WO2012073865A1 - Image processing device, image processing method, image processing program, and display device - Google Patents

Image processing device, image processing method, image processing program, and display device Download PDF

Info

Publication number
WO2012073865A1
WO2012073865A1 PCT/JP2011/077325 JP2011077325W WO2012073865A1 WO 2012073865 A1 WO2012073865 A1 WO 2012073865A1 JP 2011077325 W JP2011077325 W JP 2011077325W WO 2012073865 A1 WO2012073865 A1 WO 2012073865A1
Authority
WO
WIPO (PCT)
Prior art keywords
noise
pixel
resolution
image signal
value
Prior art date
Application number
PCT/JP2011/077325
Other languages
French (fr)
Japanese (ja)
Inventor
善光 村橋
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012073865A1 publication Critical patent/WO2012073865A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/14Picture signal circuitry for video frequency region
    • H04N5/21Circuitry for suppressing or minimising disturbance, e.g. moiré or halo
    • H04N5/213Circuitry for suppressing or minimising impulsive noise

Definitions

  • the present invention relates to an image processing device, an image processing method, an image processing program, and a display device.
  • This application claims priority based on Japanese Patent Application No. 2010-267698 filed in Japan on November 30, 2010, the contents of which are incorporated herein by reference.
  • noise components such as snow noise, Gaussian noise, and shot noise may be mixed in the video signal.
  • noise components such as snow noise, Gaussian noise, and shot noise
  • analog television broadcasting if the electric field strength on the broadcast wave receiving side is weak, the S / N ratio of the received signal decreases.
  • digital television broadcasting an analog video source may be digitized and rebroadcast, and the video signal broadcast in this way also includes noise components.
  • noise reduction circuit that reduces a noise component superimposed on such a video signal (see, for example, Patent Document 1).
  • Such a television receiver capable of displaying high-definition video displays an SDTV (Standard Definition Television) video, which is an analog video source received by broadcast, after up-converting it into high-definition video. Therefore, even when a standard-definition video is converted into a high-definition video and displayed, there is a high need for reducing noise components included in the video.
  • a noise component included in an image is reduced by a noise reduction circuit, and an image whose S / N ratio is improved to some extent is up-converted.
  • the present invention has been made in view of the above circumstances, and provides an image processing device, an image processing method, an image processing program, and a display device that obtain an image with high definition and reduced noise components. With the goal.
  • an image processing apparatus provides an up-converted image signal obtained by increasing the resolution of an input image signal including a noise component in at least one direction of a frame image.
  • a noise reduction unit that detects a noise-containing pixel including noise from the resolution changing unit to be generated and the up-converted image signal generated by the resolution changing unit and corrects the pixel value of the noise-containing pixel so that the noise component is reduced And a section.
  • the noise reduction unit includes a pixel value of a target pixel for noise detection included in the up-converted image signal and the up-converted image signal.
  • the noise-containing pixel is detected based on at least the pixel value of the two comparison pixels sandwiching the target pixel in the direction in which the resolution changing unit increases the resolution.
  • one aspect of the present invention is a ratio between the resolution in the predetermined direction in the frame image of the input image signal and the resolution in the predetermined direction in the frame image of the up-converted image signal.
  • a sampling control unit for determining an interval between at least one of the comparison pixels and the target pixel.
  • one aspect of the present invention is characterized in that the ratio is a real number having a decimal part.
  • a plurality of the noise reduction units are connected in cascade, and an interval between the two pixels of each of the plurality of noise reduction units is output from an input side. It is characterized by being shortened toward the side.
  • one aspect of the present invention is characterized in that the at least one direction is a horizontal direction or a vertical direction, or a horizontal direction and a vertical direction in the frame image.
  • the noise reduction unit includes a 3-tap median filter.
  • the noise reduction unit includes a bilateral filter.
  • the resolution changing unit increases the resolution of the input image signal including the noise component in at least one direction of the frame image.
  • a resolution changing step for outputting an up-converted image signal, and a noise reducing unit detects a noise-containing pixel containing noise from the up-converted image signal output by the resolution changing unit in the resolution changing step, and a noise component is reduced.
  • a noise reduction step of correcting the pixel value of the noise-containing pixel is
  • an image processing program is an up-conversion in which a computer increases the resolution of an input image signal including a noise component in at least one direction of a frame image.
  • a resolution changing unit that generates an image signal, and detecting a noise-containing pixel containing noise from the up-converted image signal generated by the resolution changing unit, and correcting the pixel value of the noise-containing pixel so that the noise component is reduced
  • a display device generates an up-converted image signal obtained by increasing the resolution of an input image signal including a noise component in at least one direction of a frame image.
  • a resolution changing unit that detects noise-containing pixels containing noise from the up-converted image signal generated by the resolution changing unit, and corrects the pixel value of the noise-containing pixels so that the noise component is reduced And.
  • FIG. 1 is a block diagram illustrating a schematic functional configuration of an image processing apparatus according to a first embodiment of the present invention. It is a block diagram showing the schematic function structure of the scaler part in the embodiment. It is a figure showing the part containing a noise component among one horizontal line of an image signal. It is a figure showing a mode that the noise component was reduced from the part shown to FIG. 3A. It is a block diagram showing the functional structure of the noise reduction part in the embodiment. It is a block diagram showing the functional structure of the representative value determination part in the embodiment. It is a block diagram showing the functional structure of the reduction calculating part in the embodiment. It is a figure showing the input image signal Vin.
  • FIG. 6 is a waveform diagram after an image signal after up-conversion processing is passed through the low-pass filter 22 of the scaler unit 2.
  • FIG. It is a wave form diagram showing a mode that the noise reduction unit 3 reduced the noise component.
  • Vin It is a wave form diagram after passing an input image signal through a noise reduction unit.
  • FIG. 6 is a waveform diagram after an image signal after up-conversion processing is passed through a low-pass filter.
  • FIG. 2 is a block diagram illustrating a functional configuration of a liquid crystal television receiver to which the image processing apparatus according to the embodiment is applied.
  • FIG. FIG. 10 is a block diagram illustrating a functional configuration of a representative value determination unit included in a noise reduction unit in a first modification of the embodiment. It is a block diagram showing the functional composition of the sampling control part contained in the noise reduction part in the 2nd modification of the embodiment. It is a block diagram showing the functional structure of the representative value determination part in the modification. It is a block diagram showing the schematic function structure of the image processing apparatus which is 2nd Embodiment of this invention. In the same embodiment, it is the figure which represented typically the distribution of the spatial frequency versus luminance value of an up-conversion image signal. It is a block diagram showing the functional structure of the noise reduction part in the image processing apparatus which is 3rd Embodiment of this invention.
  • FIG. 1 is a block diagram showing a schematic functional configuration of the image processing apparatus according to the first embodiment of the present invention.
  • the image processing apparatus 1 takes in an input image signal Vin, an original image resolution value Hx, and a converted image resolution value Hy supplied from the outside, and outputs an output image signal Vout.
  • the input image signal Vin is an image signal of an image (original image) before the resolution is up-converted. It is assumed that the input image signal Vin includes a noise component (noise component).
  • the original image resolution value Hx is a resolution value in the horizontal direction in the frame image of the original image.
  • the converted image resolution value Hy is a resolution value in the horizontal direction of an image (converted image) after up-converting the resolution in the horizontal direction.
  • the output image signal Vout is an image signal of an image obtained by reducing noise components from the upconverted image signal.
  • reducing the noise component includes removing the noise component. Therefore, the meaning of “reducing noise components” means “removing or reducing noise components”.
  • the image processing apparatus 1 includes a scaler unit (resolution changing unit) 2 and a noise reduction unit 3.
  • the scaler unit 2 takes in the input image signal Vin, the original image resolution value Hx, and the converted image resolution value Hy. Then, the scaler unit 2 generates an up-converted image signal UV obtained by up-converting the horizontal resolution in the frame image of the input image signal Vin based on the original image resolution value Hx and the converted image resolution value Hy.
  • the noise reduction unit 3 takes in the up-converted image signal UV, the original image resolution value Hx, and the converted image resolution value Hy, reduces the horizontal noise component contained in the frame image of the up-converted image signal UV, and outputs the output image signal. Vout is output. More specifically, the noise reduction unit 3 includes one or a plurality of noise reduction units 4. However, FIG. 1 is an example in which the noise reduction unit 3 includes three noise reduction units 4 (noise reduction units 4-1, 4-2, 4-3).
  • the noise reduction unit 4 includes a 3-tap median filter and can set the tap interval based on the original image resolution value Hx and the converted image resolution value Hy. In other words, the noise reduction unit 4 can cause the 3-tap median filter to function with tap settings corresponding to the horizontal resolution of the frame image.
  • the noise reduction unit 3 When the noise reduction unit 3 includes a plurality of noise reduction units 4, the noise reduction unit 3 causes the plurality of noise reduction units 4 to be cascade-connected (cascade connection), and the tap setting is different for each noise reduction unit 4. .
  • the noise reduction units 4-1 4-2, and 4-3 are cascade-connected.
  • taps are set so that the tap interval is sequentially narrowed in the direction from the first stage noise reduction unit 4-1 to the third stage noise reduction unit 4-3. .
  • the interval between two pixels sandwiching the target pixel for noise detection in each of the plurality of noise reduction units can be shortened from the input side (for example, the first stage) toward the output side (for example, the third stage). That's fine.
  • the fact that the interval between the two pixels becomes shorter from the input side to the output side includes that the interval between the two pixels becomes shorter monotonically from the input side to the output side.
  • the fact that the interval between the two pixels decreases from the input side to the output side means that the average of the interval between the two pixels for each section is shortened. Is included.
  • the noise reduction unit 3 can increase the noise component in the spatial frequency and form the noise component in the vicinity of the Nyquist frequency of the up-converted image signal UV that is wider than the Nyquist frequency of the input image signal Vin.
  • FIG. 2 is a block diagram illustrating a schematic functional configuration of the scaler unit 2.
  • the scaler unit 2 includes an upsampler 21 and a low-pass filter 22.
  • the upsampler 21 takes in the input image signal Vin, the original image resolution value Hx, and the converted image resolution value Hy.
  • the upsampler 21 calculates a multiple of the horizontal resolution to be up-converted based on the original image resolution value Hx and the converted image resolution value Hy, that is, a multiple of the sampling frequency, and the input image signal Vin according to the multiple.
  • the interpolation (interpolation) process is executed.
  • the interpolation process here is an upsampling process, and the interpolation process is completed by the filter process by the low-pass filter 22 in the next stage.
  • the sampling frequency of the original image having a horizontal resolution of 640 pixels is fs
  • the Nyquist frequency of the original image is fs / 2
  • the sampling frequency of the image after the upsampling process is 3 fs
  • the Nyquist frequency is ( 3/2) fs.
  • the low-pass filter 22 is a low-pass filter that reduces aliasing components generated by the upsampling process of the upsampler 21. Specifically, the low-pass filter 22 mainly passes an image signal having a frequency band equal to or lower than the Nyquist frequency fs / 2 of the original image, while cutting an image signal having a frequency band exceeding the Nyquist frequency fs / 2 of the original image. Filter characteristics. That is, the low-pass filter 22 has a filter characteristic in which the cutoff frequency is the Nyquist frequency fs / 2 of the original image.
  • an image signal in a frequency band lower than the Nyquist frequency fs / 2 of the original image is extracted and output as an up-converted image signal UV.
  • the low-pass filter 22 for example, a known Lanchos filter is applied.
  • FIG. 3 is a diagram schematically showing how noise components are reduced from one horizontal line of the image signal up-converted by the scaler unit 2.
  • 3A is a diagram illustrating a portion including a noise component in one horizontal line of an image signal
  • FIG. 3B is a diagram illustrating a state in which the noise component is reduced from the portion illustrated in FIG. 3A.
  • the horizontal axis is the pixel position in the horizontal direction of the image
  • the vertical axis is the pixel value.
  • the pixel value is, for example, any one of a luminance value, a color difference value, and a color value.
  • the noise reduction unit 4 includes the target pixel for noise detection, the pixel that is n (n is an integer of 1 or more) in the horizontal direction from the target pixel, and the left side in the horizontal direction from the target pixel.
  • the pixel values of three pixels are compared with pixels separated by p (p is an integer of 1 or more), and it is determined whether or not the target pixel is a pixel that is highly likely to contain a noise component.
  • the noise reduction unit 4 has the largest (peak shape) or the smallest (valley shape) pixel value of the target pixel located in the middle of these three pixels. In this case, it is determined that the target pixel is a pixel that is highly likely to include a noise component. As illustrated in FIG. 3B, the noise reduction unit 4 corrects the pixel value of the target pixel in a direction in which the peak or valley of the target pixel determined to be a pixel that has a high possibility of including a noise component is reduced.
  • the noise reduction unit 4 detects a noise-containing pixel containing noise from the up-converted image signal generated by the scaler unit (resolution changing unit) 2 and corrects the pixel value of the noise-containing pixel so that the noise component is reduced.
  • the noise reduction unit 4 has a pixel value of a target pixel for noise detection included in the up-converted image signal and a pixel value included in the up-converted image signal, and the scaler unit (resolution changing unit) 2 increases the resolution.
  • the noise-containing pixel is detected based at least on the pixel values of the two comparison pixels sandwiching the target pixel in the direction (in this embodiment, the horizontal direction as an example).
  • FIG. 4 is a block diagram illustrating a functional configuration of the noise reduction unit 4.
  • the noise reduction unit 4 takes in the image signal X before noise reduction, the original image resolution value Hx, and the converted image resolution value Hy, and outputs the image signal Y after noise reduction.
  • the pre-noise reduction image signal X is the up-converted image signal UV.
  • the noise reduction unit 4-3 at the final stage (third stage in FIG. 1) of the noise reduction unit 3 the noise-reduced image signal Y is the output image signal Vout.
  • the noise reduction unit 4 includes a sampling control unit 5, a noise detection unit 6, a noise level detection unit 7, and a reduction calculation unit 8.
  • the sampling control unit 5 takes in the original image resolution value Hx and the converted image resolution value Hy, and calculates a horizontal resolution ratio (Hy / Hx> 1) between the converted image resolution value Hy and the original image resolution value Hx. Then, the sampling control unit 5 obtains a value obtained by multiplying the horizontal resolution ratio by a first constant value previously held, and specifies a tap value for designating p comparison pixels that are separated from the noise detection target pixel on the left side in the horizontal direction. This is supplied to the noise detection unit 6 as Tp.
  • the sampling control unit 5 obtains a value obtained by multiplying the horizontal resolution ratio by a second constant value that is previously held, and noise as a tap value Tn for designating a comparison pixel that is n times away from the target pixel in the horizontal direction. It supplies to the detection part 6.
  • the sampling control unit 5 up-converts the interval between at least one of the comparison pixels and the noise detection target pixel with the resolution in a predetermined direction (for example, the horizontal direction) in the frame image of the input image signal. This is determined based on the ratio of the image signal frame image to the resolution in the predetermined direction (for example, the horizontal direction).
  • the sampling control unit 5 By configuring the sampling control unit 5 in this way, the tap value Tp and the tap value Tn change in proportion to the horizontal resolution ratio. Thereby, the noise reduction part 4 can perform an appropriate noise reduction process according to horizontal resolution.
  • the first and second constant values may be the same value or different values. The first and second constant values are determined according to the image quality of the noise reduction target image and the purpose of use of the image processing apparatus 1.
  • the first-stage noise reduction unit 4-1 to the third-stage noise reduction unit 4 Each of the noise reduction units 4-1, 4-2, and 4-3 is arranged so that the tap interval is gradually narrowed in the direction toward ⁇ 3, in other words, the first and second constant values are sequentially reduced.
  • the first and second constant values are set.
  • the noise detection unit 6 takes in the tap value Tp and the tap value Tn supplied from the sampling control unit 5. Further, the noise detection unit 6 sequentially takes in pixel values from the image signal X before noise reduction. The noise detection unit 6 sequentially outputs the pixel value Dout of the target pixel for noise detection and the noise determination result Cout for the target pixel.
  • the noise detection unit 6 includes a delay unit 61, a representative value determination unit 62, and a comparison unit 63 as its functional configuration.
  • the representative value determining unit 62 sequentially takes in the pixel values of the image signal X before noise reduction, and for each pixel, a pixel for noise detection and a pixel that is n pixels away from the target pixel in the horizontal direction on the right in the horizontal direction. Then, three pixels are selected, which are p pixels away from the target pixel on the left side in the horizontal direction according to the tap value Tp. That is, the interval (distance) between two pixels sandwiching the target pixel is proportional to the horizontal resolution ratio.
  • the interval between two pixels sandwiching the target pixel is the resolution in a predetermined direction (for example, horizontal direction) in the frame image of the input image signal and the resolution in the predetermined direction (for example, horizontal direction) in the frame image of the up-converted image signal. And is determined based on the ratio. Then, the representative value determining unit 62 selects a pixel having an intermediate level value among the three pixels as a representative pixel, and outputs the pixel value Sout of this representative pixel. A specific method for selecting the representative pixel will be described later.
  • the delay unit 61 sequentially captures pixel values from the image signal X before noise reduction, delays them for a predetermined time, and supplies them to the comparison unit 63 and the reduction calculation unit 8 as the pixel value Dout of the target pixel for noise detection.
  • the delay unit 61 matches the timing of outputting the pixel value Sout of the representative pixel corresponding to the pixel value after the representative value determining unit 62 takes in the pixel value of the pre-noise reduction image signal X and outputs the pixel value Sout of the target pixel for noise detection.
  • the pixel value Dout is output.
  • the comparison unit 63 takes in the pixel value Dout of the target pixel for noise detection and the pixel value Sout of the representative pixel, and determines whether or not the target pixel for noise detection is a pixel that is likely to contain a noise component.
  • the noise determination result Cout is output. A specific determination method will be described later.
  • the noise level detection unit 7 takes in the image signal X before noise reduction, detects a noise component in, for example, a vertical blanking period and / or a horizontal blanking period, and corrects the level value of the detected noise component as a correction value L is supplied to the reduction calculation unit 8.
  • the reduction calculation unit 8 takes in the pixel value Dout and the noise determination result Cout of the target pixel supplied from the noise detection unit 6 and the correction value L supplied from the noise level detection unit 7, respectively, and outputs a noise-reduced image signal Y is output.
  • the reduction calculation unit 8 corrects the pixel value Dout of the target pixel with the correction value L according to the noise determination result Cout, and outputs the corrected pixel value. Details will be described later.
  • FIG. 5 is a block diagram showing a functional configuration of the representative value determining unit 62.
  • the representative value determining unit 62 includes a delay circuit 621, a first selector 622n, a second selector 622p, and a representative value selecting unit 623.
  • the delay circuit 621 cascades P (P is an integer of 1 or more) + N (N is an integer of 1 or more) data latches (data holding circuit), and sequentially shifts the pixels of the image signal X before noise reduction. To store pixel values for P + N pixels.
  • the delay circuit 621 has a ⁇ N tap at the input terminal of the first stage data latch. Further, the delay circuit 621 has -N + 1 tap, -N + 2 tap,..., -2 tap, -1 tap, 0 tap, 1 tap, etc. at the output terminals of all data latches from the first stage to the last stage. 2 taps,..., P-1 tap, P tap are provided.
  • N taps from ⁇ N tap to ⁇ 1 tap are connected to an input terminal of the first selector 622n. Further, P taps from 1 tap to P tap are connected to an input terminal of the second selector 622p.
  • the 0 (zero) tap is connected to the representative value selection unit 623.
  • the pixel value X0 obtained from the 0 (zero) tap is the pixel value of the target pixel for noise detection.
  • the first selector 622n obtains a pixel value of a pixel that is n pixels away from the target pixel corresponding to the 0 (zero) tap to the right in the horizontal direction, from the taps from the -N tap to the -1 tap of the delay circuit 621.
  • the tap is selected according to the tap value Tn supplied from the sampling control unit 5.
  • the pixel value Xn is obtained from the first selector 622n.
  • the second selector 622p selects a tap from which the pixel value of a pixel separated from the target pixel corresponding to the 0 (zero) tap to the left in the horizontal direction is obtained from the taps from the 1 tap to the P tap of the delay circuit 621.
  • the selection is made according to the tap value Tp supplied from the sampling control unit 5.
  • the pixel value Xp is obtained from the second selector 622p by tap selection based on the tap value Tp.
  • the representative value selection unit 623 includes the pixel value X0 of the target pixel supplied from the 0 (zero) tap of the delay circuit 621 and the pixels supplied from the second selector 622p and separated by p pixels to the left in the horizontal direction.
  • the pixel value Xp and the pixel value Xn of the pixel that is n pixels away from the target pixel in the horizontal direction are supplied.
  • the representative value selection unit 623 selects a pixel having an intermediate level value among these three pixels as a representative pixel, and outputs the pixel value Sout of this representative pixel.
  • the representative value selection unit 623 obtains the pixel value Sout of the representative pixel by calculating the following equation (1).
  • the comparison unit 63 takes in the pixel value Dout of the target pixel supplied from the delay unit 61 and the pixel value Sout of the representative pixel supplied from the representative value determination unit 62, and calculates the target pixel by the following equation (2). Is a pixel that is highly likely to contain a noise component, and the noise determination result Cout is output.
  • the comparison unit 63 determines that the target pixel is likely to have a small pixel value due to a noise component.
  • the noise determination result Cout “ ⁇ 1” is output.
  • FIG. 6 is a block diagram illustrating a functional configuration of the reduction calculation unit 8.
  • the reduction calculation unit 8 includes an adder 81, a subtracter 82, and a selector 83.
  • the adder 81 adds the pixel value Dout of the target pixel supplied from the delay unit 61 and the correction value L supplied from the noise level detection unit 7.
  • the subtracter 82 subtracts the correction value L from the pixel value Dout of the target pixel.
  • the reduction calculation unit 8 lowers the level by subtracting the correction value L for the pixel value Dout of the target pixel whose pixel value is likely to be large due to the noise component. Further, the correction value L is added to the pixel value Dout of the target pixel which is likely to have a small pixel value due to the noise component, and the level is increased. In addition to these two cases, the pixel value Dout of the target pixel is not corrected.
  • FIGS. 7A to 7D are waveform diagrams schematically showing how noise components of an image signal up-converted by the image processing apparatus 1 are reduced.
  • the horizontal axis is the spatial frequency
  • the vertical axis is the luminance value.
  • FIG. 7A is a diagram illustrating the input image signal Vin.
  • the luminance component 301 and the noise component 302 of the image are distributed in a spatial frequency region lower than the Nyquist frequency fo / 2.
  • FIG. 7B is a diagram illustrating an image signal and a noise component obtained by the up-sampler 21 of the scaler unit 2 up-converting the horizontal resolution of the original image to four times the resolution.
  • FIG. 7C is a waveform diagram after the image signal after the up-conversion processing is passed through the low-pass filter 22 of the scaler unit 2.
  • the image signal and the noise component after the up-conversion process are passed through the low-pass filter 22 having the filter characteristic 303 whose cutoff frequency is the Nyquist frequency fo / 2 of the original image, the result is as shown in FIG. 7C.
  • the noise component is reduced in a frequency region higher than the Nyquist frequency fo / 2, but the noise component remains in the vicinity of the Nyquist frequency fo / 2 and in a lower frequency region.
  • FIG. 7D is a waveform diagram illustrating a state in which the noise reduction unit 3 reduces the noise component.
  • the noise component distributed in the low frequency region becomes a noise component 304. Since the noise component 304 is formed in the vicinity of the Nyquist frequency fu / 2 of the image after the up-conversion processing, it is difficult for the observer to perceive the noise component 304. Further, since the edge component of the image is formed in the vicinity of the Nyquist frequency fu / 2, it is possible to obtain the output image signal Vout having a high definition feeling by enhancing the edge of the image.
  • FIG. 8A to 8D are diagrams schematically showing waveforms of an image signal and a noise component in the case of a conventional method in which up-conversion processing is performed after performing noise reduction processing.
  • FIG. 8A is a diagram illustrating the input image signal Vin.
  • the luminance component 301 and the noise component 302 of the image are distributed in the spatial frequency region lower than the Nyquist frequency fo / 2.
  • FIG. 8B is a waveform diagram after the input image signal is passed through the noise reduction unit. As shown in FIG. 8B, the noise component becomes a noise component 305 by increasing the frequency in the vicinity of the Nyquist frequency fo / 2.
  • FIG. 8C is a diagram illustrating an image signal obtained by the up-sampler up-converting the horizontal resolution of the original image to four times the resolution.
  • FIG. 8D is a waveform diagram after the image signal after the up-conversion processing is passed through the low-pass filter.
  • the image signal and the noise component after the up-conversion processing are passed through a low-pass filter having a filter characteristic whose cutoff frequency is the Nyquist frequency fo / 2 of the original image, the result is as shown in FIG. 8D.
  • a noise component remains in the vicinity of the Nyquist frequency fo / 2, and the image is perceived as an image with a noticeable granularity to the observer's eyes.
  • FIG. 9 is a block diagram illustrating a functional configuration of a liquid crystal television receiver to which the image processing apparatus 1 according to the present embodiment is applied.
  • a liquid crystal television receiver 10 includes a high-definition multimedia interface (HDMI) receiver 100, a disk drive 102, a tuner 103, an IP (Internet Protocol) broadcast tuner 104, and a satellite broadcast tuner 105.
  • HDMI high-definition multimedia interface
  • An OSD (On Screen Display) generation unit 106 a video selector 107, a video processing circuit 108, an LCD (Liquid Crystal Display) controller 109, an LCD 110, an audio selector 111, and an audio processing unit 112.
  • the CPU 118 reads out and expands the control program stored in the ROM 116 to the RAM 117, and controls each part of the liquid crystal television receiver 10 by executing each step of the program code.
  • the HDMI receiver 100 takes in an HDMI signal supplied from an external device via any one of the HDMI input terminals 11a, 11b, and 11c, and mainly separates the HDMI signal into a video signal and an audio signal.
  • the disc drive 102 reproduces content recorded on an optical disc such as a DVD (Digital Versatile Disc) or BD (Blu-ray Disc) or a magnetic hard disk.
  • the tuner 103 extracts a desired television broadcast program content from the broadcast wave of the television broadcast received by the receiving antenna.
  • the IP broadcast tuner 104 receives an IP broadcast transmitted by an Internet service provider or the like via the network I / F 115.
  • the satellite broadcast tuner 105 extracts a desired satellite broadcast program content from the satellite broadcast radio wave received by the receiving antenna.
  • the video selector 107 receives video signals supplied from the HDMI receiver 100, the disk drive 102, the tuner 103, the IP broadcast tuner 104, the satellite broadcast tuner 105, and an external device connected to the external video input terminal 11a.
  • One of the video signals is fetched and supplied to the video processing circuit 108 in accordance with the selection signal notified from the CPU 118.
  • the audio selector 111 receives audio signals supplied from the HDMI receiver 100, the disk drive 102, the tuner 103, the IP broadcast tuner 104, the satellite broadcast tuner 105, and an external device connected to the external audio input terminal 101b.
  • One of the audio signals is fetched and supplied to the audio processing unit 112 according to the selection signal notified from the CPU 118.
  • the OSD generation unit 106 receives and supplies data such as date and time information and system setting menu information from the CPU 118, and generates an on-screen information signal.
  • the video processing circuit 108 takes in the video signal supplied from the video selector 107 and executes image processing based on the control data supplied from the CPU 118.
  • the image processing apparatus 1 is incorporated in the video processing circuit 108.
  • the video processing circuit 108 takes in the video signal supplied from the video selector 107 and sequentially scans the frame image of the video signal based on the information related to scanning supplied from the CPU 118.
  • the video processing circuit 108 receives and takes in the original image resolution value Hx and the converted image resolution value Hy from the CPU 118, and obtains the horizontal line data, the original image resolution value Hx, and the converted image resolution value obtained in accordance with the sequential scanning.
  • Hy is supplied to the image processing apparatus 1 to perform the up-conversion process and the noise reduction process as described above.
  • the on-screen information signal generated by the OSD generation unit 106 is superimposed on the image signal after the image processing output from the image processing circuit 108, and the image signal on which the on-screen information signal is superimposed is supplied to the LCD controller 109. .
  • the LCD controller 109 causes the LCD 110 to display a video signal on which the on-screen information signal is superimposed.
  • the audio processing unit 112 takes in the audio signal supplied from the audio selector 111 and executes audio processing based on the control data supplied from the CPU 118.
  • the amplifier 113 amplifies the sound signal processed by the sound processing unit 112 and outputs it as sound from the speaker 114.
  • the infrared light receiver 119 receives an optical remote control signal emitted from a remote control device (not shown) for remotely operating the liquid crystal television receiver 10, decodes the optical remote control signal, extracts key data, and notifies the CPU 118 of the key data.
  • the image processing apparatus 1 includes the horizontal component included in the up-converted image signal UV at the subsequent stage of the scaler unit 2 that up-converts the horizontal resolution of the input image signal Vin and outputs the up-converted image signal UV.
  • the noise reduction unit 3 for reducing the direction noise component is provided.
  • the noise reduction unit 3 can form a horizontal noise component included in the up-converted image signal in the vicinity of the Nyquist frequency fu / 2. Therefore, according to the first embodiment, since noise components are collected in a spatial frequency band that is difficult to be perceived by the observer's eyes, the image processing apparatus 1 obtains an output image signal Vout with reduced horizontal noise components. Can do. Further, since the edge component of the image is formed in the vicinity of the Nyquist frequency fu / 2, the image processing apparatus 1 can obtain the output image signal Vout having a high definition feeling by enhancing the edge of the image.
  • the original image resolution value Vx that is the vertical resolution value of the original image and the vertical resolution are up-converted.
  • a converted image resolution value Vy that is a resolution value in the vertical direction of the subsequent image is used.
  • the scaler unit 2 ′ included in the image processing apparatus 1 ′ has the same configuration as the scaler unit 2 in the first embodiment, except that the up-conversion direction is the vertical direction in the frame image. Therefore, the specific description here is omitted.
  • FIG. 10 is a block diagram illustrating a functional configuration of a representative value determination unit included in the noise reduction unit 4 ′.
  • the representative value determining unit 62a has a configuration in which the delay circuit 621 is changed to the delay circuit 621a from the representative value determining unit 62 in the first embodiment.
  • the delay circuit 621a is obtained by changing P + N data latches included in the delay circuit 621 to P + N delay lines.
  • Each delay line has a delay amount corresponding to one horizontal line in the frame image of the up-converted image signal. This delay line may be configured by cascading data latches corresponding to the number of pixels of one horizontal line.
  • the delay unit 61 ′ included in the noise reduction unit 4 ′ receives the pixel value Sout of the representative pixel corresponding to the pixel value after the representative value determination unit 62a captures the pixel value of the image signal X before noise reduction. In addition, the pixel value Dout of the target pixel for noise detection is output.
  • the image processing apparatus 1 performs the up-conversion image signal in the subsequent stage of the scaler unit 2 that up-converts the vertical resolution of the input image signal Vin and outputs the up-conversion image signal UV.
  • the noise reduction unit 3 for reducing the noise component in the vertical direction included in the UV is provided.
  • the noise reduction unit 3 can form a noise component in the vertical direction included in the up-converted image signal in the vicinity of the Nyquist frequency fu / 2. Therefore, according to the first modification of the first embodiment, since the noise components are collected in a spatial frequency band that is difficult to be perceived by the observer's eyes, the image processing apparatus 1 outputs an output image in which the noise components in the vertical direction are reduced. A signal Vout can be obtained. Further, since the edge component of the image is formed in the vicinity of the Nyquist frequency fu / 2, the image processing apparatus 1 can obtain the output image signal Vout having a high definition feeling by enhancing the edge of the image.
  • the first embodiment described above is an example in which the horizontal resolution ratio (Hy / Hx> 1) between the converted image resolution value Hy and the original image resolution value Hx is an integer.
  • the horizontal resolution ratio is a real number having a fractional part (a case of a non-integer) will be described.
  • a new code is added, or “” (double quotation mark) is added to the code of the configuration in the first embodiment.
  • the description of the same configuration as that in the first embodiment is omitted.
  • the noise reduction unit 4 ′′ uses the first horizontal resolution ratio. Two pixels that are p and p + 1 away from the noise detection target pixel in the horizontal direction are selected using the closest integer values that are close to each other across the tap value Tp obtained by multiplying the constant values of. Then, the noise reduction unit 4 ′′ performs weighting according to the decimal part of the tap value Tp to each of the pixel value of the p-th pixel and the pixel value of the p + 1-th pixel, and adds the two values to each other. Xp is obtained.
  • the noise reduction unit 4 ′′ performs horizontal detection from the target pixel for noise detection by using, as tap values, integer values closest to each other across the tap value Tn obtained by multiplying the horizontal resolution ratio by the second constant value. Two pixels that are separated from each other by n and n + 1 are selected on the right side of the direction. The noise reduction unit 4 ′′ selects a tap value for each of the pixel value of the nth pixel and the pixel value of the n + 1th pixel. Weighting is performed according to the fractional part of Tn, and both are added to obtain a pixel value Xn.
  • FIG. 11 is a block diagram showing the functional configuration of the sampling control unit included in the noise reduction unit 4 ′′.
  • the original image resolution value Hx “600”
  • the converted image resolution the original image resolution value
  • Tpf represents the distance from the tap value Tp to Tpi
  • 1-Tpf represents the distance from the tap value Tp to Tpi + 1.
  • the sampling control unit 5a supplies the calculated Tpi, Tpi + 1, Tpf, and 1-Tpf to the representative value determination unit 62b described later.
  • Tnf represents the distance from the tap value Tn to Tni
  • 1-Tnf represents the distance from the tap value Tn to Tni + 1.
  • the sampling control unit 5a supplies the calculated Tni, Tni + 1, Tnf, and 1-Tnf to the representative value determination unit 62b.
  • FIG. 12 is a block diagram showing a functional configuration of the representative value determining unit 62b.
  • the representative value determining unit 62b has a configuration in which the first selector 622n and the second selector 622p are changed to the first selector 622nb and the second selector 622pb in the representative value determining unit 62 in the first embodiment.
  • the first selector 622nb takes in Tni, Tni + 1, Tnf, and 1-Tnf supplied from the sampling control unit 5a. Then, the first selector 622 nb is 2 2 apart from the target pixel corresponding to 0 (zero) tap to the right in the horizontal direction from the taps from ⁇ N tap to ⁇ 1 tap of the delay circuit 621. Two taps from which the pixel value of the pixel is obtained are selected according to Tni and Tni + 1.
  • the first selector 622nb performs weighting by multiplying the pixel value obtained from the delay circuit 621 by tap selection based on Tni by 1-Tnf, and sets Tnf to the pixel value obtained from the delay circuit 621 by tap selection based on Tni + 1. Multiply weights. Then, the first selector 622nb adds the weighted pixel values and supplies the pixel value Xn to the representative value selection unit 623.
  • the second selector 622pb takes in Tpi, Tpi + 1, Tpf, and 1-Tpf supplied from the sampling control unit 5a.
  • the second selector 622pb includes two pixels that are p pixels and p + 1 pixels horizontally apart from the target pixel corresponding to the 0 (zero) tap among the taps from the 1 tap to the N tap of the delay circuit 621. Two taps from which pixel values are obtained are selected according to Tpi and Tpi + 1.
  • the second selector 622pb performs weighting by multiplying the pixel value obtained from the delay circuit 621 by tap selection based on Tpi by 1-Tpf, and sets Tpf to the pixel value obtained from the delay circuit 621 by tap selection based on Tpi + 1. Multiply weights. Then, the second selector 622pb adds the weighted pixel values and supplies the pixel value Xp to the representative value selection unit 623.
  • the noise reduction unit 3 is an example in which the original image resolution value Hx and the converted image resolution value Hy are received from the outside (for example, the CPU 118) and fetched to determine the tap value Tp and the tap value Tn. It was.
  • the noise reduction unit 3 of the first embodiment is Since the resolution value of the original original video content is not given, an appropriate tap value Tp and tap value Tn cannot be determined for the original image.
  • the noise reduction unit determines an appropriate tap value Tp and tap value Tn for the original image in the supplied up-convert image signal UV.
  • FIG. 13 is a block diagram illustrating a schematic functional configuration of an image processing apparatus according to the second embodiment of the present invention.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the image processing device 1a has a configuration in which the noise reduction unit 3 is changed to a noise reduction unit 3a with respect to the image processing device 1 in the first embodiment.
  • the noise reduction unit 3a takes in the up-converted image signal UV supplied from the scaler unit 2. The noise reduction unit 3a then analyzes the frequency component of the up-converted image signal UV to estimate the original original image resolution value H (hat) x and the converted image resolution value H (hat) y. A horizontal noise component included in the up-converted image signal UV is reduced using the original original image resolution value H (hat) x and the converted image resolution value H (hat) y, and an output image signal Vout is output.
  • the noise reduction unit 3a has a configuration further including a resolution estimation unit 9 with respect to the noise reduction unit 3 in the first embodiment.
  • the resolution estimator 9 captures the up-converted image signal UV, analyzes the spatial frequency versus pixel value of the up-converted image signal UV, and obtains the original original image resolution value H (hat) x and the converted image resolution value H ( Hat) y is estimated.
  • the resolution estimation unit 9 detects the upper limit value of the spatial frequency band in which the luminance value is distributed, for example, from the distribution of the spatial frequency versus the luminance value of the up-converted image signal UV.
  • the resolution estimation unit 9 detects the upper limit value of the spatial frequency band in which the luminance value is distributed as fn / 3.
  • the noise reduction unit 3a can select an appropriate tap value for the original original image in the up-converted image signal UV supplied from the scaler unit 2. Tp and tap value Tn can be determined.
  • the first embodiment and the second embodiment are examples in which the noise reduction unit 4 detects and corrects a pixel that is likely to contain a noise component by a 3-tap median filter.
  • the third embodiment of the present invention is another example of a filter circuit that performs noise reduction processing.
  • the present embodiment is an example in which a bilateral filter is applied as a filter circuit that performs noise reduction processing.
  • FIG. 15 is a block diagram illustrating a functional configuration of a noise reduction unit in the image processing apparatus according to the third embodiment of the present invention.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the bilateral filter is limited to one-dimensional three pixels, it is expressed as the following equation (3).
  • ⁇ 1 and ⁇ 2 are preset parameters that determine the range of pixels to be processed. As ⁇ 1 and ⁇ 2 increase, the range of the pixel to be processed increases.
  • the bilateral filter is a non-linear filter. By disposing the bilateral filter in the subsequent stage of the scaler unit 2, the noise component can be increased in the same manner as in the first embodiment.
  • the noise reduction unit 4 a includes a bilateral filter represented by Expression (3).
  • the first selector 622n outputs the pixel value Xn obtained from the delay circuit 621 by tap selection based on the tap value Tn as f (i + 1).
  • the delay circuit 621 outputs the pixel value X0 as f (i + 0) from the 0 (zero) tap.
  • the second selector 622p outputs the pixel value Xp obtained from the delay circuit 621 by tap selection based on the tap value Tp as f (i ⁇ 1).
  • the noise reduction unit 4a executes a calculation process based on Expression (3) based on the pixel values f (i ⁇ 1), f (i), and f (i + 1), and outputs a noise-reduced image signal Y.
  • the noise reduction unit 3 including the noise reduction unit 4a can form a noise component included in the up-converted image signal in a harmonic band that is difficult to be perceived by the observer. Therefore, according to the third embodiment, similarly to the first embodiment, the image processing apparatus 1 can obtain the output image signal Vout in which the noise component in the horizontal direction is reduced. Further, since the edge component of the image is formed in the harmonic band, the image processing apparatus 1 can obtain the output image signal Vout having a high-definition feeling by enhancing the edge of the image, as in the first embodiment. it can.
  • the image processing apparatuses 1 and 1a may be configured to execute both the horizontal resolution up-conversion process and noise reduction process, and the vertical resolution up-conversion process and noise reduction process. That is, the scaler unit (resolution changing unit) 2 generates an up-converted image signal obtained by increasing the resolution of an input image signal including a noise component in at least one direction of a frame image.
  • the scaler unit (resolution changing unit) 2 generates an up-converted image signal obtained by increasing the resolution of an input image signal including a noise component in at least one direction of a frame image.
  • at least one direction is determined in advance by a designer, and is a horizontal direction or a vertical direction, or a horizontal direction and a vertical direction in the frame image.
  • the scaler part 2 was taken as the example which performs an interpolation process.
  • the scaler unit 2 may execute up-conversion processing of at least one of the horizontal resolution and the vertical resolution by other methods.
  • the scaler unit 2 may execute a resolution up-conversion process by applying a known pixel interpolation technique such as a linear interpolation method or a cubic convolution interpolation method.
  • the noise reduction units 4, 4 ′′, 4 a are provided with a delay unit 61
  • the noise reduction unit 4 ′ is provided with a delay unit 61 ′.
  • the pixel value Dout of the noise detection target pixel may be output from the 0 (zero) tap of the representative value determination unit 62 without including 61 and 61 ′.
  • the representative value determination units 62, 62a, and 62b are configured to select the median value as the representative value, other than this, for example, an average value of pixel values of three pixels may be obtained as the representative value.
  • a part of the functions of the image processing apparatus in the first embodiment and each modification described above, and in the second embodiment and the third embodiment may be realized by a computer.
  • the image processing program for realizing the control function is recorded on a computer-readable recording medium, and the image processing program recorded on the recording medium is read by the computer system and executed.
  • the “computer system” includes an OS (Operating System) and hardware of peripheral devices.
  • the “computer-readable recording medium” refers to a portable recording medium such as a flexible disk, a magneto-optical disk, an optical disk, and a memory card, and a storage device such as a magnetic hard disk built in the computer system.
  • the “computer-readable recording medium” dynamically holds a program for a short time like a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line.
  • it may include a device that holds a program for a certain period of time, such as a volatile memory inside a computer system serving as a server device or a client.
  • the above program may be for realizing a part of the functions described above, or may be realized by a combination with the program already recorded in the computer system. .
  • Image processing device 2 Scaler unit (resolution change unit) 3,3a Noise reduction unit 4,4-1,4-2,4-3,4a Noise reduction unit 5,5a Sampling control unit 6 Noise detection unit 7 Noise level detection unit 8 Reduction calculation unit 9 Resolution estimation unit 10 Liquid crystal television John Receiver 21 Upsampler 22 Low-pass filter 61 Delay unit 62, 62a, 62b Representative value determining unit 63 Comparison unit 81 Adder 82 Subtractor 83 Selector 108 Video processing circuit 621, 621a Delay circuit 622n, 622nb First selector 622p, 622pb Second selector 623 representative value selection unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Picture Signal Circuits (AREA)
  • Image Processing (AREA)

Abstract

Provided is an image processing device comprising: a scaler unit (2) that outputs up-converted image signals (UV) that have input image signals (Vin) that contain a noise component and that have been converted to a higher resolution in the horizontal direction in a frame image; and noise reduction sections (4-1, 4-2, 4-3) that take in the up-converted image signals (UV) and detect noise-containing pixels in a pixel row in the horizontal direction, and corrects pixel values in noise-containing pixels such that the noise component is reduced.

Description

画像処理装置、画像処理方法、画像処理プログラム、および表示装置Image processing apparatus, image processing method, image processing program, and display apparatus
 本発明は、画像処理装置、画像処理方法、画像処理プログラム、および表示装置に関する。
 本願は、2010年11月30日に、日本に出願された特願2010-267698号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to an image processing device, an image processing method, an image processing program, and a display device.
This application claims priority based on Japanese Patent Application No. 2010-267698 filed in Japan on November 30, 2010, the contents of which are incorporated herein by reference.
撮像や映像信号の伝送を行う際に、スノーノイズ、ガウスノイズ、ショットノイズ等のノイズ成分が映像信号に混入する場合がある。例えば、アナログテレビジョン放送において、放送波の受信側での電界強度が弱いと、受信信号のS/N比は低下する。また、デジタルテレビジョン放送においては、アナログ映像ソースをデジタル化して再放送することもあり、このようにして放送される映像信号にもノイズ成分が含まれることとなる。このような映像信号に重畳されたノイズ成分を低減する雑音低減回路が知られている(例えば、特許文献1参照)。 When imaging or transmitting a video signal, noise components such as snow noise, Gaussian noise, and shot noise may be mixed in the video signal. For example, in analog television broadcasting, if the electric field strength on the broadcast wave receiving side is weak, the S / N ratio of the received signal decreases. In digital television broadcasting, an analog video source may be digitized and rebroadcast, and the video signal broadcast in this way also includes noise components. There is known a noise reduction circuit that reduces a noise component superimposed on such a video signal (see, for example, Patent Document 1).
 また、近年では、HDTV(High Definition Television)に対応したテレビジョン受像機が多く用いられるようになっている。このような高精細映像を表示可能なテレビジョン受像機は、放送受信したアナログ映像ソースであるSDTV(Standard Difinition Television)映像を、高精細映像にアップコンバート処理してから表示する。よって、標準画質映像を高精細映像に変換して表示させる場合にも、映像に含まれるノイズ成分を低減させる必要性は高い。従来のテレビジョン受像機は、ノイズ低減回路によって画像に含まれるノイズ成分を低減させ、ある程度S/N比を向上させた画像をアップコンバート処理していた。 In recent years, television receivers compatible with HDTV (High Definition Television) have been used in many cases. Such a television receiver capable of displaying high-definition video displays an SDTV (Standard Definition Television) video, which is an analog video source received by broadcast, after up-converting it into high-definition video. Therefore, even when a standard-definition video is converted into a high-definition video and displayed, there is a high need for reducing noise components included in the video. In a conventional television receiver, a noise component included in an image is reduced by a noise reduction circuit, and an image whose S / N ratio is improved to some extent is up-converted.
特開平7-250264号公報Japanese Patent Laid-Open No. 7-250264
 しかしながら、アップコンバート処理の前にノイズ低減処理を行うと、得られる画像の精細感が低くなる。一方、精細感を保つためにノイズ低減処理を弱めると、得られる画像にはノイズが目立つ。
 そこで、本発明は、上記事情に鑑みてなされたものであり、精細感が高く且つ雑音成分を低減した画像を得る、画像処理装置、画像処理方法、画像処理プログラム、および表示装置を提供することを目的とする。
However, if the noise reduction process is performed before the up-conversion process, the fineness of the obtained image is lowered. On the other hand, if the noise reduction process is weakened to maintain a fine feeling, noise is conspicuous in the obtained image.
Therefore, the present invention has been made in view of the above circumstances, and provides an image processing device, an image processing method, an image processing program, and a display device that obtain an image with high definition and reduced noise components. With the goal.
[1]上記の課題を解決するため、本発明の一態様である画像処理装置は、雑音成分が含まれた入力画像信号をフレーム画像における少なくとも一つの方向に高解像度化したアップコンバート画像信号を生成する解像度変更部と、前記解像度変更部が生成した前記アップコンバート画像信号から雑音を含有する雑音含有画素を検出し、雑音成分が低減するように前記雑音含有画素の画素値を補正する雑音低減部と、を備えることを特徴とする。 [1] In order to solve the above problems, an image processing apparatus according to an aspect of the present invention provides an up-converted image signal obtained by increasing the resolution of an input image signal including a noise component in at least one direction of a frame image. A noise reduction unit that detects a noise-containing pixel including noise from the resolution changing unit to be generated and the up-converted image signal generated by the resolution changing unit and corrects the pixel value of the noise-containing pixel so that the noise component is reduced And a section.
[2]上記に記載の画像処理装置において、本発明の一態様は、前記雑音低減部は、前記アップコンバート画像信号に含まれる雑音検出の対象画素の画素値と、前記アップコンバート画像信号に含まれる画素値であって前記解像度変更部が高解像度化した方向に前記対象画素を挟む二つの比較画素の画素値とに少なくとも基づいて前記雑音含有画素を検出することを特徴とする。 [2] In the image processing device described above, according to one aspect of the present invention, the noise reduction unit includes a pixel value of a target pixel for noise detection included in the up-converted image signal and the up-converted image signal. The noise-containing pixel is detected based on at least the pixel value of the two comparison pixels sandwiching the target pixel in the direction in which the resolution changing unit increases the resolution.
[3]上記に記載の画像処理装置において、本発明の一態様は、前記入力画像信号のフレーム画像における前記所定方向の解像度と前記アップコンバート画像信号のフレーム画像における前記所定方向の解像度との比に基づいて、前記比較画素のうち少なくともいずれか一つの比較画素と前記対象画素との間隔を決定するサンプリング制御部を備えることを特徴とする。 [3] In the above-described image processing device, one aspect of the present invention is a ratio between the resolution in the predetermined direction in the frame image of the input image signal and the resolution in the predetermined direction in the frame image of the up-converted image signal. And a sampling control unit for determining an interval between at least one of the comparison pixels and the target pixel.
[4]上記に記載の画像処理装置において、本発明の一態様は、前記比は、小数部を有する実数であることを特徴とする。 [4] In the image processing apparatus described above, one aspect of the present invention is characterized in that the ratio is a real number having a decimal part.
[5]上記に記載の画像処理装置において、本発明の一態様は、複数の前記雑音低減部が縦列接続され、前記複数の雑音低減部それぞれの前記2画素間の間隔は、入力側から出力側に向けて短くなることを特徴とする。 [5] In the image processing device described above, according to one aspect of the present invention, a plurality of the noise reduction units are connected in cascade, and an interval between the two pixels of each of the plurality of noise reduction units is output from an input side. It is characterized by being shortened toward the side.
[6]上記に記載の画像処理装置において、本発明の一態様は、前記少なくとも一つの方向は、前記フレーム画像における水平方向もしくは垂直方向、または水平方向および垂直方向であることを特徴とする。 [6] In the image processing apparatus described above, one aspect of the present invention is characterized in that the at least one direction is a horizontal direction or a vertical direction, or a horizontal direction and a vertical direction in the frame image.
[7]上記に記載の画像処理装置において、本発明の一態様は、前記雑音低減部は、3タップ型メディアンフィルタを含むことを特徴とする。 [7] In the image processing device described above, one aspect of the present invention is characterized in that the noise reduction unit includes a 3-tap median filter.
[8]上記に記載の画像処理装置において、本発明の一態様は、前記雑音低減部は、バイラテラルフィルタを含むことを特徴とする。 [8] In the image processing device described above, one aspect of the present invention is characterized in that the noise reduction unit includes a bilateral filter.
[9]上記の課題を解決するため、本発明の一態様である画像処理方法は、解像度変更部が、雑音成分が含まれた入力画像信号をフレーム画像における少なくとも一つの方向に高解像度化したアップコンバート画像信号を出力する解像度変更ステップと、雑音低減部が、前記解像度変更ステップにおいて前記解像度変更部が出力した前記アップコンバート画像信号から雑音を含有する雑音含有画素を検出し、雑音成分が低減するように前記雑音含有画素の画素値を補正する雑音低減ステップと、を有することを特徴とする。 [9] In order to solve the above problem, in the image processing method according to one aspect of the present invention, the resolution changing unit increases the resolution of the input image signal including the noise component in at least one direction of the frame image. A resolution changing step for outputting an up-converted image signal, and a noise reducing unit detects a noise-containing pixel containing noise from the up-converted image signal output by the resolution changing unit in the resolution changing step, and a noise component is reduced. And a noise reduction step of correcting the pixel value of the noise-containing pixel.
[10]上記の課題を解決するため、本発明の一態様である画像処理プログラムは、コンピュータを、雑音成分が含まれた入力画像信号をフレーム画像における少なくとも一つの方向に高解像度化したアップコンバート画像信号を生成する解像度変更部と、前記解像度変更部が生成した前記アップコンバート画像信号から雑音を含有する雑音含有画素を検出し、雑音成分が低減するように前記雑音含有画素の画素値を補正する雑音低減部と、として機能させる。 [10] In order to solve the above-described problem, an image processing program according to an aspect of the present invention is an up-conversion in which a computer increases the resolution of an input image signal including a noise component in at least one direction of a frame image. A resolution changing unit that generates an image signal, and detecting a noise-containing pixel containing noise from the up-converted image signal generated by the resolution changing unit, and correcting the pixel value of the noise-containing pixel so that the noise component is reduced And function as a noise reduction unit.
[11]上記の課題を解決するため、本発明の一態様である表示装置は、雑音成分が含まれた入力画像信号をフレーム画像における少なくとも一つの方向に高解像度化したアップコンバート画像信号を生成する解像度変更部と、前記解像度変更部が生成した前記アップコンバート画像信号から雑音を含有する雑音含有画素を検出し、雑音成分が低減するように前記雑音含有画素の画素値を補正する雑音低減部と、を備えることを特徴とする。 [11] In order to solve the above problem, a display device according to one embodiment of the present invention generates an up-converted image signal obtained by increasing the resolution of an input image signal including a noise component in at least one direction of a frame image. A resolution changing unit that detects noise-containing pixels containing noise from the up-converted image signal generated by the resolution changing unit, and corrects the pixel value of the noise-containing pixels so that the noise component is reduced And.
本発明によれば、精細感が高く且つ雑音成分を低減した画像を得ることができる。 According to the present invention, it is possible to obtain an image with high definition and reduced noise components.
本発明の第1実施形態である画像処理装置の、概略の機能構成を表すブロック図である。1 is a block diagram illustrating a schematic functional configuration of an image processing apparatus according to a first embodiment of the present invention. 同実施形態における、スケーラ部の概略の機能構成を表すブロック図である。It is a block diagram showing the schematic function structure of the scaler part in the embodiment. 画像信号の一水平ラインのうちノイズ成分を含む部分を表す図である。It is a figure showing the part containing a noise component among one horizontal line of an image signal. 図3Aに示した部分からノイズ成分を低減させた様子を表す図である。It is a figure showing a mode that the noise component was reduced from the part shown to FIG. 3A. 同実施形態における、雑音低減部の機能構成を表すブロック図である。It is a block diagram showing the functional structure of the noise reduction part in the embodiment. 同実施形態における、代表値決定部の機能構成を表すブロック図である。It is a block diagram showing the functional structure of the representative value determination part in the embodiment. 同実施形態における、低減演算部の機能構成を表すブロック図である。It is a block diagram showing the functional structure of the reduction calculating part in the embodiment. 入力画像信号Vinを表す図である。It is a figure showing the input image signal Vin. スケーラ部2のアップサンプラ21が原画像の水平解像度を4倍の解像度にアップコンバートして得た画像信号およびノイズ成分を表す図である。It is a figure showing the image signal and noise component which the up sampler 21 of the scaler part 2 obtained by up-converting the horizontal resolution of an original image to 4 times the resolution. スケーラ部2のローパスフィルタ22にアップコンバート処理後の画像信号を通した後の波形図である。6 is a waveform diagram after an image signal after up-conversion processing is passed through the low-pass filter 22 of the scaler unit 2. FIG. 雑音低減ユニット3がノイズ成分を低減させた様子を表す波形図である。It is a wave form diagram showing a mode that the noise reduction unit 3 reduced the noise component. 入力画像信号Vinを表す図である。It is a figure showing the input image signal Vin. 雑音低減ユニットに入力画像信号を通した後の波形図である。It is a wave form diagram after passing an input image signal through a noise reduction unit. アップサンプラが原画像の水平解像度を4倍の解像度にアップコンバートして得た画像信号を表す図である。It is a figure showing the image signal obtained by the up-sampler up-converting the horizontal resolution of the original image to four times the resolution. ローパスフィルタにアップコンバート処理後の画像信号を通した後の波形図である。FIG. 6 is a waveform diagram after an image signal after up-conversion processing is passed through a low-pass filter. 同実施形態である画像処理装置を適用した液晶テレビジョン受像機の機能構成を表すブロック図である。2 is a block diagram illustrating a functional configuration of a liquid crystal television receiver to which the image processing apparatus according to the embodiment is applied. FIG. 同実施形態の第1の変形例における、雑音低減部に含まれる代表値決定部の機能構成を表すブロック図である。FIG. 10 is a block diagram illustrating a functional configuration of a representative value determination unit included in a noise reduction unit in a first modification of the embodiment. 同実施形態の第2の変形例における、雑音低減部に含まれるサンプリング制御部の機能構成を表すブロック図である。It is a block diagram showing the functional composition of the sampling control part contained in the noise reduction part in the 2nd modification of the embodiment. 同変形例における、代表値決定部の機能構成を表すブロック図である。It is a block diagram showing the functional structure of the representative value determination part in the modification. 本発明の第2実施形態である画像処理装置の概略の機能構成を表すブロック図である。It is a block diagram showing the schematic function structure of the image processing apparatus which is 2nd Embodiment of this invention. 同実施形態において、アップコンバート画像信号の空間周波数対輝度値の分布を模式的に表した図である。In the same embodiment, it is the figure which represented typically the distribution of the spatial frequency versus luminance value of an up-conversion image signal. 本発明の第3実施形態である画像処理装置における、雑音低減部の機能構成を表すブロック図である。It is a block diagram showing the functional structure of the noise reduction part in the image processing apparatus which is 3rd Embodiment of this invention.
 以下、本発明を実施するための形態について、図面を参照して詳細に説明する。
 [第1実施形態]
 図1は、本発明の第1実施形態である画像処理装置の、概略の機能構成を表すブロック図である。同図に示すように、画像処理装置1は、外部から供給される、入力画像信号Vinと原画像解像度値Hxと変換画像解像度値Hyとを取り込み、出力画像信号Voutを出力する。入力画像信号Vinは、解像度をアップコンバートする前の画像(原画像)の画像信号である。この入力画像信号Vinには、ノイズ成分(雑音成分)が含まれているものとする。原画像解像度値Hxは、原画像のフレーム画像における水平方向の解像度値である。変換画像解像度値Hyは、水平方向の解像度をアップコンバートした後の画像(変換画像)の水平方向の解像度値である。出力画像信号Voutは、アップコンバートされた画像信号からノイズ成分を低減させた画像の画像信号である。
Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings.
[First Embodiment]
FIG. 1 is a block diagram showing a schematic functional configuration of the image processing apparatus according to the first embodiment of the present invention. As shown in the figure, the image processing apparatus 1 takes in an input image signal Vin, an original image resolution value Hx, and a converted image resolution value Hy supplied from the outside, and outputs an output image signal Vout. The input image signal Vin is an image signal of an image (original image) before the resolution is up-converted. It is assumed that the input image signal Vin includes a noise component (noise component). The original image resolution value Hx is a resolution value in the horizontal direction in the frame image of the original image. The converted image resolution value Hy is a resolution value in the horizontal direction of an image (converted image) after up-converting the resolution in the horizontal direction. The output image signal Vout is an image signal of an image obtained by reducing noise components from the upconverted image signal.
 なお、以下の説明において、ノイズ成分を低減させることには、ノイズ成分を除去することも含まれるものとする。よって、「ノイズ成分を低減させる」との記載の意味は、「ノイズ成分を除去または低減させる」との意味であるものとする。 In the following description, reducing the noise component includes removing the noise component. Therefore, the meaning of “reducing noise components” means “removing or reducing noise components”.
 画像処理装置1は、スケーラ部(解像度変更部)2と、雑音低減ユニット3とを備える。スケーラ部2は、入力画像信号Vinと原画像解像度値Hxと変換画像解像度値Hyとを取り込む。そして、スケーラ部2は、入力画像信号Vinのフレーム画像における水平方向の解像度を、原画像解像度値Hxと変換画像解像度値Hyとに基づいてアップコンバートしたアップコンバート画像信号UVを生成する。 The image processing apparatus 1 includes a scaler unit (resolution changing unit) 2 and a noise reduction unit 3. The scaler unit 2 takes in the input image signal Vin, the original image resolution value Hx, and the converted image resolution value Hy. Then, the scaler unit 2 generates an up-converted image signal UV obtained by up-converting the horizontal resolution in the frame image of the input image signal Vin based on the original image resolution value Hx and the converted image resolution value Hy.
 雑音低減ユニット3は、アップコンバート画像信号UVと原画像解像度値Hxと変換画像解像度値Hyとを取り込み、アップコンバート画像信号UVのフレーム画像に含まれる水平方向のノイズ成分を低減して出力画像信号Voutを出力する。より具体的には、雑音低減ユニット3は、一または複数の雑音低減部4を備える。ただし、図1は、雑音低減ユニット3が三個の雑音低減部4(雑音低減部4-1,4-2,4-3)を備えた例である。雑音低減部4は、3タップ型メディアンフィルタを備えており、原画像解像度値Hxと変換画像解像度値Hyとに基づいてタップ間隔を設定可能である。言い換えると、雑音低減部4は、フレーム画像の水平方向の解像度に応じたタップの設定で3タップ型メディアンフィルタを機能させることができる。 The noise reduction unit 3 takes in the up-converted image signal UV, the original image resolution value Hx, and the converted image resolution value Hy, reduces the horizontal noise component contained in the frame image of the up-converted image signal UV, and outputs the output image signal. Vout is output. More specifically, the noise reduction unit 3 includes one or a plurality of noise reduction units 4. However, FIG. 1 is an example in which the noise reduction unit 3 includes three noise reduction units 4 (noise reduction units 4-1, 4-2, 4-3). The noise reduction unit 4 includes a 3-tap median filter and can set the tap interval based on the original image resolution value Hx and the converted image resolution value Hy. In other words, the noise reduction unit 4 can cause the 3-tap median filter to function with tap settings corresponding to the horizontal resolution of the frame image.
 雑音低減ユニット3に複数の雑音低減部4が含まれる場合、雑音低減ユニット3は、これら複数の雑音低減部4をカスケード接続(縦列接続)にし、雑音低減部4ごとにタップの設定を異ならせる。例えば、図1に示すように、雑音低減部4-1,4-2,4-3はカスケード接続される。また、同図には図示しないが、第1段目の雑音低減部4-1から第3段目の雑音低減部4-3への向きに、タップ間隔が順次狭くなるようにタップを設定する。 When the noise reduction unit 3 includes a plurality of noise reduction units 4, the noise reduction unit 3 causes the plurality of noise reduction units 4 to be cascade-connected (cascade connection), and the tap setting is different for each noise reduction unit 4. . For example, as shown in FIG. 1, the noise reduction units 4-1 4-2, and 4-3 are cascade-connected. Although not shown in the figure, taps are set so that the tap interval is sequentially narrowed in the direction from the first stage noise reduction unit 4-1 to the third stage noise reduction unit 4-3. .
なお、複数の雑音低減部それぞれにおける、雑音検出の対象画素を挟む2画素間の間隔は、入力側(例えば、第1段目)から出力側(例えば、第3段目)に向けて短くなればよい。ここで、この2画素間の間隔が入力側から出力側に向けて短くなるとは、この2画素間の間隔が入力側から出力側に向けて単調減少で短くなることを含むものである。また、入力側から出力側に向けて区間に分けた場合、この2画素間の間隔が入力側から出力側に向けて短くなるとは、この2画素間の間隔の区間毎の平均が短くなることを含むものである。 Note that the interval between two pixels sandwiching the target pixel for noise detection in each of the plurality of noise reduction units can be shortened from the input side (for example, the first stage) toward the output side (for example, the third stage). That's fine. Here, the fact that the interval between the two pixels becomes shorter from the input side to the output side includes that the interval between the two pixels becomes shorter monotonically from the input side to the output side. In addition, when divided into sections from the input side to the output side, the fact that the interval between the two pixels decreases from the input side to the output side means that the average of the interval between the two pixels for each section is shortened. Is included.
 このように構成して、雑音低減部4-1から雑音低減部4-3までにかけて、ノイズ成分を低減させる空間周波数帯域を順次高めていく。よって、雑音低減ユニット3は、ノイズ成分を空間周波数において高域化させ、入力画像信号Vinのナイキスト周波数よりも広域であるアップコンバート画像信号UVのナイキスト周波数付近にノイズ成分を形成させることができる。 With this configuration, the spatial frequency band for reducing the noise component is sequentially increased from the noise reduction unit 4-1 to the noise reduction unit 4-3. Therefore, the noise reduction unit 3 can increase the noise component in the spatial frequency and form the noise component in the vicinity of the Nyquist frequency of the up-converted image signal UV that is wider than the Nyquist frequency of the input image signal Vin.
 次に、スケーラ部2の機能構成を説明する。図2は、スケーラ部2の概略の機能構成を表すブロック図である。同図に示すように、スケーラ部2は、アップサンプラ21と、ローパスフィルタ22とを備える。アップサンプラ21は、入力画像信号Vinと原画像解像度値Hxと変換画像解像度値Hyとを取り込む。そして、アップサンプラ21は、原画像解像度値Hxと変換画像解像度値Hyとに基づいてアップコンバートする水平方向の解像度の倍数、すなわちサンプリング周波数の倍数を計算し、入力画像信号Vinについてその倍数に応じたインタポーレーション(補間)処理を実行する。 Next, the functional configuration of the scaler unit 2 will be described. FIG. 2 is a block diagram illustrating a schematic functional configuration of the scaler unit 2. As shown in the figure, the scaler unit 2 includes an upsampler 21 and a low-pass filter 22. The upsampler 21 takes in the input image signal Vin, the original image resolution value Hx, and the converted image resolution value Hy. The upsampler 21 calculates a multiple of the horizontal resolution to be up-converted based on the original image resolution value Hx and the converted image resolution value Hy, that is, a multiple of the sampling frequency, and the input image signal Vin according to the multiple. The interpolation (interpolation) process is executed.
 例えば、原画像解像度値Hxが“640”であり変換画像解像度値Hyが“1920”である場合、アップサンプラ21は、アップサンプリングの倍数として、Hy/Hx=1920/640=3を計算する。そして、アップサンプラ21は、サンプリング周波数の倍数である“3”にしたがい、入力画像信号Vinについて“0”(ゼロ)値の内挿によるインタポーレーション処理を実行する。ここでのインタポーレーション処理はアップサンプリング処理であり、次段のローパスフィルタ22によるフィルタ処理によってインタポーレーション処理は完成する。よって、水平解像度が640画素である原画像のサンプリング周波数をfsとすると、原画像のナイキスト周波数はfs/2であり、アップサンプリング処理後の画像のサンプリング周波数は3fsであり、そのナイキスト周波数は(3/2)fsである。 For example, when the original image resolution value Hx is “640” and the converted image resolution value Hy is “1920”, the upsampler 21 calculates Hy / Hx = 1920/640 = 3 as a multiple of upsampling. Then, the upsampler 21 executes an interpolation process by interpolating a “0” (zero) value for the input image signal Vin in accordance with “3” that is a multiple of the sampling frequency. The interpolation process here is an upsampling process, and the interpolation process is completed by the filter process by the low-pass filter 22 in the next stage. Therefore, if the sampling frequency of the original image having a horizontal resolution of 640 pixels is fs, the Nyquist frequency of the original image is fs / 2, the sampling frequency of the image after the upsampling process is 3 fs, and the Nyquist frequency is ( 3/2) fs.
 ローパスフィルタ22は、アップサンプラ21のアップサンプリング処理によって発生する折り返し成分を低減させる低域通過型フィルタである。具体的には、ローパスフィルタ22は、主に、原画像のナイキスト周波数fs/2以下の周波数帯域の画像信号を通過させる一方、原画像のナイキスト周波数fs/2を超える周波数帯域の画像信号をカットするフィルタ特性を有する。つまり、ローパスフィルタ22は、カットオフ周波数が原画像のナイキスト周波数fs/2であるフィルタ特性を有する。アップサンプラ21が処理した画像信号から、主に原画像のナイキスト周波数fs/2以下の周波数帯域の画像信号を抽出し、アップコンバート画像信号UVとして出力する。ローパスフィルタ22としては、例えば、公知のランチョスフィルタ(Lanczos Filter)を適用する。 The low-pass filter 22 is a low-pass filter that reduces aliasing components generated by the upsampling process of the upsampler 21. Specifically, the low-pass filter 22 mainly passes an image signal having a frequency band equal to or lower than the Nyquist frequency fs / 2 of the original image, while cutting an image signal having a frequency band exceeding the Nyquist frequency fs / 2 of the original image. Filter characteristics. That is, the low-pass filter 22 has a filter characteristic in which the cutoff frequency is the Nyquist frequency fs / 2 of the original image. From the image signal processed by the up-sampler 21, an image signal in a frequency band lower than the Nyquist frequency fs / 2 of the original image is extracted and output as an up-converted image signal UV. As the low-pass filter 22, for example, a known Lanchos filter is applied.
 次に、雑音低減部4の機能構成を説明する前に、雑音低減部4が実行する雑音低減処理のアルゴリズムについて説明する。図3は、スケーラ部2によりアップコンバートされた画像信号の一水平ラインから、ノイズ成分を低減させる様子を模式的に表した図である。
図3Aは、画像信号の一水平ラインのうちノイズ成分を含む部分を表す図であり、図3Bは、図3Aに示した部分からノイズ成分を低減させた様子を表す図である。
図3Aおよび図3Bともに、横軸が画像の水平方向における画素の位置であり、縦軸が画素値である。画素値は、例えば輝度値、色差値、色値のいずれかである。
Next, before describing the functional configuration of the noise reduction unit 4, an algorithm of noise reduction processing executed by the noise reduction unit 4 will be described. FIG. 3 is a diagram schematically showing how noise components are reduced from one horizontal line of the image signal up-converted by the scaler unit 2.
3A is a diagram illustrating a portion including a noise component in one horizontal line of an image signal, and FIG. 3B is a diagram illustrating a state in which the noise component is reduced from the portion illustrated in FIG. 3A.
In both FIG. 3A and FIG. 3B, the horizontal axis is the pixel position in the horizontal direction of the image, and the vertical axis is the pixel value. The pixel value is, for example, any one of a luminance value, a color difference value, and a color value.
 例えば撮像して得られる画像信号のフレーム画像における一水平ラインの画素列において、隣り合う画素の画素値は近似し、当該画素列の画素値はなだらかに変化する可能性が高い。よって、図3(A)において、丸印で囲んだ画素のように突発的に飛び出ている画素は、ノイズ成分を含む画素(雑音含有画素)である可能性が高い。よって、本実施形態では、雑音低減部4は、ノイズ検出の対象画素と、当該対象画素から水平方向右側にn(nは1以上の整数)個離れた画素と、当該対象画素から水平方向左側にp(pは1以上の整数)個離れた画素との3画素の画素値を比較し、当該対象画素がノイズ成分を含む可能性の高い画素であるか否かを判定する。 For example, in a pixel row of one horizontal line in a frame image of an image signal obtained by imaging, the pixel values of adjacent pixels are approximate, and the pixel value of the pixel row is likely to change gently. Therefore, in FIG. 3A, a pixel that suddenly protrudes like a pixel surrounded by a circle is highly likely to be a pixel including a noise component (noise-containing pixel). Therefore, in the present embodiment, the noise reduction unit 4 includes the target pixel for noise detection, the pixel that is n (n is an integer of 1 or more) in the horizontal direction from the target pixel, and the left side in the horizontal direction from the target pixel. The pixel values of three pixels are compared with pixels separated by p (p is an integer of 1 or more), and it is determined whether or not the target pixel is a pixel that is highly likely to contain a noise component.
 具体的には、雑音低減部4は、これら3画素のうち真中に位置する対象画素の画素値が最も大きい(山型になっている)場合か、または最も小さい(谷型になっている)場合に、対象画素がノイズ成分を含む可能性の高い画素であると判定する。
 雑音低減部4は、図3Bに示すように、ノイズ成分を含む可能性の高い画素であると判定した対象画素の山または谷を低減する方向に対象画素の画素値を補正する。
Specifically, the noise reduction unit 4 has the largest (peak shape) or the smallest (valley shape) pixel value of the target pixel located in the middle of these three pixels. In this case, it is determined that the target pixel is a pixel that is highly likely to include a noise component.
As illustrated in FIG. 3B, the noise reduction unit 4 corrects the pixel value of the target pixel in a direction in which the peak or valley of the target pixel determined to be a pixel that has a high possibility of including a noise component is reduced.
 次に、雑音低減部4の機能構成を説明する。雑音低減部4は、スケーラ部(解像度変更部)2が生成したアップコンバート画像信号から雑音を含有する雑音含有画素を検出し、雑音成分が低減するように前記雑音含有画素の画素値を補正する。ここで、雑音低減部4は、アップコンバート画像信号に含まれる雑音検出の対象画素の画素値と、アップコンバート画像信号に含まれる画素値であってスケーラ部(解像度変更部)2が高解像度化した方向(本実施形態では、一例として水平方向)に対象画素を挟む二つの比較画素の画素値とに少なくとも基づいて雑音含有画素を検出する。 Next, the functional configuration of the noise reduction unit 4 will be described. The noise reduction unit 4 detects a noise-containing pixel containing noise from the up-converted image signal generated by the scaler unit (resolution changing unit) 2 and corrects the pixel value of the noise-containing pixel so that the noise component is reduced. . Here, the noise reduction unit 4 has a pixel value of a target pixel for noise detection included in the up-converted image signal and a pixel value included in the up-converted image signal, and the scaler unit (resolution changing unit) 2 increases the resolution. The noise-containing pixel is detected based at least on the pixel values of the two comparison pixels sandwiching the target pixel in the direction (in this embodiment, the horizontal direction as an example).
 図4は、雑音低減部4の機能構成を表すブロック図である。同図に示すように、雑音低減部4は、雑音低減前画像信号Xと原画像解像度値Hxと変換画像解像度値Hyとを取り込み、雑音低減後画像信号Yを出力する。雑音低減ユニット3の第1段目の雑音低減部4-1においては、雑音低減前画像信号Xはアップコンバート画像信号UVである。また、雑音低減ユニット3の最終段目(図1においては第3段目)の雑音低減部4-3においては、雑音低減後画像信号Yは出力画像信号Voutである。
 同図に示すように、雑音低減部4は、サンプリング制御部5と、雑音検出部6と、雑音レベル検出部7と、低減演算部8とを備える。
FIG. 4 is a block diagram illustrating a functional configuration of the noise reduction unit 4. As shown in the figure, the noise reduction unit 4 takes in the image signal X before noise reduction, the original image resolution value Hx, and the converted image resolution value Hy, and outputs the image signal Y after noise reduction. In the first stage noise reduction unit 4-1 of the noise reduction unit 3, the pre-noise reduction image signal X is the up-converted image signal UV. In the noise reduction unit 4-3 at the final stage (third stage in FIG. 1) of the noise reduction unit 3, the noise-reduced image signal Y is the output image signal Vout.
As shown in the figure, the noise reduction unit 4 includes a sampling control unit 5, a noise detection unit 6, a noise level detection unit 7, and a reduction calculation unit 8.
 サンプリング制御部5は、原画像解像度値Hxと変換画像解像度値Hyとを取り込み、変換画像解像度値Hyと原画像解像度値Hxとの水平解像度比(Hy/Hx>1)を計算する。そして、サンプリング制御部5は、水平解像度比にあらかじめ有する第1の定数値を掛け合わせた値を求め、ノイズ検出の対象画素から水平方向左側にp個離れた比較画素を指定するためのタップ値Tpとして雑音検出部6に供給する。また、サンプリング制御部5は、水平解像度比にあらかじめ有する第2の定数値を掛け合わせた値を求め、対象画素から水平方向右側にn個離れた比較画素を指定するためのタップ値Tnとして雑音検出部6に供給する。 The sampling control unit 5 takes in the original image resolution value Hx and the converted image resolution value Hy, and calculates a horizontal resolution ratio (Hy / Hx> 1) between the converted image resolution value Hy and the original image resolution value Hx. Then, the sampling control unit 5 obtains a value obtained by multiplying the horizontal resolution ratio by a first constant value previously held, and specifies a tap value for designating p comparison pixels that are separated from the noise detection target pixel on the left side in the horizontal direction. This is supplied to the noise detection unit 6 as Tp. Further, the sampling control unit 5 obtains a value obtained by multiplying the horizontal resolution ratio by a second constant value that is previously held, and noise as a tap value Tn for designating a comparison pixel that is n times away from the target pixel in the horizontal direction. It supplies to the detection part 6.
 すなわち、サンプリング制御部5は、比較画素のうち少なくともいずれか一つの比較画素とノイズ検出の対象画素との間隔を、入力画像信号のフレーム画像における所定方向(例えば、水平方向)の解像度とアップコンバート画像信号のフレーム画像における上記所定方向(例えば、水平方向)の解像度との比に基づいて、決定する。 That is, the sampling control unit 5 up-converts the interval between at least one of the comparison pixels and the noise detection target pixel with the resolution in a predetermined direction (for example, the horizontal direction) in the frame image of the input image signal. This is determined based on the ratio of the image signal frame image to the resolution in the predetermined direction (for example, the horizontal direction).
 このようにサンプリング制御部5を構成することにより、タップ値Tpおよびタップ値Tnは水平解像度比に比例して変化する。これによって、雑音低減部4は、水平解像度に応じて適切なノイズ低減処理を実行することができる。
 なお、第1および第2の定数値は同値であってもよいし異値であってもよい。ノイズ低減の対象画像の画質や画像処理装置1の使用目的等に応じて、第1および第2の定数値は決定される。
By configuring the sampling control unit 5 in this way, the tap value Tp and the tap value Tn change in proportion to the horizontal resolution ratio. Thereby, the noise reduction part 4 can perform an appropriate noise reduction process according to horizontal resolution.
The first and second constant values may be the same value or different values. The first and second constant values are determined according to the image quality of the noise reduction target image and the purpose of use of the image processing apparatus 1.
 また、図1に示すように、カスケード接続された雑音低減部4-1,4-2,4-3において、第1段目の雑音低減部4-1から第3段目の雑音低減部4-3への向きに、タップ間隔が順次狭くなるように、言い換えると、第1および第2の定数値が順次減少するように、雑音低減部4-1,4-2,4-3それぞれの第1および第2の定数値は設定される。 Also, as shown in FIG. 1, in the cascade-connected noise reduction units 4-1, 4-2, 4-3, the first-stage noise reduction unit 4-1 to the third-stage noise reduction unit 4 Each of the noise reduction units 4-1, 4-2, and 4-3 is arranged so that the tap interval is gradually narrowed in the direction toward −3, in other words, the first and second constant values are sequentially reduced. The first and second constant values are set.
 雑音検出部6は、サンプリング制御部5から供給されるタップ値Tpとタップ値Tnとを取り込む。また、雑音検出部6は、雑音低減前画像信号Xから画素値を順次取り込む。
そして、雑音検出部6は、ノイズ検出の対象画素の画素値Doutと、この対象画素についてのノイズ判定結果Coutとを順次出力する。
 雑音検出部6は、その機能構成として、遅延部61と、代表値決定部62と、比較部63とを備える。
The noise detection unit 6 takes in the tap value Tp and the tap value Tn supplied from the sampling control unit 5. Further, the noise detection unit 6 sequentially takes in pixel values from the image signal X before noise reduction.
The noise detection unit 6 sequentially outputs the pixel value Dout of the target pixel for noise detection and the noise determination result Cout for the target pixel.
The noise detection unit 6 includes a delay unit 61, a representative value determination unit 62, and a comparison unit 63 as its functional configuration.
 代表値決定部62は、雑音低減前画像信号Xの画素値を順次取り込み、画素ごとに、ノイズ検出の対象画素と、当該対象画素から水平方向右側にタップ値Tnに応じてn個離れた画素と、当該対象画素から水平方向左側にタップ値Tpに応じてp個離れた画素との3画素を選択する。つまり、対象画素を挟む2画素間の間隔(距離)は、水平解像度比に比例する関係にある。すなわち、対象画素を挟む2画素間の間隔は、入力画像信号のフレーム画像における所定方向(例えば、水平方向)の解像度とアップコンバート画像信号のフレーム画像における上記所定方向(例えば、水平方向)の解像度との比に基づいて、決定されている。
そして、代表値決定部62は、3画素のうち中間のレベル値を有する画素を代表画素として選択し、この代表画素の画素値Soutを出力する。代表画素を選択する具体的な方法については後述する。
The representative value determining unit 62 sequentially takes in the pixel values of the image signal X before noise reduction, and for each pixel, a pixel for noise detection and a pixel that is n pixels away from the target pixel in the horizontal direction on the right in the horizontal direction. Then, three pixels are selected, which are p pixels away from the target pixel on the left side in the horizontal direction according to the tap value Tp. That is, the interval (distance) between two pixels sandwiching the target pixel is proportional to the horizontal resolution ratio. That is, the interval between two pixels sandwiching the target pixel is the resolution in a predetermined direction (for example, horizontal direction) in the frame image of the input image signal and the resolution in the predetermined direction (for example, horizontal direction) in the frame image of the up-converted image signal. And is determined based on the ratio.
Then, the representative value determining unit 62 selects a pixel having an intermediate level value among the three pixels as a representative pixel, and outputs the pixel value Sout of this representative pixel. A specific method for selecting the representative pixel will be described later.
 遅延部61は、雑音低減前画像信号Xから画素値を順次取り込んで所定時間遅延させ、ノイズ検出の対象画素の画素値Doutとして比較部63および低減演算部8に供給する。遅延部61は、代表値決定部62が雑音低減前画像信号Xの画素値を取り込んでから当該画素値に対応する代表画素の画素値Soutを出力するタイミングに合わせて、ノイズ検出の対象画素の画素値Doutを出力する。 The delay unit 61 sequentially captures pixel values from the image signal X before noise reduction, delays them for a predetermined time, and supplies them to the comparison unit 63 and the reduction calculation unit 8 as the pixel value Dout of the target pixel for noise detection. The delay unit 61 matches the timing of outputting the pixel value Sout of the representative pixel corresponding to the pixel value after the representative value determining unit 62 takes in the pixel value of the pre-noise reduction image signal X and outputs the pixel value Sout of the target pixel for noise detection. The pixel value Dout is output.
 比較部63は、ノイズ検出の対象画素の画素値Doutと、代表画素の画素値Soutとを取り込み、ノイズ検出の対象画素がノイズ成分を含む可能性の高い画素であるか否かを判定し、そのノイズ判定結果Coutを出力する。具体的な判定方法については、後述する。 The comparison unit 63 takes in the pixel value Dout of the target pixel for noise detection and the pixel value Sout of the representative pixel, and determines whether or not the target pixel for noise detection is a pixel that is likely to contain a noise component. The noise determination result Cout is output. A specific determination method will be described later.
 雑音レベル検出部7は、雑音低減前画像信号Xを取り込んで、例えば垂直ブランキング期間および水平ブランキング期間またはいずれかの期間におけるノイズ成分を検出し、その検出したノイズ成分のレベル値を補正値Lとして低減演算部8に供給する。 The noise level detection unit 7 takes in the image signal X before noise reduction, detects a noise component in, for example, a vertical blanking period and / or a horizontal blanking period, and corrects the level value of the detected noise component as a correction value L is supplied to the reduction calculation unit 8.
 低減演算部8は、雑音検出部6からそれぞれ供給される、対象画素の画素値Doutおよびノイズ判定結果Coutと、雑音レベル検出部7から供給される補正値Lとを取り込み、雑音低減後画像信号Yを出力する。低減演算部8は、対象画素の画素値Doutを、ノイズ判定結果Coutに応じて補正値Lにより補正し、この補正後の画素値を出力する。詳細は後述する。 The reduction calculation unit 8 takes in the pixel value Dout and the noise determination result Cout of the target pixel supplied from the noise detection unit 6 and the correction value L supplied from the noise level detection unit 7, respectively, and outputs a noise-reduced image signal Y is output. The reduction calculation unit 8 corrects the pixel value Dout of the target pixel with the correction value L according to the noise determination result Cout, and outputs the corrected pixel value. Details will be described later.
