WO2012073693A1 - 逆浸透膜分離装置、その起動方法、および透過水の製造方法 - Google Patents

逆浸透膜分離装置、その起動方法、および透過水の製造方法 Download PDF

Info

Publication number
WO2012073693A1
WO2012073693A1 PCT/JP2011/076357 JP2011076357W WO2012073693A1 WO 2012073693 A1 WO2012073693 A1 WO 2012073693A1 JP 2011076357 W JP2011076357 W JP 2011076357W WO 2012073693 A1 WO2012073693 A1 WO 2012073693A1
Authority
WO
WIPO (PCT)
Prior art keywords
reverse osmosis
osmosis membrane
pressure
pump
control valve
Prior art date
Application number
PCT/JP2011/076357
Other languages
English (en)
French (fr)
Inventor
富岡一憲
小島令嗣
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CN201180058023.2A priority Critical patent/CN103237592B/zh
Priority to AU2011338029A priority patent/AU2011338029A1/en
Priority to JP2011550764A priority patent/JP5974484B2/ja
Publication of WO2012073693A1 publication Critical patent/WO2012073693A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/06Energy recovery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/12Controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/24Specific pressurizing or depressurizing means
    • B01D2313/246Energy recovery means

Definitions

  • the present invention relates to a reverse osmosis membrane separation apparatus that separates mixed components or dissolved components in a fluid using a reverse osmosis membrane module.
  • a reverse osmosis membrane separation apparatus used in seawater desalination or the like basically supplies a liquid to be processed to a predetermined pressure via a high-pressure pump 1 to a reverse osmosis membrane module unit 2 as shown in FIG.
  • the reverse osmosis action of the reverse osmosis membrane module unit 2 separates dissolved components in the liquid to be treated to obtain permeated water.
  • the reverse osmosis membrane module unit 2 has a separation membrane element 22 (for example, a spiral type separation membrane element) constituted by a reverse osmosis membrane (separation membrane) inserted in a cylindrical vessel 21 as shown in FIG.
  • the unit structure is composed of a module unit having one or a plurality of membrane modules 20.
  • the required power of the high-pressure pump may be reduced by using the energy of high-pressure concentrated water discharged from the device.
  • Concentrated water energy recovery methods include the use of reverse pumps, turbochargers, and Pelton turbines. Recently, the use of pressure exchange type energy recovery devices with high energy recovery efficiency is increasing. .
  • FIG. 3 shows a general configuration of a reverse osmosis membrane separation device equipped with a pressure exchange type energy recovery device.
  • the liquid to be treated is distributed and supplied to the high pressure pump 1 and the pressure exchange type energy recovery device 3.
  • the liquid to be treated supplied to the high-pressure pump 1 is increased to a predetermined pressure and supplied to the reverse osmosis membrane module unit 2.
  • the pressure exchange type energy recovery device 3 is also supplied with high-pressure concentrated water discharged from the reverse osmosis membrane module unit 2.
  • the liquid to be treated is boosted by receiving the energy of the high-pressure concentrated water and discharged as a high-pressure liquid to be treated.
  • the high-pressure concentrated water that has transferred the stored energy to the liquid to be treated has a reduced pressure and is discharged as low-pressure concentrated water.
  • the high-pressure liquid to be treated discharged from the pressure exchange type energy recovery device 3 is supplied to the pressurizing pump 4, the pressure is increased to the same pressure as the liquid to be treated that has been pressurized by the high-pressure pump 1, and the liquid is discharged from the high-pressure pump 1. After merging with the liquid to be treated, it is supplied to the reverse osmosis membrane module unit 2.
  • the general operation start-up procedure of the reverse osmosis membrane separation apparatus equipped with such a pressure exchange type energy recovery device 3 first supplies the liquid to be treated only to the pressure exchange type energy recovery device 3.
  • the flow rate of the liquid to be treated is controlled by a flow rate control valve 5 provided in the concentrated water discharge line discharged from the pressure exchange type energy recovery device 3 so as to be substantially equal to the amount of concentrated water during steady operation.
  • the pressure pump 4 is started so that the flow of the liquid to be treated becomes the pressure exchange type energy recovery device 3, the pressure pump 4, the reverse osmosis membrane module unit 2, the pressure exchange type energy recovery device 3, and the discharge. .
  • the rotational speed of the motor of the pressurizing pump 4 is changed by a frequency converter (inverter) so that the flow rate of the liquid to be treated discharged from the pressure exchange type energy recovery device 3 is also substantially equal to the amount of concentrated water during steady operation. It is common to control. At this stage, the pressure of the liquid to be treated is low, and the dissolved components are not separated in the reverse osmosis membrane.
  • the amount of liquid to be processed discharged from the high-pressure pump 1 starts to flow from a small amount and gradually increases, and the reverse osmosis membrane module unit 2 is disposed on the discharge side of the high-pressure pump 1 as shown in FIG.
  • a flow rate adjusting valve 6 for adjusting the flow rate of the liquid to be processed supplied to the motor is provided, or the motor rotation speed of the high pressure pump is controlled by a frequency converter (inverter) 7 as shown in FIG.
  • the fact that permeate is obtained through the reverse osmosis membrane means that the inlet pressure of the reverse osmosis membrane module unit 2 needs to be equal to or higher than the osmotic pressure of the liquid to be treated.
  • the osmotic pressure of the osmotic membrane module unit 2 needs to be as high as about 3 MPa.
  • the inlet pressure of the reverse osmosis membrane module unit 2 is about the pushing pressure of the liquid to be treated until the high pressure pump 1 is started.
  • the inlet pressure of the reverse osmosis membrane module unit 2 is increased to about 3 MPa of the osmotic pressure of the liquid to be treated, and the reverse osmosis membrane module unit 2 is suddenly pressurized.
  • the physical properties of the reverse osmosis membrane may be deteriorated by the pressure shock, and the physical properties of the reverse osmosis membrane.
  • the deterioration of the reverse osmosis membrane module unit 2 causes, for example, a decrease in the desalination rate, and also reduces the reverse osmosis treatment capability.
  • Patent Document 1 proposes a method of gradually increasing the inlet pressure using a bypass flow path and a bypass flow rate control valve that bypass the reverse osmosis membrane module unit on the high-pressure pump discharge side.
  • the amount of concentrated water is controlled by a flow control valve provided in the drain line of the concentrated water discharged from the pressure exchange type energy recovery device, and pressure exchange
  • the flow rate of the liquid to be treated discharged from the energy recovery system is also controlled by using a frequency converter (inverter) so that the motor speed of the pressurization pump is approximately equal to the amount of concentrated water during steady operation.
  • the liquid to be treated discharged from the high pressure pump when the high pressure pump is started is discharged from the bypass flow control valve. No.
  • the high-pressure pump is controlled by a frequency converter, this method can also be started, but in the case of a large reverse osmosis membrane separator, the motor capacity of the high-pressure pump is large and the frequency converter is very expensive. Therefore, this frequency conversion device is often not equipped.
  • the bypass flow rate control valve is fully opened and the high pressure pump is started, the high pressure pump trips due to overload, and the device itself cannot be started.
  • the bypass flow rate control valve is fixed so that the minimum flow rate of the high-pressure pump is secured, and the high-pressure pump can be started by starting the high-pressure pump.
  • the osmosis membrane module unit is rapidly applied with a pressure higher than the steady operation value, and it is impossible to gradually increase the inlet pressure.
  • the object of the present invention is to prevent a rapid pressure change to the reverse osmosis membrane module at the start of operation in a reverse osmosis membrane separation device equipped with an energy recovery device, effectively reducing the physical properties of the reverse osmosis membrane.
  • An object of the present invention is to provide a simple reverse osmosis membrane separation device that can be prevented.
  • the present invention for solving the above-mentioned problems is characterized by any one of the following (1) to (4).
  • the reverse osmosis membrane separation device further comprising a pump C for supplying a liquid to be processed to the pump A and the energy recovery device, and a frequency converter for controlling the rotational speed of the pump C. .
  • a reverse osmosis membrane module at the start of starting a high-pressure pump by adjusting the bypass flow rate using a flow rate control valve provided in the bypass channel It is possible to gradually increase the pressure of the liquid to be treated, which can prevent the deterioration of the physical properties of the reverse osmosis membrane module simply and effectively.
  • FIG. 3 It is a figure which shows schematic structure of a reverse osmosis membrane separator. It is a figure which shows the general structure of a reverse osmosis membrane module unit. It is a figure showing a schematic structure of a reverse osmosis membrane separation device equipped with a pressure exchange type energy recovery device. It is a figure which shows schematic structure which equipped the high-pressure pump discharge part of FIG. 3 with the flow control valve. It is a figure which shows schematic structure which equipped the high-pressure pump of FIG. 3 with the frequency converter. It is a figure showing a schematic structure of a reverse osmosis membrane separation device concerning an embodiment of the present invention. It is a figure which shows schematic structure of the reverse osmosis membrane separator which concerns on another embodiment of this invention.
  • the reverse osmosis membrane separation apparatus shown in FIG. 6 is a schematic configuration of an apparatus for separating mixed or dissolved components in a fluid.
  • the liquid to be treated such as seawater is distributed and supplied to the high pressure pump 1 and the pressure exchange type energy recovery device 3.
  • the liquid to be treated supplied to the high-pressure pump 1 is increased to a predetermined pressure, for example, about 6.0 MPa, and supplied to the reverse osmosis membrane module unit 2.
  • the pressure exchange type energy recovery device 3 is supplied with the liquid to be distributed and the high-pressure concentrated water discharged from the reverse osmosis membrane module unit 2.
  • the liquid to be treated receives the energy of the high-pressure concentrated water, the pressure is increased, and the liquid is discharged as the high-pressure liquid to be treated.
  • the high-pressure concentrated water whose stored energy has been transferred to the liquid to be treated is reduced in pressure and discharged as low-pressure concentrated water.
  • the high-pressure liquid to be treated discharged from the pressure exchange type energy recovery device 3 is supplied to the pressurizing pump 4, and the pressure of the high-pressure liquid to be treated is increased to the same pressure as the liquid to be treated that has been pressurized by the high-pressure pump 1.
  • the reverse osmosis membrane module unit 2 receives the liquid to be treated that has been increased to a predetermined pressure, and obtains permeated water and concentrated water from which dissolved components have been separated by reverse osmosis.
  • a flow rate control valve 6 for controlling the flow rate of the liquid to be processed discharged from the high-pressure pump 1 is installed on the discharge side of the high-pressure pump 1. As described above, the flow rate of the liquid to be processed discharged from the high-pressure pump 1 is Therefore, the flow rate control valve 6 generally controls the flow rate of the permeated water flow meter 9 installed in the permeated water pipe from the permeated water amount control unit 10 in order to control the permeated water amount. Is.
  • a bypass flow path for bypassing the reverse osmosis membrane module unit 2 from the flow control valve 6 and a flow control valve 8 for controlling the bypass amount provided in the bypass flow path are installed.
  • 8 is the flow rate from the flow meter 11 installed on the supply side of the high pressure pump 1 and its minimum flow rate control unit 12 to ensure the minimum flow rate (minimum flow) of the high pressure pump 1 when the reverse osmosis membrane separation device is started. It is characterized by being controlled.
  • the liquid to be treated is supplied only to the pressure exchange type energy recovery device 3.
  • the flow rate of the liquid to be treated is controlled by a flow rate adjusting valve 5 provided in the concentrated water discharge line discharged from the pressure exchange type energy recovery device 3 so as to be substantially equal to the concentrated water amount in the steady operation.
