WO2012072197A2 - Nouvelle topologie de convertisseur multi-niveaux permettant le montage dynamique en série et en parallèle de modules individuels - Google Patents

Nouvelle topologie de convertisseur multi-niveaux permettant le montage dynamique en série et en parallèle de modules individuels Download PDF

Info

Publication number
WO2012072197A2
WO2012072197A2 PCT/EP2011/005752 EP2011005752W WO2012072197A2 WO 2012072197 A2 WO2012072197 A2 WO 2012072197A2 EP 2011005752 W EP2011005752 W EP 2011005752W WO 2012072197 A2 WO2012072197 A2 WO 2012072197A2
Authority
WO
WIPO (PCT)
Prior art keywords
terminals
individual modules
energy storage
terminal
modules
Prior art date
Application number
PCT/EP2011/005752
Other languages
German (de)
English (en)
Other versions
WO2012072197A3 (fr
Inventor
Thomas Weyh
Stefan M. GÖTZ
Original Assignee
Technische Universität München
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technische Universität München filed Critical Technische Universität München
Publication of WO2012072197A2 publication Critical patent/WO2012072197A2/fr
Publication of WO2012072197A3 publication Critical patent/WO2012072197A3/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/49Combination of the output voltage waveforms of a plurality of converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4835Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage

Definitions

  • the invention relates to a particular embodiment of a cyclo-converter and its individual modular components.
  • the cycloconverter can be made single or multi-phase and the input side DC or AC convert into a DC or AC of any phase and frequency.
  • Such converters have very diverse uses; They can be used for example for the controlled power supply of electrical machines, but also for the connection of DC power sources (battery storage, solar systems) to an AC network.
  • variable voltages over this type of power converters can only take place via corresponding duty cycles of the PWM conversion, so that unfavorable duty cycles result in the case of large voltage differences.
  • R. Marquardt converts every phase of the drive into a series of identical single modules connected in series.
  • FIG. 1 shows a series connection of three identical modules 101, 102, 103, which form a bridge branch 104 of a modular multilevel converter.
  • Each single module acts as a two-terminal block and contains an energy storage element as well as several switching elements that can either pick up or supply current for both voltage directions and thus reach all four quadrants of the current-voltage graph.
  • Figure 2 shows an embodiment of a single dipole of a modular multilevel converter. Parallel to the transistors 201 to 204, a diode 205 to 208 is connected in each case. The transistors may electrically connect the output terminals 210 and 211 to the capacitor 209. In particular, these individual modules can be switched via their switches in the following four states:
  • Such a single module is thus - with appropriate control, for example, with clocked switching of the active elements (possibly in analogy to the pulse width modulation) - already able to control its energy consumption and Abgababe arbitrarily and simulate a source a virtual load with certain properties approximately
  • n sources for example, two incoming voltage systems
  • m outputs for example, a three-phase low-voltage system
  • phase module A combination of two series circuits of z modules in each case is referred to as a phase module, wherein the two series circuits each form a so-called bridge branch.
  • FIG. 3 shows a phase module 303 consisting of two bridge branches 301 and 302, wherein the bridge branches are made up of individual modules.
  • the number z of modules in each bridge branch defines the voltage and harmonic characteristics of the inverter.
  • the phase modules in turn form the basic components of a single-phase or multi-phase converter. For example, a system for converting a 1-phase AC voltage or a DC voltage into another 1-phase AC voltage or a DC voltage can be used by two interconnected phase modules 401 and 402 according to FIG.
  • the structure of such a system is completely symmetrical with respect to the inputs and outputs and thus enables a complete four-quadrant operation with respect to each connection pair. Furthermore, both the input side and the output side of the behavior of the power converter with respect to inductive or capacitive behavior individually be adjusted. The energy flow is thus possible in both directions and can be changed dynamically.
  • phase modules 501, 502 and 503 for example by means of three interconnected phase modules 501, 502 and 503 according to FIG. 5, a system for converting a 3-phase AC voltage into a 1-phase AC voltage or a DC voltage can be realized.
  • the combined connections of the phase modules can also be considered as so-called (DC) busbars, so that by interconnecting n + m phase modules, a network coupling for the coupling of an n-phase network with an m-phase network is created.
  • FIG. 6 shows by way of example the interconnection of 5 phase modules 601 to 605 in order to realize a coupling of a 3-phase three-phase network to a two-phase network.
  • the system of the modular multilevel converter is capable of depending on the number z of modules, in equivalent case 2z + l to produce different stable voltage states.
  • very fast voltage waveforms can be generated extremely accurately and with very low harmonic content.
  • a pure stair approximation is possible.
  • a further advantage of the modular multilevel converter is that the energy stores of the converter are distributed in the individual modules and no longer need to be set up as a single large storage capacitor.
  • converters with this converter topology can be set up without a single, large DC link, through which extremely short-circuit currents can flow in the event of a fault.
  • the storage capacitors of the individual modules in conjunction with corresponding diodes on the switches also allow a very effective damping of possible voltage spikes, for example, to protect the semiconductor.
  • a wiring of the inputs and outputs with other capacitors, the insulation capacity of the entire maximum voltage would have to withstand, in contrast to other inverter topologies not necessary.
  • four-quadrant operation of this type of converter also allows for applications such as reactive power compensation.
  • the design of the inverter from a plurality of identical individual modules also allows redundancy, so that in case of failure of one or more of these two poles, the functionality of the inverter can be ensured without additional switching devices.
  • the modular multilevel converter also has the advantage that the components of the respective modules do not have to be designed for the full maximum voltage levels of the input and output, but only have to insulate the module voltages.
  • this aspect has an important economic importance or allows for the first time ever the use of semiconductors for such purposes.
  • the system is based on the controllable connection of modules in series. Modules that are not required for the generation of a particular voltage level are switched to the bypass state so that the energy store retains its current charge. However, this represents a large untapped potential. This case occurs, for example, when the inverter is to generate only a relatively low voltage and thus only a part of the modules is activated.
  • the entire system must be designed for maximum voltages that are rarely used; On the other hand, the system must be designed for the maximum current at the same time, although current and voltage do not simultaneously reach their respective maximum values in all applications.
  • the energy storage used must be forced to be designed for the maximum power requirements and therefore must also be oversized.
  • the invention is based on the recognition that a converter, which is constructed from a plurality of individual modules, can additionally be designed such that the energy storage elements can optionally be connected in parallel or in series.
  • the individual modules must be designed so that either a parallel or serial switching of the energy storage elements can be done via the internal switching elements, so that no additional external switches are required as in the matrix addressing.
  • the invention is intended to ensure that the voltage load of the internal switching elements is not significantly above the maximum voltage of the energy storage elements.
  • a power converter can be constructed from a series connection of individual modules with a similar circuit topology as a multilevel converter.
  • the energy storage elements of this novel power converter can be switched either in series or in parallel
  • the basic advantage of such an optional interconnection is that a parallel connection of the energy storage elements of the individual modules the total internal resistance of the power converter (or a branch of the power converter), so that the power converter in this switching state can provide many times more power than previous power converters. Furthermore, depending on the application, the energy stores in the individual modules can thus also be reduced.
  • a converter according to the invention can be constructed similarly to the described multilevel converter.
  • the essential difference between the present invention and the previous multilevel converter is that the individual modules of the novel converter are no longer connected directly in series as simple two-poles, but the new individual modules are connected in a kind of series connection via at least two terminals to the respective next individual module , Thus, it does not determine the series connection of the individual modules, but only the switching state of the internal switching elements, whether an energy storage element of a single module is to be connected in series or parallel to the subsequent individual module.
  • a converter which is constructed from such individual modules, be controlled so that at certain times a series circuit of energy storage is present and at certain other times a parallel connection. Accordingly, the voltage generated by a series connection of individual modules can also be selectively changed.
  • the present invention allows the construction of special converter circuits, which can implement almost any timing with respect. Eingansbond and current to just about any arbitrary time courses with respect. Output voltage and current.
  • the Applications range from leinpressivesanengineen up to the highest voltage level for energy transfer with up to one million volts.
  • the invention described herein allows, depending on the exact structure, the operation in all four quadrants of the current-voltage graph; ie the converter circuits can either input or output power for both voltage directions on the input and output side.
  • Fig. 1 describes a bridge branch of a modular Multilevelkonverters, consisting of three equal dipoles
  • Fig. 2 shows the possible structure of a single module of a modular
  • Fig. 3 shows a phase module of a modular multilevel converter, which is constructed from two bridge branches, each with three identical dipoles;
  • Fig. 4 shows a system for converting a 1-phase AC voltage (or a
  • FIG. 5 shows a system for converting a 3-phase AC voltage into a 1-phase AC voltage or a DC voltage, which consists of three interconnected phase modules of a modular multilevel converter
  • Fig. 6 shows a system for coupling a 3-phase three-phase network with a two-phase network consisting of three and two interconnected phase modules of a modular multilevel converter
