JP2004220008A - Volume type phase grating, its manufacturing method, optical module and semiconductor laser module using the same - Google Patents

Volume type phase grating, its manufacturing method, optical module and semiconductor laser module using the same Download PDF

Info

Publication number
JP2004220008A
JP2004220008A JP2003425773A JP2003425773A JP2004220008A JP 2004220008 A JP2004220008 A JP 2004220008A JP 2003425773 A JP2003425773 A JP 2003425773A JP 2003425773 A JP2003425773 A JP 2003425773A JP 2004220008 A JP2004220008 A JP 2004220008A
Authority
JP
Japan
Prior art keywords
phase grating
semiconductor laser
light
volume
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003425773A
Other languages
Japanese (ja)
Other versions
JP4514448B2 (en
Inventor
Michitaka Okuda
通孝 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003425773A priority Critical patent/JP4514448B2/en
Publication of JP2004220008A publication Critical patent/JP2004220008A/en
Application granted granted Critical
Publication of JP4514448B2 publication Critical patent/JP4514448B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29304Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
    • G02B6/29305Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating as bulk element, i.e. free space arrangement external to a light guide
    • G02B6/2931Diffractive element operating in reflection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29304Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
    • G02B6/29305Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating as bulk element, i.e. free space arrangement external to a light guide
    • G02B6/29311Diffractive element operating in transmission

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Holo Graphy (AREA)
  • Semiconductor Lasers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem wherein, especially in the case that light having a wavelength near the oscillation wavelength of a semiconductor laser 12 enters the semiconductor laser 12 directly, the oscillation wavelength becomes unstable under the influence and the spectrum property and the output of the laser become unstable. <P>SOLUTION: This volume type phase grating has phase gratings which have periodic refractive index variation, respectively, and is characterized in that respective phase gratings are inclined at a prescribed angle β to an incident plane. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

本発明は、入射光の特定波長のみを反射して戻すブラッグ反射を利用した体積型位相格子と製造方法及びそれを用いた光モジュール及び半導体レーザモジュールに関するものである。   The present invention relates to a volume phase grating using Bragg reflection that reflects and returns only a specific wavelength of incident light, a manufacturing method thereof, and an optical module and a semiconductor laser module using the same.

従来、光ファイバ内で特定波長の光を戻す手段として、ファイバブラッググレーテイング(Fiber Bragg Grating略してFBG)がある。   Conventionally, as means for returning light of a specific wavelength in an optical fiber, there is fiber Bragg grating (abbreviated as FBG).

それは、図12に示したように、ファイバコア24内に周期的な屈折率変化をつけたもので、紫外領域の波長λuvの記録光30を光ファイバ10上にマスク間隔Λ(mask)を有するフェーズマスク36を介して照射し、そこからの±1次の回折光25の干渉による強度変調領域を光ファイバ10上に転写形成する光誘起屈折率変化により、光ファイバコア24内に周期的な屈折率変化を生じさせ、位相格子20を製作することができた。その際の屈折率変化周期の格子間隔Λ(FBG)は、
Λ(mask)=2×Λ(FBG)
の関係にある。
As shown in FIG. 12, a periodic refractive index change is provided in the fiber core 24, and the recording light 30 having a wavelength λuv in the ultraviolet region has a mask interval Λ (mask) on the optical fiber 10. Irradiation is performed through the phase mask 36, and the intensity-modulated region due to the interference of the ± 1st-order diffracted light 25 therefrom is transferred and formed on the optical fiber 10. A change in the refractive index was caused, and the phase grating 20 could be manufactured. At that time, the lattice interval Λ (FBG) of the refractive index change period is
Λ (mask) = 2 × Λ (FBG)
In a relationship.

このようにして作製されたFBG14の特性は、屈折率の変化量、格子間隔Λ(FBG)、及びその長さによって決まる。屈折率の変化量、長さは、反射率と帯域幅に影響し、格子間隔Λ(FBG)は、中心波長に影響する。光ファイバ10の長手方向に対し、格子間隔Λ(FBG)が一定なFBG14の反射中心波長λbは、
λb=2×n×Λ(FBG)
n:ファイバコアの実効屈折率
で、示される。
The characteristics of the FBG 14 manufactured in this manner are determined by the amount of change in the refractive index, the lattice spacing Λ (FBG), and the length thereof. The change amount and length of the refractive index affect the reflectance and the bandwidth, and the lattice spacing Λ (FBG) affects the center wavelength. With respect to the longitudinal direction of the optical fiber 10, the reflection center wavelength λb of the FBG 14 having a constant lattice spacing Λ (FBG) is
λb = 2 × n × Λ (FBG)
n: It is indicated by the effective refractive index of the fiber core.

図11に示したように半導体レーザモジュール16の出力側ファイバ端17に、FBG14を構成し、結合用レンズ7を介して結合し、一部の光
(数%〜10%程度)を半導体レーザ12に戻し、外部共振器として作用させ、半導体レーザ12の出力波長スペクトラム特性を狭帯域化し、そのスペクトラム特性の安定化も図られる。又、半導体レーザ12の発振スペクトラム特性は、外部共振器であるFBG14の反射中心波長λbにほぼ一致する。
As shown in FIG. 11, an FBG 14 is formed on the output side fiber end 17 of the semiconductor laser module 16 and is coupled via a coupling lens 7 so that a part of light (several% to about 10%) is transmitted to the semiconductor laser 12. To make it act as an external resonator, narrow the output wavelength spectrum characteristic of the semiconductor laser 12, and stabilize the spectrum characteristic. The oscillation spectrum characteristic of the semiconductor laser 12 substantially matches the reflection center wavelength λb of the FBG 14 which is an external resonator.

又、温度変化に対するスペクトラム及び出力特性も安定させることができる(特許文献1参照)。   Further, the spectrum and output characteristics with respect to a temperature change can be stabilized (see Patent Document 1).

又、光ファイバ10内に位相格子状の反射体を構成しているFBG14ではなく、同じSiO2又はガラス系材料を用いて、屈折率変化を持たせ、位相格子20が構成されたものに体積型位相格子がある。特に±1次の回折光25の出射角の回折方向と反射光の角度の方向を一致させた使い方をする場合、体積型ブラッググレーテイング(Volume Bragg Grating 略してVBG)と呼ぶ。   Also, instead of the FBG 14 constituting the phase grating reflector in the optical fiber 10, the same SiO 2 or glass-based material is used to change the refractive index, so that the phase grating 20 is constituted by a volume type. There is a phase grating. In particular, in the case of using the diffraction direction of the emergence angle of the ± 1st-order diffracted light 25 so that the direction of the angle of the reflected light coincides with the direction of the angle of the reflected light, it is referred to as volume Bragg grating (VBG).

また、図示しないが位相の揃った波長λuvの記録光(例えばアルゴンレーザによる紫外帯域の波長458〜528nmの光)を、途中ビームスプリッタ等により二つに分離し、それぞれの光を一度レンズにより収束し、不要回折光を除去する為に、焦点位置に設置したピンホール(直径:5〜25μm)を通過させた後、平行光とする(図示せず)。   Although not shown, recording light having a wavelength λuv having a uniform phase (for example, light having a wavelength of 458 to 528 nm in an ultraviolet band by an argon laser) is split into two by a beam splitter or the like, and each light is once converged by a lens. Then, in order to remove unnecessary diffracted light, the light is passed through a pinhole (diameter: 5 to 25 μm) provided at the focal position, and then converted into parallel light (not shown).

図10(a)はその製法を示したもので、上下面を光学研磨した厚さDの誘起屈折率媒体(SiO2ベースの酸化ガラス等に銀等の添加物を加えたもの)からなる位相格子用基板3の素子面上22にビームスプリッタから位相格子用基板3の素子表面上22までの光路長を各々正確に一致させ、位相格子用基板3上を5分から30分程度照射、露光する。   FIG. 10 (a) shows the manufacturing method, in which a phase grating made of an induced-refractive-index medium (thickness such as SiO2 base oxide glass or the like with an additive such as silver added thereto) having optically polished upper and lower surfaces. The optical path length from the beam splitter to the element surface 22 of the phase grating substrate 3 on the element surface 22 of the substrate 3 is made to exactly match each other, and the surface of the phase grating substrate 3 is irradiated and exposed for about 5 to 30 minutes.

その露光時間は、使用する位相格子用基板3の材料に依存する。   The exposure time depends on the material of the phase grating substrate 3 to be used.

