WO2012073377A1 - Spin-coat device - Google Patents
Spin-coat device Download PDFInfo
- Publication number
- WO2012073377A1 WO2012073377A1 PCT/JP2010/071680 JP2010071680W WO2012073377A1 WO 2012073377 A1 WO2012073377 A1 WO 2012073377A1 JP 2010071680 W JP2010071680 W JP 2010071680W WO 2012073377 A1 WO2012073377 A1 WO 2012073377A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- substrate
- wafer
- shield
- liquid
- spin coater
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/6715—Apparatus for applying a liquid, a resin, an ink or the like
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/16—Coating processes; Apparatus therefor
- G03F7/162—Coating on a rotating support, e.g. using a whirler or a spinner
Definitions
- the present invention relates to a spin coater for spin coating a coating film such as a photoresist film used in a microfabrication process of a semiconductor device.
- the present invention relates to a spin coater that can improve the uniformity of a coating film formed by spin coating.
- Patent Document 1 discloses that a chamber, a means for depressurizing the inside of the chamber, a means for applying an organic resin on a semiconductor wafer in the chamber, and a uniform film thickness of the organic resin applied by rotating the semiconductor wafer.
- a spin coater comprising: It is said that a high-quality electronic device (semiconductor device) can be manufactured by the spin coater without generating bubbles in the organic resin film.
- An object of the present invention is to improve the uniformity of a coating film formed by spin coating.
- a vacuum vessel a substrate folder installed inside the vacuum vessel and holding a wafer-like substrate so that a coating surface is on, and the wafer
- a rotating mechanism that rotates the substrate folder so that the substrate rotates substantially horizontally
- a liquid supply unit that supplies a liquid material containing a coating material from above the center of the wafer substrate toward the coating surface
- the wafer And a shielding body arranged to concentrically surround the substrate and blocking the flow of the liquid material or the vaporized material generated by the rotation of the wafer substrate to the outside.
- the shield rotates together with the substrate folder, and a clearance or a hole for letting out the liquid substance or its vaporized substance that receives the action of the centrifugal force generated by the rotation from the inside to the outside of the shield.
- the lower part of the shield and the outer periphery of the substrate folder may be in contact with each other so that a downward flow of the liquid substance or its vaporized substance is inhibited.
- the above spin coating apparatus may further include a cleaning liquid supply unit that supplies a cleaning liquid from the center of the substrate folder toward the back surface of the wafer-like substrate. Moreover, you may further have the gas supply part which supplies a dry gas in the said vacuum vessel. Furthermore, you may further have a heating means to heat the said coating surface of the said wafer-like board
- FIG. 1 is a cross-sectional view showing a spin coater 100 in more detail.
- 5 is a flowchart showing an example of a coating process using the spin coater 100.
- FIG. 1 shows an outline of the spin coater 100.
- the upper part shows a top view
- the lower part is a cross-sectional view.
- the spin coater 100 includes a vacuum container 102 that can keep the inside in a reduced pressure state, a substrate folder 104 that holds the wafer-like substrate 120, and a rotation mechanism 106 that rotates the substrate folder 104 so that the wafer-like substrate 120 rotates substantially horizontally.
- the liquid material supply unit 108 and the shield 110 supply a liquid material containing a coating material from the upper center of the wafer-shaped substrate 120 toward the coating surface 120a.
- the wafer-like substrate 120 has a coating surface 120a, and a coating material such as an organic material such as a photoresist is coated on the coating surface 120a.
- the substrate folder 104 is installed inside the vacuum container 102. The substrate folder 104 holds the wafer-like substrate 120 so that the coating surface 120a is on top.
- the coating material is a material that is applied to the coating surface 120a, and an organic material such as a photoresist can be exemplified. When the coating material is an organic material, the liquid material contains an organic solvent.
- the wafer-like substrate 120 rotates with the rotation of the substrate folder 104, as in the other spin coaters.
- the liquid material supplied to the central portion of the wafer-like substrate 120 is caused to flow in the circumferential direction of the wafer-like substrate 120 by the action of the centrifugal force accompanying the rotation. That is, the coating substance contained in the liquid material is applied (spin coated) while rotating the wafer-like substrate 120.
- coating spin coat
- the spin coat apparatus 100 further includes a shield 110.
- the shield 110 is disposed so as to surround the wafer-like substrate 120 concentrically, and blocks the flow 130 of the liquid material or the vaporized material generated by the rotation of the wafer-like substrate 120 to the outside.
- the liquid material is caused to flow in the circumferential direction by the centrifugal force generated by the rotation of the wafer-like substrate 120.
- the liquid material itself or a vaporized material from the liquid material alone or together creates a flow 130. It has been empirically found that when there is nothing to block the flow 130, the thickness of the coating material in the vicinity of the periphery of the wafer-like substrate 120 becomes thin.
- the spin coater 100 since the spin coater 100 has the shield 110, a stay portion 132 of the flow 130 is formed between the wafer-like substrate 120 and the shield 110, and a region having a high pressure is formed locally. As a result, the film thickness of the coating substance in the vicinity of the periphery of the wafer-like substrate 120 is increased, and the film thickness uniformity over the entire wafer-like substrate 120 is improved.
- the shield 110 has an upper shield 110a and a lower shield 110b, and a gap G is formed between the upper shield 110a and the lower shield 110b.
- the shield 110 does not need to be separated into an upper part and a lower part, and may be formed integrally. In this case, a hole may be opened in the shield 110 instead of the gap G. Further, it is not always necessary to rotate the shield 110, but by rotating the shield 110, the liquid material staying in the shield 110 can be discharged to the outside through the gap G by the action of centrifugal force. In addition, the generation of particles due to the staying liquid can be prevented.
- the lower part of the shield 110 (lower shield 110b) and the outer periphery of the substrate folder 104 may be in contact with each other. In this case, the downward flow 130 is obstructed, and the retention portion 132 is more effectively formed. As a result, the film thickness uniformity of the coating substance can be improved.
- a ridge 110c projecting inward may be formed on the upper part of the shield 110 (upper shield 110a). In this case, the upward flow 130 is obstructed, and the stay part 132 is more effectively formed. As a result, the film thickness uniformity of the coating substance can be improved.
- the rotational speed of the wafer-shaped substrate 120, the rotational speed of the shield 110, and the distance of the gap G have a strong relationship with each other, it is appropriately determined in consideration of other parameters such as the viscosity of the liquid material. You can select any value.
- FIG. 2 is a cross-sectional view showing the spin coater 100 in more detail.
- the spin coater 100 includes a cleaning liquid supply unit 140, a gas supply unit 150, a heating unit 160, a vacuum mechanism 170, and the like.
- a waste liquid treatment mechanism 180 is provided.
- the vacuum vessel 102 has a vessel body 102a and a lid 102b.
- the space between the container main body 102a and the lid 102b is sealed by the packing 102c, and kept in a reduced pressure state by exhausting by the vacuum mechanism 170.