  • the pressure pump 4 is started so that the flow of the liquid to be treated becomes the pressure exchange type energy recovery device 3, the pressure pump 4, the reverse osmosis membrane module unit 2, the pressure exchange type energy recovery device 3, and the discharge. .
  • the rotational speed of the motor of the pressurizing pump 4 is changed by a frequency converter (inverter) so that the flow rate of the liquid to be treated discharged from the pressure exchange type energy recovery device 3 is also substantially equal to the amount of concentrated water during steady operation. It is common to control. At this stage, the pressure of the liquid to be treated is low, and the separation of dissolved components in the reverse osmosis membrane is not performed.
  • a frequency converter inverter
  • the high-pressure pump 1 is started, but it is necessary to increase the flow rate of the high-pressure pump 1 to the minimum flow rate (minimum flow) of the high-pressure pump 1 immediately after the start-up in order to prevent excessive vibration and heating damage. Therefore, the high pressure pump 1 is started by setting the flow rate control valve 6 and the flow rate control valve 8 to a predetermined opening degree in advance so as to ensure the minimum flow rate. Specifically, the initial opening degree of the flow control valve 6 is determined in consideration of the secondary pressure loss of the flow control valve 6 and the pressure loss of the flow control valve 8 when the flow control valve 8 is fully opened.
  • the pressure on the input side of the flow control valve 6 depends on the flow characteristics of the high-pressure pump 1 but is higher than the rated pressure, for example, 7.0 MPa.
  • the inlet pressure of the unit 2 is about 0.5 MPa because the liquid to be treated discharged from the high-pressure pump 1 is discharged from the flow control valve 8 to the bypass side because the flow control valve 8 is fully open, and the pressure hardly rises. It is.
  • the flow rate control valve 6 is gradually opened according to a command from the permeated water amount control unit 10. Then, although the discharge amount of the high-pressure pump 1 increases instantaneously, the discharge amount of the high-pressure pump 1 is controlled by the flow control valve 8 so that the flow rate of the high-pressure pump 1 becomes the minimum flow rate by the function of the high-pressure pump minimum flow rate control unit 12. Therefore, the flow rate control valve 8 is closed and the discharge amount of the high pressure pump 1 maintains the minimum flow rate.
  • the inlet pressure of the reverse osmosis membrane module unit 2 is increased by the flow control valve 6 being opened and the flow control valve 8 being closed.
  • the reverse osmosis membrane module inlet pressure gradually increases, and when the inlet pressure of the reverse osmosis pressure module unit 2 reaches, for example, 3.0 MPa, the permeate begins to be discharged. .
  • the discharge rate of the high-pressure pump 1 becomes the same as the permeate flow rate of the reverse osmosis membrane module unit 2, and thereafter the flow rate control valve 6 is gradually turned until the permeate flow rate meter 9 reaches the rated flow rate by the permeate flow rate control unit 10.
  • the control to open is continued, and the permeated water amount reaches the rated flow rate, the start-up of this apparatus is finished.
  • program control for gradually increasing the flow rate setting value of the permeate flow rate control unit 10 to the rated water amount over 300 seconds, and limiting the rate of change of the flow rate control valve 6 that is the operating end in order to prevent extreme pressure and flow rate fluctuations. It is good to provide.
  • the high-pressure pump 1 and the pressure pump 4 are vortex pumps or plunger pumps
  • the flow control valve 6 and the flow control valve 8 are globe valves, cage valves, or needle valves.
  • the bypassed liquid to be processed may be drained out of the system, but may be returned to the tank or the like storing the liquid to be processed and used again as the liquid to be processed.
  • the inlet pressure of the reverse osmosis membrane module unit 2 is increased by the permeated water amount control unit 10 and the high pressure pump minimum flow rate control unit 12 over a set time, but the reverse osmosis membrane as shown in FIG.
  • cascade control is performed from the inlet pressure controller 14 to the permeate flow rate controller 10 to control the valve opening degree of the flow control valve 6. Also good.
  • the required inlet pressure of the reverse osmosis membrane module unit 2 varies depending on the water quality and water temperature of the liquid to be treated. In normal operation, if the required pressure at the inlet to the flow rate control valve 6 is high in response to a command from the permeate flow rate control unit 10 for this change, the flow rate control valve 6 opens, and conversely to the flow rate control valve 6. When the required pressure at the inlet is low, the flow control valve 6 is adjusted so as to be in the closing direction, corresponding to the increase or decrease in the required pressure at the inlet of the reverse osmosis membrane module unit 2.
  • the required pressure at the inlet of the reverse osmosis membrane module 2 is obtained by adding the discharge pressure of the high-pressure pump 1 to the discharge pressure of the supply pump 15 and taking into account the motive energy loss at the flow rate control valve 6 unless the slight pressure loss of the piping is taken into consideration. It can be obtained by subtracting the minutes.
  • the required inlet pressure of the reverse osmosis membrane module 2 is 7.5 MPa.
  • the flow rate control valve 6 must lose 0.5 MPa of motive energy.
  • the frequency converter (inverter) 7 is installed in the supply pump 15 at this time, the output rotation speed of the supply pump 15 is adjusted by converting the supply power frequency to the supply pump 15, and the supply pump 15 By reducing the discharge pressure from the rated 1.0 MPa to 0.5 MPa, it is possible to eliminate wasteful consumption of electric power energy. By implementing this method, there is no need to waste power energy by the flow control valve 6.
  • the frequency converter (inverter) 7 may be installed in the supply pump 15 for the water to be treated to suppress wasteful power energy consumption. In such a case, the flow control valve 6 and the bypass described above may be used. A starting method and an operating method using the flow control valve 5 provided in the line are effective.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

エネルギー回収装置を装備した逆浸透膜分離装置において、運転開始時における逆浸透膜モジュールへの急激な圧力変化を防止し、逆浸透膜の物理的性質の劣化を効果的に防ぐために、被処理液の一部を所定の圧力に高めて逆浸透膜モジュールユニット(2)に供給する高圧ポンプ(1)と、残りの被処理液を逆浸透膜モジュール(2)より排出される濃縮水の圧力を利用して昇圧するエネルギー回収装置(3)と、エネルギー回収装置(3)で昇圧された被処理液を更に所定の圧力に高めて逆浸透膜モジュールユニット(2)に供給する加圧ポンプ(4)と、高圧ポンプ(1)から吐出される被処理液の流量を調整する流量制御弁(6)と、流量制御弁(6)から逆浸透膜モジュールユニット(2)に対してバイパスするバイパス流路と、前記バイパス流路に設けられて被処理液のバイパス量を調整する流量制御弁(8)とを備えることを特徴とする逆浸透膜分離装置とする。

Description

逆浸透膜分離装置、その起動方法、および透過水の製造方法
 本発明は、逆浸透膜モジュールを用いて流体中の混合成分または溶解成分を分離する逆浸透膜分離装置に関するものである。
 海水淡水化などで使用される逆浸透膜分離装置は、基本的には図1に示すように、被処理液を高圧ポンプ1を介して所定の圧力に高めて逆浸透膜モジュールユニット2に供給し、この逆浸透膜モジュールユニット2の逆浸透作用により被処理液中の溶解成分を分離させ、透過水を得るように構成される。
 ところで、逆浸透膜モジュールユニット2は、図2のように、筒状ベッセル21の中に逆浸透膜(分離膜)から構成した分離膜エレメント22(例えばスパイラル型の分離膜エレメント)を内挿してなる単位構造体の膜モジュール20を1本若しくは複数本有したモジュールユニットにより構成される。膜モジュール20の片端部にある流通口23に海水などの被処理液を加圧供給すると、各段の分離膜エレメント22で分離膜を介して溶解成分が分離され、分離後の低圧透過水が中心管24を経て透過水排出管25から排出し、また高圧の濃縮水は流通口23がある端部のもう一方の端部にある濃縮水排出管26から排出される。
 さて、このような逆浸透膜分離装置においては、装置より排出される高圧の濃縮水のエネルギーを利用し高圧ポンプの所要動力の低減を図ることがある。濃縮水のエネルギー回収方法としては、逆転ポンプ、ターボチャージャーやペルトン水車を使用したりする場合があるが、最近ではエネルギー回収効率が高い圧力交換式のエネルギー回収装置を採用するケースが増加している。
 ここで、圧力交換式のエネルギー回収装置を装備した逆浸透膜分離装置の一般的な構成を図3に示す。被処理液は高圧ポンプ1と圧力交換式エネルギー回収装置3に分配供給される。高圧ポンプ1に供給された被処理液は所定の圧力に高められて逆浸透膜モジュールユニット2に供給される。圧力交換式エネルギー回収装置3には、逆浸透膜モジュールユニット2から排出される高圧濃縮水も供給される。圧力交換式エネルギー回収装置3の内部で被処理液は高圧濃縮水のエネルギーを授受されることで昇圧され高圧被処理液として排出される。一方、保有エネルギーを被処理液に授受した高圧濃縮水は、圧力が低下し低圧濃縮水として排出される。圧力交換式エネルギー回収装置3から排出された高圧被処理液は加圧ポンプ4に供給され、高圧ポンプ1で昇圧された被処理液と同じ圧力まで圧力を高められ、高圧ポンプ1から吐出された被処理液と合流後、逆浸透膜モジュールユニット2に供給される。
 このような圧力交換式エネルギー回収装置3を装備した逆浸透膜分離装置の一般的な運転起動手順は、まずは被処理液を圧力交換式エネルギー回収装置3のみに供給する。この被処理液の流量は定常運転時の濃縮水量とほぼ同等となるように圧力交換式エネルギー回収装置3から排出される濃縮水の排出ラインに設けた流量制御弁5で制御される。次に加圧ポンプ4を起動し被処理液の流れが、圧力交換式エネルギー回収装置3、加圧ポンプ4、逆浸透膜モジュールユニット2、圧力交換式エネルギー回収装置3、排出となるようにする。この時、圧力交換式エネルギー回収装置3から排出された被処理液の流量もまた定常運転時の濃縮水量とほぼ同等となるように加圧ポンプ4のモーター回転数を周波数変換装置(インバーター)で制御するのが一般的である。なお、この段階では被処理液の圧力は低圧であり逆浸透膜での溶解成分の分離は行われていない。
 次に高圧ポンプ1を起動する。高圧ポンプ1の起動により被処理液が流れ出すと加圧ポンプ4を介して流れている被処理液と合流し逆浸透膜モジュールユニット2に供給される。加圧ポンプ4を介して流れる被処理液流量は流量調整弁5と加圧ポンプ4のモーター回転数制御により定常運転時の濃縮水量とほぼ同等となるように常に流量制御されているため、高圧ポンプ1を介して吐出された分の被処理液量、すなわち逆浸透膜モジュールユニット2に供給される被処理液量が定常運転時の濃縮水量を超過した分の被処理液量分だけが逆浸透膜を介し溶解成分が分離された透過水として外部に排出されることになる。
 このとき高圧ポンプ1から吐出される被処理液量を少量から流し始め、徐々に増加していくのが一般的であり、図4のように高圧ポンプ1の吐出側に逆浸透膜モジュールユニット2に供給する被処理液流量を調整する流量調整弁6を設けるか、図5のように高圧ポンプのモーター回転数を周波数変換装置(インバーター)7で制御する。
 さて、逆浸透膜を介し透過水が得られるということは、逆浸透膜モジュールユニット2の入口圧力が被処理液の浸透圧以上になることが必要となり、被処理液が例えば海水の場合、逆浸透膜モジュールユニット2の浸透圧は3MPa程度と高圧である必要がある。
 このように圧力交換式エネルギー回収装置3を装備した逆浸透膜分離装置の運転開始時は、高圧ポンプ1を起動するまでは、逆浸透膜モジュールユニット2の入口圧力は被処理液の押し込み圧力程度、例えば0.3MPa程度しかないが、高圧ポンプ1を一旦起動すると、例え流量制御弁6を微開にして被処理液がわずかしか流れないようにしても、前記の通り被処理液の排出先が無いため、逆浸透膜モジュールユニット2の入口圧力は被処理液の浸透圧の3MPa程度まで高められ、逆浸透膜モジュールユニット2に急激に圧力が掛かることとなる。
 高圧の被処理液(海水等)が逆浸透膜モジュールユニット2に対し急激に加えられると、その圧力衝撃によって逆浸透膜の物理的性質が劣化するおそれがあり、また逆浸透膜の物理的性質の劣化は逆浸透膜モジュールユニット2において、例えば脱塩率の低下の要因となり、逆浸透処理能力を低下させることにもなる。
 これに対して、特許文献1には高圧ポンプ吐出側に逆浸透膜モジュールユニットに対して、バイパスするバイパス流路とバイパス流量制御弁を用いて入口圧力を徐々に昇圧する方法が提案されているが、圧力交換式エネルギー回収装置を装備した逆浸透膜分離装置の場合、濃縮水量は圧力交換式エネルギー回収装置から排出される濃縮水の排出ラインに設けた流量調整弁により制御され、また圧力交換式エネルギー回収装置から排出された被処理液の流量もまた定常運転時の濃縮水量とほぼ同等となるように加圧ポンプのモーター回転数を周波数変換装置(インバーター)を用いて制御されているため、入口圧力の急激な上昇を抑えるためには高圧ポンプ起動時に高圧ポンプより吐出される被処理液をバイパス流量調節弁より排出させるしかない。
 高圧ポンプが周波数変換装置により制御されている場合にはこの方法でも起動することは可能であるが、大型の逆浸透膜分離装置の場合、高圧ポンプのモーター容量が大きく周波数変換装置も非常に高額になってしまうため、この周波数変換装置を装備しないことが多い。その様な場合、バイパス流量調節弁を全開とし高圧ポンプを起動すると高圧ポンプが過負荷によりトリップしてしまいこの装置自体を起動することは出来ない。またこの状況を高圧ポンプのトリップを防ぐべくバイパス流量調節弁を高圧ポンプの最低流量を確保するよう弁開度を固定し、高圧ポンプを起動すれば高圧ポンプは起動可能となるが、このとき逆浸透膜モジュールユニットには定常運転値以上の圧力が急激にかかることとなり、入口圧力を徐々に昇圧するのは不可能である。
特開2001-113136号公報
 本発明の目的は、エネルギー回収装置を装備した逆浸透膜分離装置において、運転開始時における逆浸透膜モジュールへの急激な圧力変化を防止し、逆浸透膜の物理的性質の劣化を効果的に防ぐことのできる簡易な逆浸透膜分離装置を提供することにある。
 前記課題を解決するための本発明は、次の(1)から(4)のいずれかを特徴とするものである。
 (1)被処理液の一部を所定の圧力に高めて逆浸透膜モジュールに供給するポンプAと、残りの被処理液を前記逆浸透膜モジュールより排出される濃縮水の圧力を利用して昇圧するエネルギー回収装置と、前記エネルギー回収装置で昇圧された被処理液を更に所定の圧力に高めて前記逆浸透膜モジュールに供給するポンプBと、前記ポンプAから吐出される被処理液の流量を調整する流量制御弁Aと、前記流量制御弁Aから前記逆浸透膜モジュールに対してバイパスするバイパス流路と、前記バイパス流路に設けられて前記被処理液のバイパス量を調整する流量制御弁Bとを備えることを特徴とする逆浸透膜分離装置。
 (2)さらにポンプAとエネルギー回収装置に被処理液を供給するポンプCと、ポンプCを回転数制御する周波数変換器とを備えることを特徴とする(1)に記載の逆浸透膜分離装置。
 (3)(1)に記載の逆浸透膜分離装置を起動する方法であって、ポンプAの起動前に被処理液がエネルギー回収装置、加圧ポンプ、逆浸透膜モジュール、エネルギー回収装置の順に流れて排出されるように調整した後、流量制御弁A及び流量制御弁Bを所定の開度に設定しながらポンプAを起動し、その後、逆浸透膜モジュールの入口圧力が所定の圧力まで上昇するまで、流量制御弁Aが開方向、流量制御弁Bが閉方向となるように流量制御弁Aと流量制御弁Bを段階的に制御することを特徴とする逆浸透膜分離装置の起動方法。
 (4)(3)に記載の逆浸透膜分離装置の起動方法によって逆浸透膜分離装置を起動した後、被処理液を逆浸透膜モジュールに供給して透過水を得る透過水の製造方法。
 本発明により、エネルギー回収装置を装備した逆浸透膜分離装置において、バイパス流路に設けられた流量制御弁を用いて、そのバイパス流量を調整することで、高圧ポンプ起動開始時の逆浸透膜モジュールに加えられる被処理液の圧力を徐々に昇圧させることができ、簡易的かつ効果的に逆浸透膜モジュールの物理的性質の劣化を防止することができる。
逆浸透膜分離装置の概略構成を示す図である。 逆浸透膜モジュールユニットの一般的な構造を示す図である。 圧力交換式エネルギー回収装置を装備した逆浸透膜分離装置の概略構成を示す図である。 図3の高圧ポンプ吐出部に流量制御弁を装備した概略構成を示す図である。 図3の高圧ポンプに周波数変換装置を装備した概略構成を示す図である。 本発明の実施形態に係る逆浸透膜分離装置の概略構成を示す図である。 本発明の別の実施形態に係る逆浸透膜分離装置の概略構成を示す図である。
 本発明の逆浸透膜分離装置を図6を参照しながら説明する。
 図6に示す逆浸透膜分離装置は、流体中の混合または溶解成分を分離する装置の概略構成である。海水などの被処理液は高圧ポンプ1と圧力交換式エネルギー回収装置3に分配供給される。高圧ポンプ1に供給された被処理液は所定の圧力、例えば6.0MPa程度まで高められて逆浸透膜モジュールユニット2に供給される。圧力交換式エネルギー回収装置3には分配供給される被処理液と逆浸透膜モジュールユニット2から排出される高圧濃縮水が供給される。圧力交換式エネルギー回収装置3の内部で被処理液は高圧濃縮水のエネルギーを授受され圧力が高められ高圧被処理液として排出される。一方保有エネルギーを被処理液に授受した高圧濃縮水は圧力が低下し低圧濃縮水として排出される。圧力交換式エネルギー回収装置3から排出された高圧被処理液は加圧ポンプ4に供給され、高圧ポンプ1で昇圧された被処理液と同じ圧力まで高圧被処理液の圧力が高められ、高圧ポンプ1からの被処理液と合流後、逆浸透膜モジュールユニット2に供給される。逆浸透膜モジュールユニット2は所定の圧力まで高められた被処理液を受けて、逆浸透作用により溶解成分を分離した透過水と濃縮水を得る。
 高圧ポンプ1の吐出側には、高圧ポンプ1から吐出された被処理液の流量を制御する流量制御弁6が設置されており、前述の通り高圧ポンプ1から吐出された被処理液の流量は、透過水量とほぼ同量となることから、流量制御弁6は透過水量を制御すべく透過水配管に設置された透過水流量計9をその透過水量制御部10から流量制御されるのが一般的である。
 また、流量制御弁6から逆浸透膜モジュールユニット2に対しては、バイパスするバイパス流路と、このバイパス流路に設けられバイパス量を制御する流量制御弁8が設置されており、流量制御弁8は逆浸透膜分離装置の起動時、高圧ポンプ1の最低流量(ミニマムフロー)を確保すべく、高圧ポンプ1の供給側に設置された流量計11とその高圧ポンプ最低流量制御部12から流量制御されることを特徴としている。
 この逆浸透膜分離装置における運転操作手順は、まずは被処理液を圧力交換式エネルギー回収装置3のみに供給する。この被処理液の流量は定常運転時の濃縮水量とほぼ同等となるように圧力交換式エネルギー回収装置3から排出される濃縮水の排出ラインに設けた流量調整弁5で制御される。次に加圧ポンプ4を起動し被処理液の流れが、圧力交換式エネルギー回収装置3、加圧ポンプ4、逆浸透膜モジュールユニット2、圧力交換式エネルギー回収装置3、排出となるようにする。この時、圧力交換式エネルギー回収装置3から排出された被処理液の流量もまた定常運転時の濃縮水量とほぼ同等となるように加圧ポンプ4のモーター回転数を周波数変換装置(インバーター)で制御するのが一般的である。なおこの段階では被処理液の圧力は低圧であり逆浸透膜での溶解成分の分離は行われていない。
 次に高圧ポンプ1を起動するが、高圧ポンプ1は過大な振動及び加熱損傷を防ぐため起動後直ぐに、高圧ポンプ1の最低流量(ミニマムフロー)まで流量を増加させる必要がある。そのため流量制御弁6及び流量制御弁8を、最低流量を確保出来るように規定の開度にあらかじめ設定し高圧ポンプ1を起動する。具体的には流量制御弁8を全開とした場合の流量制御弁6の2次側の配管圧損及び流量制御弁8の圧力損失を考慮し、流量制御弁6の初期開度を決定する。この状態で高圧ポンプ1を起動すると流量制御弁6の入力側の圧力は高圧ポンプ1の流量特性にも依存するが、定格圧力よりも高圧となり、例えば7.0MPaとなるが、逆浸透膜モジュールユニット2の入口圧力は、流量制御弁8が全開であるので高圧ポンプ1から吐出される被処理液は流量制御弁8からバイパス側に排出されるため、圧力は殆ど上昇せず0.5MPa程度である。
 次に透過水を得るために透過水量制御部10からの指令により流量制御弁6を徐々に開とする。すると高圧ポンプ1の吐出量は瞬間的に増加するが、高圧ポンプ最低流量制御部12の機能により流量制御弁8にて高圧ポンプ1の最低流量になるよう高圧ポンプ1の吐出量は流量制御されているので、流量制御弁8が閉方向となり高圧ポンプ1の吐出量は最低流量を保持する。この流量制御弁6が開方向、流量制御弁8が閉方向となることにより逆浸透膜モジュールユニット2の入口圧力が上昇する。この2つの制御を同時に段階的に行うことにより、逆浸透膜モジュール入口圧力が徐々に増加し、逆浸透圧モジュールユニット2の入口圧力が例えば3.0MPaに達した時点で透過水が排出され始める。
 透過水が排出され始めても高圧ポンプ最低流量制御部12では高圧ポンプ1の最低流量制御が継続されているので、流量制御弁8よりバイパス側に排出される被処理水量が徐々に減少し、その減少水量と同等の透過水が逆浸透膜モジュールユニット2より排出されることになる。そして最終的には流量制御弁8は全閉となる。
 この時から高圧ポンプ1の吐出量が逆浸透膜モジュールユニット2の透過水量と同量となり、その後も透過水量制御部10により透過水流量計9が定格流量になるまで、流量制御弁6を徐々に開とする制御が継続され、透過水量が定格流量に至った時点で本装置の起動は終了する。
 具体的には、高圧ポンプ1を起動してから透過水が定格水量に達するまでの時間を約300秒以上とするのが最良である。そのためには透過水量制御部10の流量設定値を300秒かけて定格水量まで徐々に上昇させるプログラム制御及び極端な圧力及び流量変動を防止するために操作端である流量制御弁6の変化率制限を設けるのが良い。
 このような装置構成において、高圧ポンプ1および加圧ポンプ4は渦巻きポンプまたはプランジャーポンプからなり、流量制御弁6及び流量制御弁8はグローブ弁、ケージ弁またはニードル弁からなる。バイパスされた被処理液は系外に排水しても良いが、被処理液を貯留している槽等に戻し再度被処理液として利用しても良い。
 さらに、上記方法ではある設定した時間を掛けて透過水量制御部10及び高圧ポンプ最低流量制御部12により逆浸透膜モジュールユニット2の入口圧力を上昇させていくが、図7の様に逆浸透膜モジュールユニット2の入口に設けた圧力伝送器13により得られる被処理液の圧力値に基づき入口圧力制御部14より透過水量制御部10にカスケード制御を行い流量制御弁6の弁開度を制御するのも良い。
 また逆浸透膜モジュールユニット2の入口必要圧力は、被処理液の水質、水温により変化する。通常運転においては、この変化分に対し透過水水量制御部10からの指令で、流量制御弁6への入口必要圧力が高い場合は、流量制御弁6が開方向、逆に流量制御弁6への入口必要圧力が低い場合は、流量制御弁6が閉方向となるよう調整し、逆浸透膜モジュールユニット2の入口必要圧力の増減に対応している。
 動力エネルギー消費の観点からは、流量制御弁6の弁開度が全開に近い場合は無駄な動力エネルギー消費が無いことになるが、流量制御弁6の弁開度が全開よりも閉まっている時は、高圧ポンプ1のエネルギーを流量制御弁6で消費していることになり、高圧ポンプ1で無駄な動力エネルギー消費が発生していることになる。この動力エネルギーとは、高圧ポンプ1等の機器を作動させるのは電力であるので、「動力エネルギー=電力エネルギー」となり、海水淡水化装置においては電力エネルギーの低減も大きな要素となっているため、このような無駄な電力エネルギー消費を削減するために、図7に示すように被処理液の供給ポンプ15に周波数変換装置(インバーター)7を設置することが好ましい。
 逆浸透膜モジュール2の入口必要圧力は、微少な配管圧損などを考慮しなければ、供給ポンプ15の吐出圧に高圧ポンプ1の吐出圧を加算し、そこから流量制御弁6での動力エネルギー損失分を減算すれば求めることができる。ここで、例えば供給ポンプ15の定格吐出圧が1.0MPaで、高圧ポンプ1の定格吐出圧が7.0MPaである時、逆浸透膜モジュール2の入口必要圧力が7.5MPaであるとすると、流量制御弁6で0.5MPaの動力エネルギーを損失しなければいけなくなる。この時、供給ポンプ15に周波数変換装置(インバーター)7が設置されていれば、供給ポンプ15への供給電源周波数を変換することで、供給ポンプ15の出力回転数を調整し、供給ポンプ15の吐出圧力を定格の1.0MPaから0.5MPaに減少することで、無駄な電力エネルギーの消費も無くすことが可能となる。この方法を実施することで、流量制御弁6で動力エネルギーを無駄に消費する必要はなくなる。このように被処理水の供給ポンプ15に周波数変換装置(インバーター)7を設置し、無駄な動力エネルギー消費を抑えようする場合があるが、このような場合においても上記した流量制御弁6およびバイパスラインに設けられた流量制御弁5を用いた起動方法、運転方法は有効である。
 1:高圧ポンプ(ポンプA)
 2:逆浸透膜モジュールユニット
 3:圧力交換式エネルギー回収装置
 4:加圧ポンプ(ポンプB)
 5:流量制御弁
 6:流量制御弁(流量制御弁A)
 7:周波数変換装置(インバーター)
 8:流量制御弁(流量制御弁B)
 9:透過水流量計
10:透過水量制御部
11:流量計
12:高圧ポンプ最低流量制御部
13:圧力伝送器
14:入口圧力制御部
15:供給ポンプ(ポンプC)
20:膜モジュール
21:筒状ベッセル
22:分離膜エレメント
23:流通口
24:中心管
25:透過水排出管
26:濃縮水排出管

Claims (4)

  1.  被処理液の一部を所定の圧力に高めて逆浸透膜モジュールに供給するポンプAと、残りの被処理液を逆浸透膜モジュールより排出される濃縮水の圧力を利用して昇圧するエネルギー回収装置と、エネルギー回収装置で昇圧された被処理液を更に所定の圧力に高めて逆浸透膜モジュールに供給するポンプBと、ポンプAから吐出される被処理液の流量を調整する流量制御弁Aと、流量制御弁Aから逆浸透膜モジュールに対してバイパスするバイパス流路と、バイパス流路に設けられて被処理液のバイパス量を調整する流量制御弁Bとを備えることを特徴とする逆浸透膜分離装置。
  2.  さらにポンプAとエネルギー回収装置に被処理液を供給するポンプCと、ポンプCを回転数制御する周波数変換器とを備えることを特徴とする請求項1に記載の逆浸透膜分離装置。
  3.  請求項1に記載の逆浸透膜分離装置を起動する方法であって、ポンプAの起動前に被処理液がエネルギー回収装置、加圧ポンプ、逆浸透膜モジュール、エネルギー回収装置の順に流れて排出されるように調整した後、流量制御弁A及び流量制御弁Bを所定の開度に設定しながらポンプAを起動し、その後、逆浸透膜モジュールの入口圧力が所定の圧力まで上昇するまで、流量制御弁Aが開方向、流量制御弁Bが閉方向となるように流量制御弁Aと流量制御弁Bを段階的に制御することを特徴とする逆浸透膜分離装置の起動方法。
  4.  請求項3に記載の逆浸透膜分離装置の起動方法によって逆浸透膜分離装置を起動した後、被処理液を逆浸透膜モジュールに供給して透過水を得る透過水の製造方法。
PCT/JP2011/076357 2010-12-02 2011-11-16 逆浸透膜分離装置、その起動方法、および透過水の製造方法 WO2012073693A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180058023.2A CN103237592B (zh) 2010-12-02 2011-11-16 反渗透膜分离器、其起动方法、以及透过液的产生方法
AU2011338029A AU2011338029A1 (en) 2010-12-02 2011-11-16 Reverse osmosis membrane separator, start-up method therefor, and method for producing permeate
JP2011550764A JP5974484B2 (ja) 2010-12-02 2011-11-16 逆浸透膜分離装置、その起動方法、および透過水の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-269054 2010-12-02
JP2010269054 2010-12-02

Publications (1)

Publication Number Publication Date
WO2012073693A1 true WO2012073693A1 (ja) 2012-06-07

Family

ID=46171640

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/076357 WO2012073693A1 (ja) 2010-12-02 2011-11-16 逆浸透膜分離装置、その起動方法、および透過水の製造方法

Country Status (5)

Country Link
JP (1) JP5974484B2 (ja)
CN (1) CN103237592B (ja)
AU (1) AU2011338029A1 (ja)
TW (1) TW201231152A (ja)
WO (1) WO2012073693A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014133189A (ja) * 2013-01-08 2014-07-24 Hitachi Ltd 淡水化システム
JP2014161807A (ja) * 2013-02-26 2014-09-08 Mitsubishi Heavy Ind Ltd 逆浸透膜装置
CN104341050A (zh) * 2013-07-26 2015-02-11 中国电力工程顾问集团公司 一种海水淡化系统及方法
WO2015037645A1 (ja) * 2013-09-11 2015-03-19 株式会社荏原製作所 海水淡水化システム
WO2015146639A1 (ja) * 2014-03-27 2015-10-01 株式会社 荏原製作所 エネルギー回収システム
CN114790059A (zh) * 2022-04-11 2022-07-26 倍杰特集团股份有限公司 一种合成氨与乙二醇废水浓水的浓缩过滤装置及方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2540603A (en) 2015-07-23 2017-01-25 Ide Technologies Ltd Imroved reverse osmotic process for cleaning water
CN107879421A (zh) * 2016-09-29 2018-04-06 东丽先端材料研究开发(中国)有限公司 一种净水装置及净水装置的运行方法
KR102180787B1 (ko) 2017-01-09 2020-11-23 베올리아 워터 솔루션스 앤드 테크놀로지스 서포트 역삼투 또는 나노여과에 의한 수처리 시스템 및 방법
CN114790050B (zh) * 2022-03-21 2024-04-26 上海源依青科技有限责任公司 一种废水深度处理与旁路ro膜协同再生的系统与方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS574286A (en) * 1980-06-11 1982-01-09 Agency Of Ind Science & Technol Method for starting of desalting device by reverse-osmosis method provided with energy recovery device
JPH01123605A (ja) * 1987-11-06 1989-05-16 Nkk Corp 逆浸透膜を用いた塩水淡水化設備のエネルギー回収方法
JPH07284637A (ja) * 1994-04-20 1995-10-31 Toshiba Corp 膜モジュールシステム
JP2004081913A (ja) * 2002-08-23 2004-03-18 Hitachi Zosen Corp 逆浸透法による海水淡水化方法
JP2010253344A (ja) * 2009-04-22 2010-11-11 Ebara Corp 容積形エネルギー回収装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08108048A (ja) * 1994-10-12 1996-04-30 Toray Ind Inc 逆浸透分離装置及び逆浸透分離方法
JP2001113136A (ja) * 1999-10-20 2001-04-24 Toray Ind Inc 逆浸透処理装置および造水方法
DE10066033B4 (de) * 2000-11-21 2007-01-11 Wobben, Aloys, Dipl.-Ing. Verfahren und Vorrichtung zum Entsalzen von Wasser
CN100341609C (zh) * 2005-06-17 2007-10-10 中国科学院广州能源研究所 基于反渗透淡化技术的浓盐水能量回收装置
CN101000336B (zh) * 2007-01-11 2010-06-30 上海交通大学 反渗透阻垢剂性能的动态测试方法
CN101782095B (zh) * 2010-03-12 2012-05-23 国家海洋局天津海水淡化与综合利用研究所 用于海水淡化系统的差动式能量回收装置及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS574286A (en) * 1980-06-11 1982-01-09 Agency Of Ind Science & Technol Method for starting of desalting device by reverse-osmosis method provided with energy recovery device
JPH01123605A (ja) * 1987-11-06 1989-05-16 Nkk Corp 逆浸透膜を用いた塩水淡水化設備のエネルギー回収方法
JPH07284637A (ja) * 1994-04-20 1995-10-31 Toshiba Corp 膜モジュールシステム
JP2004081913A (ja) * 2002-08-23 2004-03-18 Hitachi Zosen Corp 逆浸透法による海水淡水化方法
JP2010253344A (ja) * 2009-04-22 2010-11-11 Ebara Corp 容積形エネルギー回収装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014133189A (ja) * 2013-01-08 2014-07-24 Hitachi Ltd 淡水化システム
JP2014161807A (ja) * 2013-02-26 2014-09-08 Mitsubishi Heavy Ind Ltd 逆浸透膜装置
CN104341050A (zh) * 2013-07-26 2015-02-11 中国电力工程顾问集团公司 一种海水淡化系统及方法
WO2015037645A1 (ja) * 2013-09-11 2015-03-19 株式会社荏原製作所 海水淡水化システム
JPWO2015037645A1 (ja) * 2013-09-11 2017-03-02 株式会社荏原製作所 海水淡水化システム
WO2015146639A1 (ja) * 2014-03-27 2015-10-01 株式会社 荏原製作所 エネルギー回収システム
JPWO2015146639A1 (ja) * 2014-03-27 2017-04-13 株式会社荏原製作所 エネルギー回収システム
US9993773B2 (en) 2014-03-27 2018-06-12 Ebara Corporation Energy recovery system
CN114790059A (zh) * 2022-04-11 2022-07-26 倍杰特集团股份有限公司 一种合成氨与乙二醇废水浓水的浓缩过滤装置及方法
CN114790059B (zh) * 2022-04-11 2023-08-08 倍杰特集团股份有限公司 一种合成氨与乙二醇废水浓水的浓缩过滤装置及方法

Also Published As

Publication number Publication date
TW201231152A (en) 2012-08-01
JPWO2012073693A1 (ja) 2014-05-19
JP5974484B2 (ja) 2016-08-23
CN103237592A (zh) 2013-08-07
AU2011338029A1 (en) 2013-06-20
CN103237592B (zh) 2015-10-14

Similar Documents

Publication Publication Date Title
JP5974484B2 (ja) 逆浸透膜分離装置、その起動方法、および透過水の製造方法
US8691086B2 (en) Control scheme for a reverse osmosis system using a hydraulic energy management integration system
JP6286580B2 (ja) ガスタービン設備のガス供給系のための圧力調整装置
WO2017217008A1 (ja) 逆浸透膜分離装置
US8834712B2 (en) Seawater desalination system
JP2010063976A (ja) 膜分離装置、膜分離装置の運転方法
AU2008218143A1 (en) Steam system, and its control system and control method
JP2019171320A (ja) 淡水化システム
WO2015037645A1 (ja) 海水淡水化システム
EP3317229B2 (fr) Procede de pilotage d'une installation de dessalement alimentee par une source d' energie renouvelable et installation associee
JP2016203084A (ja) 逆浸透膜分離装置
WO2020202776A1 (ja) 水処理システム
JP2018202360A (ja) 逆浸透膜分離装置
JP7163628B2 (ja) 逆浸透膜分離装置
JP5320013B2 (ja) ボイラユニットおよび発電システム
JP2001113136A (ja) 逆浸透処理装置および造水方法
JP2001137848A (ja) 水処理装置および造水方法
JP2017221876A (ja) 逆浸透膜分離装置
JP4388487B2 (ja) 薬品投入制御装置、薬品投入制御方法及びこの制御装置を利用したプラント
JP2020163254A (ja) 純水製造装置及び純水製造方法
JP7234818B2 (ja) 水処理システム
US20240165564A1 (en) Integrated central vfd and multiple-turbo system
JP2016203083A (ja) 逆浸透膜分離装置
JP2016095018A (ja) 油圧トランスミッション、風力発電装置及び油圧トランスミッションの運転方法
JP2019166464A (ja) 超純水供給装置及び超純水供給方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2011550764

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11845578

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2011338029

Country of ref document: AU

Date of ref document: 20111116

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11845578

Country of ref document: EP

Kind code of ref document: A1