WO2012071983A1 - 一种微藻高产率异养培养的方法 - Google Patents

一种微藻高产率异养培养的方法 Download PDF

Info

Publication number
WO2012071983A1
WO2012071983A1 PCT/CN2011/082333 CN2011082333W WO2012071983A1 WO 2012071983 A1 WO2012071983 A1 WO 2012071983A1 CN 2011082333 W CN2011082333 W CN 2011082333W WO 2012071983 A1 WO2012071983 A1 WO 2012071983A1
Authority
WO
WIPO (PCT)
Prior art keywords
chlorella
liter
culture
heterotrophic
microalgae
Prior art date
Application number
PCT/CN2011/082333
Other languages
English (en)
French (fr)
Inventor
李元广
黄建科
李淑兰
王伟良
范建华
王军
梁松涛
魏鸿刚
沈国敏
李际军
Original Assignee
华东理工大学
上海泽元海洋生物技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华东理工大学, 上海泽元海洋生物技术有限公司 filed Critical 华东理工大学
Publication of WO2012071983A1 publication Critical patent/WO2012071983A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G33/00Cultivation of seaweed or algae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/12Unicellular algae; Culture media therefor

Definitions

  • the invention belongs to the field of microalgae biotechnology, and relates to a method for high-yield heterotrophic culture of microalgae. Background technique
  • Microalgae cells are rich in high-value active substances such as proteins, polysaccharides, fatty acids and carotenoids. Therefore, microalgae currently has a wide range of applications in food, medicine, feed, environmental protection and bioenergy.
  • microalgae such as chlorella, spirulina, salt algae, Haematococcus pluvialis, etc.
  • microalgae such as chlorella, spirulina, salt algae, Haematococcus pluvialis, etc.
  • the photoautotrophic culture of microalgae mainly has the disadvantages of low cell density, low production efficiency, high harvesting cost, vulnerability to contamination by bacteria and protozoa, and environmental and climatic conditions.
  • Mixed nutrient cultures need to be cultured in a sterilizable photobioreactor, which requires both aseptic culture and sufficient light conditions.
  • the requirements for the culture equipment are extremely high and the equipment is difficult to amplify. Therefore, in the actual large-scale cultivation of microalgae, almost no mixed nutrition is used for cultivation.
  • some of the microalgae can be heterotrophic culture, that is, the microalgae are heterotrophically grown by adding an organic carbon source such as glucose.
  • This culture method has the following advantages: (1) It is not restricted by environmental and climatic conditions; (2) It can maintain pure culture to ensure the uniformity of product quality; (3) It can obtain poles relative to photoautotrophic culture. High cell concentration and production efficiency; (4) Can draw on and utilize more mature industrial fermentation technology and production equipment.
  • heterotrophic culture is the easiest to achieve industrialization, and has attracted much attention.
  • Many researchers use high-value-added products such as lutein, astaxanthin, vitamins, ascorbic acid, etc. through heterotrophic culture; in addition, researchers use microalgae heterotrophic culture to produce oil.
  • the existing microalgae heterotrophic culture methods mainly include batch and fed batch culture, and no semi-continuous method for heterotrophic culture of microalgae has been reported. Batch culture is a more common method used in heterotrophic culture.
  • chlorella is cultivated in a batch manner, and the density of algae cells is about 20 g/L (Shi XM, Zhang XW, Chen F.
  • Heterotrophic culture of microalgae has many advantages, but there are disadvantages such as low quality of heterotrophic algae cells, low content of intracellular active substances, and only suitable for heterotrophic culture of algae.
  • Chinese invention patent ZL 200610025618.9
  • the method of high-density and high-quality cultivation of microalgae invented can solve the problem of low quality of microalgae heterotrophic cultivation.
  • the Chinese invention patent (ZL 200610025618.9) uses the fed-batch culture technology to achieve high-density heterotrophic culture of microalgae, while still having the following problems: (1) Longer lag period and yield after batch culture inoculation Low; (2) Due to high cell density and high oxygen consumption in the late stage of culture, the oxygen supply capacity of the bioreactor is seriously insufficient, resulting in a significant decrease in the growth rate at the later stage; (3) at the end of the heterotrophic batch culture, in the case of rainy days, outdoors The light-induced culture efficiency is low, so the number of equipment and the illumination area of the light-induced culture system matched with the microalgae heterotrophic culture must be greatly increased, resulting in a large investment in disposable equipment; (4) Heterotrophic feeding for batch feeding Culture, light induction time is short, so the utilization rate of light-induced culture system matched with heterotrophic culture equipment is low; (5) For batch fed heterotrophic culture, it cannot be performed outdoors when it encounters extreme weather. When light is induced
  • the present invention provides an effective solution for adopting a semi-continuous culture operation mode in a heterotrophic culture process, that is, in a heterotrophic culture process, a part of the algae liquid is released, and then supplemented.
  • the algal cells are further cultured in a heterotrophic culture device with a corresponding volume of medium or sterile water.
  • the method greatly improves the yield of algae cells, reduces the oxygen supply requirement for the bioreactor, and provides microalgae cells for light-induced culture at any time, and can also be a large-scale photoautotrophic for heterotrophic growth energy microalgae. Culture provides a large number of seeds.
  • the average growth rate of algae cells in one cycle can reach 3.0 g/(Lh); while the fed-batch culture technique of Chinese invention patent (ZL 200610025618.9), the average growth rate of algae cells is 0.867. g/(Lh) or so; the average growth rate of batch culture is only about 0.487 g/(L_h).
  • a large number of algae species can be provided for large-scale photoautotrophic cultivation of heterogeneously grown energy microalgae at any time:
  • algae species have a longer expansion time (for outdoor large pool culture, generally up to 1) - about 2 months), which seriously affects the production efficiency of the whole culture stage.
  • the semi-continuous heterotrophic culture technology provided by the present invention can provide high-density algae liquid at any time, and effectively solve the algae in the large-scale cultivation of energy microalgae. A rapid expansion problem.
  • the semi-continuous (repeated batch feeding or stripping) heterotrophic culture mode of the microalgae of the present invention can completely solve the problems caused by high density during heterotrophic culture and with light induction on time and equipment. Matching problems. Therefore, the invention provides a solid industrialization basis for the heterotrophic culture of microalgae and the production of active substances thereof, especially for the production of algal flour and its active substances by microalgae heterotrophic-dilution-light-induced tandem culture.
  • the invention provides a high-yield heterotrophic culture method for microalgae, which can solve the problems in the high-density heterotrophic culture process of microalgae and realize the high-yield continuous production of microalgae and its active substances.
  • the heterotrophic culture is carried out by semi-continuous (repeated batch feeding or stripping) culture, that is, during the cultivation process, part of the algae liquid is released, and the corresponding volume of heterotrophic medium is added and no The bacteria water is allowed to continue to culture.
  • the microalgae is selected from the group consisting of: Chlorella pyrenoidosa in the genus Chlorella, Chlorella pyrenoidosa, Chlorella vulgaris, Chlorella vulgaris. Chlorella Ellipsoidea) , Chlorella emersonii , Chlorella sorokiniana, , Chlorella reg laris , Chlorella min tissima, Chlorella protothecoides, Chlorella zofingiensis, and Chlorella
  • a medium having a pH of 4.0 to 9.0 is added to the bioreactor, and the microalgae species are connected to the semi-continuous culture according to the working volume of 0.1 to 30%.
  • the culture temperature is 10 to 40 ° C
  • the pH is controlled to be 4.0 to 9.0
  • the dissolved oxygen is controlled to be 1% or more.
  • the heterotrophic medium consists of a nitrogen source, an organic carbon source, and inorganic salts, microelements, and water.
  • the heterotrophic culture can be carried out in a shake flask, mechanically agitated, airlifted or bubbling heterotrophic culture bioreactor.
  • the method further includes: micro-distributing the heterotrophic process
  • the algae cells and/or the microalgae cells after the heterotrophic end are directly made into algal flour, or used to extract intracellular active substances, or transferred to light-induced culture, or transferred to photoautotrophic culture.
  • the medium used for heterotrophy consists essentially of the following components: KNO 3 5 ⁇ 15 g/L, glucose 10 ⁇ 60 g/L, KH 2 PO 4 0.3 0.9 g / liter, Na 2 HPO 4 ' 12H 2 O 1.0 10.0 g / liter, MgSO 4 '7H 2 O 0.2 ⁇ 1.0 g / liter, CaCl 2 0.05-0.3 g / liter, FeSO 4 -7H 2 O 0.01-0.05 g / liter, trace element 0.5 ⁇ 4ml, and water, wherein the composition of trace elements is H 3 BO 3 5-15 g / liter, ZnSO 4 '7H 2 O 5.0-10.0 g / liter, MnCl 2 - H 2 O 1.0-2.0 g/L, ( ⁇ 4 ) 6 ⁇ 7 ⁇ 24 ⁇ 4 ⁇ 2 ⁇ 0.5-1.5 g/L, CuSO 4 -5H
  • the medium used for heterotrophy consists essentially of the following components: glucose 10 to 60 g/L, urea 2 to 8 g/L, KH. 2 PO 4 1-2 g / liter, Na 2 HPO 4 ' 12H 2 O 1.0-10.0 g / liter, MgSO 4 '7H 2 O 1-2 g / liter, CaCl 2 0.05-0.1 g / liter, citric acid three Sodium 0.1 ⁇ 2.0g/L, Fe-EDTA solution 0.5 ⁇ 1 mL, A5 solution l ⁇ 5mL and water; Fe-EDTA solution is FeSO 4 '7H 2 O 20-30 g/L and EDTA 20-40 g / liter; A5 solution formulation is H 3 BO 3 2.5-4.0 g / liter, MnCl 2 '4H 2 O 1.0-2.0 g / liter, ZnSO 4 -7H 2 O 0.1-0.6 g /
  • the density of the heterotrophic microalgae reaches 5 g/L or more, part of the algae liquid is released, and then the corresponding volume of the medium and the sterile water are replenished, so that the algal cells are continuously cultured in the heterotrophic culture apparatus.
  • the released algae liquid accounts for 20 to 80% of the total volume of the heterotrophic culture algae liquid.
  • Figure 1 shows the process of fed-batch culture of Chlorella pyrenoids in a 50L bioreactor.
  • Figure 2 shows the process of semi-continuous heterotrophic culture of Chlorella pyrenoids in a 50L bioreactor.
  • Figure 3 shows the process of semi-continuous heterotrophic culture of common chlorella in a 50L bioreactor.
  • Figure 4 shows the process of semi-continuous heterotrophic culture of Chlorella ellipses in a 5L bioreactor. detailed description
  • Microalgae suitable for use in the present application include, but are not limited to, Chlorella pyrenoidosa in the genus Chlorella, Chlorella pyrenoidosa, Chlorella vulgaris, Chlorella vulgaris, Chlorella ellipsoidea, Chlorella Emersonii, Chlorella sorokiniana, Chlorella saccharophila, Chlorella regularis, Chlorella minutissima, Chlorella protothecoides, Chlorella zofingiensis, and Chlorella
  • the invention employs Chlorella pyrenoidosa, Chlorella vulgaris, and Chlorella ellipsoid.
  • the microalgae heterotrophic culture can be carried out using various media well known in the art.
  • the heterotrophic medium contains a nitrogen source, an organic carbon source, an inorganic salt, a trace element, and water.
  • Those skilled in the art will be able to determine the amount of nitrogen, organic carbon, inorganic, and trace elements in the heterotrophic medium based on conventional knowledge in the art.
  • HA-SK medium Choinese patent ZL 200610024004.9
  • Endo medium Ogbonna JC, Masui. H., Tanaka. H. Sequential heterotrophic: autotrophic cultivation - an efficient method of producing Chlorella biomass for health food and animal feed. J. Appl. Phycol. 1997, 9, 359-366 ).
  • the algae cells can be brought to a certain density by batch or fed batch culture, for example, 5 ⁇ 30g/L, 30 ⁇ 60g/L, 60 ⁇ 120g/L, and the like.
  • the fed-batch culture is used before the tape is released.
  • the feed is required to be supplemented.
  • a carbon source such as glucose
  • a nitrogen source for example, a nitrogen source for culturing Chlorella vulgaris is KNO 3
  • a nitrogen source for nucleus chlorella culture is urea
  • a nutrient salt such as an inorganic salt
  • the additional concentration of glucose can be 15 ⁇ 25g/L, and the additional concentration of nitrogen source solution can be 2 ⁇ 10g/L.
  • a certain value for example, when the density of the heterotrophic microalgae reaches 5 g/L (preferably 20 g/L, 30 g/L, or 40 g/L);
  • the bioreactor proportion Algae solution with a coefficient of 0.2 ⁇ 0.8
  • the algae liquid can be transferred to light-induced culture or other treatment
  • suitable culture conditions must be controlled to allow the microalgae to grow normally.
  • the control temperature is 20 to 35 ° C, for example, 28 to 32 ° C
  • the dissolved oxygen is not less than 5% of the air saturation concentration
  • the pH is not higher than 9.0.
  • the dissolved oxygen is not less than 10% of the air saturation concentration and the pH is not higher than 8.5.
  • the dissolved oxygen is not less than 15% of the air saturation concentration, and the pH is not higher than 8.
  • Heterotrophic can be carried out in a heterotrophic culture bioreactor such as shake flask, mechanical agitation, airlift, or bubbling.
  • a mechanically agitated bioreactor is employed.
  • Determination of dry weight of algae cells Take 50 ml of culture medium during microalgae (such as chlorella) culture, centrifuge at 8000 rpm for 10 minutes, wash the algae after centrifugation with deionized water for 3 times, and transfer to a weighing bottle ( In W1 (g), dry in a 105 ° C oven to constant weight W2 (g).
  • heterotrophic medium and tap water were added to a 50 L bioreactor to sterilize after 25 L, and when the temperature was lowered to 30 ° 1 ° C, Chlorella chlorella was introduced to start heterotrophic culture.
  • the material was fed 5 times.
  • the cell density was 149.43 g/L.
  • the algae cells grew slowly, and the cells were cultured to 97.60 h.
  • the cell density was 158.56 g/ L, the cell growth rate increased first and then gradually decreased, and the average cell yield was 1.63 g/L/h (see Figure 1).
  • the stirring speed was up to 800 rpm in batch culture.
  • Heterotrophic culture conditions temperature is 30 ⁇ 2 °C, pH is less than 8.5, and dissolved oxygen is controlled at 5% or more.
  • Fe-EDTA solution is FeSO 4 '7H 2 O 15 g / liter and EDTA 1.4 g / liter
  • trace element solution is H 3 BO 3 2.11 g / liter, MnCl 2 -4H 2 O 0.81 g / liter, ZnSO 4 -7H 2 O 0.11 g/l, CuSO 4 -5H 2 O 10.0 g/l, Na 2 MoO 4 0.05 g/l.
  • Example 2 (Spontaneous culture of Chlorella pyrenoids 50L cans)
  • heterotrophic medium and tap water were added to a 50 L bioreactor to sterilize after 25 L.
  • temperature was lowered to 30 ° 1 ° C, 12% of the working volume was inserted into Chlorella pyrenoidosa to start heterotrophic culture.
  • the first feeding was carried out 47.4 hours after inoculation, the second feeding was carried out at 59.2 hours, and the stripping operation was carried out at 67.91 h, that is, a part of the algae liquid was discharged from the bioreactor and transferred to light-induced culture, and then in a 50 L bioreactor.
  • the medium and water were added to the working volume before the release, and the algal cell density was reduced from 82.2 g/L to 52.5 g/L, and the heterotrophic culture was continued. After that, it is fed once every 6 ⁇ 9h. After feeding twice, the tape is discharged.
  • the volume of the release is about half of the working volume, and the cell density is reduced from about 110g/L to about 55g/L.
  • Heterotrophic culture conditions temperature is 30 ⁇ 2 °C, pH is less than 8.5, and dissolved oxygen is controlled at 5% or more.
  • the medium was identical to the medium of Example 1.
  • Example 3 General chlorella in a 50L tank semi-continuous culture
  • the heterotrophic medium and tap water were added to the 50L fermentor to 25L and then sterilized. When the temperature dropped to 31 s rc, the common chlorella seeds were added to start heterotrophic culture.
  • the density of algae cells reached 54.52g/L at 58.2h, and then carried out the stripping operation, releasing about 60% of the working volume from the fermenter, supplementing the medium and sterile water, and returning to the belt before discharge.
  • the volume, the density of the algae cells was reduced to 21.6 g/L, and then the cultivation was continued.
  • the density of algae cells reached 54.5g/L at 85.1h.
  • a second strip was taken, and about 60% of the working volume was released from the fermenter, supplemented with medium and sterile water.
  • the density of the algae cells was reduced to 20.1 g/L, and then the heterotrophic culture was continued.
  • the whole heterotrophic culture was terminated at 115.5 h, and the average algal cell yield during the culture was 1.62 g/L/d (see Figure 3).
  • the temperature is controlled at 31 ⁇ 1 ° C, and the pH is maintained at 6 to 8.
  • the DO is maintained at 10 to 60%.
  • Fe-EDTA solution is FeSO 4 '7H 2 O 15 g / liter and EDTA 1.4 g / liter
  • the trace element solution is H 3 BO 3 2.86 g / liter, MnCl 2 '4H 2 O 0.11 g / liter, ZnSO 4 '7H 2 O 9.22 g/L, CuSO 4 '5H 2 O 1.00 g/L, ( ⁇ 4 ) 6 ⁇ 7 ⁇ 24 ⁇ 4 ⁇ 2 ⁇ 0.1 g/L, Co(NO 3 ) 2 '6H 2 O 0.9 g / liter.
  • Example 4 spheroidal culture of ellipsoid in a 5L tank
  • the heterotrophic medium After adding the heterotrophic medium to the 5L fermenter, it was sterilized and sterilized at 121 °C for about 20 minutes. When the temperature dropped to 30 ⁇ 1 °C, the heterotrophic culture was started by accessing the chlorella.
  • the cell density reached 52.3 g/L at 66.0 h (while glucose was consumed), this At the time of the release of 50% of the working volume of algae, then add glucose, KNO 3 and other nutrients to the tank, while using the sterile water to make up the volume to the original level, the cell density dropped to 26.5g / L, continue to feed culture . Then, when the algae cell density reached 50 ⁇ 5g / L, put it again. The heterotrophic culture lasted for 118.0 hours, and the whole process was carried out twice, and the average yield of algal cells was 1.23 g/L/d (see Figure 4).
  • the temperature is controlled at 31 ⁇ 1 °C and the pH is maintained at 6-8.
  • the medium used was identical to the medium of Example 3.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Cell Biology (AREA)
  • Environmental Sciences (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Botany (AREA)
  • Virology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

