WO2012073673A1 - 欠陥検査装置および欠陥検査方法 - Google Patents

欠陥検査装置および欠陥検査方法 Download PDF

Info

Publication number
WO2012073673A1
WO2012073673A1 PCT/JP2011/076013 JP2011076013W WO2012073673A1 WO 2012073673 A1 WO2012073673 A1 WO 2012073673A1 JP 2011076013 W JP2011076013 W JP 2011076013W WO 2012073673 A1 WO2012073673 A1 WO 2012073673A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
light
diffracted
reflected
spatial filter
Prior art date
Application number
PCT/JP2011/076013
Other languages
English (en)
French (fr)
Inventor
敦史 谷口
剛渡 上野
松本 俊一
本田 敏文
Original Assignee
株式会社日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテクノロジーズ filed Critical 株式会社日立ハイテクノロジーズ
Priority to US13/989,835 priority Critical patent/US9019492B2/en
Publication of WO2012073673A1 publication Critical patent/WO2012073673A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • G01N21/95623Inspecting patterns on the surface of objects using a spatial filtering method
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9501Semiconductor wafers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N2021/8477Investigating crystals, e.g. liquid crystals

Definitions

  • the present invention relates to a defect inspection apparatus and a defect inspection method for inspecting a semiconductor wafer or a liquid crystal substrate.
  • the defect is a particle, a crystal defect COP (Crystal Originated Particle) adhering to a sample which is an object to be inspected, a scratch caused by polishing or the like.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2007-273513
  • a dark field defect inspection system and method provided with a spatial filter that injects light obliquely into an inspection sample and shields a diffraction pattern from a repetitive pattern of the sample.
  • a method is disclosed that includes the steps of comparing the amount of light with a threshold and resetting the spatial filter so that the amount of diffracted light is less than or equal to the threshold.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2008-116405
  • a dark field defect inspection system and method including a spatial filter that injects light obliquely into an inspection sample and shields a diffraction pattern from a repetitive pattern of the sample.
  • a method comprising observing the diffraction pattern, recognizing the observed diffraction pattern by image processing, and generating a spatial filter shape that shields the recognized diffraction pattern.
  • the diffracted light from the repetitive pattern is shielded to improve the defect detection sensitivity, but a spatial filter that shields the diffracted light is used. There is no consideration about shielding the defect scattered light by inserting it, which may cause a decrease in the defect signal and may cause a defect to be overlooked.
  • An object of the present invention is to provide a defect inspection apparatus and a defect inspection method that solve the above-described problems of the prior art and that do not miss a defect by reducing a defect signal.
  • a noise component generated by leakage of diffracted light while shielding diffracted light from a repetitive pattern with a spatial filter having as little light-shielding area as possible and ensuring the amount of defect signal. Is to be removed by image processing. Since the noise component generated by the diffracted light depends on the shape and position of the spatial filter, the noise component can be obtained by integrating the two images in which a part of the diffracted light from the repetitive pattern is shielded by different spatial filters. To improve defect detection sensitivity.
  • the defect inspection apparatus includes an illuminating unit that irradiates light onto an inspection object having a pattern formed on the surface, and an inspection object that is irradiated with light by the illuminating unit.
  • Condensing means for collecting the reflected, diffracted and scattered light generated from the object, and the first detection optical path and the second detection for the reflected, diffracted and scattered light from the inspection object collected by the condensing means.
  • Optical path branching means for branching into the optical path, and reflection, diffraction, scattered light specific to the reflected, diffracted, scattered light that has advanced to the first detection optical path among the reflected, diffracted, scattered light branched by this optical path branching means
  • a first spatial filter having a first light shielding pattern for shielding light, a first imaging means for forming an image by light transmitted through the first spatial filter, and the first imaging means.
  • a first image is detected to obtain a first image
  • a second spatial filter having a second light shielding pattern different from the first spatial filter with respect to reflected, diffracted, and scattered light branched by the image acquisition means and the optical path branching means and advanced to the second detection optical path
  • a second imaging means for forming an image by light transmitted through the second spatial filter, and a second image for obtaining the second image by detecting the image formed by the second imaging means.
  • An image processing unit that performs image processing for determining defect candidates by integrally processing the first image acquired by the first image acquisition unit and the second image acquired by the second image acquisition unit. And a processing means.
  • the present invention provides a defect inspection method in which light is irradiated on an inspection object having a pattern formed on the surface, and reflection generated from the inspection object irradiated with the light.
  • the diffracted and scattered light is condensed, and the reflected, diffracted and scattered light from the collected inspection object is branched into a first detection light path and a second detection light path, and the first detection light path is branched by this branching.
  • the specific reflected, diffracted, and scattered light is shielded by the first spatial filter having the first light-shielding pattern, and the first through the light transmitted through the first spatial filter.
  • a first optical image is formed, the first optical image thus formed is received by the first detector to obtain the first image, and the reflected, diffracted, and scattered light that has advanced to the second detection optical path by branching. Specific reflection, diffraction, scattered light of the second different from the first spatial filter
  • the second spatial filter having the light pattern is shielded from light, a second optical image is formed by the light transmitted through the second spatial filter, and the formed second optical image is formed by the second detector.
  • the second image is acquired by receiving light, and the defect candidate is determined by integrally processing the acquired first image and second image.
  • the diffracted light from the repetitive pattern is shielded by a spatial filter with as little light shielding area as possible, and the noise component caused by the leakage of the diffracted light is removed by image processing while ensuring the light quantity of the defect signal, The effect of improving the defect detection sensitivity is obtained.
  • FIGS. 1-10 A first embodiment of the optical inspection apparatus according to the present invention will be described with reference to FIGS. In the following, an example of inspection by a dark field inspection apparatus for a semiconductor wafer is described.
  • FIG. 1A is a diagram showing a first embodiment of an optical inspection apparatus according to the present invention.
  • the optical inspection apparatus according to the first embodiment includes an illumination optical system 110, a stage unit 170, imaging optical systems (detection optical systems) 120a and 120b, and a signal processing / control system 250.
  • the illumination optical system 110 irradiates the sample (semiconductor wafer) 100, which is an object to be inspected, placed on the stage unit 170 from a direction inclined with respect to the normal direction of the surface of the semiconductor wafer 100 (oblique). ) And scattered light scattered from the irradiated semiconductor wafer 100 is detected by the detection optical systems 120a and 120b.
  • the stage unit 170 is driven in a plane to scan the semiconductor wafer 100 placed on the stage unit 170 with illumination light from the illumination optical system 110.
  • the signal processing / control system 250 processes the scattered light from the semiconductor wafer 100 detected by the detection optical systems 120a and 120b, and detects defects present on the semiconductor wafer 100.
  • the illumination optical system 110 includes a laser light source 111, an ND (Neutral Density) filter 112, a beam expander 113, a polarization generation unit 114 including a polarizing plate and a wavelength plate, and a linear beam on an inspection target (semiconductor wafer) 100.
  • a linear beam generation unit 115 for irradiation is provided.
  • the laser light source 111 emits a laser beam.
  • a gas laser, a semiconductor laser, a solid-state laser, a surface emitting laser, or the like can be used as the light source 111.
  • As the wavelength infrared, visible range, and ultraviolet can be used.
  • the beam shaping unit 113 shapes the laser beam emitted from the laser light source 111.
  • the beam shaping means 113 includes a beam expander 1131 for enlarging the diameter of the laser beam emitted from the laser light source 111 and a collimator for shaping the enlarged laser into parallel light as shown in FIGS. 1B and 1C.
  • the lens 1132 is configured.
  • the polarization generation unit 114 includes a polarizing plate 1141 and a wave plate 1142, and adjusts the polarization characteristics of light whose beam diameter is expanded by the beam expander 1131 of the beam shaping unit 113.
  • the linear beam generation unit 115 includes a cylindrical lens 1151.
  • FIG. 1B is a plan view of the illumination optical system 110
  • FIG. 1C is a front view thereof.
  • the light amount of the laser beam emitted from the laser light source 111 is adjusted by the ND filter 112, the beam diameter is enlarged by the beam expander 1131 by the beam shaping unit 113, and shaped into parallel light by the collimating lens 1132. Then, the state of polarization is controlled by the deflection control unit 114, and is condensed in one direction by the cylindrical lens 1151 of the linear beam generation unit 115, and becomes a linear beam 101 parallel to the y-axis, on the surface of the semiconductor wafer 100. Irradiates a linear region. At this time, the illumination direction ⁇ from the y-axis of the illumination optical system shown in FIG.
  • the polar angle ⁇ which is the angle from the z axis of the illumination optical system shown in FIG. 1C, is selected within the range of 0 to 90 degrees.
  • the polarization generation unit 114 may be placed after the linear beam generation unit 115. In this case, since the beam whose polarization has been adjusted by the polarization generation unit 114 does not pass through the lens, it is possible to irradiate the semiconductor wafer 100 without causing a shift due to lens aberration.
  • the linear beam 101 thus formed is irradiated on the surface of the semiconductor wafer 100 such that the stage y direction is the longitudinal direction of the linear beam 101.
  • the detection optical system 120a includes an objective lens 121, a spatial filter 123a, a polarization analyzer 124a, an imaging lens 125, and a line sensor 126a. Further, the optical path is separated by the beam splitter 122 between the objective lens 121 and the spatial filter 123a in the optical path, and the transmitted light of the beam splitter 122 becomes the optical path of the detection optical system 120a, and the reflected light becomes the optical path of the detection optical system 120b.
  • pupil observation optical systems 128a and 128b for observing the exit pupil of the objective lens 121 of the optical systems 120a and 120b are provided.
  • the pupil observation systems 128a and 128b are moved from the optical systems 120a and 120b to the pupil observation system using a beam sampler 127a that can be taken in and out of the optical path of the detection optical system 120a and a beam sampler 127b that can be taken in and out of the optical path of the detection optical system 120b. Guide the light.
  • the relationship between the position and shape of the spatial filters 123a and 123b and the intensity of the image acquired by the line sensor is obtained in advance, and the intensity at the pupil position is determined from the relationship.
  • the pupil observation optical systems 128a and 128b that directly observe the pupil plane can be omitted.
  • the objective lens 121 collects reflected, scattered, and diffracted light scattered from the surface of the semiconductor wafer 100.
  • the spatial filter 123 a shields part of the reflected, scattered, and diffracted light from the surface of the semiconductor wafer 100 collected by the objective lens 121.
  • the spatial filter 123a is arranged at the exit side pupil position of the objective lens 121 or a position equivalent (conjugate) to the pupil position.
  • the spatial filter 123a a bar-shaped light blocking filter that can be arranged in a plurality of numbers and thicknesses in the vertical and horizontal directions, a filter that can transmit and block a desired portion two-dimensionally on the pupil plane, and the like are used.
  • the two-dimensional filter one using an electro-optic effect such as liquid crystal or MEMS (Micro Electro Mechanical Systems) is used.
  • the illumination light is condensed in the y direction by the linear beam generator 115 in order to make the illumination light into a linear shape with the y direction as the longitudinal direction. Therefore, the diffraction pattern of the pupil plane is a diffraction pattern having a spread in the y direction depending on the light collection NA. In this case, the diffracted light can be appropriately removed by the rod-shaped filter arranged in one direction.
  • the polarization analyzer 124a adjusts the polarization characteristics of the scattered light that is not shielded by the spatial filter 123a.
  • the polarization generation unit 124a includes, for example, a 1 ⁇ 4 wavelength plate, a 1 ⁇ 2 wavelength plate, and a polarizing plate, each of which individually controls rotation, and can transmit arbitrary polarized light.
  • the imaging lens 125 transmits the scattered light that has not been shielded by the spatial filter 124a and forms an optical image thereof.
  • the positions of the spatial filter 124a and the imaging lens 125a may be reversed.
  • the line sensor 126a is arranged at a position where the image of the scattered light imaged by the imaging lens 125 is imaged on the detection surface of the line sensor 124, and detects the optical image of the scattered light.
  • a TDI (Time Delay Integration) image sensor a time delay integration type image sensor, a CCD (Charge Coupled Device) sensor, a CMOS (Complementary Metal Oxide Semiconductor) sensor, or the like may be used.
  • the signal based on the scattered light detected in this way is amplified by the analog signal output from the line sensor 126a by the A / D conversion unit 129a, then converted to a digital signal, and sent to the signal processing / control unit 250. Processed.
  • the detection optical system 120b detects the optical image of the scattered light from the semiconductor wafer 100 and sends it to the signal processing / control unit 250 for processing.
  • the detection optical system 120a detects a portion shielded from light by the spatial filter 123b.
  • the spatial filter 123b are set to different shapes and positions, and two images with different optical conditions are acquired at once.
  • the noise component included in the image detected by the line sensor 126a or 126b differs depending on the shape and position of the spatial filters 124a and 124b, an image in which noise is suppressed is obtained by processing the two images in an integrated manner. As a result, the defect detection performance can be improved.
  • a method for setting the spatial filters 123a and 123b will be described later.
  • the stage unit 170 includes an x stage 170a, a y stage 170b, a z stage 170c, and a ⁇ stage 170d.
  • the x stage 170a is a stage that can be moved in the x direction by placing the semiconductor wafer 100 on which a fine pattern is formed on the surface, which is a sample to be inspected.
  • each of the y stage 170b, the z stage 170c, and the ⁇ stage 170d can be moved in the y direction, the z direction, and the ⁇ direction by placing the semiconductor wafer 100 on which a fine pattern is formed on the surface that is the sample to be inspected. It is a stage.
  • the signal processing / control unit 250 includes an image processing unit 200, an operation unit 210, a control unit 220, a display unit 230, and a height detection unit 160.
  • the image processing unit 200 creates scattered light image images 1261 and 1262 from the signals detected by the line sensors 126a and 126b, amplified by the A / D converters 129a and 129b, and digitized, and the created semiconductors
  • the images 1261 and 1262 by scattered light from the wafer 100 are processed to extract defects.
  • FIG. 2 is a block diagram showing a schematic configuration of the image processing unit 200 in the first embodiment of the optical inspection apparatus according to the present invention.
  • an image 1261 based on scattered light acquired in the detection optical system 120a and an image 1262 based on scattered light acquired in the detection optical system 120b are generated using position information of the y stage 170b, and the generated images 1261 and 1262 are generated.
  • the brightness correction unit 2002 is the difference in efficiency between the transmitted light and the reflected light of the beam splitter 122, the difference in transmittance between the polarization analysis units 124 a and 124 b, Two images in which the difference in brightness of the images 1261 and 1262 caused by the difference in transmittance of the detection lens 125 and the efficiency in the line sensors 126a and 126b are corrected, and the difference in brightness is corrected by the integrated processing unit 2003.
  • the images 1261 and 1262 are integrated and a new image 1268 is constructed.
  • the image 1268 is constructed by integrating two images 1261 and 1262 corrected for the difference in brightness by weighted addition, multiplication, or the like.
  • the image 1261 and the image 1262 are images obtained by setting different filter conditions (filter patterns) for shielding scattered light from the semiconductor wafer 100 with the spatial filters 123a and 123b.
  • the defect signal 321 in the image acquired under each condition shines in common, the noise component 322 shines in different places. Therefore, in the image 1268 obtained by the integration process, the noise component 322 is reduced and the defect signal 321 becomes apparent. It becomes.
  • the defect determination unit 2004 extracts defects from the newly constructed image 1268.
  • an image obtained by capturing the adjacent pattern originally formed in the same shape or the pattern at the same position of the adjacent die with the line sensors 126a and 126b in the same manner as the images 1261 and 1262 is obtained.
  • the candidate image is extracted by comparing the obtained image (reference image: not shown) with the image 1268. For the comparison process, a subtraction process between the image 1268 and the reference image is used. At this time, since the scattered light from the defect is different from the scattered light from the normal part, an image in which the scattered light from the defect is emphasized is obtained.
  • a threshold value process can be performed on the obtained difference image to determine a defect.
  • the threshold image is determined from, for example, statistical brightness of a plurality of normal parts.
  • the defect classification and sizing unit 2005 performs defect determination, classification and sizing based on characteristics such as scattered light distribution and intensity of the extracted defect candidates.
  • FIG. 3 shows a first modification of the image processing unit 200.
  • the image 1261 based on the scattered light acquired in the detection optical system 120a and the reference acquired in the same shape as the acquisition location of the image 1261 in an adjacent die or cell.
  • An image 1261r is generated, the image alignment processing unit 2011a aligns the generated image 1261 and the reference image 1261r with a precision equal to or less than the pixel unit of the sensor, and the brightness correction unit 2012a performs thin film on the sample surface and the surface layer.
  • the brightness of the inspection image 1261 and the reference image 1261r due to the specimen such as the thickness of the lens or the optical system such as the difference in height between the lens and the wafer at the time of inspection is corrected, and the inspection image 1261 is referred to by the difference processing unit 2013a.
  • a difference image 1261d is obtained by performing a difference process of subtracting corresponding pixels of the image 1261r.
  • the reference image 1261r generated based on the scattered light acquired in the detection optical system 120a at the site having the same shape as the acquisition location of the image 1261 in an adjacent die or cell is temporarily stored in an image memory (not shown).
  • an image 1263 including a defect and a reference image 1263r are generated from a signal acquired from the detection optical system 120b, and the image 1263 and the reference image 1263r are also processed by the same configuration to obtain a difference image 1263d.
  • the defect determination unit 2014 configures an orthogonal coordinate system in which the luminance value of the difference image 1261d is the horizontal axis x1 and the luminance value of the difference image 1263d is the vertical axis x2, and the two difference images 1261d and 1263d correspond to each other.
  • Pixel luminance is plotted in this Cartesian coordinate system.
  • the noise is left behind between the defect image and the reference image, so both the x1 and x2 components are small and distributed near the origin.
  • the defect image has a larger luminance than noise, and is plotted at a position away from the origin in the x1 and x2 spaces.
  • the noise 322 and the defect 321 are separated to determine the defect.
  • a combination of a circle and a straight line can be used.
  • the radius may be A
  • the boundary line may be drawn to a region that satisfies the following equation (Equation 1).
  • the classification / sizing processing unit 2015 performs defect determination and classification / sizing based on the extracted features such as scattered light distribution and intensity of the defect candidate.
  • FIG. 4 shows a second modification of the image processing unit 200.
  • the reference image acquired at the same shape as the acquisition position of the image 1261 in the die 1 or cell adjacent to the image 1261 based on the scattered light acquired by the detection optical system 120a. 1261r, and the image alignment processing unit 2021a aligns the generated image 1261 and the reference image 1261r with a precision equal to or less than the pixel unit of the sensor, and the brightness correction unit 2022a detects the thin film on the sample surface and the surface layer.
  • a difference image 1261d is obtained by subtracting the corresponding pixels of 1261r from each other. Process for obtaining a 261d is the same as the first modification described in FIG.
  • the threshold value processing unit 2027a performs threshold value processing on the difference image 1261d and extracts a bright spot equal to or higher than the threshold value as a defect candidate.
  • the threshold value is determined from, for example, statistical brightness of a plurality of normal portions.
  • the same processing 2021b to 2023b as 2021a to 2023a is performed to acquire the difference image 1263d, and the threshold value is obtained.
  • a defect candidate is extracted by processing 2027b.
  • defect candidate extraction processing unit 2028 integrates defect candidates extracted from difference images 1261d and 1263d by threshold processing 2027a and 2027b.
  • the integration method uses, for example, a common part of defect candidates extracted from the difference images 1261d and 1263d.
  • the defect sizing processor 2029 performs defect determination, classification, and sizing based on characteristics such as the scattered light distribution and intensity of the defect candidate extracted by the above method.
  • the operation unit 210 is a part where a person operates the inspection apparatus, and through a GUI (Graphical User Interface), an inspection recipe is created, an instruction for inspection by the created recipe, a map display of the inspection result, and a detected defect Features are displayed.
  • the control unit 220 controls each part of the apparatus.
  • a detection result from a height detector 160 described later is received, and the positions of the x stage 170a, the y stage 170b, the z stage 170c, and the ⁇ stage 170d of the stage unit 170 are controlled, the spatial filters 123a and 123b, and the polarization A control signal is sent to the analysis units 124a and 124b.
  • the height detector 160 detects the direct reflected light of the beam irradiated on the surface of the semiconductor wafer 100 to be inspected from the light transmitter 161 such as a semiconductor laser, and obtains position information of the reflected light on the detection surface.
  • the stage height of the stage unit 170 being inspected is detected from the obtained positional information of the reflected light, and the detection result is sent to the control unit 220. If there is a deviation in the stage height, the z stage 170c is driven using the control signal from the control unit 220 based on the detection result of the height detection unit to correct the stage height deviation, and the inspection is performed. Prevent target defocusing.
  • FIG. 5 is a flowchart showing a first embodiment of the optical inspection method according to the present invention.
  • the laser beam emitted from the laser light source 111 by the illumination optical system 110 is adjusted in light quantity by the ND filter 112, the beam diameter is enlarged by the beam shaping unit 113 to form a parallel beam, and a desired polarization state is obtained by the polarization generation unit 114.
  • the linear beam generator 115 shapes the linear illumination light, and the x-stage 170a irradiates the semiconductor wafer 100 moving continuously in the x direction from an oblique direction (S100). ).
  • the detection optical systems 120a and 120b to simultaneously acquire two images (S102), and the image processing unit 200 integrates the two images to generate one image (S103).
  • the defect candidate is extracted by comparing the generated image with a reference image generated in advance (S104), and the defect candidate is identified by the detected image. Difference, performing such classification and sizing of the defect species from the information such as the difference in brightness (S105).
  • S100 the laser beam emitted from the light source 111 of the illumination optical system 110 is shaped by the beam shaping unit 113, and the polarization state is adjusted by the polarization generation unit 114. Thereafter, the linear beam generator 115 forms the linear beam and irradiates the semiconductor wafer 100.
  • the control unit 220 controls the y stage 170b and moves the semiconductor wafer 100 in the y direction (or -y direction) at a constant speed, thereby detecting the illumination optical system 110 and the detection. Scanning is performed by irradiating the semiconductor wafer 100 with illumination light while continuously moving the optical system (120a and 120b) in one direction.
  • the light that has passed through the spatial filter 123a without being blocked by the spatial filter 123a enters the polarization control unit 124a, is output from the polarization control unit 124a with the polarization state controlled, and is blocked by the spatial filter 123a by the imaging lens 125.
  • An image of the scattered light that did not exist is formed.
  • the scattered light image is detected by the line sensor 126a installed so that the detection surface is positioned at the image formation position of the scattered light image.
  • the light reflected by the beam splitter 122 travels along the optical path of the detection optical system 120b to reach the spatial filter 123b, and the semiconductor wafer is formed by the light shielding pattern formed on the spatial filter 123b.
  • the light pattern generated by the reflected / scattered / diffracted light from the repetitive pattern formed on the semiconductor wafer 100 is shielded.
  • the light that has passed through the spatial filter 123a without being blocked by the spatial filter 123a enters the polarization control unit 124b, is output from the polarization control unit 124a with the polarization state controlled, and is blocked by the spatial filter 123b by the imaging lens 125.
  • An image of the scattered light that did not exist is formed.
  • the scattered light image is detected by the line sensor 126a installed so that the detection surface is positioned at the image formation position of the scattered light image.
  • the setting method of the spatial filter will be described later.
  • (S102) The signals detected by the line sensors 126a and 126b of the scattered light image whose polarization characteristics have been adjusted in S101 are A / D converted by the A / D converters 129a and 129b, respectively, and then enter the image processing unit 200 to enter the semiconductor wafer. Images for 100 surfaces are generated.
  • (S103) The brightness of the two images obtained by aligning the two images generated in S102 with an accuracy equal to or less than the pixel unit of the line sensors 126a and 126b by the alignment unit 2001, and aligning the positions by the brightness correction unit 2002. After the correction, the two images whose brightness has been corrected by the integration processing unit 2003 are integrated to generate a new image (refer to the description of the image processing unit 200 for details).
  • S104 The integrated image generated in S103 is compared with a reference image stored in a storage unit (not shown) in the defect determination unit 2004 (for details, refer to the description of the image processing unit 200 described above). Extract defect candidates.
  • defect types extracted in S104 are classified and sized according to information such as the difference in distribution between the line sensors 126a and 126b and the brightness of the defect.
  • diffracted light is generated perpendicular to the pattern structure.
  • the structure of the semiconductor wafer 100 to be inspected has many linear patterns in the principal axis x and y directions in FIG. Since the diffracted light is generated perpendicularly to the direction of the line-shaped pattern, there is much diffracted light in the y and x directions.
  • diffracted light from the line pattern of the semiconductor wafer 100 is incident on the detection optical system 120a or 120b.
  • the device can be configured so that it does not enter as much as possible.
  • the diffracted light that has entered the objective lens 121 is removed by the spatial filters 123a and 123b described above.
  • FIG. 6 shows a flow of spatial filter setting. All the diffracted light from the site to be inspected on the wafer is shielded by the spatial filter (S200), and the average intensity T of the site to be inspected with the spatial filter set is specified from the image acquired by the line sensor (In step S201, an arbitrary value equal to or greater than the average intensity T is set as a threshold value Tth, and a plurality of images are acquired with a spatial filter setting such that the region to be inspected is equal to or less than Tth (S202).
  • a spatial filter setting capable of acquiring two images having the lowest correlation between the two images is set as the spatial filter 123a. And 123b are inspected (S204).
  • S200 As in the conventional spatial filter setting method (Patent Documents 1 and 2), the spatial filter is set so as to shield all the diffracted light from the inspection target pattern on the exit-side pupil plane of the objective lens.
  • inspection is performed with a spatial filter setting that blocks all the diffracted light, but not only the pattern diffracted light but also the defect signal is blocked under this condition.
  • Tth T ⁇ ⁇
  • n n conditions of the spatial filter setting that makes the intensity below the threshold value Measure the site to be examined.
  • is set for the purpose of allowing a certain amount of diffracted light leakage and securing a defect detection signal. At this time, if ⁇ is increased, the defect signal is buried in the noise component. Therefore, when detecting a minute defect equivalent to the average intensity T, for example, ⁇ is set to about 1.1.
  • S203 In S202, two are selected from the determined n spatial filter settings, and correlation calculation is performed for a total of nC2 cases. For each corresponding pixel of the two images selected as shown in FIGS. 7A and 7B, the respective brightnesses are plotted on two axes, and the correlation coefficient is calculated. As shown in FIG. 7A, when the correlation between the two images is high, the luminance level of the noise of each pixel is similar, and even if the two images are integrated, the same image is obtained. Little effect on SNR improvement. On the other hand, when the correlation is low as shown in FIG. 7B, the luminance level of noise is different in each pixel, so that the luminance level of noise can be suppressed by integrating two images, and the SNR is improved.
  • FIG. 8 schematically shows an example of an image obtained when different spatial filters are applied.
  • the pupil plane 800 has a plurality of bright spots 810 caused by patterns on the wafer.
  • the spatial filter 123a is set so as to shield all the bright spots 810 from light.
  • the image 1261 obtained at this time has low noise brightness, but part of the defect signal is also reduced by the light shielding of the spatial filter 123a.
  • the detection system 120b only a part of the bright spot 810 on the pupil plane 800 is shielded by the spatial filter 123b, so that the noise brightness of the image 1262 obtained here is higher than that of the image 1261.
  • the defect signal also increases.
  • the correlation of noise in the images 1261 and 1262 tends to be low. Therefore, by performing the integration process 850 on the images 1261 and 1262 by the integration processing unit 2003, a noise component like the image 1268 is suppressed and a defect signal becomes obvious.
  • a second embodiment of the optical inspection apparatus according to the present invention will be described with reference to FIG.
  • the configuration of the apparatus in this embodiment is the same as that shown in FIG. 1 described in the first embodiment.
  • This embodiment is different from Embodiment 1 in that an optical simulation is used to obtain the setting conditions of the spatial filter. Only the differences from the first embodiment will be described here.
  • Fig. 9 shows the flow of spatial filter setting using optical simulation.
  • An inspection target region on the wafer is modeled, an image obtained by applying a spatial filter for removing the diffraction pattern from the target region is obtained (S300), an average intensity T of the inspection target region is calculated (S301), and the average intensity T
  • the above arbitrary value is set as the threshold value Tth, a plurality of images are acquired with the spatial filter setting so that the examination target region is Tth or less (S302), and two images are selected from the acquired number n of images, and nC2
  • the integration process calculation is performed for the street combinations (S303), the combination with the lowest noise of the examination region is selected (S304), and the spatial filter shapes when the image combinations determined in S304 are calculated are the spatial filters 123a and 123b. Set and actually inspect (S305).
  • S300 the inspection target part is modeled, reflection, refraction, and scattered light from the inspection target part in a pupil license is calculated by optical simulation, and a spatial filter is applied to calculate an image acquired by the line sensor.
  • the spatial filter is set so as to shield all the diffracted light from the inspection target pattern as in the conventional setting method (Patent Documents 1 and 2).
  • Patent Documents 1 and 2 In the conventional inspection method, inspection is performed with a spatial filter setting that blocks all of the diffracted light, but not only the pattern diffracted light but also the defect signal is blocked under this condition.
  • FIG. 10 is a diagram showing a schematic configuration of an optical system of a third embodiment of the optical inspection apparatus according to the present invention
  • FIG. 11 is an image process in the third embodiment of the optical inspection apparatus according to the present invention. It is a block diagram which shows schematic structure of a part.
  • the configuration of this embodiment is obtained by adding an oblique detection optical system (120c and 120d) to the configuration shown in FIG. That is, the configurations of the illumination optical system 110, the detection optical systems 120a and 120b, the height detection unit 160, and the stage unit 170 illustrated in FIG. 10 are the same as the configurations illustrated in FIG.
  • the oblique detection optical systems 120c and 120d defect signals that are not captured by the detection optical systems (upward detection optical systems) 120a and 120b that detect upward reflection, scattering, and diffracted light. Can be detected, the number of defect types that can be detected is increased, and the defect detection sensitivity is also improved.
  • the oblique detection optical system (120c and 120d) is the same as the upper detection optical system (120a and 120b) described with reference to FIG. 1 in the first embodiment, the objective lens 121c, the spatial filters 123c and 123d, the polarization analyzer 124c and 124d, an imaging lens 125c, and line sensors 126c and 126d. Further, the optical path is separated by the beam splitter 122c between the objective lens 121c and the spatial filter 123c in the optical path, and the transmitted light becomes the optical path of the oblique detection optical system 120c, and the reflected light becomes the optical path of the oblique detection optical system 120d. .
  • the shapes and positions of the spatial filters 123c and 123d are also different in shape and position, like the spatial filters 120a and 120b of the upper detection system.
  • pupil observation optical systems 128a and 128b are provided in the optical paths of the upper detection optical systems 120a and 120b as described in the first embodiment.
  • a pupil observation optical system corresponding to the pupil observation optical systems 128a and 128b is also provided in the optical paths of the detection optical systems 120c and 120d.
  • the signal processing / control unit 1250 includes an image processing unit 1200, an operation unit 1210, a control unit 1220, a display unit 1230, and a height detection unit 160.
  • the image processing unit 1200 detects signals detected by the line sensors 126a and 126b, amplified by the A / D converters 129a and 129b, and digitized, and detected by the line sensors 126c and 126d to detect the A / D converters 129c and 129c. Images 1261 and 1262 of scattered light images are created from the signal amplified and digitized at 129d, and the images 1261 and 1262 by the scattered light from the created semiconductor wafer 100 are processed to extract defects.
  • FIG. 11 is a block diagram illustrating a schematic configuration of the image processing unit 1200 according to the third embodiment.
  • the image processing unit 1200 has substantially the same configuration as the image processing unit 200 described in the first embodiment with reference to FIG. 2, and an alignment unit 2001 that processes an image generated from signals detected by the detection optical systems 120a and 120b. , A brightness correction unit 2002, an integration processing unit 2003, and a defect determination unit 2004.
  • the image processing unit 1200 further includes an alignment unit 2001c that processes the image 1263 generated based on the scattered light detected by the detection optical system 120c and the image 1264 generated based on the scattered light detected by the detection optical system 120d.
  • a brightness correction unit 2002c, an integration processing unit 2003c, and a defect determination unit 2004c are provided.
  • the image processing unit 1200 includes a defect determination result integration unit 2006 that integrates the results determined by the defect determination units 2004 and 2004c, and the defect classification and sizing unit 2005 uses the integrated result to classify and classify defects.
  • the sizing is performed. Since the scattering direction of minute defects is not uniform, the detection of the upper direction in addition to the improvement of the defect capture rate is achieved by providing a two-direction detection system of the upper detection optical systems 120a and 120b and the oblique detection optical systems 120c and 120d. By comparing the defect intensity signals detected by the optical systems 120a and 120b with the defect signal intensity detected by the oblique detection optical systems 120c and 120d, defect classification and sizing accuracy can be improved.
  • the configuration of the image processing unit 1200 has been described according to the configuration described in FIG. 2 of the first embodiment, but is illustrated in FIG. 3 or FIG. 4 described in the first embodiment.
  • a configuration according to the configuration can also be adopted.
  • a fourth embodiment of the optical inspection apparatus will be described with reference to FIG.
  • the difference from the optical system of the third embodiment is that there is no optical path branching in the upper detection system and the oblique detection system.
  • the aim is to suppress the noise caused by the pattern on the wafer due to the difference in the setting method of the spatial filters 123a and 123c. Therefore, in the configuration of the present embodiment, the detection system 120a is used during recipe preparation and inspection. In the detection system 120c, two types of spatial filters are set, and the inspection is performed twice, thereby obtaining an image similar to that in the third embodiment. Since the processing method after image acquisition is the same as that of the third embodiment, description thereof is omitted.
  • DESCRIPTION OF SYMBOLS 100 Semiconductor wafer 101 ... Linear beam 110 ... Illumination optical system 111 ... Laser light source 112 ... ND filter 113 ... Beam expander 114 ... Polarization generator 115 ... Linear beam generators 120a, 120b, 120c, 120d ... detection optical systems 121, 121c ... objective lenses 122, 122c ... beam splitters 123a, 123b, 123c, 123d ... spatial filters 124a, 124b, 124c, 124d ... ellipsometers 125a, 125b, 125c, 125d ... line sensors 127a, 127b ... beam samplers 128a, 128b ...

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

 欠陥信号を低下させて欠陥を見逃してしまうことのないようにするために、欠陥検査装置において、表面にパターンが形成された検査対象物に光を照射し、この光が照射された検査対象物から発生する反射、回折、散乱光を集光して第1の遮光パターンを備えた第1の空間フィルタを透過した光による第1の光学像を第1の検出器で受光して第1の画像を取得し、光が照射された検査対象物から発生する反射、回折、散乱光を集光して第2の遮光パターンを備えた第2の空間フィルタを透過した光による第2の光学像を第2の検出器で受光して第2の画像を取得し、取得した第1の画像と第2の画像を統合的に処理して欠陥候補を判定するようにした。

Description

欠陥検査装置および欠陥検査方法
 本発明は、半導体ウェハや液晶基板を検査する欠陥検査装置および欠陥検査方法に関する。
 LSIや液晶基板を製造する際に、被加工対象物(例えば半導体ウエハ)上に形成される繰り返しパターンがある。このようなLSIや液晶基板の製造において、被加工対象物の表面に異物が付着したり、または欠陥が発生すると、例えば、配線の絶縁不良や短絡などの不良原因となる。ここで、回路パターンの微細化に伴い、被加工対象物上に形成されるパターン(非欠陥部)と、微細な異物や欠陥を弁別することが困難になってきている。  ここで欠陥とは、被検査対象物である試料上に付着するパーティクルや結晶欠陥COP(Crystal Originated Particle)、研磨により生じるスクラッチなどである。
 特許文献1(特開2007-273513号公報)においては、検査試料に斜方より光を入射し、試料の繰り返しパターンからの回折パターンを遮光する空間フィルタを備えた暗視野欠陥検査システム及び方法であって、前記空間フィルタの設定状態を欠陥検査に先立ち、検査体の一部の繰り返しパターンからの回折光を補正試験対象として、空間フィルタにより減光した回折光の光量を計測するステップと、回折光の光量をしきい値と比較するステップと、回折光の光量がしきい値以下となるように空間フィルタを再設定するステップを備えた方法が開示されている。
 特許文献2(特開2008-116405号公報)においては、検査試料に斜方より光を入射し、試料の繰り返しパターンからの回折パターンを遮光する空間フィルタを備えた暗視野欠陥検査システム及び方法であって、前記回折パターンを観察するステップと、観察した回折パターンを画像処理により認識するステップと、認識した回折パターンを遮光する空間フィルタ形状を生成するステップとを備えた方法が開示されている。
特開2007-273513号公報 特開2008-116405号公報
 特許文献1に記載されている発明及び特許文献2に記載されている発明では、繰り返しパターンからの回折光を遮光し、欠陥検出感度の向上を図っているが、回折光を遮光する空間フィルタを挿入することで、欠陥散乱光をも遮光してしまうことについては配慮されておらず、欠陥信号の低下を招き、欠陥の見逃しが生じてしまう可能性があった。
 本発明の目的は、上記した従来技術の課題を解決して、欠陥信号を低下させて欠陥を見逃してしまうことのない欠陥検査装置および欠陥検査方法と提供することにある。
 上記した目的を達成するために、本発明では、できるだけ少ない遮光面積の空間フィルタにて繰り返しパターンからの回折光を遮光し、欠陥信号の光量を確保しつつ、回折光の漏れにより生じたノイズ成分を画像処理にて除去することを目的とする。ここで回折光により生じるノイズ成分は空間フィルタの形状、位置に依存するため、繰り返しパターンからの回折光の一部を異なる空間フィルタで遮光した2枚の画像を統合的に処理することでノイズ成分を除去し、欠陥検出感度向上を狙う。
 即ち、上記した目的を達成するために、本発明では、欠陥検査装置を、表面にパターンが形成された検査対象物に光を照射する照明手段と、この照明手段により光が照射された検査対象物から発生した反射、回折、散乱光を集光する集光手段と、この集光手段により集光された検査対象物からの反射、回折、散乱光を第1の検出光路と第2の検出光路に分岐する光路分岐手段と、この光路分岐手段により分岐された反射、回折、散乱光のうち第1の検出光路に進んだ反射、回折、散乱光に対して特定の反射、回折、散乱光を遮光する第1の遮光パターンを備えた第1の空間フィルタと、この第1の空間フィルタを透過した光による像を形成する第1の結像手段と、この第1の結像手段で形成された像を検出して第1の画像を取得する第1の画像取得手段と、光路分岐手段により分岐されて第2の検出光路に進んだ反射、回折、散乱光に対して第1の空間フィルタとは異なる第2の遮光パターンを備えた第2の空間フィルタと、この第2の空間フィルタを透過した光による像を形成する第2の結像手段と、この第2の結像手段で形成された像を検出して第2の画像を取得する第2の画像取得手段と、第1の画像取得手段で取得した第1の画像と第2の画像取得手段で取得した第2の画像を統合的に処理して欠陥候補を判定する画像処理を行う画像処理手段とを備えて構成した。
 また、上記した目的を達成するために、本発明では、欠陥検査方法を、表面にパターンが形成された検査対象物に光を照射し、この光が照射された前記検査対象物から発生する反射、回折、散乱光を集光し、この集光された検査対象物からの反射、回折、散乱光を第1の検出光路と第2の検出光路に分岐し、この分岐により第1の検出光路に進んだ反射、回折、散乱光のうち特定の反射、回折、散乱光を第1の遮光パターンを備えた第1の空間フィルタにて遮光し、この第1の空間フィルタを透過した光による第1の光学像を形成し、この形成した第1の光学像を第1の検出器で受光して第1の画像を取得し、分岐により第2の検出光路に進んだ反射、回折、散乱光のうち特定の反射、回折、散乱光を第1の空間フィルタとは異なる第2の遮光パターンを備えた第2の空間フィルタにて遮光し、この第2の空間フィルタを透過した光による第2の光学像を形成し、この形成した第2の光学像を第2の検出器で受光して第2の画像を取得し、取得した第1の画像と第2の画像を統合的に処理して欠陥候補を判定するようにした。
 本発明では、できるだけ少ない遮光面積の空間フィルタにて繰り返しパターンからの回折光を遮光し、欠陥信号の光量を確保しつつ、回折光の漏れにより生じたノイズ成分を画像処理により除去することで、欠陥検出感度向上の効果を得る。
本発明の実施例1及び2に係る光学式検査装置の概略の構成を示すブロック図である。 本発明の実施例1乃至4に係る光学式検査装置の照明光学系の平面図である。 本発明の実施例1乃至4に係る光学式検査装置の照明光学系の側面図である。 本発明の実施例1及び2に係る光学式検査装置の画像処理部の概略構成を示すブロック図である。 本発明の実施例1及び2に係る光学式検査装置の画像処理部の第1の変形例を示すブロック図である。 本発明の実施例1及び2に係る光学式検査装置の画像処理部の第2の変形例を示すブロック図である。 本発明の実施例1及び2に係る光学式検査装置における処理の流れを示すフロー図である。 本発明の実施例1に係る光学式検査装置の空間フィルタ設定方法を示すフロー図である。 (a)は本発明の実施例1に係る光学式検査装置において2つの画像の相関度が高い状態を示すグラフ、(b)は2つの画像の相関度が低い状態を示すグラフである。 本発明の実施例1に係る光学式検査方法の空間フィルタ形状と検出画像の関係を示す図である。 本発明の実施例2に係る光学式検査装置の空間フィルタ設定方法を示すフロー図である。 本発明の実施例3に係る光学式検査装置の概略の構成を示すブロック図である。 本発明の実施例3に係る光学式検査装置の画像処理部の概略構成を示すブロック図である。 本発明の実施例4に係る光学式検査装置の概略の構成を示すブロック図である。
 本発明の実施例を、以下に図を用いて説明する。
 本発明に係る光学式検査装置の第1の実施例を、図1乃至図6を用いて説明する。以下では、半導体ウエハの暗視野検査装置による検査を例にとって説明する。
 図1Aは、本発明に係る光学式検査装置の第1の実施例を示す図である。
  実施例1に係る光学式検査装置は、照明光学系110、ステージ部170、撮像光学系(検出光学系)120a、120b及び信号処理・制御系250とを備えて構成されている。照明光学系110は、ステージ部170に載置された被検査対象物である試料(半導体ウエハ)100に照明光を半導体ウェハ100の表面の法線方向に対して傾いた方向から照射し(斜方照明)、照射された半導体ウエハ100から散乱する散乱光を検出光学系120a及び120bにより検出する。その際、ステージ部170を平面内で駆動することによりステージ部170に載置された半導体ウエハ100上を照明光学系110からの照明光で走査する。信号処理・制御系250は、検出光学系120a及び120bにより検出された半導体ウエハ100からの散乱光を処理して半導体ウエハ100上に存在する欠陥を検出する。
 〔照明光学系110〕 
照明光学系110は、レーザ光源111、ND(Neutral Density)フィルタ112、ビームエキスパンダ113、偏光板や波長板を備えてなる偏光生成部114、検査対象(半導体ウエハ)100に線状のビームを照射するための線状ビーム生成部115を備えて構成される。
 レーザ光源111は、レーザビームを出射する。このとき、光源111には、気体レーザ、半導体レーザ、固体レーザや、面発光レーザなどが利用可能である。波長は赤外、可視域、紫外を用いることができるが、波長が短くなるほど光学的な分解能が向上するため、微細欠陥を見る際にはUV(Ultra Violet:紫外線)、DUV(Deep Ultra Violet:深紫外線)、VUV(Vacuum Ultra Violet:真空紫外線)、EUV(Extreme Ultra Violet:極端紫外線)などの紫外域の光を用いるとよい。
 ビーム整形手段113は、レーザ光源111から出射されたレーザビームを整形する。本実施例では、ビーム成形手段113を、図1B及び図1Cに示すようにレーザ光源111から出射されたレーザビームの径を拡大するビームエキスパンダ1131と拡大されたレーザを平行光に成形するコリメートレンズ1132で構成する。
 偏光生成部114は、偏光板1141や波長板1142を備えて構成され、ビーム成形手段113のビームエキスパンダ1131でビーム径を拡大された光の偏光特性を調整する。線状ビーム生成部115はシリンドリカルレンズ1151を備えている。
 図1Bは照明光学系110の平面図、図1Cはその正面図である。
 上記した構成において、レーザ光源111から出射されたレーザビームは、NDフィルタ112で光量が調整され、ビーム成形手段113でビームエキスパンダ1131によりビーム径が拡大されてコリメ-トレンズ1132で平行光に成形され、偏向制御部114で偏光の状態が制御され、線状ビーム生成部115のシリンドリカルレンズ1151により一方向に集光され、y軸と平行な線状ビーム101となって半導体ウェハ100の表面の線状の領域に照射される。このとき、図1Bに示す照明光学系のy軸からの照明方位βは、y軸方向を含む任意の方向から照射することができる。また、図1Cに示す照明光学系のz軸からの角度である極角γについては、0から90度の範囲内にて選択する。
 このとき、偏光生成部114は線状ビーム生成部115の後におかれていても良い。この場合は偏光生成部114で偏光調整されたビームはレンズを通過することがないのでレンズの収差によるずれが生じることなく半導体ウエハ100に照射することが可能となる。
 このようにして形成された線状ビーム101は、ステージy方向が線状ビーム101の長手方向となるように半導体ウエハ100の表面に照射される。
 〔検出光学系120a及び120b〕 
 図1Aに示した構成では、2つの検出光学系120a及び120bを備えている。検出光学系120a及び120bの機能は同様のため、ここでは検出光学系120aについて詳細に説明する。
 検出光学系120aは、対物レンズ121、空間フィルタ123a、偏光解析器124a、結像レンズ125、ラインセンサ126aとを備えて構成される。また光路中の対物レンズ121と空間フィルタ123a間のビームスプリッタ122にて光路が分離され、ビームスプリッタ122透過光が検出光学系120aに、反射光が検出光学系120bの光路となる。また、光学系120a及び120bの対物レンズ121の出射側の瞳を観察する瞳観察光学系128a及び128bを持つ。瞳観察系128a及び128bへは検出光学系120aの光路中に出し入れ可能なビームサンプラー127a及び検出光学系120bの光路中に出し入れ可能なビームサンプラー127bを用いて光学系120a及び120bから瞳観察系へ光を導く。なお、瞳観察光学系128a及び128bの代わりに空間フィルタ123a及び123bの位置および形状と、ラインセンサにて取得される画像の強度の関係をあらかじめ求めておいて、その関係から瞳位置での強度分布を把握することが出来れば、瞳面を直接観察する瞳観察光学系128a及び128bを省略することができる。
 対物レンズ121は、半導体ウエハ100の表面から散乱した反射、散乱、回折光を集光する。
 空間フィルタ123aは、対物レンズ121にて集光された半導体ウエハ100の表面からの反射、散乱、回折光の一部を遮光する。ここで、空間フィルタ123aは、対物レンズ121の出射側の瞳位置又は瞳位置と等価(共役)な位置に配置される。空間フィルタ123aは縦横の方向に複数の本数、太さにて配置できる棒状の遮光フィルタ、瞳面にて2次元に所望の箇所を透過、遮光させることができるフィルタなどを利用される。特に2次元フィルタには、液晶などの電気光学効果を利用したものや、MEMS(Micro Electro Mechanical Systems)などを用いる。
 なお、本実施例では、照明光をy方向が長手となる線状にするため、線状ビーム生成部115にてy方向に集光している。したがって、瞳面の回折パターンは集光NAに依存したy方向に広がりを持つ回折パターンとなる。この場合には、一方向に配置した棒状のフィルタにより適切に回折光を除去することができる。
 偏光解析器124aは、空間フィルタ123aで遮光されなかった散乱光の偏光特性を調整する。偏光生成部124aは、例えば1/4波長板や1/2波長板、偏光板を備えて構成され、これらはそれぞれが個別に回転制御し、任意の偏光を透過させることが可能となる。
 結像レンズ125は、空間フィルタ124aで遮光されなかった散乱光を透過させてその光学像を結像させる。ここで、空間フィルタ124aと結像レンズ125aとの位置は逆であっても良い。
 ラインセンサ126aは、結像レンズ125により結像された散乱光の像がラインセンサ124の検出面上に結像されるような位置に配置されており、散乱光の光学像を検出する。ラインセンサ126aとしては、例えば、TDI(Time Delay Integration)イメージセンサ:時間遅延積分型イメージセンサ,CCD(Charge Coupled Device)センサ、CMOS(Complementary Metal Oxide Semiconductor)センサなどの何れかを用いればよい。
 このようにして検出された散乱光に基づく信号は、A/D変換部129aでラインセンサ126aから出力されたアナログ信号が増幅された後にデジタル信号に変換されて信号処理・制御部250に送られて処理される。
 検出光学系120bについても同様にして半導体ウェハ100からの散乱光の光学像が検出され信号処理・制御部250に送られて処理が行われるが、空間フィルタ123bにより遮光する箇所を検出光学系120aと異なる形状、位置に設定し、異なる光学条件の2画像を一度に取得する。ここで、空間フィルタ124a及び124bの形状、位置によりラインセンサ126a又は126bで検出される画像に含まれるノイズ成分が異なるため、2画像を統合的に処理することでノイズが抑制された画像を得ることが可能になり、欠陥検出性能の向上が可能となる。なお、空間フィルタ123a及び123bの設定方法については後述する。
 〔ステージ部170〕
  ステージ部170は、xステージ170a、yステージ170b、zステージ170c、θステージ170dを備えて構成される。
  xステージ170aは、検査対象試料である表面に微細なパターンが形成された半導体ウエハ100を載置してx方向に移動可能なステージである。
  yステージ170b、zステージ170c、θステージ170dもそれぞれ同様に、検査対象試料である表面に微細なパターンが形成された半導体ウエハ100を載置してy方向、z方向、θ方向に移動可能なステージである。
 〔信号処理・制御部250〕
  信号処理・制御部250は、画像処理部200、操作部210、制御部220、表示部230、高さ検出部160とを備えて構成される。
 画像処理部200は、ラインセンサ126a及び126bで検出されてA/D変換器129a及び129bで増幅されてデジタル化された信号から散乱光の像の画像1261および1262を作成し、この作成した半導体ウエハ100からの散乱光による画像1261及び1262を処理し、欠陥を抽出する。
 図2は、本発明に係る光学式検査装置の第1の実施例における画像処理部200の概略構成を示すブロック図である。はじめに検出光学系120aにおいて取得した散乱光に基づく画像1261と、検出光学系120bにおいて取得した散乱光に基づく画像1262とをyステージ170bの位置情報を用いて生成し、この生成した画像1261と1262とを画像位置合せ処理部2001で画素単位以下の精度で位置合わせし、明るさ補正部2002でビームスプリッタ122透過光と反射光の効率の違い、偏光解析部124a及び124bの透過率の違い、検出レンズ125の透過率の違い、ラインセンサ126a及び126bの効率の違いなどによって発生した画像1261及び1262の明るさの違いを補正し、統合処理部2003でこの明るさの違いを補正した2枚の画像1261と1262とを統合処理して1枚の新たな画像1268を構築する。例えば、明るさの違いを補正した2枚の画像1261と1262とを重み付け加算、掛け算等により統合して画像1268を構築する。ここで、画像1261と画像1262は空間フィルタ123aと123bとで半導体ウェハ100からの散乱光を遮光するためのフィルタの条件(フィルタのパターン)を異なる条件に設定して得られた画像であり、それぞれの条件で取得された画像中の欠陥信号321は共通に光るけれども、ノイズ成分322は光る箇所が異なるため、統合処理により得られた画像1268では、ノイズ成分322が低減され欠陥信号321が顕在化される。
 次に、欠陥判定部2004でこの新しく構築した画像1268より欠陥を抽出する。欠陥判定部2004では、本来同一の形状に形成された隣接パターン又は隣接ダイの同じ位置のパターンをラインセンサ126a及び126bにて撮像して得た画像を画像1261及び1262と同様に統合して得られた画像(参照画像:図示せず)と、画像1268を比較処理し欠陥候補を抽出する。比較処理には画像1268と参照画像の減算処理等が用いられる。このとき、欠陥からの散乱光は、正常部からの散乱光と異なることから、欠陥からの散乱光が強調された画像が得られる。正常部は暗く、欠陥部は明るい画像が取得されるため、求めた差画像にしきい値処理を施し欠陥を判定することができる。なお、しきい値画像は、たとえば、複数の正常部の統計的な明るさから決定する。次に、欠陥分類サイジング部2005でこの抽出した欠陥候補の散乱光分布や強度などの特徴から、欠陥判定、分類・サイジングが行われる。
 画像処理部200の第1の変形例を図3に示す。第1の変形例における画像処理部200’では、検出光学系120aにおいて取得した散乱光に基づく画像1261と、隣接するダイやセルなどにおいて画像1261の取得箇所と同形状の部位にて取得した参照画像1261rとを生成し、画像位置合せ処理部2011aで、この生成した画像1261と参照画像1261rとをセンサの画素単位以下の精度で位置合わせし、明るさ補正部2012aで試料表面及び表層の薄膜の厚さなどの試料起因もしくは検査時のレンズとウエハとの高さの違いなどの光学系起因による検査画像1261と参照画像1261rの明るさを補正し、差分処理部2013aで検査画像1261と参照画像1261rの対応する画素同士を引き算する差分処理を施して差分画像1261dを得る。この場合、隣接するダイやセルなどにおいて画像1261の取得箇所と同形状の部位にて検出光学系120aにおいて取得した散乱光に基づいて生成した参照画像1261rは、図示していない画像メモリに一旦記憶され、画像メモリから画像位置合わせ処理部2011aに呼び出されて画像1261との画素単位以下の精度で位置合わせ処理が行われる。また、検出光学系120bより取得した信号から欠陥を含む画像1263と参照画像1263rを生成し、この画像1263と参照画像1263rについても同様の構成により処理が施されて差分画像1263dが得られる。
 次に、欠陥判定部2014において、差分画像1261dの輝度値を横軸x1とし、差分画像1263dの輝度値を縦軸x2とする直交座標系を構成して2つの差分画像1261d及び1263dの対応する画素の輝度をこの直交座標系にプロットする。直交座標系のx1、x2空間にて、ノイズは欠陥画像と参照画像の引き残しであるためx1、x2成分共に小さく、原点付近に分布する。一方、欠陥画像は輝度がノイズと比較し大きく、x1、x2空間において原点より離れた位置にプロットされる。そこで、直交座標系の原点付近に境界350を設けることでノイズ322と欠陥321を分離し、欠陥判定する。境界350には円や直線の組み合わせ等を使用することができる。例えば、円を用いる場合には、半径をAとし、境界線は次式(数1)を満たす領域に引けばよい。
Figure JPOXMLDOC01-appb-M000001
 本実施例では2枚の画像についての例を示したが、3枚以上を用いても同様の処理を用いることができる。この抽出した欠陥候補の散乱光分布や強度などの特徴から、分類・サイジング処理部2015において欠陥判定、分類・サイジングが行われる。
 画像処理部200の第2の変形例を図4に示す。第2の変形例における画像処理部200”では、検出光学系120aにおいて取得した散乱光に基づく画像1261と隣接するダイやセルなどにおいて画像1261の取得箇所と同形状の部位にて取得した参照画像1261rとを生成し、画像位置合せ処理部2021aで、この生成した画像1261と参照画像1261rとをセンサの画素単位以下の精度で位置合わせし、明るさ補正部2022aで試料表面及び表層の薄膜の厚さなどの試料起因もしくは検査時のレンズとウエハとの高さの違いなどの光学系起因による検査画像1261と参照画像1261rの明るさを補正し、差分処理部2023aで検査画像1261と参照画像1261rの対応する画素同士を引き算する差分処理を施して差分画像1261dを得る。この、差分画像1261dを得るまでの処理は、図3で説明した第1の変形例と同じである。
 次に、閾値処理部2027aで差分画像1261dに対し、閾値を設け、閾値以上の輝点を欠陥候補として抽出する閾値処理を施す。閾値は、たとえば、複数の正常部の統計的な明るさから決定する。また、検出光学系120bより取得した散乱光に基づいて生成した欠陥を含む画像1263と参照画像1263rについても、2021aから2023aま
でと同様の処理2021bから2023bまでを施し差分画像1263dを取得し、閾値処理2027bにより、欠陥候補を抽出する。次に欠陥判定結果統合処理部2028で閾値処理2027a及び2027bにより差分画像1261d及び1263dより抽出した欠陥候補を統合する。統合方法は例えば、差分画像1261d及び1263dより抽出した欠陥候補の共通部分を用いる。最後に、分類サイジング処理部2029で上記方法により抽出した欠陥候補の散乱光分布や強度などの特徴から、欠陥判定、分類・サイジングが行われる。
  操作部210は、人が検査装置をオペレーションする部分であり、GUI(Graphical User Interface)を介して、検査レシピの作成、作成したレシピによる検査の指示、及び検査結果のマップ表示や検出した欠陥の特徴量表示などが行われる。
  制御部220は、装置の各部位を制御する。例えば、後述の高さ検出器160からの検出結果を受信し、ステージ部170のxステージ170a、yステージ170b、zステージ170c、θステージ170dの位置を制御したり、空間フィルタ123a及び123b、偏光解析部124a及び124bに制御信号を送ったりする。
  高さ検出部160は、半導体レーザ等の光発信機161から検査対象である半導体ウェハ100の表面に照射されたビームの直接反射光を検出して検出面上におけるこの反射光の位置情報を得、この得た反射光の位置情報より、検査中のステージ部170のステージ高さを検出し、検出結果を制御部220に送る。ステージ高さにずれが生じている場合は、この高さ検出部での検出結果に基づき制御部220からの制御信号を用いてzステージ170cを駆動してステージの高さずれを補正し、検査対象のデフォーカスを防ぐ。
 図5は、本発明に係る光学式検査方法の第1の実施例を示すフロー図である。照明光学系110によりレーザ光源111から発射されたレーザビームをNDフィルタ112で光量を調整し、ビーム成形部113でビーム径を拡大して平行ビームを形成し、偏光生成部114で所望の偏光状態とし、さらに線状ビーム生成部115で線状に整形し、この線状に成形した照明光をxステージ170aによりx方向に連続的に移動している半導体ウエハ100に斜め方向から照射する(S100)。この線状に成形した照明光の照射により半導体ウエハ100から発生した反射、散乱、回折光で対物レンズ121に入射した光のうち半導体ウェハ100に形成された繰り返しパターンからの反射、散乱、回折光を対物レンズ121の出射側の瞳位置に設置された空間フィルタ123a又は123bで遮光し(S101)、空間フィルタ123a又は123bで遮光されなかった半導体ウェハ100からの反射、散乱、回折光による光学像を検出光学系120a及び120bにて検出して2枚の画像を同時に取得し(S102)、画像処理部200で2枚の画像を統合して1枚の画像を生成し(S103)、この統合した画像をあらかじめ生成しておいた参照画像と比較して欠陥候補を抽出し(S104)、検出した画像による欠陥候補の分布の違い、明るさの違いなどの情報から欠陥種の分類およびサイジングなどを行う(S105)。
 次に各ステップの詳細な動作内容を説明する。
(S100)
S100では、照明光学系110の光源111から出射されたレーザビームをビーム整形手段113にて整形し、偏光生成部114によって偏光状態を調整する。その後、線状ビーム生成部115にて線状ビームに成型し、半導体ウエハ100に照射する。 このとき、光学式の暗視野検査装置では、制御部220でyステージ170bを制御してy方向(又は-y方向)に一定の速度で移動させることにより半導体ウエハ100を照明光学系110及び検出光学系(120a及び120b)に対して一方向に連続的に移動させながら照明光を半導体ウエハ100上に照射して走査する。
  (S101)
半導体ウエハ100上の線状ビームが照射された領域から発生した反射、散乱、回折光の一部は検出光学系120a及び120bの対物レンズ121に入射して集光され、ビームスプリッタ122で光路が分岐される。このうち、ビームスプリッタ122を透過した光は、検出光学系120aの光路を進んで空間フィルタ123aに到達し、空間フィルタ123aに形成された遮光パターンにより半導体ウエハ100の表面からの反射、散乱、回折光のうち半導体ウェハ100上に形成された繰り返しパターンからの反射・散乱・回折光により発生した光パターンが遮光される。空間フィルタ123aで遮光されずに空間フィルタ123aを通過した光は偏光制御部124aに入射し、偏光の状態が制御されて偏光制御部124aから出射し、結像レンズ125により空間フィルタ123aで遮光されなかった散乱光の像が形成される。この散乱光の像の結像位置に検出面が位置するように設置されたラインセンサ126aにより散乱光の像が検出される。一方、ビームスプリッタ122で分岐された光のうちビームスプリッタ122で反射された光は、検出光学系120bの光路を進んで空間フィルタ123bに到達し、空間フィルタ123bに形成された遮光パターンにより半導体ウエハ100の表面からの反射、散乱、回折光のうち半導体ウェハ100上に形成された繰り返しパターンからの反射・散乱・回折光により発生した光パターンが遮光される。空間フィルタ123aで遮光されずに空間フィルタ123aを通過した光は偏光制御部124bに入射し、偏光の状態が制御されて偏光制御部124aから出射し、結像レンズ125により空間フィルタ123bで遮光されなかった散乱光の像が形成される。この散乱光の像の結像位置に検出面が位置するように設置されたラインセンサ126aにより散乱光の像が検出される。ここで、空間フィルタの設定方法については後述する。
 (S102)
 S101で偏光特性が調整された散乱光の像をラインセンサ126a及び126bにより検出した信号は、それぞれA/D変換器129a及び129bでA/D変換された後画像処理部200に入り、半導体ウエハ100の表面に関する画像が生成される。
  (S103)
S102にて生成された2枚の画像について位置合せ部2001でラインセンサ126a及び126bの画素単位以下の精度で位置合せをし、明るさ補正部2002で位置を合わせた2枚の画像の明るさの補正を行った後に統合処理部2003で明るさを補正した2枚の画像を統合し、新たな画像を生成する(詳細は上記の画像処理部200の説明を参照)。
 (S104)
S103にて生成した統合画像を欠陥判定部2004において図示していない記憶部に記憶させておいた参照画像(詳細は上記の画像処理部200の説明を参照)との比較を行い、その差より欠陥候補を抽出する。
 (S105)
S104にて抽出した欠陥候補を欠陥分類サイジング部2005において、ラインセンサ126a及び126bでの分布の違いや、欠陥の輝度などの情報より、欠陥種の分類やサイジングを行う。
 一般に、回折光はパターン構造に垂直に生じる。検査対象である半導体ウエハ100の構造は、図1の主軸x,y方向のライン状パターンが多い。回折光は、ライン状パターンの並びの方向に対して垂直に生じるため、y, x方向に多く回折光がある。照明光学系110による照明の仰角と、検出光学系120a又は120bの対物レンズ121のNAを適切に設定することで、検出光学系120a又は120bに、半導体ウエハ100のライン状パターンからの回折光がなるべく入らないよう装置を構成することができる。対物レンズ121内に入ってきた回折光に関しては、前述の空間フィルタ123a及び123bにて除去する。
 本発明では、空間フィルタ123a及び123bの設定の違いによる画像のノイズ特性の違いを利用し、ノイズを抑制し欠陥信号を顕在化する。図6に空間フィルタ設定のフローを示す。ウエハ上の検査対象部位からの回折光を空間フィルタで全て遮光し(S200)、空間フィルタを設定している状態での検査対象部位の平均強度Tをラインセンサにて取得した画像より特定し(S201)、平均強度T以上の任意の値をしきい値Tthと設定し、検査対象部位がTth以下となるような空間フィルタ設定にて複数の画像を取得し(S202)、取得した画像数nより2枚選択しnC2通りの組合せについて検査対象部位の強度の相関を計算し(S203)、2枚の画像間にて最も相関の低い組合せとなる2画像を取得できる空間フィルタ設定を空間フィルタ123a及び123bに設定し検査する(S204)。
 次に各ステップの詳細を説明する。
(S200)
S200では、従来の空間フィルタの設定方法(特許文献1、2)と同様に、検査対象パターンからの回折光を対物レンズの出射側の瞳面上で全て遮光するよう空間フィルタを設定する。従来の検査方法ではこの回折光を全て遮光する空間フィルタ設定にて検査を実施するが、この条件ではパターン回折光のみならず欠陥信号をも遮光してしまっている。
 (S201)
S200で設定した空間フィルタを用いてラインセンサで画像を取得し、空間フィルタにて回折光が除去された検査対象部位の平均強度Tを算出する。このとき、検査対象部位の強度を算出できるラインセンサ以外の観察用カメラ等を用いてもよい。
 (S202)
S201にて算出した検査対象部位の平均強度Tに係数αを掛け、Tth=T×αで表すTthをしきい値と設定し、しきい値以下の強度となる空間フィルタ設定のn条件にて検査対象部位を測定する。αは回折光の漏れをある程度許容し、欠陥検出信号の確保を狙う目的で設定する。このとき、αを大きくとってしまうと、欠陥信号がノイズ成分に埋もれてしまうため、平均強度Tと同等な微小欠陥を検出する際には、例えばα=1.1程度に設定する。
 (S203)
S202にて、求めたn通りの空間フィルタ設定の中から2つを選択し、計nC2通りの場合について相関計算を行う。図7(a)及び(b)のように選択した2画像の各対応画素について、それぞれの明るさを2軸にプロットし、相関係数を計算する。図7(a)に示すように2画像の相関が高い場合には、各画素のノイズの輝度レベルが類似しており、その2枚の画像を統合しても、同様の画像となるため、SNR向上への効果は少ない。一方、図7(b)に示すように相関が低い場合には、各画素にてノイズの輝度レベルが異なるため、2画像を統合することでノイズの輝度レベルを抑制することができ、SNR向上(欠陥顕在化)の効果が見込まれる。図8に異なる空間フィルタを適用したときに得られる画像の例を模式的に示す。瞳面800にはウエハ上のパターン起因の輝点810が複数存在する。検出系120aでは、全ての輝点810を遮光するよう空間フィルタ123aを設定する。このとき得られる画像1261は、ノイズの輝度も低いが、欠陥信号の一部も空間フィルタ123aの遮光により低下する。一方、検出系120bでは、瞳面800での輝点810の一部のみを空間フィルタ123bにて遮光しているので、ここで得られる画像1262のノイズの輝度は画像1261と比較し、高くなるが、欠陥信号も高くなる。ここで、ノイズの起因となる瞳面800上の輝点810の遮光位置が異なるため画像1261及び1262におけるノイズの相関は低くなる傾向が強い。したがって、画像1261及び1262を統合処理部2003で統合処理850することにより、画像1268のようなノイズ成分が抑制され、欠陥信号が顕在化する。
 (S204)
S203にて求めた最も相関の低くなる2つの空間フィルタ設定を空間フィルタ123a及び123bに適用し、検査を実施する。
本発明に係る光学式検査装置の第2の実施例を、図9を用いて説明する。本実施例における装置の構成は実施例1で説明した図1に示した構成と同じである。
本実施例は実施例1と、空間フィルタの設定条件を求めるところに光学シミュレーションを用いるところが異なる。ここでは実施例1との違いのみ説明する。
 図9に光学シミュレーションを用いた空間フィルタ設定のフローを示す。ウエハ上の検査対象部位をモデル化し、対象部位からの回折パターンを除去する空間フィルタを適用し得られる像を求め(S300)、検査対象部位の平均強度Tを算出し(S301)、平均強度T以上の任意の値をしきい値Tthと設定し、検査対象部位がTth以下となるような空間フィルタ設定にて複数の画像を取得し(S302)、取得した画像数nより2枚選択しnC2通りの組合せについて統合処理計算を施し(S303)、検査部位のノイズが最も低い組み合わせを選択し(S304)、S304にて決定した画像組み合わせを算出した際の空間フィルタ形状を空間フィルタ123a及び123bに設定し実検査する(S305)。
 次に各ステップの詳細を説明する。
(S300)
S300では、検査対象部位をモデル化し、光学シミュレーションにより瞳免状での検査対象部位からの反射、屈折、散乱光を計算し、空間フィルタを適用し、ラインセンサにて取得される像を算出する。ここで、空間フィルタは、従来の設定方法(特許文献1、2)と同様に、検査対象パターンからの回折光を全て遮光するよう空間フィルタを設定する。なお、従来の検査方法ではこの回折光を全て遮光する空間フィルタ設定にて検査を実施するが、この条件ではパターン回折光のみならず欠陥信号をも遮光してしまっている。
 (S301)
S300で設定した空間フィルタの条件下で計算されたラインセンサで取得されるべき画像について、空間フィルタにて回折光が除去された検査対象部位の平均強度Tを算出する。
 (S302)
S301にて求めた空間フィルタ適用後の検査対象部位の平均強度Tに係数αを掛け、Tth=T×αで表すTthをしきい値と設定し、しきい値以下の強度となる空間フィルタ設定のn個の条件にて検査対象部位の計算を行う。αは回折光の漏れをある程度許容し、欠陥検出信号の確保を狙う目的で設定する。このとき、αを大きくとってしまうと、欠陥信号がノイズ成分に埋もれてしまうため、平均強度Tと同等な微小欠陥を検出する際には、例えばα=1.1程度に設定する。
 (S303)
S302にて、求めたn通りの空間フィルタ設定の中から2つを選択し、統合処理を行う。ここで、統合処理には、例えば、重み付け加算、掛け算等により画像を用いる。
 (S304)
S302にて計算されたnC2通りの統合された画像の検査対象部位の平均強度を算出し、最も低い値となるものを選択する。
 (S305)
S304にて決定した画像組み合わせを算出した際の空間フィルタ形状を空間フィルタ123a及び123bに設定し実検査する。
本発明に係る光学式検査装置の第3の実施例を、図10乃至図11を用いて説明する。  図10は、本発明に係る光学式検査装置の第3の実施例の光学系の概略の構成を示す図、図11は、本発明に係る光学式検査装置の第3の実施例における画像処理部の概略構成を示すブロック図である。
 本実施例の構成は、実施例1の図1に示した構成に斜方検出光学系(120c及び120d)を加えたものである。即ち、図10に示した照明光学系110、検出光学系120a及び120b、高さ検出部160、ステージ部170の構成は、それぞれ実施例1で説明した図1に示した構成と同じである。本実施例においては、斜方検出光学系120c及び120dを加えることで、上方への反射、散乱、回折光を検出する検出光学系(上方検出光学系)120a及び120bでは捕らえられなかった欠陥信号を捕捉することができるため、検出できる欠陥種が増加し、欠陥検出感度も向上する。
  斜方検出光学系(120c及び120d)は実施例1で図1を用いて説明した上方検出光学系(120a及び120b)と同様に、対物レンズ121c、空間フィルタ123c及び123d、偏光解析器124c及び124d、結像レンズ125c、ラインセンサ126c及び126dとを備えて構成される。また光路中の対物レンズ121cと空間フィルタ123c間のビームスプリッタ122cにて光路が分離され、ビームスプリッタ122c透過光が斜方検出光学系120cに、反射光が斜方検出光学系120dの光路となる。ここで空間フィルタ123c及び123dの形状と位置も上方検出系の空間フィルタ120a及び120bと同様に、形状及び位置が異なる。また、図10に示した構成では省略しているが、上方検出光学系120a及び120bの光路中には実施例1で説明したように瞳観察光学系128a及び128bが設けられており、斜方検出光学系120c及び120dの光路中にも瞳観察光学系128a及び128bに相当する瞳観察光学系が設けられている。
  信号処理・制御部1250は、画像処理部1200、操作部1210、制御部1220、表示部1230、高さ検出部160とを備えて構成される。
 画像処理部1200は、ラインセンサ126a及び126bで検出されてA/D変換器129a及び129bで増幅されてデジタル化された信号、及びラインセンサ126c及び126dで検出されてA/D変換器129c及び129dで増幅されてデジタル化された信号から散乱光の像の画像1261および1262を作成し、この作成した半導体ウエハ100からの散乱光による画像1261及び1262を処理し、欠陥を抽出する。
 図11は、実施例3における画像処理部1200の概略構成を示すブロック図である。画像処理部1200は実施例1で図2を用いて説明した画像処理部200とほぼ同じ構成をしており、検出光学系120a及び120bで検出した信号から生成した画像を処理する位置合せ部2001、明るさ補正部2002、統合処理部2003、欠陥判定部2004を備えている。画像処理部1200は、更に、検出光学系120cにおいて検出した散乱光に基づいて生成した画像1263と、検出光学系120dにおいて検出した散乱光に基づいて生成した画像1264を処理する位置合せ部2001c、明るさ補正部2002c、統合処理部2003c、欠陥判定部2004cを備えている。そして、画像処理部1200は、欠陥判定部2004と2004cとでそれぞれ判定した結果を統合する欠陥判定結果統合部2006を備え、この統合した結果を用いて欠陥分類サイジング部2005で欠陥の分類及び欠陥のサイジングを行なう構成となっている。微小欠陥の散乱方向は一様ではないため、上方検出光学系120aおよび120bと斜方検出光学系120cと120dの2方位の検出系を備えることで、欠陥補足率の向上の他に、上方検出光学系120aおよび120bで検出した欠陥の強度信号と斜方検出光学系120cおよび120dで検出した欠陥の信号強度を比較することにより欠陥分類、サイジング精度の向上が可能となる。
 なお、上記に説明した実施例3においては、画像処理部1200の構成を実施例1の図2で説明した構成に準じて説明したが、実施例1で説明した図3又は図4に示した構成に準じた構成とすることもできる。
本発明に係る光学式検査装置の第4の実施例を、図12を用いて説明する。
実施例3の光学系との違いは上方検出系及び斜方検出系中の光路分岐がないところである。本発明では空間フィルタ123a及び123cの設定方法の違いによりウエハ上のパターン起因のノイズを抑制するのが狙いであるため、本実施例の構成においては、レシピ作製および検査の際は、検出系120a及び検出系120cにおいてそれぞれ2通りの空間フィルタを設定し、2回検査を実施することで、実施例3と同様の画像を取得する。画像取得後の処理方法については実施例3と同様のため説明を省略する。
 以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は前記の実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更が可能であることは言うまでもない。
100・・・半導体ウエハ  101・・・線状ビーム  110・・・照明光学系  111・・・レーザ光源  112・・・NDフィルタ  113・・・ビームエキスパンダ  114・・・偏光発生器  115・・・線状ビーム生成部  120a、120b、120c、120d・・・検出光学系  121、121c・・・対物レンズ  122、122c・・・ビームスプリッタ  123a、123b、123c、123d・・・空間フィルタ  124a、124b、124c、124d・・・偏光解析器  125a、125b、125c、125d・・・ラインセンサ  127a、127b・・・ビームサンプラー  128a、128b・・・瞳面観察光学系  1261、1262、1264、1265・・・撮像画像  1268、1269・・・統合画像  160・・・高さ検出部  161・・・光発信機  170・・・ステージ部  170a・・・xステージ  170b・・・yステージ  170c・・・zステージ  170d・・・θステージ  200、1200・・・画像処理部  210、1210・・・操作部  220、1220・・・制御部  230,1230・・・表示部  250,1250・・・信号処理・制御系  2001,2011a、2011b、2021a、2021b、2001c・・・位置合わせ部  2002,2012a、2012b、2022a、2022b、2002c・・・明るさ補正部  2003,2003a、2003c・・・統合処理部  2013a、2013b、2023a、2023b・・・差分処理部  2004,2014、2004a、2004c・・・欠陥判定部  2028、2006・・・欠陥判定結果統合部  2005,2005c、2029・・・欠陥分類・サイジング部。

Claims (11)

  1.  表面にパターンが形成された検査対象物に光を照射する照明手段と、
     該照明手段により光が照射された前記検査対象物から発生した反射、回折、散乱光を集光する集光手段と、
     該集光手段により集光された前記検査対象物からの反射、回折、散乱光を第1の検出光路と第2の検出光路に分岐する光路分岐手段と、
     該光路分岐手段により分岐された反射、回折、散乱光のうち前記第1の検出光路に進んだ反射、回折、散乱光に対して特定の反射、回折、散乱光を遮光する第1の遮光パターンを備えた第1の空間フィルタと、
     該第1の空間フィルタを透過した光による像を形成する第1の結像手段と、
     該第1の結像手段で形成された像を検出して第1の画像を取得する第1の画像取得手段と、
     前記光路分岐手段により分岐されて第2の検出光路に進んだ反射、回折、散乱光に対して前記第1の空間フィルタとは異なる第2の遮光パターンを備えた第2の空間フィルタと、
     該第2の空間フィルタを透過した光による像を形成する第2の結像手段と、
     該第2の結像手段で形成された像を検出して第2の画像を取得する第2の画像取得手段と、
     前記第1の画像取得手段で取得した第1の画像と前記第2の画像取得手段で取得した第2の画像を統合的に処理して欠陥を抽出する画像処理を行う画像処理手段と
    を備えることを特徴とする欠陥検査装置。
  2.  前記照明手段は、線状に成形した光を前記検査対象物に該検査対象物の法線方向に対して傾斜した方向から照射することを特徴とする請求項1に記載の欠陥検査装置。
  3.  前記集光手段は、照明手段により光が照射された前記検査対象物から発生した反射、回折、散乱光のうち前記検査対象物の法線の方向に反射、回折、散乱した光を集光すること
    を特徴とする請求項1に記載の欠陥検査装置。
  4.  前記第1の検出光路及び前記第2の検出光路に、偏光状態を制御可能な偏光素子を備えたことを特徴とする請求項1記載の欠陥検査装置。
  5.  表面にパターンが形成された検査対象物に光を照射し、
     該光が照射された前記検査対象物から発生する反射、回折、散乱光を集光し、
     該集光された前記検査対象物からの反射、回折、散乱光を第1の検出光路と第2の検出光路に分岐し、
     該分岐により前記第1の検出光路に進んだ前記反射、回折、散乱光のうち特定の反射、回折、散乱光を第1の遮光パターンを備えた第1の空間フィルタにて遮光し、 
     該第1の空間フィルタを透過した光による第1の光学像を形成し、
     該形成した第1の光学像を第1の検出器で受光して第1の画像を取得し、
     前記分岐により第2の検出光路に進んだ前記反射、回折、散乱光のうち特定の反射、回折、散乱光を前記第1の空間フィルタとは異なる第1の遮光パターンを備えた第2の空間フィルタにて遮光し、
     該第2の空間フィルタを透過した光による第2の光学像を形成し、
     該形成した第2の光学像を第2の検出器で受光して第2の画像を取得し、
     前記取得した第1の画像と第2の画像を統合的に処理して、欠陥候補を判定することを特徴とする欠陥検査方法。
  6.  前記光を照射する工程において、線状に成形した光を前記検査対象物に該検査対象物の法線方向に対して傾斜した方向から照射することを特徴とする請求項5に記載の欠陥検査方法。
  7.  前記光が照射された検査対象物から発生した反射、回折、散乱光のうち前記検査対象物の法線の方向に反射、回折、散乱した光を集光することを特徴とする請求項5に記載の欠陥検査方法。
  8.  前記第1の検出光路又は前記第2の検出光路に進んだ前記反射、回折、散乱光の偏光状態をすることを特徴とする請求項5に記載の欠陥検査方法。
  9.  表面にパターンが形成された検査対象物に光を照射し、
     該光が照射された前記検査対象物から発生する反射、回折、散乱光を集光して第1の遮光パターンを備えた第1の空間フィルタを透過した光による第1の光学像を第1の検出器で受光して第1の画像を取得し、
     該光が照射された前記検査対象物から発生する反射、回折、散乱光を集光して第2の遮光パターンを備えた第2の空間フィルタを透過した光による第2の光学像を第2の検出器で受光して第2の画像を取得し、
     前記取得した第1の画像と第2の画像を統合的に処理して欠陥候補を判定することを特徴とする欠陥検査方法。
  10.  前記第1の画像は、前記反射、回折、散乱光を集光して光路分岐手段により第1の光路に導いた光による前記第1の光学像を前記第1の検出器で受光して得た画像であり、前記第2の画像は、前記反射、回折、散乱光を集光して光路分岐手段により第2の光路に導いた光による前記第2の光学像を前記第2の検出器で受光して得た画像であることを特徴とする請求項9記載の欠陥検査方法。
  11.  前記第1の画像は、前記検査対象物から発生した前記反射、回折、散乱光のうち前記検査対象物に対して垂直な方向及びその近傍に向かった反射、回折、散乱光を集光した光による前記第1の光学像を前記第1の検出器で受光して得た画像であり、前記第2の画像は、前記検査対象物から発生した前記反射、回折、散乱光のうち前記検査対象物に対して斜めの方向に向かった反射、回折、散乱光を集光した光による前記第2の光学像を前記第2の検出器で受光して得た画像であることを特徴とする請求項9記載の欠陥検査方法。
PCT/JP2011/076013 2010-11-29 2011-11-10 欠陥検査装置および欠陥検査方法 WO2012073673A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/989,835 US9019492B2 (en) 2010-11-29 2011-11-10 Defect inspection device and defect inspection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-264802 2010-11-29
JP2010264802A JP2012117814A (ja) 2010-11-29 2010-11-29 欠陥検査装置および欠陥検査方法

Publications (1)

Publication Number Publication Date
WO2012073673A1 true WO2012073673A1 (ja) 2012-06-07

Family

ID=46171621

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/076013 WO2012073673A1 (ja) 2010-11-29 2011-11-10 欠陥検査装置および欠陥検査方法

Country Status (3)

Country Link
US (1) US9019492B2 (ja)
JP (1) JP2012117814A (ja)
WO (1) WO2012073673A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012047654A (ja) * 2010-08-30 2012-03-08 Hitachi High-Technologies Corp 欠陥検査装置および欠陥検査方法
JP5944850B2 (ja) * 2013-03-11 2016-07-05 株式会社日立ハイテクノロジーズ 欠陥検査方法及びこれを用いた装置
WO2015121952A1 (ja) * 2014-02-14 2015-08-20 株式会社 日立ハイテクノロジーズ 検査装置
WO2016189650A1 (ja) * 2015-05-26 2016-12-01 株式会社日立ハイテクノロジーズ 検査装置
US9874526B2 (en) * 2016-03-28 2018-01-23 Kla-Tencor Corporation Methods and apparatus for polarized wafer inspection
US10458924B2 (en) * 2016-07-04 2019-10-29 Hitachi High-Technologies Corporation Inspection apparatus and inspection method
US10475178B1 (en) * 2017-01-30 2019-11-12 Kla-Tencor Corporation System, method and computer program product for inspecting a wafer using a film thickness map generated for the wafer
KR102220759B1 (ko) 2017-07-18 2021-02-26 주식회사 히타치하이테크 결함 검사 장치 및 패턴 칩
JP7087458B2 (ja) * 2018-03-06 2022-06-21 オムロン株式会社 画像検査装置、画像検査方法及び画像検査プログラム
JP7214432B2 (ja) * 2018-10-22 2023-01-30 キヤノン株式会社 画像処理方法、画像処理プログラム、記録媒体、画像処理装置、生産システム、物品の製造方法
US20200364442A1 (en) * 2019-05-15 2020-11-19 Getac Technology Corporation System for detecting surface pattern of object and artificial neural network-based method for detecting surface pattern of object
CN112683789A (zh) * 2019-10-17 2021-04-20 神讯电脑(昆山)有限公司 物件表面型态检测系统及其基于人工神经网络的检测方法
US11499923B2 (en) * 2020-09-30 2022-11-15 Openlight Photonics, Inc. On-chip photonic integrated circuit optical validation

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006220644A (ja) * 2005-01-14 2006-08-24 Hitachi High-Technologies Corp パターン検査方法及びその装置
JP2007033433A (ja) * 2005-06-22 2007-02-08 Hitachi High-Technologies Corp 欠陥検査装置およびその方法
JP2008039533A (ja) * 2006-08-04 2008-02-21 Hitachi High-Technologies Corp 欠陥検査方法及びその装置
JP2008268140A (ja) * 2007-04-25 2008-11-06 Hitachi High-Technologies Corp 欠陥検査方法及び欠陥検査装置
JP2010048730A (ja) * 2008-08-25 2010-03-04 Hitachi High-Technologies Corp 欠陥検査方法及びその装置
JP2010175270A (ja) * 2009-01-27 2010-08-12 Hitachi High-Technologies Corp 欠陥検査装置及びその方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002267615A (ja) * 2001-03-12 2002-09-18 Olympus Optical Co Ltd 欠陥検出方法及びその装置
JP4183492B2 (ja) * 2002-11-27 2008-11-19 株式会社日立製作所 欠陥検査装置および欠陥検査方法
JP4824451B2 (ja) 2006-03-30 2011-11-30 富士通セミコンダクター株式会社 欠陥検査システム及び欠陥検査補正方法
US7664608B2 (en) 2006-07-14 2010-02-16 Hitachi High-Technologies Corporation Defect inspection method and apparatus
US7714997B2 (en) 2006-11-07 2010-05-11 Hitachi High-Technologies Corporation Apparatus for inspecting defects
JP5174535B2 (ja) * 2008-05-23 2013-04-03 株式会社日立ハイテクノロジーズ 欠陥検査方法及びその装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006220644A (ja) * 2005-01-14 2006-08-24 Hitachi High-Technologies Corp パターン検査方法及びその装置
JP2007033433A (ja) * 2005-06-22 2007-02-08 Hitachi High-Technologies Corp 欠陥検査装置およびその方法
JP2008039533A (ja) * 2006-08-04 2008-02-21 Hitachi High-Technologies Corp 欠陥検査方法及びその装置
JP2008268140A (ja) * 2007-04-25 2008-11-06 Hitachi High-Technologies Corp 欠陥検査方法及び欠陥検査装置
JP2010048730A (ja) * 2008-08-25 2010-03-04 Hitachi High-Technologies Corp 欠陥検査方法及びその装置
JP2010175270A (ja) * 2009-01-27 2010-08-12 Hitachi High-Technologies Corp 欠陥検査装置及びその方法

Also Published As

Publication number Publication date
JP2012117814A (ja) 2012-06-21
US9019492B2 (en) 2015-04-28
US20130242294A1 (en) 2013-09-19

Similar Documents

Publication Publication Date Title
WO2012073673A1 (ja) 欠陥検査装置および欠陥検査方法
KR102438824B1 (ko) 3차원 반도체 구조체들의 검사를 위한 결함 발견 및 레시피 최적화
JP5712079B2 (ja) 欠陥検査装置および欠陥検査方法
US7747062B2 (en) Methods, defect review tools, and systems for locating a defect in a defect review process
US10921262B2 (en) Correlating SEM and optical images for wafer noise nuisance identification
EP3100032B1 (en) Apparatus and method for combined brightfield, darkfield, and photothermal inspection
US10126251B2 (en) Inspection systems and techniques with enhanced detection
JP5178079B2 (ja) 欠陥検査方法およびその装置
US8045145B1 (en) Systems and methods for acquiring information about a defect on a specimen
WO2012153652A1 (ja) 欠陥観察方法及びその装置
US20170328842A1 (en) Defect observation method and defect observation device
JP5946751B2 (ja) 欠陥検出方法及びその装置並びに欠陥観察方法及びその装置
JP2005283190A (ja) 異物検査方法及びその装置
JP2006003364A (ja) ウエハ検査方法及びシステム
WO2012035852A1 (ja) 欠陥検査方法及びその装置
WO2012029222A1 (ja) 欠陥検査装置および欠陥検査方法
US20080043313A1 (en) Spatial filter, a system and method for collecting light from an object
JP2004301847A (ja) 欠陥検査装置およびその方法
JPH0636016A (ja) 物体表面の欠陥の光学的検査法とその装置
JP2013174575A (ja) パターン検査装置、及びこれを使用した露光装置の制御方法
CN116754568B (zh) 一种基于暗场成像过焦扫描的层叠缺陷分离方法及装置
JP2011185715A (ja) 検査装置及び検査方法
JP2011053186A (ja) 基板上欠陥検査方法及びその装置
JP2009014744A (ja) パターン欠陥検査装置
JP2009246106A (ja) ステンシルマスク欠陥検査方法および装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11844213

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13989835

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11844213

Country of ref document: EP

Kind code of ref document: A1