- cover 102b have the mechanical strength which can endure a pressure-reduced state, and the chemical stability which can endure the chemical action from an organic solvent etc.
- the material is arbitrary.
- the material of the container body 102a and the lid 102b include metals such as iron, stainless steel, and aluminum, or organic resins such as vinyl chloride and acrylic.
- the substrate folder 104 has a base plate 104a and pins 104b fixed to the base plate 104a.
- the base plate 104a is rotated by the rotation mechanism 106, and the pin 104b has a horizontal surface and a protrusion at the tip.
- the back surface of the peripheral end portion of the wafer-like substrate 120 is supported by the horizontal surfaces of the plurality of pins 104b, and the circumferential slip of the wafer-like substrate 120 is suppressed by the protrusions of the plurality of pins 104b.
- the rotation mechanism 106 includes a rotation motor 106a, a shaft 106b, and a bearing 106c.
- the shaft 106b is fixed to the base plate 104a, and the bearing 106c supports the shaft 106b.
- the rotation motor 106a rotationally drives the shaft 106b.
- a servomotor can be exemplified as the rotation motor 106a.
- the rotational force of the shaft 106b is transmitted to the base plate 104a, and the wafer-like substrate 120 supported by the pins 104b rotates with the rotation of the base plate 104a.
- the liquid supply unit 108 includes a nozzle 108a and a manifold 108b.
- the nozzle 108a injects the supplied liquid material.
- the nozzle 108a can be appropriately designed according to the injection direction and the injection speed of the liquid material.
- the manifold 108b allows the path of the liquid material and the path of other supplies such as dry gas to be shared.
- the shield 110 includes a spacer 110d for forming a gap G between the upper shield 110a and the lower shield 110b in addition to the upper shield 110a, the lower shield 110b, and the flange 110c of the upper shield 110a.
- the distance of the gap G formed by the spacer 110d can be designed as appropriate.
- the lower shield 110b is fixed to the base plate 104a. Therefore, the entire shield 110 is also rotationally driven by the rotation mechanism 106.
- the shield 110 is not necessarily rotated. However, in this case, the advantage of discharging the liquid material staying inside the shield 110 by centrifugal force cannot be enjoyed. Further, it is not necessary that the lower portion of the shield 110 is fixed to the base plate 104a or integrally formed. Alternatively, the collar 110c of the upper shield 110a need not be formed. However, in these cases, the effect of forming the stay part 132 of the liquid 130 or the vaporized substance flow 130 may be reduced.
- the cleaning liquid supply unit 140 supplies the cleaning liquid from the central part of the substrate folder 104 toward the back surface 120b of the wafer-like substrate 120.
- the cleaning liquid supply unit 140 includes a cleaning liquid nozzle 140a and an infusion tube 140b.
- the infusion tube 140b penetrates the inside of the shaft 106b and transports the cleaning liquid to the cleaning liquid nozzle 140a.
- the cleaning liquid nozzle 140 a injects the cleaning liquid toward the back surface 120 b of the wafer-like substrate 120.
- the cleaning liquid nozzle 140a can be appropriately designed according to the injection direction and the injection speed of the cleaning liquid. Examples of the cleaning liquid include water such as pure water and ozone water, and organic solvents such as isopropyl alcohol.
- the wafer-like substrate 120 can be cleaned before the coating substance is applied, and defects in the coating film due to particles and the like can be reduced.
- particles adhere to the back surface 120b of the wafer-like substrate 120, and the spin coater 100 of this embodiment applies the coating substance in a reduced pressure environment. Since particles easily scatter in a reduced pressure environment, it is particularly effective in the spin coater 100 of this embodiment to include a means for cleaning the back surface 120b of the wafer-like substrate 120 before the coating process.
- the gas supply unit 150 supplies dry gas into the vacuum vessel 102.
- An example of the dry gas is high-temperature nitrogen gas.
- survive in a coating film can be discharged
- the cleaning liquid can be quickly dried after the cleaning process.
- the heating means 160 heats the coating surface 120a of the wafer-like substrate 120.
- An example of the heating means 160 is an infrared heater such as a halogen lamp.
- the vacuum mechanism 170 has a vacuum pump 170a and an exhaust pipe 170b.
- Examples of the vacuum pump 170a include an oil rotary pump and a mechanical booster pump.
- the material of the exhaust pipe 170b is the same as that of the container main body 102a and the lid 102b.
- the waste liquid treatment mechanism 180 has a gas-liquid separator 180a and a drain tank 180b.
- the gas-liquid separator 180a separates the gas and liquid flowing through the exhaust pipe 170b.
- the drainage tank 180b temporarily stores the liquid separated by the gas-liquid separator 180a as drainage.
- FIG. 3 is a flowchart showing an example of a coating process using the spin coater 100.
- the lid 102 b of the vacuum container 102 is opened, and the wafer-like substrate 120 is loaded into the substrate folder 104.
- a loader / unloader equipped with a robot arm may be used for loading.
- the lid 102b is closed and the vacuum pump 170a is operated, or the vacuum valve disposed between the vacuum pump 170a and the vacuum vessel 102 is opened, and the inside of the vacuum vessel 102 is brought into a reduced pressure state (step 302).
- the rotation motor 106a is operated to start the rotation of the wafer-like substrate 120 (step 304).
- the back surface 120b of the wafer-like substrate 120 is cleaned (step 306).
- the back surface 120b is cleaned by opening the valve VL3 and supplying a cleaning liquid from the nozzle 140a.
- the valve VL3 is closed and the supply of the cleaning liquid is stopped, and then the wafer-like substrate 120 is dried (step 308).
- the wafer-like substrate 120 is dried by opening the valve VL2 and supplying a drying gas.
- the valve VL2 is closed to stop the supply of the dry gas, and then the liquid material is supplied to the coating surface 120a of the wafer-like substrate 120 (step 310).
- the liquid material is supplied by opening the valve VL1 and closing the valve VL1 after a predetermined time has elapsed.
- the wafer-like substrate 120 is dried as in Step 308 (Step 312), and the rotation motor 106a is stopped to stop the rotation of the wafer-like substrate 120 (Step 314).
- the application surface 120a is heated by the heating means 160, and the application substance on the application surface is pre-baked (step 316). Thereafter, the vacuum pump 170a is stopped, or the vacuum valve disposed between the vacuum pump 170a and the vacuum vessel 102 is closed, and the inside of the vacuum vessel 102 is brought into an atmospheric pressure state. Thereafter, the wafer-like substrate 120 is unloaded (step 318).
- the cleaning in step 306 and the drying in step 308 are not essential.
- the drying in step 312 may be omitted if the liquid to be supplied has high volatility.
- the pre-baking in step 316 is not essential.
- the steps of cleaning in step 306, drying in step 308, drying in step 312 and pre-baking in step 316 may be performed in a state where the wafer-like substrate 120 is rotated or stopped, in a reduced pressure state. Or you may carry out in any state of an atmospheric pressure state.
- the supply of the liquid material in step 310 does not require the wafer-like substrate 120 to be rotated at the start stage and does not need to be in a reduced pressure state.
- the pressure may be reduced after the supply of the liquid material is started, or the rotation may be started after the supply of the liquid material is started.
- DESCRIPTION OF SYMBOLS 100 Spin coater, 102 ... Vacuum container, 102a ... Container body, 102b ... Lid, 102c ... Packing, 104 ... Substrate folder, 104a ... Base plate, 104b ... Pin, 106 ... Rotation mechanism, 106a ... Rotation motor, 106b ... Shaft 106c ... Bearing, 108 ... Liquid material supply unit, 108a ... Nozzle, 108b ... Manifold, 110 ... Shielding body, 110a ... Upper shielding body, 110b ... Lower shielding body, 110c ... Saddle, 110d ... Spacer, 120 ... Wafer substrate 120a ... coating surface, 120b ...
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Coating Apparatus (AREA)
- Cleaning Or Drying Semiconductors (AREA)
Abstract
In order to improve the uniformity of a coating film formed by spin-coating, a spin-coat device is provided comprising: a vacuum container; a substrate holder for holding a wafer substrate so that a coated surface thereof faces upward, the substrate holder being installed on the inside of the vacuum container; a spinning mechanism for spinning the substrate holder so that the wafer substrate spins approximately horizontally; a liquid supplier for supplying a liquid that includes a coating material from above the center of the wafer substrate to the coated surface; and a shield for cutting off the flow of the liquid or its vapor that is generated by the spinning of the wafer substrate, the shield being arranged to concentrically surround the wafer substrate.
Description
本発明は、半導体デバイスの微細加工工程において使用されるフォトレジスト膜等の塗布膜をスピンコーティングするスピンコート装置に関する。特に本発明は、スピンコーティングにより形成される塗布膜の均一性を向上することができるスピンコート装置に関する。
The present invention relates to a spin coater for spin coating a coating film such as a photoresist film used in a microfabrication process of a semiconductor device. In particular, the present invention relates to a spin coater that can improve the uniformity of a coating film formed by spin coating.
周知の通り、半導体デバイスの製造工程におけるフォトレジスト膜は、スピンコーティングにより形成される。たとえば、特許文献1は、チャンバーとチャンバー内を減圧する手段と、チャンバー内で半導体ウェハ上に有機系樹脂を塗布する手段と、半導体ウェハを回転させて塗布された有機系樹脂の膜厚を均一化する手段とを備えるスピンコート装置を開示している。当該スピンコート装置により、有機系樹脂膜中に気泡を発生させず、高品位な電子装置(半導体デバイス)が製造できるとされている。
As is well known, a photoresist film in a semiconductor device manufacturing process is formed by spin coating. For example, Patent Document 1 discloses that a chamber, a means for depressurizing the inside of the chamber, a means for applying an organic resin on a semiconductor wafer in the chamber, and a uniform film thickness of the organic resin applied by rotating the semiconductor wafer. A spin coater comprising: It is said that a high-quality electronic device (semiconductor device) can be manufactured by the spin coater without generating bubbles in the organic resin film.
前記した従来技術により、フォトレジスト膜(有機系樹脂膜)の中の気泡は抑制できるものの、半導体デバイスの微細化への要求あるいは基板面積の大型化への要求は強く、これら要求に対応するためには、フォトレジスト膜の膜厚をより均一にする必要がある。本発明の目的は、スピンコーティングにより形成される塗布膜の均一性を向上することにある。
Although the above-described conventional technology can suppress bubbles in the photoresist film (organic resin film), there is a strong demand for miniaturization of semiconductor devices or an increase in substrate area, in order to meet these demands. For this, it is necessary to make the film thickness of the photoresist film more uniform. An object of the present invention is to improve the uniformity of a coating film formed by spin coating.
上記課題を解決するために、本発明の第1の態様においては、真空容器と、前記真空容器の内部に設置され、塗布面が上になるようウェハ状基板を保持する基板フォルダと、前記ウェハ状基板がほぼ水平に回転するよう前記基板フォルダを回転させる回転機構と、前記ウェハ状基板の中央上方から前記塗布面に向けて塗布物質を含む液状物を供給する液状物供給部と、前記ウェハ状基板を同心円状に囲むように配置され、前記ウェハ状基板の回転により生ずる前記液状物またはその気化物の外側への流れを遮る遮蔽体と、を有するスピンコート装置を提供する。
In order to solve the above problems, in the first aspect of the present invention, a vacuum vessel, a substrate folder installed inside the vacuum vessel and holding a wafer-like substrate so that a coating surface is on, and the wafer A rotating mechanism that rotates the substrate folder so that the substrate rotates substantially horizontally, a liquid supply unit that supplies a liquid material containing a coating material from above the center of the wafer substrate toward the coating surface, and the wafer And a shielding body arranged to concentrically surround the substrate and blocking the flow of the liquid material or the vaporized material generated by the rotation of the wafer substrate to the outside.
上記したスピンコート装置において、前記遮蔽体が、前記基板フォルダと共に回転し、前記回転により生ずる遠心力の作用を受ける前記液状物またはその気化物を前記遮蔽体の内側から外側に逃がす隙間または穴を有するものであってもよい。また、前記遮蔽体の下部と前記基板フォルダの外周とが接して構成されることで、前記液状物またはその気化物の下方向への流れが阻害されているものであってもよい。また、前記遮蔽体の上部に、内側に張り出した庇を有してもよい。
In the spin coater described above, the shield rotates together with the substrate folder, and a clearance or a hole for letting out the liquid substance or its vaporized substance that receives the action of the centrifugal force generated by the rotation from the inside to the outside of the shield. You may have. The lower part of the shield and the outer periphery of the substrate folder may be in contact with each other so that a downward flow of the liquid substance or its vaporized substance is inhibited. Moreover, you may have the ridge overhang | projected inside in the upper part of the said shield.
上記したスピンコート装置において、前記基板フォルダの中央部から前記ウェハ状基板の裏面に向けて洗浄液を供給する洗浄液供給部をさらに有してもよい。また、前記真空容器内に乾燥ガスを供給するガス供給部をさらに有してもよい。さらに、前記ウェハ状基板の前記塗布面を加熱する加熱手段をさらに有してもよい。
The above spin coating apparatus may further include a cleaning liquid supply unit that supplies a cleaning liquid from the center of the substrate folder toward the back surface of the wafer-like substrate. Moreover, you may further have the gas supply part which supplies a dry gas in the said vacuum vessel. Furthermore, you may further have a heating means to heat the said coating surface of the said wafer-like board | substrate.
なお、上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。
Note that the above summary of the invention does not enumerate all the necessary features of the present invention. In addition, a sub-combination of these feature groups can also be an invention.
以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は特許請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
Hereinafter, the present invention will be described through embodiments of the invention, but the following embodiments do not limit the invention according to the claims. In addition, not all the combinations of features described in the embodiments are essential for the solving means of the invention.
図1は、スピンコート装置100の概要を示す。図1において上部は上面図を示し、下部は断面図である。スピンコート装置100は、内部を減圧状態に保つことができる真空容器102、ウェハ状基板120を保持する基板フォルダ104、ウェハ状基板120がほぼ水平に回転するよう基板フォルダ104を回転させる回転機構106、ウェハ状基板120の中央上方から塗布面120aに向けて塗布物質を含む液状物を供給する液状物供給部108および遮蔽体110を有する。
FIG. 1 shows an outline of the spin coater 100. In FIG. 1, the upper part shows a top view, and the lower part is a cross-sectional view. The spin coater 100 includes a vacuum container 102 that can keep the inside in a reduced pressure state, a substrate folder 104 that holds the wafer-like substrate 120, and a rotation mechanism 106 that rotates the substrate folder 104 so that the wafer-like substrate 120 rotates substantially horizontally. The liquid material supply unit 108 and the shield 110 supply a liquid material containing a coating material from the upper center of the wafer-shaped substrate 120 toward the coating surface 120a.
ウェハ状基板120は、塗布面120aを有し、塗布面120aには有機物たとえばフォトレジスト等の塗布物質が塗布される。基板フォルダ104は、真空容器102の内部に設置される。基板フォルダ104は、塗布面120aが上になるようウェハ状基板120を保持する。塗布物質は、塗布面120aに塗布される物質であり、フォトレジスト等の有機物が例示できる。塗布物質が有機物である場合、液状物には有機溶剤が含まれる。
The wafer-like substrate 120 has a coating surface 120a, and a coating material such as an organic material such as a photoresist is coated on the coating surface 120a. The substrate folder 104 is installed inside the vacuum container 102. The substrate folder 104 holds the wafer-like substrate 120 so that the coating surface 120a is on top. The coating material is a material that is applied to the coating surface 120a, and an organic material such as a photoresist can be exemplified. When the coating material is an organic material, the liquid material contains an organic solvent.
スピンコート装置100は、他のスピンコート装置と同様、ウェハ状基板120が基板フォルダ104の回転と共に回転する。回転に伴う遠心力の作用により、ウェハ状基板120の中央部に供給された液状物がウェハ状基板120の周方向に流される。すなわち、ウェハ状基板120を回転させつつ液状物に含まれた塗布物質を塗布(スピンコート)する。そして、スピンコート装置100では、減圧雰囲気において上記塗布(スピンコート)が実施される。減圧状態においては、液状物の移動を阻害する空気等が減少し、液状物が速やかにウェハ状基板120の周方向に流されるようになる。
In the spin coater 100, the wafer-like substrate 120 rotates with the rotation of the substrate folder 104, as in the other spin coaters. The liquid material supplied to the central portion of the wafer-like substrate 120 is caused to flow in the circumferential direction of the wafer-like substrate 120 by the action of the centrifugal force accompanying the rotation. That is, the coating substance contained in the liquid material is applied (spin coated) while rotating the wafer-like substrate 120. And in the spin coater 100, the said application | coating (spin coat) is implemented in a pressure-reduced atmosphere. In the reduced pressure state, air or the like that hinders the movement of the liquid material is reduced, and the liquid material is quickly flown in the circumferential direction of the wafer-like substrate 120.
スピンコート装置100は、さらに遮蔽体110を有する。遮蔽体110は、ウェハ状基板120を同心円状に囲むように配置され、ウェハ状基板120の回転により生ずる液状物またはその気化物の外側への流れ130を遮る。
The spin coat apparatus 100 further includes a shield 110. The shield 110 is disposed so as to surround the wafer-like substrate 120 concentrically, and blocks the flow 130 of the liquid material or the vaporized material generated by the rotation of the wafer-like substrate 120 to the outside.
ウェハ状基板120の回転による遠心力により、液状物が周方向に流されることは前記の通りであるが、液状物それ自体または液状物からの気化物が単独または共に流れ130を作る。流れ130を何ら遮蔽するものが無い場合、ウェハ状基板120の周近傍での塗布物質の膜厚が薄くなることが経験的に判明している。しかし、スピンコート装置100では、遮蔽体110を有するので、ウェハ状基板120と遮蔽体110との間に流れ130の滞留部132が形成され、局部的に圧力の高い領域が形成される。この結果、ウェハ状基板120の周近傍での塗布物質の膜厚が厚くなり、ウェハ状基板120全体での膜厚均一性が向上する。
As described above, the liquid material is caused to flow in the circumferential direction by the centrifugal force generated by the rotation of the wafer-like substrate 120. However, the liquid material itself or a vaporized material from the liquid material alone or together creates a flow 130. It has been empirically found that when there is nothing to block the flow 130, the thickness of the coating material in the vicinity of the periphery of the wafer-like substrate 120 becomes thin. However, since the spin coater 100 has the shield 110, a stay portion 132 of the flow 130 is formed between the wafer-like substrate 120 and the shield 110, and a region having a high pressure is formed locally. As a result, the film thickness of the coating substance in the vicinity of the periphery of the wafer-like substrate 120 is increased, and the film thickness uniformity over the entire wafer-like substrate 120 is improved.
遮蔽体110は、上部遮蔽体110aと下部遮蔽体110bを有し、上部遮蔽体110aと下部遮蔽体110bの間には隙間Gが形成されている。遮蔽体110が基板フォルダ104と共に回転する場合、回転により生ずる遠心力の作用を受けて、滞留部132で滞留した液状物またはその気化物(流れ130)が、隙間Gから外側に逃がされる。遮蔽体110の外側に逃がされた流れ130は真空容器102の外に排出される。
The shield 110 has an upper shield 110a and a lower shield 110b, and a gap G is formed between the upper shield 110a and the lower shield 110b. When the shield 110 rotates together with the substrate folder 104, the liquid substance or its vaporized substance (flow 130) staying in the stay part 132 is released from the gap G to the outside under the action of the centrifugal force generated by the rotation. The flow 130 released to the outside of the shield 110 is discharged out of the vacuum vessel 102.
遮蔽体110は、上部および下部に分離する必要はなく、一体として形成されたものであっても良い。この場合、隙間Gに代えて遮蔽体110には穴を開口しても良い。また、遮蔽体110を回転させることは、必ずしも必要はないが、遮蔽体110を回転させることで、遮蔽体110に滞留した液状物を、遠心力の作用により隙間Gを介して外部に排出でき、滞留した液状物によるパーティクルの発生等を防止することができる。
The shield 110 does not need to be separated into an upper part and a lower part, and may be formed integrally. In this case, a hole may be opened in the shield 110 instead of the gap G. Further, it is not always necessary to rotate the shield 110, but by rotating the shield 110, the liquid material staying in the shield 110 can be discharged to the outside through the gap G by the action of centrifugal force. In addition, the generation of particles due to the staying liquid can be prevented.
遮蔽体110の下部(下部遮蔽体110b)と基板フォルダ104の外周とが接して構成されてもよい。この場合、下方向に向かう流れ130が阻害され、より有効に滞留部132を形成するようになる。この結果、塗布物質の膜厚均一性を高めることができる。
The lower part of the shield 110 (lower shield 110b) and the outer periphery of the substrate folder 104 may be in contact with each other. In this case, the downward flow 130 is obstructed, and the retention portion 132 is more effectively formed. As a result, the film thickness uniformity of the coating substance can be improved.
遮蔽体110の上部(上部遮蔽体110a)に、内側に張り出した庇110cを形成してもよい。この場合、上方向に向かう流れ130が阻害され、より有効に滞留部132を形成するようになる。この結果、塗布物質の膜厚均一性を高めることができる。
A ridge 110c projecting inward may be formed on the upper part of the shield 110 (upper shield 110a). In this case, the upward flow 130 is obstructed, and the stay part 132 is more effectively formed. As a result, the film thickness uniformity of the coating substance can be improved.
なお、ウェハ状基板120の回転速度、遮蔽体110の回転速度、および隙間Gの距離には互いに強い関連性があると推定できるが、液状物の粘度等他のパラメータも勘案して、適宜適切な値が選択できる。
Although it can be estimated that the rotational speed of the wafer-shaped substrate 120, the rotational speed of the shield 110, and the distance of the gap G have a strong relationship with each other, it is appropriately determined in consideration of other parameters such as the viscosity of the liquid material. You can select any value.
図2は、スピンコート装置100をより詳細に示した断面図である。スピンコート装置100は、前記した真空容器102、基板フォルダ104、回転機構106、液状物供給部108および遮蔽体110に加え、洗浄液供給部140、ガス供給部150、加熱手段160、真空機構170および廃液処理機構180を備える。
FIG. 2 is a cross-sectional view showing the spin coater 100 in more detail. In addition to the vacuum container 102, the substrate folder 104, the rotation mechanism 106, the liquid material supply unit 108, and the shield 110, the spin coater 100 includes a cleaning liquid supply unit 140, a gas supply unit 150, a heating unit 160, a vacuum mechanism 170, and the like. A waste liquid treatment mechanism 180 is provided.
真空容器102は、容器本体102aと蓋102bとを有する。容器本体102aと蓋102bの間がパッキング102cによりシールされ、真空機構170による排気により減圧状態に保たれる。容器本体102aおよび蓋102bは、減圧状態に耐え得る機械的強度と、有機溶剤等からの化学的作用に耐え得る化学的安定性とを有する限り、その材料は任意である。容器本体102aおよび蓋102bの材料として、たとえば鉄、ステンレス、アルミニウム等の金属、あるいは塩化ビニル、アクリル等の有機樹脂が例示できる。
The vacuum vessel 102 has a vessel body 102a and a lid 102b. The space between the container main body 102a and the lid 102b is sealed by the packing 102c, and kept in a reduced pressure state by exhausting by the vacuum mechanism 170. As long as the container main body 102a and the lid | cover 102b have the mechanical strength which can endure a pressure-reduced state, and the chemical stability which can endure the chemical action from an organic solvent etc., the material is arbitrary. Examples of the material of the container body 102a and the lid 102b include metals such as iron, stainless steel, and aluminum, or organic resins such as vinyl chloride and acrylic.
基板フォルダ104は、ベースプレート104aと、ベースプレート104aに固定されたピン104bとを有する。ベースプレート104aは、回転機構106により回転され、ピン104bは、先端部に水平面および突起を備える。複数のピン104bの水平面によりウェハ状基板120の周端部裏面を支え、複数のピン104bの突起によりウェハ状基板120の周方向の滑りを抑える。
The substrate folder 104 has a base plate 104a and pins 104b fixed to the base plate 104a. The base plate 104a is rotated by the rotation mechanism 106, and the pin 104b has a horizontal surface and a protrusion at the tip. The back surface of the peripheral end portion of the wafer-like substrate 120 is supported by the horizontal surfaces of the plurality of pins 104b, and the circumferential slip of the wafer-like substrate 120 is suppressed by the protrusions of the plurality of pins 104b.
回転機構106は、回転モータ106aと、シャフト106bと、軸受106cとを有する。シャフト106bは、ベースプレート104aと固着され、軸受106cは、シャフト106bを支える。回転モータ106aは、シャフト106bを回転駆動する。回転モータ106aとして、サーボモータが例示できる。シャフト106bの回転力はベースプレート104aに伝達され、ベースプレート104aの回転に伴い、ピン104bに支持されたウェハ状基板120が回転する。
The rotation mechanism 106 includes a rotation motor 106a, a shaft 106b, and a bearing 106c. The shaft 106b is fixed to the base plate 104a, and the bearing 106c supports the shaft 106b. The rotation motor 106a rotationally drives the shaft 106b. A servomotor can be exemplified as the rotation motor 106a. The rotational force of the shaft 106b is transmitted to the base plate 104a, and the wafer-like substrate 120 supported by the pins 104b rotates with the rotation of the base plate 104a.
液状物供給部108は、ノズル108aとマニホールド108bとを有する。ノズル108aは、供給される液状物を射出する。ノズル108aは、液状物の射出方向や射出速度に応じて適宜設計できる。マニホールド108bは、液状物の経路と乾燥ガス等他の供給物との経路が共有できるようにする。
The liquid supply unit 108 includes a nozzle 108a and a manifold 108b. The nozzle 108a injects the supplied liquid material. The nozzle 108a can be appropriately designed according to the injection direction and the injection speed of the liquid material. The manifold 108b allows the path of the liquid material and the path of other supplies such as dry gas to be shared.
遮蔽体110は、上部遮蔽体110a、下部遮蔽体110b、上部遮蔽体110aの庇110cに加え、上部遮蔽体110aと下部遮蔽体110bとの間に隙間Gを形成するためのスペーサ110dを有する。スペーサ110dにより形成される隙間Gの距離は適宜設計できる。下部遮蔽体110bは、ベースプレート104aと固着されている。よって、遮蔽体110の全体も回転機構106により回転駆動される。
The shield 110 includes a spacer 110d for forming a gap G between the upper shield 110a and the lower shield 110b in addition to the upper shield 110a, the lower shield 110b, and the flange 110c of the upper shield 110a. The distance of the gap G formed by the spacer 110d can be designed as appropriate. The lower shield 110b is fixed to the base plate 104a. Therefore, the entire shield 110 is also rotationally driven by the rotation mechanism 106.
なお、遮蔽体110は必ずしも回転させなくてもよい。ただし、この場合、遮蔽体110の内側に滞留する液状物を遠心力により排出する利点が享受できない。また、遮蔽体110の下部がベースプレート104aと固着され、あるいは一体に形成されている必要はない。あるいは、上部遮蔽体110aの庇110cは形成されている必要はない。ただし、これらの場合、液状物またはその気化物の流れ130の滞留部132を形成する効果が低下する場合がある。
Note that the shield 110 is not necessarily rotated. However, in this case, the advantage of discharging the liquid material staying inside the shield 110 by centrifugal force cannot be enjoyed. Further, it is not necessary that the lower portion of the shield 110 is fixed to the base plate 104a or integrally formed. Alternatively, the collar 110c of the upper shield 110a need not be formed. However, in these cases, the effect of forming the stay part 132 of the liquid 130 or the vaporized substance flow 130 may be reduced.
洗浄液供給部140は、基板フォルダ104の中央部からウェハ状基板120の裏面120bに向けて洗浄液を供給する。洗浄液供給部140は、洗浄液ノズル140aと輸液管140bを有する。輸液管140bはシャフト106bの内部を貫通し、洗浄液を洗浄液ノズル140aに輸送する。洗浄液ノズル140aは、洗浄液をウェハ状基板120の裏面120bに向けて射出する。洗浄液ノズル140aは、洗浄液の射出方向や射出速度に応じて適宜設計できる。洗浄液として、純水、オゾン水等の水、イソプロピルアルコール等の有機溶剤が例示できる。
The cleaning liquid supply unit 140 supplies the cleaning liquid from the central part of the substrate folder 104 toward the back surface 120b of the wafer-like substrate 120. The cleaning liquid supply unit 140 includes a cleaning liquid nozzle 140a and an infusion tube 140b. The infusion tube 140b penetrates the inside of the shaft 106b and transports the cleaning liquid to the cleaning liquid nozzle 140a. The cleaning liquid nozzle 140 a injects the cleaning liquid toward the back surface 120 b of the wafer-like substrate 120. The cleaning liquid nozzle 140a can be appropriately designed according to the injection direction and the injection speed of the cleaning liquid. Examples of the cleaning liquid include water such as pure water and ozone water, and organic solvents such as isopropyl alcohol.
洗浄液供給部140を有することにより、塗布物質を塗布する前にウェハ状基板120が洗浄でき、パーティクル等に起因する塗布膜の欠陥を少なくすることができる。ウェハ状基板120の裏面120bには、パーティクルが付着している場合が多く、本実施形態のスピンコート装置100は減圧環境下で塗布物質を塗布する。減圧環境下では、パーティクルが飛散しやすいので、塗布工程前にウェハ状基板120の裏面120bを洗浄する手段を備えることは、本実施形態のスピンコート装置100においては特に有効である。
By having the cleaning liquid supply unit 140, the wafer-like substrate 120 can be cleaned before the coating substance is applied, and defects in the coating film due to particles and the like can be reduced. In many cases, particles adhere to the back surface 120b of the wafer-like substrate 120, and the spin coater 100 of this embodiment applies the coating substance in a reduced pressure environment. Since particles easily scatter in a reduced pressure environment, it is particularly effective in the spin coater 100 of this embodiment to include a means for cleaning the back surface 120b of the wafer-like substrate 120 before the coating process.
ガス供給部150は、真空容器102内に乾燥ガスを供給する。乾燥ガスとして、高温窒素ガスが例示できる。これにより、塗布膜に残留する有機溶剤等を速やかに排出できる。また、洗浄工程を経た場合に、洗浄液を速やかに乾燥できる。
The gas supply unit 150 supplies dry gas into the vacuum vessel 102. An example of the dry gas is high-temperature nitrogen gas. Thereby, the organic solvent etc. which remain | survive in a coating film can be discharged | emitted rapidly. In addition, the cleaning liquid can be quickly dried after the cleaning process.
加熱手段160は、ウェハ状基板120の塗布面120aを加熱する。加熱手段160として、ハロゲンランプ等の赤外線ヒータが例示できる。これにより、塗布膜がフォトレジストである場合に、本スピンコート装置100でフォトレジスト膜をプリベークする工程まで処理できることになる。この結果、半導体装置の製造工程を効率化することができる。
The heating means 160 heats the coating surface 120a of the wafer-like substrate 120. An example of the heating means 160 is an infrared heater such as a halogen lamp. Thus, when the coating film is a photoresist, the spin coating apparatus 100 can perform processing up to the step of pre-baking the photoresist film. As a result, the manufacturing process of the semiconductor device can be made efficient.
真空機構170は、真空ポンプ170aと排気管170bを有する。真空ポンプ170aとして、油回転ポンプ、メカニカルブースタポンプ等が例示できる。排気管170bの材料は、容器本体102aおよび蓋102bの場合と同様である。
The vacuum mechanism 170 has a vacuum pump 170a and an exhaust pipe 170b. Examples of the vacuum pump 170a include an oil rotary pump and a mechanical booster pump. The material of the exhaust pipe 170b is the same as that of the container main body 102a and the lid 102b.
廃液処理機構180は、気液分離器180aと排液タンク180bを有する。気液分離器180aは、排気管170bを流れてきた気体と液体を分離する。排液タンク180bは、気液分離器180aで分離した液体を排液として一時保管する。
The waste liquid treatment mechanism 180 has a gas-liquid separator 180a and a drain tank 180b. The gas-liquid separator 180a separates the gas and liquid flowing through the exhaust pipe 170b. The drainage tank 180b temporarily stores the liquid separated by the gas-liquid separator 180a as drainage.
図3は、スピンコート装置100を利用した塗布工程の一例を示したフローチャートである。
FIG. 3 is a flowchart showing an example of a coating process using the spin coater 100.
まず、真空容器102の蓋102bを開放し、基板フォルダ104にウェハ状基板120をロードする。ロードには、ロボットアームを備えたローダ/アンローダを用いてもよい。その後、蓋102bを閉じ、真空ポンプ170aを作動させ、あるいは真空ポンプ170aと真空容器102との間に配置した真空バルブを開け、真空容器102の内部を減圧状態にする(ステップ302)。
First, the lid 102 b of the vacuum container 102 is opened, and the wafer-like substrate 120 is loaded into the substrate folder 104. A loader / unloader equipped with a robot arm may be used for loading. Thereafter, the lid 102b is closed and the vacuum pump 170a is operated, or the vacuum valve disposed between the vacuum pump 170a and the vacuum vessel 102 is opened, and the inside of the vacuum vessel 102 is brought into a reduced pressure state (step 302).
次に、回転モータ106aを作動させ、ウェハ状基板120の回転を開始する(ステップ304)。その後ウェハ状基板120の裏面120bを洗浄する(ステップ306)。裏面120bの洗浄は、バルブVL3を開け、ノズル140aから洗浄液を供給することにより行う。所定時間の経過後にバルブVL3を閉じ、洗浄液の供給を停止した後に、ウェハ状基板120を乾燥する(ステップ308)。ウェハ状基板120の乾燥は、バルブVL2を開けて乾燥ガスを供給することにより行う。
Next, the rotation motor 106a is operated to start the rotation of the wafer-like substrate 120 (step 304). Thereafter, the back surface 120b of the wafer-like substrate 120 is cleaned (step 306). The back surface 120b is cleaned by opening the valve VL3 and supplying a cleaning liquid from the nozzle 140a. After a predetermined time elapses, the valve VL3 is closed and the supply of the cleaning liquid is stopped, and then the wafer-like substrate 120 is dried (step 308). The wafer-like substrate 120 is dried by opening the valve VL2 and supplying a drying gas.
所定時間の経過後にバルブVL2を閉じて乾燥ガスの供給を停止した後、ウェハ状基板120の塗布面120aに液状物を供給する(ステップ310)。液状物の供給は、バルブVL1を開け、所定時間の経過後にバルブVL1を閉じることにより行う。その後、ステップ308と同様にウェハ状基板120を乾燥し(ステップ312)、回転モータ106aを停止してウェハ状基板120の回転を停止する(ステップ314)。
After a predetermined time has elapsed, the valve VL2 is closed to stop the supply of the dry gas, and then the liquid material is supplied to the coating surface 120a of the wafer-like substrate 120 (step 310). The liquid material is supplied by opening the valve VL1 and closing the valve VL1 after a predetermined time has elapsed. Thereafter, the wafer-like substrate 120 is dried as in Step 308 (Step 312), and the rotation motor 106a is stopped to stop the rotation of the wafer-like substrate 120 (Step 314).
さらに、加熱手段160により塗布面120aを加熱して、塗布面の塗布物質をプリベークする(ステップ316)。その後、真空ポンプ170aを停止し、あるいは真空ポンプ170aと真空容器102との間に配置した真空バルブを閉じ、真空容器102内を大気圧状態にする。その後、ウェハ状基板120をアンロードする(ステップ318)。
Further, the application surface 120a is heated by the heating means 160, and the application substance on the application surface is pre-baked (step 316). Thereafter, the vacuum pump 170a is stopped, or the vacuum valve disposed between the vacuum pump 170a and the vacuum vessel 102 is closed, and the inside of the vacuum vessel 102 is brought into an atmospheric pressure state. Thereafter, the wafer-like substrate 120 is unloaded (step 318).
なお、ステップ306の洗浄およびステップ308の乾燥は必須ではない。また、ステップ312の乾燥は、供給する液状物の揮発性が高ければ省略できる場合がある。また、ステップ316のプリベークは必須ではない。
Note that the cleaning in step 306 and the drying in step 308 are not essential. In addition, the drying in step 312 may be omitted if the liquid to be supplied has high volatility. Further, the pre-baking in step 316 is not essential.
ステップ306の洗浄、ステップ308の乾燥、ステップ312の乾燥およびステップ316のプリベークの各工程は、ウェハ状基板120を回転させた状態あるいは停止させた状態の何れの状態で行ってもよく、減圧状態あるいは大気圧状態の何れの状態で行ってもよい。ステップ310の液状物の供給は、その開始段階でウェハ状基板120が回転している必要はなく、また、減圧状態である必要はない。液状物の供給開始後に減圧状態にしても良く、液状物の供給開始後に回転を開始しても良い。
The steps of cleaning in step 306, drying in step 308, drying in step 312 and pre-baking in step 316 may be performed in a state where the wafer-like substrate 120 is rotated or stopped, in a reduced pressure state. Or you may carry out in any state of an atmospheric pressure state. The supply of the liquid material in step 310 does not require the wafer-like substrate 120 to be rotated at the start stage and does not need to be in a reduced pressure state. The pressure may be reduced after the supply of the liquid material is started, or the rotation may be started after the supply of the liquid material is started.
以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。
As mentioned above, although this invention was demonstrated using embodiment, the technical scope of this invention is not limited to the range as described in the said embodiment. It will be apparent to those skilled in the art that various modifications or improvements can be added to the above-described embodiment. It is apparent from the scope of the claims that the embodiments added with such changes or improvements can be included in the technical scope of the present invention.
請求の範囲、明細書、および図面中において示した装置および方法における動作、手順、ステップおよび段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示した場合を除き、任意の順序で実現しうることに留意すべきである。特許請求の範囲、明細書および図面中の動作フローに関して便宜上「まず」、「次に」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。
The execution order of each process such as operations, procedures, steps, and stages in the apparatus and method shown in the claims, the description, and the drawings is particularly specified as “before”, “prior”, etc. It should be noted that it can be implemented in any order except. Even if it is described using “first”, “next”, and the like for the sake of convenience regarding the operation flow in the claims, the description, and the drawings, it does not mean that the operation is essential in this order.
100…スピンコート装置、102…真空容器、102a…容器本体、102b…蓋、102c…パッキング、104…基板フォルダ、104a…ベースプレート、104b…ピン、106…回転機構、106a…回転モータ、106b…シャフト、106c…軸受、108…液状物供給部、108a…ノズル、108b…マニホールド、110…遮蔽体、110a…上部遮蔽体、110b…下部遮蔽体、110c…庇、110d…スペーサ、120…ウェハ状基板、120a…塗布面、120b…裏面、130…流れ、132…滞留部、140…洗浄液供給部、140a…洗浄液ノズル、140b…輸液管、150…ガス供給部、160…加熱手段、170…真空機構、170a…真空ポンプ、170b…排気管、180…廃液処理機構、180a…気液分離器、180b…排液タンク、G…隙間、VL1…バルブ、VL2…バルブ、VL3…バルブ。
DESCRIPTION OF SYMBOLS 100 ... Spin coater, 102 ... Vacuum container, 102a ... Container body, 102b ... Lid, 102c ... Packing, 104 ... Substrate folder, 104a ... Base plate, 104b ... Pin, 106 ... Rotation mechanism, 106a ... Rotation motor, 106b ... Shaft 106c ... Bearing, 108 ... Liquid material supply unit, 108a ... Nozzle, 108b ... Manifold, 110 ... Shielding body, 110a ... Upper shielding body, 110b ... Lower shielding body, 110c ... Saddle, 110d ... Spacer, 120 ... Wafer substrate 120a ... coating surface, 120b ... back surface, 130 ... flow, 132 ... staying part, 140 ... cleaning liquid supply part, 140a ... cleaning liquid nozzle, 140b ... infusion tube, 150 ... gas supply part, 160 ... heating means, 170 ... vacuum mechanism , 170a ... vacuum pump, 170b ... exhaust pipe, 180 ... waste liquid treatment mechanism 180a ... gas-liquid separator, 180b ... drainage tank, G ... gap, VL1 ... valve, VL2 ... valve, VL3 ... valve.
Claims (7)
- 真空容器と、
前記真空容器の内部に設置され、塗布面が上になるようウェハ状基板を保持する基板フォルダと、
前記ウェハ状基板がほぼ水平に回転するよう前記基板フォルダを回転させる回転機構と、
前記ウェハ状基板の中央上方から前記塗布面に向けて塗布物質を含む液状物を供給する液状物供給部と、
前記ウェハ状基板を同心円状に囲むように配置され、前記ウェハ状基板の回転により生ずる前記液状物またはその気化物の外側への流れを遮る遮蔽体と、
を有するスピンコート装置。 A vacuum vessel;
A substrate folder that is installed inside the vacuum vessel and holds the wafer-like substrate so that the coating surface is on top,
A rotation mechanism for rotating the substrate folder so that the wafer-like substrate rotates substantially horizontally;
A liquid material supply unit for supplying a liquid material containing a coating material from above the center of the wafer-shaped substrate toward the coating surface;
A shield that concentrically surrounds the wafer-like substrate, and shields the flow of the liquid material or its vaporized material generated by rotation of the wafer-like substrate to the outside;
A spin coater having: - 前記遮蔽体が、前記基板フォルダと共に回転し、前記回転により生ずる遠心力の作用を受ける前記液状物またはその気化物を前記遮蔽体の内側から外側に逃がす隙間または穴を有する
請求項1に記載のスピンコート装置。 The said shielding body has a clearance gap or a hole which rotates with the said substrate folder, and escapes the said liquid substance or the vaporized material which receives the effect | action of the centrifugal force produced by the said rotation from the inner side of the said shielding body. Spin coating equipment. - 前記遮蔽体の下部と前記基板フォルダの外周とが接して構成されることで、前記液状物またはその気化物の下方向への流れが阻害されている
請求項2に記載のスピンコート装置。 The spin coater according to claim 2, wherein the lower part of the shield and the outer periphery of the substrate folder are in contact with each other, so that the downward flow of the liquid substance or its vaporized substance is inhibited. - 前記遮蔽体の上部に、内側に張り出した庇を有する
請求項2または請求項3に記載のスピンコート装置。 The spin coater according to claim 2, further comprising a ridge projecting inwardly on an upper portion of the shield. - 前記基板フォルダの中央部から前記ウェハ状基板の裏面に向けて洗浄液を供給する洗浄液供給部をさらに有する
請求項1から請求項4の何れか一項に記載のスピンコート装置。 The spin coater according to any one of claims 1 to 4, further comprising a cleaning liquid supply unit configured to supply a cleaning liquid from a central portion of the substrate folder toward a back surface of the wafer-like substrate. - 前記真空容器内に乾燥ガスを供給するガス供給部をさらに有する
請求項1から請求項5の何れか一項に記載のスピンコート装置。 The spin coater according to any one of claims 1 to 5, further comprising a gas supply unit that supplies a dry gas into the vacuum vessel. - 前記ウェハ状基板の前記塗布面を加熱する加熱手段をさらに有する
請求項1から請求項6の何れか一項に記載のスピンコート装置。 The spin coater according to any one of claims 1 to 6, further comprising a heating unit that heats the coating surface of the wafer-like substrate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2010/071680 WO2012073377A1 (en) | 2010-12-03 | 2010-12-03 | Spin-coat device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2010/071680 WO2012073377A1 (en) | 2010-12-03 | 2010-12-03 | Spin-coat device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012073377A1 true WO2012073377A1 (en) | 2012-06-07 |
Family
ID=46171360
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/071680 WO2012073377A1 (en) | 2010-12-03 | 2010-12-03 | Spin-coat device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2012073377A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11532494B2 (en) | 2020-11-11 | 2022-12-20 | Service Support Specialties, Inc. | System for coating a substrate |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03145715A (en) * | 1989-10-31 | 1991-06-20 | Sony Corp | Spin-coated film forming device |
JPH08153656A (en) * | 1994-11-28 | 1996-06-11 | Hitachi Ltd | Work treatment method and device |
JPH08222502A (en) * | 1995-02-13 | 1996-08-30 | Hitachi Ltd | Spin coater |
JP2003203893A (en) * | 2002-01-07 | 2003-07-18 | Tokyo Electron Ltd | Substrate-processing device and substrate-processing method |
JP2006190828A (en) * | 2005-01-06 | 2006-07-20 | Tokyo Electron Ltd | Substrate treatment apparatus |
JP2008060462A (en) * | 2006-09-01 | 2008-03-13 | Tokyo Electron Ltd | Coating method, program, computer-readable recording medium, and coater |
-
2010
- 2010-12-03 WO PCT/JP2010/071680 patent/WO2012073377A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03145715A (en) * | 1989-10-31 | 1991-06-20 | Sony Corp | Spin-coated film forming device |
JPH08153656A (en) * | 1994-11-28 | 1996-06-11 | Hitachi Ltd | Work treatment method and device |
JPH08222502A (en) * | 1995-02-13 | 1996-08-30 | Hitachi Ltd | Spin coater |
JP2003203893A (en) * | 2002-01-07 | 2003-07-18 | Tokyo Electron Ltd | Substrate-processing device and substrate-processing method |
JP2006190828A (en) * | 2005-01-06 | 2006-07-20 | Tokyo Electron Ltd | Substrate treatment apparatus |
JP2008060462A (en) * | 2006-09-01 | 2008-03-13 | Tokyo Electron Ltd | Coating method, program, computer-readable recording medium, and coater |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11532494B2 (en) | 2020-11-11 | 2022-12-20 | Service Support Specialties, Inc. | System for coating a substrate |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI646596B (en) | Substrate processing method and substrate processing apparatus | |
JP5889691B2 (en) | Substrate processing apparatus and substrate processing method | |
US9997378B2 (en) | Substrate processing apparatus and substrate processing method | |
US20080066783A1 (en) | Substrate treatment apparatus and substrate treatment method | |
TWI636158B (en) | Substrate processing method and substrate processing device | |
TW201735103A (en) | Substrate processing apparatus and substrate processing method | |
US9623435B2 (en) | Substrate processing apparatus for coating liquid composed of first coating liquid and second coating liquid on substrate with slit-shaped ejection port | |
US20190027383A1 (en) | Substrate processing apparatus and substrate processing method | |
JP2013521658A (en) | Photoresist removal processor and method | |
JP2012023366A (en) | Systems and methods for etching silicon nitride | |
JP2014045150A (en) | Substrate processing method and substrate processing apparatus | |
TW201934211A (en) | Substrate processing method and substrate processing apparatus | |
KR102006552B1 (en) | Substrate processing method and substrate processing apparatus | |
JP2014157901A (en) | Substrate processing apparatus and substrate processing method | |
TWI462173B (en) | Substrate processing method and substrate processing apparatus | |
WO2012073377A1 (en) | Spin-coat device | |
JP2013243413A (en) | Substrate processing method, and substrate processing apparatus | |
JP3160832B2 (en) | Method and apparatus for forming coating film | |
TW201909271A (en) | Substrate processing method and substrate processing device | |
KR20160019606A (en) | Apparatus for treating substrates and method for drying substrates | |
JP2016143873A (en) | Substrate processing method and substrate processing device | |
JP6771080B2 (en) | Substrate processing equipment and substrate processing method | |
US20230215740A1 (en) | Substrate treating apparatus and substrate treating method | |
JP3271063B2 (en) | Method and apparatus for forming coating film | |
JP2009224608A (en) | Substrate processing apparatus and substrate processing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10860120 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10860120 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |