WO2012073681A1 - Laser light source, interferometer and spectrometer - Google Patents

Laser light source, interferometer and spectrometer Download PDF

Info

Publication number
WO2012073681A1
WO2012073681A1 PCT/JP2011/076155 JP2011076155W WO2012073681A1 WO 2012073681 A1 WO2012073681 A1 WO 2012073681A1 JP 2011076155 W JP2011076155 W JP 2011076155W WO 2012073681 A1 WO2012073681 A1 WO 2012073681A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
semiconductor laser
mirror
interferometer
Prior art date
Application number
PCT/JP2011/076155
Other languages
French (fr)
Japanese (ja)
Inventor
祐亮 平尾
Original Assignee
コニカミノルタホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタホールディングス株式会社 filed Critical コニカミノルタホールディングス株式会社
Publication of WO2012073681A1 publication Critical patent/WO2012073681A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/45Interferometric spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/10Arrangements of light sources specially adapted for spectrometry or colorimetry
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • H01S5/141External cavity lasers using a wavelength selective device, e.g. a grating or etalon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/02208Mountings; Housings characterised by the shape of the housings
    • H01S5/02212Can-type, e.g. TO-CAN housings with emission along or parallel to symmetry axis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02251Out-coupling of light using optical fibres

Definitions

  • the present invention relates to a laser light source including a semiconductor laser, an interferometer using the laser light source as a reference light source, and a spectroscope including the interferometer.
  • infrared light emitted from a light source is divided into two directions, a fixed mirror and a moving mirror, by a beam splitter.
  • a configuration is adopted in which the light reflected and returned by the movable mirror is combined into one optical path by the beam splitter.
  • the moving mirror is moved back and forth (in the direction of the optical axis of the incident light)
  • the optical path difference between the two divided beams changes, so the intensity of the combined light changes according to the amount of movement of the moving mirror.
  • Measurement interference light (interferogram). By sampling this interferogram and performing AD conversion and Fourier transform, the spectral distribution of the incident light can be obtained, and the intensity of the measurement interference light for each wave number (1 / wavelength) can be obtained from this spectral distribution. it can.
  • the above interferogram is expressed as a function of the phase difference between the moving mirror and the fixed mirror, that is, the optical path difference between the reflected light from the moving mirror and the reflected light from the fixed mirror.
  • the position of the movable mirror is monitored using a reference light source separately from the light source that emits infrared light.
  • the reference light emitted from the reference light source is separated by a beam splitter and guided to a moving mirror and a fixed mirror, and each light reflected by the moving mirror and the fixed mirror is synthesized by a beam splitter to be used as reference interference light.
  • the light is guided to a reference light detector for position detection. Since the intensity of the reference interference light changes according to the position of the movable mirror, the position of the movable mirror can be obtained by detecting the intensity change of the reference interference light with the reference light detector.
  • the relative inclination of the optical path of the reflected light from the movable mirror and the optical path of the reflected light from the fixed mirror may deviate from the normal inclination. .
  • an inclination error such a deviation in inclination is referred to as an inclination error. If there is a tilt error, the coherence between the reflected light from the movable mirror and the reflected light from the fixed mirror will be reduced, and the contrast of the measured interference light will be reduced. become unable.
  • the tilt error caused by the impact or the like is adjusted by adjusting the angle of the fixed mirror or the movable mirror based on the detection result of the reference interference light by the reference light detector.
  • the reference light detector is composed of four divided sensors. Based on a total of four signals output from the individual sensors, signals corresponding to the positional deviation of the reference interference light (horizontal and vertical directions). The tilt error is corrected by adjusting the posture of the fixed mirror, for example, based on these phase signals.
  • Patent Document 1 discloses that, for example, a He—Ne laser is used as a reference light source for an interferometer in a general FTIR. However, since the He—Ne laser is large, the interferometer is enlarged. Invite. In order to realize a small and portable interferometer, it is considered effective to use, for example, a small semiconductor laser as a reference light source.
  • a semiconductor laser has an oscillation wavelength width of, for example, about 3 nm.
  • the oscillation wavelength width of the semiconductor laser can be reduced to, for example, 0.1 nm.
  • the wavelength can be stabilized.
  • a technique for stabilizing the wavelength of a semiconductor laser by combining a semiconductor laser and a volume type diffraction grating in this manner is disclosed in, for example, Patent Document 2.
  • a VBG (Volume Bragg Grating) element is arranged at the emitting portion of the semiconductor laser, and among the laser light emitted from the semiconductor laser, light having a specific wavelength is reflected by the VBG element and returned to the semiconductor laser.
  • the wavelength is locked by resonating between the laser and the VBG element, and the laser beam is emitted from the VBG element.
  • FIG. 7 shows an intensity profile of light emitted from the semiconductor laser 101 through the VBG element 102 in the laser light source 100.
  • the intensity profile of the light emitted from the VBG element 102 is returned to the semiconductor laser 101.
  • the intensity is lowered at the position (position reflected by the VBG element 102), and a dark spot 103 is generated in the intensity profile. Since the VBG element 102 has angle selectivity, the position of the dark spot 103 (position where the intensity decreases) varies depending on the wavelength of incident light and the incident angle.
  • a dark spot 202 ( The part where the strength is reduced occurs. Since such a dark spot 202 has an error in the phase signal output from each sensor of the reference light detector 201, the correction of the tilt error (optical path correction) based on the output from the reference light detector 201 is accurate. Can't do well. As a result, it becomes difficult to apply the laser light source 100 to an interferometer or a spectrometer.
  • the present invention has been made to solve the above problems, and its object is to cause an error in the intensity distribution of the reference interference light in the reference light detector when applied to the reference light source of the interferometer.
  • a small laser light source capable of avoiding dark spots and thereby accurately performing optical path correction based on the output from the reference light detector, and an interferometer and spectroscope to which the laser light source can be applied And to provide.
  • the laser light source of the present invention is disposed in a semiconductor laser and an emission part of the semiconductor laser, and returns light of a specific wavelength emitted from the semiconductor laser to the semiconductor laser and resonates with the semiconductor laser.
  • the light emitted from the wavelength filter and having a dark spot in the intensity profile is guided by the single mode fiber or the polarization-maintaining fiber, so that the shape is close to the Gaussian distribution, that is, the intensity is most intense near the center.
  • a high rotationally symmetric intensity profile can be obtained.
  • FIG. 1 is an explanatory diagram schematically showing a schematic configuration of the spectroscope (Fourier transform spectroscopic analyzer) of the present embodiment.
  • the spectroscope includes an interferometer 1, a calculation unit 2, and an output unit 3.
  • the interferometer 1 is a two-optical path branching Michelson interferometer, and details thereof will be described later.
  • the calculation unit 2 performs sampling, A / D conversion, and Fourier transform of a signal output from a measurement light detector 18 (to be described later) of the interferometer 1, and a wavelength spectrum included in the measurement light, that is, a wave number (1 / wavelength). ) To generate a spectrum indicating the intensity of light.
  • the calculation unit 2 functions as a spectrum generation unit that generates a spectrum indicating the light intensity for each wavelength based on the detection signal of the measurement interference light.
  • the output unit 3 outputs (for example, displays) the spectrum generated by the calculation unit 2.
  • the interferometer 1 has a measurement optical system 10, a reference optical system 20, and an optical path correction unit 30. Hereinafter, it demonstrates in order.
  • the measurement optical system 10 includes a measurement light source 11, a measurement light collimating optical system 12, a folding mirror M, a BS (beam splitter) 13, a compensation plate 14, a fixed mirror 15, a moving mirror 16, a collecting mirror.
  • An optical optical system 17, a measurement light detector 18, and a drive mechanism 19 are provided. Note that the positional relationship between the fixed mirror 15 and the movable mirror 16 with respect to the BS 13 may be reversed.
  • the measurement light source 11 emits, for example, near-infrared light or infrared light including a plurality of wavelengths as measurement light, and is configured by a single light source or a fiber coupling optical system in which a light source and an optical fiber are coupled. It consists of
  • the measurement light collimating optical system 12 is an optical system that converts the measurement light emitted from the measurement light source 11 into collimated light and guides it to the BS 13, and is composed of, for example, a collimator lens.
  • collimated light is a concept that includes substantially parallel light (some convergent light or divergent light) in addition to perfect parallel light.
  • collimation here refers to guiding light from a light source to a sensor via a BS and a fixed mirror or moving mirror by a collimating optical system, and is not limited to collimation at infinity.
  • the folding mirror M is provided to bend the optical path between the collimating optical system 12 for measuring light and the BS 13 so as to make the interferometer 1 compact.
  • a stop A1 for restricting the beam diameter of the measurement light is disposed.
  • the BS 13 separates incident light, that is, light emitted from the measurement light source 11 into two lights, which are guided to the fixed mirror 15 and the movable mirror 16 and reflected by the fixed mirror 15 and the movable mirror 16, respectively. Each light is combined and emitted as measurement interference light, and is composed of, for example, a half mirror with a branching ratio of 50:50.
  • the compensation plate 14 is a substrate for correcting an optical path length corresponding to the thickness of the BS 13 and an optical path shift due to refraction when light passes through the BS 13. Depending on how the interferometer 1 is assembled, the compensation plate 14 may be unnecessary.
  • the condensing optical system 17 is an optical system that condenses the light synthesized and emitted by the BS 13 and guides it to the measurement light detector 18, and is composed of, for example, a focus lens.
  • the measurement light detector 18 receives measurement interference light incident from the BS 13 via the condensing optical system 17 and detects an interferogram (interference pattern).
  • the drive mechanism 19 moves the movable mirror 16 to the optical axis so that the difference (optical path length difference) between the optical path of the light reflected by the fixed mirror 15 and the optical path of the light reflected by the movable mirror 16 changes. It is a moving mechanism that translates (translates) in the direction, and is composed of, for example, an electromagnetic drive mechanism using a VCM (voice coil motor).
  • the drive mechanism 19 may be a parallel leaf spring type drive mechanism.
  • the measurement light emitted from the measurement light source 11 is converted into collimated light by the measurement light collimating optical system 12, then reflected by the folding mirror M and incident on the BS 13. It is separated into two light beams by reflection. One separated light beam is reflected by the movable mirror 16, and the other light beam is reflected by the fixed mirror 15. Each light beam returns to the original optical path and is superimposed by the BS 13, and after passing through the compensation plate 14 as measurement interference light.
  • the sample (not shown) is irradiated. At this time, the sample is irradiated with light while continuously moving the movable mirror 16 by the drive mechanism 19, but the difference in optical path length from the BS 13 to each mirror (movable mirror 16, fixed mirror 15) is an integral multiple of the wavelength.
  • the intensity of the superimposed light becomes the maximum.
  • the intensity of the superimposed light changes.
  • the light transmitted through the sample is condensed by the condensing optical system 17 and enters the measurement light detector 18 where it is detected as an interferogram. That is, in FIG. 1, the measurement light travels along an optical path indicated by a one-dot chain line.
  • the computing unit 2 samples a detection signal (interferogram) from the measurement light detector 18 and performs A / D conversion and Fourier transform to generate a spectrum indicating the light intensity for each wave number.
  • the above spectrum is output (for example, displayed) by the output unit 3, and based on this spectrum, the characteristics (material, structure, component amount, etc.) of the sample can be analyzed.
  • the reference optical system 20 shares a part of the configuration with the measurement optical system 10 described above.
  • the reference optical system 20 shares a part of the configuration with the measurement optical system 10 described above.
  • the reference light source 21 A reference light collimating optical system 22, an optical path combining mirror 23, an optical path separation mirror 24, and a reference light detector 25 are provided.
  • the reference light source 21 is a light source for detecting the position of the movable mirror 16 and generating a timing signal for sampling in the calculation unit 2.
  • the reference light source 21 is constituted by a laser light source 40 (see FIG. 6), and details thereof will be described later.
  • the reference light collimating optical system 22 is an optical system that converts the reference light (laser light) emitted from the reference light source 21 into collimated light and guides it to the BS 13, and is composed of, for example, a collimating lens.
  • a diaphragm A2 is disposed on the light exit side of the reference light collimating optical system 22, and the beam diameter of the collimated light is regulated.
  • the reference light collimating optical system 22 is provided with the function of the aperture A2 by painting the surface of the lens constituting the reference light collimating optical system 22 in black except for the portion that emits the collimated light. It may be.
  • the optical path combining mirror 23 is a beam combiner that combines the optical paths of the light by transmitting the light from the measurement light source 11 and reflecting the light from the reference light source 21.
  • the optical path combining mirror 23 is arranged so that the reference light is incident on the fixed mirror 15 and the movable mirror 16 obliquely. Thereby, the influence of the return light from the fixed mirror 15 and the movable mirror 16 is avoided.
  • the optical path of the reference light is tilted with respect to the fixed mirror 15 and the movable mirror 16, the reflected light from the fixed mirror 15 passes through the BS 13, and the direction of the reference light collimating optical system 22 is transmitted by the optical path combining mirror 23. Even if the light reflected by the movable mirror 16 is reflected by the BS 13 and is incident on the optical path synthesis mirror 23 where it is reflected in the direction of the collimating optical system 22 for reference light, The light enters the stop A2 and is blocked there, and does not enter the reference light source 21. Thereby, it is possible to avoid the oscillation at the reference light source 21 becoming unstable due to the incident return light.
  • the optical paths of the return light from the fixed mirror 15 and the movable mirror 16 are indicated by broken lines.
  • the optical path separation mirror 24 transmits the light emitted from the measurement light source 11 and incident through the BS 13, and reflects the light emitted from the reference light source 21 and incident through the BS 13. Is a beam splitter.
  • the reference light detector 25 is a detector that detects light (reference interference light) emitted from the reference light source 21 and incident on the optical path separation mirror 24 via the BS 13 and reflected there. For example, the response speed is higher than that of the CCD. Is composed of a fast quadrant sensor. A diaphragm A3 is arranged in the optical path between the optical path separation mirror 24 and the reference light detector 25, and the diameter of the reference interference light incident on the reference light detector 25 is regulated by the diaphragm A3. .
  • FIG. 2 is a plan view showing a schematic configuration of the reference light detector 25.
  • the reference light detector 25 includes four light receiving portions 25A to 25D, and the light receiving portions 25A to 25D are arranged in two rows and two columns.
  • the light receiving units of the reference light detector 25 may be arranged in two directions on the light receiving surface of the reference interference light, and the reference light detector 25 includes at least three light receiving units. Such an arrangement can be realized.
  • the light emitted from the reference light source 21 is converted into collimated light by the reference light collimating optical system 22, then reflected by the optical path combining mirror 23 and incident on the BS 13, where it is separated into two light beams.
  • the One light beam separated by the BS 13 is reflected by the movable mirror 16, and the other light beam is reflected by the fixed mirror 15.
  • Each light beam returns to the original optical path and is overlapped by the BS 13, and passes through the compensation plate 14 and passes through the optical path.
  • the light enters the separation mirror 24, is reflected there, and enters the reference light detector 25. That is, in FIG. 1, the reference light travels along the optical path indicated by the solid line.
  • the optical path correction unit 30 described later has a relative inclination error between the optical path of the reflected light from the movable mirror 16 and the optical path of the reflected light from the fixed mirror 15. (Tilt error) is corrected.
  • the optical axes on the measurement light side and the reference light side are not perfectly coaxial due to the above arrangement of the optical path combining mirror 23, but (1) a measurement light source because the optical axes are close to the same axis. 11, BS 13, moving mirror 16, BS 13, and measurement light detector 18 in the order of light, and measurement light source 11, BS 13, fixed mirror 15, BS 13, light that proceeds in order of measurement light detector 18 and a tilt error ( (Also referred to as a first tilt error) is (2) light traveling in the order of the reference light source 21, BS13, moving mirror 16, BS13, and reference light detector 25, and the reference light source 21, BS13, fixed mirror 15, BS13, reference It is almost close to a tilt error (also referred to as a second tilt error) between light traveling in the order of the photodetector 25. Therefore, the optical path correction unit 30 can correct the first tilt error by correcting the second tilt error based on the light reception signal of the reference interference light from the reference light detector 25.
  • the optical path correction unit 30 includes a signal processing unit 31, an adjustment mechanism 32, and a control unit 33.
  • the control unit 33 is configured by a CPU, for example, and controls the adjustment mechanism 32 based on the detection result of the signal processing unit 31.
  • the signal processing unit 31 is an inclination detection unit that detects an inclination error based on the intensity of the reference interference light detected by the reference light detector 25.
  • FIG. 3 shows a phase signal (a signal indicating the intensity of light received by the light receiving unit 25A out of the entire reference interference light) output from the light receiving unit 25A of the reference light detector 25 and the light receiving unit 25C.
  • Phase signal (a signal indicating the intensity of light received by the light receiving unit 25C out of the entire reference interference light).
  • shaft of FIG. 3 has shown the relative value.
  • the signal processing unit 31 can detect the inclination error in the AC direction based on the phase difference between the signals output from the two light receiving units 25A and 25C. Further, based on the same idea as described above, the signal processing unit 31 is based on the phase difference between the signals output from the two light receiving units 25A and 25B, and corresponds to the direction in which the light receiving units 25A and 25B are arranged (hereinafter referred to as A). (Also referred to as -B direction) can be detected. Therefore, the signal processing unit 31 can detect an inclination error in each of the two directions based on the phase difference between the signals output from the three light receiving units 25A, 25B, and 25C.
  • the adjusting mechanism 32 adjusts the tilt of the fixed mirror 15 to tilt one of the two optical paths and correct the tilt error.
  • the adjustment mechanism 32 has a plurality (at least three) of which the tip is connected to the back surface (surface opposite to the reflection surface) of the fixed mirror 15 and expands and contracts in the optical axis direction.
  • the piezoelectric element 32a, and a drive unit 32b that applies a voltage to the piezoelectric element 32a to expand and contract the piezoelectric element 32a.
  • the control unit 33 controls the voltage applied to each piezoelectric element 32 a and expands and contracts each piezoelectric element 32 a in the optical axis direction, thereby tilting the fixed mirror 15 (fixed mirror).
  • the optical path of the reflected light at 15 can be changed, whereby the tilt error can be corrected.
  • the tilt error is finally brought to zero as much as possible. be able to.
  • the signal processing unit 31 described above has a function of detecting the position of the movable mirror 16 based on the intensity of the reference interference light detected by the reference light detector 25 and generating a pulse signal indicating the sampling timing. Also have.
  • the intensity of the reference interference light generally changes between bright and dark according to the position (optical path difference) of the movable mirror 16, and therefore the position of the movable mirror 16 based on the intensity change. Can be detected.
  • the calculation unit 2 samples the detection signal (interferogram) from the measurement light detector 18 in synchronization with the sampling timing of the pulse signal and converts it into digital data.
  • FIG. 5 is an explanatory view schematically showing another configuration of the spectrometer.
  • the adjustment mechanism 32 of the optical path correction unit 30 may correct the tilt error by tilting one of the two optical paths by adjusting the tilt of the movable mirror 16.
  • the tip of each piezoelectric element 32a is connected to the back surface of the movable mirror 16, and each piezoelectric element 32a is expanded and contracted by the drive unit 32b, whereby the inclination of the movable mirror 16 is changed and reflected by the movable mirror 16.
  • the optical path of light can be corrected.
  • the drive mechanism 19 of the movable mirror 16 may be connected to the back surface of the drive unit 32b (the side opposite to each piezoelectric element 32a).
  • FIG. 6 is a cross-sectional view showing a schematic configuration of the laser light source 40.
  • the laser light source 40 includes a semiconductor laser 41, a VHG (Volume Holographic Grating) element 42, a lens 43, and a fiber 44.
  • VHG Volume Holographic Grating
  • the semiconductor laser 41 is an InGaInP-based edge emitting semiconductor laser that emits red light (for example, wavelength 660 nm), and is attached to a CAN type mount. That is, the semiconductor laser 41 is fixed to the side surface of the first mount 47 on the stem 46 having the plurality of lead terminals 45.
  • the reason why the semiconductor laser 41 is configured to emit red light is as follows.
  • spectroscopic analysis is often performed using near-infrared light and infrared light.
  • a light transmission surface for example, a light transmission surface of the BS 13
  • AR coating antireflection coating
  • the antireflection coating due to the design of the antireflection coating, it is difficult to provide antireflection characteristics in a wide band. Further, if the wavelength band for preventing reflection is widened, the reflectance increases in that wavelength band. Therefore, when the measurement light is near-infrared light or infrared light, the reference light is made red light (red semiconductor laser light), and the wavelength band of the reference light and measurement light is made close to make it easy to design the antireflection coating. Can be.
  • the BS 13 having a predetermined branching ratio (for example, 50:50) in a wide wavelength range.
  • the BS 13 having a predetermined branching ratio (for example, 50:50) has a predetermined branching ratio. It becomes easy to design a BS 13 having a branching ratio of.
  • the semiconductor laser 41 includes a laser whose reflectance at the emitting portion is extremely low (close to 0%). That is, in general, a semiconductor laser is configured to have a high reflection mirror (reflectance is close to 100%) and a low reflection mirror (reflectance 50%, etc.). For example, an extremely low value of 0.01% or the like can be handled as a semiconductor laser.
  • the VHG element 42 is a volume type diffraction grating (VBG element) having a function as a wavelength filter, and is formed by exposure of a photosensitive material.
  • VBG element volume type diffraction grating
  • the VHG element 42 returns light of a specific wavelength emitted from the semiconductor laser 41 in the direction of the semiconductor laser 41 by diffraction reflection and resonates with the semiconductor laser 41 to amplify the emission wavelength, thereby reflecting reflected diffracted light. Lock to the wavelength of.
  • the wavelength of the reflected diffracted light is determined by the width of the diffraction grating, and the spectral line of the emission wavelength of the semiconductor laser 41 is fixed to a specific mode and narrowed.
  • the VHG element 42 is provided on the side surface of the second mount 48 fixed on the first mount 47 so as to be positioned at the emitting portion of the semiconductor laser 41. That is, the VHG element 42 is disposed close to the emission surface of the semiconductor laser 41 (position where the laser beam is emitted). By controlling the temperature of the semiconductor laser 41 and the VHG element 42 at the same time, the wavelength fluctuation can be suppressed and stabilized.
  • VHG element 42 it is also possible to configure a wavelength filter using, for example, a multilayer film.
  • the semiconductor laser 41 and the VHG element 42 are covered with a case 49 on the stem 46.
  • the case 49 is filled with, for example, nitrogen.
  • the case 49 is provided with an opening 49a, and a glass window 50 is fixed so as to close the opening 49a.
  • the light emitted from the VHG element 42 enters the lens 43 through the glass window 50 and the opening 49a.
  • the lens 43 condenses the light emitted from the VHG element 42 on the light incident surface of the fiber 44. Since the emission light from the semiconductor laser 41 has different emission angles in two directions, it is desirable to use an aspherical lens or the like as the lens 43, but a refractive index distribution type such as a green lens may be used.
  • the lens 43 is held together with the fiber 44 by a fiber holding member 51 fixed to the case 49.
  • the fiber 44 is an optical fiber that guides light of a specific wavelength that is emitted from the VHG element 42 and is incident through the lens 43, and is configured by a polarization-maintaining fiber in this embodiment.
  • the polarization maintaining fiber guides light while maintaining the polarization plane so that the polarization plane (polarization plane) of the guided light does not change due to birefringence or the like.
  • the polarization direction is maintained when the direction of the emission part of the fiber (light emission direction) is determined. Therefore, the interferometer 1 can suppress fluctuations in reflectance and transmittance due to polarization characteristics to be small. it can.
  • As the fiber 44 a single mode fiber can be used in addition to the above-described polarization plane maintaining fiber.
  • the exit surface 44a of the fiber 44 is inclined about 8 degrees by APC (Angled Physical Contact) polishing with respect to a surface perpendicular to the light guiding direction.
  • APC Angled Physical Contact
  • the polarization-maintaining fiber as the fiber 44 is made of a silica glass fiber, the MFD (Mode Field Diameter) is 4.5 to 3 ⁇ m, and the fiber length is 300 mm or more. ing. Since the fiber 44 is sufficiently long, the fiber 44 can attenuate only a higher-order guided mode and guide only the fundamental mode (LP01 mode), for example.
  • the mode guided in the inside of the fiber 44 is only the fundamental mode.
  • the polarization maintaining fiber and the single mode fiber there is no waveguide mode having a different phase as in the case of using the multimode fiber, so that the coherence is not lowered. Accordingly, when light whose intensity profile includes a dark spot (position where the intensity has decreased) is incident on the fiber 44, the incident light is guided through repeated total reflection inside the fiber 44, so that the center intensity is the highest. Light having a high rotational symmetry intensity profile is emitted from the fiber 44.
  • the laser light source 40 is applied to the reference light source 21 of the interferometer 1, it is possible to avoid the occurrence of a dark spot that causes an error in the intensity distribution of the reference interference light detected by the reference light detector 25. (See FIG. 2), and optical path correction based on the intensity distribution of the reference interference light can be performed with high accuracy. Therefore, the laser light source 40 suitable for the interferometer 1 and the spectroscope that perform such optical path correction can be realized.
  • the semiconductor laser 41 is smaller than, for example, a He—Ne laser, a small laser light source 40 can be realized. Therefore, using the small laser light source 40, the interferometer 1 and the spectroscope which are small and easy to carry can be realized.
  • the laser light source 40 is configured to stabilize the light from the semiconductor laser 41 using the VHG element 42, the laser light source 40 has high robustness and can prevent the influence of disturbance (for example, vibration). Since the movable (portable) interferometer 1 and the spectroscope are required to have higher robustness than the installation type, the laser light source 40 of the present embodiment is small and easy to carry from this point of view. It can be said that this is suitable for the interferometer 1 and the spectroscope.
  • the laser light source 40 includes the fiber 44, the semiconductor laser 41, which is a heat source, can be arranged away from the measurement optical system 10. Thereby, performance degradation due to heat of the measurement optical system 10 (degradation of optical performance due to thermal expansion of the member) can be avoided.
  • the interferometer 1 can accurately perform optical path correction based on the intensity distribution of the reference interference light as described above, the optical path correction of the measurement interference light in the measurement light detector 18 can be performed by such optical path correction. A decrease can be avoided. Therefore, the spectroscope equipped with such an interferometer 1 can accurately perform the spectral analysis of the measurement interference light based on the spectrum generated by the calculation unit 2.
  • the position of the movable mirror 16 (detection of the optical path difference) is also performed by the signal processing unit 31 based on the signal from the reference light detector 25.
  • the signal processing unit 31 determines whether the optical path difference is also performed.
  • reference is made. Since it is possible to avoid the occurrence of dark spots in the intensity distribution of the interference light, the position detection of the movable mirror 16 based on the intensity change of the reference interference light can be performed with high accuracy.
  • the VHG element 42 that is, a volume type diffraction grating is used as the wavelength filter.
  • the number of laminated diffraction gratings may be increased.
  • the VHG element 42 exposes the photosensitive material with two light beams and causes them to interfere with each other. Since it is obtained by alternately forming each layer composed of the low refractive index portion, it is easy to increase the number of laminated diffraction gratings by changing the exposure conditions (exposure time, exposure amount, etc.). Therefore, it is possible to easily realize a wavelength filter with a narrow line width, compared to the case where the wavelength filter is formed of a multilayer film.
  • the wavelength stabilization region that is, the distance ( ⁇ cavity length, resonance length) from the semiconductor laser 41 to the wavelength filter necessary to stabilize the wavelength is increased. It can be shortened.
  • the fiber 44 since the fiber 44 has a length that attenuates modes other than the guided mode (fundamental mode), it attenuates higher-order guided modes and guides only the required mode (fundamental mode only). Can be waved. Since only one mode is guided in this way, the intensity profile of the emitted light can be a rotationally symmetric intensity profile close to a Gaussian distribution, regardless of the intensity profile of the incident light.
  • the interferometer 1 to which the laser light source 40 is applied has a very small tilt error between the two optical paths as shown in FIG.
  • a range for example, a relative inclination angle of 0 to 90 seconds
  • the phase difference between the two signals output from the two light receiving units 25A and 25C of the reference light detector 25 and the inclination error are substantially linear.
  • the signal processing unit 31 can detect the tilt error with high accuracy within the above minute range based on the output from the reference light detector 25.
  • the interferometer 1 of the present embodiment includes a reference light collimating optical system 22, and light emitted from the fiber end of a laser light source 40 as the reference light source 21 is converted into a plane wave by the reference light collimating optical system 22. Converted.
  • the reference light is a plane wave, it is not necessary to consider the phase difference between the light beams in the light beam of the reference light (for example, the phase difference between the on-axis light beam and the off-axis light beam). Calculation of the phase difference of the output signal from the photodetector 25 and calculation of the tilt error between the two optical paths based on the phase difference are facilitated.
  • the configuration in which the interferometer 1 includes the measurement light source 11 and obtains the measurement interference light using the measurement light emitted from the measurement light source 11 has been described.
  • the measurement light source 11 does not necessarily have to be incorporated. That is, the measurement light for obtaining the measurement interference light may be light emitted from a light source built in the interferometer, or may be light incident from the outside of the interferometer.
  • the laser light source according to the present embodiment is disposed in the semiconductor laser and the semiconductor laser emitting unit, and returns light of a specific wavelength emitted from the semiconductor laser to the semiconductor laser.
  • a laser light source including a wavelength filter that resonates, amplifies, and emits light, and is a single mode fiber or a polarization-maintaining fiber that guides light of the specific wavelength that is emitted from the wavelength filter and incident through a lens May be provided.
  • the light having an intensity profile that decreases the intensity at the position where the light of the specific wavelength is returned to the semiconductor laser is guided to the single mode fiber or the polarization maintaining fiber by the lens.
  • One of the above is guided.
  • these fibers there is one mode for guiding the inside of the fiber, and the coherence is not lowered as when a multimode fiber is used. Therefore, regardless of the intensity profile, that is, when the intensity reduction position changes depending on the wavelength or incident angle, light having the intensity profile is guided by total internal reflection.
  • a shape close to a Gaussian distribution, that is, a rotationally symmetric intensity profile having the highest intensity near the center can be obtained.
  • the semiconductor laser is smaller than, for example, a He—Ne laser, a small laser light source can be realized. Therefore, by applying the laser light source of the present embodiment to an interferometer or a spectroscope, a small interferometer or spectroscope can be realized, which is easy to carry and improves convenience.
  • the wavelength filter is composed of a volume type diffraction grating.
  • the wavelength filter since it is easy to increase the number of laminated diffraction gratings by, for example, exposure of a photosensitive material, it is possible to easily realize a wavelength filter having a narrow line width compared to a case where the wavelength filter is formed of, for example, a multilayer film. it can. Further, since the wavelength filter has a narrow line width, it is possible to shorten the wavelength stabilization region, that is, the distance from the semiconductor laser necessary for stabilizing the wavelength to the wavelength filter.
  • the exit surface of the single mode fiber or the polarization-maintaining fiber is inclined with respect to a plane perpendicular to the light guiding direction.
  • the laser light source of the present embodiment When the laser light source of the present embodiment is applied to, for example, an interferometer, light guided by a single mode fiber or a polarization-maintaining fiber is reflected on an arbitrary reflecting surface (for example, a reflection of a fixed mirror or a moving mirror). Even if the light is reflected again by the surface and is returned to the single-mode fiber or the polarization-maintaining fiber, it is reflected by the exit surface of the fiber and does not enter the semiconductor laser. Therefore, it is possible to avoid the oscillation of the semiconductor laser from becoming unstable due to the return light.
  • an arbitrary reflecting surface for example, a reflection of a fixed mirror or a moving mirror
  • the single mode fiber or the polarization-maintaining fiber has a length that attenuates a mode other than the waveguide mode.
  • the single-mode fiber or polarization-maintaining fiber has a length that attenuates the higher-order guided mode, for example, the higher-order guided mode is attenuated and only an arbitrary mode (basic mode, LP01 mode) is attenuated. Can be guided. By having one guided mode, a rotationally symmetric intensity profile can be obtained reliably.
  • the interferometer of this embodiment separates the reference light from the reference light source, the movable mirror and the fixed mirror, and the reference light from the reference light source into two parts, and guides them to the movable mirror and the fixed mirror, respectively.
  • An interferometer comprising a beam splitter for combining and interfering each light reflected by a mirror, and a reference light detector for detecting the interference light combined by the beam splitter as a reference interference light,
  • An optical path correction unit that corrects a relative inclination error between the optical path of the reflected light from the movable mirror and the optical path of the reflected light from the fixed mirror based on a detection result of the reference light detector;
  • the light source is preferably composed of the laser light source of the present embodiment described above.
  • the laser light source of the present embodiment to the interferometer as a reference light source, it is possible to realize a small interferometer with a configuration capable of optical path correction by the optical path correction unit.
  • the reference light detector includes at least three light receiving units arranged in two directions on a light receiving surface of the reference interference light
  • the optical path correction unit includes: Based on a phase difference between signals output from the three light receiving units, an inclination detection unit that detects an inclination error between the optical paths, and an inclination of the fixed mirror or the movable mirror are adjusted to adjust the optical paths.
  • a configuration may be provided that includes an adjustment mechanism that corrects the tilt error by tilting one of the control unit and a control unit that controls the adjustment mechanism based on a detection result of the tilt detection unit.
  • the inclination detection unit of the optical path correction unit can detect an inclination error between the two optical paths for each of the two directions based on signals output from the three light receiving units. Thereby, under the control of the control unit, the adjustment mechanism can tilt one optical path in each of the two directions to correct the tilt error between the two optical paths.
  • the intensity distribution of light emitted from the laser light source is close to a rotationally symmetric Gaussian distribution
  • the phase difference between the two signals output from the two light receiving units, the inclination error, and the inclination error are within a very small range.
  • the inclination detection unit can detect the inclination error with high accuracy.
  • the interferometer according to the present embodiment may further include a collimating optical system that converts light emitted from the laser light source into collimated light.
  • the light emitted from the fiber end of the laser light source can propagate through the space as a plane wave through the collimating optical system. Since it can be handled as a plane wave, there is no phase difference between the rays in the collimated light beam. Therefore, the calculation of the phase difference of the output signals from each light receiving unit and the inclination error between the two optical paths based on the phase difference are possible. Calculation becomes easy.
  • the interferometer of this embodiment separates the measurement light into two by the beam splitter and guides it to the movable mirror and the fixed mirror.
  • the light reflected by the movable mirror and the fixed mirror is separated by the beam splitter.
  • the configuration may further include a measurement optical system that combines and guides the measurement light as measurement interference light to the measurement light detector.
  • measurement interference light can be measured by the measurement light detector. Further, since the relative inclination error between the two optical paths is corrected by the optical path correction unit, it is possible to avoid a decrease in the contrast of the measurement interference light in the measurement light detector.
  • the spectroscope according to the present embodiment has a spectrum indicating the light intensity for each wavelength based on the above-described interferometer of the present invention and the measurement interference light detection signal output from the measurement light detector of the interferometer.
  • generate may be sufficient.
  • the reference interference light can be accurately detected by the reference light detector, and the optical path correction by the optical path correction unit can be accurately performed. Therefore, a spectroscope equipped with such an interferometer can accurately perform spectroscopic analysis of measurement interference light based on the spectrum generated by the spectrum generation unit.
  • the laser light source of the present invention can be used in a Michelson interferometer and a Fourier transform spectroscopic apparatus for performing spectroscopic analysis using the same.
  • Interferometer 2 Calculation unit (spectrum generation unit) 10 Measurement optics 13 BS (Beam splitter) DESCRIPTION OF SYMBOLS 15 Fixed mirror 16 Moving mirror 18 Measurement light detector 21 Reference light source 22 Reference light collimating optical system 25 Reference light detector 25A Light receiving part 25B Light receiving part 25C Light receiving part 25D Light receiving part 30 Optical path correction part 31 Signal processing part (Inclination detection part) ) 32 Adjustment mechanism 33 Control unit 40 Laser light source 41 Semiconductor laser 42 VHG element (wavelength filter) 43 Lens 44 Fiber (single mode fiber, polarization maintaining fiber) 44a Ejection surface