位相格子用基板3への角度θ0を調整することにより、格子間隔P1を任意に設定する記録光30の波長をλuvとし、入射する角度をθ0とするとスネルの法則から
n0×sinθ0=n1×sinθ2
空気の屈折率n0を1とすると、位相格子用基板3内での角度θ2は
θ2=sin―1{sinθ0/n1}
n1:位相格子用基板3の屈折率
n0:空気の屈折率(=1)
又、波長λuvでの屈折率n1の位相格子用基板3内での波長λmは、位相格子用基板3内の光速度Cmが、空気中の光速度Cuvの1/n1(周波数fは一定)になることから
Cm=Cuv/n1 となり
Cm=f×λm、Cuv=f×λuvより
λm=λuv/n1 となる。
By adjusting the angle θ0 to the phase grating substrate 3, the wavelength of the recording light 30 for arbitrarily setting the grating interval P1 is λuv, and the incident angle is θ0. From the Snell's law, n0 × sinθ0 = n1 × sinθ2
Assuming that the refractive index n0 of air is 1, the angle θ2 in the phase grating substrate 3 is θ2 = sin −1 {sin θ0 / n1}
n1: Refractive index of the phase grating substrate 3 n0: Refractive index of air (= 1)
The wavelength λm of the refractive index n1 in the phase grating substrate 3 at the wavelength λuv is such that the light speed Cm in the phase grating substrate 3 is 1 / n1 of the light speed Cuv in the air (the frequency f is constant). Cm = Cuv / n1
From Cm = f × λm and Cuv = f × λuv, λm = λuv / n1.

波長λmの二つの振幅Aの平面波の光が屈折率n1の位相格子用基板3内で交差すると、その干渉から位相格子20の屈折率変動の格子間隔P1は、各平面波の合成振幅がゼロになる場所で決まり、次式になる。   When two plane-wave lights having the wavelength A of the amplitude A intersect in the phase grating substrate 3 having the refractive index n1, the interference causes the grating interval P1 of the refractive index variation of the phase grating 20 to be reduced to zero when the combined amplitude of each plane wave becomes zero. Is determined by the following formula,

2A×[cos{(2×π×Y×sinθ2)/λm}]=0
A:各平面波の振幅
Y:Y軸の位置
Y(k)={(2×k+1)×λm}/(4×sinθ2)
(kは、任意の整数)
で示される直線群になる。
2A × [cos {(2 × π × Y × sin θ2) / λm}] = 0
A: Amplitude of each plane wave Y: Y-axis position Y (k) = {(2 × k + 1) × λm} / (4 × sin θ2)
(K is an arbitrary integer)
It becomes a straight line group shown by.

よって、各位相格子の格子間隔P1は、次式で与えられ
P1=Y(k+1)−Y(k)
P1=λm/{2×sinθ2}
で示される。その一定周期のラインが露光される。その照射された位相格子用基板3を500℃前後の高熱環境下に数時間放置すると、それが周期的な屈折率変化領域として表れる。屈折率の変化量△nとしては、0.01〜0.001程度のものが得られる。
Therefore, the lattice spacing P1 of each phase grating is given by the following equation: P1 = Y (k + 1) −Y (k)
P1 = λm / {2 × sin θ2}
Indicated by The line of the fixed period is exposed. When the irradiated phase grating substrate 3 is left in a high-temperature environment of about 500 ° C. for several hours, it appears as a periodic refractive index change region. A refractive index variation Δn of about 0.01 to 0.001 can be obtained.

図10(b)で、その後、位相格子用基板3の上下面から、垂直に体積型位相格子37として幅Tで切り出す。切断面26を光学研磨して得られる入射面21に、入射面21での反射防止の用に、誘電体多層膜によるARコートを施す。   In FIG. 10B, a volume type phase grating 37 is vertically cut out from the upper and lower surfaces of the phase grating substrate 3 with a width T. The incident surface 21 obtained by optically polishing the cut surface 26 is subjected to AR coating with a dielectric multilayer film to prevent reflection on the incident surface 21.

図10(c)のように、上記プロセスにより、高さDmm角、切断幅Tmmの多数の体積型位相格子1を製作することができる。体積型位相格子1にブラッグ条件を有するλaとλbの波長の入射光18を入射させると、波長λbの光は全反射し、波長λaの光は端面反射27となる。   As shown in FIG. 10C, a large number of volume type phase gratings 1 having a height of D mm square and a cut width of T mm can be manufactured by the above process. When the incident light 18 having the wavelengths of λa and λb having the Bragg condition is incident on the volume phase grating 1, the light of the wavelength λb is totally reflected, and the light of the wavelength λa becomes the end face reflection 27.

また、図示しないが、角度αで傾斜させ、光を入射させると、構成された位相格子面20aに対し、回折方向と反射角が一致し、ブラッグ回折条件になる。その回折効率は、切断幅T(位相格子20の数)に依存する。又、ブラッグ回折条件の波長と異なる波長の光、又は角度で光が入射すると、回折効率は下がり、又回折光の出射角度も変化する。
特開平9−283847号公報
Although not shown, when the light is inclined at an angle α and the light is incident, the diffraction direction and the reflection angle coincide with the configured phase grating surface 20a, and the Bragg diffraction condition is established. The diffraction efficiency depends on the cutting width T (the number of the phase gratings 20). Further, when light having a wavelength different from the wavelength under the Bragg diffraction condition or light is incident at an angle, the diffraction efficiency decreases and the emission angle of the diffracted light also changes.
JP-A-9-283847

このような特性の位相格子を用いた従来の構成の場合、以下のような欠点があった。   The conventional configuration using a phase grating having such characteristics has the following disadvantages.

図11のFBG14を半導体レーザ12の出力側ファイバ端17に取り付けた場合、半導体レーザ12以外の波長の光、特に半導体レーザ12の発振波長に近い波長の光が半導体レーザ12に直接入ってきた場合、その影響により発振波長が不安定になり、スペクトラム特性及び出力が不安定になるという問題があった。   When the FBG 14 of FIG. 11 is attached to the output side fiber end 17 of the semiconductor laser 12, light having a wavelength other than the semiconductor laser 12, particularly light having a wavelength close to the oscillation wavelength of the semiconductor laser 12, directly enters the semiconductor laser 12. As a result, there is a problem that the oscillation wavelength becomes unstable due to the influence, and the spectrum characteristic and the output become unstable.

その影響を排除する為、そうした光を除去する光アイソレータを半導体レーザ12の出力側に取り付ければよいのであるが、光アイソレータ(図示せず)を取り付けた場合、外部共振器であるFBG14からの半導体レーザ12への必要な反射光19をも遮断してしまう為、外部共振器として作用することができない。   In order to eliminate the influence, an optical isolator for removing such light may be attached to the output side of the semiconductor laser 12. However, when an optical isolator (not shown) is attached, the semiconductor from the FBG 14 which is an external resonator is removed. Since the necessary reflected light 19 to the laser 12 is also blocked, it cannot function as an external resonator.

又、そうした不要な反射光19を除去する為、FBG14の出力側にインライン型光アイソレータ(図示せず)を取り付ければ除去することは可能であるが、コスト的に高価なものになり、複数のモジュールのアッセンブリ構成となる為、部品スペースを要するものになる。   Also, in order to remove such unnecessary reflected light 19, it is possible to remove the reflected light 19 by attaching an in-line optical isolator (not shown) to the output side of the FBG 14, but it becomes expensive in cost, and a plurality of Since the module has an assembly configuration, a space for parts is required.

又、出力側ファイバ端17内のFBG14領域は、通常10mm前後と長く、大きな温度変化がある場合、線膨張により格子間隔P1そのものも変動するため、反射光19の波長が変化し、それに併せ半導体レーザ素子12の発振波長が変化してしまうという問題点があった。   The FBG 14 area in the output fiber end 17 is usually as long as about 10 mm, and when there is a large temperature change, the lattice spacing P1 itself changes due to linear expansion, so that the wavelength of the reflected light 19 changes, There is a problem that the oscillation wavelength of the laser element 12 changes.

又、従来の体積型位相格子37を使用した場合には、そこに入射光18を垂直に入射させると、図10(c)に示したように、各入射面21にARコートをしたとしても、どうしても僅かながら端面反射27が生じ、特定なブラッグ条件以外の波長λa等の不要な光までも反射して、それが半導体レーザ12にそのまま戻り、レーザ12内での不要な発振を起こし、出力スペクトラム特性を不安定なものにしてしまうという欠点があった。   In addition, when the conventional volume phase grating 37 is used, when the incident light 18 is vertically incident thereon, as shown in FIG. 10C, even if each incident surface 21 is AR-coated. Inevitably, the end face reflection 27 is slightly generated, and even unnecessary light such as the wavelength λa other than the specific Bragg condition is reflected, and the reflected light returns to the semiconductor laser 12 as it is, causing unnecessary oscillation in the laser 12 and output. There is a drawback that the spectrum characteristics become unstable.

上記に鑑みて本発明は、周期的な屈折率変化を有する位相格子を有し、各位相格子が、入射面に対し所定の角度βで傾斜していることを特徴とするものである。   In view of the above, the present invention has a phase grating having a periodic refractive index change, wherein each phase grating is inclined at a predetermined angle β with respect to the incident surface.

更に、入射面と出射面が平行であることを特徴とするものである。   Furthermore, the present invention is characterized in that the entrance surface and the exit surface are parallel.

また、上記の位相格子の入射面に対する傾斜の角度βが
β=sin―1{(sinα)/n1} (α>β)
α:体積型位相格子の入射面に対する入射光の入射角
n:積型位相格子を形成する基板の屈折率
で、示されることを特徴とするものである。
Further, the angle β of the inclination of the phase grating with respect to the incident surface is β = sin −1 {(sin α) / n1} (α> β)
α: Incident angle of incident light with respect to the incident surface of the volume phase grating n: Refractive index of the substrate forming the product type phase grating, which is characterized by being indicated.

また、上記の体積型位相格子に、少なくとも1個の結合レンズを結合したことを特徴とするものである。   Further, at least one coupling lens is coupled to the volume phase grating.

また、上記の体積型位相格子を、光アイソレータ素子の片側又は両側に設置して、且つ結合用レンズと接続したことを特徴とするものである。   Further, the above-mentioned volume phase grating is provided on one or both sides of the optical isolator element, and is connected to a coupling lens.

また、上記の光モジュールを半導体レーザに接続して、半導体レーザの出射光の一部の波長を該半導体レーザに戻し、発振させることを特徴とするものである。   Further, the optical module is connected to a semiconductor laser, and a part of the wavelength of the emitted light of the semiconductor laser is returned to the semiconductor laser to oscillate.

また、上記の体積型位相格子の製造方法であって、位相の揃った紫外線を体積型位相格子用基板へ2方向から入射して、それぞれの入射角度をθ0、θ1としたとき、
β=|(θ2―θ3)/2|
θ2=sin―1{(sinθ0)/n1}
θ3=sin―1{(sinθ1)/n1}
を満足することを特徴とするものである。
Further, in the method of manufacturing a volume phase grating, when ultraviolet rays having the same phase are incident on the substrate for the volume phase grating from two directions, and respective incident angles are θ0 and θ1,
β = | (θ2−θ3) / 2 |
θ2 = sin -1 {(sin θ0) / n1}
θ3 = sin -1 {(sin θ1) / n1}
Is satisfied.

更に、上記体積型位相格子を、素子上面に対し、角度αで切断し、切断面を入出射面とし、該入射面を研磨した後、反射防止コートを形成することとしたことを特徴とするものである。   Further, the volume phase grating is cut at an angle α with respect to the upper surface of the element, the cut surface is used as an incident / exit surface, and after polishing the incident surface, an antireflection coat is formed. Things.

以上説明したように本発明により、下記効果がある。   As described above, the present invention has the following effects.

(1)入射光が体積型位相格子の入射面に対し、角度αで入射することにより、端面反射による不要な反射光が、位相格子での反射光と共に戻らないようにした。 (1) By making the incident light incident on the incident surface of the volume phase grating at an angle α, unnecessary reflected light due to end face reflection is prevented from returning together with the reflected light from the phase grating.

(2)体積型位相格子の周期的な屈折率分布面を入射面に対し、角度βとしたことにより、媒体内の周期的な屈折率変化を有する位相格子に対して、垂直に入射させ、位相格子での反射光に不要な反射光がのらないようにした。 (2) By making the periodic refractive index distribution surface of the volume type phase grating an angle β with respect to the incident surface, the volume type phase grating is perpendicularly incident on the phase grating having a periodic refractive index change in the medium, Unnecessary reflected light is prevented from being reflected on the reflected light from the phase grating.

(3)本発明による体積型位相格子を光アイソレータと共に実装することにより、不要な反射光を除去する機能と半導体レーザの外部共振器としての機能を一体化させた。 (3) By mounting the volume phase grating according to the present invention together with the optical isolator, the function of removing unnecessary reflected light and the function as an external resonator of the semiconductor laser are integrated.

(4)半導体レーザに実装することにより、外部共振器、光アイソレータ内蔵の半導体レーザモジュールを実現し、従来のように別途インライン型光アイソレータを取り付ける必要がなくなった。 (4) By mounting on a semiconductor laser, a semiconductor laser module with a built-in external resonator and optical isolator is realized, and it is not necessary to separately attach an inline optical isolator as in the conventional case.

(5)本発明による体積型位相格子の両端又は片端にレンズを付け、又はレンズ付ファイバに取り付けることにより、温度変動に対し、安定した特性を有するフィルタモジュールとして実現し、各種光モジュールへの応用を可能にした。 (5) By attaching lenses to both ends or one end of the volume phase grating according to the present invention, or attaching to a fiber with a lens, it is realized as a filter module having stable characteristics against temperature fluctuation, and applied to various optical modules. Enabled.

以下、本発明の実施形態について説明をする。   Hereinafter, embodiments of the present invention will be described.

図1は、本発明による体積型位相格子1の断面を示したもので、図1(b)はそのA部の詳細を示したものである。   FIG. 1 shows a cross section of a volume phase grating 1 according to the present invention, and FIG. 1 (b) shows details of a portion A thereof.

体積型位相格子1は、周期的な屈折率変動を有する位相格子20を有し、各位相格子20を入射面21に対し角度β傾斜させたもので、その格子間隔P2は、ブラッグ条件の入射光18の波長λbの光が反射するように構成されている。   The volume type phase grating 1 has a phase grating 20 having a periodic refractive index fluctuation, and each phase grating 20 is inclined at an angle β with respect to an incident surface 21. The light 18 having a wavelength λb is configured to be reflected.

そのようにして構成した体積型位相格子1を傾斜させ、波長λbである入射光18を角度αで入射させる。   The volume phase grating 1 thus configured is tilted, and the incident light 18 having the wavelength λb is made incident at an angle α.

このとき、入射光18は角度βで位相格子1に入射し、格子間隔P2の位相格子20に垂直入射するように角度α、βを設定する。   At this time, the angles α and β are set so that the incident light 18 is incident on the phase grating 1 at an angle β and is perpendicularly incident on the phase grating 20 at a grating interval P2.

又、その格子間隔P2は、波長λbの光に対してのみブラッグ条件として構成されている為、高い反射率を有しており、波長λbの光のみが全反射し、元の光路にそのまま戻る。   Also, since the grating interval P2 is configured as a Bragg condition only for light of wavelength λb, it has a high reflectance, and only light of wavelength λb is totally reflected and returns to the original optical path as it is. .

残りの波長λaは、そのまま進み、反対側の出射面28に角度βで入射し、角度αで出射光29が出射される。   The remaining wavelength λa proceeds as it is, enters the opposite exit surface 28 at an angle β, and the exit light 29 exits at an angle α.

ここで特に入射面21と出射面28は平行であることが好ましい。   Here, it is particularly preferable that the entrance surface 21 and the exit surface 28 are parallel.

体積型位相格子1への入射光18と出射光29は、平行になるが、光軸ズレ△1が生じ、以下の式で示される。   Although the incident light 18 and the outgoing light 29 to the volume phase grating 1 are parallel, an optical axis shift △ 1 occurs, and is expressed by the following equation.

△1=T1×tanγ/cosα
T1:体積型位相格子1の幅
又γは、角度αと角度βの差で、次式で示される。
Δ1 = T1 × tanγ / cosα
T1: the width of the volume phase grating 1 and γ is the difference between the angle α and the angle β, and is expressed by the following equation.

γ=α―β
β=sin―1{(sinα)/n1}
上記条件で設定された場合、入射光18が位相格子20に垂直入射し、波長λbの光のみがブラッグ反射され、元の光路にそのまま戻る。又、入射面21に対し、入射光18が垂直入射でなく所定の角度αで入射する為、ブラッグ反射による反射光19が体積型位相格子1の入射面21での端面反射27による影響を受けず、成分λbのみを戻すことができる。
γ = α-β
β = sin -1 {(sinα) / n1}
When set under the above conditions, the incident light 18 is perpendicularly incident on the phase grating 20, only the light of the wavelength λb is Bragg-reflected, and returns to the original optical path as it is. Further, since the incident light 18 is incident on the incident surface 21 at a predetermined angle α instead of perpendicularly incident, the reflected light 19 due to the Bragg reflection is affected by the end surface reflection 27 on the incident surface 21 of the volume phase grating 1. Instead, only the component λb can be returned.

体積型位相格子1の屈折率n1が1.5〜2.0の範囲の場合、角度βは、α>β>γの条件にある。   When the refractive index n1 of the volume phase grating 1 is in the range of 1.5 to 2.0, the angle β satisfies the condition α> β> γ.

図2は、図1で示した体積型位相格子1を平行四辺形にカットした体積型位相格子2で、周期的な屈折率変動する素子上面22に対する位相格子面20aの角度はγである。その場合の入射光18と出射光29との光軸ズレ△2は、
△2=T2×tanγ
T2:体積型位相格子2の幅
で示される。
FIG. 2 shows a volume type phase grating 2 obtained by cutting the volume type phase grating 1 shown in FIG. 1 into a parallelogram. The angle of the phase grating surface 20a with respect to the element upper surface 22 having a periodically changing refractive index is γ. In this case, the optical axis shift # 2 between the incident light 18 and the outgoing light 29 is:
Δ2 = T2 × tanγ
T2: indicated by the width of the volume phase grating 2.

この場合は、実装用の基板上に傾斜なしにそのまま載せることができる。   In this case, it can be mounted on the mounting substrate without inclination.

図7(a)は、図1及び図2の本発明による体積型位相格子1の製法を示したものである。位相格子用基板3(SiOベースのガラス板に銀、Na、K等を添加したもの)を準備し、その素子上面22を研磨し、光が透過する平面に加工する。それを基板ホルダー(図示せず)に固定し、素子上面22に向かってA方向から角度θ0、B方向から角度θ1の波長λuvの記録光30で、等しい強度の平面波の紫外光をある一定時間(数十秒から数十分間)照射し、位相格子用基板3内で光学干渉を生じさせ、露光記録する。AB両方向からの記録光30の角度θ0、θ1による媒体内での各屈折する角度θ2、θ3は、空気の屈折率n0=1とすると、スネルの法則から次式で示される。 FIG. 7A shows a method of manufacturing the volume phase grating 1 according to the present invention shown in FIGS. A phase grating substrate 3 (a glass plate based on SiO 2 to which silver, Na, K, or the like is added) is prepared, and the upper surface 22 of the element is polished and processed into a plane through which light is transmitted. It is fixed to a substrate holder (not shown), and the recording light 30 having a wavelength λuv with an angle θ0 from the direction A and an angle θ1 from the direction B toward the element upper surface 22 is irradiated with a plane wave ultraviolet light having the same intensity for a certain period of time. Irradiation (for several tens of seconds to several tens of minutes) to cause optical interference in the substrate for phase grating 3 and record by exposure. The refraction angles θ2 and θ3 in the medium due to the angles θ0 and θ1 of the recording light 30 from both directions AB are expressed by Snell's law by the following equation, where n0 = 1.

θ2=sin―1{(sinθ0)/n1}
θ3=sin―1{(sinθ1)/n1}
又、位相格子用基板3の屈折率がn1の場合、該位相格子用基板3内の記録光30の波長λmは、
λm=λuv/n1
で示される。
θ2 = sin -1 {(sin θ0) / n1}
θ3 = sin -1 {(sin θ1) / n1}
When the refractive index of the phase grating substrate 3 is n1, the wavelength λm of the recording light 30 in the phase grating substrate 3 is
λm = λuv / n1
Indicated by

その際、図7では角度βは、
β=|(θ2―θ3)/2| (θ3>θ2)
となる。
At that time, the angle β in FIG.
β = | (θ2−θ3) / 2 | (θ3> θ2)
It becomes.

次に露光記録した位相格子用基板3を電気炉内に入れ500°C前後に加熱する。それにより、紫外光照射されていな部分の屈折率が小さくなり、周期的な正弦波状の屈折率変化が生じる。   Next, the phase grating substrate 3 on which the exposure recording has been performed is placed in an electric furnace and heated to about 500 ° C. As a result, the refractive index of the portion that has not been irradiated with ultraviolet light decreases, and a periodic sinusoidal refractive index change occurs.

又、位相格子用基板3がSiO基板の場合、紫外線照射前に水素などによる加圧処理を事前にすることにより、屈折率変化量を増大させることが知られており、そうした処理も効果的である。 It is also known that when the phase grating substrate 3 is a SiO 2 substrate, the amount of change in the refractive index is increased by preliminarily applying a pressure treatment with hydrogen or the like before irradiation with ultraviolet rays, and such a treatment is also effective. It is.

それにより生じる屈折率変動の格子間隔P2は、次式で表される。   The lattice spacing P2 of the resulting refractive index fluctuation is expressed by the following equation.

P2=λm/[2×sin{(θ2+θ3)/2}]
そして図7(b)、(c)で、位相格子用基板3から垂直方向に体積型位相格子1を切断幅T1で切断し、その切断面26を光の入出射面とした図1に示す体積型位相格子1になる。又、角度αの方向に切断幅T2で切断すれば、図2の実施例に示した体積型位相格子2になる。切断幅T1、T2により、位相格子面20の層数が決まり、回折効率が設定できる。切断幅T1、T2が薄い程、位相格子面20の層数が少なく、回折効率が小さくなり、反射率が下がる。半導体レーザ用外部共振器の場合は、10%程度の回折効率でよく、切断幅T1、T2が小さいものでよいが、WDM伝送用のアド・ドロップ用フィルタの場合は、回折効率が100%に近く高くする必要性がある為、切断幅T1,T2はそれより大きくなる。
P2 = λm / [2 × sin {(θ2 + θ3) / 2}]
7 (b) and 7 (c), the volume type phase grating 1 is cut from the phase grating substrate 3 in the vertical direction with a cutting width T1, and the cut surface 26 is used as a light input / output surface as shown in FIG. The volume type phase grating 1 is obtained. Further, if the cutting is performed at the cutting width T2 in the direction of the angle α, the volume phase grating 2 shown in the embodiment of FIG. 2 is obtained. The number of layers of the phase grating surface 20 is determined by the cut widths T1 and T2, and the diffraction efficiency can be set. The thinner the cutting widths T1 and T2, the smaller the number of layers of the phase grating surface 20, the lower the diffraction efficiency, and the lower the reflectance. In the case of an external resonator for a semiconductor laser, the diffraction efficiency may be about 10%, and the cut widths T1 and T2 may be small. Since it is necessary to increase the height nearer, the cutting widths T1 and T2 become larger.

通常、半導体レーザ用外部共振器用の切断幅T1、T2は、1mm程度、アド・ドロップモジュール用は、4〜5mm程度になる。体積型位相格子1,2の切断面26を光学研磨した後、更に空間的に独立した使用を要する場合は、端面反射防止の為、誘電体多層膜等による反射防止のARコートを施す。上記のプロセスを経て、本発明の体積型位相格子1,2は製作され、各種光モジュールに適用することができる。   Usually, the cutting widths T1 and T2 for the external resonator for the semiconductor laser are about 1 mm, and for the add / drop module are about 4 to 5 mm. After the cut surfaces 26 of the volume phase gratings 1 and 2 are optically polished, if further spatially independent use is required, antireflection AR coating with a dielectric multilayer film or the like is applied to prevent end face reflection. Through the above process, the volume phase gratings 1 and 2 of the present invention are manufactured and can be applied to various optical modules.

図3は、本発明の体積型位相格子2を光アイソレータ15の片側に装着したものである。   FIG. 3 shows a volume type phase grating 2 of the present invention mounted on one side of an optical isolator 15.

光アイソレータ15は、半導体レーザ12の出射側に設置され、半導体レーザ12の出射光波長近傍の波長範囲の出射光29を透過させ、その反射光19を遮断するもので、半導体レーザ素子12内部の発振状態が不安定になることを防止する為に取り付けられている。一般的にガーネット材料からなるファラデー回転子4を、偏光子5で挟んだ構成からなり、ファラデー回転子4に飽和磁界を印加する磁石6を設置する。   The optical isolator 15 is provided on the emission side of the semiconductor laser 12, transmits the emission light 29 in a wavelength range near the emission light wavelength of the semiconductor laser 12, and blocks the reflected light 19. It is installed to prevent the oscillation state from becoming unstable. Generally, a Faraday rotator 4 made of a garnet material is sandwiched between polarizers 5, and a magnet 6 for applying a saturation magnetic field to the Faraday rotator 4 is provided.

図3(a)は、その構成図を示したもので、体積型位相格子2を基板8上に実装固定したものである。これは、各素子を透光性の接着剤又はガラスハンダ材料により一体化して構成したものであるが、各素子を分離固定して構成してもよい。又、磁石6は、使用するファラデー回転子4に磁性ガーネット材料を使用した場合、不要であるが、付けていても問題ない。   FIG. 3A shows a configuration diagram of the volume phase grating 2 mounted and fixed on a substrate 8. In this case, each element is integrated with a light-transmitting adhesive or a glass solder material, but each element may be separated and fixed. The magnet 6 is unnecessary when a magnetic garnet material is used for the Faraday rotator 4 to be used.

図3(b)は、図3(a)の光学素子の両側に結合レンズ7を結合固定した場合で、図6(a)に示した半導体レーザモジュール16内において、体積型位相格子2側を半導体レーザ12に設置、ペルチエ素子23上の基板8に固定する。   FIG. 3B shows a case where the coupling lenses 7 are fixedly coupled to both sides of the optical element shown in FIG. 3A. In the semiconductor laser module 16 shown in FIG. It is set on the semiconductor laser 12 and fixed to the substrate 8 on the Peltier element 23.

そうした構成にすることにより、半導体レーザ12からの出射光は、結合用レンズ7で平行光に変換され、先ず体積型位相格子2に入射する。その際、体積型位相格子2のブラッグ反射波長を半導体レーザ12の発振波長スペクトル幅内に設定しておく。それにより半導体レーザ12からの光の一部(出力の10%程度)が反射する。 With such a configuration, light emitted from the semiconductor laser 12 is converted into parallel light by the coupling lens 7, and first enters the volume phase grating 2. At that time, the Bragg reflection wavelength of the volume phase grating 2 is set within the oscillation wavelength spectrum width of the semiconductor laser 12. Thereby, part of the light from the semiconductor laser 12 (about 10% of the output) is reflected.

一般的に体積型位相格子2の反射率としては5〜10%程度に設定され、体積型位相格子2は半導体レーザ12の外部共振器として作用する。そうすることにより、レーザ発振は、体積型位相格子2のブラッグ反射光の波長特性と等しい波長に引き込まれ、その範囲で安定したスペクトラム特性の発振が可能になる。   Generally, the reflectance of the volume phase grating 2 is set to about 5 to 10%, and the volume phase grating 2 acts as an external resonator of the semiconductor laser 12. By doing so, the laser oscillation is drawn to a wavelength that is equal to the wavelength characteristic of the Bragg reflected light of the volume phase grating 2, and oscillation with stable spectrum characteristics is possible in that range.

又、図6(b)に示したこの体積型位相格子2を実装した光モジュール13は、半導体レーザ12と同様、ペルチエ素子23上に設置、そこで温度コントロールされる為、温度変化が大きな環境の場合でも、体積型位相格子2の屈折率変動の周期が温度変化による線膨張により影響を受けることがなく、半導体レーザ12は安定した発振をすることができる。又、出力側ファイバ端17を介し、外部からの不要な反射光19、特に半導体レーザ12の発振波長近傍の波長範囲の反射光19が半導体レーザ12に戻ると、その影響で発振が不安定になり、波長−スペクトラム出力特性が不安定になり、使用上好ましくない。   The optical module 13 mounted with the volume phase grating 2 shown in FIG. 6B is mounted on a Peltier element 23 and controlled in temperature, similarly to the semiconductor laser 12, so that the temperature of the environment is largely changed. Even in this case, the cycle of the refractive index fluctuation of the volume phase grating 2 is not affected by the linear expansion due to the temperature change, and the semiconductor laser 12 can oscillate stably. When unnecessary reflected light 19 from the outside, particularly reflected light 19 in a wavelength range near the oscillation wavelength of the semiconductor laser 12 returns to the semiconductor laser 12 via the output side fiber end 17, the oscillation becomes unstable due to the influence. As a result, the wavelength-spectrum output characteristics become unstable, which is not preferable in use.

この場合、光モジュール13内の光アイソレータ15がそうした反射光19を遮断する為、半導体レーザ12の発振がそうした反射光19により影響を受けることは全くない。   In this case, since the optical isolator 15 in the optical module 13 blocks such reflected light 19, the oscillation of the semiconductor laser 12 is not affected by the reflected light 19 at all.

図11の従来のFBG付き半導体レーザモジュール16は、この場合、FBG14が、フェルール31に実装された出力側ファイバ端17に構成されており、周囲の温度変化による影響を受けやすい構成になっている。   In this case, in the conventional semiconductor laser module 16 with FBG shown in FIG. 11, the FBG 14 is formed on the output fiber end 17 mounted on the ferrule 31 and is easily affected by a change in ambient temperature. .

又、光ファイバ10からの反射光19は、FBG14内に構成された多数の位相格子面20を介して半導体レーザ12に入射し、特に半導体レーザ12の発振波長近傍の波長範囲の反射光19が戻ると、発振が不安定になり、その波長―スペクトラム出力特性が安定せず乱れる。特にDWM伝送用光ファイバ増幅器用の励起光源用の場合、高出力化、波長多重化、偏波多重化が要求されており、発振波長の安定化、スペクトル幅の狭帯域化が必要となるため、本発明による体積型位相格子を用いた半導体レーザモジュールが有効である。   Further, the reflected light 19 from the optical fiber 10 enters the semiconductor laser 12 via a number of phase grating surfaces 20 formed in the FBG 14, and in particular, the reflected light 19 in a wavelength range near the oscillation wavelength of the semiconductor laser 12 is generated. When it returns, the oscillation becomes unstable, and its wavelength-spectrum output characteristics become unstable without being stabilized. In particular, in the case of an excitation light source for an optical fiber amplifier for DWM transmission, high output, wavelength multiplexing, and polarization multiplexing are required, and it is necessary to stabilize the oscillation wavelength and narrow the spectrum width. The semiconductor laser module using the volume phase grating according to the present invention is effective.

図4は、本発明による位相格子2の両端を結合用レンズ7で結合した構成のもので、図6(b)の半導体レーザ12の出射側に用いられ、入射光18の一部の光を回折により反射し、外部共振器として作用させ、半導体レーザ12の発振波長を安定化させる為に使用するものである。この場合、光アイソレータ15は、図6(a)と異なり体積型位相格子2と分離し、出力側ファイバ端17に取り付けることにより、光ファイバ10からの反射光19を除去することができる。   FIG. 4 shows a configuration in which both ends of the phase grating 2 according to the present invention are coupled by coupling lenses 7, and is used on the emission side of the semiconductor laser 12 in FIG. The light is reflected by diffraction and acts as an external resonator, and is used for stabilizing the oscillation wavelength of the semiconductor laser 12. In this case, unlike the case of FIG. 6A, the optical isolator 15 is separated from the volume phase grating 2 and attached to the output-side fiber end 17, whereby the reflected light 19 from the optical fiber 10 can be removed.

図5(a)、(b)は、体積型位相格子2を内部に実装したインライン型光モジュールの構成例である。複数の波長の光を入射した際、体積型位相格子2の屈折率変動に対応したある特定波長の光を反射するバンドパスフィルタとして使用されるものである。FBG型のバンドパスフィルタに比較して、素子長が2〜3mmと短く、温度変化による線膨張が小さく、格子間隔の変動が殆どない為、FBG方式に比較し温度変化に対し安定した特性と小形実装構造を有するものである。   FIGS. 5A and 5B are configuration examples of an in-line optical module in which the volume phase grating 2 is mounted. When light of a plurality of wavelengths is incident, it is used as a band-pass filter that reflects light of a specific wavelength corresponding to the refractive index fluctuation of the volume phase grating 2. Compared to the FBG type band-pass filter, the element length is as short as 2 to 3 mm, the linear expansion due to temperature change is small, and there is almost no change in the lattice spacing. It has a small mounting structure.

図5(c)は、体積型位相格子2を光サーキュレータ用素子11と共に実装した場合で、従来のようにアド・ドロップ回路として構成するために別途FBG14を取り付ける必要性がない。又、温度特性も安定したものとして、構成することができる。本発明による体積位相格子2は、これらに留まらず、あらゆる形態の光モジュールに適用できるものである。   FIG. 5C shows a case in which the volume phase grating 2 is mounted together with the optical circulator element 11, and there is no need to separately attach the FBG 14 to constitute an add / drop circuit as in the related art. Further, the temperature characteristics can be configured to be stable. The volume phase grating 2 according to the present invention is not limited to these, and can be applied to optical modules of various forms.

実際に体積位相型素子1を図7のプロセスに従って作製した。   The volume phase type device 1 was actually manufactured according to the process of FIG.

位相格子用基板3に上下面を光学研磨した直径2インチ、厚さ2mmのSiOベースの光誘起屈折率材料からなる位相格子用基板3(屈折率n1=1.525)を準備した。コヒーレントな光源として、水冷式の波長488nm、出力3Wのアルゴンレーザを使用した。アルゴンレーザ及び干渉露光用光学系を防振台上に設置し、レーザ出力光を途中ビームスプリッタにより等しい強度にして分離し、各ビームをレンズを介し、その収束位置に設置した直径10μmのピンホールにより不要な回折光を排除した。そして、コリメータ用レンズ系により外径35mm(ピーク強度の1/e2)の平行光とし、2光束干渉法(ホログラフィック手法)により、位相格子用基板3上に約10分間程度照射、暗室内で露光記録した。(以上図示せず)
各記録光の角度は、θ0=47°、θ1=54°とし、位相格子用基板3内での角度は、θ2=28.7°、θ3=32°とした。
A phase grating substrate 3 (refractive index n1 = 1.525) made of a photo-induced refractive index material based on SiO 2 and having a diameter of 2 inches and a thickness of 2 mm was prepared by optically polishing the upper and lower surfaces of the phase grating substrate 3. As a coherent light source, a water-cooled argon laser having a wavelength of 488 nm and an output of 3 W was used. An argon laser and an optical system for interference exposure were set on a vibration isolation table, and the laser output light was split into equal intensity by a beam splitter on the way, and each beam was passed through a lens and set at a converging position at a pinhole with a diameter of 10 μm. The unnecessary diffracted light was eliminated by. The collimator lens system converts the light into parallel light having an outer diameter of 35 mm (1 / e 2 of the peak intensity), and irradiates the phase grating substrate 3 for about 10 minutes by two-beam interference (holographic method) in a dark room. Exposure was recorded. (Not shown above)
The angles of the recording lights were set to θ0 = 47 ° and θ1 = 54 °, and the angles in the phase grating substrate 3 were set to θ2 = 28.7 ° and θ3 = 32 °.

入射面21に対する位相格子20の角度は、β=1.65°となり、従って、その角度αは、α=2.5°とした。   The angle of the phase grating 20 with respect to the incident surface 21 is β = 1.65 °, and the angle α is α = 2.5 °.

そして、露光記録した位相格子型基板3をホルダーから外し、電気炉内で450℃〜600℃程度の範囲で3〜4時間加熱、露光した部分の屈折率を低下させ、位相格子用基板3内に周期的な屈折率変化を生じさせた。その後、幅Tが1mmで垂直に切断した。   Then, the exposure-recorded phase grating type substrate 3 is removed from the holder, heated in an electric furnace at a temperature of about 450 ° C. to 600 ° C. for 3 to 4 hours, and the refractive index of the exposed portion is reduced. Caused a periodic refractive index change. Thereafter, the wafer was vertically cut at a width T of 1 mm.

次に切断面26を光学研磨し、その面にARコート用の誘電体多層膜を蒸着、体積型位相格子1を製作した。   Next, the cut surface 26 was optically polished, and a dielectric multilayer film for AR coating was vapor-deposited on the surface to produce the volume phase grating 1.

その反射スペクトラム特性は、1475nm±1nmの範囲内にあり、反射率は、10%程度のものである。   The reflection spectrum characteristic is within a range of 1475 nm ± 1 nm, and the reflectance is about 10%.

そして、図4に示す体積型位相格子1を角度α=2.5°で傾斜させ、両端を結合用レンズ7で挟み、基板8上に固定し、光モジュール13とした。   Then, the volume type phase grating 1 shown in FIG. 4 was inclined at an angle α = 2.5 °, and both ends were sandwiched between coupling lenses 7 and fixed on a substrate 8 to obtain an optical module 13.

それを図6(b)に示すように、反射スペクトラム特性からややずらして、25℃で発振波長1472nmの半導体レーザ12を有する半導体レーザーモジュール16のペルチエ素子23上の基板8に固定実装した。   As shown in FIG. 6B, the semiconductor laser module 16 was fixedly mounted on the substrate 8 on the Peltier element 23 of the semiconductor laser module 16 having the semiconductor laser 12 having an oscillation wavelength of 1472 nm at 25 ° C., slightly deviating from the reflection spectrum characteristic.

体積型位相格子1を取り付けた出力側ファイバ端17の回折効率が、約10%のもの用い、外部温度が25℃での出力パワーのピークに対する半値幅が、約1.5nmの図8に示すスペクトラム特性の半導体レーザー12である。   FIG. 8 shows that the output fiber end 17 to which the volume phase grating 1 is attached has a diffraction efficiency of about 10%, and the half-width with respect to the output power peak at an external temperature of 25 ° C. is about 1.5 nm. The semiconductor laser 12 has a spectrum characteristic.

それを、温度変化条件、−20℃〜60℃の間で、半導体レーザモジュール16にAPC(Auto Power Controlの略)及びペルチエ素子23による温度制御をかけた状態で、パワー及び出力スペクトラム特性をモニターした。   The power and output spectrum characteristics are monitored in a state where the semiconductor laser module 16 is subjected to the temperature control by the APC (abbreviation of Auto Power Control) and the Peltier element 23 at a temperature change condition of −20 ° C. to 60 ° C. did.

図9は、その出力パワーのピーク波長の波長シフト量を示したもので、本発明の体積型位相格子1を付けた場合(実線)、殆ど波長シフトが起きず、その特性が殆ど変化しない安定な発振状態が得られた。   FIG. 9 shows the amount of wavelength shift of the peak wavelength of the output power. When the volume type phase grating 1 of the present invention is attached (solid line), there is almost no wavelength shift, and the stability is hardly changed. Oscillation state was obtained.

従来のFBGを使用した場合(破線)、その構造上実施例のようにAPC及びペルチェ素子23による温度制御ができないため、FBGが外部温度の影響により線膨張し、反射波長が長波長帯にシフトする事により、半導体レーザ12の発振波長もそれに引き込まれ、長波長帯にシフトする。   When a conventional FBG is used (broken line), the temperature cannot be controlled by the APC and the Peltier element 23 as in the embodiment because of its structure. Therefore, the FBG linearly expands due to the influence of the external temperature, and the reflection wavelength shifts to a long wavelength band. As a result, the oscillation wavelength of the semiconductor laser 12 is also drawn into it and shifted to a long wavelength band.

本発明の体積型位相格子1が、大きな温度変化がある所でも、外部変調器として充分に安定に機能、安定した特性のレーザモジュールを実現することが示された。   It has been shown that the volume phase grating 1 of the present invention functions sufficiently as an external modulator and realizes a laser module having stable characteristics even in a place where there is a large temperature change.

(a)は、本発明による体積型位相格子の断面図である。(b)は、図1(a)のA部の詳細図である。(A) is sectional drawing of the volume type phase grating by this invention. FIG. 2B is a detailed view of a portion A in FIG. 本発明による体積型位相格子の他の実施形態の断面図である。FIG. 4 is a cross-sectional view of another embodiment of the volume phase grating according to the present invention. (a)は、図2に示した体積型位相格子を光アイソレータと実装した場合の実施形態の断面図、(b)は、図3(a)の体積型位相格子の両端をレンズ結合した光モジュールの断面図である。3A is a cross-sectional view of an embodiment in which the volume phase grating shown in FIG. 2 is mounted on an optical isolator, and FIG. 3B is a light in which both ends of the volume phase grating shown in FIG. It is sectional drawing of a module. 本発明による体積型位相格子の両端をレンズで接続した光モジュールの断面図である。1 is a cross-sectional view of an optical module in which both ends of a volume phase grating according to the present invention are connected by lenses. (a)は、本発明による体積型位相格子をファイバコリメータに取り付けた場合の実施形態、(b)は、本発明の体積型位相格子をインライン型光モジュールに構成した場合の実施形態、(c)は、本発明の体積型位相格子を光サーキュレータとともに実装した場合の実施形態をそれぞれ示す図である。(A) is an embodiment in which the volume phase grating according to the present invention is attached to a fiber collimator, (b) is an embodiment in which the volume phase grating of the present invention is configured in an in-line optical module, (c) () Is a figure which shows each embodiment at the time of mounting the volume type phase grating of this invention with an optical circulator. (a)は、本発明の体積型位相格子を取り付けた光アイソレータを実装した半導体レーザモジュールの断面図、(b)は本発明の体積型位相格子を実装した半導体レーザモジュールの断面構成図である。(A) is a cross-sectional view of a semiconductor laser module mounted with an optical isolator to which the volume phase grating of the present invention is attached, and (b) is a cross-sectional configuration diagram of a semiconductor laser module mounted with the volume phase grating of the present invention. . (a)は本発明の体積型位相格子の光学干渉法による製法を示した構成図、(b)は、本発明の体積型位相格子用基板から、図1、図2に示した体積型位相格子に切断する条件を示した構成図、(c)は、本発明の図1、図2に示した実施例の体積型位相格子の構成図である。(A) is a configuration diagram showing a method of manufacturing a volume phase grating of the present invention by an optical interference method, and (b) is a diagram showing a volume phase grating shown in FIGS. 1 and 2 from a volume phase grating substrate of the present invention. FIG. 2C is a configuration diagram showing conditions for cutting into a grating, and FIG. 2C is a configuration diagram of the volume phase grating of the embodiment shown in FIGS. 1 and 2 of the present invention. 本発明の体積型位相格子を用いた半導体レーザモジュールの出力光のスペクトラム特性である。5 is a spectrum characteristic of output light of a semiconductor laser module using the volume phase grating of the present invention. 本発明の体積型位相格子を用いた半導体レーザモジュールと従来のFBGを用いた半導体レーザモジュールの外部温度による波長シフト量を示したものである。FIG. 9 shows the amount of wavelength shift depending on the external temperature of the semiconductor laser module using the volume phase grating of the present invention and the conventional semiconductor laser module using the FBG. (a)は、従来の体積型位相格子の光学干渉法による製法を示した構成図、(b)は、従来の体積型位相格子用基板から体積型位相格子を切り出す条件を示した構成図、(c)は、従来の体積型位相格子を示した構成図である。(A) is a configuration diagram showing a conventional method for producing a volume phase grating by an optical interference method, (b) is a configuration diagram showing conditions for cutting a volume phase grating from a conventional substrate for a volume phase grating, (C) is a configuration diagram showing a conventional volume phase grating. 従来のFBG付き半導体レーザモジュールの断面図である。It is sectional drawing of the conventional semiconductor laser module with FBG. 従来のFBGの製法例を示す構成図である。FIG. 7 is a configuration diagram illustrating an example of a conventional FBG manufacturing method.

符号の説明Explanation of reference numerals

1:体積型位相格子
2:体積型位相格子
3:位相格子用基板
4:ファラデー回転子
5:偏光子
6:磁界印加用磁石
7:結合用レンズ
8:基板
10:光ファイバ
11:光サーキュレータ用素子
12:半導体レーザ
13:光モジュール
14:FBG
15:光アイソレータ
16:半導体レーザモジュール
17:出力側ファイバ端
18:入射光
19:反射光
20:位相格子
20a:位相格子面
21:入射面
22:素子上面
23:ペルチエ素子
24:ファイバコア
25:回折光
26:切断面
27:端面反射
28:出射面
29:出射光
30:記録光
31:フェルール
33:ファイバコリメータ
34:インライン型光モジュール
35:光サーキュレータ
36:フェーズマスク
37:体積型位相格子
α:角度
β:角度
γ:角度
λa:波長
λb:反射中心波長
λm:波長
A:振幅
T:切断幅
T1:切断幅
T2:切断幅
P1:格子間隔
P2:格子間隔
△1:光軸ズレ
△2:光軸ズレ
Λ(mask):マスク間隔
Λ(FBG):格子間隔
λuv:波長
n1:屈折率
n0:屈折率
△u:屈折率変化量
Cm:光速度
Cuv:光速度
1: Volume phase grating 2: Volume phase grating 3: Phase grating substrate 4: Faraday rotator 5: Polarizer 6: Magnetic field applying magnet 7: Coupling lens 8: Substrate 10: Optical fiber 11: For optical circulator Element 12: Semiconductor laser 13: Optical module 14: FBG
15: Optical isolator 16: Semiconductor laser module 17: Output side fiber end 18: Incident light 19: Reflected light 20: Phase grating 20a: Phase grating surface 21: Incident surface 22: Element upper surface 23: Peltier element 24: Fiber core 25: Diffracted light 26: cut surface 27: end surface reflection 28: emission surface 29: emission light 30: recording light 31: ferrule 33: fiber collimator 34: in-line optical module 35: optical circulator 36: phase mask 37: volume type phase grating α : Angle β: Angle γ: Angle λa: Wavelength λb: Reflection center wavelength λm: Wavelength A: Amplitude T: Cutting width T1: Cutting width T2: Cutting width P1: Lattice spacing P2: Lattice spacing △ 1: Optical axis shift △ 2 : Optical axis deviation Λ (mask): mask interval Λ (FBG): lattice interval λuv: wavelength n1: refractive index n0: refractive index △ u: refractive index change amount Cm: light velocity Cuv: light speed

Claims (8)

周期的な屈折率変化を有する位相格子を有し、各位相格子が、入射面に対し所定の角度βで傾斜していることを特徴とする体積型位相格子。 A volume phase grating, comprising: a phase grating having a periodic refractive index change, wherein each phase grating is inclined at a predetermined angle β with respect to an incident surface. 入射面と出射面が平行であることを特徴とする請求項1記載の体積型位相格子。 2. The volume phase grating according to claim 1, wherein the entrance surface and the exit surface are parallel. 請求項1または2記載の位相格子の入射面に対する傾斜の角度βが
β=sin―1{(sinα)/n1} (α>β)
α:体積型位相格子の入射面に対する入射光の入射角
n:積型位相格子を形成する基板の屈折率
で、示されることを特徴とする光モジュール。
3. The angle β of inclination of the phase grating with respect to the incident surface of the phase grating according to claim 1 is β = sin −1 {(sin α) / n1} (α> β).
α: Incident angle of incident light with respect to the incident surface of the volume phase grating n: An optical module characterized by being indicated by the refractive index of the substrate forming the product type phase grating.
請求項1〜2のいずれかに記載の体積型位相格子に、少なくとも1個の結合レンズを結合したことを特徴とする光モジュール。 An optical module, wherein at least one coupling lens is coupled to the volume phase grating according to claim 1. 請求項1〜2のいずれかに記載の体積型位相格子を、光アイソレータ素子の片側又は両側に設置して、且つ結合用レンズと接続したことを特徴とする光モジュール。 An optical module, wherein the volume phase grating according to claim 1 is installed on one or both sides of an optical isolator element and connected to a coupling lens. 請求項3〜5記載の光モジュールを半導体レーザに接続して、半導体レーザの出射光の一部の波長を該半導体レーザに戻し、発振させることを特徴とする半導体レーザモジュール。 6. A semiconductor laser module, comprising connecting the optical module according to claim 3 to a semiconductor laser, returning a part of the wavelength of the emitted light of the semiconductor laser to the semiconductor laser, and causing the semiconductor laser to oscillate. 請求項1または2記載の体積型位相格子の製造方法であって、位相の揃った紫外線を体積型位相格子用基板へ2方向から入射して、それぞれの入射角度をθ0、θ1としたとき、
β=|(θ2―θ3)/2|
θ2=sin―1{(sinθ0)/n1}
θ3=sin―1{(sinθ1)/n1}
を満足することを特徴とする体積型位相格子の製造方法。
3. The method of manufacturing a volume phase grating according to claim 1 or 2, wherein ultraviolet rays having the same phase are incident on the volume phase grating substrate from two directions, and the incident angles are θ0 and θ1, respectively.
β = | (θ2−θ3) / 2 |
θ2 = sin -1 {(sin θ0) / n1}
θ3 = sin- 1 { (sin θ1) / n1}
A method for manufacturing a volume phase grating, characterized by satisfying the following.
上記体積型位相格子を、素子上面に対し、角度αで切断し、切断面を入出射面とし、該入射面を研磨した後、反射防止コートを形成することとしたことを特徴とする請求項7記載の体積型位相格子の製造方法。 The volume phase grating is cut at an angle α with respect to the upper surface of the element, the cut surface is used as an input / output surface, and after polishing the incident surface, an antireflection coat is formed. 8. The method for producing a volume phase grating according to 7.
JP2003425773A 2002-12-26 2003-12-22 Volume type phase grating, manufacturing method thereof, optical module and semiconductor laser module using the same Expired - Fee Related JP4514448B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003425773A JP4514448B2 (en) 2002-12-26 2003-12-22 Volume type phase grating, manufacturing method thereof, optical module and semiconductor laser module using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002377393 2002-12-26
JP2003425773A JP4514448B2 (en) 2002-12-26 2003-12-22 Volume type phase grating, manufacturing method thereof, optical module and semiconductor laser module using the same

Publications (2)

Publication Number Publication Date
JP2004220008A true JP2004220008A (en) 2004-08-05
JP4514448B2 JP4514448B2 (en) 2010-07-28

Family

ID=32911161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003425773A Expired - Fee Related JP4514448B2 (en) 2002-12-26 2003-12-22 Volume type phase grating, manufacturing method thereof, optical module and semiconductor laser module using the same

Country Status (1)

Country Link
JP (1) JP4514448B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007199698A (en) * 2005-12-26 2007-08-09 Kyocera Corp Phase grating, phase grating with lens attached thereto, and optical module
JP2010521699A (en) * 2007-03-08 2010-06-24 フォトン イーティーシー.インコーポレイテッド Notch filter system
WO2011074452A1 (en) * 2009-12-14 2011-06-23 コニカミノルタホールディングス株式会社 Interferometer and fourier spectrometer using same
WO2012073681A1 (en) * 2010-12-03 2012-06-07 コニカミノルタホールディングス株式会社 Laser light source, interferometer and spectrometer
JP2013536469A (en) * 2010-08-18 2013-09-19 アイピージー フォトニクス コーポレーション Method and apparatus for manufacturing volume Bragg grating

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04288510A (en) * 1989-12-26 1992-10-13 United Technol Corp <Utc> Structure of optical waveguide having bragg diffraction grating provided therein for changing optical direction
JPH08286061A (en) * 1995-04-14 1996-11-01 Sumitomo Electric Ind Ltd Optical filter
JPH1184117A (en) * 1997-09-09 1999-03-26 Fujikura Ltd Reflection type optical waveguide grating
JPH11289130A (en) * 1998-04-03 1999-10-19 Furukawa Electric Co Ltd:The Outer resonator type laser
JP2000009941A (en) * 1998-06-02 2000-01-14 Alcatel Alsthom Co General Electricite Optical fiber having short filter
JP2000082864A (en) * 1998-09-04 2000-03-21 Nippon Telegr & Teleph Corp <Ntt> Laser device
JP2000266945A (en) * 1999-01-25 2000-09-29 Alcatel Filter optical waveguide having inclined and linear chirp
JP2001257422A (en) * 2000-03-10 2001-09-21 Sumitomo Electric Ind Ltd Semiconductor laser module
JP2001308454A (en) * 2000-04-24 2001-11-02 Fuji Photo Film Co Ltd Light wavelength converting module
JP2002141599A (en) * 2000-11-02 2002-05-17 Furukawa Electric Co Ltd:The Semiconductor laser module, laser unit, and raman amplifier
JP2002333533A (en) * 2001-05-09 2002-11-22 Fujikura Ltd Condensing transmission device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04288510A (en) * 1989-12-26 1992-10-13 United Technol Corp <Utc> Structure of optical waveguide having bragg diffraction grating provided therein for changing optical direction
JPH08286061A (en) * 1995-04-14 1996-11-01 Sumitomo Electric Ind Ltd Optical filter
JPH1184117A (en) * 1997-09-09 1999-03-26 Fujikura Ltd Reflection type optical waveguide grating
JPH11289130A (en) * 1998-04-03 1999-10-19 Furukawa Electric Co Ltd:The Outer resonator type laser
JP2000009941A (en) * 1998-06-02 2000-01-14 Alcatel Alsthom Co General Electricite Optical fiber having short filter
JP2000082864A (en) * 1998-09-04 2000-03-21 Nippon Telegr & Teleph Corp <Ntt> Laser device
JP2000266945A (en) * 1999-01-25 2000-09-29 Alcatel Filter optical waveguide having inclined and linear chirp
JP2001257422A (en) * 2000-03-10 2001-09-21 Sumitomo Electric Ind Ltd Semiconductor laser module
JP2001308454A (en) * 2000-04-24 2001-11-02 Fuji Photo Film Co Ltd Light wavelength converting module
JP2002141599A (en) * 2000-11-02 2002-05-17 Furukawa Electric Co Ltd:The Semiconductor laser module, laser unit, and raman amplifier
JP2002333533A (en) * 2001-05-09 2002-11-22 Fujikura Ltd Condensing transmission device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007199698A (en) * 2005-12-26 2007-08-09 Kyocera Corp Phase grating, phase grating with lens attached thereto, and optical module
JP2010521699A (en) * 2007-03-08 2010-06-24 フォトン イーティーシー.インコーポレイテッド Notch filter system
WO2011074452A1 (en) * 2009-12-14 2011-06-23 コニカミノルタホールディングス株式会社 Interferometer and fourier spectrometer using same
US9025156B2 (en) 2009-12-14 2015-05-05 Konica Minolta Holdings, Inc. Interferometer and fourier spectrometer using same
EP2515092A4 (en) * 2009-12-14 2015-09-09 Konica Minolta Holdings Inc Interferometer and fourier spectrometer using same
JP2013536469A (en) * 2010-08-18 2013-09-19 アイピージー フォトニクス コーポレーション Method and apparatus for manufacturing volume Bragg grating
WO2012073681A1 (en) * 2010-12-03 2012-06-07 コニカミノルタホールディングス株式会社 Laser light source, interferometer and spectrometer

Also Published As

Publication number Publication date
JP4514448B2 (en) 2010-07-28

Similar Documents

Publication Publication Date Title
JP6928839B2 (en) Laser device
US6480513B1 (en) Tunable external cavity laser
US5719974A (en) Method for customizing optical device configuration after packaging and packaged optical device for use therewith
US20050220163A1 (en) External resonator and semiconductor laser module using the same
US8306088B2 (en) Bragg grating elements for the conditioning of laser emission characteristics
US5377288A (en) Method of forming a refractive index grating in an optical waveguide
US5694248A (en) Spatially-varying distributed Bragg reflectors in optical media
JP5949900B2 (en) Polarization degree reducing device, light source device, optical amplification device, and excitation light source device for Raman amplification
US20090074014A1 (en) Mode selection for single frequency fiber laser
WO2011134177A1 (en) Tunable laser
US9696476B1 (en) Volume Moiré Bragg gratings in a photosensitive material
US6992825B2 (en) Volume phase grating, a method for producing such a volume phase grating, an optical module and a semiconductor laser module using such a volume phase grating
WO2013132266A2 (en) Optical device
US8018982B2 (en) Sliced fiber bragg grating used as external cavity for semiconductor laser and solid state laser
JP4514448B2 (en) Volume type phase grating, manufacturing method thereof, optical module and semiconductor laser module using the same
JP6227216B1 (en) Laser processing equipment
CN101866141A (en) Method for manufacturing diagonal stripe holographic waveguide device with high refractive index modulating degree
JP2004311994A (en) External resonator and semiconductor laser module using it
JP4462960B2 (en) External resonator, semiconductor laser module, and method of manufacturing spherical volume phase grating
Ota et al. Development of optical fiber gratings for WDM systems
Lumeau et al. Phase-shifted volume Bragg gratings in photo-thermo-refractive glass
JP3899996B2 (en) Optical waveguide, multi-wavelength light source, and tunable light source
JP2006073549A (en) External resonator-type wavelength variable optical source
KR100562942B1 (en) The Semiconductor Laser Devices Having High Degree of Polarization
JPH0225241Y2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090811

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100511

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees