP5601378B2 (ja) 2010-12-02 2011-12-01 医用画像処理装置
EP11844823.2A EP2647335B1 (en) 2010-12-02 2011-12-01 Medical image processing device
CN201180058114.6A CN103249358B (zh) 2010-12-02 2011-12-01 医用图像处理装置
HK13114416.2A HK1186947A1 (en) 2010-12-02 2013-12-31 Medical image processing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010269073 2010-12-02
JP2010-269073 2010-12-02

Publications (1)

Publication Number Publication Date
WO2012074039A1 true WO2012074039A1 (ja) 2012-06-07

Family

ID=46171964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/077761 WO2012074039A1 (ja) 2010-12-02 2011-12-01 医用画像処理装置

Country Status (6)

Country Link
US (1) US9042616B2 (ja)
EP (1) EP2647335B1 (ja)
JP (1) JP5601378B2 (ja)
CN (1) CN103249358B (ja)
HK (1) HK1186947A1 (ja)
WO (1) WO2012074039A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013066632A (ja) * 2011-09-26 2013-04-18 Dainippon Printing Co Ltd 医用画像処理装置、医用画像処理方法、プログラム
JP2016540602A (ja) * 2013-12-19 2016-12-28 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Dixonタイプ水/脂肪分離する磁気共鳴イメージング
JP2017527788A (ja) * 2014-07-15 2017-09-21 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 個別化テンプレート画像による定位正則化を含むイメージングデータ統計的検定
JP2019005553A (ja) * 2017-06-23 2019-01-17 パナソニックIpマネジメント株式会社 情報処理方法、情報処理装置、および情報処理システム
JP2020527258A (ja) * 2017-07-22 2020-09-03 インテリジェント ヴァイルス イメージング インコーポレイテッド 電子顕微鏡写真における構造的外観の自動非監視下存在論的調査方法
WO2022065062A1 (ja) * 2020-09-28 2022-03-31 富士フイルム株式会社 診断支援装置、診断支援装置の作動方法、診断支援装置の作動プログラム
JP2023002822A (ja) * 2017-06-23 2023-01-10 パナソニックIpマネジメント株式会社 情報処理方法、情報処理装置、および情報処理システム

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012157201A1 (ja) * 2011-05-18 2012-11-22 日本電気株式会社 情報処理システム、情報処理方法、情報処理装置およびその制御方法と制御プログラム
US9332954B2 (en) * 2013-03-15 2016-05-10 Jacqueline K. Vestevich Systems and methods for evaluating a brain scan
CN105074778B (zh) * 2013-03-28 2018-10-12 皇家飞利浦有限公司 交互式随访可视化
CN104143079B (zh) * 2013-05-10 2016-08-17 腾讯科技(深圳)有限公司 人脸属性识别的方法和系统
ES2518690B1 (es) * 2013-12-23 2015-09-29 Centro De Investigación Biomédica En Red De Salud Mental (Cibersam) Método para la detección de áreas anómalas en el cerebro a partir de imágenes de resonancia magnética
JP2016064004A (ja) * 2014-09-25 2016-04-28 大日本印刷株式会社 医用画像表示処理方法、医用画像表示処理装置およびプログラム
EP3677191B1 (en) * 2017-08-29 2023-09-20 FUJIFILM Corporation Information outputting device, method, and program
JP7113447B2 (ja) * 2018-03-12 2022-08-05 東芝エネルギーシステムズ株式会社 医用画像処理装置、治療システム、および医用画像処理プログラム
JP7325310B2 (ja) 2019-11-28 2023-08-14 富士フイルムヘルスケア株式会社 医用画像処理装置、医用画像解析装置、及び、標準画像作成プログラム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07320028A (ja) * 1994-05-24 1995-12-08 Ge Yokogawa Medical Syst Ltd 投影画像処理方法及び投影画像処理装置
JPH11507565A (ja) * 1995-06-13 1999-07-06 ブリティッシュ・テクノロジー・グループ・リミテッド 画像改善装置及び方法
WO2007023522A1 (ja) * 2005-08-22 2007-03-01 National Center Of Neurology And Psychiatry 脳疾患の診断支援方法及び装置
JP2007068852A (ja) * 2005-09-08 2007-03-22 Hitachi Medical Corp 医用画像表示方法及び医用画像診断装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5845639A (en) * 1990-08-10 1998-12-08 Board Of Regents Of The University Of Washington Optical imaging methods
JP4025823B2 (ja) 2004-02-24 2007-12-26 国立精神・神経センター総長 脳疾患の診断支援方法及び装置
EP1773194A1 (en) * 2004-06-01 2007-04-18 VAN ZIJL, Peter C.M. Quantifying blood volume using magnetization transfer magnetic resonance imaging
US20060177115A1 (en) * 2005-02-04 2006-08-10 Gifu University Medical image processing apparatus and program
US8112144B2 (en) * 2006-03-30 2012-02-07 National University Corporation Shizuoka University Apparatus for determining brain atrophy, method of determining brain atrophy and program for determining brain atrophy
WO2008000973A2 (fr) * 2006-06-29 2008-01-03 Centre National De La Recherche Scientifique - Cnrs Méthode d'estimation du potentiel de croissance des infarctus cérébraux
US20080187194A1 (en) * 2007-02-05 2008-08-07 Zhang Daoxian H Cad image normalization
US8185186B2 (en) * 2007-04-13 2012-05-22 The Regents Of The University Of Michigan Systems and methods for tissue imaging
US9804245B2 (en) * 2007-06-29 2017-10-31 Toshiba Medical Systems Corporation Magnetic resonance imaging apparatus and magnetic resonance imaging method
JP5229175B2 (ja) * 2009-09-25 2013-07-03 大日本印刷株式会社 医用画像表示処理方法、装置およびプログラム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07320028A (ja) * 1994-05-24 1995-12-08 Ge Yokogawa Medical Syst Ltd 投影画像処理方法及び投影画像処理装置
JPH11507565A (ja) * 1995-06-13 1999-07-06 ブリティッシュ・テクノロジー・グループ・リミテッド 画像改善装置及び方法
WO2007023522A1 (ja) * 2005-08-22 2007-03-01 National Center Of Neurology And Psychiatry 脳疾患の診断支援方法及び装置
JP2007068852A (ja) * 2005-09-08 2007-03-22 Hitachi Medical Corp 医用画像表示方法及び医用画像診断装置

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
ASHBUMER J, A: "fast diffeomorphic image registration algorithm", NEUROIMAGE, vol. 38, no. 1, 15 October 2007 (2007-10-15), pages 95 - 113
BOOKSTEIN FL: "Voxel-based morphometry", NEUROIMAGE, vol. 14, no. 6, 2001, pages 1454 - 62
HIROSHI MATSUDA: "Image Diagnosis of Alzheimer's Dementia", 2001, MEDICAL VIEW CO., LTD., article "Statistical Analysis of SPECT", pages: 76 - 86
J.ASHBUMER; K.J.FRISTON: "Unified segmentation", NEUROIMAGE, vol. 26, 2005, pages 839 - 851
See also references of EP2647335A4
YOKO HIRATA; HIROSHI MATSUDA; KIYOTAKA NEMOTO; TAKASHI OHNISHI; KENTARO HIRAO; FUMIO YAMASHITA; TAKASHI ASADA; SATOSHI IWABUCHI; H: "Voxel-based morphometry to discriminate early Alzheimer's disease from controls", NEUROSCI LETT, vol. 382, 2005, pages 269 - 274

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013066632A (ja) * 2011-09-26 2013-04-18 Dainippon Printing Co Ltd 医用画像処理装置、医用画像処理方法、プログラム
JP2016540602A (ja) * 2013-12-19 2016-12-28 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Dixonタイプ水/脂肪分離する磁気共鳴イメージング
JP2017527788A (ja) * 2014-07-15 2017-09-21 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 個別化テンプレート画像による定位正則化を含むイメージングデータ統計的検定
JP2019005553A (ja) * 2017-06-23 2019-01-17 パナソニックIpマネジメント株式会社 情報処理方法、情報処理装置、および情報処理システム
US11445920B2 (en) 2017-06-23 2022-09-20 Panasonic Intellectual Property Management Co., Ltd. Information processing method, information processing device, and information processing system
JP7178614B2 (ja) 2017-06-23 2022-11-28 パナソニックIpマネジメント株式会社 情報処理方法、情報処理装置、および情報処理システム
JP2023002822A (ja) * 2017-06-23 2023-01-10 パナソニックIpマネジメント株式会社 情報処理方法、情報処理装置、および情報処理システム
JP7312977B2 (ja) 2017-06-23 2023-07-24 パナソニックIpマネジメント株式会社 情報処理方法、情報処理装置、および情報処理システム
US12029530B2 (en) 2017-06-23 2024-07-09 Panasonic Intellectual Property Management Co., Ltd. Information processing method, information processing device, and information processing system
JP2020527258A (ja) * 2017-07-22 2020-09-03 インテリジェント ヴァイルス イメージング インコーポレイテッド 電子顕微鏡写真における構造的外観の自動非監視下存在論的調査方法
WO2022065062A1 (ja) * 2020-09-28 2022-03-31 富士フイルム株式会社 診断支援装置、診断支援装置の作動方法、診断支援装置の作動プログラム

Also Published As

Publication number Publication date
EP2647335A1 (en) 2013-10-09
JP5601378B2 (ja) 2014-10-08
JPWO2012074039A1 (ja) 2014-05-19
CN103249358A (zh) 2013-08-14
US9042616B2 (en) 2015-05-26
EP2647335B1 (en) 2020-06-03
US20130251231A1 (en) 2013-09-26
CN103249358B (zh) 2015-09-09
EP2647335A4 (en) 2017-11-08
HK1186947A1 (en) 2014-03-28

Similar Documents

Publication Publication Date Title
JP5601378B2 (ja) 医用画像処理装置
JP5699936B2 (ja) 医用画像処理装置の作動方法、装置およびプログラム
JP4025823B2 (ja) 脳疾患の診断支援方法及び装置
JP6036009B2 (ja) 医用画像処理装置、およびプログラム
JP5695648B2 (ja) 医用画像処理方法および装置
EP2790575B1 (en) Method and apparatus for the assessment of medical images
JP5098393B2 (ja) 関心領域決定装置
WO2016047683A1 (ja) 医用画像表示処理方法、医用画像表示処理装置およびプログラム
CN100561518C (zh) 基于感兴趣区域的自适应医学序列图像插值方法
WO2007023522A1 (ja) 脳疾患の診断支援方法及び装置
KR20130136519A (ko) 파노라마 엑스선 사진을 이용한 진단 지원 시스템, 및 파노라마 엑스선 사진을 이용한 진단 지원 프로그램
US20130303900A1 (en) Method and apparatus for processing of stroke ct scans
JP4022587B2 (ja) 脳疾患の診断支援方法及び装置
JP6705528B2 (ja) 医用画像表示処理方法、医用画像表示処理装置およびプログラム
CN114847922A (zh) 一种基于纤维束自动识别的脑年龄预测方法
Somasundaram et al. Brain extraction method for T1-weighted magnetic resonance scans
JP4721693B2 (ja) 頭蓋内容積および局所脳構造物解析プログラム、記録媒体および頭蓋内容積および局所脳構造物解析方法
Paniagua et al. 3D of brain shape and volume after cranial vault remodeling surgery for craniosynostosis correction in infants
US11324413B1 (en) Traumatic brain injury diffusion tensor and susceptibility weighted imaging
CN114862799B (zh) 一种用于flair-mri序列的全自动脑体积分割方法
EP3624058A1 (en) Method and system of analyzing symmetry from image data
KR102349360B1 (ko) 영상 진단기기를 이용한 특발성 정상압 수두증의 진단 방법 및 시스템
KR101455198B1 (ko) Ct 영상 분석을 이용한 흉곽 변형성 정량적 평가 지표값 계산 방법, 시스템 및 기록 매체
JP2023552547A (ja) 拡散強調磁気共鳴画像から胎児の脳室容積を判定するためのコンピュータ実装方法及びシステム、並びに関連するnmr脳室容積評価方法
CN117838089A (zh) 基于磁共振成像的大脑海马体分析方法、系统及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11844823

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012546926

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13991012

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011844823

Country of ref document: EP