 図5は、代表値決定部62の機能構成を表すブロック図である。同図に示すように、代表値決定部62は、遅延回路621と、第1セレクタ622nと、第2セレクタ622pと、代表値選択部623とを備える。 FIG. 5 is a block diagram showing a functional configuration of the representative value determining unit 62. As shown in the figure, the representative value determining unit 62 includes a delay circuit 621, a first selector 622n, a second selector 622p, and a representative value selecting unit 623.
 遅延回路621は、P(Pは1以上の整数)個+N(Nは1以上の整数)個のデータラッチ(データ保持回路)をカスケード接続し、雑音低減前画像信号Xの画素を順次シフトさせてP+N画素分の画素値を記憶する。遅延回路621は、第1段目のデータラッチの入力端子に-Nタップを設ける。また、遅延回路621は、第1段目から最終段までの全データラッチの出力端子に、-N+1タップ,-N+2タップ,・・・,-2タップ,-1タップ,0タップ,1タップ,2タップ,・・・,P-1タップ,Pタップを設ける。
 -Nタップから-1タップまでのN個のタップは、第1セレクタ622nの入力端子に接続される。また、1タップからPタップまでのP個のタップは、第2セレクタ622pの入力端子に接続される。また、0(ゼロ)タップは、代表値選択部623に接続される。
 0(ゼロ)タップから得られる画素値X0は、ノイズ検出の対象画素の画素値である。
The delay circuit 621 cascades P (P is an integer of 1 or more) + N (N is an integer of 1 or more) data latches (data holding circuit), and sequentially shifts the pixels of the image signal X before noise reduction. To store pixel values for P + N pixels. The delay circuit 621 has a −N tap at the input terminal of the first stage data latch. Further, the delay circuit 621 has -N + 1 tap, -N + 2 tap,..., -2 tap, -1 tap, 0 tap, 1 tap, etc. at the output terminals of all data latches from the first stage to the last stage. 2 taps,..., P-1 tap, P tap are provided.
N taps from −N tap to −1 tap are connected to an input terminal of the first selector 622n. Further, P taps from 1 tap to P tap are connected to an input terminal of the second selector 622p. The 0 (zero) tap is connected to the representative value selection unit 623.
The pixel value X0 obtained from the 0 (zero) tap is the pixel value of the target pixel for noise detection.
 第1セレクタ622nは、遅延回路621の-Nタップから-1タップまでのタップの中から、0(ゼロ)タップに対応する対象画素から水平方向右側にn個離れた画素の画素値が得られるタップを、サンプリング制御部5から供給されるタップ値Tnにしたがって選択する。タップ値Tnに基づくタップ選択により、第1セレクタ622nからは、画素値Xnが得られる。 The first selector 622n obtains a pixel value of a pixel that is n pixels away from the target pixel corresponding to the 0 (zero) tap to the right in the horizontal direction, from the taps from the -N tap to the -1 tap of the delay circuit 621. The tap is selected according to the tap value Tn supplied from the sampling control unit 5. By the tap selection based on the tap value Tn, the pixel value Xn is obtained from the first selector 622n.
 第2セレクタ622pは、遅延回路621の1タップからPタップまでのタップの中から、0(ゼロ)タップに対応する対象画素から水平方向左側にp個離れた画素の画素値が得られるタップを、サンプリング制御部5から供給されるタップ値Tpにしたがって選択する。タップ値Tpに基づくタップ選択により、第2セレクタ622pからは、画素値Xpが得られる。 The second selector 622p selects a tap from which the pixel value of a pixel separated from the target pixel corresponding to the 0 (zero) tap to the left in the horizontal direction is obtained from the taps from the 1 tap to the P tap of the delay circuit 621. The selection is made according to the tap value Tp supplied from the sampling control unit 5. The pixel value Xp is obtained from the second selector 622p by tap selection based on the tap value Tp.
 代表値選択部623は、遅延回路621の0(ゼロ)タップから供給される対象画素の画素値X0と、第2セレクタ622pから供給される、対象画素から水平方向左側にp個離れた画素の画素値Xpと、第1セレクタ622nから供給される、対象画素から水平方向右側にn個離れた画素の画素値Xnとを取り込む。そして、代表値選択部623は、これら3画素のうち中間のレベル値を有する画素を代表画素として選択し、この代表画素の画素値Soutを出力する。
 具体的には、代表値選択部623は、下記の式(1)を計算することによって代表画素の画素値Soutを求める。
The representative value selection unit 623 includes the pixel value X0 of the target pixel supplied from the 0 (zero) tap of the delay circuit 621 and the pixels supplied from the second selector 622p and separated by p pixels to the left in the horizontal direction. The pixel value Xp and the pixel value Xn of the pixel that is n pixels away from the target pixel in the horizontal direction are supplied. Then, the representative value selection unit 623 selects a pixel having an intermediate level value among these three pixels as a representative pixel, and outputs the pixel value Sout of this representative pixel.
Specifically, the representative value selection unit 623 obtains the pixel value Sout of the representative pixel by calculating the following equation (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 次に、比較部63による、ノイズ検出の対象画素がノイズ成分を含む可能性の高い画素であるか否かの判定方法について説明する。比較部63は、遅延部61から供給される、対象画素の画素値Doutと、代表値決定部62から供給される、代表画素の画素値Soutとを取り込み、下記の式(2)によって対象画素がノイズ成分を含む可能性の高い画素であるか否かを判定し、そのノイズ判定結果Coutを出力する。 Next, a method for determining whether or not the noise detection target pixel is a pixel having a high possibility of including a noise component by the comparison unit 63 will be described. The comparison unit 63 takes in the pixel value Dout of the target pixel supplied from the delay unit 61 and the pixel value Sout of the representative pixel supplied from the representative value determination unit 62, and calculates the target pixel by the following equation (2). Is a pixel that is highly likely to contain a noise component, and the noise determination result Cout is output.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 式(2)によれば、比較部63は、対象画素の画素値Doutが代表画素の画素値Soutよりも大きな値である場合は、対象画素はノイズ成分によって画素値が大きくなっている可能性が高いと判定し、ノイズ判定結果Cout=“+1”を出力する。また、比較部63は、対象画素の画素値Doutが代表画素の画素値Soutと同値である場合は、対象画素はノイズ成分を含まないと判定し、ノイズ判定結果Cout=“0(ゼロ)”を出力する。また、比較部63は、対象画素の画素値Doutが代表画素の画素値Soutよりも小さな値である場合は、対象画素はノイズ成分によって画素値が小さくなっている可能性が高いと判定し、ノイズ判定結果Cout=“-1”を出力する。 According to Expression (2), the comparison unit 63 may cause the pixel value of the target pixel to be increased by a noise component when the pixel value Dout of the target pixel is larger than the pixel value Sout of the representative pixel. Is determined to be high, and the noise determination result Cout = “+ 1” is output. Further, when the pixel value Dout of the target pixel is the same as the pixel value Sout of the representative pixel, the comparison unit 63 determines that the target pixel does not include a noise component, and the noise determination result Cout = “0 (zero)”. Is output. Further, when the pixel value Dout of the target pixel is smaller than the pixel value Sout of the representative pixel, the comparison unit 63 determines that the target pixel is likely to have a small pixel value due to a noise component. The noise determination result Cout = “− 1” is output.
 図6は、低減演算部8の機能構成を表すブロック図である。同図に示すように、低減演算部8は、加算器81と、減算器82と、セレクタ83とを備える。
 加算器81は、遅延部61から供給される対象画素の画素値Doutと、雑音レベル検出部7から供給される補正値Lとを加算する。
 減算器82は、対象画素の画素値Doutから補正値Lを減算する。
 セレクタ83は、比較部63から供給されるノイズ判定結果Cout(-1,0,+1のいずれかの値)に基づき、ノイズ判定結果Cout=“-1”である場合は加算器81の計算結果を、ノイズ判定結果Cout=“0(ゼロ)”である場合は対象画素の画素値Doutを、ノイズ判定結果Cout=“+1”である場合は減算器82の計算結果を、雑音低減後画像信号Yの画素として出力する。
FIG. 6 is a block diagram illustrating a functional configuration of the reduction calculation unit 8. As shown in the figure, the reduction calculation unit 8 includes an adder 81, a subtracter 82, and a selector 83.
The adder 81 adds the pixel value Dout of the target pixel supplied from the delay unit 61 and the correction value L supplied from the noise level detection unit 7.
The subtracter 82 subtracts the correction value L from the pixel value Dout of the target pixel.
The selector 83 is based on the noise determination result Cout (any one of −1, 0, and +1) supplied from the comparison unit 63, and when the noise determination result Cout = “− 1”, the calculation result of the adder 81 When the noise determination result Cout = “0 (zero)”, the pixel value Dout of the target pixel is obtained. When the noise determination result Cout = “+ 1”, the calculation result of the subtractor 82 is obtained. Output as Y pixel.
 すなわち、低減演算部8は、ノイズ成分によって画素値が大きくなっている可能性が高い対象画素の画素値Doutについては、補正値Lを減算してレベルを下げる。また、ノイズ成分によって画素値が小さくなっている可能性が高い対象画素の画素値Doutについては、補正値Lを加算してレベルを上げる。また、これら2ケース以外については、対象画素の画素値Doutを補正しない。 That is, the reduction calculation unit 8 lowers the level by subtracting the correction value L for the pixel value Dout of the target pixel whose pixel value is likely to be large due to the noise component. Further, the correction value L is added to the pixel value Dout of the target pixel which is likely to have a small pixel value due to the noise component, and the level is increased. In addition to these two cases, the pixel value Dout of the target pixel is not corrected.
 本実施形態である画像処理装置1のノイズ低減効果について説明する。図7A~図7Dは、画像処理装置1によりアップコンバートされた画像信号のノイズ成分が低減されている様子を模式的に表した波形図である。図7Aから図7Dまでの各波形図において、横軸は空間周波数であり、縦軸は輝度値である。
 図7Aは、入力画像信号Vinを表す図である。図7Aにおいて、ナイキスト周波数fo/2よりも低い空間周波数領域において、画像の輝度成分301とノイズ成分302とが分布している。
The noise reduction effect of the image processing apparatus 1 according to the present embodiment will be described. 7A to 7D are waveform diagrams schematically showing how noise components of an image signal up-converted by the image processing apparatus 1 are reduced. In each waveform diagram from FIG. 7A to FIG. 7D, the horizontal axis is the spatial frequency, and the vertical axis is the luminance value.
FIG. 7A is a diagram illustrating the input image signal Vin. In FIG. 7A, the luminance component 301 and the noise component 302 of the image are distributed in a spatial frequency region lower than the Nyquist frequency fo / 2.
 図7Bは、スケーラ部2のアップサンプラ21が原画像の水平解像度を4倍の解像度にアップコンバートして得た画像信号およびノイズ成分を表す図である。図7Bにおいて、アップコンバート処理後の画像信号のナイキスト周波数fu/2(=2fo)よりも低い空間周波数領域にまで、画像の輝度成分(実線)およびノイズ成分(破線)が分布している。 FIG. 7B is a diagram illustrating an image signal and a noise component obtained by the up-sampler 21 of the scaler unit 2 up-converting the horizontal resolution of the original image to four times the resolution. In FIG. 7B, the luminance component (solid line) and the noise component (broken line) of the image are distributed to a spatial frequency region lower than the Nyquist frequency fu / 2 (= 2fo) of the image signal after the up-conversion processing.
 図7Cは、スケーラ部2のローパスフィルタ22にアップコンバート処理後の画像信号を通した後の波形図である。カットオフ周波数が原画像のナイキスト周波数fo/2であるフィルタ特性303を有するローパスフィルタ22に、アップコンバート処理後の画像信号およびノイズ成分を通すと、図7Cのようになる。この段階では、ナイキスト周波数fo/2よりも高い周波数領域においてノイズ成分が低減しているが、ナイキスト周波数fo/2の付近およびそれよりも低い周波数領域にノイズ成分が残留している。 FIG. 7C is a waveform diagram after the image signal after the up-conversion processing is passed through the low-pass filter 22 of the scaler unit 2. When the image signal and the noise component after the up-conversion process are passed through the low-pass filter 22 having the filter characteristic 303 whose cutoff frequency is the Nyquist frequency fo / 2 of the original image, the result is as shown in FIG. 7C. At this stage, the noise component is reduced in a frequency region higher than the Nyquist frequency fo / 2, but the noise component remains in the vicinity of the Nyquist frequency fo / 2 and in a lower frequency region.
 図7Dは、雑音低減ユニット3がノイズ成分を低減させた様子を表す波形図である。図7Dに示すように、雑音低減ユニット3がノイズ低減処理を実行することにより、空間周波数領域の低域に分布するノイズ成分は高域化されてノイズ成分304となる。
このノイズ成分304は、アップコンバート処理後の画像のナイキスト周波数fu/2付近に形成されるため、観察者の目には知覚されにくい。また、画像のエッジ成分がナイキスト周波数fu/2付近に形成されるため、画像のエッジを強調して高精細感がある出力画像信号Voutを得ることができる。
FIG. 7D is a waveform diagram illustrating a state in which the noise reduction unit 3 reduces the noise component. As shown in FIG. 7D, when the noise reduction unit 3 executes the noise reduction process, the noise component distributed in the low frequency region becomes a noise component 304.
Since the noise component 304 is formed in the vicinity of the Nyquist frequency fu / 2 of the image after the up-conversion processing, it is difficult for the observer to perceive the noise component 304. Further, since the edge component of the image is formed in the vicinity of the Nyquist frequency fu / 2, it is possible to obtain the output image signal Vout having a high definition feeling by enhancing the edge of the image.
 図8A~図8Dは、ノイズ低減処理を行った後でアップコンバート処理を行う従来方法による場合の、画像信号およびノイズ成分の波形を模式的に表した図である。
 図8Aは、入力画像信号Vinを表す図である。図8Aにおいて、ナイキスト周波数fo/2よりも低い空間周波数領域において、画像の輝度成分301とノイズ成分302とが分布している。
 図8Bは、雑音低減ユニットに入力画像信号を通した後の波形図である。図8Bに示すように、ノイズ成分はナイキスト周波数fo/2付近に高域化してノイズ成分305となる。
8A to 8D are diagrams schematically showing waveforms of an image signal and a noise component in the case of a conventional method in which up-conversion processing is performed after performing noise reduction processing.
FIG. 8A is a diagram illustrating the input image signal Vin. In FIG. 8A, the luminance component 301 and the noise component 302 of the image are distributed in the spatial frequency region lower than the Nyquist frequency fo / 2.
FIG. 8B is a waveform diagram after the input image signal is passed through the noise reduction unit. As shown in FIG. 8B, the noise component becomes a noise component 305 by increasing the frequency in the vicinity of the Nyquist frequency fo / 2.
 図8Cは、アップサンプラが原画像の水平解像度を4倍の解像度にアップコンバートして得た画像信号を表す図である。図8Cにおいて、アップコンバート処理後の画像信号のナイキスト周波数fu/2(=2fo)よりも低い空間周波数領域にまで、画像の輝度成分およびノイズ成分が分布している。
 図8Dは、ローパスフィルタにアップコンバート処理後の画像信号を通した後の波形図である。カットオフ周波数が原画像のナイキスト周波数fo/2であるフィルタ特性を有するローパスフィルタに、アップコンバート処理後の画像信号およびノイズ成分を通すと、図8Dのようになる。このように、ナイキスト周波数fo/2の付近にノイズ成分が残留しており、観察者の目には粒度感が目立つ画像として知覚される。
FIG. 8C is a diagram illustrating an image signal obtained by the up-sampler up-converting the horizontal resolution of the original image to four times the resolution. In FIG. 8C, the luminance component and noise component of the image are distributed to a spatial frequency region lower than the Nyquist frequency fu / 2 (= 2fo) of the image signal after the up-conversion processing.
FIG. 8D is a waveform diagram after the image signal after the up-conversion processing is passed through the low-pass filter. When the image signal and the noise component after the up-conversion processing are passed through a low-pass filter having a filter characteristic whose cutoff frequency is the Nyquist frequency fo / 2 of the original image, the result is as shown in FIG. 8D. Thus, a noise component remains in the vicinity of the Nyquist frequency fo / 2, and the image is perceived as an image with a noticeable granularity to the observer's eyes.
 次に、本実施形態である画像処理装置1を液晶テレビジョン受像機(表示装置)に適用した例について説明する。
 図9は、本実施形態である画像処理装置1を適用した液晶テレビジョン受像機の機能構成を表すブロック図である。
 同図に示すように、液晶テレビジョン受像機10は、HDMI(High-Definition Multimedia Interface)レシーバ100と、ディスクドライブ102と、チューナ103と、IP(Internet Protocol)放送チューナ104と、衛星放送チューナ105と、OSD(On Screen Display)生成部106と、映像セレクタ107と、映像処理回路108と、LCD(Liquid Crystal Display;液晶表示部)コントローラ109と、LCD110と、音声セレクタ111と、音声処理部112と、アンプ113と、スピーカ114と、ネットワークインタフェース(I/F)115と、ROM116と、RAM117と、CPU118と、赤外線受光部119と、HDMI入力端子11a,11b,11cと、外部映像入力端子101aと、外部音声入力端子101bとを備える。
Next, an example in which the image processing apparatus 1 according to this embodiment is applied to a liquid crystal television receiver (display device) will be described.
FIG. 9 is a block diagram illustrating a functional configuration of a liquid crystal television receiver to which the image processing apparatus 1 according to the present embodiment is applied.
As shown in the figure, a liquid crystal television receiver 10 includes a high-definition multimedia interface (HDMI) receiver 100, a disk drive 102, a tuner 103, an IP (Internet Protocol) broadcast tuner 104, and a satellite broadcast tuner 105. An OSD (On Screen Display) generation unit 106, a video selector 107, a video processing circuit 108, an LCD (Liquid Crystal Display) controller 109, an LCD 110, an audio selector 111, and an audio processing unit 112. An amplifier 113, a speaker 114, a network interface (I / F) 115, a ROM 116, a RAM 117, a CPU 118, and the infrared light receiving unit 1. 19, HDMI input terminals 11a, 11b, and 11c, an external video input terminal 101a, and an external audio input terminal 101b.
 CPU118は、ROM116に記憶された制御プログラムをRAM117に読み出して展開し、そのプログラムコードの各ステップを実行することによって液晶テレビジョン受像機10の各部を制御する。
 HDMIレシーバ100は、HDMI入力端子11a,11b,11cのうちいずれかを介して外部装置から供給されるHDMI信号を取り込み、このHDMI信号を主に映像信号と音声信号とに分離する。
 ディスクドライブ102は、DVD(Digital Versatile Disc)やBD(Blu-ray Disc)等の光ディスクや磁気ハードディスクに記録されたコンテンツを再生する。
The CPU 118 reads out and expands the control program stored in the ROM 116 to the RAM 117, and controls each part of the liquid crystal television receiver 10 by executing each step of the program code.
The HDMI receiver 100 takes in an HDMI signal supplied from an external device via any one of the HDMI input terminals 11a, 11b, and 11c, and mainly separates the HDMI signal into a video signal and an audio signal.
The disc drive 102 reproduces content recorded on an optical disc such as a DVD (Digital Versatile Disc) or BD (Blu-ray Disc) or a magnetic hard disk.
 チューナ103は、受信アンテナで受信したテレビジョン放送の放送電波から、所望のテレビ放送番組コンテンツを抽出する。
 IP放送チューナ104は、インターネットサービスプロバイダ等が送信したIP放送をネットワークI/F115を介して受信する。
 衛星放送チューナ105は、受信アンテナで受信した衛星放送の放送電波から、所望の衛星放送番組コンテンツを抽出する。
The tuner 103 extracts a desired television broadcast program content from the broadcast wave of the television broadcast received by the receiving antenna.
The IP broadcast tuner 104 receives an IP broadcast transmitted by an Internet service provider or the like via the network I / F 115.
The satellite broadcast tuner 105 extracts a desired satellite broadcast program content from the satellite broadcast radio wave received by the receiving antenna.
 映像セレクタ107は、HDMIレシーバ100と、ディスクドライブ102と、チューナ103と、IP放送チューナ104と、衛星放送チューナ105と、外部映像入力端子11aに接続された外部装置とから供給される映像信号を取り込み、CPU118から通知される選択信号にしたがっていずれかの映像信号を映像処理回路108に供給する。 The video selector 107 receives video signals supplied from the HDMI receiver 100, the disk drive 102, the tuner 103, the IP broadcast tuner 104, the satellite broadcast tuner 105, and an external device connected to the external video input terminal 11a. One of the video signals is fetched and supplied to the video processing circuit 108 in accordance with the selection signal notified from the CPU 118.
 音声セレクタ111は、HDMIレシーバ100と、ディスクドライブ102と、チューナ103と、IP放送チューナ104と、衛星放送チューナ105と、外部音声入力端子101bに接続された外部装置とから供給される音声信号を取り込み、CPU118から通知される選択信号にしたがっていずれかの音声信号を音声処理部112に供給する。 The audio selector 111 receives audio signals supplied from the HDMI receiver 100, the disk drive 102, the tuner 103, the IP broadcast tuner 104, the satellite broadcast tuner 105, and an external device connected to the external audio input terminal 101b. One of the audio signals is fetched and supplied to the audio processing unit 112 according to the selection signal notified from the CPU 118.
 OSD生成部106は、CPU118から日時情報やシステムの設定メニュー情報等のデータの供給を受けて取り込み、オンスクリーン情報信号を生成する。 The OSD generation unit 106 receives and supplies data such as date and time information and system setting menu information from the CPU 118, and generates an on-screen information signal.