一种微藻高产率异养培养的方法 技术领域
本发明属于微藻生物技术领域, 涉及一种微藻高产率异养培养的方法。 背景技术
微藻细胞内富含蛋白质、 多糖、 脂肪酸和类胡萝卜素等多种高价值活性 物质。 因此, 目前微藻在食品、 医药、 饲料、 环保和生物能源等诸多方面具 有广泛的应用。
微藻的主要培养方式有光自养、 混合营养及异养培养。 目前, 已实现产 业化应用的微藻 (如小球藻、 螺旋藻、 盐藻、 雨生红球藻等) 几乎都是采用 光自养方式培养, 但也有少数微藻 (如寇氏隐甲藻等) 的大规模培养采用异 养方法。
微藻的光自养培养主要存在着细胞密度低、 生产效率低、 采收成本高、 易受到杂菌和原生动物的污染及环境和气候条件影响等缺点。 混合营养培养 需要在可灭菌的光生物反应器内进行培养, 需要同时保障无菌培养和充足的 光照条件, 对培养设备的要求极高, 同时设备难以放大。 因此, 在实际的微 藻大规模培养中几乎没有采用混合营养方式进行培养。
除了上述两种培养方式外, 部分微藻可以进行异养培养, 即通过添加葡 萄糖等有机碳源使微藻异养生长。 这种培养方式具有以下优点: (1 ) 不受环 境和气候等条件的限制; (2 ) 可保持纯培养, 从而保证产品质量的均一性; ( 3 ) 相对于光自养培养, 能够获得极高的细胞浓度和生产效率; (4 ) 可借 鉴和利用比较成熟的工业发酵技术和生产设备等。
因此, 在上述三种微藻培养模式中, 异养培养最容易实现产业化, 备受 人们的关注。 许多研究者通过异养培养的方式来生产高附加值产品, 如叶黄 素、 虾青素、 维生素、 抗坏血酸等; 此外, 也有研究者采用微藻异养培养方 式来生产油脂。 已有的微藻异养培养方式主要有分批和补料分批培养, 未见利用半连续 方法进行微藻的异养培养方面的报道。 分批培养是异养培养中较普遍采用的 一种方式。 目前,通过分批方式培养小球藻,藻细胞密度约在 20 g/L左右(Shi XM, Zhang XW, Chen F. Heterotrophic production of biomass and lutein by Chlorella protothecoides on various nitrogen sources. Enzyme and microbial technology. 2000, 27:312-3 18 ) 。 补料分批培养相对于分批培养可以获得更高 的藻细胞浓度和产率。 补料分批培养中, 主要有流加补料和间歇式补料方式。 吴正云等在 19 L发酵罐流加补料异养培养蛋白核小球藻, 小球藻的最高细胞 浓度和生长速率达到 116.2 g/L和 1.02g/(L-h)( Wu ZY,Shi XM. Optimization for high-density cultivation of heterotrophic Chlorella based on a hybrid neural network model. Letters in Applied Microbiology.2007,44(l): 13-18 ) 。 而采用中 国发明专利 (ZL 200610025618.9 ) 中的分批补料方法, 在 50L罐中培养蛋白 核小球藻, 培养 90h左右, 藻细胞密度可达 150g/L。
微藻异养培养具有很多优点, 但是存在着异养藻细胞品质低、 胞内活性 物质含量低和只适合于可异养培养藻种等缺点。 中国发明专利 (ZL 200610025618.9 ) 发明的微藻高密度高品质培养的方法可以解决微藻异养培 养品质低的问题。 然而, 中国发明专利 (ZL 200610025618.9 ) 采用分批补料 培养技术在实现微藻的高密度异养培养的同时, 仍然存在以下问题: (1 )分 批培养接种后的延滞期较长、 产率低; (2 ) 培养后期由于细胞密度高、 耗氧 量大, 生物反应器的供氧能力严重不足, 致使后期生长速率明显降低; (3 ) 异养分批培养结束时, 如遇阴雨天则户外光诱导培养效率较低, 因此与微藻 异养培养相匹配的光诱导培养系统的设备数量及光照面积必须大幅度增加, 导致一次性设备投资大; (4 ) 对于分批补料的异养培养, 光诱导时间较短, 因此与异养培养设备相匹配的光诱导培养系统的利用率较低; (5 )对于分批 补料异养培养, 当遇到极端恶劣天气而无法在户外进行光诱导时, 则生物反 应器中的微藻异养培养液无法放出而必须继续培养, 但会导致藻细胞大量死 亡甚至此批培养液全部报废。
针对上述问题, 本发明提供了一种有效的解决方法, 在异养培养过程中 采用半连续培养操作方式, 即在异养培养过程中, 放出部分藻液, 然后补充 相应体积的培养基或无菌水, 使藻细胞在异养培养装置中继续培养。 该方法 大大提高了藻细胞的产率, 降低了对生物反应器的供氧要求, 随时可为光诱 导培养提供微藻细胞、 也可为可异养生长的能源微藻的规模化光自养培养提 供大量种子。
以小球藻的半连续(重复分批补料或带放)异养培养为例, 详细说明本 发明的优点如下:
( 1 )可大大提高藻细胞产率。 按每个带放周期来算, 一个周期内藻细胞 平均生长速率可以达到 3.0 g/(L-h); 而采用 中国发明专利 ( ZL 200610025618.9 ) 的补料分批培养技术, 藻细胞平均生长速率为 0.867g/(L-h) 左右; 分批培养的平均生长速率仅为 0.487 g/(L_h)左右。
(2 )与补料分批培养相比,半连续培养降低了对生物反应器的供氧要求。 如 50L罐中补料分批培养时, 搅拌转速需要高达 800rpm; 而采用本发明的半 连续培养, 搅拌转速最高不超过 700rpm。
( 3 )可根据户外天气条件, 灵活选择带放时间: 如一般选择早上放出部 分藻液, 这样可以充分利用一整天的阳光进行光诱导; 遇上阴雨天时, 可以 灵活调整带放时间, 有效地克服了实际户外生产时, 采用分批补料培养遇到 阴雨天无法放出藻液导致异养培养液报废而造成直接经济损失和环保问题;
( 4 ) 可随时为可异养生长的能源微藻规模化光自养培养提供大量的藻 种: 能源微藻大规模培养时, 藻种扩培时间较长 (对于户外大池培养, 一般 达 1-2个月左右) , 严重影响了整个培养阶段的生产效率, 本发明提供的半 连续异养培养技术, 可以随时提供高密度的藻液, 有效地解决了能源微藻规 模化培养时的藻种快速扩培问题。
综上所述, 本发明的微藻半连续 (重复分批补料或带放) 异养培养模式 可以完全解决异养培养过程中由于密度高造成的诸多问题及与光诱导在时间 和设备上相互匹配的问题。 因此, 该发明为微藻的异养培养及其活性物质的 生产, 特别是为微藻异养-稀释-光诱导串联培养生产藻粉及其活性物质奠定 了坚实的产业化基础。 发明内容 本发明提供了一种微藻高产率异养培养的方法, 可以解决微藻高密度异 养培养过程中存在的问题, 实现微藻及其活性物质的高产率连续化生产。
在一个具体实施方式中, 采用半连续 (重复分批补料或带放) 培养方式 进行异养培养, 即在培养过程中, 放出部分藻液, 同时补加相应体积的异养 培养基和无菌水使后继续培养。
在一个具体实施方式中, 所述的微藻选自: 绿藻门小球藻属中的蛋白核 小球藻 . Chlorella pyrenoidosa ) , 普通小球藻 ( Chlorella vulgaris ) , 補圆小 球藻 . Chlorella ellipsoidea) , Chlorella emersonii , Chlorella sorokiniana,
Figure imgf000005_0001
, Chlorella reg laris , Chlorella min tissima, Chlorella protothecoides, Chlorella zofingiensis, 以及绿藻 |、 中的 Brachiomonas submarina , Chlamydobonas reinhardtii , Chlamydomonas acidophila , Haematococcus pluvial is , Haematococcus lacustris , Scenedesmus obliquus , Spongiococcum exetriccium , Tetraselmis suecica, Tetraselmis chuii, Tetraselmis tetrathele , Tetraselmis verrucosa, Micractinium pusillum -,
藻 l、 的 Cylindrotheca fusiformis , Nitzschia laevis , Nitzschia alba , Nitzschia fonticola, Navicula incerta, Navicula pelliculosa-,
蓝藻门的 Anabaena variabilis -,
金藻 l、 的 Poterioochromonas malhamensis;
甲藻 l、 的 Amphidinium carterae , Crypthecodinium cohnii;
裸藻门的 Euglena gricilis;
红藻门的 Galdieria sulphumria。
在一个具体实施方式中, 所述微藻异养培养时: 在生物反应器中加入 pH 为 4.0〜9.0的培养基,按工作体积的 0.1〜30%接入微藻藻种进行半连续培养培 养, 培养温度为 10〜40°C, 控制 pH为 4.0〜9.0, 控制溶氧在 1 %以上。
在一个具体实施方式中, 异养培养基由氮源、 有机碳源以及无机盐、 微 量元素和水组成。
在一个具体实施方式中, 所述异养培养可在摇瓶、 机械搅拌式、 气升式 或鼓泡式可异养培养的生物反应器中进行。
在一个具体实施方式中, 所述方法还包括, 将异养过程中带放出来的微 藻细胞和 /或异养结束后的微藻细胞直接制成藻粉, 或用于提取胞内活性物 质, 或转入光诱导培养, 或转入光自养培养。
在一个具体实施方式中, 当小球藻为普通小球藻时, 异养所使用的培养 基基本上由以下成分组成: KNO3 5〜15克 /升、 葡萄糖 10〜60克 /升、 KH2PO4 0.3 0.9克 /升、 Na2HPO4' 12H2O 1.0 10.0克 /升、 MgSO4'7H2O 0.2~1.0克 /升、 CaCl2 0.05-0.3克 /升、 FeSO4-7H2O 0.01-0.05克 /升、微量元素 0.5~4ml、和水, 其中微量元素的组成为 H3BO3 5-15 克 /升、 ZnSO4'7H2O 5.0-10.0 克 /升、 MnCl2-H2O 1.0-2.0 克 /升、 (ΝΗ4)6Μο7Ο24·4Η2Ο 0.5-1.5 克 /升、 CuSO4-5H2O 1.0-2.0克 /升和 Co(NO3)2'6H2O 0.1-0.9克 /升。
在一个具体实施方式中, 当小球藻为蛋白核小球藻时, 异养所使用的培 养基基本上由以下成分组成:葡萄糖 10〜60克 /升、尿素 2〜8克 /升、 KH2PO4 1-2 克 /升、 Na2HPO4' 12H2O 1.0-10.0克 /升、 MgSO4'7H2O 1-2克 /升、 CaCl2 0.05-0.1 克 /升、 柠檬酸三钠 0.1~2.0克 /升、 Fe-EDTA溶液 0.5~1 mL、 A5溶液 l~5mL 和水; 其中 Fe-EDTA溶液配方为 FeSO4'7H2O 20-30克 /升和 EDTA 20-40克 / 升; A5 溶液配方为 H3BO3 2.5-4.0 克 /升、 MnCl2'4H2O 1.0-2.0 克 /升、 ZnSO4-7H2O 0.1-0.6克 /升、 CuSO4-5H2O 5-10克 /升和 Na2MoO4 0.01-0.05克 / 升。
在一个具体实施方式中, 当异养的微藻的密度达 5g/L以上时, 放出部分 藻液, 然后补充相应体积的培养基和无菌水, 使藻细胞在异养培养装置中继 续培养。
在一个具体实施方式中, 放出藻液时, 放出的藻液占异养培养藻液总体 积的 20〜80 %。 附图说明
图 1 显示蛋白核小球藻在 50L生物反应器分批补料培养过程。
图 2显示蛋白核小球藻在 50L生物反应器半连续异养培养过程。
图 3显示普通小球藻在 50L生物反应器半连续异养培养过程。
图 4显示椭圆小球藻在 5L生物反应器半连续异养培养过程。 具体实施方式
适用于本申请的微藻包括但不限于绿藻门小球藻属中的蛋白核小球藻 . Chlorella pyrenoidosa ) , 普通小球藻 . Chlorella vulgaris ) , 補圆小球藻 . Chlorella ellipsoidea ), Chlorella emersonii , Chlorella sorokiniana, Chlorella saccharophila, Chlorella regularis , Chlorella minutissima, Chlorella protothecoides, Chlorella zofingiensis, 以及绿藻 |、 中的 Brachiomonas submarina, Chlamydobonas reinhardtii, Chlamydomonas acidophila, Haemato coccus pluvial is , Haematococcus lacustris , Scenedesmus obliquus , Spongiococcum exetriccium , Tetraselmis suecica, Tetraselmis chuii, Tetraselmis tetrathele, Tetraselmis verrucosa, Micractinium pus ilium; 娃藻门 的 Cylindrotheca fusiformis , Nitzschia laevis , Nitzschia alba, Nitzschia fonticola, Navicula incerta, Navicula pelliculosa-, ¾ fl fltJ Anabaena variabilis -, 金藻门 的 Poterioochromonas malhamensis; 藻 |、 的 Amphidinium carterae, Crypthecodinium cohnii; 裸藻 |、 的 Euglena gricilis; 红藻 |、 的 Gal die ri a sulphuraria。
在优选的实施方式中, 本发明采用蛋白核小球藻、 普通小球藻和椭圆小 球藻。
可采用本领域熟知的各种培养基来进行微藻异养培养。 通常, 异养培养 基含有氮源、 有机碳源、 无机盐、 微量元素和水。 本领域技术人员根据本领 域常规知识能够确定异养培养基中的氮源、 有机碳源、 无机盐、 微量元素的 用量。
在一个较佳的实施方案中, 选用 HA-SK 培养基 (中国专利 ZL 200610024004.9 ) 禾口 Endo 培养基 ( Ogbonna J.C., Masui. H., Tanaka.H. Sequential heterotrophic: autotrophic cultivation― an efficient method of producing Chlorella biomass for health food and animal feed. J. Appl. Phycol. 1997, 9, 359-366 ) 。
将相应配制好的培养基加入到生物反应器中, 补加水至工作体积, 通常 装料系数为 0.6〜0.8, 然后蒸汽灭菌 (121 °C, 维持约 20分钟) , 当温度降至 30〜35 °C时, 按工作体积的 1〜15%接入微藻开始异养培养。 在应用半连续培养带放之前, 可采用分批或者补料分批培养使藻细胞达 到一定的密度, 例如 5~30g/L, 30~60g/L, 60~120g/L等。
在一个较佳的实施方案中, 在带放之前采用分批补料培养, 异养培养一 段时间后, 当培养基中葡萄糖被消耗完 (通常为 27〜45小时) 时需要进行补 料, 补加碳源(例如葡萄糖)、氮源(例如, 培养普通小球藻的氮源为 KNO3, 培养蛋白核小球藻的氮源为尿素) 和无机盐等营养盐, 补加的营养盐是经浓 缩后的上述相应培养基, 促使微藻继续生长。 可每隔 5〜12小时补料, 葡萄糖 的补加浓度可为 15~25克 /升, 氮源溶液的补加浓度可为 2~10克 /升。 当微藻 (例如小球藻) 细胞密度达到某一值时 (例如, 当异养的微藻的密度达 5g/L (优选 20g/L、 30g/L、 或 40g/L) 以上时; 在优选的实施例中, 对于普通小 球藻而言, 45〜65克 /升, 对于蛋白核小球藻而言, 90〜110克 /升) , 即从生 物反应器中放掉一定比例 (比例系数为 0.2〜0.8 ) 的藻液 (该藻液可转入光诱 导培养或其他处理) , 然后在生物反应器中补加异养培养基和无菌水, 使其 工作体积达到可进行异养培养的要求 (在优选的实施例中, 恢复到带放前体 积) , 此时生物反应器中的藻细胞密度降为带放操作前的 0.2〜0.8, 之后微藻 继续生长到某一值 (例如, 当异养的微藻的密度达 5g/L以上时; 在优选的实 施例中,对于普通小球藻而言, 45〜65克 /升,对于蛋白核小球藻而言, 90〜110 克 /升) , 然后再进行带放操作, 依次循环, 当带放 10〜20次后结束本次异养 培养。
在培养过程中, 须控制适合的培养条件使微藻正常生长。 通常, 控制温 度为 20〜35 °C, 例如 28〜32°C, 溶氧不低于 5%的空气饱和浓度, pH不高于 9.0。 在优选的实施例中, 溶氧不低于 10%的空气饱和浓度, pH不高于 8.5。 在其它优选的实施例中, 溶氧不低于 15%的空气饱和浓度, pH不高于 8。
异养可以在摇瓶、 机械搅拌式、 气升式、 鼓泡式等可异养培养的生物反 应器中进行。 在优选的实施例中, 采用机械搅拌式生物反应器。
本文中涉及到藻细胞干重测定方法如下:
藻细胞干重测定:在微藻(如小球藻)培养过程中取培养液 V毫升, 8000 rpm离心 10分钟, 将离心后的藻体用去离子水洗涤 3次, 转移至称量瓶(W1 (克) ) 中, 在 105°C烘箱中烘干至恒重 W2 (克) 。 藻体干重 Cx可根据下 式计算: Cx (克 /升) = (W2-W1 ) /V/1000o 实施例 1 (蛋白核小球藻在 50L罐补料分批培养)
在 50L生物反应器中加入下述异养培养基和自来水至 25L后灭菌, 当温 度降至 30士 1 °C时接入蛋白核小球藻, 开始异养培养。
培养开始后经补料 5次, 在 84.06h时细胞密度为 149.43g/L, 再继续补 料 2次时, 藻细胞明显生长速率缓慢, 培养至 97.60h异养结束, 细胞密度为 158.56g/L, 细胞生长速率先增加后逐渐下降, 细胞平均产率为 1.63g/L/h (见 图 1 ) 。 分批培养后期搅拌转速高达 800rpm。
异养培养条件: 温度为 30 ± 2 °C, pH小于 8.5, 控制溶氧 5%以上。
异养及补料培养基:
葡萄糖 60.0克 尿素 8.0克 MgSO4'7H2O 2.0克
KH2PO4 1.1克 Na2HPO4' 12H2O 9.0克 CaCl2 0.02克
柠檬酸三钠 1.8克
Fe-EDTA溶液 1.0ml 微量元素溶液 4.5ml 水 1000ml
其中 Fe-EDTA溶液配方为 FeSO4'7H2O 15克 /升和 EDTA1.4克 /升,微量 元素溶液配方为 H3BO3 2.11克 /升, MnCl2-4H2O 0.81克 /升, ZnSO4-7H2O 0.11 克 /升, CuSO4-5H2O 10.0克 /升, Na2MoO4 0.05克 /升。 实施例 2 (蛋白核小球藻 50L罐半连续培养)
在 50L生物反应器中加入下述异养培养基和自来水至 25L后灭菌, 当温 度降至 30士 1 °C时按工作体积的 12%接入蛋白核小球藻, 开始异养培养。
接种后 47.4h小时第一次补料, 59.2h第二次补料, 在 67.91h进行带放操 作, 即从生物反应器中放掉一部分藻液转入光诱导培养, 然后在 50L生物反 应器中补加培养基和水至带放前的工作体积, 此时藻细胞密度从 82.2g/L 降 至 52.5g/L, 继续异养培养。 之后每隔 6〜9h补料一次, 补料两次后进行带放 操作, 放掉的体积约为工作体积的一半, 细胞密度从 110g/L左右降至 55g/L 左右, 培养 172h后结束本次异养培养。 整个半连续培养过程中, 细胞生长速 率基本维持不变, 在每个带放周期内, 藻细胞的平均产率高达 3.02g/L/d, 且 培养过程中最高搅拌转速不超过 700rpm (见图 2 ) 。
异养培养条件: 温度为 30 ± 2 °C, pH小于 8.5, 控制溶氧 5%以上。 培养 基与实施例 1的培养基一致。 实施例 3 (普通小球藻在 50L罐半连续培养)
在 50L发酵罐中加入异养培养基和自来水至 25L后灭菌,当温度降至 31 士 rc时, 接入普通小球藻种子, 开始异养培养。
补料 5次后在 58.2h藻细胞密度达 54.52g/L, 然后进行带放操作, 从发 酵罐内放出工作体积的 60%左右藻液, 补充培养基和无菌水, 恢复至带放前 体积, 藻细胞密度降至 21.6g/L, 然后继续培养。 之后通过 3次补料后, 藻细 胞密度在 85.1h达到 54.5g/L, 此时进行第二次带放, 从发酵罐内放出工作体 积的 60%左右藻液, 补充培养基和无菌水恢复至带放前体积, 藻细胞密度降 至 20.1g/L, 然后在继续异养培养。 在 115.5h结束整个异养培养, 培养过程 中平均藻细胞产率为 1.62g/L/d (见图 3 ) 。
在半连续培养过程中, 温度控制在 31士 1°C, pH维持在 6〜8, 通过调整 转速、 空气流量及罐压, 使得 DO维持在 10〜60%。
异养及补料培养基:
葡萄糖 60.0克 硝酸钾 10.0克 MgSO4'7H2O 0.2克
KH2PO4 0.3克 Na2HPO4' 12H2O 8.8克 CaC12 0.02克
Fe-EDTA溶液 1.0ml 微量元素溶液 3.5ml 水 1000ml
其中 Fe-EDTA溶液配方为 FeSO4'7H2O 15克 /升和 EDTA1.4克 /升,微量 元素溶液配方为 H3BO3 2.86克 /升, MnCl2'4H2O 0.11克 /升, ZnSO4'7H2O 9.22 克 /升, CuSO4'5H2O 1.00克 /升,(ΝΗ4)6Μο7Ο24·4Η2Ο 0.1克 /升, Co(NO3)2'6H2O 0.9克 /升。 实施例 4 (椭圆小球藻在 5L罐半连续培养)
在 5L发酵罐中加入异养培养基后灭菌, 在 121 °C灭菌 20min左右, 当温 度降至 30士 1°C时, 接入椭圆小球藻开始进行异养培养。
经 2次补料后, 在 66.0h细胞密度达到 52.3g/L (同时葡萄糖耗完) , 此 时带放出工作体积的 50%藻液, 然后往罐中补加葡萄糖、 KNO3等营养物质, 同时用无菌水将体积补至原来水平, 细胞密度降至 26.5g/L, 继续补料培养。 然后当藻细胞密度达到 50± 5g/L, 再一次带放。 异养培养历时 118.0h, 过程 中总共带放 2次, 藻细胞平均产率为 1.23g/L/d (见图 4 ) 。
在半连续培养过程中, 温度控制在 31士 1 °C, pH维持在 6〜8。 所用培养 基与实施例 3的培养基一致。

Claims

1 . 一种微藻异养培养的方法, 其特征在于, 采用半连续培养方式进行异 养培养。
2. 如权利要求 1 所述方法, 其特征在于, 在异养培养过程中, 放出部分 藻液, 然后补充相应体积的培养基和无菌水, 使藻细胞在异养培养装置中继续 培养。
3 . 如权利要求 1 2中任一项所述方法, 其特征在于, 所述的微藻选自: 绿藻门小球藻属中的蛋白核小球藻 ( Chlorella pyrenoidosa ) , 普通小球藻 { Chlorella vulgaris ), ¾H|
Figure imgf000012_0001
{ Chlorella ellipsoidea ), Chlorella emersoniij Chlorella sorokiniana, Chlorella saccharophila, Chlorella regularis e Chlorella minutissima, Chlorella protothecoides , Chlorella zofingiensis , 以及绿藻 |、 中的 Brachiomonas submarina , Chlamydobonas reinhardtii , Chlamydomonas acidophila, Haematococcus pluvial is , Haematococcus lacustris , Scenedesmus obliquus, Spongiococcum exetriccium , Tetraselmis suecica, Tetraselmis chuii, Tetraselmis tetrathele , Tetraselmis verrucosa, Micractinium pusillum 娃藻 |、 的 Cylindrotheca fusiformis, Nitzschia laevis , Nitzschia alba, Nitzschia fonticola, Navicula incerta, Navicula pelliculosa-, ^¾ Π ½ Anabaena variabilis ; 金藻 |、 的 Poterioochromonas malhamensis; 甲藻 |、 的 Amphidinium carter ae, Crypthecodinium cohnii; 裸藻 Π的 Euglena gricilis; 红藻 Π的 Galdieria sulphur aria
4. 如权利要求 1一 3中任一项所述的方法, 其特征在于, 所述异养培养基 由氮源、 有机碳源以及无机盐、 微量元素和水组成。
5. 如权利要求 1一 4中任一项所述的方法, 其特征在于, 所述异养培养在 摇瓶、 机械搅拌式、 气升式或鼓泡式可异养培养的生物反应器中进行。
6. 如权利要求 1 5中任一项所述方法, 其特征在于, 所述方法还包括, 将异养过程中带放出来的微藻细胞和 /或异养结束后的微藻细胞直接制成藻粉, 或用于提取胞内活性物质, 或转入光诱导培养, 或转入光自养培养, 或转入混 合营养培养。
7. 如权利要求 2 所述的方法, 其特征在于, 当藻种为普通小球藻时, 异 养所使用的培养基基本上由以下成分组成: KNO3 5〜15克/升、 葡萄糖 10〜60克 /升、 KH2PO4 0.3-0.9克 /升、 Na2HPO4' 12H2O 1.0-10.0克 /升、 MgSO4'7H2O 0.2-1.0 克 /升、 CaCl2 0.05-0.3克 /升、 FeSO4-7H2O 0.01-0.05克 /升、 微量元素 0.5~4ml、 和水, 其中微量元素的组成为 H3BO3 5~15克 /升、 ZnSO4'7H2O 5.0~10.0克 /升、 MnCl2-H2O 1.0-2.0 克 /升、 (ΝΗ4)6Μο7Ο24·4Η2Ο 0.5-1.5 克 /升、 CuSO4-5H2O 1.0-2.0克 /升和 Co(NO3)2'6H2O 0.1-0.9克 /升。
8. 如权利要求 2 所述的方法, 其特征在于, 当藻种为蛋白核小球藻时, 异养所使用的培养基基本上由以下成分组成: 葡萄糖 10〜60 克 /升、 尿素 2〜8 克 /升、 KH2PO4 1~2克 /升、 Na2HPO4' 12H2O 1.0~10.0克 /升、 MgSO4'7H2O 1-2 克 /升、 CaCl2 0.05-0.1克 /升、柠檬酸三钠 0.1~2.0克 /升、 Fe-EDTA溶液 0.5~1 mL、 A5溶液 l~5mL和水; 其中 Fe-EDTA溶液配方为 FeSO4'7H2O 20-30克 /升和 EDTA 20-40克 /升; A5溶液配方为 H3BO3 2.5-4.0克 /升、 MnCl2-4H2O 1.0-2.0 克 /升、 ZnSO4'7H2O 0.1-0.6克 /升、 CuSO4'5H2O 5-10克 /升和 Na2MoO4 0.01-0.05 克 /升。
9. 如前述任一项权利要求所述的方法, 其特征在于, 当异养微藻的细胞 密度达 5g/L以上时, 放出部分藻液, 然后补充相应体积的培养基和无菌水, 使 藻细胞在异养培养装置中继续培养。
10. 如前述任一项权利要求所述的方法, 其特征在于, 放出藻液时, 放出 的藻液占异养培养的藻液总体积的 20〜80%。
PCT/CN2011/082333 2010-12-01 2011-11-17 一种微藻高产率异养培养的方法 WO2012071983A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010567919.0A CN101979498B (zh) 2010-12-01 2010-12-01 一种微藻高产率异养培养的方法
CN201010567919.0 2010-12-01

Publications (1)

Publication Number Publication Date
WO2012071983A1 true WO2012071983A1 (zh) 2012-06-07

Family

ID=43600043

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/082333 WO2012071983A1 (zh) 2010-12-01 2011-11-17 一种微藻高产率异养培养的方法

Country Status (2)

Country Link
CN (1) CN101979498B (zh)
WO (1) WO2012071983A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016532444A (ja) * 2013-08-01 2016-10-20 フォトンズ コーポレーション リミテッド 珪藻バイオマスの生産方法
CN109810902A (zh) * 2019-01-03 2019-05-28 中国科学院水生生物研究所 一种金藻的快速培养方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101979498B (zh) * 2010-12-01 2016-05-04 华东理工大学 一种微藻高产率异养培养的方法
US9574217B2 (en) * 2012-05-07 2017-02-21 Algal Scientific Corporation Multi-stage process for production of immune modulator
CN103571906B (zh) * 2012-07-27 2018-12-11 上海泽元海洋生物技术有限公司 一种利用微藻高效生产虾青素的新方法
CN104662162A (zh) * 2013-09-26 2015-05-27 华东理工大学 一种利用微藻高效生产虾青素的新方法
CN103805514B (zh) * 2014-02-25 2016-04-20 中国科学院水生生物研究所 一种利用无机氮源的微藻光合兼养高密度发酵培养方法及应用
EP3136872A4 (en) * 2014-05-02 2017-11-15 Entech, LLC Methods of microalgae cultivation for increased resource production
CN105483014A (zh) * 2016-01-14 2016-04-13 青岛科海生物有限公司 发酵法高密度培养小球藻生产工艺
CN105524836A (zh) * 2016-02-29 2016-04-27 通威股份有限公司 一种经济高效培养小球藻的方法
CN107287252B (zh) 2016-04-01 2020-07-10 中国科学院青岛生物能源与过程研究所 一种ω-7脂肪酸合成物及培养黄丝藻生产该合成物的方法与应用
US9901606B2 (en) 2016-06-09 2018-02-27 Algaeon, Inc. Euglena lysate composition
US11549095B2 (en) 2016-08-25 2023-01-10 Triton Algae Innovations, Inc. Method for growing algae
FR3073860B1 (fr) * 2017-11-23 2024-07-12 Fermentalg Milieu de culture anti-adhesion
CN111349567A (zh) * 2020-04-03 2020-06-30 湛江国联水产开发股份有限公司 一种适用于海链藻的异养发酵方法
CN114105307B (zh) * 2021-10-21 2024-01-23 太原理工大学 一种利用活异养微藻去除废水中Cr6+的方法
CN114214202B (zh) * 2021-12-27 2024-02-13 广西源藻生物科技有限公司 异养-光诱导串联培养微藻联产叶黄素和蛋白质的方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101979498A (zh) * 2010-12-01 2011-02-23 华东理工大学 一种微藻高产率异养培养的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100386423C (zh) * 2006-02-21 2008-05-07 华东理工大学 一种适合于普通小球藻高密度高品质培养的培养基组合物
CN102021208A (zh) * 2010-11-16 2011-04-20 华东理工大学 一种快速积累微藻胞内油脂的方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101979498A (zh) * 2010-12-01 2011-02-23 华东理工大学 一种微藻高产率异养培养的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LI, XINGWU ET AL.: "Medium for Culturing Chlorella vulgaris with Sequential Heterotrophic-Autotrophic Model", THE CHINESE JOURNAL OF PROCESS ENGINEERING, vol. 6, no. 2, April 2006 (2006-04-01), pages 277 *
WU, YAOTING ET AL.: "The technology and application of high-cell density heterotrophic microalgae culture", CHINA FOOD ADDITIVES, no. 6, December 2008 (2008-12-01), pages 66 - 68 *
ZHANG, HAIBIN ET AL.: "Advances in the Studies on Heterotrophic Culture of Microalgae", TRANSACTIONS OF OCEANOLOGY AND LIMNOLOGY, no. 3, September 2000 (2000-09-01), pages 52 - 55 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016532444A (ja) * 2013-08-01 2016-10-20 フォトンズ コーポレーション リミテッド 珪藻バイオマスの生産方法
US9879218B2 (en) 2013-08-01 2018-01-30 Fermentalg Methods for the production of diatom biomass
US10377983B2 (en) 2013-08-01 2019-08-13 Fermentalg Methods for the production of diatom biomass
CN109810902A (zh) * 2019-01-03 2019-05-28 中国科学院水生生物研究所 一种金藻的快速培养方法

Also Published As

Publication number Publication date
CN101979498B (zh) 2016-05-04
CN101979498A (zh) 2011-02-23

Similar Documents

Publication Publication Date Title
WO2012071983A1 (zh) 一种微藻高产率异养培养的方法
CN103571906B (zh) 一种利用微藻高效生产虾青素的新方法
WO2012100583A1 (zh) 一种高产率的微藻培养方法
Barghbani et al. Investigating the effects of several parameters on the growth of Chlorella vulgaris using Taguchi's experimental approach
Iwamoto Industrial production of microalgal cell‐mass and secondary products‐major industrial species: chlorella
Borowitzka Commercial production of microalgae: ponds, tanks, tubes and fermenters
CN102094061B (zh) 一种利用微藻生产叶黄素的方法
CN102021208A (zh) 一种快速积累微藻胞内油脂的方法
CN108410737B (zh) 一种紫球藻的两步培养法
CN110184193B (zh) 一种应用于雨生红球藻高效扩繁的连续梯度补料方法及装置
CN110195019A (zh) 一种高产蛋白质小球藻的培养方法
CN106190853B (zh) 一种高产藻蓝蛋白的红藻培养方法
US11572577B2 (en) Fermentation method for production of fucoxanthin by Nitzschia laevis
WO2015085631A1 (zh) 一种高产率的葡萄藻培养方法
CN106566775B (zh) 含高活力雨生红球藻细胞制备方法
CN106399108A (zh) 一种简便高效的雨生红球藻营养细胞培养和采收方法
CN110272849A (zh) 可显著提高钝顶螺旋藻生长速度和营养物质含量的方法
CN106868085A (zh) 一种促进雨生红球藻快速转化积累虾青素的方法
Borowitzka Algae as food
CN105483014A (zh) 发酵法高密度培养小球藻生产工艺
CN103396953B (zh) 一种分阶段补料法培养小球藻的方法
WO2012065545A1 (zh) 一种快速积累油脂和叶黄素的微藻培养方法
CN107189946A (zh) 一种避免微藻光抑制以提高虾青素产量的方法
CN114907982B (zh) 小球藻突变株及其高密度异养培养方法和应用
CN109609385A (zh) 一种雨生红球藻的培养方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11844837

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11844837

Country of ref document: EP

Kind code of ref document: A1