WO2012070984A1 - Orthogonal turbine - Google Patents

Orthogonal turbine Download PDF

Info

Publication number
WO2012070984A1
WO2012070984A1 PCT/RU2011/000728 RU2011000728W WO2012070984A1 WO 2012070984 A1 WO2012070984 A1 WO 2012070984A1 RU 2011000728 W RU2011000728 W RU 2011000728W WO 2012070984 A1 WO2012070984 A1 WO 2012070984A1
Authority
WO
WIPO (PCT)
Prior art keywords
blades
flow chamber
hubs
turbine
power plants
Prior art date
Application number
PCT/RU2011/000728
Other languages
French (fr)
Russian (ru)
Inventor
Вячеслав Иванович ЗЛОБИН
Евгений Анатольевич СПИРИН
Александр Анатольевич НИКИТИН
Михаил Петрович ГОЛОВИН
Алексей Львович ВСТОВСКИЙ
Original Assignee
Zlobin Vyacheslav Ivanovich
Spirin Evgeniy Anatol Evich
Nikitin Aleksandr Anatol Evich
Golovin Mikhail Petrovich
Vstovskiy Aleksey L Vovich
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zlobin Vyacheslav Ivanovich, Spirin Evgeniy Anatol Evich, Nikitin Aleksandr Anatol Evich, Golovin Mikhail Petrovich, Vstovskiy Aleksey L Vovich filed Critical Zlobin Vyacheslav Ivanovich
Publication of WO2012070984A1 publication Critical patent/WO2012070984A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/04Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/06Rotors
    • F03D3/062Rotors characterised by their construction elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2210/00Working fluid
    • F05B2210/16Air or water being indistinctly used as working fluid, i.e. the machine can work equally with air or water without any modification
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Definitions

  • the claimed technical solution relates to wind and hydropower and can be used in wind farms, in free-flowing
  • microhydroelectric power plants tidal power plants, river
  • a turbine is known (patent RU 2246634 "Windmill rotor"), which converts the flow energy into mechanical energy and contains two pairs of blades located on a disk symmetrically with respect to its axis of rotation, forming for the gas or liquid flow working surfaces of segments from the intersection points of both pairs of blades to their end on the periphery of the disk, and through the channels formed through the flow through the removal of sections of the blades between the points of intersection near the center of rotation.
  • Windmill rotor A turbine is known (patent RU 2246634 "Windmill rotor"), which converts the flow energy into mechanical energy and contains two pairs of blades located on a disk symmetrically with respect to its axis of rotation, forming for the gas or liquid flow working surfaces of segments from the intersection points of both pairs of blades to their end on the periphery of the disk, and through the channels formed through the flow through the removal of sections of the blades between the points of intersection near the center of rotation.
  • a turbine is known (US patent 1,835,018 “Type having its rotating shaft transverse to the flow of the current”), which converts the flow energy into mechanical energy and consists of a plurality of straight and parallel to the shaft vanes having a wing-shaped profile and connected to the shaft through traverses or discs.
  • the turbine blades can be curved or twisted in order to reduce deformations resulting from centrifugal forces, and directly fixed ends to the shaft.
  • This turbine can be equipped with a confuser and diffuser.
  • the disadvantages of the turbine of this design are: low efficiency (efficiency) and low operating speed of the turbine shaft, due to the moment of resistance of the friction forces acting from the flow side to the shaft. In addition, when flowing around the shaft, the flow is inhibited, which also leads to a decrease in efficiency. turbines and operating shaft speed.
  • a known turbine (patent WO 2010/080052 A1 "Low-pressure orthogonal turbine”), which converts the flow energy into mechanical energy and containing a rotor with wing-shaped blades (hereinafter the blade system), mounted across the flow chamber, having at least one transverse protrusion, the upper face adjacent to the gap to the surface of the cylinder swept by the blades, while in a section perpendicular to the axis of the rotor, the side face of the transverse protrusion facing the inlet of the flow chamber is made concave.
  • the blade system rotor with wing-shaped blades
  • cyclic loads acting on the turbine blades in combination with a small value of the moment of resistance of the cross section of the blades, can lead to the destruction of the turbine when it is operating at high values of the angular velocity of rotation of the turbine rotor, and with a significant lengthening of the blades, cyclic loads lead to material fatigue, and therefore , to reduce the reliability and resource of the turbine.
  • the complexity of the flow chamber profile requires specialized production and high manufacturing costs.
  • the new technical solution is based on the task of increasing the operating speed of an orthogonal turbine, its efficiency, reliability and resource.
  • the problem is solved in that in an orthogonal turbine containing a blade system with wing-shaped blades mounted across the flow chamber with a gap, according to a new technical solution, the blade the system consists of blades made in the form of an arc, and fixed with their ends in the hubs, the hubs are mounted on the trunnions, and the flow chamber is made of cylindrical shape.
  • the blades can be made integral with the hubs, and can also be made in the form of an arc of a circle, while the flow chamber has the shape of a regular cylinder.
  • Fig. 1 shows an orthogonal turbine (front view)
  • Fig. 2 shows an orthogonal turbine in a perspective view
  • Fig. 3 shows a section of an orthogonal turbine
  • Fig. 4 shows a blade attachment site.
  • the orthogonal turbine contains a flow chamber 1, inside which a blade system is installed with a gap 2.
  • the blade system contains blades 3, their ends mounted on the hubs 4, which are mounted motionlessly on the trunnion 5.
  • Each trunnion 5 is mounted in a bearing 6 located in the bearing housing 7.
  • the cases 7 are fixed outside the flow chamber 1.
  • the blades 3 have a pterygoid profile 8 (Fig. 3 and Fig. 4) and are made in an arcuate shape.
  • the flow chamber 1 has a cylindrical shape corresponding to the shape of the arc of the blades.
  • the flow chamber can be a regular cylinder (figure 2).
  • the axis of rotation of the blade system is perpendicular to the longitudinal axis of the flow chamber 1.
  • the hubs can be made integral with the blades and have a streamlined shape (figure 2 and figure 4)
  • the inventive orthogonal turbine operates as follows.
  • the execution of the blades in the form arc will also lead to a decrease in the bending stresses acting in the blades from hydrodynamic forces, and, as a result, will increase the reliability and resource of the turbine, and with certain reliability and resource of the turbine will reduce the requirements for the strength characteristics of the material of the blades, i.e. will make it possible to apply cheaper materials.
  • the implementation of the flow chamber of a cylindrical shape does not require specialized production and will allow it to be made from standard pipes. All of the above regarding the performance of the inventive turbine may entail a significant reduction in its cost.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

The claimed technical solution is directed towards increasing the working frequency of rotation of an orthogonal turbine, and the efficiency, reliability and operating life thereof, and can be used in various wind-power and hydro-power technology facilities: in free-flowing microhydroelectric power plants, in tidal power plants, in wind-operated power plants, in water courses of channels of systems for supplying water to and conducting water away from industrial enterprises and municipal economy facilities, etc. The above-mentioned technical result is achieved in that a blade system of the orthogonal turbine is in the form of arcuate blades of a wing-shaped profile, the ends of which are fixed in hubs. The hubs are immovably mounted on journals mounted in bearings, wherein the bearing bodies are fixed on the outside of a flow chamber, and the flow chamber has a cylindrical shape. The blades may be formed integrally with the hubs, but may also be in the form of an arc of a circle, wherein the flow chamber will be in the form of a rectilineal cylinder.

Description

ОРТОГОНАЛЬНАЯ ТУРБИНА  ORTHOGONAL TURBINE
ОПИСАНИЕ DESCRIPTION
Заявляемое техническое решение относится к ветро- и гидроэнергетике и может быть использовано на ветроэлектростанциях, на свободнопоточных The claimed technical solution relates to wind and hydropower and can be used in wind farms, in free-flowing
микрогидроэлектростанциях, на приливных электростанциях, речных microhydroelectric power plants, tidal power plants, river
гидроэлектростанциях, на волновых электростанциях, на водотоках каналов систем водоснабжения и водоотведения промышленных предприятий и объектов городского хозяйства, очистных сооружений, оросительных систем и питьевых водоводов. hydroelectric power stations, wave power plants, and waterways of canals of water supply and sanitation systems of industrial enterprises and municipal facilities, treatment facilities, irrigation systems and drinking water pipelines.
Известна турбина (патент RU 2246634 «Ротор ветряка»), преобразующая энергию потока в механическую энергию и содержащая две пары лопастей, расположенных на диске симметрично относительно его оси вращения, образующие для потока газа или жидкости рабочие поверхности сегментов от точек пересечения обеих пар лопастей до их окончания на периферии диска, причем для движения потока образованы сквозные каналы за счет удаления участков лопастей между точками их пересечения вблизи центра вращения. A turbine is known (patent RU 2246634 "Windmill rotor"), which converts the flow energy into mechanical energy and contains two pairs of blades located on a disk symmetrically with respect to its axis of rotation, forming for the gas or liquid flow working surfaces of segments from the intersection points of both pairs of blades to their end on the periphery of the disk, and through the channels formed through the flow through the removal of sections of the blades between the points of intersection near the center of rotation.
Недостатками данной конструкции являются низкая надежность турбины,  The disadvantages of this design are the low reliability of the turbine,
обусловленная наличием механической передачи поворота лопастей турбины и большого количества подвижных элементов, большая материалоемкость. due to the presence of a mechanical transmission of rotation of the turbine blades and a large number of moving elements, a large material consumption.
Известна турбина (патент US 1,835,018 «ТигЫпе having its rotating shaft transverse to the flow of the current»), преобразующая энергию потока в механическую энергию и состоящая из множества равномерно расположенных по окружности прямолинейных и параллельных валу лопастей, имеющих крыловидный профиль, и соединенных с валом посредством траверс или дисков. Лопасти турбины могут быть изогнутыми или скрученными с целью снижения деформаций, возникающих из-за центробежных сил, и непосредственно закрепленными концами на валу. Данная турбина может быть снабжена конфузором и диффузором. A turbine is known (US patent 1,835,018 “Type having its rotating shaft transverse to the flow of the current”), which converts the flow energy into mechanical energy and consists of a plurality of straight and parallel to the shaft vanes having a wing-shaped profile and connected to the shaft through traverses or discs. The turbine blades can be curved or twisted in order to reduce deformations resulting from centrifugal forces, and directly fixed ends to the shaft. This turbine can be equipped with a confuser and diffuser.
Недостатками турбины такой конструкции являются: низкий коэффициент полезного действия (к.п.д.) и низкая рабочая частота вращения вала турбины, обусловленные моментом сопротивления сил трения, действующих со стороны потока на вал. Кроме того, при обтекании вала поток тормозится, что также ведет к снижению к.п.д. турбины и рабочей частоты вращения вала. The disadvantages of the turbine of this design are: low efficiency (efficiency) and low operating speed of the turbine shaft, due to the moment of resistance of the friction forces acting from the flow side to the shaft. In addition, when flowing around the shaft, the flow is inhibited, which also leads to a decrease in efficiency. turbines and operating shaft speed.
Известна турбина (патент WO 2010/080052 А1 «Низконапорная ортогональная турбина»), преобразующая энергию потока в механическую энергию и содержащая ротор с лопастями крыловидного профиля (далее лопастная система), установленный поперек проточной камеры, имеющей, по меньшей мере, один поперечный выступ, верхней гранью примыкающий с зазором к поверхности цилиндра, ометаемого лопастями, при этом в сечении, перпендикулярном оси ротора, боковая грань поперечного выступа, обращенная к подводящему отверстию проточной камеры, выполнена вогнутой.  A known turbine (patent WO 2010/080052 A1 "Low-pressure orthogonal turbine"), which converts the flow energy into mechanical energy and containing a rotor with wing-shaped blades (hereinafter the blade system), mounted across the flow chamber, having at least one transverse protrusion, the upper face adjacent to the gap to the surface of the cylinder swept by the blades, while in a section perpendicular to the axis of the rotor, the side face of the transverse protrusion facing the inlet of the flow chamber is made concave.
Недостатками этой конструкции являются: низкая рабочая частота вращения ротора и низкий коэффициент полезного действия (к.п.д.) турбины, обусловленные наличием ротора, вызывающего торможение потока, и, как следствие, снижающего тянущую силу лопастей в области пересечения следа, формирующегося за обтекателем, и наличием траверс, создающих сопротивление вращению; низкая надежность и недостаточный ресурс, обусловленные работой лопастей на изгиб, поэтому резонансные и  The disadvantages of this design are: low operating rotor speed and low efficiency (efficiency) of the turbine, due to the presence of a rotor that causes flow inhibition, and, as a result, reduces the pulling force of the blades in the intersection of the track formed behind the fairing , and the presence of traverses that create resistance to rotation; low reliability and insufficient resource due to the operation of the blades for bending, therefore, resonant and
циклические нагрузки, действующие на лопасти турбины, в сочетании с малым значением момента сопротивления сечения лопастей, могут привести к разрушению турбины при работе ее на высоких значениях угловой скорости вращения ротора турбины, а при значительном удлинении лопастей циклические нагрузки приводят к усталости материла, и, следовательно, к снижению надежности и ресурса турбины. Кроме того сложность профиля проточной камеры, требует специализированного производства и больших затрат на изготовление. cyclic loads acting on the turbine blades, in combination with a small value of the moment of resistance of the cross section of the blades, can lead to the destruction of the turbine when it is operating at high values of the angular velocity of rotation of the turbine rotor, and with a significant lengthening of the blades, cyclic loads lead to material fatigue, and therefore , to reduce the reliability and resource of the turbine. In addition, the complexity of the flow chamber profile requires specialized production and high manufacturing costs.
В основу нового технического решения положена задача повышения рабочей частоты вращения ортогональной турбины, ее к.п.д., надежности и ресурса. The new technical solution is based on the task of increasing the operating speed of an orthogonal turbine, its efficiency, reliability and resource.
Поставленная задача решается тем, что в ортогональной турбине, содержащей лопастную систему с лопастями крыловидного профиля, установленную поперек проточной камеры с зазором, согласно новому техническому решению, лопастная система представляет собой лопасти, выполненные в форме дуги, и своими концами закрепленные в ступицах, ступицы установлены на цапфы, а проточная камера выполнена цилиндрической формы. Лопасти могут быть выполнены заодно со ступицами, а также могут быть выполнены в форме дуги окружности, при этом проточная камера имеет форму правильного цилиндра. The problem is solved in that in an orthogonal turbine containing a blade system with wing-shaped blades mounted across the flow chamber with a gap, according to a new technical solution, the blade the system consists of blades made in the form of an arc, and fixed with their ends in the hubs, the hubs are mounted on the trunnions, and the flow chamber is made of cylindrical shape. The blades can be made integral with the hubs, and can also be made in the form of an arc of a circle, while the flow chamber has the shape of a regular cylinder.
Заявляемое техническое решение поясняется графическим материалом, где на фиг.1 изображена ортогональная турбина (вид спереди), на фиг.2 показана ортогональная турбина в аксонометрии, на фиг.З показано сечение ортогональной турбины, на фиг.4 - узел крепления лопастей.  The claimed technical solution is illustrated by graphic material, where Fig. 1 shows an orthogonal turbine (front view), Fig. 2 shows an orthogonal turbine in a perspective view, Fig. 3 shows a section of an orthogonal turbine, and Fig. 4 shows a blade attachment site.
Ортогональная турбина содержит проточную камеру 1, внутри которой установлена с зазором 2 лопастная система. Лопастная система содержит лопасти 3, своими концами закрепленные на ступицах 4, которые установлены неподвижно на цапфы 5. Каждая цапфа 5 установлена в подшипнике 6, расположенном в корпусе 7 опоры. Корпуса 7 закреплены снаружи проточной камеры 1. Лопасти 3 имеют крыловидный профиль 8 (фиг.З и фиг.4) и выполнены дугообразной формы. Проточная камера 1 имеет цилиндрическую форму, отвечающую форме дуги лопастей. В случае же, когда лопасти 3 выполнены в форме дуги окружности, проточная камера может представлять собой правильный цилиндр (фиг.2). Ось вращения лопастной системы перпендикулярна продольной оси проточной камеры 1. Ступицы могут быть выполнены заодно с лопастями и иметь обтекаемую форму (фиг.2 и фиг.4)  The orthogonal turbine contains a flow chamber 1, inside which a blade system is installed with a gap 2. The blade system contains blades 3, their ends mounted on the hubs 4, which are mounted motionlessly on the trunnion 5. Each trunnion 5 is mounted in a bearing 6 located in the bearing housing 7. The cases 7 are fixed outside the flow chamber 1. The blades 3 have a pterygoid profile 8 (Fig. 3 and Fig. 4) and are made in an arcuate shape. The flow chamber 1 has a cylindrical shape corresponding to the shape of the arc of the blades. In the case when the blades 3 are made in the form of an arc of a circle, the flow chamber can be a regular cylinder (figure 2). The axis of rotation of the blade system is perpendicular to the longitudinal axis of the flow chamber 1. The hubs can be made integral with the blades and have a streamlined shape (figure 2 and figure 4)
Заявляемая ортогональная турбина работает следующим образом. The inventive orthogonal turbine operates as follows.
Поток жидкости, проходя через входную часть проточной камеры 1, попадает в рабочую область турбины. При обтекании лопастей 3 потоком жидкости (или газа), создается гидродинамическая сила, момент которой относительно оси вращения передается посредством ступиц 4 цапфам 5, установленным в подшипниках 6, которые находятся в корпусах 7 снаружи проточной камеры 1, а от цапф 5 крутящий момент передается валу генератора или другого механизма. The fluid flow passing through the inlet of the flow chamber 1 enters the turbine working area. When the blades 3 flow around a stream of liquid (or gas), a hydrodynamic force is created, the moment of which is transmitted relative to the axis of rotation through the hubs 4 to the pins 5 mounted in the bearings 6, which are located in the housings 7 outside the flow chamber 1, and from the pins 5 the torque is transmitted to the shaft generator or other mechanism.
Выполнение лопастей в форме дуги и закрепление их своими концами в ступицах 9, которые установлены на цапфы, позволяет исключить из конструкции турбины вал и траверсы, что снижает сопротивление вращению турбины, приводит к увеличению к.п.д. и повышению рабочей частоты вращения турбины. Выполнение лопастей в форме дуги приведет также к уменьшению изгибных напряжений, действующих в лопасти от гидродинамических сил, и, как следствие, позволит повысить надежность и ресурс турбины, а при определенных надежности и ресурсе турбины позволит снизить требования к прочностным характеристикам материала лопастей, т.е. даст возможность применить более дешевые материалы. Кроме того, выполнение проточной камеры цилиндрической формы не требует специализированного производства и позволит изготавливать ее из стандартных труб. Все вышесказанное относительно исполнения заявляемой турбины может повлечь и существенное снижение ее стоимости. The implementation of the blades in the form of an arc and fixing them with their ends in the hubs 9, which are mounted on the pins, eliminates the shaft and the beam from the design of the turbine, which reduces the resistance to rotation of the turbine, leading to an increase in efficiency and increase the operating speed of the turbine. The execution of the blades in the form arc will also lead to a decrease in the bending stresses acting in the blades from hydrodynamic forces, and, as a result, will increase the reliability and resource of the turbine, and with certain reliability and resource of the turbine will reduce the requirements for the strength characteristics of the material of the blades, i.e. will make it possible to apply cheaper materials. In addition, the implementation of the flow chamber of a cylindrical shape does not require specialized production and will allow it to be made from standard pipes. All of the above regarding the performance of the inventive turbine may entail a significant reduction in its cost.
Таким образом, можно сказать о решении поставленной задачи, т.е. предлагаемая ортогональная турбина позволит повысить ее рабочую частоту вращения, к.п.д., надежность и ресурс, а также существенно снизить затраты на ее производство. Thus, we can say about the solution of the problem, i.e. the proposed orthogonal turbine will increase its operating speed, efficiency, reliability and resource, as well as significantly reduce the cost of its production.

Claims

ФОРМУЛА FORMULA
1. Ортогональная турбина, содержащая лопастную систему с лопастями крыловидного профиля, установленную поперек проточной камеры с зазором, отличающаяся тем, что лопастная система представляет собой лопасти, выполненные в форме дуги и своими концами закрепленные в ступицах, ступицы установлены на цапфы, а проточная камера выполнена цилиндрической формы. 1. Orthogonal turbine containing a blade system with wing-shaped blades mounted across the flow chamber with a gap, characterized in that the blade system consists of blades made in the form of an arc and fixed with their ends in the hubs, the hubs are mounted on the pins, and the flow chamber is made cylindrical shape.
2. Ортогональная турбина по п.1, отличающаяся тем, что лопасти выполнены заодно со ступицами.  2. Orthogonal turbine according to claim 1, characterized in that the blades are made integral with the hubs.
3. Ортогональная турбина по п.1, отличающаяся тем, что лопасти имеют форму дуги окружности, а проточная камера имеет форму правильного цилиндра.  3. The orthogonal turbine according to claim 1, characterized in that the blades have the shape of an arc of a circle, and the flow chamber has the shape of a regular cylinder.
PCT/RU2011/000728 2010-11-26 2011-09-23 Orthogonal turbine WO2012070984A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2010148521 2010-11-26
RU2010148521 2010-11-26

Publications (1)

Publication Number Publication Date
WO2012070984A1 true WO2012070984A1 (en) 2012-05-31

Family

ID=46146110

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2011/000728 WO2012070984A1 (en) 2010-11-26 2011-09-23 Orthogonal turbine

Country Status (1)

Country Link
WO (1) WO2012070984A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1835018A (en) * 1925-10-09 1931-12-08 Leblanc Vickers Maurice Sa Turbine having its rotating shaft transverse to the flow of the current
US4012163A (en) * 1975-09-08 1977-03-15 Franklin W. Baumgartner Wind driven power generator
RU2205934C1 (en) * 2002-10-01 2003-06-10 Общество с ограниченной ответственностью "Велл Процессинг" Turbine pressure stage of turbodrill
US20100253081A1 (en) * 2009-04-07 2010-10-07 Schlabach Roderic A In-pipe hydro-electric power system and turbine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1835018A (en) * 1925-10-09 1931-12-08 Leblanc Vickers Maurice Sa Turbine having its rotating shaft transverse to the flow of the current
US4012163A (en) * 1975-09-08 1977-03-15 Franklin W. Baumgartner Wind driven power generator
RU2205934C1 (en) * 2002-10-01 2003-06-10 Общество с ограниченной ответственностью "Велл Процессинг" Turbine pressure stage of turbodrill
US20100253081A1 (en) * 2009-04-07 2010-10-07 Schlabach Roderic A In-pipe hydro-electric power system and turbine

Similar Documents

Publication Publication Date Title
CA2547748C (en) Darrieus waterwheel turbine
WO2010117621A3 (en) In-pipe hydro-electric power system and turbine
KR102271940B1 (en) Ultra-small hydroelectric power generating apparatus of rotating screw with the portable type
KR101196357B1 (en) Energy integration with Magnetism-operation of Vertical axis a Water current Hydraulic turbine
CN104595094B (en) hydraulic turbine generator
KR101654899B1 (en) Small hydro power generating device
US20120009068A1 (en) Low-head orthogonal turbine
US7645115B2 (en) System, method, and apparatus for a power producing linear fluid impulse machine
CN111878282A (en) Tidal current double-rotating-wheel combined water turbine
KR101263957B1 (en) Helical Turbine
CN106438184A (en) Bendable blade of hydrodynamic automatic variable-pitch turbine
EP3271570B1 (en) A rotor for an electricity generator
CA2532734A1 (en) Economic low-head hydro and tidal power turbine
US20120100004A1 (en) High efficiency impeller
RU104975U1 (en) ORTHOGONAL TURBINE
WO2012070984A1 (en) Orthogonal turbine
SK287751B6 (en) Flow turbine with pivoted blades
KR101196356B1 (en) Magnetism-operation of Vertical axis a Water current Hydraulic turbine
RU172055U1 (en) Wind power plant
RU83545U1 (en) LOW-PRESSURE ORTHOGONAL TURBINE
RU2457357C2 (en) Hydro-electric power plant
CN108915935B (en) Lift type vertical axis water turbine with resistance type guide vanes
CN210106057U (en) Double-runner combined water turbine driven naturally by river water
CN201377379Y (en) Water turbine
RU2661225C1 (en) Spherical orthogonal power unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11843031

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11843031

Country of ref document: EP

Kind code of ref document: A1