 映像処理回路108は、映像セレクタ107から供給される映像信号を取り込み、CPU118から供給される制御データに基づいて画像処理を実行する。
 本実施形態においては、この映像処理回路108に画像処理装置1が組み込まれる。具体的には、例えば、映像処理回路108は、映像セレクタ107から供給される映像信号を取り込み、CPU118から供給される走査に関する情報に基づいて映像信号のフレーム画像を順次走査する。また、映像処理回路108は、CPU118から原画像解像度値Hxおよび変換画像解像度値Hyの供給を受けて取り込み、前記の順次走査にしたがって得られる水平ラインデータと原画像解像度値Hxと変換画像解像度値Hyとを画像処理装置1に供給して、前述したとおりのアップコンバート処理とノイズ低減処理とを実行する。
The video processing circuit 108 takes in the video signal supplied from the video selector 107 and executes image processing based on the control data supplied from the CPU 118.
In the present embodiment, the image processing apparatus 1 is incorporated in the video processing circuit 108. Specifically, for example, the video processing circuit 108 takes in the video signal supplied from the video selector 107 and sequentially scans the frame image of the video signal based on the information related to scanning supplied from the CPU 118. The video processing circuit 108 receives and takes in the original image resolution value Hx and the converted image resolution value Hy from the CPU 118, and obtains the horizontal line data, the original image resolution value Hx, and the converted image resolution value obtained in accordance with the sequential scanning. Hy is supplied to the image processing apparatus 1 to perform the up-conversion process and the noise reduction process as described above.
 映像処理回路108が出力する映像処理後の映像信号には、OSD生成部106が生成したオンスクリーン情報信号が重畳され、このオンスクリーン情報信号が重畳された映像信号がLCDコントローラ109に供給される。
 LCDコントローラ109は、オンスクリーン情報信号が重畳された映像信号をLCD110に表示させる。
The on-screen information signal generated by the OSD generation unit 106 is superimposed on the image signal after the image processing output from the image processing circuit 108, and the image signal on which the on-screen information signal is superimposed is supplied to the LCD controller 109. .
The LCD controller 109 causes the LCD 110 to display a video signal on which the on-screen information signal is superimposed.
 また、音声処理部112は、音声セレクタ111から供給される音声信号を取り込み、CPU118から供給される制御データに基づいて音声処理を実行する。
 アンプ113は、音声処理部112が音声処理した音声信号を増幅し、スピーカ114から音声として出力させる。
 赤外線受光部119は、液晶テレビジョン受像機10を遠隔操作するための図示しないリモコン装置から発せられる光リモコン信号を受信し、この光リモコン信号をデコードしてキーデータを抽出しCPU118に通知する。
Further, the audio processing unit 112 takes in the audio signal supplied from the audio selector 111 and executes audio processing based on the control data supplied from the CPU 118.
The amplifier 113 amplifies the sound signal processed by the sound processing unit 112 and outputs it as sound from the speaker 114.
The infrared light receiver 119 receives an optical remote control signal emitted from a remote control device (not shown) for remotely operating the liquid crystal television receiver 10, decodes the optical remote control signal, extracts key data, and notifies the CPU 118 of the key data.
 第1実施形態によれば、画像処理装置1は、入力画像信号Vinの水平解像度をアップコンバートしてアップコンバート画像信号UVを出力するスケーラ部2の後段に、アップコンバート画像信号UVに含まれる水平方向のノイズ成分を低減する雑音低減ユニット3を設ける構成とした。このように構成したことにより、雑音低減ユニット3は、アップコンバート画像信号に含まれる水平方向のノイズ成分をナイキスト周波数fu/2付近に形成させることができる。よって、第1実施形態によれば、ノイズ成分が観察者の目には知覚されにくい空間周波数帯域に集まるため、画像処理装置1は、水平方向のノイズ成分を低減した出力画像信号Voutを得ることができる。
 また、画像のエッジ成分がナイキスト周波数fu/2付近に形成されるため、画像処理装置1は、画像のエッジが強調されて高精細感がある出力画像信号Voutを得ることができる。
According to the first embodiment, the image processing apparatus 1 includes the horizontal component included in the up-converted image signal UV at the subsequent stage of the scaler unit 2 that up-converts the horizontal resolution of the input image signal Vin and outputs the up-converted image signal UV. The noise reduction unit 3 for reducing the direction noise component is provided. With this configuration, the noise reduction unit 3 can form a horizontal noise component included in the up-converted image signal in the vicinity of the Nyquist frequency fu / 2. Therefore, according to the first embodiment, since noise components are collected in a spatial frequency band that is difficult to be perceived by the observer's eyes, the image processing apparatus 1 obtains an output image signal Vout with reduced horizontal noise components. Can do.
Further, since the edge component of the image is formed in the vicinity of the Nyquist frequency fu / 2, the image processing apparatus 1 can obtain the output image signal Vout having a high definition feeling by enhancing the edge of the image.
 [第1実施形態の第1の変形例]
 上述した第1実施形態では、フレーム画像の水平方向解像度のアップコンバート処理と、水平方向の画素列におけるノイズ低減処理とを実行する画像処理装置1について説明した。第1実施形態の第1変形例では、フレーム画像の垂直方向解像度のアップコンバート処理と、垂直方向の画素列におけるノイズ低減処理とを実行する画像処理装置について説明する。
 なお、本変形例では、第1実施形態における構成と差別化する必要がある構成について、新たな符号を付したり第1実施形態における構成の符号に“’(シングルクォーテーションマーク)”を付加したりして区別する。そして、本変形例では、第1実施形態における構成と同一の構成については、その説明を省略する。
[First Modification of First Embodiment]
In the first embodiment described above, the image processing apparatus 1 that performs the up-conversion processing of the horizontal resolution of the frame image and the noise reduction processing in the pixel row in the horizontal direction has been described. In the first modified example of the first embodiment, an image processing apparatus that performs up-conversion processing of a vertical resolution of a frame image and noise reduction processing in a vertical pixel row will be described.
In this modification, for the configuration that needs to be differentiated from the configuration in the first embodiment, a new code is added or “′ (single quotation mark)” is added to the code of the configuration in the first embodiment. To distinguish. In this modification, the description of the same configuration as that in the first embodiment is omitted.
 本変形例では、第1実施形態における原画像解像度値Hxおよび変換画像解像度値Hyに替えて、原画像の垂直方向の解像度値である原画像解像度値Vxと、垂直方向の解像度をアップコンバートした後の画像の垂直方向の解像度値である変換画像解像度値Vyとを用いる。 In this modification, instead of the original image resolution value Hx and the converted image resolution value Hy in the first embodiment, the original image resolution value Vx that is the vertical resolution value of the original image and the vertical resolution are up-converted. A converted image resolution value Vy that is a resolution value in the vertical direction of the subsequent image is used.
 画像処理装置1’に含まれるスケーラ部2’は、アップコンバートする方向がフレーム画像における垂直方向であることを除けば、第1実施形態におけるスケーラ部2と同様の構成である。よって、ここでの具体的な説明を省略する。 The scaler unit 2 ′ included in the image processing apparatus 1 ′ has the same configuration as the scaler unit 2 in the first embodiment, except that the up-conversion direction is the vertical direction in the frame image. Therefore, the specific description here is omitted.
 雑音低減部4’に含まれる代表値決定部について説明する。図10は、雑音低減部4’に含まれる代表値決定部の機能構成を表すブロック図である。同図に示すように、代表値決定部62aは、第1実施形態における代表値決定部62から遅延回路621を遅延回路621aに変更した構成を有する。
 遅延回路621aは、遅延回路621が有するP個+N個のデータラッチをP個+N個のディレイラインに変更したものである。各ディレイラインは、アップコンバート画像信号のフレーム画像における1水平ライン分の遅延量を有する。このディレイラインは、1水平ラインの画素数分のデータラッチをカスケード接続して構成したものでもよい。
The representative value determination unit included in the noise reduction unit 4 ′ will be described. FIG. 10 is a block diagram illustrating a functional configuration of a representative value determination unit included in the noise reduction unit 4 ′. As shown in the figure, the representative value determining unit 62a has a configuration in which the delay circuit 621 is changed to the delay circuit 621a from the representative value determining unit 62 in the first embodiment.
The delay circuit 621a is obtained by changing P + N data latches included in the delay circuit 621 to P + N delay lines. Each delay line has a delay amount corresponding to one horizontal line in the frame image of the up-converted image signal. This delay line may be configured by cascading data latches corresponding to the number of pixels of one horizontal line.
 雑音低減部4’に含まれる遅延部61’は、代表値決定部62aが雑音低減前画像信号Xの画素値を取り込んでから当該画素値に対応する代表画素の画素値Soutを出力するタイミングに合わせて、ノイズ検出の対象画素の画素値Doutを出力する。 The delay unit 61 ′ included in the noise reduction unit 4 ′ receives the pixel value Sout of the representative pixel corresponding to the pixel value after the representative value determination unit 62a captures the pixel value of the image signal X before noise reduction. In addition, the pixel value Dout of the target pixel for noise detection is output.
 第1実施形態の第1変形例によれば、画像処理装置1は、入力画像信号Vinの垂直解像度をアップコンバートしてアップコンバート画像信号UVを出力するスケーラ部2の後段に、アップコンバート画像信号UVに含まれる垂直方向のノイズ成分を低減する雑音低減ユニット3を設ける構成とした。このように構成したことにより、雑音低減ユニット3は、アップコンバート画像信号に含まれる垂直方向のノイズ成分をナイキスト周波数fu/2付近に形成させることができる。よって、第1実施形態の第1変形例によれば、ノイズ成分が観察者の目には知覚されにくい空間周波数帯域に集まるため、画像処理装置1は、垂直方向のノイズ成分を低減した出力画像信号Voutを得ることができる。
 また、画像のエッジ成分がナイキスト周波数fu/2付近に形成されるため、画像処理装置1は、画像のエッジが強調されて高精細感がある出力画像信号Voutを得ることができる。
According to the first modification of the first embodiment, the image processing apparatus 1 performs the up-conversion image signal in the subsequent stage of the scaler unit 2 that up-converts the vertical resolution of the input image signal Vin and outputs the up-conversion image signal UV. The noise reduction unit 3 for reducing the noise component in the vertical direction included in the UV is provided. With this configuration, the noise reduction unit 3 can form a noise component in the vertical direction included in the up-converted image signal in the vicinity of the Nyquist frequency fu / 2. Therefore, according to the first modification of the first embodiment, since the noise components are collected in a spatial frequency band that is difficult to be perceived by the observer's eyes, the image processing apparatus 1 outputs an output image in which the noise components in the vertical direction are reduced. A signal Vout can be obtained.
Further, since the edge component of the image is formed in the vicinity of the Nyquist frequency fu / 2, the image processing apparatus 1 can obtain the output image signal Vout having a high definition feeling by enhancing the edge of the image.
 [第1実施形態の第2の変形例]
 上述した第1実施形態では、変換画像解像度値Hyと原画像解像度値Hxとの水平解像度比(Hy/Hx>1)が整数である場合の例であった。第1実施形態の第2変形例では、水平解像度比が小数部を有する実数である場合(非整数である場合)について説明する。
 なお、本変形例では、第1実施形態における構成と差別化する必要がある構成について、新たな符号を付したり第1実施形態における構成の符号に“”(ダブルクォーテーションマーク)”を付加したりして区別する。そして、本変形例では、第1実施形態における構成と同一の構成については、その説明を省略する。
[Second Modification of First Embodiment]
The first embodiment described above is an example in which the horizontal resolution ratio (Hy / Hx> 1) between the converted image resolution value Hy and the original image resolution value Hx is an integer. In the second modification of the first embodiment, a case where the horizontal resolution ratio is a real number having a fractional part (a case of a non-integer) will be described.
In this modification, for the configuration that needs to be differentiated from the configuration in the first embodiment, a new code is added, or “” (double quotation mark) is added to the code of the configuration in the first embodiment. In this modification, the description of the same configuration as that in the first embodiment is omitted.
 本変形例では、水平解像度比が非整数となる原画像解像度値Hxおよび変換画像解像度値Hyが雑音低減部4”に供給された場合、雑音低減部4”は、この水平解像度比に第1の定数値を掛け合わせて得るタップ値Tpを挟む大小それぞれの最も近接した整数値をタップ値として、ノイズ検出の対象画素から水平方向左側にp個およびp+1個それぞれ離れた2画素を選択する。そして、雑音低減部4”は、p個目の画素の画素値とp+1個目の画素の画素値とのそれぞれに、タップ値Tpの小数部に応じた重み付けを行って両者を加算し画素値Xpを求める。 In the present modification, when the original image resolution value Hx and the converted image resolution value Hy with which the horizontal resolution ratio is a non-integer are supplied to the noise reduction unit 4 ″, the noise reduction unit 4 ″ uses the first horizontal resolution ratio. Two pixels that are p and p + 1 away from the noise detection target pixel in the horizontal direction are selected using the closest integer values that are close to each other across the tap value Tp obtained by multiplying the constant values of. Then, the noise reduction unit 4 ″ performs weighting according to the decimal part of the tap value Tp to each of the pixel value of the p-th pixel and the pixel value of the p + 1-th pixel, and adds the two values to each other. Xp is obtained.
 同様に、雑音低減部4”は、当該水平解像度比に第2の定数値を掛け合わせて得るタップ値Tnを挟む大小それぞれの最も近接した整数値をタップ値として、ノイズ検出の対象画素から水平方向右側にn個およびn+1個それぞれ離れた2画素を選択する。そして、雑音低減部4”は、n個目の画素の画素値とn+1個目の画素の画素値とのそれぞれに、タップ値Tnの小数部に応じた重み付けを行って両者を加算し画素値Xnを求める。 Similarly, the noise reduction unit 4 ″ performs horizontal detection from the target pixel for noise detection by using, as tap values, integer values closest to each other across the tap value Tn obtained by multiplying the horizontal resolution ratio by the second constant value. Two pixels that are separated from each other by n and n + 1 are selected on the right side of the direction. The noise reduction unit 4 ″ selects a tap value for each of the pixel value of the nth pixel and the pixel value of the n + 1th pixel. Weighting is performed according to the fractional part of Tn, and both are added to obtain a pixel value Xn.
 図11は、雑音低減部4”に含まれるサンプリング制御部の機能構成を表すブロック図である。ここでは、具体的な数値の例として、原画像解像度値Hx=“600”、変換後画像解像度値Hy=“1920”、第1の定数値Cp=“2”、第2の定数値Cn=“3”である例を用いて、同図に示すサンプリング制御部5aの構成及び動作を説明する。 FIG. 11 is a block diagram showing the functional configuration of the sampling control unit included in the noise reduction unit 4 ″. Here, as an example of specific numerical values, the original image resolution value Hx = “600”, the converted image resolution The configuration and operation of the sampling control unit 5a shown in the figure will be described using an example in which the value Hy = "1920", the first constant value Cp = "2", and the second constant value Cn = "3". .
 上記の例の場合、サンプリング制御部5aは、水平解像度比Hy/Hx=1920/600=3.2を計算し、タップ値Tp=Cp×Hy/Hx=2×3.2=6.4を計算する。
 次に、サンプリング制御部5aは、タップ値Tp=6.4よりも小さく且つ最も近い整数値Tpi=6と、タップ値Tp=6.4よりも大きく且つ最も近い整数値Tpi+1=7とを計算する。
 また、サンプリング制御部5aは、タップ値Tpの小数部Tpf=Tp-Tpi=6.4-6=0.4を計算し、1-Tpf=Tpi+1-Tp=7-6.4=0.6を計算する。Tpfは、タップ値TpからTpiまでの距離を表し、1-Tpfは、タップ値TpからTpi+1までの距離を表す。
 サンプリング制御部5aは、それぞれ計算したTpi,Tpi+1,Tpf,1-Tpfを後述する代表値決定部62bに供給する。
In the case of the above example, the sampling control unit 5a calculates the horizontal resolution ratio Hy / Hx = 1920/600 = 3.2, and sets the tap value Tp = Cp × Hy / Hx = 2 × 3.2 = 6.4. calculate.
Next, the sampling control unit 5a calculates the nearest integer value Tpi = 6 smaller than the tap value Tp = 6.4 and the nearest integer value Tpi + 1 = 7 larger than the tap value Tp = 6.4. To do.
Further, the sampling control unit 5a calculates the fractional part Tpf = Tp−Tpi = 6.4-6 = 0.4 of the tap value Tp, and 1−Tpf = Tpi + 1−Tp = 7−6.4 = 0.6. Calculate Tpf represents the distance from the tap value Tp to Tpi, and 1-Tpf represents the distance from the tap value Tp to Tpi + 1.
The sampling control unit 5a supplies the calculated Tpi, Tpi + 1, Tpf, and 1-Tpf to the representative value determination unit 62b described later.
 同様に、サンプリング制御部5aは、タップ値Tn=Cn×Hy/Hx=3×3.2=9.6を計算する。
 次に、サンプリング制御部5aは、タップ値Tn=9.6よりも小さく且つ最も近い整数値Tni=9と、タップ値Tn=9.6よりも大きく且つ最も近い整数値Tni+1=10とを計算する。
 また、サンプリング制御部5aは、タップ値Tnの小数部Tnf=Tn-Tni=9.6-9=0.4を計算し、1-Tnf=Tni+1-Tn=10-9.6=0.4を計算する。Tnfは、タップ値TnからTniまでの距離を表し、1-Tnfは、タップ値TnからTni+1までの距離を表す。
 サンプリング制御部5aは、それぞれ計算したTni,Tni+1,Tnf,1-Tnfを代表値決定部62bに供給する。
Similarly, the sampling control unit 5a calculates a tap value Tn = Cn × Hy / Hx = 3 × 3.2 = 9.6.
Next, the sampling control unit 5a calculates the nearest integer value Tni = 9 smaller than the tap value Tn = 9.6 and the nearest integer value Tni + 1 = 10 larger than the tap value Tn = 9.6. To do.
Further, the sampling control unit 5a calculates the fractional part Tnf = Tn−Tni = 9.6−9 = 0.4 of the tap value Tn, and 1−Tnf = Tni + 1−Tn = 10−9.6 = 0.4. Calculate Tnf represents the distance from the tap value Tn to Tni, and 1-Tnf represents the distance from the tap value Tn to Tni + 1.
The sampling control unit 5a supplies the calculated Tni, Tni + 1, Tnf, and 1-Tnf to the representative value determination unit 62b.
 図12は、上記の代表値決定部62bの機能構成を表すブロック図である。同図に示すように、代表値決定部62bは、第1実施形態における代表値決定部62において第1セレクタ622nおよび第2セレクタ622pを、第1セレクタ622nbおよび第2セレクタ622pbに変更した構成を有している。 FIG. 12 is a block diagram showing a functional configuration of the representative value determining unit 62b. As shown in the figure, the representative value determining unit 62b has a configuration in which the first selector 622n and the second selector 622p are changed to the first selector 622nb and the second selector 622pb in the representative value determining unit 62 in the first embodiment. Have.
 第1セレクタ622nbは、サンプリング制御部5aから供給されるTni,Tni+1,Tnf,1-Tnfをそれぞれ取り込む。そして、第1セレクタ622nbは、遅延回路621の-Nタップから-1タップまでのタップの中から、0(ゼロ)タップに対応する対象画素から水平方向右側にn個およびn+1個それぞれ離れた2画素の画素値が得られる2つのタップを、TniおよびTni+1にしたがって選択する。
 そして、第1セレクタ622nbは、Tniに基づくタップ選択により遅延回路621から得る画素値に1-Tnfを掛け合わせて重み付けを行うとともに、Tni+1に基づくタップ選択により遅延回路621から得る画素値にTnfを掛け合わせて重み付けを行う。
 そして、第1セレクタ622nbは、それぞれ重み付けした画素値を加算して画素値Xnを代表値選択部623に供給する。
The first selector 622nb takes in Tni, Tni + 1, Tnf, and 1-Tnf supplied from the sampling control unit 5a. Then, the first selector 622 nb is 2 2 apart from the target pixel corresponding to 0 (zero) tap to the right in the horizontal direction from the taps from −N tap to −1 tap of the delay circuit 621. Two taps from which the pixel value of the pixel is obtained are selected according to Tni and Tni + 1.
The first selector 622nb performs weighting by multiplying the pixel value obtained from the delay circuit 621 by tap selection based on Tni by 1-Tnf, and sets Tnf to the pixel value obtained from the delay circuit 621 by tap selection based on Tni + 1. Multiply weights.
Then, the first selector 622nb adds the weighted pixel values and supplies the pixel value Xn to the representative value selection unit 623.
 具体的には、第1セレクタ622nbは、例えば、サンプリング制御部5aから供給されるTni=9,Tni+1=10,Tnf=0.6,1-Tnf=0.4をそれぞれ取り込む。そして、第1セレクタ622nbは、遅延回路621のタップの中から、0(ゼロ)タップに対応する対象画素から水平方向右側に9個および10個それぞれ離れた2画素の画素値が得られる2つのタップを、Tni=9およびTni+1=10にしたがって選択する。
 そして、第1セレクタ622nbは、Tni=9に基づくタップ選択により遅延回路621から得る画素値に1-Tnf=0.4を掛け合わせて重み付けを行うとともに、Tni+1に基づくタップ選択により遅延回路621から得る画素値にTnf=0.6を掛け合わせて重み付けを行う。
 そして、第1セレクタ622nbは、それぞれ重み付けした画素値を加算(3.6+6.0)して画素値Xp=9.4を代表値選択部623に供給する。
Specifically, the first selector 622nb takes in, for example, Tni = 9, Tni + 1 = 10, Tnf = 0.6, and 1-Tnf = 0.4 supplied from the sampling control unit 5a. The first selector 622nb can obtain two pixel values of 9 pixels and 10 pixels separated from the target pixel corresponding to the 0 (zero) tap on the right side in the horizontal direction from the taps of the delay circuit 621. Taps are selected according to Tni = 9 and Tni + 1 = 10.
The first selector 622nb performs weighting by multiplying the pixel value obtained from the delay circuit 621 by tap selection based on Tni = 9 by 1-Tnf = 0.4, and from the delay circuit 621 by tap selection based on Tni + 1. Weighting is performed by multiplying the obtained pixel value by Tnf = 0.6.
The first selector 622nb adds the weighted pixel values (3.6 + 6.0), and supplies the pixel value Xp = 9.4 to the representative value selection unit 623.
 また、第2セレクタ622pbは、サンプリング制御部5aから供給されるTpi,Tpi+1,Tpf,1-Tpfをそれぞれ取り込む。そして、第2セレクタ622pbは、遅延回路621の1タップからNタップまでのタップの中から、0(ゼロ)タップに対応する対象画素から水平方向左側にp個およびp+1個それぞれ離れた2画素の画素値が得られる2つのタップを、TpiおよびTpi+1にしたがって選択する。
 そして、第2セレクタ622pbは、Tpiに基づくタップ選択により遅延回路621から得る画素値に1-Tpfを掛け合わせて重み付けを行うとともに、Tpi+1に基づくタップ選択により遅延回路621から得る画素値にTpfを掛け合わせて重み付けを行う。
 そして、第2セレクタ622pbは、それぞれ重み付けした画素値を加算して画素値Xpを代表値選択部623に供給する。
Further, the second selector 622pb takes in Tpi, Tpi + 1, Tpf, and 1-Tpf supplied from the sampling control unit 5a. The second selector 622pb includes two pixels that are p pixels and p + 1 pixels horizontally apart from the target pixel corresponding to the 0 (zero) tap among the taps from the 1 tap to the N tap of the delay circuit 621. Two taps from which pixel values are obtained are selected according to Tpi and Tpi + 1.
The second selector 622pb performs weighting by multiplying the pixel value obtained from the delay circuit 621 by tap selection based on Tpi by 1-Tpf, and sets Tpf to the pixel value obtained from the delay circuit 621 by tap selection based on Tpi + 1. Multiply weights.
Then, the second selector 622pb adds the weighted pixel values and supplies the pixel value Xp to the representative value selection unit 623.
 具体的には、第2セレクタ622pbは、例えば、サンプリング制御部5aから供給されるTpi=6,Tpi+1=7,Tpf=0.4,1-Tpf=0.6をそれぞれ取り込む。そして、第2セレクタ622pbは、遅延回路621のタップの中から、0(ゼロ)タップに対応する対象画素から水平方向左側に6個および7個それぞれ離れた2画素の画素値が得られる2つのタップを、Tpi=6およびTpi+1=7にしたがって選択する。 Specifically, the second selector 622pb takes in, for example, Tpi = 6, Tpi + 1 = 7, Tpf = 0.4, and 1-Tpf = 0.6 supplied from the sampling control unit 5a. The second selector 622pb can obtain two pixel values of two pixels that are 6 pixels and 7 pixels horizontally apart from the target pixel corresponding to the 0 (zero) tap among the taps of the delay circuit 621. Taps are selected according to Tpi = 6 and Tpi + 1 = 7.
 そして、第2セレクタ622pbは、Tpi=6に基づくタップ選択により遅延回路621から得る画素値に1-Tpf=0.6を掛け合わせて重み付けを行うとともに、Tpi+1に基づくタップ選択により遅延回路621から得る画素値にTpf=0.4を掛け合わせて重み付けを行う。
 そして、第2セレクタ622pbは、それぞれ重み付けした画素値を加算(3.6+2.8)して画素値Xn=6.4を代表値選択部623に供給する。
The second selector 622pb performs weighting by multiplying the pixel value obtained from the delay circuit 621 by the tap selection based on Tpi = 6 by 1-Tpf = 0.6, and from the delay circuit 621 by the tap selection based on Tpi + 1. Weighting is performed by multiplying the obtained pixel value by Tpf = 0.4.
The second selector 622pb adds the weighted pixel values (3.6 + 2.8) and supplies the pixel value Xn = 6.4 to the representative value selection unit 623.
 [第2実施形態]
 第1実施形態では、雑音低減ユニット3は、原画像解像度値Hxおよび変換画像解像度値Hyを外部(例えば、CPU118)から供給を受けて取り込み、タップ値Tpおよびタップ値Tnを決定する例であった。
[Second Embodiment]
In the first embodiment, the noise reduction unit 3 is an example in which the original image resolution value Hx and the converted image resolution value Hy are received from the outside (for example, the CPU 118) and fetched to determine the tap value Tp and the tap value Tn. It was.
 しかし、例えば、図9に示した液晶テレビジョン受像機10におけるディスクドライブ102が、低解像度である原映像コンテンツを高解像度化した映像コンテンツを出力した場合、第1実施形態の雑音低減ユニット3は、もとの原映像コンテンツの解像度値が与えられないため、原画像に対して適切なタップ値Tpおよびタップ値Tnを決定することができない。 However, for example, when the disk drive 102 in the liquid crystal television receiver 10 shown in FIG. 9 outputs video content obtained by increasing the resolution of the original video content having a low resolution, the noise reduction unit 3 of the first embodiment is Since the resolution value of the original original video content is not given, an appropriate tap value Tp and tap value Tn cannot be determined for the original image.
 そこで、本発明の第2実施形態では、雑音低減ユニットが、供給されるアップコンバート画像信号UVにおける大元の原画像に対する適切なタップ値Tpおよびタップ値Tnを決定する例について説明する。 Therefore, in the second embodiment of the present invention, an example will be described in which the noise reduction unit determines an appropriate tap value Tp and tap value Tn for the original image in the supplied up-convert image signal UV.
 図13は、本発明の第2実施形態である画像処理装置の概略の機能構成を表すブロック図である。同図において、第1実施形態における構成と同一の構成については、同一の符号を付してその説明を省略する。
 同図に示すように、画像処理装置1aは、第1実施形態における画像処理装置1に対して、雑音低減ユニット3を雑音低減ユニット3aに変更した構成を有する。
FIG. 13 is a block diagram illustrating a schematic functional configuration of an image processing apparatus according to the second embodiment of the present invention. In the figure, the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
As shown in the figure, the image processing device 1a has a configuration in which the noise reduction unit 3 is changed to a noise reduction unit 3a with respect to the image processing device 1 in the first embodiment.
 雑音低減ユニット3aは、スケーラ部2から供給されるアップコンバート画像信号UVを取り込む。そして、雑音低減ユニット3aは、アップコンバート画像信号UVの周波数成分を分析して大元の原画像解像度値H(ハット)xと変換後画像解像度値H(ハット)yとを推定し、これら大元の原画像解像度値H(ハット)xと変換画像解像度値H(ハット)yとを用いてアップコンバート画像信号UVに含まれる水平方向のノイズ成分を低減し、出力画像信号Voutを出力する。 The noise reduction unit 3a takes in the up-converted image signal UV supplied from the scaler unit 2. The noise reduction unit 3a then analyzes the frequency component of the up-converted image signal UV to estimate the original original image resolution value H (hat) x and the converted image resolution value H (hat) y. A horizontal noise component included in the up-converted image signal UV is reduced using the original original image resolution value H (hat) x and the converted image resolution value H (hat) y, and an output image signal Vout is output.
 具体的には、雑音低減ユニット3aは、第1実施形態における雑音低減ユニット3に対して、解像度推定部9をさらに備えた構成を有する。
 解像度推定部9は、アップコンバート画像信号UVを取り込んでこのアップコンバート画像信号UVの空間周波数対画素値を分析し、大元の原画像解像度値H(ハット)xと変換後画像解像度値H(ハット)yとを推定する。
Specifically, the noise reduction unit 3a has a configuration further including a resolution estimation unit 9 with respect to the noise reduction unit 3 in the first embodiment.
The resolution estimator 9 captures the up-converted image signal UV, analyzes the spatial frequency versus pixel value of the up-converted image signal UV, and obtains the original original image resolution value H (hat) x and the converted image resolution value H ( Hat) y is estimated.
 具体的には、例えば、解像度推定部9は、アップコンバート画像信号UVのサンプリング周波数fsを検出し、ナイキスト周波数fn=fs/2を計算する。次に、解像度推定部9は、例えば、アップコンバート画像信号UVの空間周波数対輝度値の分布から、輝度値が分布する空間周波数帯域の上限値を検出する。例えば、アップコンバート画像信号UVの空間周波数対輝度値が図14に示す分布である場合、解像度推定部9は、輝度値が分布する空間周波数帯域の上限値をfn/3として検出する。次に、解像度推定部9は、推定水平解像度比H(ハット)y/H(ハット)xを、fn/(fn/3)=3として計算する。 Specifically, for example, the resolution estimation unit 9 detects the sampling frequency fs of the up-converted image signal UV and calculates the Nyquist frequency fn = fs / 2. Next, the resolution estimation unit 9 detects the upper limit value of the spatial frequency band in which the luminance value is distributed, for example, from the distribution of the spatial frequency versus the luminance value of the up-converted image signal UV. For example, when the spatial frequency versus luminance value of the up-converted image signal UV has the distribution shown in FIG. 14, the resolution estimation unit 9 detects the upper limit value of the spatial frequency band in which the luminance value is distributed as fn / 3. Next, the resolution estimation unit 9 calculates the estimated horizontal resolution ratio H (hat) y / H (hat) x as fn / (fn / 3) = 3.
 また、解像度推定部9は、アップコンバート画像信号UVから水平ラインを検出して変換後画像解像度値H(ハット)yを求める。次に、解像度推定部9は、上記計算した推定水平解像度比H(ハット)y/H(ハット)xに基づいて大元の原画像解像度値H(ハット)xを計算する。図14に示した例においては、大元の原画像解像度値H(ハット)x=H(ハット)y/3を計算する。次に、解像度推定部9は、大元の原画像解像度値H(ハット)xと変換後画像解像度値H(ハット)yとを雑音低減部4に供給する。 The resolution estimating unit 9 detects a horizontal line from the up-converted image signal UV and obtains a converted image resolution value H (hat) y. Next, the resolution estimation unit 9 calculates the original original image resolution value H (hat) x based on the calculated estimated horizontal resolution ratio H (hat) y / H (hat) x. In the example shown in FIG. 14, the original original image resolution value H (hat) x = H (hat) y / 3 is calculated. Next, the resolution estimation unit 9 supplies the original original image resolution value H (hat) x and the converted image resolution value H (hat) y to the noise reduction unit 4.
 第2実施形態によれば、第1実施形態により奏される効果に加えて、雑音低減ユニット3aが、スケーラ部2から供給されるアップコンバート画像信号UVにおける大元の原画像に対する適切なタップ値Tpおよびタップ値Tnを決定することができる。 According to the second embodiment, in addition to the effect achieved by the first embodiment, the noise reduction unit 3a can select an appropriate tap value for the original original image in the up-converted image signal UV supplied from the scaler unit 2. Tp and tap value Tn can be determined.
 [第3実施形態]
 第1実施形態および第2実施形態は、雑音低減部4が3タップ型メディアンフィルタによって、ノイズ成分が含まれる可能性の高い画素を検出して補正する例であった。本発明の第3実施形態は、ノイズ低減処理を実行するフィルタ回路の別の例である。
 本実施形態は、ノイズ低減処理を実行するフィルタ回路として、バイラテラルフィルタ(Bilateral Filter)を適用する例である。
[Third Embodiment]
The first embodiment and the second embodiment are examples in which the noise reduction unit 4 detects and corrects a pixel that is likely to contain a noise component by a 3-tap median filter. The third embodiment of the present invention is another example of a filter circuit that performs noise reduction processing.
The present embodiment is an example in which a bilateral filter is applied as a filter circuit that performs noise reduction processing.
 図15は、本発明の第3実施形態である画像処理装置における、雑音低減部の機能構成を表すブロック図である。同図において、第1実施形態における構成と同一の構成については、同一の符号を付してその説明を省略する。
 バイラテラルフィルタを一次元の3画素に限定すると、下記の式(3)のように表される。ただし、σおよびσは、処理対象の画素の範囲を決定するあらかじめ設定されたパラメータである。なお、σおよびσは、値が大きくなるほど処理対象の画素の範囲を広げることになる。
FIG. 15 is a block diagram illustrating a functional configuration of a noise reduction unit in the image processing apparatus according to the third embodiment of the present invention. In the figure, the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
When the bilateral filter is limited to one-dimensional three pixels, it is expressed as the following equation (3). However, σ 1 and σ 2 are preset parameters that determine the range of pixels to be processed. As σ 1 and σ 2 increase, the range of the pixel to be processed increases.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 バイラテラルフィルタは、非線形フィルタである。このバイラテラルフィルタをスケーラ部2の後段に配置することにより、第1実施形態と同様にノイズ成分を高域化することができる。 The bilateral filter is a non-linear filter. By disposing the bilateral filter in the subsequent stage of the scaler unit 2, the noise component can be increased in the same manner as in the first embodiment.
 図15に示すように、雑音低減部4aは、式(3)に示すバイラテラルフィルタを含んで構成される。雑音低減部4aにおいて、第1セレクタ622nは、タップ値Tnに基づくタップ選択によって遅延回路621から得られる画素値Xnをf(i+1)として出力する。また、遅延回路621は、0(ゼロ)タップから画素値X0をf(i+0)として出力する。また、第2セレクタ622pは、タップ値Tpに基づくタップ選択によって遅延回路621から得られる画素値Xpをf(i-1)として出力する。 As shown in FIG. 15, the noise reduction unit 4 a includes a bilateral filter represented by Expression (3). In the noise reduction unit 4a, the first selector 622n outputs the pixel value Xn obtained from the delay circuit 621 by tap selection based on the tap value Tn as f (i + 1). Further, the delay circuit 621 outputs the pixel value X0 as f (i + 0) from the 0 (zero) tap. Further, the second selector 622p outputs the pixel value Xp obtained from the delay circuit 621 by tap selection based on the tap value Tp as f (i−1).
 雑音低減部4aは、画素値f(i-1),f(i),f(i+1)に基づいて式(3)に基づく計算処理を実行して雑音低減後画像信号Yを出力する。 The noise reduction unit 4a executes a calculation process based on Expression (3) based on the pixel values f (i−1), f (i), and f (i + 1), and outputs a noise-reduced image signal Y.
 第3実施形態によれば、雑音低減部4aを備えた雑音低減ユニット3は、アップコンバート画像信号に含まれるノイズ成分を観察者の目に知覚されにくい高調波帯域に形成させることができる。よって、第3実施形態によれば、第1実施形態と同様に、画像処理装置1は、水平方向のノイズ成分を低減した出力画像信号Voutを得ることができる。
 また、画像のエッジ成分が高調波帯域に形成されるため、第1実施形態と同様に、画像処理装置1は、画像のエッジが強調されて高精細感がある出力画像信号Voutを得ることができる。
According to the third embodiment, the noise reduction unit 3 including the noise reduction unit 4a can form a noise component included in the up-converted image signal in a harmonic band that is difficult to be perceived by the observer. Therefore, according to the third embodiment, similarly to the first embodiment, the image processing apparatus 1 can obtain the output image signal Vout in which the noise component in the horizontal direction is reduced.
Further, since the edge component of the image is formed in the harmonic band, the image processing apparatus 1 can obtain the output image signal Vout having a high-definition feeling by enhancing the edge of the image, as in the first embodiment. it can.
 [その他の変形例]
 画像処理装置1,1aは、水平解像度のアップコンバート処理およびノイズ低減処理と、垂直解像度のアップコンバート処理およびノイズ低減処理との両方を実行するよう構成してもよい。
すなわち、スケーラ部(解像度変更部)2は、雑音成分が含まれた入力画像信号をフレーム画像における少なくとも一つの方向に高解像度化したアップコンバート画像信号を生成する。ここで、少なくとも一つの方向は、予め設計者によって決められているものとし、フレーム画像における水平方向もしくは垂直方向、または水平方向および垂直方向である。
[Other variations]
The image processing apparatuses 1 and 1a may be configured to execute both the horizontal resolution up-conversion process and noise reduction process, and the vertical resolution up-conversion process and noise reduction process.
That is, the scaler unit (resolution changing unit) 2 generates an up-converted image signal obtained by increasing the resolution of an input image signal including a noise component in at least one direction of a frame image. Here, it is assumed that at least one direction is determined in advance by a designer, and is a horizontal direction or a vertical direction, or a horizontal direction and a vertical direction in the frame image.
 また、上述した各実施形態では、スケーラ部2は、インタポーレーション処理を実行する例とした。スケーラ部2は、これ以外の方式によって水平方向解像度と垂直方向解像度とのうち少なくとも一方のアップコンバート処理を実行してもよい。例えば、スケーラ部2は、直線補間法、キュービックコンボリューション補間法等の公知の画素補間技術を適用して、解像度のアップコンバート処理を実行してもよい。 Moreover, in each embodiment mentioned above, the scaler part 2 was taken as the example which performs an interpolation process. The scaler unit 2 may execute up-conversion processing of at least one of the horizontal resolution and the vertical resolution by other methods. For example, the scaler unit 2 may execute a resolution up-conversion process by applying a known pixel interpolation technique such as a linear interpolation method or a cubic convolution interpolation method.
 また、各実施形態では、雑音低減部4,4”,4aは遅延部61を備え、雑音低減部4’は遅延部61’を備える例とした。別の例として、これらのように遅延部61,61’を備えずに、例えば雑音低減部4の場合、代表値決定部62の0(ゼロ)タップからノイズ検出の対象画素の画素値Doutを出力するようにしてもよい。 In each embodiment, the noise reduction units 4, 4 ″, 4 a are provided with a delay unit 61, and the noise reduction unit 4 ′ is provided with a delay unit 61 ′. For example, in the case of the noise reduction unit 4, the pixel value Dout of the noise detection target pixel may be output from the 0 (zero) tap of the representative value determination unit 62 without including 61 and 61 ′.
 また、代表値決定部62,62a,62bは代表値として中央値を選択する構成としたが、これ以外にも、例えば代表値として3画素の画素値の平均値を求めるようにしてもよい。 In addition, although the representative value determination units 62, 62a, and 62b are configured to select the median value as the representative value, other than this, for example, an average value of pixel values of three pixels may be obtained as the representative value.
 また、上述した第1実施形態および各変形例、ならびに第2実施形態、第3実施形態における画像処理装置の一部の機能をコンピュータで実現するようにしてもよい。この場合、その制御機能を実現するための画像処理プログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録された画像処理プログラムをコンピュータシステムに読み込ませ、実行することによって実現してもよい。なお、ここでいう「コンピュータシステム」とは、OS(Operating System)や周辺装置のハードウェアを含むものである。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、光ディスク、メモリカード等の可搬型記録媒体、コンピュータシステムに内蔵される磁気ハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバ装置やクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持するものを含んでもよい。また上記のプログラムは、前述した機能の一部を実現するためのものであってもよく、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせにより実現するものであってもよい。 In addition, a part of the functions of the image processing apparatus in the first embodiment and each modification described above, and in the second embodiment and the third embodiment may be realized by a computer. In this case, the image processing program for realizing the control function is recorded on a computer-readable recording medium, and the image processing program recorded on the recording medium is read by the computer system and executed. Also good. Here, the “computer system” includes an OS (Operating System) and hardware of peripheral devices. The “computer-readable recording medium” refers to a portable recording medium such as a flexible disk, a magneto-optical disk, an optical disk, and a memory card, and a storage device such as a magnetic hard disk built in the computer system. Furthermore, the “computer-readable recording medium” dynamically holds a program for a short time like a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line. In this case, it may include a device that holds a program for a certain period of time, such as a volatile memory inside a computer system serving as a server device or a client. Further, the above program may be for realizing a part of the functions described above, or may be realized by a combination with the program already recorded in the computer system. .
 以上、本発明の実施の形態について図面を参照して詳述したが、具体的な構成はその実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計等も含まれる。 The embodiment of the present invention has been described in detail above with reference to the drawings. However, the specific configuration is not limited to the embodiment, and includes design and the like within the scope not departing from the gist of the present invention.
 1 画像処理装置
 2 スケーラ部(解像度変更部)
 3,3a 雑音低減ユニット
 4,4-1,4-2,4-3,4a 雑音低減部
 5,5a サンプリング制御部
 6 雑音検出部
 7 雑音レベル検出部
 8 低減演算部
 9 解像度推定部
 10 液晶テレビジョン受像機
 21 アップサンプラ
 22 ローパスフィルタ
 61 遅延部
 62,62a,62b 代表値決定部
 63 比較部
 81 加算器
 82 減算器
 83 セレクタ
 108 映像処理回路
 621,621a 遅延回路
 622n,622nb 第1セレクタ
 622p,622pb 第2セレクタ
 623 代表値選択部
1 Image processing device 2 Scaler unit (resolution change unit)
3,3a Noise reduction unit 4,4-1,4-2,4-3,4a Noise reduction unit 5,5a Sampling control unit 6 Noise detection unit 7 Noise level detection unit 8 Reduction calculation unit 9 Resolution estimation unit 10 Liquid crystal television John Receiver 21 Upsampler 22 Low-pass filter 61 Delay unit 62, 62a, 62b Representative value determining unit 63 Comparison unit 81 Adder 82 Subtractor 83 Selector 108 Video processing circuit 621, 621a Delay circuit 622n, 622nb First selector 622p, 622pb Second selector 623 representative value selection unit

Claims (11)

  1.  雑音成分が含まれた入力画像信号をフレーム画像における少なくとも一つの方向に高解像度化したアップコンバート画像信号を生成する解像度変更部と、
     前記解像度変更部が生成した前記アップコンバート画像信号から雑音を含有する雑音含有画素を検出し、雑音成分が低減するように前記雑音含有画素の画素値を補正する雑音低減部と、
     を備えることを特徴とする画像処理装置。
    A resolution changing unit that generates an up-converted image signal obtained by increasing the resolution of an input image signal including a noise component in at least one direction of a frame image;
    Detecting a noise-containing pixel containing noise from the up-converted image signal generated by the resolution changing unit, and correcting a pixel value of the noise-containing pixel so as to reduce a noise component;
    An image processing apparatus comprising:
  2. 前記雑音低減部は、前記アップコンバート画像信号に含まれる雑音検出の対象画素の画素値と、前記アップコンバート画像信号に含まれる画素値であって前記解像度変更部が高解像度化した方向に前記対象画素を挟む二つの比較画素の画素値とに少なくとも基づいて前記雑音含有画素を検出する
     ことを特徴とする請求項1に記載の画像処理装置。
    The noise reduction unit includes a pixel value of a target pixel for noise detection included in the up-converted image signal and a pixel value included in the up-converted image signal in the direction in which the resolution changing unit increases the resolution. The image processing apparatus according to claim 1, wherein the noise-containing pixel is detected based at least on a pixel value of two comparison pixels sandwiching the pixel.
  3.  前記入力画像信号のフレーム画像における前記所定方向の解像度と前記アップコンバート画像信号のフレーム画像における前記所定方向の解像度との比に基づいて、前記比較画素のうち少なくともいずれか一つの比較画素と前記対象画素との間隔を決定するサンプリング制御部を備えることを特徴とする請求項2に記載の画像処理装置。 Based on the ratio between the resolution in the predetermined direction in the frame image of the input image signal and the resolution in the predetermined direction in the frame image of the up-converted image signal, at least one comparison pixel of the comparison pixels and the target The image processing apparatus according to claim 2, further comprising a sampling control unit that determines an interval between the pixels.
  4.  前記比は、小数部を有する実数であることを特徴とする請求項3に記載の画像処理装置。 4. The image processing apparatus according to claim 3, wherein the ratio is a real number having a decimal part.
  5.  複数の前記雑音低減部が縦列接続され、
     前記複数の雑音低減部それぞれの前記2画素間の間隔は、入力側から出力側に向けて短くなることを特徴とする請求項2から4のいずれか一項に記載の画像処理装置。
    A plurality of the noise reduction units are connected in cascade,
    5. The image processing apparatus according to claim 2, wherein an interval between the two pixels of each of the plurality of noise reduction units is shortened from the input side toward the output side.
  6.  前記少なくとも一つの方向は、前記フレーム画像における水平方向もしくは垂直方向、または水平方向および垂直方向であることを特徴とする請求項1から5のいずれか一項に記載の画像処理装置。 The image processing apparatus according to any one of claims 1 to 5, wherein the at least one direction is a horizontal direction or a vertical direction, or a horizontal direction and a vertical direction in the frame image.
  7.  前記雑音低減部は、3タップ型メディアンフィルタを含むことを特徴とする請求項1から6のいずれか一項に記載の画像処理装置。 The image processing apparatus according to any one of claims 1 to 6, wherein the noise reduction unit includes a 3-tap median filter.
  8.  前記雑音低減部は、バイラテラルフィルタを含むことを特徴とする請求項1から6のいずれか一項に記載の画像処理装置。 The image processing apparatus according to claim 1, wherein the noise reduction unit includes a bilateral filter.
  9.  解像度変更部が、雑音成分が含まれた入力画像信号をフレーム画像における少なくとも一つの方向に高解像度化したアップコンバート画像信号を生成する解像度変更ステップと、
     雑音低減部が、前記解像度変更ステップにおいて前記解像度変更部が生成した前記アップコンバート画像信号から雑音を含有する雑音含有画素を検出し、雑音成分が低減するように前記雑音含有画素の画素値を補正する雑音低減ステップと、
     を有することを特徴とする画像処理方法。
    A resolution changing step for generating an up-converted image signal obtained by increasing the resolution of the input image signal including the noise component in at least one direction in the frame image;
    A noise reduction unit detects a noise-containing pixel containing noise from the up-converted image signal generated by the resolution change unit in the resolution changing step, and corrects the pixel value of the noise-containing pixel so that the noise component is reduced Noise reduction step to
    An image processing method comprising:
  10.  コンピュータを、
     雑音成分が含まれた入力画像信号をフレーム画像における少なくとも一つの方向に高解像度化したアップコンバート画像信号を生成する解像度変更部と、
     前記解像度変更部が生成した前記アップコンバート画像信号から雑音を含有する雑音含有画素を検出し、雑音成分が低減するように前記雑音含有画素の画素値を補正する雑音低減部と、
     として機能させるための画像処理プログラム。
    Computer
    A resolution changing unit that generates an up-converted image signal obtained by increasing the resolution of an input image signal including a noise component in at least one direction of a frame image;
    Detecting a noise-containing pixel containing noise from the up-converted image signal generated by the resolution changing unit, and correcting a pixel value of the noise-containing pixel so as to reduce a noise component;
    Image processing program to function as
  11.  雑音成分が含まれた入力画像信号をフレーム画像における少なくとも一つの方向に高解像度化したアップコンバート画像信号を生成する解像度変更部と、
     前記解像度変更部が生成した前記アップコンバート画像信号から雑音を含有する雑音含有画素を検出し、雑音成分が低減するように前記雑音含有画素の画素値を補正する雑音低減部と、
     を備えることを特徴とする表示装置。
    A resolution changing unit that generates an up-converted image signal obtained by increasing the resolution of an input image signal including a noise component in at least one direction of a frame image;
    Detecting a noise-containing pixel containing noise from the up-converted image signal generated by the resolution changing unit, and correcting a pixel value of the noise-containing pixel so as to reduce a noise component;
    A display device comprising:
PCT/JP2011/077325 2010-11-30 2011-11-28 Image processing device, image processing method, image processing program, and display device WO2012073865A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-267698 2010-11-30
JP2010267698 2010-11-30

Publications (1)

Publication Number Publication Date
WO2012073865A1 true WO2012073865A1 (en) 2012-06-07

Family

ID=46171797

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/077325 WO2012073865A1 (en) 2010-11-30 2011-11-28 Image processing device, image processing method, image processing program, and display device

Country Status (1)

Country Link
WO (1) WO2012073865A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107449510A (en) * 2017-06-29 2017-12-08 成都旭光光电技术有限责任公司 A kind of ultraviolet light detection module

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07250264A (en) * 1994-03-10 1995-09-26 Nippon Hoso Kyokai <Nhk> Noise reducing circuit
JP2000125268A (en) * 1998-10-15 2000-04-28 Sony Corp Image data converting device and image data converting method
JP2005318096A (en) * 2004-04-27 2005-11-10 Sony Corp Device and method for processing information signal, program, and medium recording the same
JP2008311850A (en) * 2007-06-13 2008-12-25 Olympus Corp Image processing apparatus and endoscopic instrument equipped with the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07250264A (en) * 1994-03-10 1995-09-26 Nippon Hoso Kyokai <Nhk> Noise reducing circuit
JP2000125268A (en) * 1998-10-15 2000-04-28 Sony Corp Image data converting device and image data converting method
JP2005318096A (en) * 2004-04-27 2005-11-10 Sony Corp Device and method for processing information signal, program, and medium recording the same
JP2008311850A (en) * 2007-06-13 2008-12-25 Olympus Corp Image processing apparatus and endoscopic instrument equipped with the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107449510A (en) * 2017-06-29 2017-12-08 成都旭光光电技术有限责任公司 A kind of ultraviolet light detection module

Similar Documents

Publication Publication Date Title
JP5243833B2 (en) Image signal processing circuit, image display device, and image signal processing method
US8314890B2 (en) Image processing apparatus and image processing method
JP5436020B2 (en) Image processing apparatus and image processing method
US7995146B2 (en) Image processing apparatus and image processing method
KR20020008179A (en) System and method for improving the sharpness of a video image
US9390469B2 (en) System and process for image rescaling using adaptive interpolation kernal with sharpness and de-ringing control
JP2010041327A (en) Noise reduction apparatus and noise reduction method
US7623738B2 (en) Method, apparatus and a unit for image conversion
JP4762336B2 (en) Video processing apparatus and video processing method
JP2011081150A (en) Image processing apparatus and image processing method
JP5178579B2 (en) Image processing device
US20070258653A1 (en) Unit for and Method of Image Conversion
WO2012073865A1 (en) Image processing device, image processing method, image processing program, and display device
WO2012073866A1 (en) Signal processing device, signal processing method, signal processing program, and display device
JP5320538B1 (en) Image enhancement device and image enhancement method
JP2010073075A (en) Image signal processing apparatus, image signal processing method
US20100215286A1 (en) Image processing apparatus and image processing method
JP2008118374A (en) Picture quality control circuit and picture quality control method
JP2011048040A (en) Video signal processing apparatus, method of processing video signal, and program
JPH11346320A (en) Video signal processor
US20090153741A1 (en) Video filter and video processor and processing method using the same
JP7300164B2 (en) noise reduction method
JP2012526458A (en) Content Adaptive Scaler Based on Fallow Structure
JP4483407B2 (en) Video signal processing device
JP4111108B2 (en) Image processing apparatus and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11844743

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11844743

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP