WO2012073501A1 - Electrolytic solution, electrolysis case, electropolishing system, and electropolishing method using these - Google Patents

Electrolytic solution, electrolysis case, electropolishing system, and electropolishing method using these Download PDF

Info

Publication number
WO2012073501A1
WO2012073501A1 PCT/JP2011/006691 JP2011006691W WO2012073501A1 WO 2012073501 A1 WO2012073501 A1 WO 2012073501A1 JP 2011006691 W JP2011006691 W JP 2011006691W WO 2012073501 A1 WO2012073501 A1 WO 2012073501A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolytic
electrolytic solution
cathode
case
solution
Prior art date
Application number
PCT/JP2011/006691
Other languages
French (fr)
Japanese (ja)
Inventor
義明 井田
Original Assignee
マルイ鍍金工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マルイ鍍金工業株式会社 filed Critical マルイ鍍金工業株式会社
Priority to JP2012546699A priority Critical patent/JP5889799B2/en
Priority to US13/991,203 priority patent/US20130319878A1/en
Publication of WO2012073501A1 publication Critical patent/WO2012073501A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F7/00Constructional parts, or assemblies thereof, of cells for electrolytic removal of material from objects; Servicing or operating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/16Polishing

Definitions

  • the present invention relates to electropolishing, and particularly relates to an electrolytic solution, an electrolysis case, an electropolishing system, and an electropolishing method used for electropolishing.
  • Electrolytic polishing is often used as a method for removing metal rust and dirt.
  • the metal (workpiece) and the cathode are immersed in an electrolyte solution at a predetermined distance, and a positive current is applied to the metal and a negative current is applied to the cathode to flow a predetermined current, so that the metal element on the workpiece surface is dissolved and the surface is modified.
  • a pre-process of this treatment it is usual to perform buffing and mechanical polishing.
  • the metal workpiece is made of stainless steel
  • phosphoric acid or phosphoric acid and sulfuric acid are usually used as the electrolyte, and the distance between the electrodes is about 10 cm, and the current is 10 A to 20 A.
  • This buffing is a harsh work because workers are forced to enter directly into a can in a hot and humid environment. In addition to that, buffing alone destroys the surface structure and tends to cause rusting and deterioration, so that an electrolytic polishing treatment is being tried after this buffing.
  • JP 2010-209423 a frame and an electrode are assembled along the inner surface of the can body, and the inner surface of the can body is electrolytically polished with a small amount of electrolyte.
  • JP 2010-209423 Even if the method disclosed in JP 2010-209423 is used, until the frame and the electrode are assembled, the operator needs to act inside the can body, even if it is not as much as the buffing work, The work is not comfortable. Further, the method of holding the electrolytic solution in the felt or the like increases the resistance between the electrodes, and a large current cannot flow. Therefore, the working time becomes long, and it is impossible to use this method for large-scale electrolytic polishing, in particular, electrolytic polishing of the inner surface of the can body as the main purpose of the present application even in consideration of the working environment.
  • the present invention has been proposed in view of the above-described conventional circumstances, and there is no need to assemble a frame or an electrode, and an electropolishing method and an electrolysis used therefor that make it extremely easy for an operator to work inside the can.
  • An object is to provide a liquid, an electrolytic case, and an electrolytic polishing system.
  • the electrolytic solution used in the present invention is made to have a predetermined viscosity by bringing a gelling agent into contact with an inorganic acid which is an electrolytic solution usually used for electrolytic polishing.
  • the inorganic acid used as the electrolytic solution for electropolishing is usually a phosphoric acid aqueous solution or a mixed aqueous solution of phosphoric acid and sulfuric acid, and this point is not different from conventional ones.
  • Silicon gel is used as the gelling agent. Silicon dioxide in contact with the inorganic acid dissolves in a gel state and gives viscosity to the electrolytic solution. This viscosity can be adjusted by changing the amount of silicon dioxide added.
  • This electrolytic solution is introduced into the following electrolytic case, the introduction is continued, and the previously introduced electrolytic solution is discharged so that the electrolytic polishing proceeds.
  • a cathode having a predetermined size and a predetermined depth is provided with a cathode at a predetermined height from the lower opening end, and an electrolytic solution having a predetermined viscosity is introduced above the cathode. And an outlet for discharging the electrolytic solution introduced into the annular frame from the electrolytic case frame.
  • the introduction port When a net is used as the cathode, the introduction port includes a pipe disposed along the net having a large number of small holes with respect to the net of the net, and the electrolyte is supplied to the pipe. It can be. Further, it is possible to adopt a configuration using a mesh as the discharge port. Furthermore, it is good also as a structure filled with the holding material which hold
  • an electrolytic case having this configuration, an electrolytic solution storage tank storing the electrolytic solution, a pump for pumping out the electrolytic solution from the electrolytic solution storage tank at a predetermined discharge amount, and the pumped electrolytic solution
  • the flow rate is adjusted to a predetermined flow rate per unit volume of the electrolysis case, and a negative voltage is applied to the flow rate adjustment valve for flowing the electrolytic solution to the introduction port, the cathode of the electrolysis case, and the positive voltage to the work
  • the electropolishing system may be configured in combination with a DC power source that applies each of.
  • the electrolyte solution is always transferred to the electrolytic case at a predetermined flow rate per unit volume of the electrolytic case, so that the electrolyte solution is always fresh between the cathode of the electrolytic case and the workpiece. Therefore, the workpiece can be subjected to high-quality electropolishing with few defects.
  • the open end under the annular frame of the electrolytic case having this configuration is placed facing the workpiece surface, and an electrolytic solution having a predetermined viscosity is introduced between the workpiece and the cathode of the annular frame through the small hole, so When a predetermined negative voltage is applied to the cathode side to allow a predetermined current to flow, electropolishing proceeds. At this time, since oxygen is generated on the workpiece side, the previously introduced electrolytic solution is discharged from the discharge port while continuing to introduce the electrolytic solution from the introduction port. As a result, the generated oxygen is expelled and does not hinder the electropolishing operation.
  • electrolytic solution is introduced between the workpiece and the cathode at a predetermined flow rate per unit volume between the workpiece and the cathode, high-quality electrolytic polishing can be performed as described above. It can be realized.
  • the electrolytic solution having viscosity can be easily held, and the cathode of the electrolytic case has a small distance from the opening end where the workpiece surface is located (for example, 5 to 20 mm). )can do.
  • the resistance of the electrolytic solution can be kept low, so that a large current (for example, 30 to 100 A / dm 2 ) can flow, and the working time can be shortened.
  • electrolyte Since the electrolyte is viscous, when current is passed, bubbles (oxygen generated from the anode (work)) accumulate in the electrolyte, but the electrolyte is introduced into the annular frame through the inlet and discharged. The air bubbles can be expelled from the outlet. As a result, the work of the worker who has entered the can is only to move the electrolytic case, and the amount of work is extremely reduced. Furthermore, by moving the electrolytic case along the workpiece by automatic control in a state where the electrolytic case is in contact with the workpiece surface, electropolishing inside the can can can be performed even without an operator.
  • an electrolytic polishing system that constantly supplies a predetermined amount of electrolytic solution to the electrolytic case, it is possible to realize high-quality electrolytic polishing for the workpiece.
  • FIG. 1 is a perspective view of the electrolytic case used in the present invention as viewed from above.
  • FIG. 2 is a perspective view of the electrolytic case used in the present invention as viewed from below.
  • 3 is a cross-sectional view taken along the line AA in FIG.
  • FIG. 4 is a surface photograph of the samples (a) to (b) of Example 1 using an electron microscope.
  • FIG. 5 is a surface photograph of the samples (d) to (f) of Example 1 using an electron microscope.
  • FIG. 6 is a conceptual diagram of the electropolishing system of the present invention.
  • the electrolytic solution used in the present invention is made to have a predetermined viscosity by bringing a gelling agent into contact with an inorganic acid which is a normal polishing electrolytic solution.
  • the inorganic acid is usually a phosphoric acid aqueous solution or a mixed aqueous solution of phosphoric acid and sulfuric acid, and silicon dioxide is used as a gelling agent. Silicon dioxide in contact with the inorganic acid dissolves in a gel state and gives viscosity to the electrolytic solution. This viscosity can be adjusted by changing the amount of silicon dioxide added.
  • the polishing function does not work sufficiently when the amount of phosphoric acid is 500 mL / L or less. Even with the total amount of phosphoric acid, the object of the present application can be achieved, but there is no room for adding sulfuric acid to be described later, and the gloss is not high.
  • sulfuric acid for example, concentration 98%) at 0 mL / L to 500 mL / L.
  • Sulfuric acid has a function to give gloss to the finished surface, and is added when gloss is required.
  • the sulfuric acid is 500 mL / L or more, the amount of phosphoric acid is reduced, and the polishing function is not sufficient.
  • a surfactant is added for the purpose of ensuring the wettability of the above-mentioned viscous electrolytic solution to the workpiece.
  • the surfactant is 0.001% or less, the wettability is insufficient, and even when it is 0.01% or more, the wettability returns and falls.
  • FIGS. 1 is a perspective view seen from the upper side of the electrolytic case
  • FIG. 2 is a perspective view seen from the lower side
  • FIG. 3 is a cross-sectional view taken along the line AA in FIG.
  • the cathode 12 is disposed at a predetermined height position from the lower opening end 11o of the annular frame 11 surrounding the periphery, and the introduction port 13 for introducing the electrolyte solution having the predetermined viscosity above the cathode 12;
  • the discharge port 14 for discharging the electrolytic solution introduced into the annular frame 11 from the annular frame 11 is provided.
  • an introduction pipe 13p having a large number of small holes 13h open to the mesh of the mesh body is disposed along the mesh body, and the viscous pipe is electrolyzed with respect to the introduction pipe 13p.
  • the introduction port 13 can be configured by erecting a guide pipe 13g for guiding the liquid, and the mesh of the mesh body 12 can be used as the discharge port 14e.
  • the lead 16 of the cathode 12 is provided.
  • the shape and size of the annular frame 11 are not particularly limited, but in the following embodiments, the shape and size are such that they can be freely moved on the workpiece surface by hand. is there. This point can be appropriately changed according to the application scene.
  • the annular frame 11 having a relatively small strength is a support pair of the cathode, the distance between the open end 11o (work surface) under the annular frame 11 and the cathode is extremely small, for example, 5 mm to 20 mm. As a result, a large current (for example, 30 to 100 A / dm 2 ) can be obtained, and the electrolytic treatment time can be significantly shortened.
  • the annular frame 11 may be filled with an artificial turf-shaped holding material 15 so that the electrolytic solution can be easily held.
  • an artificial turf-shaped holding material 15 so that the electrolytic solution can be easily held.
  • FIG. 2 some of the turf leaves of the holding material 5 are drawn and the others are omitted.
  • the open end 11o under the annular frame 11 of the electrolytic case 10 having this configuration is placed toward the surface of the workpiece W (see FIG. 3), and an electrolyte solution having a predetermined viscosity is supplied from the inlet 13 to the workpiece W and the cathode of the annular frame 11.
  • electrolytic polishing on the workpiece W proceeds.
  • the electrolytic solution since the electrolytic solution has a viscosity, the electrolytic solution is held by the annular frame 11 and the holding material 15 and does not flow out of the electrolytic case 10 rapidly. The function of the liquid will be maintained. Further, since the distance between the workpiece W and the cathode 12 is small, the electric resistance is small, and a large current can be passed, so that polishing at a high speed is possible.
  • the place on the workpiece of the electrolytic case is sequentially moved, and the entire workpiece or a predetermined portion of the workpiece W is subjected to the electrolytic treatment.
  • Example 1 ⁇ Electrolyte> First, the following electrolytic solution was prepared. (1) Electrolytic solutions for comparative examples (b), (c), (f) (hereinafter referred to as normal solutions) 85% -phosphoric acid 750 ml / L 98% -Sulfuric acid 250ml / L (2) Electrolytic solution of the present invention (hereinafter referred to as high viscosity liquid) 85% -phosphoric acid 750 ml / L 98% -Sulfuric acid 250ml / L SiO2 / XH2O 200g / L ⁇ Electrolytic polishing> The following polishing treatment was performed on a SUS316L (30 ⁇ 30 ⁇ 3) mm test piece.
  • the coating type electrolytic polishing of (b) and (c) below is a method in which an electrolytic solution is soaked in a felt or chemical resistant cloth, and current is passed between the workpiece and the cathode with the felt (cloth) sandwiched between them. It is. Further, the following (d) and (e) are the systems of the present application using an electrolysis case (distance 10 mm between the workpiece and the cathode).
  • Ry is the sum of the maximum peak height and maximum valley depth in the measured range.
  • Rz is the sum of the average value of the maximum mountain height and the fifth highest mountain height and the average value of the maximum valley depth and the fifth highest valley depth.
  • Table 1 shows the measurement results of the surface roughness.
  • austenite is generated on the surface as in the test piece (f), and surface modification occurs. It can be understood that this makes it possible to perform electropolishing with higher durability.
  • Example 2 ⁇ Electrolyte> Both the normal solution and the high viscosity solution are the same as the electrolyte solutions (1) and (2) shown in Example 1.
  • Example 1 Compared with Example 1, the voltage at the test pieces (d) and (e) of the present invention was increased. As a result, the current also increases, but conversely, it is evaluated that the current can flow up to here. In (d) and (e), the current has a width of 50 to 70 A / dm 2 . It is the current fluctuation when moving the electrolytic case.
  • the surface roughness of the test pieces (d) and (e) of the present invention is markedly improved from that of Example 1 (e) (processing time 2 minutes).
  • Example 1 processing time 2 minutes
  • it is excellent in gloss on appearance and shows the superiority of the present invention.
  • austenite is generated on the surface as in the test piece (f)
  • surface modification occurs, and electropolishing with high durability can be performed.
  • FIG. 6 is a conceptual diagram showing an electrolysis system to which the electrolysis case is applied.
  • the electrolytic solution L stored in the electrolytic solution storage tank 3 is pumped by the pump 4 to the inlet 13 of the electrolytic case 2 through the flow rate adjusting valve 5. Further, a negative voltage from a DC power source 6 is applied to the cathode 12 of the electrolytic case 2 via a lead 16, and a positive voltage from the DC power source 6 is applied to the work W, respectively. It has become.
  • the electrolytic solution storage tank 3 stores the electrolytic solution L having a predetermined viscosity described above.
  • the pump 4 is configured to pump out the electrolytic solution L from the electrolytic solution storage tank 3 with a predetermined discharge amount.
  • the pump 4 since the electrolytic solution L is strongly acidic and highly viscous, the pump 4 has excellent chemical resistance and a high discharge amount (high head) corresponding to the electrolytic solution L.
  • a synthetic resin diaphragm pump is used.
  • the maximum discharge amount is 50 L / min or more, or the maximum self-priming lift is 2.0 m or more.
  • the diaphragm pump 4 having a maximum discharge amount of 54.5 L / min and a maximum self-priming lift of 2.4 m is applied.
  • the flow rate adjusting valve 5 is provided between the pump 4 and the electrolytic case 2, and the flow rate of the electrolytic solution L pumped from the pump 4 is set to a volume (1000 cm 3 ) of the electrolytic case 2.
  • the electrolytic solution L is adjusted to a predetermined flow rate per unit volume (1 cm 3 ) of the electrolytic case 2 and the electrolytic solution L flows through the inlet 13.
  • the electrolyte solution L is always transferred to the electrolytic case 2 at a predetermined flow rate per unit volume of the electrolytic case 2, so that the space between the cathode 12 of the electrolytic case 2 and the workpiece W is increased. Therefore, it is possible to always supply fresh electrolytic solution L, and it is possible to subject the workpiece W to high-quality electrolytic polishing with few defects.
  • the predetermined flow rate per unit volume of the electrolytic case 2 corresponds to the predetermined flow rate per unit volume between the workpiece W and the cathode 12 in other words.
  • the predetermined flow rate of the electrolytic solution L per unit volume of the electrolytic case 2 is determined by the flow rate adjusting valve 5 when, for example, the dimensions of the electrolytic case 2 are 20 cm long, 10 cm wide, and 5 cm high. Since the volume of the electrolysis case 2 is 1000 cm 3 , the flow rate is in the range of 20 to 100 mL / min per unit volume (1000 cm 3 ) of the electrolysis case 2 and per unit volume (1 cm 3 ) of the electrolysis case 2. A range of 0.020 to 0.100 mL / min is preferable.
  • the DC power supply 6 is configured to apply a negative voltage to the cathode 12 of the electrolytic case 2 via the lead 16 and a positive voltage to the work W, respectively.
  • the voltage to be applied is a large value within the range of 11V to 20V, for example, as described above. If the distance between the cathode 12 and the workpiece W in the electrolytic case 2 is 5 mm to 20 mm, the current flowing between the two can be set to 30 to 100 A / dm 2 as described above. Become.
  • the electrolytic case 2 the electrolytic solution storage tank 3, the pump 4, the flow rate adjustment valve 5, and the direct current power source 6 are assembled to the electrolytic case 2. Since the electrolytic solution L is constantly supplied at a predetermined flow rate per unit volume of the electrolytic case 2, fresh electrolysis is always performed between the cathode 12 of the electrolytic case 2 and the workpiece W. The liquid L flows and the workpiece W can be subjected to high-quality electrolytic polishing.
  • an operator can freely move the cathode 12 (bottom surface) of the electrolysis case 2 onto the surface of the workpiece W by holding the electrolysis case 2 by hand ( Scanning), the workpiece W is subjected to electrolytic polishing.
  • the electrolytic polishing is performed by allowing the electrolytic case 2 to stand on the surface of the workpiece W for a predetermined processing time.
  • the reciprocal of this processing time corresponds to, for example, a scanning speed for moving (scanning) the electrolytic case 2 to the workpiece W.
  • the processing time is not particularly limited.
  • the processing time is within the range of 5 min / m 2 to 15 min / m 2 , specifically 10 min / m 2 , the workpiece W is substantially immersed in the electrolytic polishing. A similar gloss can be obtained, which is preferable.
  • the processing time can be appropriately changed in design according to the shape of the workpiece W, the current density of the current by the DC power supply 6, and the purpose of the electrolytic polishing process.
  • the purpose of the electrolytic polishing treatment is to degrease or slightly dissolve the surface of the workpiece W (dissolve several ⁇ m in thickness relative to the surface of the workpiece W)
  • the treatment time is within the above range.
  • the purpose of the electrolytic polishing treatment is large-scale dissolution equivalent to immersion electrolytic polishing (dissolution of several tens of ⁇ m on the surface of the workpiece W)
  • the processing time Can be within the above range or more.
  • the present invention can perform electropolishing with a large current, the working time is shortened, and a small amount of electrolytic solution can be easily held, so that the electrolytic treatment becomes extremely simple.
  • the present invention can realize high-quality electrolytic polishing, the industrial applicability is extremely large.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

Provided is an electropolishing method that causes a large current to flow. For an organic acid, an electrolytic solution is used constituting a silicon dioxide as a gelling agent brought into contact with a phosphoric acid solution or a mixed solution of phosphoric acid and sulfuric acid. This electrolytic solution is introduced into an electrolysis case, and as the introduction is ongoing, the initially introduced electrolytic solution is discharged and electropolishing thus proceeds. The electrolysis case has a cathode with a circular frame of a specific size and depth disposed at a position of a specific height from a lower open end, and the upper part of the cathode is provided with an introduction port through which an electrolytic solution of a specific viscosity is introduced to the upper side of the cathode and a discharge port that discharges from the electrolysis case the electrolytic solution that was introduced inside the circular frame. With this configuration, the distance from the open end at which a work-piece surface is positioned is shortened and the electrolytic solution resistance can be suppressed so as to be made small, enabling the cathode to generate a large current, so that labor time can be shortened.

Description

電解液、電解ケース、電解研磨システムおよび、それらを用いた電解研磨方法Electrolytic solution, electrolytic case, electrolytic polishing system, and electrolytic polishing method using them
 本発明は電解研磨に関し、特に、電解研磨に用いる電解液、電解ケース、電解研磨システムおよび、電解研磨方法に関するものである。 The present invention relates to electropolishing, and particularly relates to an electrolytic solution, an electrolysis case, an electropolishing system, and an electropolishing method used for electropolishing.
 金属の錆び、汚れ等を除去する方法として、電解研磨がしばしば用いられる。 Electrolytic polishing is often used as a method for removing metal rust and dirt.
 すなわち、金属(ワーク)とカソードとを所定距離を保って電解液に浸漬し、金属に正、カソードに負を印加して所定の電流を流すことによって、ワーク表面の金属元素を溶解させ表面改質させて、耐久性を高めようとするものである。但し、この処理の前工程として、バフ研磨をして、機械的な研磨しておくのが通例である。 That is, the metal (workpiece) and the cathode are immersed in an electrolyte solution at a predetermined distance, and a positive current is applied to the metal and a negative current is applied to the cathode to flow a predetermined current, so that the metal element on the workpiece surface is dissolved and the surface is modified. To improve the durability. However, as a pre-process of this treatment, it is usual to perform buffing and mechanical polishing.
 金属ワークをステンレスとした場合、電解液としては、リン酸あるいはリン酸と硫酸が用いられるのが通例であり、電極間距離は10cm程度、電流は10A~20Aが用いられる。 When the metal workpiece is made of stainless steel, phosphoric acid or phosphoric acid and sulfuric acid are usually used as the electrolyte, and the distance between the electrodes is about 10 cm, and the current is 10 A to 20 A.
 一方、食品や飲料の貯蔵、化学剤・医薬剤の貯蔵等に大型の缶体が用いられることがある。これら缶体は、経年劣化によって、内面に汚れや錆びが付着することになり、この状態になると、設備の更新を考慮することになる。設備の更新は多額の費用を要することになるので、バフ研磨等の機械研磨で一時的な補修をして缶体寿命を延ばす方法が採られていることがある。 On the other hand, large cans are sometimes used for storage of foods and beverages, storage of chemical agents and pharmaceutical agents, and the like. These cans have dirt and rust on their inner surfaces due to deterioration over time, and in this state, renewal of equipment will be considered. Since renewal of equipment requires a large amount of money, a method of extending the can life by temporarily repairing by mechanical polishing such as buffing may be employed.
 このバフ研磨は、高温多湿な環境の缶体内に作業員が直接入っての力仕事であり、非常に過酷な作業となる。それに加えて、バフ研磨だけでは表面組織を破壊して、返って錆びや劣化を招き易いので、このバフ研磨後に電解研磨処理を施すことが試されようとしている。 This buffing is a harsh work because workers are forced to enter directly into a can in a hot and humid environment. In addition to that, buffing alone destroys the surface structure and tends to cause rusting and deterioration, so that an electrolytic polishing treatment is being tried after this buffing.
 ところが大型の缶体内面を電解研磨しようとすると、大量の電解液を必要とし、コスト面から現実的でない。そこで、本願出願人は、特開2010-209423に、缶体内面に沿って枠体と電極を組んで、少ない電解液で缶体内面を電解研磨することを提案している。 However, if the inner surface of a large can is to be electropolished, a large amount of electrolyte is required, which is not practical from the viewpoint of cost. Therefore, the applicant of the present application has proposed in JP 2010-209423 that a frame and an electrode are assembled along the inner surface of the can body, and the inner surface of the can body is electrolytically polished with a small amount of electrolyte.
 更に、電解液を保持し難い空間で電解研磨あるいは電解メッキをする場合、フェルト等に電解液を含浸させて電圧を印加する方法も従来から採用されている。 Furthermore, when electrolytic polishing or electroplating is performed in a space where it is difficult to hold the electrolytic solution, a method of applying a voltage by impregnating the felt with the electrolytic solution has been conventionally employed.
特開2010-209423JP2010-209423
 上記、特開2010-209423に開示の方法を採るにしても、枠体や電極を組み立てるまでは、作業者が缶体内部で作用をする必要があり、バフ研磨作業程ではないにしても、その作業は快適とは言いがたい。また、フェルト等に電解液を保持させる方法は、電極間抵抗が大きくなり、大きな電流が流せない。従って、作業時間が長くなり、この方法を大規模な電解研磨、特に、本願が主目的とするような缶体内面の電解研磨に利用することは、作業環境から考慮しても無理がある。 Even if the method disclosed in JP 2010-209423 is used, until the frame and the electrode are assembled, the operator needs to act inside the can body, even if it is not as much as the buffing work, The work is not comfortable. Further, the method of holding the electrolytic solution in the felt or the like increases the resistance between the electrodes, and a large current cannot flow. Therefore, the working time becomes long, and it is impossible to use this method for large-scale electrolytic polishing, in particular, electrolytic polishing of the inner surface of the can body as the main purpose of the present application even in consideration of the working environment.
 本発明は上記従来の事情に鑑みて提案されたものであって、枠体や電極を組み立てる必要もなく、缶体内部での作業者の作業自体が極めて容易となる電解研磨方法およびそれに用いる電解液、電解ケース、電解研磨システムを提供することを目的とするものである。 The present invention has been proposed in view of the above-described conventional circumstances, and there is no need to assemble a frame or an electrode, and an electropolishing method and an electrolysis used therefor that make it extremely easy for an operator to work inside the can. An object is to provide a liquid, an electrolytic case, and an electrolytic polishing system.
 まず、本発明に使用される電解液は通常電解研磨に使用される電解液である無機酸にゲル化剤を接触させて、所定の粘度を持たせるようにしている。 First, the electrolytic solution used in the present invention is made to have a predetermined viscosity by bringing a gelling agent into contact with an inorganic acid which is an electrolytic solution usually used for electrolytic polishing.
 電解研磨用の電解液として用いられる無機酸は、リン酸水溶液または、リン酸と硫酸の混合水溶液が通例であり、この点は従来と変わりない。ゲル化剤としては二酸化珪素を使用する。上記無機酸に接触した二酸化珪素はゲル状に溶解し、上記電解液に粘度を与えることになる。この粘度は二酸化珪素の添加量を変化させることによって調整することができる。 The inorganic acid used as the electrolytic solution for electropolishing is usually a phosphoric acid aqueous solution or a mixed aqueous solution of phosphoric acid and sulfuric acid, and this point is not different from conventional ones. Silicon gel is used as the gelling agent. Silicon dioxide in contact with the inorganic acid dissolves in a gel state and gives viscosity to the electrolytic solution. This viscosity can be adjusted by changing the amount of silicon dioxide added.
 上記、電解液には、ワークとの濡れ性を確保する目的で界面活性剤が微量添加されることが望ましい。 It is desirable that a small amount of a surfactant is added to the electrolytic solution for the purpose of ensuring wettability with the workpiece.
 この電解液を以下の電解ケースに導入し、当該導入を継続して、先に導入された電解液を排出することによって、電解研磨が進行するようにする。 This electrolytic solution is introduced into the following electrolytic case, the introduction is continued, and the previously introduced electrolytic solution is discharged so that the electrolytic polishing proceeds.
 すなわち、当該電解ケースは、所定大きさ、および所定深さの環状枠の、下の開口端から所定高さの位置にカソードを配設し、当該カソードの上側に、所定粘度の電解液を導入する導入口と、上記環状枠内に導入された電解液を電解ケース枠から排出する排出口と、を備えた構成となっている。 That is, in the electrolytic case, a cathode having a predetermined size and a predetermined depth is provided with a cathode at a predetermined height from the lower opening end, and an electrolytic solution having a predetermined viscosity is introduced above the cathode. And an outlet for discharging the electrolytic solution introduced into the annular frame from the electrolytic case frame.
 上記カソードとして網体を用いると、上記導入口は、網体の網目に対して小穴を多数有する網体に沿って配設されたパイプを備え、当該パイプに電解液を供給する構成とする構成とすることができる。また、上記排出口として網目を利用する構成とすることが可能となる。更に、前記環状枠の下の開口端とカソードとで構成される空間に前記所定粘度の電解液を保持する保持材を充填する構成としても良い。 When a net is used as the cathode, the introduction port includes a pipe disposed along the net having a large number of small holes with respect to the net of the net, and the electrolyte is supplied to the pipe. It can be. Further, it is possible to adopt a configuration using a mesh as the discharge port. Furthermore, it is good also as a structure filled with the holding material which hold | maintains the electrolyte solution of the said predetermined viscosity in the space comprised by the open end under the said annular frame, and a cathode.
 又、この構成の電解ケースと、前記電解液を貯留した電解液貯留槽と、前記電解液貯留槽から、前記電解液を所定の吐出量で汲み出すポンプと、前記汲み出された電解液の流量を、前記電解ケースの単位体積当たりの所定の流量に調整して、当該電解液を前記導入口に流す流量調整弁と、前記電解ケースのカソードに負の電圧を、前記ワークに正の電圧をそれぞれ印加する直流電源とを組み合わせて、電解研磨システムを構成してもよい。これにより、前記電解液を、前記電解ケースの単位体積当たりの所定の流量で、当該電解ケースに常時、移送することで、当該電解ケースのカソードと、前記ワークとの間に常に新鮮な電解液を供給することが可能となり、当該ワークに、欠点が少なく品質の高い電解研磨を施すことが可能となる。 In addition, an electrolytic case having this configuration, an electrolytic solution storage tank storing the electrolytic solution, a pump for pumping out the electrolytic solution from the electrolytic solution storage tank at a predetermined discharge amount, and the pumped electrolytic solution The flow rate is adjusted to a predetermined flow rate per unit volume of the electrolysis case, and a negative voltage is applied to the flow rate adjustment valve for flowing the electrolytic solution to the introduction port, the cathode of the electrolysis case, and the positive voltage to the work The electropolishing system may be configured in combination with a DC power source that applies each of. Accordingly, the electrolyte solution is always transferred to the electrolytic case at a predetermined flow rate per unit volume of the electrolytic case, so that the electrolyte solution is always fresh between the cathode of the electrolytic case and the workpiece. Therefore, the workpiece can be subjected to high-quality electropolishing with few defects.
 又、この構成の電解ケースの環状枠の下の開口端を、ワーク表面に向けて置き、上記小穴から所定粘度の電解液を環状枠のワークとカソードの間に導入して、ワーク側に正、カソード側に負の所定電圧を印加して、所定電流を流すようにすると、電解研磨は進行する。このとき、ワーク側で酸素が生成されることになるので、導入口からの電解液の導入を継続しながら、先に導入された電解液を排出口から排出する。これによって、発生する酸素を追い出すことになり、電解研磨作業の障害とはならない。 In addition, the open end under the annular frame of the electrolytic case having this configuration is placed facing the workpiece surface, and an electrolytic solution having a predetermined viscosity is introduced between the workpiece and the cathode of the annular frame through the small hole, so When a predetermined negative voltage is applied to the cathode side to allow a predetermined current to flow, electropolishing proceeds. At this time, since oxygen is generated on the workpiece side, the previously introduced electrolytic solution is discharged from the discharge port while continuing to introduce the electrolytic solution from the introduction port. As a result, the generated oxygen is expelled and does not hinder the electropolishing operation.
 この状態で、上記電解ケースのワーク上の位置を移動させて、ワーク上の目的の領域を電解研磨することが可能となる。 In this state, it is possible to move the position of the electrolytic case on the work and perform electropolishing of a target area on the work.
 又、前記電解液を、前記ワークとカソードの間の単位体積当たりの所定の流量で、当該ワークとカソードとの間に導入するように構成すれば、上述のように、高品質の電解研磨を実現することが可能となる。 Further, if the electrolytic solution is introduced between the workpiece and the cathode at a predetermined flow rate per unit volume between the workpiece and the cathode, high-quality electrolytic polishing can be performed as described above. It can be realized.
 以上構成の電解ケースを使用すると、粘度を持った電解液を簡単に保持することができ、しかも、電解ケースのカソードは、上記ワーク表面が位置する開口端からの距離を小さく(例えば5~20mm)することができる。この結果、電解液の抵抗を低く抑えることができるので大電流(例えば30~100A/dm2)を流せることになり、作業時間を短くすることが可能となる。 When the electrolytic case having the above configuration is used, the electrolytic solution having viscosity can be easily held, and the cathode of the electrolytic case has a small distance from the opening end where the workpiece surface is located (for example, 5 to 20 mm). )can do. As a result, the resistance of the electrolytic solution can be kept low, so that a large current (for example, 30 to 100 A / dm 2 ) can flow, and the working time can be shortened.
 電解液が粘性を持っているので、電流を流すと、電解液内に気泡(アノード(ワーク)から発生する酸素)が蓄積するが、上記電解液を導入口から環状枠に導入するとともに、排出口から排出して、気泡を追い出すことができる。これによって、缶体に入った作業者の作業は、電解ケースを移動するだけとなり、作業量が極めて少なくなる。更に、電解ケースをワーク面に当接した状態で自動制御によってワークに沿って移動させるようにすることによって無人でも缶体内の電解研磨が出来ることになる。 Since the electrolyte is viscous, when current is passed, bubbles (oxygen generated from the anode (work)) accumulate in the electrolyte, but the electrolyte is introduced into the annular frame through the inlet and discharged. The air bubbles can be expelled from the outlet. As a result, the work of the worker who has entered the can is only to move the electrolytic case, and the amount of work is extremely reduced. Furthermore, by moving the electrolytic case along the workpiece by automatic control in a state where the electrolytic case is in contact with the workpiece surface, electropolishing inside the can can be performed even without an operator.
 又、前記電解ケースに常時所定量の電解液を供給する電解研磨システムを構成することで、前記ワークに対して高品質な電解研磨を実現することが可能となる。 In addition, by configuring an electrolytic polishing system that constantly supplies a predetermined amount of electrolytic solution to the electrolytic case, it is possible to realize high-quality electrolytic polishing for the workpiece.
図1は本発明に使用する電解ケースの上から見た斜視図。FIG. 1 is a perspective view of the electrolytic case used in the present invention as viewed from above. 図2は本発明に使用する電解ケースの下から見た斜視図。FIG. 2 is a perspective view of the electrolytic case used in the present invention as viewed from below. 図3は図1のA-A断面図。3 is a cross-sectional view taken along the line AA in FIG. 図4は実施例1のサンプル(a)~(b)の電子顕微鏡による表面写真。FIG. 4 is a surface photograph of the samples (a) to (b) of Example 1 using an electron microscope. 図5は実施例1のサンプル(d)~(f)の電子顕微鏡による表面写真。FIG. 5 is a surface photograph of the samples (d) to (f) of Example 1 using an electron microscope. 図6は本発明の電解研磨システムの概念図。FIG. 6 is a conceptual diagram of the electropolishing system of the present invention.
 まず、本発明に使用される電解液は通常の研磨用の電解液である無機酸にゲル化剤を接触させて、所定の粘度を持たせるようにしている。 First, the electrolytic solution used in the present invention is made to have a predetermined viscosity by bringing a gelling agent into contact with an inorganic acid which is a normal polishing electrolytic solution.
 上記無機酸は、リン酸水溶液または、リン酸と硫酸の混合水溶液が通例であり、ゲル化剤としては二酸化珪素を使用する。上記無機酸に接触した二酸化珪素はゲル状に溶解し、上記電解液に粘度を与えることになる。この粘度は二酸化珪素の添加量を変化させることによって調整することができる。 The inorganic acid is usually a phosphoric acid aqueous solution or a mixed aqueous solution of phosphoric acid and sulfuric acid, and silicon dioxide is used as a gelling agent. Silicon dioxide in contact with the inorganic acid dissolves in a gel state and gives viscosity to the electrolytic solution. This viscosity can be adjusted by changing the amount of silicon dioxide added.
 リン酸としては、濃度85%を使用した場合、500mL/L~1000mL/Lを用い、これに水0mL~500mL/Lを加えて更に、二酸化珪素100g~200g/Lを接触させる。これによって、上記に二酸化ケイ素の量に応じた粘度を持った電解液を生成することができる。 As the phosphoric acid, when 85% concentration is used, 500 mL / L to 1000 mL / L is used, and 0 mL to 500 mL / L of water is added to this, and 100 g to 200 g / L of silicon dioxide is further brought into contact therewith. As a result, an electrolytic solution having a viscosity corresponding to the amount of silicon dioxide can be generated.
 リン酸の量が500mL/L以下では研磨機能が充分働かない。全量リン酸でも本願の目的を達成することができるが、後述する硫酸を添加する余地がなくなり、光沢がでないことになる。 The polishing function does not work sufficiently when the amount of phosphoric acid is 500 mL / L or less. Even with the total amount of phosphoric acid, the object of the present application can be achieved, but there is no room for adding sulfuric acid to be described later, and the gloss is not high.
 更に、上記リン酸に加えて、硫酸(例えば濃度98%)を0mL/L~500mL/L加えるのが通例である。硫酸は仕上がり表面に光沢を与える機能を有し、光沢が要求される場合に添加する。但し、硫酸が500mL/L以上であると、上記リン酸量が少なくなり、研磨機能が充分でなくなる。 Furthermore, in addition to the above phosphoric acid, it is usual to add sulfuric acid (for example, concentration 98%) at 0 mL / L to 500 mL / L. Sulfuric acid has a function to give gloss to the finished surface, and is added when gloss is required. However, when the sulfuric acid is 500 mL / L or more, the amount of phosphoric acid is reduced, and the polishing function is not sufficient.
 上記、電解液には、界面活性剤を0.001%~0.01%(外掛け)、添加するのが望ましい。この界面性剤は、上記粘性を持った電解液のワークに対する濡れ性を確保する目的で添加される。界面活性剤が0.001%以下であると、前記濡れ性が不十分であり、0.01%以上の場合でも濡れ性が返って落ちる。 It is desirable to add 0.001% to 0.01% (outer coating) of a surfactant to the electrolytic solution. This surfactant is added for the purpose of ensuring the wettability of the above-mentioned viscous electrolytic solution to the workpiece. When the surfactant is 0.001% or less, the wettability is insufficient, and even when it is 0.01% or more, the wettability returns and falls.
 この電解液を以下の電解ケースに保持して電流を流すことによって、電解研磨が進行するようにする。電解ケースは図1~3に示すようになっている。図1は電解ケースの上側から見た斜視図、図2は下側から見た斜視図、図3は図1のA-A断面図である。 ¡The electrolytic polishing is advanced by holding the electrolytic solution in the following electrolytic case and passing an electric current. The electrolytic case is as shown in FIGS. 1 is a perspective view seen from the upper side of the electrolytic case, FIG. 2 is a perspective view seen from the lower side, and FIG. 3 is a cross-sectional view taken along the line AA in FIG.
 すなわち、周囲を囲う環状枠11の、下の開口端11oから所定の高さ位置にカソード12を配設し、上記カソード12の上側に、上記した所定粘度の電解液を導入する導入口13と、上記環状枠11内に導入された電解液を当該環状枠11から排出する排出口14とを備えた構成となっている。 That is, the cathode 12 is disposed at a predetermined height position from the lower opening end 11o of the annular frame 11 surrounding the periphery, and the introduction port 13 for introducing the electrolyte solution having the predetermined viscosity above the cathode 12; The discharge port 14 for discharging the electrolytic solution introduced into the annular frame 11 from the annular frame 11 is provided.
 上記カソード12を網体とすると、当該網体の網目に対して小穴13hが多数開口する導入パイプ13pを網体に沿って配設し、当該導入パイプ13pに対して、前記粘性を持った電解液を案内する案内パイプ13gを立設することによって導入口13を構成することができ、また、上記排出口14eとして網体12の網目を利用することが可能となる。 When the cathode 12 is a mesh body, an introduction pipe 13p having a large number of small holes 13h open to the mesh of the mesh body is disposed along the mesh body, and the viscous pipe is electrolyzed with respect to the introduction pipe 13p. The introduction port 13 can be configured by erecting a guide pipe 13g for guiding the liquid, and the mesh of the mesh body 12 can be used as the discharge port 14e.
 尚、上記カソード12のリード16が設けられていることはもちろんである。また、上記環状枠11の形状や大きさは、特に限定されるものではないが、以下の実施例では、手で持ってワーク表面上を自由に移動させることができる程度の形状・大きさである。この点は、適用場面に応じて適当に変更可能である。また、比較的小型の強度を備えた環状枠11がカソードの支持対となるので、環状枠11の下の開口端11o(ワーク面)とカソードとの距離を著しく小さく、例えば、5mm~20mmにすることができ、これによって、大電流(例えば30~100A/dm2)を得ることができ、電解処理の時間を著しく短縮することができる。 Of course, the lead 16 of the cathode 12 is provided. Further, the shape and size of the annular frame 11 are not particularly limited, but in the following embodiments, the shape and size are such that they can be freely moved on the workpiece surface by hand. is there. This point can be appropriately changed according to the application scene. Further, since the annular frame 11 having a relatively small strength is a support pair of the cathode, the distance between the open end 11o (work surface) under the annular frame 11 and the cathode is extremely small, for example, 5 mm to 20 mm. As a result, a large current (for example, 30 to 100 A / dm 2 ) can be obtained, and the electrolytic treatment time can be significantly shortened.
 尚、上記環状枠11内に、電解液を保持しやすいように、人工芝状の保持材15を充填してもよい。尚、図2において、保持材5の芝の葉は一部描いて、他は省略している。 The annular frame 11 may be filled with an artificial turf-shaped holding material 15 so that the electrolytic solution can be easily held. In FIG. 2, some of the turf leaves of the holding material 5 are drawn and the others are omitted.
 この構成の電解ケース10の環状枠11の下の開口端11oを、ワークW表面(図3参照)に向けて置き、上記導入口13から所定粘度の電解液を環状枠11のワークWとカソード12の間に導入(図3、実線矢印)しつつ、ワーク側に正、カソード側に負の所定電圧を印加すると、ワークWに対する電解研磨が進行する。このとき、前記のように、電解液に粘度を持たせているので、当該電解液は環状枠11と、前記保持材15に保持され、電解ケース10の外に急速に流れ出ることはなく、電解液の機能を保つことになる。また、前記ワークWとカソ-ド12の距離が小さいので、電気抵抗が小さくなり、大電流を流すことができることになり、早い速度での研磨が可能になる。 The open end 11o under the annular frame 11 of the electrolytic case 10 having this configuration is placed toward the surface of the workpiece W (see FIG. 3), and an electrolyte solution having a predetermined viscosity is supplied from the inlet 13 to the workpiece W and the cathode of the annular frame 11. When a predetermined positive voltage is applied to the workpiece side and negative to the cathode side while being introduced between 12 (FIG. 3, solid line arrows), electrolytic polishing on the workpiece W proceeds. At this time, as described above, since the electrolytic solution has a viscosity, the electrolytic solution is held by the annular frame 11 and the holding material 15 and does not flow out of the electrolytic case 10 rapidly. The function of the liquid will be maintained. Further, since the distance between the workpiece W and the cathode 12 is small, the electric resistance is small, and a large current can be passed, so that polishing at a high speed is possible.
 ただし、ワーク側から酸素の気泡が発生し、この気泡は電流が大きくなる程、発生量が多くなり、粘度を持った電解液中に累積し、電気抵抗を高めることになる。そこで、前記環状枠11への電解液の導入を継続すると、先に環状枠11内に導入されていた電解液は、新しく導入された電解液に排出口14eから押し出されることになり(図3、点線矢印)、蓄積された気泡も追い出されることになる。これによって、電解研磨は、気泡を含まない電解液の元で進行することになる。 However, oxygen bubbles are generated from the workpiece side, and as the current increases, the amount of the bubbles increases and accumulates in the electrolyte with viscosity, increasing the electrical resistance. Therefore, when the introduction of the electrolytic solution into the annular frame 11 is continued, the electrolytic solution previously introduced into the annular frame 11 is pushed out from the discharge port 14e to the newly introduced electrolytic solution (FIG. 3). , Dotted arrows), the accumulated bubbles will also be expelled. As a result, the electropolishing proceeds under an electrolytic solution that does not contain bubbles.
 上記のように、電解ケース対応の部分の電解処理を進行させながら、当該電解ケースのワーク上の場所を順次移動させて、ワーク全体、あるいはワークWの所定の箇所を電解処理することになる。 As described above, while the electrolytic treatment of the portion corresponding to the electrolytic case proceeds, the place on the workpiece of the electrolytic case is sequentially moved, and the entire workpiece or a predetermined portion of the workpiece W is subjected to the electrolytic treatment.
 (実施例1)
 <電解液>
まず、以下の電解液を用意した。
(1)比較例用(b)、(c)、(f)の電解液(以下通常液という)
  85%-燐酸  750ml/L
  98%-硫酸  250ml/L
(2)本発明の電解液(以下高粘液という)
  85%-燐酸  750ml/L
  98%-硫酸  250ml/L
  SiO2・XH2O    200g/L
 <電解研磨>
 SUS316L(30×30×3)mmの試験片に対して以下の研磨処理をした。下記(b)、(c)の塗布式電解研磨とは、フェルト、あるいは耐薬品性の布に電解液を滲みこませ、当該フェルト(布)を挟んで、ワークとカソード間に電流を流す方式である。また、下記(d)、(e)が、電解ケース(ワークとカソード間の距離10mm)を用いた本願の方式である。
Example 1
<Electrolyte>
First, the following electrolytic solution was prepared.
(1) Electrolytic solutions for comparative examples (b), (c), (f) (hereinafter referred to as normal solutions)
85% -phosphoric acid 750 ml / L
98% -Sulfuric acid 250ml / L
(2) Electrolytic solution of the present invention (hereinafter referred to as high viscosity liquid)
85% -phosphoric acid 750 ml / L
98% -Sulfuric acid 250ml / L
SiO2 / XH2O 200g / L
<Electrolytic polishing>
The following polishing treatment was performed on a SUS316L (30 × 30 × 3) mm test piece. The coating type electrolytic polishing of (b) and (c) below is a method in which an electrolytic solution is soaked in a felt or chemical resistant cloth, and current is passed between the workpiece and the cathode with the felt (cloth) sandwiched between them. It is. Further, the following (d) and (e) are the systems of the present application using an electrolysis case (distance 10 mm between the workpiece and the cathode).
 (a) バフ研磨のみ
 (b) 通常液(上記電解液(1))による塗布式電解研磨(1分)
   電圧11V、電流0.1A/dm2
 (c) 通常液(上記電解液(1))による塗布式電解研磨(2分)
   電圧11V、電流0.1A/dm2
 (d) 高粘液(上記電解液(2))による塗布式電解研磨(1分)
   電圧11V、電流35A/dm2
 (e) 高粘液(上記電解液(2))による塗布式電解研磨(2分)
   電圧11V、電流35A/dm2
 (f) 通常液による浸漬電解研磨(5分)
    電圧11V、電流10A/dm2
 上記(b)から(e)は液循環実施
 <性能評価方法>
(1) 表面粗さの測定
 ミツトヨ製SJ-301による5点粗さ測定
 ここで粗さパラメータRaは測定した範囲の平均粗さ。Ryは測定した範囲の最大山高さと最大谷深さの和。Rzは最大山高さと五番目までの山高さの平均値と最大谷深さと五番目までの谷深さの平均値の和。
(2)表面観察
 日本電子製操作顕微鏡JCM-5700による。
(A) Buffing only (b) Application type electrolytic polishing (1 minute) with normal solution (the above electrolyte (1))
Voltage 11V, current 0.1A / dm 2
(C) Application type electropolishing (2 minutes) with normal solution (the above electrolyte (1))
Voltage 11V, current 0.1A / dm 2
(D) Application type electropolishing with high viscosity liquid (the above electrolytic solution (2)) (1 minute)
Voltage 11V, current 35A / dm 2
(E) Application type electropolishing with high viscosity liquid (the above electrolytic solution (2)) (2 minutes)
Voltage 11V, current 35A / dm 2
(F) Immersion electropolishing with normal solution (5 minutes)
Voltage 11V, current 10A / dm 2
Above (b) to (e) are liquid circulation <Performance evaluation method>
(1) Measurement of surface roughness Five-point roughness measurement with Mitutoyo SJ-301 The roughness parameter Ra is the average roughness of the measured range. Ry is the sum of the maximum peak height and maximum valley depth in the measured range. Rz is the sum of the average value of the maximum mountain height and the fifth highest mountain height and the average value of the maximum valley depth and the fifth highest valley depth.
(2) Surface observation According to JEOL operation microscope JCM-5700.
 <結果>
(1)上記表面粗さの測定結果を表1に示す。
<Result>
(1) Table 1 shows the measurement results of the surface roughness.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(2)電子顕微鏡による表面観察の結果を、上記処理(a)~(f)に対応して図4、図5の写真(a)~(f)に示す。尚、図4、図5で、横軸は倍率の違いを表し、左端が、×100、中央が×300、右端が×1000である。 (2) The results of surface observation with an electron microscope are shown in the photographs (a) to (f) of FIGS. 4 and 5 corresponding to the above-described treatments (a) to (f). 4 and 5, the horizontal axis represents the difference in magnification, the left end is x100, the center is x300, and the right end is x1000.
 <評価>
 図4に示す写真(b)、(c)(上記試験片(b)、(c)に対応)ではバフ研磨のみによる試験片(a)に見られる横の筋が消えていないが、図5に示す、本願発明に対応の試験片(d)、(e)、特に(e)に対応する写真ではそれが消え、写真(f)(浸漬品)に近くなっている。
<Evaluation>
In the photographs (b) and (c) shown in FIG. 4 (corresponding to the above test pieces (b) and (c)), the horizontal streak seen in the test piece (a) by buffing alone is not erased. The test pieces (d) and (e) corresponding to the present invention shown in (2), particularly, the photo corresponding to (e) disappears, and is close to the photo (f) (immersion product).
 また、試験片(d)、(e)では、試験片(f)と同様表面にオーステナイトを生成し表面改質が生じている。これによって、より耐久性の高い電解研磨ができることが理解できる。 Also, in the test pieces (d) and (e), austenite is generated on the surface as in the test piece (f), and surface modification occurs. It can be understood that this makes it possible to perform electropolishing with higher durability.
 (実施例2)
 <電解液>
 前記、通常液、高粘液とも実施例1に示す電解液(1)(2)に同じ。
(Example 2)
<Electrolyte>
Both the normal solution and the high viscosity solution are the same as the electrolyte solutions (1) and (2) shown in Example 1.
 <電解研磨>
 実施例1と略同じであるが、本願発明に対応する下記(c)、(d)の電圧を大きくしている。従って、当然電流も大きくなっている。また、(c)、(e)では処理時間を3分としている。
<Electrolytic polishing>
Although it is substantially the same as Example 1, the voltage of following (c) and (d) corresponding to this invention is enlarged. Accordingly, the current is naturally increased. In (c) and (e), the processing time is 3 minutes.
 (a) バフ研磨のみ
 (b) 通常液(上記電解液(1))による塗布式電解研磨(1分)
   電圧11V、電流0.1A/dm2
 (c) 通常液(上記電解液(1))による塗布式電解研磨(3分)
   電圧11V、電流0.1A/dm2
 (d) 高粘液(上記電解液(2))による塗布式電解研磨(1分)
   電圧20V、電流50~70A/dm2
 (e) 高粘液(上記電解液(2))による塗布式電解研磨(3分)
   電圧20V、電流50~70A/dm2
 (f) 通常液による浸漬電解研磨(5分)
     電圧11V、電流10A/dm2
   上記(b)から(e)は液循環実施
<性能評価方法>
 実施例1に同じ、但し、外観評価は目視
<結果>
 表2に表面粗さの結果を示し、表3に目視での外観評価の結果を示す。
(A) Buffing only (b) Application type electrolytic polishing (1 minute) with normal solution (the above electrolyte (1))
Voltage 11V, current 0.1A / dm 2
(C) Application type electropolishing (3 minutes) with normal solution (the above electrolyte (1))
Voltage 11V, current 0.1A / dm 2
(D) Application type electropolishing with high viscosity liquid (the above electrolytic solution (2)) (1 minute)
Voltage 20V, current 50-70A / dm 2
(E) Application type electropolishing with high viscosity liquid (the above electrolytic solution (2)) (3 minutes)
Voltage 20V, current 50-70A / dm 2
(F) Immersion electropolishing with normal solution (5 minutes)
Voltage 11V, current 10A / dm 2
Above (b) to (e) are liquid circulation <performance evaluation method>
Same as Example 1, except that the appearance evaluation is visual <result>
Table 2 shows the results of surface roughness, and Table 3 shows the results of visual appearance evaluation.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
<評価>
 実施例1と比して、本願発明の試験片(d)、(e)での電圧を大きくした。その結果、電流も大きくなっているが、逆に、電流をここまで流せるという評価となる。(d)、(e)において、電流が50~70A/dm2と幅を持っている。電解ケースを移動するときの電流変動である。
<Evaluation>
Compared with Example 1, the voltage at the test pieces (d) and (e) of the present invention was increased. As a result, the current also increases, but conversely, it is evaluated that the current can flow up to here. In (d) and (e), the current has a width of 50 to 70 A / dm 2 . It is the current fluctuation when moving the electrolytic case.
 本願発明の試験片(d)、(e)、特に(e)(処理時間3分)の表面粗さは、実施例1の(e)(処理時間2分)のときとは格段に改善され、比較例(b)、(c)、(f)に比べて遜色がない。その上外観上の光沢性にも優れ本発明の優位性を示している。実施例1と同じく、試験片(d)、(e)では、試験片(f)と同様表面にオーステナイトを生成し表面改質が生じ、耐久性の高い電解研磨ができることが期待できる。 The surface roughness of the test pieces (d) and (e) of the present invention, particularly (e) (processing time 3 minutes), is markedly improved from that of Example 1 (e) (processing time 2 minutes). Compared with comparative examples (b), (c) and (f), there is no inferiority. In addition, it is excellent in gloss on appearance and shows the superiority of the present invention. Similar to Example 1, in test pieces (d) and (e), it is expected that austenite is generated on the surface as in the test piece (f), surface modification occurs, and electropolishing with high durability can be performed.
 <電解研磨システム>
 図6は、前記電解ケースを適用した電解システムを示す概念図である。
<Electrolytic polishing system>
FIG. 6 is a conceptual diagram showing an electrolysis system to which the electrolysis case is applied.
 電解液貯留槽3に貯留された電解液Lは、ポンプ4によって流量調整弁5を介して、前記電解ケース2の導入口13に圧送させるようになっている。又、前記電解ケース2のカソード12には、リード16を介して直流電源6からの負電圧が、又、前記ワークWには、当該直流電源6からの正電圧が、それぞれ印加される構成となっている。 The electrolytic solution L stored in the electrolytic solution storage tank 3 is pumped by the pump 4 to the inlet 13 of the electrolytic case 2 through the flow rate adjusting valve 5. Further, a negative voltage from a DC power source 6 is applied to the cathode 12 of the electrolytic case 2 via a lead 16, and a positive voltage from the DC power source 6 is applied to the work W, respectively. It has become.
 ここで、前記電解液貯留槽3は、上述した所定粘度の電解液Lを貯留している。又、前記ポンプ4は、前記電解液貯留槽3から、前記電解液Lを所定の吐出量で汲み出す構成である。 Here, the electrolytic solution storage tank 3 stores the electrolytic solution L having a predetermined viscosity described above. The pump 4 is configured to pump out the electrolytic solution L from the electrolytic solution storage tank 3 with a predetermined discharge amount.
 ここで、前記電解液Lは、強酸性で且つ高粘性であることから、前記ポンプ4には、当該電解液Lに対応して、耐薬品性に優れ且つ高い吐出量(高揚程)である合成樹脂製のダイヤフラムポンプが採用される。 Here, since the electrolytic solution L is strongly acidic and highly viscous, the pump 4 has excellent chemical resistance and a high discharge amount (high head) corresponding to the electrolytic solution L. A synthetic resin diaphragm pump is used.
 又、前記ポンプ4の吐出量又は揚程は、いずれも高い程好ましいが、例えば、最大吐出量が50L/min以上、又は最大自吸揚程が、2.0m以上であれば、好ましい。図6に示すポンプ4では、最大吐出量が54.5L/minであり、最大自吸揚程が2.4mであるダイヤフラムポンプ4が適用される。 Also, the higher the discharge amount or the lift of the pump 4 is, the higher is preferable. For example, it is preferable that the maximum discharge amount is 50 L / min or more, or the maximum self-priming lift is 2.0 m or more. In the pump 4 shown in FIG. 6, the diaphragm pump 4 having a maximum discharge amount of 54.5 L / min and a maximum self-priming lift of 2.4 m is applied.
 又、前記流量調整弁5は、前記ポンプ4と、前記電解ケース2との間に設けられ、当該ポンプ4から汲み出された電解液Lの流量を、前記電解ケース2の容積(1000cm3)当たりの所定の流量、言い換えると、前記電解ケース2の単位体積(1cm3)当たりの所定の流量に調整して、当該電解液Lを前記導入口13に流す構成である。 The flow rate adjusting valve 5 is provided between the pump 4 and the electrolytic case 2, and the flow rate of the electrolytic solution L pumped from the pump 4 is set to a volume (1000 cm 3 ) of the electrolytic case 2. In other words, the electrolytic solution L is adjusted to a predetermined flow rate per unit volume (1 cm 3 ) of the electrolytic case 2 and the electrolytic solution L flows through the inlet 13.
 これにより、前記電解液Lを、前記電解ケース2の単位体積当たりの所定の流量で、当該電解ケース2に常時、移送することで、当該電解ケース2のカソード12と、前記ワークWとの間に常に新鮮な電解液Lを供給することが可能となり、当該ワークWに、欠点が少なく品質の高い電解研磨を施すことが可能となる。尚、前記電解ケース2の単位体積当たりの所定の流量は、言い換えると、前記ワークWとカソード12の間の単位体積当たりの所定の流量に対応する。 As a result, the electrolyte solution L is always transferred to the electrolytic case 2 at a predetermined flow rate per unit volume of the electrolytic case 2, so that the space between the cathode 12 of the electrolytic case 2 and the workpiece W is increased. Therefore, it is possible to always supply fresh electrolytic solution L, and it is possible to subject the workpiece W to high-quality electrolytic polishing with few defects. In addition, the predetermined flow rate per unit volume of the electrolytic case 2 corresponds to the predetermined flow rate per unit volume between the workpiece W and the cathode 12 in other words.
 前記電解ケース2の単位体積当たりの電解液Lの所定の流量は、前記流量調整弁5により、例えば、前記電解ケース2の寸法が、長さ20cm、幅10cm、高さ5cmである場合、当該電解ケース2の体積は、1000cm3であるから、前記流量は、前記電解ケース2の容積(1000cm3)当たりに20~100mL/minの範囲、前記電解ケース2の単位体積(1cm3)当たりに0.020~0.100mL/minの範囲であると好ましい。 The predetermined flow rate of the electrolytic solution L per unit volume of the electrolytic case 2 is determined by the flow rate adjusting valve 5 when, for example, the dimensions of the electrolytic case 2 are 20 cm long, 10 cm wide, and 5 cm high. Since the volume of the electrolysis case 2 is 1000 cm 3 , the flow rate is in the range of 20 to 100 mL / min per unit volume (1000 cm 3 ) of the electrolysis case 2 and per unit volume (1 cm 3 ) of the electrolysis case 2. A range of 0.020 to 0.100 mL / min is preferable.
 又、前記直流電源6は、前記電解ケース2のカソード12に、前記リード16を介して負の電圧を、前記ワークWに正の電圧を、それぞれ印加する構成であり、前記直流電源6の印加する電圧は、例えば、上述に示すように、11V~20Vの範囲内と大きな値となる。又、前記電解ケース2におけるカソード12と、ワークWとの距離が、5mm~20mmであれば、両者間に流れる電流を、上述に示すように、30~100A/dm2とすることが可能となる。 The DC power supply 6 is configured to apply a negative voltage to the cathode 12 of the electrolytic case 2 via the lead 16 and a positive voltage to the work W, respectively. The voltage to be applied is a large value within the range of 11V to 20V, for example, as described above. If the distance between the cathode 12 and the workpiece W in the electrolytic case 2 is 5 mm to 20 mm, the current flowing between the two can be set to 30 to 100 A / dm 2 as described above. Become.
 このように、本発明に係る電解研磨システム1では、電解ケース2と、電解液貯留槽3と、ポンプ4と、流量調整弁5と、直流電源6とを組み立てることで、前記電解ケース2に、前記電解液Lを、前記電解ケース2の単位体積当たりの所定の流量で、常時、供給する構成としているため、当該電解ケース2のカソード12と、前記ワークWとの間に常に新鮮な電解液Lが流れ、当該ワークWに、高品質な電解研磨を施すことが可能となる。 Thus, in the electrolytic polishing system 1 according to the present invention, the electrolytic case 2, the electrolytic solution storage tank 3, the pump 4, the flow rate adjustment valve 5, and the direct current power source 6 are assembled to the electrolytic case 2. Since the electrolytic solution L is constantly supplied at a predetermined flow rate per unit volume of the electrolytic case 2, fresh electrolysis is always performed between the cathode 12 of the electrolytic case 2 and the workpiece W. The liquid L flows and the workpiece W can be subjected to high-quality electrolytic polishing.
 尚、本発明に係る前記電解研磨システム1では、作業者が、前記電解ケース2を手で持って、当該電解ケース2のカソード12(底面)を、前記ワークWの表面上に自由に移動(走査)させることで、当該ワークWに電解研磨を施すことになる。 In the electropolishing system 1 according to the present invention, an operator can freely move the cathode 12 (bottom surface) of the electrolysis case 2 onto the surface of the workpiece W by holding the electrolysis case 2 by hand ( Scanning), the workpiece W is subjected to electrolytic polishing.
 ここで、前記電解ケース2を前記ワークWの表面上に対して所定の処理時間だけ静置させることで、前記電解研磨がなされることになる。この処理時間の逆数が、例えば、前記電解ケース2を前記ワークWに移動(走査)させる走査速度に対応する。 Here, the electrolytic polishing is performed by allowing the electrolytic case 2 to stand on the surface of the workpiece W for a predetermined processing time. The reciprocal of this processing time corresponds to, for example, a scanning speed for moving (scanning) the electrolytic case 2 to the workpiece W.
 又、前記処理時間は、特に限定しないが、例えば、5min/m2~15min/m2の範囲内、具体的には、10min/m2であると、前記ワークWに、ほぼ浸漬電解研磨と同様の光沢を得ることが可能となり、好ましい。 Further, the processing time is not particularly limited. For example, when the processing time is within the range of 5 min / m 2 to 15 min / m 2 , specifically 10 min / m 2 , the workpiece W is substantially immersed in the electrolytic polishing. A similar gloss can be obtained, which is preferable.
 尚、前記処理時間が、前記ワークWの形状、前記直流電源6による電流の電流密度、前記電解研磨の処理の目的に応じて、適宜設計変更され得る。例えば、前記電解研磨の処理の目的が、前記ワークWの表面の脱脂や小程度の溶解(前記ワークWの表面に対して厚み数μmの溶解)であれば、前記処理時間は、上述の範囲よりも小さく設定され得るし、当該電解研磨の処理の目的が、浸漬電解研磨と同等の大規模の溶解(前記ワークWの表面に対して厚み数十μmの溶解)であれば、前記処理時間は、上述の範囲内又はそれ以上となり得る。 The processing time can be appropriately changed in design according to the shape of the workpiece W, the current density of the current by the DC power supply 6, and the purpose of the electrolytic polishing process. For example, if the purpose of the electrolytic polishing treatment is to degrease or slightly dissolve the surface of the workpiece W (dissolve several μm in thickness relative to the surface of the workpiece W), the treatment time is within the above range. If the purpose of the electrolytic polishing treatment is large-scale dissolution equivalent to immersion electrolytic polishing (dissolution of several tens of μm on the surface of the workpiece W), the processing time Can be within the above range or more.
 以上説明したように、本発明は大電流で電解研磨をすることができるので、作業時間が短時間となり、また、少量の電解液の保持が容易であるので、電解処理が極めて簡単となる。又、本発明は高品質な電解研磨を実現出来るため、産業上の利用可能性は極めて大きい。 As described above, since the present invention can perform electropolishing with a large current, the working time is shortened, and a small amount of electrolytic solution can be easily held, so that the electrolytic treatment becomes extremely simple. In addition, since the present invention can realize high-quality electrolytic polishing, the industrial applicability is extremely large.
11 環状枠
12 カソード
13 導入口
14 排出口
15 保持材
11 Annular frame 12 Cathode 13 Inlet 14 Outlet 15 Holding material

Claims (10)

  1.  無機酸にゲル化剤を接触させて、所定の粘度を持たせた、電解液。 An electrolytic solution in which a gelling agent is brought into contact with an inorganic acid to have a predetermined viscosity.
  2.  上記無機酸が、リン酸水溶液または、リン酸と硫酸の混合水溶液であり、ゲル化剤が二酸化珪素である請求項1に記載の電解液。 The electrolytic solution according to claim 1, wherein the inorganic acid is a phosphoric acid aqueous solution or a mixed aqueous solution of phosphoric acid and sulfuric acid, and the gelling agent is silicon dioxide.
  3.  85%リン酸500mL/L~1000mL/L
     98%硫酸0mL~500mL/L
     水0mL~500mL/L
     二酸化珪素100g/L~200g/L
     を含む請求項2に記載の電解液。
    85% phosphoric acid 500mL / L to 1000mL / L
    98% sulfuric acid 0mL ~ 500mL / L
    Water 0mL-500mL / L
    Silicon dioxide 100g / L ~ 200g / L
    The electrolytic solution according to claim 2, comprising:
  4.  更に、界面活性剤0.001%~0.01%を含む請求項3に記載の電解液。 The electrolytic solution according to claim 3, further comprising 0.001% to 0.01% of a surfactant.
  5.  環状枠と、
     上記環状枠の下の開口端から所定の高さの位置に配設したカソードと、
     上記開口端の位置のワークとカソードの間に所定粘度の電解液を導入する導入口と、
     上記環状枠内に導入された電解液を環状枠から排出する排出口と、
     を備えたことを特徴とする電解ケース。
    An annular frame;
    A cathode disposed at a predetermined height from the opening end under the annular frame;
    An inlet for introducing an electrolyte of a predetermined viscosity between the work at the position of the opening end and the cathode;
    A discharge port for discharging the electrolyte introduced into the annular frame from the annular frame;
    Electrolytic case characterized by comprising.
  6.  上記カソードを網体とし、当該網体の網目に対応して小穴を備えた導入パイプを、網体上に沿って配設し、当該導入パイプを介して所定粘度の電解液を、前記開口端に位置するワークとカソードの間に導入する構成とした導入口を備え、上記排出口として網目を利用した、請求項5に記載の電解ケース。 An introduction pipe having a small hole corresponding to the mesh of the mesh body is provided along the mesh body, and an electrolyte solution having a predetermined viscosity is passed through the introduction pipe. The electrolysis case according to claim 5, further comprising an introduction port configured to be introduced between the workpiece positioned at the cathode and the cathode, and using a mesh as the discharge port.
  7.  前記環状枠の下の開口端とカソードとで構成される空間に前記所定粘度の電解液を保持する保持材を充填した請求項6に記載の電解ケース。 The electrolytic case according to claim 6, wherein a holding material for holding the electrolytic solution having the predetermined viscosity is filled in a space formed by the open end under the annular frame and the cathode.
  8.  請求項5~7のいずれか一項に記載の電解ケースと、
     前記電解液を貯留した電解液貯留槽と、
     前記電解液貯留槽から、前記電解液を所定の吐出量で汲み出すポンプと、
     前記汲み出された電解液の流量を、前記電解ケースの単位体積当たりの所定の流量に調整して、当該電解液を前記導入口に流す流量調整弁と、
     前記電解ケースのカソードに負の電圧を、前記ワークに正の電圧をそれぞれ印加する直流電源と
     を備えた電解研磨システム。
    Electrolytic case according to any one of claims 5 to 7,
    An electrolytic solution storage tank storing the electrolytic solution;
    A pump for pumping out the electrolytic solution from the electrolytic solution storage tank at a predetermined discharge amount;
    A flow rate adjusting valve for adjusting the flow rate of the pumped electrolyte solution to a predetermined flow rate per unit volume of the electrolytic case, and flowing the electrolyte solution to the inlet;
    An electropolishing system comprising: a DC power source that applies a negative voltage to the cathode of the electrolytic case and a positive voltage to the workpiece.
  9.  環状枠の下の開口端から所定高さの位置にカソードを配置した電解ケースの上記環状枠の下端を、ワーク表面に向けて置き、
     所定粘度の電解液を前記ワークとカソードの間に継続して導入し、先に導入された電解液を排出しつつ、
     ワーク側に正、カソード側に負の所定電圧を印加して所定電流を流すとともに、
     上記環状枠のワーク上の位置を移動させて、ワーク上の目的の領域を電解研磨する
     電解研磨方法。
    Place the lower end of the annular frame of the electrolytic case in which the cathode is disposed at a predetermined height from the opening end under the annular frame toward the work surface,
    While continuously introducing an electrolytic solution of a predetermined viscosity between the workpiece and the cathode, while discharging the previously introduced electrolytic solution,
    While applying a positive predetermined voltage on the work side and negative predetermined voltage on the cathode side,
    An electropolishing method in which a position of the annular frame on the work is moved to electropolish a target region on the work.
  10.  前記電解液を、前記ワークとカソードの間の単位体積当たりの所定の流量で、当該ワークとカソードとの間に導入する
     請求項9に記載の電解研磨方法。
    The electrolytic polishing method according to claim 9, wherein the electrolytic solution is introduced between the workpiece and the cathode at a predetermined flow rate per unit volume between the workpiece and the cathode.
PCT/JP2011/006691 2010-12-01 2011-11-30 Electrolytic solution, electrolysis case, electropolishing system, and electropolishing method using these WO2012073501A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012546699A JP5889799B2 (en) 2010-12-01 2011-11-30 Electrolytic case
US13/991,203 US20130319878A1 (en) 2010-12-01 2011-11-30 Electrolytic solution, electrolysis case, electropolishing system, and electropolishing method using these

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010268643 2010-12-01
JP2010-268643 2010-12-01

Publications (1)

Publication Number Publication Date
WO2012073501A1 true WO2012073501A1 (en) 2012-06-07

Family

ID=46171466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/006691 WO2012073501A1 (en) 2010-12-01 2011-11-30 Electrolytic solution, electrolysis case, electropolishing system, and electropolishing method using these

Country Status (3)

Country Link
US (1) US20130319878A1 (en)
JP (1) JP5889799B2 (en)
WO (1) WO2012073501A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012104707A1 (en) * 2012-05-31 2013-12-05 Benteler Automobiltechnik Gmbh Method for producing an exhaust gas heat exchanger
GB2538996A (en) * 2015-06-02 2016-12-07 Datum Alloys Pte Ltd Selective electropolishing method, appartus and electrolyte
US10557212B2 (en) 2016-03-08 2020-02-11 Chemeon Surface Technology, Llc Electropolishing method and product

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51110438A (en) * 1975-03-25 1976-09-30 Kagoshima Prefecture YOHENSEIOFUYOSHITATOFUYOKINZOKUHYOMENSHORIZAI
JPS53113227A (en) * 1977-03-15 1978-10-03 Masami Kobayashi Creamy rust removing agent
JPS6063400A (en) * 1983-09-16 1985-04-11 Hitachi Ltd Decontaminating method of metallic surface
JPS61181614U (en) * 1985-05-07 1986-11-12
JPS62116299A (en) * 1985-11-15 1987-05-27 株式会社 原子力代行 Electrolytical decontaminator for cite
JPH02133580A (en) * 1988-09-27 1990-05-22 Courtaulds Coatings Ltd Coating method for the inner surface of liquid tank
JPH04103792A (en) * 1990-08-23 1992-04-06 Kawasaki Steel Corp Electrolytically treating device
JPH11189892A (en) * 1997-12-24 1999-07-13 Denki Kagaku Kogyo Kk Electroplating method and production of prove pin using the method
JP2002075926A (en) * 2000-08-30 2002-03-15 Nippon Shokubai Co Ltd Method and device for polishing metal film
JP2010530029A (en) * 2007-06-06 2010-09-02 アトーテヒ ドイッチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング Apparatus and method for electrical processing of plate products

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5616231A (en) * 1996-05-08 1997-04-01 Aluminum Company Of America Electrobrightening process for aluminum alloys
US20070295611A1 (en) * 2001-12-21 2007-12-27 Liu Feng Q Method and composition for polishing a substrate
WO2005083159A2 (en) * 2004-02-23 2005-09-09 E.I. Dupont De Nemours & Company Apparatus adapted for membrane mediated electropolishing

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51110438A (en) * 1975-03-25 1976-09-30 Kagoshima Prefecture YOHENSEIOFUYOSHITATOFUYOKINZOKUHYOMENSHORIZAI
JPS53113227A (en) * 1977-03-15 1978-10-03 Masami Kobayashi Creamy rust removing agent
JPS6063400A (en) * 1983-09-16 1985-04-11 Hitachi Ltd Decontaminating method of metallic surface
JPS61181614U (en) * 1985-05-07 1986-11-12
JPS62116299A (en) * 1985-11-15 1987-05-27 株式会社 原子力代行 Electrolytical decontaminator for cite
JPH02133580A (en) * 1988-09-27 1990-05-22 Courtaulds Coatings Ltd Coating method for the inner surface of liquid tank
JPH04103792A (en) * 1990-08-23 1992-04-06 Kawasaki Steel Corp Electrolytically treating device
JPH11189892A (en) * 1997-12-24 1999-07-13 Denki Kagaku Kogyo Kk Electroplating method and production of prove pin using the method
JP2002075926A (en) * 2000-08-30 2002-03-15 Nippon Shokubai Co Ltd Method and device for polishing metal film
JP2010530029A (en) * 2007-06-06 2010-09-02 アトーテヒ ドイッチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング Apparatus and method for electrical processing of plate products

Also Published As

Publication number Publication date
US20130319878A1 (en) 2013-12-05
JPWO2012073501A1 (en) 2014-05-19
JP5889799B2 (en) 2016-03-22

Similar Documents

Publication Publication Date Title
JP5145083B2 (en) Method for electrolytic polishing of titanium
US20170022626A1 (en) Production method for stainless steel containing member
JP2013533381A (en) Strongly passivated metal electrolysis system and processing method
JP2015145526A (en) Electroplating cell, metal film, and method of producing the same
TW200528587A (en) Apparatus adapted for membrane-mediated electropolishing
JP5889799B2 (en) Electrolytic case
JP2021510768A (en) Use of H2SO4 as an electrolyte in methods for metal smoothing and polishing by ion transport via free solids
AU2008351701B2 (en) Improvements in electropolishing apparatus
US11280016B2 (en) Apparatus and method for in-situ electrosleeving and in-situ electropolishing internal walls of metallic conduits
CN102220582A (en) Platinum-plated titanium palladium alloy plate and preparation method thereof
CN108546984A (en) A kind of new-energy automobile steel pipe internal-surface electrochemistry positioning burnishing device
JP6576939B2 (en) Cavity tube polishing rotor
JPWO2019151102A1 (en) Electropolishing method and equipment
KR20170013464A (en) Electropolishing system of deeping type electrolyte flow
KR102088847B1 (en) Method of reducing scale of cathode for electrolysis of ballast water
KR20200008453A (en) Electrolytic polishing method of metal tube using ultrasonic wave
KR20100115294A (en) Electroplating apparatus
KR101751183B1 (en) Micro electrochemical machining device
CN109097779A (en) A kind of electrolytic copper foil titanium cathode roller chemical polishing solution and polishing method
KR20080079799A (en) Electro polishing apparatus and method for metal pipe
WO2015174204A1 (en) Plating apparatus and container bath
JP4342522B2 (en) Method for homogenizing electrolyte concentration and electrolytic cell
KR200381299Y1 (en) Electro-polishing apparatus
JP2001121837A (en) Method for manufacturing aluminum base for lithographic printing plate
KR20020023633A (en) A method and a contrivance of producing a wash, and a wash itself

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11844303

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012546699

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13991203

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11844303

Country of ref document: EP

Kind code of ref document: A1