  • Fig. 7 shows a series connection of three individual modules according to the invention, so that, for example, a bridge branch of a power converter is formed; shows the switching states parallel connection and series connection of two series-connected individual modules according to the invention;
  • FIG. 9c shows possible switching states for the series connection of individual modules according to FIG. 9c;
  • each bridge branch is constructed from three identical individual modules according to the invention
  • FIG. 11 shows a system for converting a 3-phase AC voltage into a 1-phase AC voltage or a DC voltage, which consists of three interconnected phase modules according to Figure 11;
  • FIG. 11 shows a system for coupling a three-phase three-phase network with a two-phase network, which consists of three and two interconnected phase modules according to Figure 11;
  • FIG. 9a shows a practical realization of a single module according to the invention according to FIG. 9a with transistors
  • FIG. 15 shows the central additional current paths of a single module according to the invention according to FIG 15 shows; 19 shows a practical realization of a single module according to the invention according to FIG.
  • Fig. 20 shows an interconnection of adjacent individual modules according to Fig. 19;
  • FIG. 21 shows an overfilled individual module according to FIG.
  • FIG. 22 shows a further possible embodiment, which corresponds to the circuit diagram according to FIG. 22
  • Fig. 23 shows a further possible embodiment, which is the circuit diagram according to
  • Figure 21 are derived, but less switching options allowed.
  • the invention is based on the finding that a power converter, which is to be constructed from a series connection of a plurality of similar individual modules, is designed so that the energy storage elements of these individual modules can be selectively connected in parallel or in series.
  • the interconnection of the individual modules can be fixed, so that only via the internal switching elements can be selectively controlled whether the energy storage elements of the individual modules are to be connected in parallel or in series.
  • the topology of the internal switching elements should ensure that the voltage load of these switching elements is not significantly above the maximum voltage of the energy storage elements.
  • FIG. 7 shows an example of a possible external connection of three individual modules 701, 702 and 703 according to the invention to a series connection, so that, for example, a bridge arm of a power converter is formed.
  • a single module is connected in each case via at least two terminals with the subsequent connection, so that the energy storage elements of a single module can be connected either in parallel or in series with the energy storage element of the subsequent single module.
  • FIG. 8 shows the switching states of two individual modules 801 and 802 connected in series with one another: parallel connection of the two energy storage elements 803, 804 and series connection of the energy storage elements 803, 804 in two possible polarities.
  • these interconnections are also suitable for a parallel or series connection of more than two modules possible.
  • the individual modules should be designed such that they can generate comparable switching states to the dipoles of the described multilevel converter. This means in particular that individual modules can be switched so that they allow a current flow from a preceding single module (or an external terminal of a bridge branch) to a subsequent single module (or another outer terminal of a bridge branch) without the own energy storage element in the process to involve.
  • the individual modules are designed so that the terminals of the respective last terminal pair of an outer single module of a series connection can be firmly connected to each other. This is illustrated for example in FIG. 7 for the first and the last of the three individual modules. In this way it can be achieved that a series connection of at least two of the novel individual modules similar to the series connection of two poles of the described multilevel converter forms a bridge two with two outer terminals.
  • connection of two such individual modules can be controlled in a targeted manner via the corresponding switching elements, it is possible according to the present invention to control a series connection of a plurality of individual modules such that at least one series connection of energy storage elements and a parallel connection of energy storage elements are present simultaneously within such a series connection.
  • the switching of the energy storage elements of individual modules to a parallel circuit can advantageously be made particularly simple when the voltages of the relevant energy storage elements are similar. On the other hand, it can also be achieved via the control of the corresponding individual modules of the power converter that in relation to the total number of switching cycles is switched only relatively rarely to a corresponding parallel connection. For example, a converter clocked at 100 kHz to generate an AC voltage of 50 Hz could switch to parallel modules only every 10 or 20 ms, while for the switching cycles of the 100 kHz clock every 10 microseconds must be switched.
  • additional compensation elements each between two individual modules the one Allow temporary storage of part of the energy of the energy storage elements.
  • compensating members may include inductors.
  • a separate access to the two terminals of the energy storage element must be created inside each individual module on both sides of the connection. This can be done so that several modules can be connected in series with two terminals and so the energy storage elements of the modules can be operated either serially or in parallel.
  • a modified multilevel converter can be constructed, in which the original two-pole are replaced by individual modules according to the invention with at least four terminals. These connections form, for example, a first and a second terminal pair.
  • a two-port is defined as a four-pole module with two terminal pairs AI, A2 and Bl, B2, which each form a so-called gate and wherein the current is equal by a respective pair of terminals.
  • the resulting two-port is active and nonlinear.
  • Each module thus contains a plurality of switching elements, via which the internal energy storage can be connected to the terminals AI, A2, Bl and B2.
  • the switches should be able to generate the following mutually independent switching states:
  • Figures 9a, 9b, 9c and 9d show four different possible embodiments of such individual modules forming a two-port.
  • Several similar individual modules are connected in series (in FIG. 9, two modules are each by way of example connected in series). The connection must be made in such a way that the terminals of series-connected two-ports must be connected to one another in the following way:
  • Two or more cascaded two-ports can be switched either parallel or in series with respect to their respective energy storage alone via appropriate control of their switches. This can be achieved by the following principal switching states:
  • the first connection of the energy store of the first two-port is connected to the first connection of the energy store of the following two-port and the second connection of the energy store of the first two-port is connected to the second connection of the energy store of the following two-port (eg closing of the switches 905, 909, 908 and 910 in FIG. 9b).
  • the terminal AI of the first two-port is also connected to the first terminal of the associated energy storage (eg closing the switch 903 in Figure 9b) and the terminal B2 of the last so interconnected two-port is also connected to the second terminal of the associated energy storage (eg Closing the switch 914 in Figure 9b), so to speak, there is a parallel connection of two or more two-ports. It is expedient to connect the terminals AI and A2 of the first two-port each other and also to connect the terminals Bl and B2 of the last so interconnected two-port each other.
  • the first terminal of the energy store of the first two-port is connected to the second terminal of the energy store of the subsequent two-port (eg closing the switches 907 and 910 in Figure 9b). If now simultaneously the terminal A2 of the first two-port is connected to the second terminal of the associated energy storage (For example, closing the switch 904 in Figure 9b) and the terminal Bl of the last so interconnected two-port is also connected to the first terminal of the associated energy storage (eg closing the switch 911 in Figure 9b), so to speak, a series circuit energy storage elements of the two-ahead In this way any number of two-ports can be interconnected.
  • the terminals AI and A2 of the first two-ported may be connected to each other and it may also the terminals Bl and B2 of the last so interconnected two-port are connected to each other.
  • the polarity of the series connection can also be reversed if mutatis mutandis the "first port” and the "second port", as well as "AI” and "A2", and "Bl” and “B2" reversed.
  • the embodiment according to FIG. 9 c requires only four switches per individual module, but does not permit a free selection of the voltage direction in the series connection of energy storage elements.
  • the use of polarized energy storage elements such as e.g. Accumulators or electrolytic capacitors difficult.
  • the polarity of the energy storage elements can be selected independently of the external module voltage.
  • FIG. 10 shows possible switching states for the series connection of three individual modules 1001, 1002 and 1003 according to FIG. 9c.
  • the individual modules can be regarded as a combination of four-quadrant switched two-poles with an energy storage element and an additional switching element at an input or output terminal.
  • a single module in turn forms a two-port, wherein an input terminal is permanently connected to an output terminal (eg in Figure 9d, the terminals A2 and B2 of each individual module).
  • an output terminal eg in Figure 9d, the terminals A2 and B2 of each individual module.
  • the illustrated embodiments represent examples of possible interconnections of the energy storage elements and the associated switches, but make no claim to completeness.
  • the individual modules can still be equipped with additional switches to achieve the same switching states described.
  • single modules which have more than two electrical connections between the individual modules can also be used to implement the present invention.
  • a single-phase or multi-phase converter can be constructed according to the invention in that each bridge branch, as illustrated by way of example with 3 individual modules in FIG. 7, is composed of several series-connected two-ports.
  • the output terminals Bl and B2 of a two-port are connected to the input terminals AI and A2 (or reversed A2 and AI).
  • the respective terminals of a bridge branch are either by an input-side terminal AI or A2 (both terminals AI and A2 can also be connected alternatively) of the first module in the bridge branch or by an output terminal Bl or B2 (both terminals Bl and B2 alternatively also can be connected) of the last module in the bridge branch.
  • a phase module 1103 can be constructed from two bridge branches 1101 and 1102, wherein the bridge branches are constructed from individual modules 701, 702 and 703. Similar to the described multilevel converter, these phase modules, whose upper and lower terminals are connected to a common busbar, form the basic building blocks of a single- or multi-phase converter.
  • a system is again formed for converting a single-phase AC voltage or DC voltage into another single-phase AC voltage or DC voltage.
  • the structure of such a system is again completely symmetrical with respect to the inputs and outputs and thus enables a complete four-quadrant operation with respect to each connection pair.
  • both the input side and the output side of the behavior of the power converter with respect to inductive or capacitive behavior can be adjusted individually. The energy flow is thus possible in both directions and can be changed dynamically.
  • phase modules 1301, 1302, 1303 for example by means of three interconnected phase modules 1301, 1302, 1303 according to FIG. 13, a system for converting a 3-phase AC voltage into a 1-phase AC voltage or a DC voltage can be realized.
  • the combined connections of the phase modules can also be considered as so-called (DC) busbars, so that by interconnecting n + m phase modules, a network coupling for the coupling of an n-phase network with an m-phase network is created.
  • FIG. 14 illustrates by way of example the interconnection of 5 phase modules 1401 to 1405 in order to realize a coupling of a 3-phase three-phase network to a two-phase network.
  • the proposed design for combining several modules does not have to be based on identical modules. If the controller takes this into account, it is also possible to combine modules of this topology with the proposals from the original applications (DE 10217889) (ie corresponding 2-poles) in order to enable parallel connection only to a specific part of modules. Furthermore, depending on the requirements of the converter, the capacities of the energy storage elements and the current carrying capacities of the switches of the individual modules can be individually adapted to the circumstances.
  • one of the two bridge branches is replaced by a simple (preferably electronic) switch within a phase module.
  • a simple implementation of the required properties of a single module according to FIG. 9a can expediently be realized by the additional use of diodes 1501 to 1505 according to FIG. 15 as a possible embodiment.
  • the voltage at the terminal pairs is limited to the capacitor voltage Uc, even with open switches.
  • the further switching element which can connect the terminals Bl to B2, in the case of a semiconductor switch with freewheeling diode also inherently enforces the necessary potential condition for this operating case.
  • the switching elements via the switching elements the respective connection both the known serial and a parallel connection of adjacent individual modules possible, for example, to increase the current carrying capacity.
  • a practical realization of two such individual modules each having 5 transistors 1601 to 1605 is shown in FIG.
  • Figure 17 illustrates such a single module with the 5 transistors 1701 to 1705, wherein the transistor 1702 can connect the two terminals AI and A2.
  • All switching elements can be designed, for example, as transistors (for example, MOSFET or else IGBT) or other semiconductor switches and improved by parallelization in the Stromtragfahtechnik.
  • transistors for example, MOSFET or else IGBT
  • IGBT IGBT
  • this additional switching element does not necessarily have to work in fast PWM mode since it can only be used for the parallel or series connection of individual modules.
  • connection pairs of the marginal single modules can, if the input and output systems can not benefit from the separation of the two lines, simply join together.
  • sources and consumers can leverage this additional feature through innovative diode or transistor circuitry.
  • the marginal individual modules can also differ from the other individual modules in that they have only one connection on one side.
  • the input-edge individual modules can already connect the two inputs AI and A2.
  • the output-marginal individual modules may also have only one connection on the output side and require (compared to the embodiments of FIG. 16 on the output side only two switching elements (connecting the two outputs B1 and B2).
  • FIG. 21 shows an overfilled single module with 8 transistors 2101 to 2108 and 4 diodes 2109 to 2112, which has more switching elements than is necessary for the simplest operation. All other illustrated structures can be derived by removing individual switches from this structure.
  • Figures 22 and 23 show further possible embodiments which are derived from the circuit diagram according to Figure 21, but allow fewer switches (2201 to 2206 or 2301 to 2306) and correspondingly fewer switching options. Control of the individual modules
  • Each individual module should be controlled by its own control unit, which is connected via a potential-free bidirectional data channel with a common control unit, on the one hand to control the switching elements and on the other hand forward the voltage values of the energy storage element to the control unit.
  • other data such as currents or temperatures of the components can be transmitted to the control unit.
  • the control units in the individual modules are electrically supplied directly via the voltage at the terminals of the individual modules.
  • the data transmission to the common control unit may e.g. optically, to ensure galvanic isolation.
  • the complete omission of modularity gives the possibility of combining control systems, which has potential for simplification of the design and cost savings. For example, in the case of transistor-type switches, all switching elements with the same source contact can be combined in the floating control.
  • a parallel charge and voltage compensation should be made before the parallel connection.
  • additional compensating elements in each case between two individual modules, which allowed temporary storage of part of the energy of the energy storage elements.
  • compensating members may include inductors.
  • the switch (eg transistor) of each individual module according to FIG. 9a which connects the two connections B1 and B2 (or alternatively the two connections AI and A2) is designed as well as all other switching elements according to the redundancy principle of the module structure. If the controller is designed accordingly, it can continue to work without major restrictions in the event of a defect (this usually leads to semiconductor breakdown in semiconductor switches and thus to a low-resistance, permanently closed state). The only switching option that is thus eliminated is the parallel connection of the two adjacent individual modules. A failure does not result in any downtime. To relieve the defective switch, the controller can additionally close the two busbars via a (slow) relay and issue a maintenance order for the medium-term replacement of the single module / transistor.
  • Inverters with highly inductive or highly capacitive loads can also be operated with reduced current heat losses compared to conventional systems, since these loads high currents (which lead to power heat losses) occur at low voltages, so that parallel connection of the individual modules is possible in these periods.
  • this system offers a very wide range of applications, ranging from low voltage conversion, vehicle applications to high and very high voltage levels (rail traffic, HVDC / HVDC systems, network coupling, power compensation, network coupling of different voltages and frequencies, etc.).
  • the optional parallel and series connection of individual modules is also particularly favorable for converters, the at least one terminal pair a highly variable voltage deliver (or record) at consistently high performance. This is the case, for example, in electric vehicles, where on the one hand for starting high torques (and thus high currents) at relatively low operating voltages and on the other hand for normal driving rather low torques (and thus low currents) are required at correspondingly higher operating voltages.
  • a further possible field of application is nerve stimulation using magnetic fields according to the induction principle.
  • a coil applied to the tissue to be stimulated generates a magnetic field pulse via a current pulse with a suitable waveform, so that a current flow is inductively induced in the tissue.
  • the coil current and the induced coil field are dimensioned such that the induced current pulse is sufficient to depolarize the nerves and thus trigger an action potential.
  • This procedure is almost completely painless and therefore allows many applications in medicine.
  • in previous inductive stimulation methods only very simple resonant oscillator circuits are used for pulse generation whose sinusoidal pulses are not energetically optimal.
  • inverter allows the generation of correspondingly shaped temporally optimized current pulses, so that the energy expenditure for nerve irritation could be considerably reduced. Since an inductive load, namely the stimulation coil, is to be fed in this application as well, converters according to the described concept according to the present invention are particularly suitable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Dc-Dc Converters (AREA)

Abstract

L'invention concerne un système de convertisseur électrique pour des alimentations électriques, composé d'au moins deux modules individuels identiques montés en série, caractérisé en ce que chaque module individuel comporte au moins quatre éléments de commutation internes, au moins un élément d'accumulation d'énergie et au moins quatre connexions, respectivement deux connexions servant de première et de deuxième paire de bornes. Les éléments de commutation internes de chaque module individuel sont conçus de telle manière qu'ils peuvent connecter sélectivement une ou deux connexions de chaque paire de borne à l'élément d'accumulation d'énergie. Le montage en série d'au moins deux modules individuels est réalisé de telle manière que respectivement les connexions de la deuxième paire de bornes d'un module individuel précédent sont reliées aux connexions de la première paire de bornes du module individuel respectivement suivant, et au moins une borne de la première paire de bornes du premier module individuel du montage en série et au moins une borne de la deuxième paire de bornes du dernier module individuel du montage en série servent de bornes du montage en série. Les éléments de commutation des modules individuels respectifs du montage en série des au moins deux modules individuels connectent leurs éléments d'accumulation d'énergie respectifs aux bornes du montage en série de telle manière que sélectivement un montage en série ou en parallèle des éléments d'accumulation d'énergie est présent.
PCT/EP2011/005752 2010-11-30 2011-11-15 Nouvelle topologie de convertisseur multi-niveaux permettant le montage dynamique en série et en parallèle de modules individuels WO2012072197A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010052934.6 2010-11-30
DE102010052934A DE102010052934A1 (de) 2010-11-30 2010-11-30 Neue Multilevelkonvertertopologie mit der Möglichkeit zur dynamischen Seriell- und Parallelschaltung von Einzelmodulen

Publications (2)

Publication Number Publication Date
WO2012072197A2 true WO2012072197A2 (fr) 2012-06-07
WO2012072197A3 WO2012072197A3 (fr) 2013-04-25

Family

ID=44582488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/005752 WO2012072197A2 (fr) 2010-11-30 2011-11-15 Nouvelle topologie de convertisseur multi-niveaux permettant le montage dynamique en série et en parallèle de modules individuels

Country Status (2)

Country Link
DE (1) DE102010052934A1 (fr)
WO (1) WO2012072197A2 (fr)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2592745A1 (fr) * 2011-11-10 2013-05-15 GE Energy Power Conversion GmbH Convertisseur électrique
CN103368431A (zh) * 2013-06-25 2013-10-23 许继集团有限公司 一种mmc上下桥臂分离控制方法
DE202014002953U1 (de) 2014-04-07 2015-07-09 Stefan Goetz Elektrisches Energiespeichersystem
DE202014004749U1 (de) 2014-06-13 2015-09-15 Aehling, Dr. Jaensch & Dr. Goetz GbR (vertretungsberechtigter Gesellschafter Dr. Malte Jaensch, 74321 Bietigheim-Bissingen) Elektronische Schaltung zum vereinfachten Betrieb von Mehrpunktumrichtern
DE102014008399A1 (de) 2014-06-13 2015-12-17 Stefan Goetz Elektronische Schaltung und Verfahren zum vereinfachten Betrieb von Mehrpunktumrichtern
DE102015004517A1 (de) 2015-04-07 2016-10-13 Aehling, Dr. Jaensch & Dr. Goetz GbR (vertretungsberechtigter Gesellschafter Dr. Malte Jaensch, 74321 Bietigheim-Bissingen) Elektrisches Energiespeichersystem
DE102015004492A1 (de) 2015-04-07 2016-10-13 Aehling, Dr. Jaensch & Dr. Goetz GbR (vertretungsberechtigter Gesellschafter Dr. Malte Jaensch, 74321 Bietigheim-Bissingen) Elektrisches Energiespeichersystem
CN107925366A (zh) * 2015-07-30 2018-04-17 保时捷股份公司 嵌套式变换器
DE102017108099A1 (de) * 2017-04-13 2018-10-18 Universität der Bundeswehr München Stromrichter für Energieübertragung
DE102017113460A1 (de) 2017-06-20 2018-12-20 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Elektronische Schaltung zur Konvertierung elektrischer Energie und zugehörige Steuerung
DE102017113581A1 (de) 2017-06-20 2018-12-20 Stefan Götz Elektronische Schaltung zur magnetischen Neurostimulation und zugehörige Steuerung
US10637251B2 (en) 2014-07-23 2020-04-28 Universitaet Der Bundeswehr Muenchen Modular energy storage direct converter system
WO2020113932A1 (fr) * 2018-12-03 2020-06-11 珠海格力电器股份有限公司 Circuit, module de conversion ca/cc, mini-réseau à courant continu et procédé de commande associé

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9502960B2 (en) 2010-11-30 2016-11-22 Technische Universitaet Muenchen Multi-level converter topology with the possibility of dynamically connecting individual modules in series and in parallel
DE102011108920B4 (de) 2011-07-29 2013-04-11 Technische Universität München Elektrisches Umrichtersystem
DE102012209657A1 (de) * 2012-06-08 2013-12-12 Robert Bosch Gmbh Verfahren und Vorrichtung zur Ermittlung des Innenwiderstandes von Batteriezellen einer Batterie
DE102012209652A1 (de) 2012-06-08 2013-12-12 Robert Bosch Gmbh Verfahren zur Bestimmung eines ohmschen Innenwiderstandes eines Batteriemoduls, Batteriemanagementsystem und Kraftfahrzeug
WO2013186006A2 (fr) * 2012-06-12 2013-12-19 Siemens Aktiengesellschaft Convertisseur multicellulaire
WO2014005634A1 (fr) * 2012-07-05 2014-01-09 Abb Ab Sous-module à trois niveaux pour convertisseur de source de tension
CN102820672B (zh) * 2012-08-09 2014-05-28 清华大学 一种连接不同电压等级交流电网的柔性直流输电系统
CN103545878B (zh) * 2013-09-22 2015-10-14 上海交通大学 一种mmc电池储能系统相间soc均衡方法
DE102015112512A1 (de) 2015-07-30 2017-02-02 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Einzelmodul, elektrisches Umrichtersystem und Batteriesystem
DE102016106359A1 (de) * 2016-04-07 2017-10-12 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Modul für einen Multilevelkonverter
DE102016116128A1 (de) 2016-08-30 2018-03-01 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Vorrichtung und Verfahren zur Integration eines elektrischen Elements in eine elektrische Schaltung unter Last
DE102016123066A1 (de) 2016-11-30 2018-05-30 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Ladevorrichtung
DE102016123924A1 (de) 2016-12-09 2018-06-14 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Modulare Leistungselektronik zum Laden eines elektrisch betriebenen Fahrzeugs
DE102017124126B4 (de) 2017-10-17 2019-05-09 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Umrichter, elektrisches Polyphasen-System und Verfahren zum effizienten Leistungsaustausch
DE102017124122A1 (de) 2017-10-17 2019-04-18 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren und Vorrichtung zum Laden eines Energiespeichers
DE102017124125A1 (de) 2017-10-17 2019-04-18 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Laden eines Energiespeichers
DE102017126704B4 (de) 2017-11-14 2022-04-21 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Energieübertragung im Nullsystem
CN108134426B (zh) * 2018-01-15 2023-08-25 三峡大学 一种电池阵列均衡电路和均衡方法
DE102018106306A1 (de) 2018-03-19 2019-09-19 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Fahrzeug mit einem Energiespeicher
DE102018106308B4 (de) 2018-03-19 2020-02-13 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Modulationsindexverbesserung durch intelligente Batterie
DE102018106305B4 (de) 2018-03-19 2020-06-25 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Wechselstromladung einer intelligenten Batterie
DE102018106307A1 (de) 2018-03-19 2019-09-19 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Batterieauslegung eines Fahrzeugs mit mehreren Antriebsmotoren
DE102018106304A1 (de) 2018-03-19 2019-09-19 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Gleichstromladung einer intelligenten Batterie
DE102018106309A1 (de) 2018-03-19 2019-09-19 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Energiespeicher
DE102018109921B3 (de) 2018-04-25 2019-08-08 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Elektrisches Energiespeichersystem
DE102018109926B4 (de) 2018-04-25 2019-12-19 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Elektrische Anordnung
DE102019112373A1 (de) * 2019-05-13 2020-11-19 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren und Schaltung zur Anbindung eines Energiespeichers mittels Kaltleiter
DE102019120616B3 (de) * 2019-07-31 2020-11-12 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren und System für modularen Multilevelkonverter mit erweiterten Schaltzuständen
WO2021023390A1 (fr) * 2019-08-08 2021-02-11 Siemens Energy Global GmbH & Co. KG Circuit de connexion
CN111665393B (zh) * 2020-05-15 2021-07-13 上海交通大学 一种mmc子模块电容容值和esr值在线监测方法及装置
DE102020129132A1 (de) 2020-11-05 2022-05-05 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren und System zu einem Konfigurieren einer Wechselstrombatterie für Wechselstromladen
DE102021111864A1 (de) 2021-05-06 2022-11-10 instagrid GmbH Energieversorgungssystem und Verfahren zum Laden eines Energieversorgungssystems

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10217889A1 (de) 2002-04-22 2003-11-13 Siemens Ag Stromversorgung mit einem Direktumrichter

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101065706B (zh) * 2004-11-22 2011-01-19 古河Sky株式会社 可动机构
RU2414045C2 (ru) * 2006-10-18 2011-03-10 Абб Рисерч Лтд Преобразовательная схема для коммутации большого числа уровней коммутируемого напряжения
ATE470983T1 (de) * 2007-03-30 2010-06-15 Abb Research Ltd Schaltzelle sowie umrichterschaltung zur schaltung einer vielzahl von spannungsniveaus mit einer solchen schaltzelle

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10217889A1 (de) 2002-04-22 2003-11-13 Siemens Ag Stromversorgung mit einem Direktumrichter

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2592745A1 (fr) * 2011-11-10 2013-05-15 GE Energy Power Conversion GmbH Convertisseur électrique
US9178443B2 (en) 2011-11-10 2015-11-03 Ge Energy Power Conversion Gmbh Electrical frequency converter for coupling an electrical power supply grid with an electrical drive
CN103368431A (zh) * 2013-06-25 2013-10-23 许继集团有限公司 一种mmc上下桥臂分离控制方法
DE202014002953U1 (de) 2014-04-07 2015-07-09 Stefan Goetz Elektrisches Energiespeichersystem
CN106165278A (zh) * 2014-04-07 2016-11-23 保时捷股份公司 电能存储器系统
WO2015154743A1 (fr) 2014-04-07 2015-10-15 Stefan Goetz Système de stockage d'énergie électrique
DE102015004489A1 (de) 2014-04-07 2015-10-29 Aehling, Dr. Jaensch & Dr. Goetz GbR (vertretungsberechtigter Gesellschafter Dr. Malte Jaensch, 74321 Bietigheim-Bissingen) Elektrisches Energiespeichersystem
DE202014004749U1 (de) 2014-06-13 2015-09-15 Aehling, Dr. Jaensch & Dr. Goetz GbR (vertretungsberechtigter Gesellschafter Dr. Malte Jaensch, 74321 Bietigheim-Bissingen) Elektronische Schaltung zum vereinfachten Betrieb von Mehrpunktumrichtern
WO2015188804A1 (fr) 2014-06-13 2015-12-17 Stefan Goetz Circuit électronique simplifiant le fonctionnement de convertisseurs multipoints
DE102014008399A1 (de) 2014-06-13 2015-12-17 Stefan Goetz Elektronische Schaltung und Verfahren zum vereinfachten Betrieb von Mehrpunktumrichtern
US10473728B2 (en) 2014-06-13 2019-11-12 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Electronic circuit for easier operation of multilevel converters
US11196264B2 (en) 2014-07-23 2021-12-07 Universitaet Der Bundeswehr Muenchen Modular energy storage direct converter system
US10637251B2 (en) 2014-07-23 2020-04-28 Universitaet Der Bundeswehr Muenchen Modular energy storage direct converter system
DE102015004492A1 (de) 2015-04-07 2016-10-13 Aehling, Dr. Jaensch & Dr. Goetz GbR (vertretungsberechtigter Gesellschafter Dr. Malte Jaensch, 74321 Bietigheim-Bissingen) Elektrisches Energiespeichersystem
DE102015004517A1 (de) 2015-04-07 2016-10-13 Aehling, Dr. Jaensch & Dr. Goetz GbR (vertretungsberechtigter Gesellschafter Dr. Malte Jaensch, 74321 Bietigheim-Bissingen) Elektrisches Energiespeichersystem
CN107925366A (zh) * 2015-07-30 2018-04-17 保时捷股份公司 嵌套式变换器
DE102017108099B4 (de) 2017-04-13 2019-03-28 Universität der Bundeswehr München Stromrichter für Energieübertragung
DE102017108099A1 (de) * 2017-04-13 2018-10-18 Universität der Bundeswehr München Stromrichter für Energieübertragung
US11056982B2 (en) 2017-04-13 2021-07-06 Universität der Bundeswehr München Power converter for energy transmission
DE102017113460A1 (de) 2017-06-20 2018-12-20 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Elektronische Schaltung zur Konvertierung elektrischer Energie und zugehörige Steuerung
DE102017113581A1 (de) 2017-06-20 2018-12-20 Stefan Götz Elektronische Schaltung zur magnetischen Neurostimulation und zugehörige Steuerung
WO2018233871A1 (fr) 2017-06-20 2018-12-27 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Circuit électronique pour la conversion d'une énergie électrique et commande associée
WO2020113932A1 (fr) * 2018-12-03 2020-06-11 珠海格力电器股份有限公司 Circuit, module de conversion ca/cc, mini-réseau à courant continu et procédé de commande associé

Also Published As

Publication number Publication date
WO2012072197A3 (fr) 2013-04-25
DE102010052934A1 (de) 2012-05-31

Similar Documents

Publication Publication Date Title
EP2647119B1 (fr) Nouvelle topologie de convertisseur multi-niveaux permettant le montage dynamique en série et en parallèle de modules individuels
WO2012072197A2 (fr) Nouvelle topologie de convertisseur multi-niveaux permettant le montage dynamique en série et en parallèle de modules individuels
EP2737618B1 (fr) Système de convertisseur électrique
EP2537239B1 (fr) Onduleur à découpage à 3 étages avec réseau de délestage
EP2086102B1 (fr) Onduleur destiné à convertir une tension continue électrique en un courant alternatif ou une tension alternative
EP2309639B1 (fr) Onduleur capable de puissance réactive
EP3014725B1 (fr) Dispositif accumulateur d'énergie doté d'un circuit d'alimentation en tension continue et procédé pour fournir une tension continue à partir d'un dispositif accumulateur d'énergie
EP2023475B1 (fr) Inversion pour une source de tension continue reliée à la terre, en particulier un générateur photovoltaïque
DE102015112513A1 (de) Matroschka-Umrichter
WO2017016674A1 (fr) Module individuel, système électrique convertisseur de fréquence et système de batteries
EP3211784A1 (fr) Sous-module double pour un convertisseur de frequence multipoints modulaire et convertisseur de frequence multipoints modulaire en etant dote
EP2845288B1 (fr) Couplage ou découplage de puissance dans une dérivation à un noeud de un réseau dc par une source de tension connectée en série
EP2859569B1 (fr) Interrupteur cc de commutation d'un courant continu dans un embranchement d'un noeud de réseau
WO2014154495A1 (fr) Dispositif accumulateur d'énergie et système comprenant un dispositif accumulateur d'énergie
DE102011116593B4 (de) Wechselrichter mit asymmetrischen Drosseln und einer Steuereinheit zum asymmetrischen Betrieb der Drosseln
EP3622621B1 (fr) Onduleur à plusieurs niveaux
EP2658102B1 (fr) Onduleur multiniveau à point neutre bloqué
WO2013072107A1 (fr) Dispositif accumulateur d'énergie, système doté d'un dispositif accumulateur d'énergie et procédé de commande d'un dispositif accumulateur d'énergie
EP4270764A1 (fr) Convertisseur multiniveau à condensateurs commutés avec circuit ssps
EP3304718B1 (fr) Convertisseur continu-continu pour hautes tensions
DE102015008369A1 (de) Schaltungsanordnung zur bidirektionalen Kopplung eines Gleichspannungssystems mit mehreren Wechselspannungssystemen und Verfahren zur Steuerung einer solchen Schaltungsanordnung
DE102018207373A1 (de) Umrichtervorrichtung für einen Elektromotor
EP2928055B1 (fr) Convertisseur de courant modulaire et procédé de production d'une tension de sortie sinusoïdale à harmoniques réduites
DE102022109241B3 (de) Multilevelkonverter mit Drei-Schalter-Submodulen mit symmetrischer Halbbrückenschaltung und paralleler Konnektivität
DE102011081448A1 (de) Schaltungsanordnung mit elektronischem Schalter und Induktivität

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11788041

Country of ref document: EP

Kind code of ref document: A2