Abstract

A VHG element (42) of a laser light source (40) returns light of a specific wavelength emitted from a semiconductor laser (41) to the semiconductor laser (41), causes resonance to be generated between the semiconductor laser (41) and the actual VHG element (42) to thereby amplify the light, and emits the light. The laser light source (40) comprises a fibre (45) that guides the light of the specified wavelength that is emitted from the VHG element (42) and incident through a lens (43). The fibre (45) is comprises a single-mode fibre or a polarisation plane-maintaining fibre.

Description

レーザ光源、干渉計および分光器Laser light source, interferometer and spectrometer
 本発明は、半導体レーザを備えたレーザ光源と、そのレーザ光源を参照光源として用いた干渉計と、その干渉計を備えた分光器とに関するものである。 The present invention relates to a laser light source including a semiconductor laser, an interferometer using the laser light source as a reference light source, and a spectroscope including the interferometer.
 分光器としてのFTIR(Fourier Transform Infrared Spectroscopy)に利用されるマイケルソン2光束干渉計では、光源から発した赤外光をビームスプリッタで固定鏡および移動鏡の2方向に分割し、その固定鏡および移動鏡でそれぞれ反射して戻ってきた光を上記ビームスプリッタで1つの光路に合成するという構成が採用されている。移動鏡を前後に(入射光の光軸方向に)移動させると、分割された2光束の光路差が変化するため、合成された光はその移動鏡の移動量に応じて光の強度が変化する測定干渉光(インターフェログラム)となる。このインターフェログラムをサンプリングし、AD変換およびフーリエ変換することにより、入射光のスペクトル分布を求めることができ、このスペクトル分布から、波数(1/波長)ごとの測定干渉光の強度を求めることができる。 In a Michelson two-beam interferometer used for FTIR (Fourier Transform Infrared Spectroscopy) as a spectroscope, infrared light emitted from a light source is divided into two directions, a fixed mirror and a moving mirror, by a beam splitter. A configuration is adopted in which the light reflected and returned by the movable mirror is combined into one optical path by the beam splitter. When the moving mirror is moved back and forth (in the direction of the optical axis of the incident light), the optical path difference between the two divided beams changes, so the intensity of the combined light changes according to the amount of movement of the moving mirror. Measurement interference light (interferogram). By sampling this interferogram and performing AD conversion and Fourier transform, the spectral distribution of the incident light can be obtained, and the intensity of the measurement interference light for each wave number (1 / wavelength) can be obtained from this spectral distribution. it can.
 上記のインターフェログラムは、移動鏡と固定鏡との位相差、すなわち、移動鏡での反射光と固定鏡での反射光との光路差の関数で示されることから、測定干渉光の強度を求めるにあたっては、移動鏡の位置を常に監視する必要がある。そこで、通常は、赤外光を出射する光源とは別に、参照光源を用いて移動鏡の位置を監視している。具体的には、参照光源から出射される参照光をビームスプリッタで分離して移動鏡および固定鏡に導き、移動鏡および固定鏡で反射される各光をビームスプリッタで合成し、参照干渉光として位置検出用の参照光検出器に導く。参照干渉光の強度は、移動鏡の位置に応じて変化するので、参照光検出器にて参照干渉光の強度変化を検出することにより、移動鏡の位置を求めることが可能となる。 The above interferogram is expressed as a function of the phase difference between the moving mirror and the fixed mirror, that is, the optical path difference between the reflected light from the moving mirror and the reflected light from the fixed mirror. When seeking, it is necessary to constantly monitor the position of the movable mirror. Therefore, normally, the position of the movable mirror is monitored using a reference light source separately from the light source that emits infrared light. Specifically, the reference light emitted from the reference light source is separated by a beam splitter and guided to a moving mirror and a fixed mirror, and each light reflected by the moving mirror and the fixed mirror is synthesized by a beam splitter to be used as reference interference light. The light is guided to a reference light detector for position detection. Since the intensity of the reference interference light changes according to the position of the movable mirror, the position of the movable mirror can be obtained by detecting the intensity change of the reference interference light with the reference light detector.
 ところで、例えば干渉計の輸送中の衝撃や振動に起因して、移動鏡での反射光の光路と固定鏡での反射光の光路との相対的な傾きが、正規の傾きからずれる場合がある。以下、このような傾きのずれのことを、傾き誤差と称する。傾き誤差があると、移動鏡での反射光と固定鏡での反射光との干渉性が低下して、測定干渉光のコントラストが低下するため、測定干渉光の分光分析を精度よく行うことができなくなる。 By the way, for example, due to shock or vibration during transportation of the interferometer, the relative inclination of the optical path of the reflected light from the movable mirror and the optical path of the reflected light from the fixed mirror may deviate from the normal inclination. . Hereinafter, such a deviation in inclination is referred to as an inclination error. If there is a tilt error, the coherence between the reflected light from the movable mirror and the reflected light from the fixed mirror will be reduced, and the contrast of the measured interference light will be reduced. become unable.
 そこで、例えば特許文献1では、分光測定前に、参照光検出器での参照干渉光の検出結果に基づいて固定鏡または移動鏡の角度を調整することで、上記の衝撃等に起因する傾き誤差を補正するようにしている。より詳しくは、参照光検出器は4分割センサで構成されており、個々のセンサから出力される計4つの信号に基づいて、参照干渉光の位置ずれに対応した信号(水平方向および垂直方向の位相信号)を生成し、これらの位相信号に基づいて例えば固定鏡の姿勢を調整することで、上記の傾き誤差を補正している。 Therefore, in Patent Document 1, for example, before the spectroscopic measurement, the tilt error caused by the impact or the like is adjusted by adjusting the angle of the fixed mirror or the movable mirror based on the detection result of the reference interference light by the reference light detector. I am trying to correct. More specifically, the reference light detector is composed of four divided sensors. Based on a total of four signals output from the individual sensors, signals corresponding to the positional deviation of the reference interference light (horizontal and vertical directions). The tilt error is corrected by adjusting the posture of the fixed mirror, for example, based on these phase signals.
 また、特許文献1は、一般的なFTIRにおいて、干渉計の参照光源として例えばHe-Neレーザが用いられることを開示しているが、He-Neレーザは大型であるため、干渉計の大型化を招く。小型で持ち運びが可能な干渉計を実現するためには、参照光源として、例えば小型である半導体レーザを用いることが有効であると考えられる。 Patent Document 1 discloses that, for example, a He—Ne laser is used as a reference light source for an interferometer in a general FTIR. However, since the He—Ne laser is large, the interferometer is enlarged. Invite. In order to realize a small and portable interferometer, it is considered effective to use, for example, a small semiconductor laser as a reference light source.
 半導体レーザは、発振波長幅が例えば3nm程度であるが、半導体レーザの射出部に例えば体積型の回折格子を配置することにより、半導体レーザの発振波長幅を例えば0.1nmに狭くすることができ、波長を安定化させることができる。このように半導体レーザと体積型の回折格子とを組み合わせて、半導体レーザの波長を安定化させる技術は、例えば特許文献2に開示されている。特許文献2では、半導体レーザの射出部にVBG(Volume Bragg Grating)素子を配置し、半導体レーザから射出されたレーザ光のうち、特定波長の光をVBG素子で反射させて半導体レーザに戻し、半導体レーザとVBG素子との間で共振させて波長をロックし、VBG素子から射出するようにしている。 A semiconductor laser has an oscillation wavelength width of, for example, about 3 nm. By arranging, for example, a volume type diffraction grating at the emission portion of the semiconductor laser, the oscillation wavelength width of the semiconductor laser can be reduced to, for example, 0.1 nm. , The wavelength can be stabilized. A technique for stabilizing the wavelength of a semiconductor laser by combining a semiconductor laser and a volume type diffraction grating in this manner is disclosed in, for example, Patent Document 2. In Patent Document 2, a VBG (Volume Bragg Grating) element is arranged at the emitting portion of the semiconductor laser, and among the laser light emitted from the semiconductor laser, light having a specific wavelength is reflected by the VBG element and returned to the semiconductor laser. The wavelength is locked by resonating between the laser and the VBG element, and the laser beam is emitted from the VBG element.
特開2004-28609号公報(段落〔0002〕、〔0008〕~〔0020〕等参照)JP 2004-28609 A (see paragraphs [0002], [0008] to [0020], etc.) 米国特許第7697589号明細書(Fig.1C等参照)US Patent No. 7697589 (see Fig. 1C etc.)
 ところで、図7は、レーザ光源100において、半導体レーザ101からVBG素子102を介して射出される光の強度プロファイルを示している。半導体レーザ101とVBG素子102との間で特定波長の光を共振させて波長をロックする構成において、VBG素子102から射出される光の強度プロファイルは、半導体レーザ101に特定波長の光が戻される位置(VBG素子102で反射される位置)において強度が低下したものとなり、強度プロファイルに暗点103が生じる。なお、VBG素子102は角度選択性を有するため、入射光の波長や入射角によって暗点103の位置(強度が低下する位置)は変化する。 Incidentally, FIG. 7 shows an intensity profile of light emitted from the semiconductor laser 101 through the VBG element 102 in the laser light source 100. In a configuration in which light of a specific wavelength is resonated between the semiconductor laser 101 and the VBG element 102 to lock the wavelength, the intensity profile of the light emitted from the VBG element 102 is returned to the semiconductor laser 101. The intensity is lowered at the position (position reflected by the VBG element 102), and a dark spot 103 is generated in the intensity profile. Since the VBG element 102 has angle selectivity, the position of the dark spot 103 (position where the intensity decreases) varies depending on the wavelength of incident light and the incident angle.
 このような強度プロファイルを持つレーザ光源100を、例えば干渉計の参照光源に適用すると、図8に示すように、参照光検出器201で検出される参照干渉光の強度分布にも暗点202(強度の低下した部分)が生じる。このような暗点202は、参照光検出器201の個々のセンサから出力される位相信号に誤差を持たせるため、参照光検出器201からの出力に基づく傾き誤差の補正(光路補正)を精度よく行うことができなくなる。その結果、レーザ光源100を干渉計や分光計に適用することが困難となる。 When the laser light source 100 having such an intensity profile is applied to a reference light source of an interferometer, for example, as shown in FIG. 8, a dark spot 202 ( The part where the strength is reduced occurs. Since such a dark spot 202 has an error in the phase signal output from each sensor of the reference light detector 201, the correction of the tilt error (optical path correction) based on the output from the reference light detector 201 is accurate. Can't do well. As a result, it becomes difficult to apply the laser light source 100 to an interferometer or a spectrometer.
 本発明は、上記の問題点を解決するためになされたもので、その目的は、干渉計の参照光源に適用したときに、参照光検出器での参照干渉光の強度分布に誤差要因となる暗点が生じるのを回避することができ、これによって参照光検出器からの出力に基づく光路補正を精度よく行うことができる小型のレーザ光源と、そのレーザ光源を適用可能な干渉計および分光器とを提供することにある。 The present invention has been made to solve the above problems, and its object is to cause an error in the intensity distribution of the reference interference light in the reference light detector when applied to the reference light source of the interferometer. A small laser light source capable of avoiding dark spots and thereby accurately performing optical path correction based on the output from the reference light detector, and an interferometer and spectroscope to which the laser light source can be applied And to provide.
 本発明のレーザ光源は、半導体レーザと、前記半導体レーザの射出部に配置され、前記半導体レーザから射出される特定波長の光を前記半導体レーザに戻すとともに、前記半導体レーザとの間で共振させて増幅し、射出する波長フィルタと、前記波長フィルタから射出され、レンズを介して入射する前記特定波長の光を導波するシングルモードファイバまたは偏波面保持ファイバとを備えていることを特徴としている。 The laser light source of the present invention is disposed in a semiconductor laser and an emission part of the semiconductor laser, and returns light of a specific wavelength emitted from the semiconductor laser to the semiconductor laser and resonates with the semiconductor laser. A wavelength filter that amplifies and emits, and a single mode fiber or a polarization-maintaining fiber that guides light of the specific wavelength that is emitted from the wavelength filter and enters through a lens.
 本発明によれば、波長フィルタから射出され、強度プロファイルに暗点のある光を、シングルモードファイバまたは偏波面保持ファイバで導波させることにより、ガウス分布に近い形状、すなわち、中心付近で最も強度が高い回転対称の強度プロファイルを得ることができる。これにより、レーザ光源を例えば干渉計の参照光源に適用したときに、参照干渉光の強度分布に暗点が生じるのを回避することができ、参照干渉光の強度分布に基づく光路補正を精度よく行うことができる。したがって、そのような光路補正を行う干渉計や分光器に好適なレーザ光源を実現することができる。しかも、半導体レーザは小型であるため、レーザ光源ひいては干渉計や分光器を小型で構成することができる。 According to the present invention, the light emitted from the wavelength filter and having a dark spot in the intensity profile is guided by the single mode fiber or the polarization-maintaining fiber, so that the shape is close to the Gaussian distribution, that is, the intensity is most intense near the center. A high rotationally symmetric intensity profile can be obtained. As a result, when a laser light source is applied to a reference light source of an interferometer, for example, it is possible to avoid a dark spot in the intensity distribution of the reference interference light, and the optical path correction based on the intensity distribution of the reference interference light can be accurately performed. It can be carried out. Accordingly, it is possible to realize a laser light source suitable for an interferometer or a spectroscope that performs such optical path correction. In addition, since the semiconductor laser is small, the laser light source, and thus the interferometer and spectroscope, can be configured in a small size.
本発明の実施の一形態の分光器の概略の構成を模式的に示す説明図である。It is explanatory drawing which shows typically the structure of the outline of the spectrometer of one Embodiment of this invention. 上記分光器が備える干渉計の参照光検出器の概略の構成を示す平面図である。It is a top view which shows the structure of the outline of the reference light detector of the interferometer with which the said spectrometer is equipped. 上記参照光検出器から出力される2つの位相信号を示す説明図である。It is explanatory drawing which shows two phase signals output from the said reference light detector. 上記2つの位相信号の位相差と、2光路の相対的な傾き角との関係を示す説明図である。It is explanatory drawing which shows the relationship between the phase difference of the said two phase signals, and the relative inclination angle of two optical paths. 上記分光器の他の構成を模式的に示す説明図である。It is explanatory drawing which shows typically the other structure of the said spectrometer. 上記干渉計の参照光源に適用されるレーザ光源の概略の構成を示す断面図である。It is sectional drawing which shows the schematic structure of the laser light source applied to the reference light source of the said interferometer. 半導体レーザからVBG素子を介して射出される光の強度プロファイルを示す説明図である。It is explanatory drawing which shows the intensity profile of the light inject | emitted via a VBG element from a semiconductor laser. 図7の強度プロファイルを持つ光を2つに分離して干渉させた干渉光の強度分布を模式的に示す説明図である。It is explanatory drawing which shows typically the intensity distribution of the interference light which isolate | separated and interfered the light with the intensity profile of FIG.
 本発明の実施の一形態について、図面に基づいて説明すれば、以下の通りである。 An embodiment of the present invention will be described below with reference to the drawings.
 〔分光器および干渉計の構成〕
 図1は、本実施形態の分光器(フーリエ変換分光分析装置)の概略の構成を模式的に示す説明図である。この分光器は、干渉計1と、演算部2と、出力部3とを有して構成されている。干渉計1は、2光路分岐型のマイケルソン干渉計で構成されているが、その詳細については後述する。演算部2は、干渉計1の後述する測定光検出器18から出力される信号のサンプリング、A/D変換およびフーリエ変換を行い、測定光に含まれる波長のスペクトル、すなわち、波数(1/波長)ごとの光の強度を示すスペクトルを生成する。つまり、演算部2は、測定干渉光の検知信号に基づいて、波長ごとの光の強度を示すスペクトルを生成するスペクトル生成部として機能する。出力部3は、演算部2にて生成されたスペクトルを出力(例えば表示)する。以下、干渉計1の詳細について説明する。
[Configuration of spectrometer and interferometer]
FIG. 1 is an explanatory diagram schematically showing a schematic configuration of the spectroscope (Fourier transform spectroscopic analyzer) of the present embodiment. The spectroscope includes an interferometer 1, a calculation unit 2, and an output unit 3. The interferometer 1 is a two-optical path branching Michelson interferometer, and details thereof will be described later. The calculation unit 2 performs sampling, A / D conversion, and Fourier transform of a signal output from a measurement light detector 18 (to be described later) of the interferometer 1, and a wavelength spectrum included in the measurement light, that is, a wave number (1 / wavelength). ) To generate a spectrum indicating the intensity of light. That is, the calculation unit 2 functions as a spectrum generation unit that generates a spectrum indicating the light intensity for each wavelength based on the detection signal of the measurement interference light. The output unit 3 outputs (for example, displays) the spectrum generated by the calculation unit 2. Hereinafter, details of the interferometer 1 will be described.
 干渉計1は、測定光学系10と、参照光学系20と、光路補正部30とを有している。以下、順に説明する。 The interferometer 1 has a measurement optical system 10, a reference optical system 20, and an optical path correction unit 30. Hereinafter, it demonstrates in order.
 (測定光学系)
 測定光学系10は、測定用光源11と、測定光用コリメート光学系12と、折り返しミラーMと、BS(ビームスプリッタ)13と、補償板14と、固定鏡15と、移動鏡16と、集光光学系17と、測定光検出器18と、駆動機構19とを備えている。なお、BS13に対する固定鏡15と移動鏡16との位置関係は、逆であってもよい。
(Measuring optical system)
The measurement optical system 10 includes a measurement light source 11, a measurement light collimating optical system 12, a folding mirror M, a BS (beam splitter) 13, a compensation plate 14, a fixed mirror 15, a moving mirror 16, a collecting mirror. An optical optical system 17, a measurement light detector 18, and a drive mechanism 19 are provided. Note that the positional relationship between the fixed mirror 15 and the movable mirror 16 with respect to the BS 13 may be reversed.
 測定用光源11は、例えば複数波長を含む近赤外光または赤外光を測定光として出射するものであり、光源単独で構成されるか、または光源と光ファイバとを結合したファイバ結合光学系で構成されている。測定光用コリメート光学系12は、測定用光源11から出射される測定光をコリメート光に変換してBS13に導く光学系であり、例えばコリメータレンズで構成されている。 The measurement light source 11 emits, for example, near-infrared light or infrared light including a plurality of wavelengths as measurement light, and is configured by a single light source or a fiber coupling optical system in which a light source and an optical fiber are coupled. It consists of The measurement light collimating optical system 12 is an optical system that converts the measurement light emitted from the measurement light source 11 into collimated light and guides it to the BS 13, and is composed of, for example, a collimator lens.
 ここで、コリメート光とは、完全な平行光のほか、略平行光(若干の収束光や発散光)も含む概念である。つまり、ここでのコリメートとは、光源からの光をコリメート光学系によってBSおよび固定鏡または移動鏡を経てセンサへ導くことを指し、無限遠方へのコリメートに限るものではない。平面波として取り扱いやすくするため、例えば1m以上遠方にコリメートすることが望ましい。 Here, collimated light is a concept that includes substantially parallel light (some convergent light or divergent light) in addition to perfect parallel light. In other words, collimation here refers to guiding light from a light source to a sensor via a BS and a fixed mirror or moving mirror by a collimating optical system, and is not limited to collimation at infinity. In order to facilitate handling as a plane wave, for example, it is desirable to collimate 1 m or more away.
 折り返しミラーMは、干渉計1をコンパクトに構成すべく、測定光用コリメート光学系12とBS13との間の光路を折り曲げるために設けられている。折り返しミラーMとBS13との間の光路中(特に後述する光路合成ミラー23とBS13との間の光路中)には、測定光の光束径を規制するための絞りA1が配置されている。 The folding mirror M is provided to bend the optical path between the collimating optical system 12 for measuring light and the BS 13 so as to make the interferometer 1 compact. In the optical path between the folding mirror M and the BS 13 (particularly in the optical path between the optical path combining mirror 23 and the BS 13 described later), a stop A1 for restricting the beam diameter of the measurement light is disposed.
 BS13は、入射光、すなわち、測定用光源11から出射された光を2つの光に分離して、それぞれを固定鏡15および移動鏡16に導くとともに、固定鏡15および移動鏡16にて反射された各光を合成し、測定干渉光として出射するものであり、例えば分岐比50:50のハーフミラーで構成されている。 The BS 13 separates incident light, that is, light emitted from the measurement light source 11 into two lights, which are guided to the fixed mirror 15 and the movable mirror 16 and reflected by the fixed mirror 15 and the movable mirror 16, respectively. Each light is combined and emitted as measurement interference light, and is composed of, for example, a half mirror with a branching ratio of 50:50.
 補償板14は、BS13の厚み分の光路長、および光がBS13を透過する際の屈折による光路シフトを補正するための基板である。なお、干渉計1の組み方次第では、補償板14を不要とすることもできる。 The compensation plate 14 is a substrate for correcting an optical path length corresponding to the thickness of the BS 13 and an optical path shift due to refraction when light passes through the BS 13. Depending on how the interferometer 1 is assembled, the compensation plate 14 may be unnecessary.
 集光光学系17は、BS13にて合成されて出射された光を集光して測定光検出器18に導く光学系であり、例えばフォーカスレンズで構成されている。測定光検出器18は、BS13から集光光学系17を介して入射する測定干渉光を受光してインターフェログラム(干渉パターン)を検出する。 The condensing optical system 17 is an optical system that condenses the light synthesized and emitted by the BS 13 and guides it to the measurement light detector 18, and is composed of, for example, a focus lens. The measurement light detector 18 receives measurement interference light incident from the BS 13 via the condensing optical system 17 and detects an interferogram (interference pattern).
 駆動機構19は、固定鏡15にて反射される光の光路と、移動鏡16にて反射される光の光路との差(光路長の差)が変化するように、移動鏡16を光軸方向に平行移動(並進)させる移動機構であり、例えばVCM(ボイスコイルモータ)を用いた電磁式の駆動機構で構成されている。なお、駆動機構19は、平行板ばね式の駆動機構で構成されてもよい。 The drive mechanism 19 moves the movable mirror 16 to the optical axis so that the difference (optical path length difference) between the optical path of the light reflected by the fixed mirror 15 and the optical path of the light reflected by the movable mirror 16 changes. It is a moving mechanism that translates (translates) in the direction, and is composed of, for example, an electromagnetic drive mechanism using a VCM (voice coil motor). The drive mechanism 19 may be a parallel leaf spring type drive mechanism.
 上記の構成において、測定用光源11から出射された測定光は、測定光用コリメート光学系12によってコリメート光に変換された後、折り返しミラーMで反射されてBS13に入射し、BS13での透過および反射によって2光束に分離される。分離された一方の光束は移動鏡16で反射され、他方の光束は固定鏡15で反射され、それぞれ元の光路を逆戻りしてBS13で重ね合わせられ、測定干渉光として補償板14を透過した後、試料(図示せず)に照射される。このとき、駆動機構19によって移動鏡16を連続的に移動させながら試料に光が照射されるが、BS13から各ミラー(移動鏡16、固定鏡15)までの光路長の差が波長の整数倍のときは、重ね合わされた光の強度は最大となる。一方、移動鏡16の移動によって2つの光路長に差が生じている場合には、重ね合わされた光の強度に変化が生じる。試料を透過した光は、集光光学系17にて集光されて測定光検出器18に入射し、そこでインターフェログラムとして検出される。すなわち、図1では、測定光は、一点鎖線で示す光路を進行する。 In the above configuration, the measurement light emitted from the measurement light source 11 is converted into collimated light by the measurement light collimating optical system 12, then reflected by the folding mirror M and incident on the BS 13. It is separated into two light beams by reflection. One separated light beam is reflected by the movable mirror 16, and the other light beam is reflected by the fixed mirror 15. Each light beam returns to the original optical path and is superimposed by the BS 13, and after passing through the compensation plate 14 as measurement interference light. The sample (not shown) is irradiated. At this time, the sample is irradiated with light while continuously moving the movable mirror 16 by the drive mechanism 19, but the difference in optical path length from the BS 13 to each mirror (movable mirror 16, fixed mirror 15) is an integral multiple of the wavelength. In this case, the intensity of the superimposed light becomes the maximum. On the other hand, when there is a difference between the two optical path lengths due to the movement of the movable mirror 16, the intensity of the superimposed light changes. The light transmitted through the sample is condensed by the condensing optical system 17 and enters the measurement light detector 18 where it is detected as an interferogram. That is, in FIG. 1, the measurement light travels along an optical path indicated by a one-dot chain line.
 演算部2では、測定光検出器18からの検出信号(インターフェログラム)をサンプリングし、A/D変換およびフーリエ変換することにより、波数ごとの光の強度を示すスペクトルが生成される。上記のスペクトルは、出力部3にて出力(例えば表示)され、このスペクトルに基づき、試料の特性(材料、構造、成分量など)を分析することが可能となる。 The computing unit 2 samples a detection signal (interferogram) from the measurement light detector 18 and performs A / D conversion and Fourier transform to generate a spectrum indicating the light intensity for each wave number. The above spectrum is output (for example, displayed) by the output unit 3, and based on this spectrum, the characteristics (material, structure, component amount, etc.) of the sample can be analyzed.
 (参照光学系)
 次に、参照光学系20について説明する。参照光学系20は、上記した測定光学系10と構成を一部共有しており、上述したBS13と、補償板14と、固定鏡15と、移動鏡16とに加えて、参照光源21と、参照光用コリメート光学系22と、光路合成ミラー23と、光路分離ミラー24と、参照光検出器25とを有している。
(Reference optical system)
Next, the reference optical system 20 will be described. The reference optical system 20 shares a part of the configuration with the measurement optical system 10 described above. In addition to the BS 13, the compensation plate 14, the fixed mirror 15, and the movable mirror 16, the reference light source 21, A reference light collimating optical system 22, an optical path combining mirror 23, an optical path separation mirror 24, and a reference light detector 25 are provided.
 参照光源21は、移動鏡16の位置を検出したり、演算部2でのサンプリングのタイミング信号を生成するための光源である。本実施形態では、参照光源21は、レーザ光源40(図6参照)で構成されているが、その詳細については後述する。 The reference light source 21 is a light source for detecting the position of the movable mirror 16 and generating a timing signal for sampling in the calculation unit 2. In the present embodiment, the reference light source 21 is constituted by a laser light source 40 (see FIG. 6), and details thereof will be described later.
 参照光用コリメート光学系22は、参照光源21から出射される参照光(レーザ光)をコリメート光に変換してBS13に導く光学系であり、例えばコリメートレンズで構成されている。参照光用コリメート光学系22の光出射側には、絞りA2が配置されており、コリメート光の光束径が規制される。なお、参照光用コリメート光学系22を構成するレンズの光射出側の面において、コリメート光を出射する部分以外を黒く塗ることによって、参照光用コリメート光学系22に絞りA2の機能を持たせるようにしてもよい。 The reference light collimating optical system 22 is an optical system that converts the reference light (laser light) emitted from the reference light source 21 into collimated light and guides it to the BS 13, and is composed of, for example, a collimating lens. A diaphragm A2 is disposed on the light exit side of the reference light collimating optical system 22, and the beam diameter of the collimated light is regulated. It should be noted that the reference light collimating optical system 22 is provided with the function of the aperture A2 by painting the surface of the lens constituting the reference light collimating optical system 22 in black except for the portion that emits the collimated light. It may be.
 光路合成ミラー23は、測定用光源11からの光を透過させ、参照光源21からの光を反射させることにより、これらの光の光路を合成するビームコンバイナである。本実施形態では、参照光が固定鏡15および移動鏡16に対して斜めに入射するように光路合成ミラー23が配置されている。これにより、固定鏡15および移動鏡16からの戻り光の影響を回避するようにしている。 The optical path combining mirror 23 is a beam combiner that combines the optical paths of the light by transmitting the light from the measurement light source 11 and reflecting the light from the reference light source 21. In the present embodiment, the optical path combining mirror 23 is arranged so that the reference light is incident on the fixed mirror 15 and the movable mirror 16 obliquely. Thereby, the influence of the return light from the fixed mirror 15 and the movable mirror 16 is avoided.
 すなわち、参照光の光路が固定鏡15および移動鏡16に対して傾いているため、固定鏡15での反射光がBS13を透過し、光路合成ミラー23にて参照光用コリメート光学系22の方向に反射しても、また、移動鏡16での反射光がBS13で反射して光路合成ミラー23に入射し、そこで参照光用コリメート光学系22の方向に反射しても、それらの光は、絞りA2に入射してそこで遮られ、参照光源21に入射しない。これにより、戻り光の入射によって参照光源21での発振が不安定になるのを回避することができる。なお、図1では、固定鏡15および移動鏡16からの戻り光の光路を破線で示している。 That is, since the optical path of the reference light is tilted with respect to the fixed mirror 15 and the movable mirror 16, the reflected light from the fixed mirror 15 passes through the BS 13, and the direction of the reference light collimating optical system 22 is transmitted by the optical path combining mirror 23. Even if the light reflected by the movable mirror 16 is reflected by the BS 13 and is incident on the optical path synthesis mirror 23 where it is reflected in the direction of the collimating optical system 22 for reference light, The light enters the stop A2 and is blocked there, and does not enter the reference light source 21. Thereby, it is possible to avoid the oscillation at the reference light source 21 becoming unstable due to the incident return light. In FIG. 1, the optical paths of the return light from the fixed mirror 15 and the movable mirror 16 are indicated by broken lines.
 光路分離ミラー24は、測定用光源11から出射されてBS13を介して入射する光を透過させ、参照光源21から出射されてBS13を介して入射する光を反射させることにより、これらの光の光路を分離するビームスプリッタである。 The optical path separation mirror 24 transmits the light emitted from the measurement light source 11 and incident through the BS 13, and reflects the light emitted from the reference light source 21 and incident through the BS 13. Is a beam splitter.
 参照光検出器25は、参照光源21から出射されてBS13を介して光路分離ミラー24に入射し、そこで反射された光(参照干渉光)を検出する検出器であり、例えばCCDよりも応答速度が速い4分割センサで構成されている。光路分離ミラー24と参照光検出器25との間の光路中には、絞りA3が配置されており、この絞りA3によって、参照光検出器25に入射する参照干渉光の光束径が規制される。 The reference light detector 25 is a detector that detects light (reference interference light) emitted from the reference light source 21 and incident on the optical path separation mirror 24 via the BS 13 and reflected there. For example, the response speed is higher than that of the CCD. Is composed of a fast quadrant sensor. A diaphragm A3 is arranged in the optical path between the optical path separation mirror 24 and the reference light detector 25, and the diameter of the reference interference light incident on the reference light detector 25 is regulated by the diaphragm A3. .
 図2は、参照光検出器25の概略の構成を示す平面図である。同図に示すように、参照光検出器25は、4つの受光部25A~25Dからなり、各受光部25A~25Dは2行2列で配置されている。なお、参照光検出器25の各受光部は、参照干渉光の受光面上で2方向に並ぶように配置されていればよく、参照光検出器25が少なくとも3つの受光部を備えていれば、このような配置を実現することができる。 FIG. 2 is a plan view showing a schematic configuration of the reference light detector 25. As shown in the figure, the reference light detector 25 includes four light receiving portions 25A to 25D, and the light receiving portions 25A to 25D are arranged in two rows and two columns. The light receiving units of the reference light detector 25 may be arranged in two directions on the light receiving surface of the reference interference light, and the reference light detector 25 includes at least three light receiving units. Such an arrangement can be realized.
 上記の構成において、参照光源21から出射された光は、参照光用コリメート光学系22でコリメート光に変換された後、光路合成ミラー23で反射されてBS13に入射し、そこで2光束に分離される。BS13にて分離された一方の光束は移動鏡16で反射され、他方の光束は固定鏡15で反射され、それぞれ元の光路を逆戻りしてBS13で重ね合わせられ、補償板14を透過して光路分離ミラー24に入射し、そこで反射されて参照光検出器25に入射する。すなわち、図1では、参照光は、実線で示す光路を進行する。 In the above configuration, the light emitted from the reference light source 21 is converted into collimated light by the reference light collimating optical system 22, then reflected by the optical path combining mirror 23 and incident on the BS 13, where it is separated into two light beams. The One light beam separated by the BS 13 is reflected by the movable mirror 16, and the other light beam is reflected by the fixed mirror 15. Each light beam returns to the original optical path and is overlapped by the BS 13, and passes through the compensation plate 14 and passes through the optical path. The light enters the separation mirror 24, is reflected there, and enters the reference light detector 25. That is, in FIG. 1, the reference light travels along the optical path indicated by the solid line.
 参照光検出器25での参照干渉光の検出結果に基づき、後述する光路補正部30は、移動鏡16での反射光の光路と固定鏡15での反射光の光路との相対的な傾き誤差(チルト誤差)を補正することになる。 Based on the detection result of the reference interference light by the reference light detector 25, the optical path correction unit 30 described later has a relative inclination error between the optical path of the reflected light from the movable mirror 16 and the optical path of the reflected light from the fixed mirror 15. (Tilt error) is corrected.
 (光路補正部)
 駆動機構19による移動鏡16の駆動時に、移動鏡19の並進性が崩れ、上記の傾き誤差が生じると、固定鏡15での反射光と移動鏡16での反射光との干渉性が低下し、測定干渉光の干渉強度(コントラスト)が低下する。光路補正部30が上記の傾き誤差を補正することにより、測定干渉光の干渉強度が低下するのを回避することができる。
(Optical path correction unit)
When the moving mirror 16 is driven by the driving mechanism 19 and the translational property of the moving mirror 19 is lost and the above tilt error occurs, the coherence between the reflected light from the fixed mirror 15 and the reflected light from the moving mirror 16 decreases. The interference intensity (contrast) of the measurement interference light decreases. When the optical path correction unit 30 corrects the tilt error, it is possible to avoid a decrease in the interference intensity of the measurement interference light.
 ここで、本実施形態では、光路合成ミラー23の上記配置により、測定光側および参照光側の光軸が完全な同軸とはならないが、同軸に近い配置であるので、(1)測定用光源11、BS13、移動鏡16、BS13、測定光検出器18の順に進行する光と、測定用光源11、BS13、固定鏡15、BS13、測定光検出器18の順に進行する光との傾き誤差(第1の傾き誤差とも称する)は、(2)参照光源21、BS13、移動鏡16、BS13、参照光検出器25の順に進行する光と、参照光源21、BS13、固定鏡15、BS13、参照光検出器25の順に進行する光との間の傾き誤差(第2の傾き誤差とも称する)にほとんど近い。したがって、光路補正部30は、参照光検出器25からの参照干渉光の受光信号に基づいて、第2の傾き誤差を補正することにより、第1の傾き誤差を補正することができる。 Here, in the present embodiment, the optical axes on the measurement light side and the reference light side are not perfectly coaxial due to the above arrangement of the optical path combining mirror 23, but (1) a measurement light source because the optical axes are close to the same axis. 11, BS 13, moving mirror 16, BS 13, and measurement light detector 18 in the order of light, and measurement light source 11, BS 13, fixed mirror 15, BS 13, light that proceeds in order of measurement light detector 18 and a tilt error ( (Also referred to as a first tilt error) is (2) light traveling in the order of the reference light source 21, BS13, moving mirror 16, BS13, and reference light detector 25, and the reference light source 21, BS13, fixed mirror 15, BS13, reference It is almost close to a tilt error (also referred to as a second tilt error) between light traveling in the order of the photodetector 25. Therefore, the optical path correction unit 30 can correct the first tilt error by correcting the second tilt error based on the light reception signal of the reference interference light from the reference light detector 25.
 このような光路補正部30は、具体的には、信号処理部31と、調整機構32と、制御部33とを有して構成されている。制御部33は、例えばCPUで構成され、信号処理部31での検出結果に基づいて調整機構32を制御する。 Specifically, the optical path correction unit 30 includes a signal processing unit 31, an adjustment mechanism 32, and a control unit 33. The control unit 33 is configured by a CPU, for example, and controls the adjustment mechanism 32 based on the detection result of the signal processing unit 31.
 信号処理部31は、参照光検出器25にて検出された参照干渉光の強度に基づいて、傾き誤差を検出する傾き検出部である。例えば、図3は、参照光検出器25の受光部25Aから出力される位相信号(参照干渉光全体のうちで受光部25Aで受光した光の強度を示す信号)と、受光部25Cから出力される位相信号(参照干渉光全体のうちで受光部25Cで受光した光の強度を示す信号)とを示している。なお、図3の縦軸の強度は相対値を示している。この例では、これら2つの信号の位相差Δに対応する角度だけ、受光部25A・25Cが並ぶ方向に対応する方向(以下、A-C方向とも称する)に、傾き誤差が生じていることになる。上記2つの信号の位相差と傾き誤差(傾き角)との関係は、例えば図4に示すものとなる。 The signal processing unit 31 is an inclination detection unit that detects an inclination error based on the intensity of the reference interference light detected by the reference light detector 25. For example, FIG. 3 shows a phase signal (a signal indicating the intensity of light received by the light receiving unit 25A out of the entire reference interference light) output from the light receiving unit 25A of the reference light detector 25 and the light receiving unit 25C. Phase signal (a signal indicating the intensity of light received by the light receiving unit 25C out of the entire reference interference light). In addition, the intensity | strength of the vertical axis | shaft of FIG. 3 has shown the relative value. In this example, there is an inclination error in the direction corresponding to the direction in which the light receiving portions 25A and 25C are arranged (hereinafter also referred to as the AC direction) by the angle corresponding to the phase difference Δ between these two signals. Become. The relationship between the phase difference between the two signals and the tilt error (tilt angle) is, for example, as shown in FIG.
 このように、信号処理部31は、2つの受光部25A・25Cから出力される信号の位相差に基づいて、A-C方向の傾き誤差を検出することができる。また、上記と同様の考え方により、信号処理部31は、2つの受光部25A・25Bから出力される信号の位相差に基づいて、受光部25A・25Bが並ぶ方向に対応する方向(以下、A-B方向とも称する)の傾き誤差を検出することもできる。したがって、信号処理部31は、3つの受光部25A・25B・25Cから出力される信号の位相差に基づいて、2方向のそれぞれについて、傾き誤差を検出することができる。 As described above, the signal processing unit 31 can detect the inclination error in the AC direction based on the phase difference between the signals output from the two light receiving units 25A and 25C. Further, based on the same idea as described above, the signal processing unit 31 is based on the phase difference between the signals output from the two light receiving units 25A and 25B, and corresponds to the direction in which the light receiving units 25A and 25B are arranged (hereinafter referred to as A). (Also referred to as -B direction) can be detected. Therefore, the signal processing unit 31 can detect an inclination error in each of the two directions based on the phase difference between the signals output from the three light receiving units 25A, 25B, and 25C.
 調整機構32は、固定鏡15の傾きを調整することにより、2光路の一方を傾けて傾き誤差を補正するものである。本実施形態では、調整機構32は、図1に示すように、先端が固定鏡15の背面(反射面とは反対側の面)と連結されて光軸方向に伸縮する複数(少なくとも3つ)の圧電素子32aと、これらの圧電素子32aに電圧を印加して圧電素子32aを伸縮させる駆動部32bとを有して構成されている。信号処理部31での検出結果に基づいて、制御部33が各圧電素子32aに印加する電圧を制御し、各圧電素子32aを光軸方向に伸縮させることにより、固定鏡15の傾き(固定鏡15での反射光の光路)を変化させることができ、これによって傾き誤差を補正することができる。 The adjusting mechanism 32 adjusts the tilt of the fixed mirror 15 to tilt one of the two optical paths and correct the tilt error. In the present embodiment, as shown in FIG. 1, the adjustment mechanism 32 has a plurality (at least three) of which the tip is connected to the back surface (surface opposite to the reflection surface) of the fixed mirror 15 and expands and contracts in the optical axis direction. The piezoelectric element 32a, and a drive unit 32b that applies a voltage to the piezoelectric element 32a to expand and contract the piezoelectric element 32a. Based on the detection result of the signal processing unit 31, the control unit 33 controls the voltage applied to each piezoelectric element 32 a and expands and contracts each piezoelectric element 32 a in the optical axis direction, thereby tilting the fixed mirror 15 (fixed mirror). The optical path of the reflected light at 15 can be changed, whereby the tilt error can be corrected.
 上記した信号処理部31による傾き誤差の検出と、調整機構32による固定鏡15での反射光の光路補正とを繰り返すフィードバック制御を行うことにより、最終的には、傾き誤差を限りなくゼロに近づけることができる。 By performing feedback control that repeats the detection of the tilt error by the signal processing unit 31 and the optical path correction of the reflected light at the fixed mirror 15 by the adjustment mechanism 32, the tilt error is finally brought to zero as much as possible. be able to.
 なお、上記した信号処理部31は、参照光検出器25にて検出された参照干渉光の強度に基づいて、移動鏡16の位置を検出するとともに、サンプリングのタイミングを示すパルス信号を生成する機能も有している。参照光検出器25では、移動鏡16の位置(光路差)に応じて参照干渉光の強度が全体的に明と暗との間で変化するので、その強度変化に基づいて移動鏡16の位置を検出することができる。演算部2は、上記パルス信号のサンプリングタイミングに同期して、測定光検出器18からの検出信号(インターフェログラム)をサンプリングし、デジタルデータに変換することになる。 The signal processing unit 31 described above has a function of detecting the position of the movable mirror 16 based on the intensity of the reference interference light detected by the reference light detector 25 and generating a pulse signal indicating the sampling timing. Also have. In the reference light detector 25, the intensity of the reference interference light generally changes between bright and dark according to the position (optical path difference) of the movable mirror 16, and therefore the position of the movable mirror 16 based on the intensity change. Can be detected. The calculation unit 2 samples the detection signal (interferogram) from the measurement light detector 18 in synchronization with the sampling timing of the pulse signal and converts it into digital data.
 ところで、図5は、分光器の他の構成を模式的に示す説明図である。同図に示すように、光路補正部30の調整機構32は、移動鏡16の傾きを調整することにより、2光路の一方を傾けて傾き誤差を補正してもよい。この場合、各圧電素子32aの先端を移動鏡16の背面に連結し、各圧電素子32aを駆動部32bによって伸縮させることにより、移動鏡16の傾きを変化させて、移動鏡16で反射される光の光路を補正することができる。このとき、移動鏡16の駆動機構19は、駆動部32bの背面(各圧電素子32aとは反対側)と連結されればよい。 Incidentally, FIG. 5 is an explanatory view schematically showing another configuration of the spectrometer. As shown in the figure, the adjustment mechanism 32 of the optical path correction unit 30 may correct the tilt error by tilting one of the two optical paths by adjusting the tilt of the movable mirror 16. In this case, the tip of each piezoelectric element 32a is connected to the back surface of the movable mirror 16, and each piezoelectric element 32a is expanded and contracted by the drive unit 32b, whereby the inclination of the movable mirror 16 is changed and reflected by the movable mirror 16. The optical path of light can be corrected. At this time, the drive mechanism 19 of the movable mirror 16 may be connected to the back surface of the drive unit 32b (the side opposite to each piezoelectric element 32a).
 〔レーザ光源について〕
 次に、上記した参照光源21を構成するレーザ光源40の詳細について説明する。図6は、レーザ光源40の概略の構成を示す断面図である。このレーザ光源40は、半導体レーザ41と、VHG(Volume Holographic Grating)素子42と、レンズ43と、ファイバ44とを備えている。
[Laser light source]
Next, the detail of the laser light source 40 which comprises the above-mentioned reference light source 21 is demonstrated. FIG. 6 is a cross-sectional view showing a schematic configuration of the laser light source 40. The laser light source 40 includes a semiconductor laser 41, a VHG (Volume Holographic Grating) element 42, a lens 43, and a fiber 44.
 半導体レーザ41は、赤色光(例えば波長660nm)を発光するInGaInP系の端面発光型半導体レーザであり、CANタイプのマウントに取り付けられている。すなわち、半導体レーザ41は、複数のリード端子45を有するステム46上の第1マウント47の側面に固定されている。 The semiconductor laser 41 is an InGaInP-based edge emitting semiconductor laser that emits red light (for example, wavelength 660 nm), and is attached to a CAN type mount. That is, the semiconductor laser 41 is fixed to the side surface of the first mount 47 on the stem 46 having the plurality of lead terminals 45.
 ここで、半導体レーザ41を赤色光を発光するもので構成した理由は、以下の通りである。 Here, the reason why the semiconductor laser 41 is configured to emit red light is as follows.
 多くの材料は、指紋領域と呼ばれる近赤外光および赤外光に吸収帯を持つことが多く、そのため、分光分析は、近赤外光および赤外光を用いて行うことが多い。このような分光分析では、測定光学系10および参照光学系20における光透過面(例えばBS13の光透過面)に反射防止コート(ARコート)を施して光の利用効率を高めることが多い。 Many materials often have absorption bands in near-infrared light and infrared light called fingerprint regions, and therefore, spectroscopic analysis is often performed using near-infrared light and infrared light. In such spectroscopic analysis, a light transmission surface (for example, a light transmission surface of the BS 13) in the measurement optical system 10 and the reference optical system 20 is often provided with an antireflection coating (AR coating) to increase the light utilization efficiency.
 このとき、反射防止コートの設計上、広い帯域で反射防止特性を持たせることは困難である。また、反射を防止する波長帯域を広くとると、その波長帯域で反射率が上がってしまう。したがって、測定光が近赤外光や赤外光である場合、参照光を赤色光(赤色半導体レーザ光)として、参照光と測定光の波長帯域を近づけることにより、反射防止コートの設計を容易にすることができる。 At this time, due to the design of the antireflection coating, it is difficult to provide antireflection characteristics in a wide band. Further, if the wavelength band for preventing reflection is widened, the reflectance increases in that wavelength band. Therefore, when the measurement light is near-infrared light or infrared light, the reference light is made red light (red semiconductor laser light), and the wavelength band of the reference light and measurement light is made close to make it easy to design the antireflection coating. Can be.
 また、広い波長範囲で所定の分岐比(例えば50:50)のBS13を構成することは光学設計上困難であるが、上記のように測定光と参照光との波長帯域を近づけることにより、所定の分岐比のBS13を設計することが容易となる。 In addition, it is difficult to configure the BS 13 having a predetermined branching ratio (for example, 50:50) in a wide wavelength range. However, as described above, the BS 13 having a predetermined branching ratio (for example, 50:50) has a predetermined branching ratio. It becomes easy to design a BS 13 having a branching ratio of.
 なお、半導体レーザ41には、射出部の反射率が限りなく低い(0%に近い)ものも含まれる。すなわち、一般に、半導体レーザは、高反射ミラー(反射率は、100%に近い)と低反射ミラー(反射率50%等)とを有して構成されるが、上記低反射ミラーの反射率が例えば0.01%等と限りなく低いものも、半導体レーザとして扱うことができるものとする。 Note that the semiconductor laser 41 includes a laser whose reflectance at the emitting portion is extremely low (close to 0%). That is, in general, a semiconductor laser is configured to have a high reflection mirror (reflectance is close to 100%) and a low reflection mirror (reflectance 50%, etc.). For example, an extremely low value of 0.01% or the like can be handled as a semiconductor laser.
 VHG素子42は、波長フィルタとしての機能を有する体積型の回折格子(VBG素子)であり、感光材料の露光によって形成される。VHG素子42は、半導体レーザ41から射出される特定波長の光を半導体レーザ41の方向に回折反射によって戻すとともに、半導体レーザ41との間で共振させて増幅することにより、発光波長を反射回折光の波長にロックする。反射回折光の波長は、回折格子の幅によって決まり、半導体レーザ41の発光波長のスペクトル線は、特定のモードに固定され、狭帯域化される。 The VHG element 42 is a volume type diffraction grating (VBG element) having a function as a wavelength filter, and is formed by exposure of a photosensitive material. The VHG element 42 returns light of a specific wavelength emitted from the semiconductor laser 41 in the direction of the semiconductor laser 41 by diffraction reflection and resonates with the semiconductor laser 41 to amplify the emission wavelength, thereby reflecting reflected diffracted light. Lock to the wavelength of. The wavelength of the reflected diffracted light is determined by the width of the diffraction grating, and the spectral line of the emission wavelength of the semiconductor laser 41 is fixed to a specific mode and narrowed.
 このVHG素子42は、半導体レーザ41の射出部に位置するように、第1マウント47上に固定される第2マウント48の側面に設けられている。つまり、VHG素子42は、半導体レーザ41の射出面(レーザ光が放射される位置)に近接して配置されている。半導体レーザ41とVHG素子42とを同時に温度コントロールすることにより、波長変動を小さく抑えて安定させることができる。 The VHG element 42 is provided on the side surface of the second mount 48 fixed on the first mount 47 so as to be positioned at the emitting portion of the semiconductor laser 41. That is, the VHG element 42 is disposed close to the emission surface of the semiconductor laser 41 (position where the laser beam is emitted). By controlling the temperature of the semiconductor laser 41 and the VHG element 42 at the same time, the wavelength fluctuation can be suppressed and stabilized.
 なお、VHG素子42以外にも、例えば多層膜を用いて波長フィルタを構成することも可能である。 In addition to the VHG element 42, it is also possible to configure a wavelength filter using, for example, a multilayer film.
 上記の半導体レーザ41およびVHG素子42は、ステム46上でケース49によって覆われている。ケース49の内部には例えば窒素が充填されている。ケース49には、開口部49aが設けられているとともに、この開口部49aを塞ぐようにガラス窓50が固着されている。VHG素子42から射出される光は、ガラス窓50および開口部49aを介してレンズ43に入射することになる。 The semiconductor laser 41 and the VHG element 42 are covered with a case 49 on the stem 46. The case 49 is filled with, for example, nitrogen. The case 49 is provided with an opening 49a, and a glass window 50 is fixed so as to close the opening 49a. The light emitted from the VHG element 42 enters the lens 43 through the glass window 50 and the opening 49a.
 レンズ43は、VHG素子42から射出される光を、ファイバ44の光入射面に集光する。半導体レーザ41からの射出光は2方向で射出角度が異なるため、レンズ43としては非球面レンズ等を用いることが望ましいが、グリーンレンズ等の屈折率分布型のものを用いてもよい。レンズ43は、ケース49に固定されたファイバ保持部材51によって、ファイバ44とともに保持されている。 The lens 43 condenses the light emitted from the VHG element 42 on the light incident surface of the fiber 44. Since the emission light from the semiconductor laser 41 has different emission angles in two directions, it is desirable to use an aspherical lens or the like as the lens 43, but a refractive index distribution type such as a green lens may be used. The lens 43 is held together with the fiber 44 by a fiber holding member 51 fixed to the case 49.
 ファイバ44は、VHG素子42から射出され、レンズ43を介して入射する特定波長の光を導波する光ファイバであり、本実施形態では、偏波面保持ファイバで構成されている。偏波面保持ファイバは、複屈折などにより、導波する光の偏波面(偏光面)が変化しないように、偏波面を保持したまま光を導波するものである。偏波面保持ファイバにおいては、ファイバの射出部の方向(光の射出方向)が決まれば、偏光方向が保持されるため、干渉計1において偏光特性による反射率や透過率の変動を小さく抑えることができる。ファイバ44としては、上記の偏波面保持ファイバ以外に、シングルモードファイバを用いることもできる。 The fiber 44 is an optical fiber that guides light of a specific wavelength that is emitted from the VHG element 42 and is incident through the lens 43, and is configured by a polarization-maintaining fiber in this embodiment. The polarization maintaining fiber guides light while maintaining the polarization plane so that the polarization plane (polarization plane) of the guided light does not change due to birefringence or the like. In the polarization-maintaining fiber, the polarization direction is maintained when the direction of the emission part of the fiber (light emission direction) is determined. Therefore, the interferometer 1 can suppress fluctuations in reflectance and transmittance due to polarization characteristics to be small. it can. As the fiber 44, a single mode fiber can be used in addition to the above-described polarization plane maintaining fiber.
 ファイバ44の射出面44aは、光の導波方向に垂直な面に対して、APC(Angled Physical Contact)研磨により約8度傾いている。これにより、ファイバ44よりも後段の反射面(例えば固定鏡15または移動鏡16の反射面)で反射された光が、BS13を透過または反射して再びファイバ44に戻ってきたとしても、射出面44aにて反射されるので、半導体レーザ41に入射することはない。したがって、戻り光によって半導体レーザ41の発振が不安定になるのを回避することができる。 The exit surface 44a of the fiber 44 is inclined about 8 degrees by APC (Angled Physical Contact) polishing with respect to a surface perpendicular to the light guiding direction. As a result, even if the light reflected by the reflection surface downstream of the fiber 44 (for example, the reflection surface of the fixed mirror 15 or the movable mirror 16) is transmitted or reflected by the BS 13 and returns to the fiber 44 again, the emission surface. Since it is reflected by 44a, it does not enter the semiconductor laser 41. Therefore, it is possible to avoid the oscillation of the semiconductor laser 41 from becoming unstable due to the return light.
 また、本実施形態では、ファイバ44としての偏波面保持ファイバは、石英系ガラスファイバで構成されており、MFD(Mode Field Diameter)は4.5~3μmであり、ファイバ長さは300mm以上となっている。ファイバ44は十分に長いので、ファイバ44は、例えば高次の導波モードを減衰させて、基本モード(LP01モード)のみを導波させることが可能となる。 In this embodiment, the polarization-maintaining fiber as the fiber 44 is made of a silica glass fiber, the MFD (Mode Field Diameter) is 4.5 to 3 μm, and the fiber length is 300 mm or more. ing. Since the fiber 44 is sufficiently long, the fiber 44 can attenuate only a higher-order guided mode and guide only the fundamental mode (LP01 mode), for example.
 このように、レーザ光源40においては、ファイバ44の内部を導波するモードは基本モードだけである。しかも、偏波面保持ファイバやシングルモードファイバでは、マルチモードファイバを用いたときのように位相の異なる導波モードが存在しないので、干渉性が低下しない。したがって、強度プロファイルに暗点(強度が低下した位置)が含まれる光をファイバ44に入射させると、入射した光がファイバ44内部で全反射を繰り返して導波されることにより、中心強度が最も高い回転対称の強度プロファイルを持つ光となってファイバ44から射出される。つまり、VHG素子42の角度選択性により、波長や入射角によって強度プロファイルにおける強度低下位置が異なる場合でも、VHG素子42から射出される光をファイバ44内部で導波させることにより、ガウス分布に近い、回転対称の強度プロファイルを得ることができる。 Thus, in the laser light source 40, the mode guided in the inside of the fiber 44 is only the fundamental mode. In addition, in the polarization maintaining fiber and the single mode fiber, there is no waveguide mode having a different phase as in the case of using the multimode fiber, so that the coherence is not lowered. Accordingly, when light whose intensity profile includes a dark spot (position where the intensity has decreased) is incident on the fiber 44, the incident light is guided through repeated total reflection inside the fiber 44, so that the center intensity is the highest. Light having a high rotational symmetry intensity profile is emitted from the fiber 44. In other words, due to the angle selectivity of the VHG element 42, even when the intensity reduction position in the intensity profile differs depending on the wavelength and the incident angle, the light emitted from the VHG element 42 is guided inside the fiber 44 to be close to a Gaussian distribution. A rotationally symmetric intensity profile can be obtained.
 これにより、レーザ光源40を干渉計1の参照光源21に適用したときでも、参照光検出器25で検出される参照干渉光の強度分布に誤差要因となる暗点が生じるのを回避することができ(図2参照)、参照干渉光の強度分布に基づく光路補正を精度よく行うことができる。したがって、そのような光路補正を行う干渉計1や分光器に好適なレーザ光源40を実現することができる。 Thereby, even when the laser light source 40 is applied to the reference light source 21 of the interferometer 1, it is possible to avoid the occurrence of a dark spot that causes an error in the intensity distribution of the reference interference light detected by the reference light detector 25. (See FIG. 2), and optical path correction based on the intensity distribution of the reference interference light can be performed with high accuracy. Therefore, the laser light source 40 suitable for the interferometer 1 and the spectroscope that perform such optical path correction can be realized.
 しかも、半導体レーザ41は、例えばHe-Neレーザに比べて小型であるため、小型のレーザ光源40を実現することができる。したがって、小型のレーザ光源40を用いて、小型で持ち運びが容易な干渉計1や分光器を実現することができる。 Moreover, since the semiconductor laser 41 is smaller than, for example, a He—Ne laser, a small laser light source 40 can be realized. Therefore, using the small laser light source 40, the interferometer 1 and the spectroscope which are small and easy to carry can be realized.
 また、レーザ光源40は、半導体レーザ41からの光をVHG素子42を用いて安定化させる構成であるため、ロバスト性が高く、外乱(例えば振動)の影響を阻止することができる。移動型(持ち運び型)の干渉計1や分光器は、設置型に比べて高いロバスト性が要求されるので、このような点からも、本実施形態のレーザ光源40は、小型で持ち運びが容易な干渉計1や分光器に好適であると言える。 Further, since the laser light source 40 is configured to stabilize the light from the semiconductor laser 41 using the VHG element 42, the laser light source 40 has high robustness and can prevent the influence of disturbance (for example, vibration). Since the movable (portable) interferometer 1 and the spectroscope are required to have higher robustness than the installation type, the laser light source 40 of the present embodiment is small and easy to carry from this point of view. It can be said that this is suitable for the interferometer 1 and the spectroscope.
 さらに、レーザ光源40がファイバ44を有していることにより、熱源である半導体レーザ41を測定光学系10から離して配置することができる。これにより、測定光学系10の熱による性能劣化(部材の熱膨張に起因する光学性能の劣化)を回避することができる。 Furthermore, since the laser light source 40 includes the fiber 44, the semiconductor laser 41, which is a heat source, can be arranged away from the measurement optical system 10. Thereby, performance degradation due to heat of the measurement optical system 10 (degradation of optical performance due to thermal expansion of the member) can be avoided.
 また、干渉計1では、上記のように、参照干渉光の強度分布に基づく光路補正を精度よく行うことができるので、そのような光路補正により、測定光検出器18における測定干渉光のコントラストの低下を回避することができる。したがって、このような干渉計1を備えた分光器では、演算部2にて生成されたスペクトルに基づき、測定干渉光の分光分析を精度よく行うことができる。 Further, since the interferometer 1 can accurately perform optical path correction based on the intensity distribution of the reference interference light as described above, the optical path correction of the measurement interference light in the measurement light detector 18 can be performed by such optical path correction. A decrease can be avoided. Therefore, the spectroscope equipped with such an interferometer 1 can accurately perform the spectral analysis of the measurement interference light based on the spectrum generated by the calculation unit 2.
 また、本実施形態では、参照光検出器25からの信号に基づいて移動鏡16の位置検出(光路差の検出)も信号処理部31にて行われるが、上記レーザ光源40の構成により、参照干渉光の強度分布に暗点が生じるのを回避できることから、参照干渉光の強度変化に基づく移動鏡16の位置検出も高精度に行うことができる。 In the present embodiment, the position of the movable mirror 16 (detection of the optical path difference) is also performed by the signal processing unit 31 based on the signal from the reference light detector 25. However, depending on the configuration of the laser light source 40, reference is made. Since it is possible to avoid the occurrence of dark spots in the intensity distribution of the interference light, the position detection of the movable mirror 16 based on the intensity change of the reference interference light can be performed with high accuracy.
 また、本実施形態では、波長フィルタとして、VHG素子42、すなわち体積型の回折格子を用いている。狭線幅の波長フィルタを構成するためには、回折格子の積層数を増やせばよいが、VHG素子42は、感光材料を2光束で露光し、これらを干渉させることにより、高屈折率部および低屈折率部からなる各層を交互に形成することによって得られるため、露光条件(露光時間、露光量等)を変えることによって回折格子の積層数を増やすことが容易である。したがって、波長フィルタを多層膜で構成する場合よりも、狭線幅の波長フィルタを容易に実現することができる。 In this embodiment, the VHG element 42, that is, a volume type diffraction grating is used as the wavelength filter. In order to construct a wavelength filter with a narrow line width, the number of laminated diffraction gratings may be increased. However, the VHG element 42 exposes the photosensitive material with two light beams and causes them to interfere with each other. Since it is obtained by alternately forming each layer composed of the low refractive index portion, it is easy to increase the number of laminated diffraction gratings by changing the exposure conditions (exposure time, exposure amount, etc.). Therefore, it is possible to easily realize a wavelength filter with a narrow line width, compared to the case where the wavelength filter is formed of a multilayer film.
 さらに、波長フィルタが狭線幅となることにより、波長安定化領域、すなわち、波長を安定化させるのに必要な、半導体レーザ41から波長フィルタまでの距離(≒キャビティー長さ、共振長)を短くすることもできる。 Further, since the wavelength filter has a narrow line width, the wavelength stabilization region, that is, the distance (≈cavity length, resonance length) from the semiconductor laser 41 to the wavelength filter necessary to stabilize the wavelength is increased. It can be shortened.
 また、ファイバ44は、導波モード(基本モード)以外のモードを減衰させる長さを有しているので、高次の導波モードを減衰させて、必要なモードのみ(基本モードのみ)を導波させることができる。このように1つのモードのみを導波させるので、入射光がどのような強度プロファイルを有していても、射出光の強度プロファイルをガウス分布に近い回転対称の強度プロファイルとすることができる。 Further, since the fiber 44 has a length that attenuates modes other than the guided mode (fundamental mode), it attenuates higher-order guided modes and guides only the required mode (fundamental mode only). Can be waved. Since only one mode is guided in this way, the intensity profile of the emitted light can be a rotationally symmetric intensity profile close to a Gaussian distribution, regardless of the intensity profile of the incident light.
 また、レーザ光源40において、上記のような回転対称の強度プロファイルが得られることにより、それが適用される干渉計1においては、図4で示したように、2光路間の傾き誤差が微小な範囲(例えば相対的な傾き角が0~90秒)で、参照光検出器25の2つの受光部25A・25Cから出力される2つの信号の位相差と、傾き誤差とがほぼ線形な関係となる。これにより、信号処理部31は、参照光検出器25からの出力に基づいて、傾き誤差を上記の微小な範囲内で高精度に検出することが可能となる。 Further, by obtaining the rotationally symmetric intensity profile as described above in the laser light source 40, the interferometer 1 to which the laser light source 40 is applied has a very small tilt error between the two optical paths as shown in FIG. In a range (for example, a relative inclination angle of 0 to 90 seconds), the phase difference between the two signals output from the two light receiving units 25A and 25C of the reference light detector 25 and the inclination error are substantially linear. Become. As a result, the signal processing unit 31 can detect the tilt error with high accuracy within the above minute range based on the output from the reference light detector 25.
 また、本実施形態の干渉計1は、参照光用コリメート光学系22を備えており、参照光源21としてのレーザ光源40のファイバ端から射出した光が、参照光用コリメート光学系22によって平面波に変換される。参照光が平面波である場合、参照光の光束内で光線同士の位相差(例えば軸上光線と軸外光線との位相差)を考慮しなくても済むので、信号処理部31での、参照光検出器25からの出力信号の位相差の計算や、その位相差に基づく2光路間の傾き誤差の計算が容易になる。 Further, the interferometer 1 of the present embodiment includes a reference light collimating optical system 22, and light emitted from the fiber end of a laser light source 40 as the reference light source 21 is converted into a plane wave by the reference light collimating optical system 22. Converted. When the reference light is a plane wave, it is not necessary to consider the phase difference between the light beams in the light beam of the reference light (for example, the phase difference between the on-axis light beam and the off-axis light beam). Calculation of the phase difference of the output signal from the photodetector 25 and calculation of the tilt error between the two optical paths based on the phase difference are facilitated.
 なお、本実施形態では、干渉計1が測定用光源11を内蔵し、測定用光源11から出射される測定光を用いて測定干渉光を得る構成について説明したが、本発明の干渉計1は、必ずしも測定用光源11を内蔵していなくてもよい。つまり、測定干渉光を得るための測定光は、干渉計が内蔵している光源から出射される光であってもよいし、干渉計の外部から入射してくる光であってもよい。 In the present embodiment, the configuration in which the interferometer 1 includes the measurement light source 11 and obtains the measurement interference light using the measurement light emitted from the measurement light source 11 has been described. However, the measurement light source 11 does not necessarily have to be incorporated. That is, the measurement light for obtaining the measurement interference light may be light emitted from a light source built in the interferometer, or may be light incident from the outside of the interferometer.
 したがって、例えば、(1)干渉計の外部で試料に光を当てて、試料を介して得られる光を干渉計に入射させて分光分析を行う場合、(2)干渉計の外部から導入した光を用いて干渉計にて干渉光を生成し、その干渉光を試料に当てて分光分析を行う場合、(3)干渉計の外部から入射する光そのものを分析の対象とする場合、のいずれについても、本発明の干渉計を適用することが可能である。 Therefore, for example, when (1) light is applied to the sample outside the interferometer and light obtained through the sample is incident on the interferometer to perform spectroscopic analysis, (2) light introduced from the outside of the interferometer When the interference light is generated by the interferometer using the and the spectroscopic analysis is performed by applying the interference light to the sample, (3) the case where the light itself incident from the outside of the interferometer is the object of analysis It is also possible to apply the interferometer of the present invention.
 以上、本実施形態のレーザ光源は、半導体レーザと、前記半導体レーザの射出部に配置され、前記半導体レーザから射出される特定波長の光を前記半導体レーザに戻すとともに、前記半導体レーザとの間で共振させて増幅し、射出する波長フィルタとを備えたレーザ光源であって、前記波長フィルタから射出され、レンズを介して入射する前記特定波長の光を導波するシングルモードファイバまたは偏波面保持ファイバをさらに備えている構成であってもよい。 As described above, the laser light source according to the present embodiment is disposed in the semiconductor laser and the semiconductor laser emitting unit, and returns light of a specific wavelength emitted from the semiconductor laser to the semiconductor laser. A laser light source including a wavelength filter that resonates, amplifies, and emits light, and is a single mode fiber or a polarization-maintaining fiber that guides light of the specific wavelength that is emitted from the wavelength filter and incident through a lens May be provided.
 上記の構成によれば、波長フィルタにおいて、半導体レーザに特定波長の光が戻される位置で強度が低下するような強度プロファイルを持つ光を、レンズによってシングルモードファイバまたは偏波面保持ファイバに導き、それらのいずれかを導波させる。これらのファイバでは、ファイバ内部を導波するモードは1つであり、しかも、マルチモードファイバを用いたときのように干渉性が低下しない。したがって、上記強度プロファイルがどのようなものであっても、すなわち、波長や入射角によって強度低下位置が変化する場合であっても、上記強度プロファイルを持つ光を内部での全反射によって導波することにより、ガウス分布に近い形状、すなわち、中心付近で最も強度が高い回転対称の強度プロファイルを得ることができる。これにより、レーザ光源を例えば干渉計の参照光源に適用したときでも、参照光検出器で検出される参照干渉光の強度分布に誤差要因となる暗点が生じるのを回避することができ、参照干渉光の強度分布に基づく光路補正を精度よく行うことができる。したがって、そのような光路補正を行う干渉計や分光器に好適なレーザ光源を実現することができる。 According to the above configuration, in the wavelength filter, the light having an intensity profile that decreases the intensity at the position where the light of the specific wavelength is returned to the semiconductor laser is guided to the single mode fiber or the polarization maintaining fiber by the lens. One of the above is guided. In these fibers, there is one mode for guiding the inside of the fiber, and the coherence is not lowered as when a multimode fiber is used. Therefore, regardless of the intensity profile, that is, when the intensity reduction position changes depending on the wavelength or incident angle, light having the intensity profile is guided by total internal reflection. Thus, a shape close to a Gaussian distribution, that is, a rotationally symmetric intensity profile having the highest intensity near the center can be obtained. As a result, even when the laser light source is applied to a reference light source of an interferometer, for example, it is possible to avoid a dark spot that causes an error in the intensity distribution of the reference interference light detected by the reference light detector. Optical path correction based on the intensity distribution of interference light can be performed with high accuracy. Accordingly, it is possible to realize a laser light source suitable for an interferometer or a spectroscope that performs such optical path correction.
 しかも、半導体レーザは、例えばHe-Neレーザに比べて小型であるため、小型のレーザ光源を実現することができる。よって、本実施形態のレーザ光源を干渉計や分光器に適用することによって、小型の干渉計や分光器を実現することができ、持ち運びが容易となって利便性が向上する。 Moreover, since the semiconductor laser is smaller than, for example, a He—Ne laser, a small laser light source can be realized. Therefore, by applying the laser light source of the present embodiment to an interferometer or a spectroscope, a small interferometer or spectroscope can be realized, which is easy to carry and improves convenience.
 本実施形態のレーザ光源において、前記波長フィルタは、体積型の回折格子で構成されていることが望ましい。 In the laser light source of the present embodiment, it is desirable that the wavelength filter is composed of a volume type diffraction grating.
 この場合、回折格子の積層数を例えば感光材料の露光によって増やすことが容易であるので、波長フィルタを例えば多層膜で構成する場合に比べて、狭線幅の波長フィルタを容易に実現することができる。また、波長フィルタが狭線幅となることにより、波長安定化領域、すなわち、波長を安定化させるのに必要な半導体レーザから波長フィルタまでの距離を短くすることもできる。 In this case, since it is easy to increase the number of laminated diffraction gratings by, for example, exposure of a photosensitive material, it is possible to easily realize a wavelength filter having a narrow line width compared to a case where the wavelength filter is formed of, for example, a multilayer film. it can. Further, since the wavelength filter has a narrow line width, it is possible to shorten the wavelength stabilization region, that is, the distance from the semiconductor laser necessary for stabilizing the wavelength to the wavelength filter.
 本実施形態のレーザ光源において、前記シングルモードファイバまたは前記偏波面保持ファイバの射出面は、光の導波方向に垂直な面に対して傾いていることが望ましい。 In the laser light source of the present embodiment, it is desirable that the exit surface of the single mode fiber or the polarization-maintaining fiber is inclined with respect to a plane perpendicular to the light guiding direction.
 本実施形態のレーザ光源を例えば干渉計に適用した場合に、シングルモードファイバまたは偏波面保持ファイバで導波された光が、それよりも後段の任意の反射面(例えば固定鏡または移動鏡の反射面)で反射され、再びシングルモードファイバまたは偏波面保持ファイバに戻ってきても、ファイバの射出面にて反射されるので、半導体レーザに入射することはない。したがって、戻り光によって半導体レーザの発振が不安定になるのを回避することができる。 When the laser light source of the present embodiment is applied to, for example, an interferometer, light guided by a single mode fiber or a polarization-maintaining fiber is reflected on an arbitrary reflecting surface (for example, a reflection of a fixed mirror or a moving mirror). Even if the light is reflected again by the surface and is returned to the single-mode fiber or the polarization-maintaining fiber, it is reflected by the exit surface of the fiber and does not enter the semiconductor laser. Therefore, it is possible to avoid the oscillation of the semiconductor laser from becoming unstable due to the return light.
 本実施形態のレーザ光源において、前記シングルモードファイバまたは前記偏波面保持ファイバは、導波モード以外のモードを減衰させる長さを有していることが望ましい。 In the laser light source of the present embodiment, it is desirable that the single mode fiber or the polarization-maintaining fiber has a length that attenuates a mode other than the waveguide mode.
 シングルモードファイバまたは偏波面保持ファイバが、例えば高次の導波モードを減衰させる長さを有していれば、高次の導波モードは減衰し、任意のモード(基本モード、LP01モード)のみを導波させることが可能となる。導波モードが1つであることにより、回転対称の強度プロファイルを確実に得ることができる。 If the single-mode fiber or polarization-maintaining fiber has a length that attenuates the higher-order guided mode, for example, the higher-order guided mode is attenuated and only an arbitrary mode (basic mode, LP01 mode) is attenuated. Can be guided. By having one guided mode, a rotationally symmetric intensity profile can be obtained reliably.
 本実施形態の干渉計は、参照光源と、移動鏡および固定鏡と、前記参照光源からの参照光を2つに分離して前記移動鏡および前記固定鏡にそれぞれ導き、前記移動鏡および前記固定鏡にて反射された各光を合成し、干渉させるビームスプリッタと、前記ビームスプリッタにて合成された干渉光を参照干渉光として検出する参照光検出器とを備えた干渉計であって、前記参照光検出器での検出結果に基づいて、前記移動鏡での反射光の光路と前記固定鏡での反射光の光路との相対的な傾き誤差を補正する光路補正部をさらに備え、前記参照光源は、上述した本実施形態のレーザ光源で構成されていることが望ましい。 The interferometer of this embodiment separates the reference light from the reference light source, the movable mirror and the fixed mirror, and the reference light from the reference light source into two parts, and guides them to the movable mirror and the fixed mirror, respectively. An interferometer comprising a beam splitter for combining and interfering each light reflected by a mirror, and a reference light detector for detecting the interference light combined by the beam splitter as a reference interference light, An optical path correction unit that corrects a relative inclination error between the optical path of the reflected light from the movable mirror and the optical path of the reflected light from the fixed mirror based on a detection result of the reference light detector; The light source is preferably composed of the laser light source of the present embodiment described above.
 本実施形態のレーザ光源を参照光源として干渉計に適用することにより、光路補正部による光路補正が可能な構成で小型の干渉計を実現することができる。 By applying the laser light source of the present embodiment to the interferometer as a reference light source, it is possible to realize a small interferometer with a configuration capable of optical path correction by the optical path correction unit.
 本実施形態の干渉計において、前記参照光検出器は、前記参照干渉光の受光面上で2方向に並ぶように配置される、少なくとも3つの受光部を備えており、前記光路補正部は、前記3つの受光部から出力される信号の位相差に基づいて、前記各光路間の傾き誤差を検出する傾き検出部と、前記固定鏡または前記移動鏡の傾きを調整することにより、前記各光路の一方を傾けて前記傾き誤差を補正する調整機構と、前記傾き検出部での検出結果に基づいて前記調整機構を制御する制御部とを備えている構成であってもよい。 In the interferometer according to the present embodiment, the reference light detector includes at least three light receiving units arranged in two directions on a light receiving surface of the reference interference light, and the optical path correction unit includes: Based on a phase difference between signals output from the three light receiving units, an inclination detection unit that detects an inclination error between the optical paths, and an inclination of the fixed mirror or the movable mirror are adjusted to adjust the optical paths. A configuration may be provided that includes an adjustment mechanism that corrects the tilt error by tilting one of the control unit and a control unit that controls the adjustment mechanism based on a detection result of the tilt detection unit.
 光路補正部の傾き検出部は、3つの受光部から出力される信号に基づき、2方向のそれぞれについて、2光路間の傾き誤差を検出することができる。これにより、制御部の制御のもとで、調整機構により、2方向のそれぞれについて、一方の光路を傾けて2光路間の傾き誤差を補正することができる。 The inclination detection unit of the optical path correction unit can detect an inclination error between the two optical paths for each of the two directions based on signals output from the three light receiving units. Thereby, under the control of the control unit, the adjustment mechanism can tilt one optical path in each of the two directions to correct the tilt error between the two optical paths.
 また、レーザ光源から射出される光の強度分布は、回転対称なガウス分布に近いので、傾き誤差が微小な範囲では、2つの受光部から出力される2つの信号の位相差と、傾き誤差とがほぼ線形な関係となり、傾き検出部は、傾き誤差を高精度に検出することができる。 In addition, since the intensity distribution of light emitted from the laser light source is close to a rotationally symmetric Gaussian distribution, the phase difference between the two signals output from the two light receiving units, the inclination error, and the inclination error are within a very small range. Are substantially linear, and the inclination detection unit can detect the inclination error with high accuracy.
 本実施形態の干渉計は、前記レーザ光源から射出される光をコリメート光に変換するコリメート光学系をさらに備えている構成であってもよい。 The interferometer according to the present embodiment may further include a collimating optical system that converts light emitted from the laser light source into collimated light.
 レーザ光源のファイバ端から射出した光は、コリメート光学系を経ることによって平面波として空間を伝搬することができる。平面波としての取り扱いができることにより、コリメート光の光束内では光線同士の位相差が生じないので、各受光部からの出力信号の位相差の計算や、その位相差に基づく2光路間の傾き誤差の計算が容易になる。 The light emitted from the fiber end of the laser light source can propagate through the space as a plane wave through the collimating optical system. Since it can be handled as a plane wave, there is no phase difference between the rays in the collimated light beam. Therefore, the calculation of the phase difference of the output signals from each light receiving unit and the inclination error between the two optical paths based on the phase difference are possible. Calculation becomes easy.
 本実施形態の干渉計は、測定光を前記ビームスプリッタで2つに分離して前記移動鏡および前記固定鏡に導き、前記移動鏡および前記固定鏡にて反射された各光を前記ビームスプリッタで合成し、測定干渉光として測定光検出器に導く測定光学系をさらに備えている構成であってもよい。 The interferometer of this embodiment separates the measurement light into two by the beam splitter and guides it to the movable mirror and the fixed mirror. The light reflected by the movable mirror and the fixed mirror is separated by the beam splitter. The configuration may further include a measurement optical system that combines and guides the measurement light as measurement interference light to the measurement light detector.
 この構成では、測定光検出器にて、測定干渉光を計測することができる。また、光路補正部によって2光路間の相対的な傾き誤差が補正されるので、測定光検出器における測定干渉光のコントラストの低下を回避することができる。 In this configuration, measurement interference light can be measured by the measurement light detector. Further, since the relative inclination error between the two optical paths is corrected by the optical path correction unit, it is possible to avoid a decrease in the contrast of the measurement interference light in the measurement light detector.
 本実施形態の分光器は、上述した本発明の干渉計と、前記干渉計の前記測定光検出器から出力される測定干渉光の検知信号に基づいて、波長ごとの光の強度を示すスペクトルを生成するスペクトル生成部とを備えている構成であってもよい。 The spectroscope according to the present embodiment has a spectrum indicating the light intensity for each wavelength based on the above-described interferometer of the present invention and the measurement interference light detection signal output from the measurement light detector of the interferometer. The structure provided with the spectrum production | generation part to produce | generate may be sufficient.
 本実施形態のレーザ光源を参照光源として干渉計に適用することにより、参照光検出器にて参照干渉光を精度よく検出することができ、光路補正部による光路補正を精度よく行うことができる。したがって、このような干渉計を備えた分光器では、スペクトル生成部にて生成されたスペクトルに基づき、測定干渉光の分光分析を精度よく行うことができる。 By applying the laser light source of the present embodiment to the interferometer as a reference light source, the reference interference light can be accurately detected by the reference light detector, and the optical path correction by the optical path correction unit can be accurately performed. Therefore, a spectroscope equipped with such an interferometer can accurately perform spectroscopic analysis of measurement interference light based on the spectrum generated by the spectrum generation unit.
 本発明のレーザ光源は、マイケルソン型の干渉計、およびそれを用いて分光分析を行うフーリエ変換分光分析装置に利用可能である。 The laser light source of the present invention can be used in a Michelson interferometer and a Fourier transform spectroscopic apparatus for performing spectroscopic analysis using the same.
   1   干渉計
   2   演算部(スペクトル生成部)
  10   測定光学系
  13   BS(ビームスプリッタ)
  15   固定鏡
  16   移動鏡
  18   測定光検出器
  21   参照光源
  22   参照光用コリメート光学系
  25   参照光検出器
  25A  受光部
  25B  受光部
  25C  受光部
  25D  受光部
  30   光路補正部
  31   信号処理部(傾き検出部)
  32   調整機構
  33   制御部
  40   レーザ光源
  41   半導体レーザ
  42   VHG素子(波長フィルタ)
  43   レンズ
  44   ファイバ(シングルモードファイバ、偏波面保持ファイバ)
  44a  射出面
1 Interferometer 2 Calculation unit (spectrum generation unit)
10 Measurement optics 13 BS (Beam splitter)
DESCRIPTION OF SYMBOLS 15 Fixed mirror 16 Moving mirror 18 Measurement light detector 21 Reference light source 22 Reference light collimating optical system 25 Reference light detector 25A Light receiving part 25B Light receiving part 25C Light receiving part 25D Light receiving part 30 Optical path correction part 31 Signal processing part (Inclination detection part) )
32 Adjustment mechanism 33 Control unit 40 Laser light source 41 Semiconductor laser 42 VHG element (wavelength filter)
43 Lens 44 Fiber (single mode fiber, polarization maintaining fiber)
44a Ejection surface

Claims (9)

  1.  半導体レーザと、
     前記半導体レーザの射出部に配置され、前記半導体レーザから射出される特定波長の光を前記半導体レーザに戻すとともに、前記半導体レーザとの間で共振させて増幅し、射出する波長フィルタと、
     前記波長フィルタから射出され、レンズを介して入射する前記特定波長の光を導波するシングルモードファイバまたは偏波面保持ファイバと、
    を備えていることを特徴とするレーザ光源。
    A semiconductor laser;
    A wavelength filter that is disposed in the emission part of the semiconductor laser, returns light of a specific wavelength emitted from the semiconductor laser to the semiconductor laser, amplifies by resonating with the semiconductor laser, and emits the light,
    A single-mode fiber or a polarization-maintaining fiber that guides light of the specific wavelength that is emitted from the wavelength filter and is incident through a lens;
    A laser light source comprising:
  2.  前記波長フィルタは、体積型の回折格子で構成されていることを特徴とする請求項1に記載のレーザ光源。 2. The laser light source according to claim 1, wherein the wavelength filter is constituted by a volume type diffraction grating.
  3.  前記シングルモードファイバまたは前記偏波面保持ファイバの射出面は、光の導波方向に垂直な面に対して傾いていることを特徴とする請求項1に記載のレーザ光源。 2. The laser light source according to claim 1, wherein an exit surface of the single mode fiber or the polarization-maintaining fiber is inclined with respect to a plane perpendicular to a light guiding direction.
  4.  前記シングルモードファイバまたは前記偏波面保持ファイバは、導波モード以外のモードを減衰させる長さを有していることを特徴とする請求項1に記載のレーザ光源。 The laser light source according to claim 1, wherein the single mode fiber or the polarization-maintaining fiber has a length that attenuates a mode other than the guided mode.
  5.  参照光源と、
     移動鏡および固定鏡と、
     前記参照光源からの参照光を2つに分離して前記移動鏡および前記固定鏡にそれぞれ導き、前記移動鏡および前記固定鏡にて反射された各光を合成し、干渉させるビームスプリッタと、
     前記ビームスプリッタにて合成された干渉光を参照干渉光として検出する参照光検出器と、
     前記参照光検出器での検出結果に基づいて、前記移動鏡での反射光の光路と前記固定鏡での反射光の光路との相対的な傾き誤差を補正する光路補正部とを備え、
     前記参照光源は、
     半導体レーザと、
     前記半導体レーザの射出部に配置され、前記半導体レーザから射出される特定波長の光を前記半導体レーザに戻すとともに、前記半導体レーザとの間で共振させて増幅し、射出する波長フィルタと、
     前記波長フィルタから射出され、レンズを介して入射する前記特定波長の光を導波するシングルモードファイバまたは偏波面保持ファイバと、
    を備えていることを特徴とする干渉計。
    A reference light source;
    And a moving mirror and the fixed mirror,
    A beam splitter that separates reference light from the reference light source into two parts, guides them to the movable mirror and the fixed mirror, and combines and interferes with the lights reflected by the movable mirror and the fixed mirror;
    A reference light detector for detecting the interference light combined by the beam splitter as a reference interference light;
    An optical path correction unit that corrects a relative inclination error between the optical path of the reflected light from the movable mirror and the optical path of the reflected light from the fixed mirror based on the detection result of the reference light detector;
    The reference light source is
    A semiconductor laser;
    A wavelength filter that is disposed in the emission part of the semiconductor laser, returns light of a specific wavelength emitted from the semiconductor laser to the semiconductor laser, amplifies by resonating with the semiconductor laser, and emits the light,
    A single-mode fiber or a polarization-maintaining fiber that guides light of the specific wavelength that is emitted from the wavelength filter and is incident through a lens;
    An interferometer characterized by comprising:
  6.  前記参照光検出器は、前記参照干渉光の受光面上で2方向に並ぶように配置される、少なくとも3つの受光部を備えており、
     前記光路補正部は、
     前記3つの受光部から出力される信号の位相差に基づいて、前記各光路間の傾き誤差を検出する傾き検出部と、
     前記固定鏡または前記移動鏡の傾きを調整することにより、前記各光路の一方を傾けて前記傾き誤差を補正する調整機構と、
     前記傾き検出部での検出結果に基づいて前記調整機構を制御する制御部とを備えていることを特徴とする請求項5に記載の干渉計。
    The reference light detector includes at least three light receiving units arranged in two directions on the light receiving surface of the reference interference light,
    The optical path correction unit is
    An inclination detection unit for detecting an inclination error between the optical paths based on a phase difference between signals output from the three light receiving units;
    An adjustment mechanism that corrects the tilt error by tilting one of the optical paths by adjusting the tilt of the fixed mirror or the movable mirror;
    The interferometer according to claim 5, further comprising a control unit that controls the adjustment mechanism based on a detection result of the tilt detection unit.
  7.  前記レーザ光源から射出される光をコリメート光に変換するコリメート光学系をさらに備えていることを特徴とする請求項5に記載の干渉計。 The interferometer according to claim 5, further comprising a collimating optical system that converts light emitted from the laser light source into collimated light.
  8.  測定光を前記ビームスプリッタで2つに分離して前記移動鏡および前記固定鏡に導き、前記移動鏡および前記固定鏡にて反射された各光を前記ビームスプリッタで合成し、測定干渉光として測定光検出器に導く測定光学系をさらに備えていることを特徴とする請求項5に記載の干渉計。 The measurement light is separated into two by the beam splitter and guided to the movable mirror and the fixed mirror, and the lights reflected by the movable mirror and the fixed mirror are combined by the beam splitter and measured as measurement interference light. The interferometer according to claim 5, further comprising a measurement optical system that leads to a photodetector.
  9.  請求項8に記載の干渉計と、
     前記干渉計の前記測定光検出器から出力される測定干渉光の検知信号に基づいて、波長ごとの光の強度を示すスペクトルを生成するスペクトル生成部とを備えていることを特徴とする分光器。
    An interferometer according to claim 8;
    A spectroscope comprising: a spectrum generation unit configured to generate a spectrum indicating light intensity for each wavelength based on a detection signal of measurement interference light output from the measurement light detector of the interferometer .
PCT/JP2011/076155 2010-12-03 2011-11-14 Laser light source, interferometer and spectrometer WO2012073681A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-269902 2010-12-03
JP2010269902 2010-12-03

Publications (1)

Publication Number Publication Date
WO2012073681A1 true WO2012073681A1 (en) 2012-06-07

Family

ID=46171629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/076155 WO2012073681A1 (en) 2010-12-03 2011-11-14 Laser light source, interferometer and spectrometer

Country Status (1)

Country Link
WO (1) WO2012073681A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108957468A (en) * 2018-08-14 2018-12-07 深圳市速腾聚创科技有限公司 Laser radar position detecting device, detection method and laser radar
WO2020174665A1 (en) * 2019-02-28 2020-09-03 株式会社島津製作所 Michelson interferometer and fourier transform infrared spectrometer comprising same
CN113390812A (en) * 2021-06-01 2021-09-14 天津同阳科技发展有限公司 Fourier transform infrared spectrometer and gas concentration detection method
CN113916512A (en) * 2021-12-14 2022-01-11 中北大学 Reflectivity testing device and method for large-area volume Bragg grating
CN114088017A (en) * 2021-11-02 2022-02-25 武汉联胜光电技术有限公司 Device and method for detecting angle and flatness of customized optical fiber end face
WO2023042454A1 (en) * 2021-09-14 2023-03-23 株式会社島津製作所 Fourier transform infrared spectrophotometer

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0117276B2 (en) * 1980-12-15 1989-03-29 Thomson Csf
JPH06160930A (en) * 1992-01-22 1994-06-07 Matsushita Electric Ind Co Ltd Second harmonic wave generating element and second harmonic wave generator and its production
JP2003255420A (en) * 2002-02-27 2003-09-10 Fuji Photo Film Co Ltd Laser device and driving method therefor
JP2004028609A (en) * 2002-06-21 2004-01-29 Shimadzu Corp Fixed mirror adjusting method of two-beam interferometer
JP2004220008A (en) * 2002-12-26 2004-08-05 Kyocera Corp Volume type phase grating, its manufacturing method, optical module and semiconductor laser module using the same
JP2005242033A (en) * 2004-02-26 2005-09-08 Kyocera Corp Spherical volume phase grating, its manufacturing method, and optical module and semiconductor laser module using the same
JP2007519259A (en) * 2004-01-20 2007-07-12 トルンプ フォトニクス,インコーポレイテッド High power semiconductor laser
JP2007527616A (en) * 2003-07-03 2007-09-27 ピーディー−エルディー、インク. Use of volume, Bragg, and grating to adjust laser emission characteristics
JP2008060120A (en) * 2006-08-29 2008-03-13 Victor Co Of Japan Ltd Method of assembling external cavity laser

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0117276B2 (en) * 1980-12-15 1989-03-29 Thomson Csf
JPH06160930A (en) * 1992-01-22 1994-06-07 Matsushita Electric Ind Co Ltd Second harmonic wave generating element and second harmonic wave generator and its production
JP2003255420A (en) * 2002-02-27 2003-09-10 Fuji Photo Film Co Ltd Laser device and driving method therefor
JP2004028609A (en) * 2002-06-21 2004-01-29 Shimadzu Corp Fixed mirror adjusting method of two-beam interferometer
JP2004220008A (en) * 2002-12-26 2004-08-05 Kyocera Corp Volume type phase grating, its manufacturing method, optical module and semiconductor laser module using the same
JP2007527616A (en) * 2003-07-03 2007-09-27 ピーディー−エルディー、インク. Use of volume, Bragg, and grating to adjust laser emission characteristics
JP2007519259A (en) * 2004-01-20 2007-07-12 トルンプ フォトニクス,インコーポレイテッド High power semiconductor laser
JP2005242033A (en) * 2004-02-26 2005-09-08 Kyocera Corp Spherical volume phase grating, its manufacturing method, and optical module and semiconductor laser module using the same
JP2008060120A (en) * 2006-08-29 2008-03-13 Victor Co Of Japan Ltd Method of assembling external cavity laser

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108957468A (en) * 2018-08-14 2018-12-07 深圳市速腾聚创科技有限公司 Laser radar position detecting device, detection method and laser radar
WO2020174665A1 (en) * 2019-02-28 2020-09-03 株式会社島津製作所 Michelson interferometer and fourier transform infrared spectrometer comprising same
JPWO2020174665A1 (en) * 2019-02-28 2021-12-23 株式会社島津製作所 Michelson interferometer and Fourier transform infrared spectroscope equipped with it
JP7215562B2 (en) 2019-02-28 2023-01-31 株式会社島津製作所 Michelson interferometer and Fourier transform infrared spectrometer equipped with it
CN113390812A (en) * 2021-06-01 2021-09-14 天津同阳科技发展有限公司 Fourier transform infrared spectrometer and gas concentration detection method
CN113390812B (en) * 2021-06-01 2022-07-12 天津同阳科技发展有限公司 Fourier transform infrared spectrometer and gas concentration detection method
WO2023042454A1 (en) * 2021-09-14 2023-03-23 株式会社島津製作所 Fourier transform infrared spectrophotometer
CN114088017A (en) * 2021-11-02 2022-02-25 武汉联胜光电技术有限公司 Device and method for detecting angle and flatness of customized optical fiber end face
CN113916512A (en) * 2021-12-14 2022-01-11 中北大学 Reflectivity testing device and method for large-area volume Bragg grating
CN113916512B (en) * 2021-12-14 2022-02-22 中北大学 Reflectivity testing device and method for large-area volume Bragg grating

Similar Documents

Publication Publication Date Title
EP2634551B1 (en) Interferometer and fourier-transform spectroscopic analyzer
JP5835327B2 (en) Interferometer and spectrometer equipped with the interferometer
WO2012073681A1 (en) Laser light source, interferometer and spectrometer
US8570524B2 (en) Stable monolithic interferometer for wavelenghth calibration
JP5954979B2 (en) Measuring device with multi-wavelength interferometer
JP5714773B2 (en) Spectrometer
US10082410B2 (en) Optical position measuring device for generating wavelength-dependent scanning signals
US7760361B2 (en) Surface plasmon detection using curved surface prism and reflecting member
US9297639B2 (en) Mechanism for movement of a mirror in an interferometer, an interferometer incorporating the same and a fourier transform spectrometer incorporating the same
WO2011148726A1 (en) Interferometer, and fourier transform spectrometry device
JP2011501108A (en) Improved interferometer
JP2005249775A (en) Light wavelength meter
EP2564154B1 (en) Spectrometric instrument
US8290007B2 (en) Apparatus and method for stabilizing frequency of laser
JP2009128193A (en) Wavelength sensor
JP5521992B2 (en) Interferometer and spectrometer equipped with the interferometer
JP4604879B2 (en) Wavelength monitor
NZ602603B2 (en) Spectrometric instrument
JP2000337963A (en) Optical wavelength-measuring device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11844694

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11844694

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP