WO2012070852A2 - System for continuously measuring blood sugar - Google Patents

System for continuously measuring blood sugar Download PDF

Info

Publication number
WO2012070852A2
WO2012070852A2 PCT/KR2011/008938 KR2011008938W WO2012070852A2 WO 2012070852 A2 WO2012070852 A2 WO 2012070852A2 KR 2011008938 W KR2011008938 W KR 2011008938W WO 2012070852 A2 WO2012070852 A2 WO 2012070852A2
Authority
WO
WIPO (PCT)
Prior art keywords
blood sugar
blood glucose
optical waveguide
body fluid
data
Prior art date
Application number
PCT/KR2011/008938
Other languages
French (fr)
Korean (ko)
Other versions
WO2012070852A3 (en
Inventor
곽연화
박순섭
홍성민
이한영
Original Assignee
전자부품연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전자부품연구원 filed Critical 전자부품연구원
Publication of WO2012070852A2 publication Critical patent/WO2012070852A2/en
Publication of WO2012070852A3 publication Critical patent/WO2012070852A3/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters

Definitions

  • the present invention relates to a blood glucose measurement system, and more particularly to a blood glucose measurement system comprising an optical continuous blood glucose measurement sensor capable of measuring blood glucose continuously and in real time.
  • the conventional enzyme reaction-based continuous blood glucose measurement sensor to measure the sample taken several times at regular time intervals to present the result of calculating the average value, there is a further problem that the result value may be different from the actual blood glucose value.
  • Embodiments of the present invention provides a continuous blood glucose measurement system comprising a continuous glucose measurement sensor capable of measuring blood glucose in real time by immobilizing a reversible glucose antibody on a surface and measuring the amount of glucose bound to the antibody as an amount of change in an optical signal. To provide.
  • the blood glucose of the subject is continuously measured
  • a non-labeled sensor for detecting a signal generated from the binding of the reversible glucose antibody and glucose molecules in the body fluid is fixed to the reversible glucose antibody on the surface
  • Continuous blood glucose measurement sensor unit comprising; Integrated management terminal unit for monitoring the operation of the continuous blood glucose measurement sensor unit, and receives the blood sugar data measured by the continuous blood glucose measurement sensor unit via wired / wireless to filter, analyze, compare, store, transmit and display the blood glucose data. ;
  • a continuous blood glucose measurement system including a data transmission and reception unit for transmitting data received from the integrated management terminal to the subscriber via wired / wireless.
  • the integrated management terminal unit the blood sugar sensor monitoring module for monitoring whether the continuous blood glucose measurement sensor unit;
  • a filtering module which receives the blood glucose data measured by the continuous blood glucose measurement sensor unit via wire / wireless and removes noise from the blood sugar data;
  • a blood sugar analysis comparison module which analyzes the blood sugar data filtered by the filtering module and compares the blood sugar information and the normal blood sugar data of a pre-stored measured person to calculate a comparison result;
  • a transmission module for transmitting the comparison result calculated by the blood sugar analysis comparison module to the data transceiver.
  • the continuous blood glucose measurement sensor unit is attached to at least a portion of the body of the subject to extract a body fluid extracting the body fluid and the body portion receiving the body fluid from the body fluid extracting portion, the body portion and the clad layer laminated on the substrate; And a core layer formed on the clad layer, the core layer including a first optical waveguide and a second optical waveguide having a structure branched from the light incidence part formed on one side of the clad layer and passing through the light output part formed on the other side of the clad layer. And a non-labeled sensor disposed above the first optical waveguide through which the body fluid passes.
  • the body unit may further include a third optical waveguide disposed between the first optical waveguide and the second optical waveguide to pass through the optical output unit.
  • the main body portion may be disposed on at least one of the first optical waveguide, the second optical waveguide, or the third optical waveguide, and has a high refractive index, which is any one of TiO 2 , Ta 2 O 5, or Si 3 N 4 . It may further comprise a substance.
  • the reversible glucose antibody has an adhesion rate constant of 1 ⁇ 10 4 L ⁇ mol ⁇ 1 ⁇ sec ⁇ 1 to 1 ⁇ 10 7 L ⁇ mol ⁇ 1 ⁇ sec ⁇ 1 when reacting with glucose molecules in the body fluid (k a ) And a desorption rate constant (k d ) of 1 ⁇ 10 ⁇ 5 sec ⁇ 1 to 1 ⁇ 10 ⁇ 2 sec ⁇ 1 .
  • the non-labeled sensor may be divided by a semipermeable membrane that selectively permeates glucose molecules in the body fluid to form a recognition reaction cell on the surface where the reversible glucose antibody is fixed.
  • the unlabeled sensor may further include nanoparticles in which glucose molecules are polymerized in the recognition reaction cell.
  • the continuous blood glucose measurement system has an effect that the blood glucose of the subject can be measured semi-permanently and in real time by immobilizing a reversible glucose antibody having a rapid detachable reaction on the surface.
  • the high responsive glucose antibody adhesion and desorption rate constants increase sensor response time, and the equilibrium adhesion constant is high, thereby improving sensor sensitivity.
  • an integrated management terminal unit which analyzes, compares, stores, transmits and displays the blood sugar data is continuously measured. There is an effect that can be checked.
  • a data transmission and reception unit for transmitting the data received from the integrated management terminal to subscribers, such as patients, doctors, hospitals (hospitals) via wired / wireless.
  • FIG. 1 is a schematic diagram of a continuous blood glucose measurement system according to an embodiment of the present invention.
  • FIG. 2 is a block diagram of the continuous blood glucose measurement system of FIG. 1.
  • FIG. 3 is a perspective view illustrating a continuous blood glucose measurement sensor unit of the continuous blood glucose measurement system of FIG. 1.
  • FIG. 4 is a conceptual diagram illustrating an operation principle of the continuous blood glucose measurement sensor unit of FIG. 3.
  • body fluid extracting unit 110a glucose molecules in the body fluid
  • core layer 125a first optical waveguide
  • FIG. 1 is a schematic diagram of a continuous blood glucose measurement system S according to an embodiment of the present invention.
  • the continuous blood glucose measurement system S includes a continuous blood glucose measurement sensor unit 100, an integrated management terminal unit 200, and a data transmission / reception unit 300.
  • the continuous blood glucose measurement sensor unit 100 is attached to a part of the body of the subject to serve to continuously measure the blood sugar of the subject.
  • the continuous blood glucose measurement sensor unit 100 includes a non-labeled sensor to which a reversible glucose antibody is immobilized on a surface to detect a signal generated from the binding of the reversible glucose antibody and glucose molecules in the body fluid. Including the non-labeled sensor, the continuous blood glucose measurement sensor unit 100 will be described in detail later.
  • the continuous blood glucose measurement sensor unit 100 since the continuous blood glucose measurement sensor unit 100 is always attached to the body of the subject, it can be made compact so as not to interfere with the daily life of the subject, and waterproof and dustproof so as not to be affected by external raids or shocks. It can be manufactured in the form of a case.
  • the integrated management terminal unit 200 receives the blood sugar data of the subject from the continuous blood sugar measurement sensor unit 100 and comprehensively manages the blood sugar data.
  • the integrated management terminal unit 200 may be connected to the continuous blood glucose measurement sensor unit 100 by wire or wirelessly. In addition, it can be manufactured in a size that can be carried by the subject.
  • the integrated management terminal unit 200 transmits the result of analyzing the blood sugar data to the data transmission / reception unit 300.
  • the data transmission / reception unit 300 transmits the blood sugar data analysis result received from the integrated management terminal unit 200 to the subscriber by wire or wirelessly.
  • the data transmission / reception unit 300 may transmit the blood sugar data analysis result to a subscriber's wired / wireless phone, an Internet phone, or an E-MAIL account.
  • a subscriber means a subject (patient), a doctor, a hospital, or a clinic.
  • the data transmission / reception unit 300 may include a web server system configured to allow the subscribers to subscribe, and the subscribers may access the web server system to calculate the integrated management terminal unit 200.
  • the blood sugar data analysis result can be viewed. Therefore, it is possible to provide a medical system that can improve the career efficiency and management efficiency for diabetics (measured), and provide information / analysis results for diabetics in connection with the attending physician and hospital (hospital). Representative) can check the information / analysis results quickly and conveniently.
  • FIG. 2 is a block diagram of the continuous blood glucose measurement system S of FIG. 1.
  • the continuous blood glucose measurement sensor unit 100 and the integrated management terminal unit 200 are connected to each other via wire / wireless, the integrated management terminal unit 200 and the data transmission / reception unit. 300 is connected wirelessly.
  • Integrated management terminal 200 is the blood sugar sensor monitoring module 210, filtering module 220, blood sugar analysis comparison module 230, transmission module 240, storage module 250, display module 260, notification module ( 270).
  • Blood glucose sensor monitoring module 210 serves to monitor the operation of the continuous blood glucose measurement sensor unit 100. For example, when the continuous blood glucose measurement sensor unit 100 does not operate, the blood glucose sensor monitoring module 210 detects this and transmits a signal to the notification module 270, and the notification module 270 sends the signal to the subject. You can inform.
  • the notification method may include attaching a speaker to the integrated management terminal to generate a warning sound, or transmit a message to a communication means (telephone, mobile phone, E-mail) of the subject.
  • the filtering module 220 receives the blood sugar data measured by the continuous blood glucose measurement sensor unit 100 by wire or wirelessly, and removes noise from the blood sugar data.
  • the noise refers to data that does not correspond to the analysis region of the blood sugar data.
  • the filtering module 220 removes data that is not suitable for the above-described analysis.
  • blood glucose data according to some signal errors may be removed.
  • the blood sugar analysis comparison module 230 analyzes the blood sugar data filtered by the filtering module 220 and compares the blood sugar information and the normal blood sugar data of the pre-stored test subject to calculate a comparison result. For example, the blood sugar analysis comparison module 230 may calculate the amount of excess value by graphing the blood sugar data of the subject time and date or by comparing the blood sugar data with normal blood sugar data.
  • the transmission module 240 transmits the comparison result calculated by the blood sugar analysis comparison module 230 to the data transmission / reception unit 300. Since the data transmission / reception unit 300 has been described above, it will be omitted here.
  • the storage module 250 stores the comparison result calculated by the blood sugar analysis comparison module 230 in at least one of a database and a memory.
  • the database or memory may store the blood sugar level of the subject in real time.
  • the memory may be, for example, a flash memory having memory nonvolatile.
  • the display module 260 processes the comparison result calculated by the blood sugar analysis comparison module 230 and displays the result on the screen of the integrated management terminal 200.
  • the blood sugar level of the subject may be displayed on the screen in real time, or the blood sugar level may be created and displayed on the screen by time / date.
  • the notification module 270 notifies the subject when the measured blood sugar data exceeds the reference blood sugar data. Since the notification method has been described above, a description thereof will be omitted.
  • the integrated management terminal unit 200 may further include a power unit capable of turning on / off the power, a display window (not shown) such as an LCD formed on the front of the terminal, and an operation unit (not displayed) for operating a function of the terminal.
  • a power unit capable of turning on / off the power
  • a display window such as an LCD formed on the front of the terminal
  • an operation unit not displayed
  • FIG. 3 is a perspective view illustrating the continuous blood glucose measurement sensor unit 100 of the continuous blood glucose measurement system S of FIG. 1.
  • the continuous blood glucose measurement sensor unit 100 is attached to at least a portion of a body of a subject to measure body blood extracting unit 110 and body fluid extracting unit 110 and extracts body fluids to measure blood glucose levels.
  • the main body 120 is provided.
  • the main body 120 is a cladding layer 123 stacked on an upper surface of the substrate 121 and a light incidence portion 11 formed on the cladding layer 123 and formed on one side of the cladding layer 123, thereby being clad with a cladding layer ( 123) a core layer 125 including a first optical waveguide 125a and a second optical waveguide 125b having a structure passing through the optical output unit 21 formed on the other side, and an upper portion of the first optical waveguide 125a It is disposed on the non-label sensor 127 through which the body fluid passes.
  • the body portion 120 may further include a body fluid discharge unit (not shown) for discharging the measured body fluid.
  • the body fluid discharge part may be connected to at least a portion of the body part.
  • the body fluid discharge part may be manufactured to be discharged when a certain amount of body fluid is collected after temporarily storing the body fluid whose blood glucose measurement is completed by passing through the first optical waveguide 125a.
  • the continuous blood glucose measurement sensor unit 100 proceeds the light irradiated from the light source 10 via the first optical waveguide 125a formed in the continuous blood glucose measurement sensor unit 100 and through the body fluid extracting unit 110. Blood glucose is continuously measured by analyzing the amount of optical signal changed by the body fluid injected into the first optical waveguide 125a by the detector 20.
  • the substrate 121 serves to support the cladding layer 123 and the core layer 125 and may be, for example, a glass substrate, a semiconductor substrate, a silicon substrate, or the like.
  • the cladding layer 123 may use a less dense medium than the materials constituting the optical waveguides 125a and 125b, and may use the same material.
  • the cladding layer 123 may be formed of, for example, SiO 2 .
  • the traveling speed of the light in the core layer 125 is determined by the surface material of the first and second optical waveguides 125a and 125b through which the light passes. Therefore, the phase difference occurs in proportion to the amount of change in the surface material of the first and second optical waveguides 125a and 125b, and the phase difference is analyzed by the detector 20 connected to the light output unit 21. And confirmable.
  • the continuous blood glucose measurement sensor unit 100 may further include a third optical waveguide 125c disposed between the first optical waveguide 125a and the second optical waveguide 125b.
  • the phase difference generated according to the output optical power variation between the first optical waveguide 125a and the second optical waveguide 125b is analyzed by data.
  • the first optical waveguide 125a and the second optical waveguide 125b are analyzed. ), An area in which data extraction is not performed properly may occur due to the interference.
  • the third optical waveguide 125c is disposed between the first optical waveguide 125a and the second optical waveguide 125b, so that the phase shifted partially from the first optical waveguide 125a and the second optical waveguide 125b.
  • the third optical waveguide 125c does not need to be connected to the light incident part 11, and may be formed from an intermediate point of the core layer 125 to the light output part 21.
  • the first optical waveguide 125a and the second optical waveguide 125b may be formed so that at least a portion thereof approaches the direction of the third optical waveguide 125c, thereby making it easier to transfer some light.
  • the continuous blood glucose measurement sensor unit 100 may further include a high refractive index material 129 disposed on at least one of the first optical waveguide 125a, the second optical waveguide 125b, or the third optical waveguide 125c. Can be.
  • the high refractive index material 129 has a higher refractive index than the optical waveguides 125a, 125b, and 125c, and thus may induce the distribution of the waveguide to the surface, thereby improving sensitivity to the surface material.
  • the high refractive index material 129 may be, for example, a material such as TiO 2 , Ta 2 O 5, or Si 3 N 4 .
  • FIG. 4 is a conceptual diagram illustrating an operating principle of the continuous blood glucose measurement sensor unit 100 of FIG. 3.
  • the continuous blood glucose measurement sensor unit 100 is fixedly coupled to the surface of the reversible glucose antibody 127a and is generated from the binding of the reversible glucose antibody 127a and the glucose molecule (antigen, 110a) in the body fluid. And an unmarked sensor 127 for detecting a signal to be detected.
  • the non-labeled sensor 127 may be disposed above the first optical waveguide 125a or the second optical waveguide 125b, and the optical waveguide on which the non-labeled sensor 127 is disposed serves as a sensor.
  • the unlabeled sensor 127 is disposed above the first optical waveguide 125a will be described.
  • the reversible glucose antibody 127a is immobilized on the surface of the unlabeled sensor 127 to specifically bind to the glucose (glucose) molecule 110a in the body fluid.
  • the reversible glucose antibody 127a has fast reaction and desorption characteristics and high affinity. Therefore, even if the body fluid continuously passes through the first optical waveguide 125a, high analysis sensitivity can be maintained.
  • the reversible glucose antibody 127a is, for example, 1 ⁇ 10 4 L ⁇ mol ⁇ 1 ⁇ sec ⁇ 1 to 1 ⁇ 10 7 L ⁇ mol ⁇ 1 ⁇ sec ⁇ 1 when reacted with the glucose molecule 110a in the body fluid
  • Has a reversible reaction characteristic in the range of adhesion rate constant (k a ), desorption rate constant of 1 ⁇ 10 -5 sec -1 to 1 ⁇ 10 -2 sec -1 (k d ), and equilibrium adhesion constant (K A k a / k d ) may be 1 ⁇ 10 6 L / mol or more.
  • Reversible Glucose Antibody (127a) has both high adhesion and desorption rate constants, resulting in faster response time of continuous blood glucose measurement sensor 100, enabling real-time detection of glucose in body fluids, as well as high equilibrium adhesion constants for high measurement sensitivity. Serves to provide.
  • the equilibrium adhesion constant of the reversible glucose antibody 127a is less than 1 ⁇ 10 6 L / mol
  • the measurement sensitivity of the continuous blood glucose measurement sensor unit 100 is very low at ⁇ mol / L, which is applied to glucose detection.
  • the unlabeled sensor 127 serves to track the real time reaction binding of the glucose molecule 110a and the reversible glucose antibody 127a in the body fluid.
  • the non-labeled sensor 127 is a surface distortion caused by the mass, the resistance of the vibrator, and the charge distribution on the continuous blood glucose measurement sensor unit 100 which changes in proportion to the conjugate of the glucose molecule 110a-reversible glucose antibody 127a in the body fluid. , Energy transfer, and the like can be measured as a signal.
  • the non-labeled sensor 127 may include, for example, a surface plasmon resonance (SPR) sensor that exhibits a difference in optical refraction angle according to a change in the mass of the conjugate on the surface of the continuous blood glucose measurement sensor unit 100, a resistance or charge distribution of the vibrator. It may be a cantilever sensor, an optical waveguide sensor, an optical interference sensor, or a nano sensor using nano-dimensional lines or gaps.
  • SPR surface plasmon resonance
  • the non-labeled sensor 127 is divided by a semi-permeable membrane 127b that selectively permeates the glucose molecules 110a in the body fluid to form a recognition reaction cell A on the surface where the reversible glucose antibody 127a is fixed. Can be. Therefore, the glucose molecule 110a in the body fluid is small in size and can be passed through the semi-permeable membrane 127b into the recognition reaction cell A, but other impurities in the body fluid are filtered so that the continuous blood glucose measurement sensor unit ( It is effective to prevent the contamination of 100).
  • the unlabeled sensor 127 may further include nanoparticles 127c to which glucose molecules in the recognition reaction cell A are polymerized.
  • the nanoparticle 127c competes with the glucose molecule 110a in the body fluid to contribute to blood glucose measurement.
  • glucose molecules polymerized on the nanoparticles 127c are attached to the non-labeled sensor 127 and sensed as signals.
  • the body fluid flows in and the concentration of the glucose molecule 110a in the body fluid increases, the low molecular glucose molecule 110a passes through the semi-permeable membrane 127b and flows into the recognition cell A, and reversible glucose
  • the nanoparticle 127c is desorbed by the competition for adhesion to the antibody 127a, the signal from the non-labeled sensor 127 is reduced (see FIG. 4 right figure). Therefore, continuous blood sugar measurement is possible due to the competition between adhesion of the nanoparticles 127c polymerized with the glucose molecules as described above and the glucose molecules 110a in the body fluid.
  • the continuous blood glucose measurement system has an effect that the blood glucose of the subject can be measured semi-permanently and in real time by fixing a reversible glucose antibody having a rapid detachment reaction on the surface. .
  • the high responsive glucose antibody adhesion and desorption rate constants increase sensor response time, and the equilibrium adhesion constant is high, thereby improving sensor sensitivity.
  • an integrated management terminal unit which analyzes, compares, stores, transmits and displays the blood sugar data is continuously measured. There is an effect that can be checked.
  • a data transmission and reception unit for transmitting the data received from the integrated management terminal to subscribers, such as patients, doctors, hospitals (hospitals) via wired / wireless.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Public Health (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Emergency Medicine (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

Disclosed is a system for continuously measuring blood sugar. According to one embodiment of the present invention, the system for continuously measuring blood sugar continuously measures the blood sugar of a subject, and comprises: a sensing unit for continuously measuring blood sugar, which includes a label-free sensor for fixing a reversibly reactive glucose antibody on the surface thereof, and which detects a signal generated by the binding of the reversibly reactive glucose antibody and the glucose molecules in body fluid; a total management terminal for monitoring whether or not the sensing unit is operating, which receives, in a wired or wireless manner, the blood sugar data measured by the sensing unit, and which filters, analyzes, compares, stores, transmits, and displays the blood sugar data; and a data-transceiving unit for transmitting, in a wired or wireless manner, the data received from the total management terminal to a subscriber.

Description

연속 혈당 측정 시스템 Continuous glucose measurement system
본 발명은 혈당 측정 시스템에 관한 것으로, 보다 상세하게는 연속적이고 실시간적으로 혈당 측정 가능한 광학식 연속 혈당 측정 센서를 포함하는 혈당 측정 시스템에 관한 것이다.The present invention relates to a blood glucose measurement system, and more particularly to a blood glucose measurement system comprising an optical continuous blood glucose measurement sensor capable of measuring blood glucose continuously and in real time.
근래 당뇨병 환자의 증가 및 당뇨병 위험에 대한 우려가 커짐에 따라 혈당 측정과 관련한 장치 등의 수요가 꾸준히 증가하고 있는 추세이다. 당뇨병 환자가 혈당조절을 엄격히 한 경우에 당뇨병의 합병증 발생이 현저하게 줄어든다는 것은 각종 연구를 통해 확인되었는 바, 혈당조절을 위해 규칙적, 연속적으로 혈당을 측정하는 것은 당뇨병 환자에게 있어 매우 중요하다. Recently, as the number of diabetics increases and the concern about the risk of diabetes increases, the demand for devices related to blood glucose measurement is steadily increasing. It has been confirmed through various studies that the occurrence of complications of diabetes is significantly reduced when diabetic patients strictly control blood glucose. Therefore, it is very important for diabetic patients to measure blood glucose regularly and continuously.
따라서, 이러한 혈당을 연속적으로 측정하는 센서 등에 관하여 많은 연구가 이루어지고 있으며, 현재까지는 포도당 특이 효소(glucose oxidase)의 반응에 기반한 연속 혈당 측정 센서가 많이 이용되고 있다.  Therefore, a lot of research has been made on such a sensor for continuously measuring such blood glucose, and until now, a continuous blood glucose measurement sensor based on the reaction of glucose specific enzyme (glucose oxidase) has been widely used.
그러나, 상술한 효소반응 기반 연속 혈당 측정 센서의 경우에는 시간이 지남에 따라 효소 산화에 의한 활성감소를 방지하기 못하므로, 센서 수명이 최대 일주일 이내로 짧다는 문제점이 있다. 또한, 체액성분에는 효소 안정성에 영향을 미치는 여러 가지 활성 억제인자(예를 들면, 금속 이온들)들이 존재하기 때문에, 센서의 성능 저하를 유발할 수 있다는 문제점이 있었다.  However, in the case of the above-described enzymatic reaction-based continuous blood glucose measurement sensor, it is not possible to prevent a decrease in activity due to enzymatic oxidation over time, and thus there is a problem that the sensor life is short within a maximum of one week. In addition, since there are various activity inhibitors (for example, metal ions) that affect the enzyme stability in the bodily fluid component, there is a problem that the performance of the sensor may be reduced.
한편, 종래 효소반응 기반 연속 혈당 측정 센서는 샘플 채취를 일정한 시간 간격으로 여러 번을 측정하여 평균값을 계산한 결과를 제시하고 있어, 실제 혈당치와는 결과치가 다를 수 있다는 문제점이 추가로 발생하였다. On the other hand, the conventional enzyme reaction-based continuous blood glucose measurement sensor to measure the sample taken several times at regular time intervals to present the result of calculating the average value, there is a further problem that the result value may be different from the actual blood glucose value.
따라서, 반영구적이고 실시간적으로 혈당 측정이 가능한 센서 개발 등이 요구되었으며, 연속 혈당 측정 센서에 기반한 연속 혈당 측정 시스템에 대한 요구 역시 증대되고 있다. Therefore, the development of a semi-permanent and real-time blood glucose measurement sensor has been required, and the demand for a continuous blood glucose measurement system based on a continuous blood glucose measurement sensor is also increasing.
본 발명의 실시예들은 가역반응성 글루코스 항체를 표면에 고정하고 항체에 결합되는 글루코스의 양을 광신호의 변화량으로 측정함으로써, 실시간으로 연속 혈당 측정이 가능한 연속 혈당 측정 센서를 포함하는 연속 혈당 측정 시스템을 제공하고자 한다.Embodiments of the present invention provides a continuous blood glucose measurement system comprising a continuous glucose measurement sensor capable of measuring blood glucose in real time by immobilizing a reversible glucose antibody on a surface and measuring the amount of glucose bound to the antibody as an amount of change in an optical signal. To provide.
본 발명의 일 측면에 따르면, 피측정자의 혈당을 연속적으로 측정하되, 표면에 가역반응성 글루코스 항체가 고정되어 상기 가역반응성 글루코스 항체 및 체액 내의 글루코스 분자의 결합으로부터 발생되는 신호를 탐지하는 비표지 센서를 포함하는 연속 혈당 측정 센서부; 상기 연속 혈당 측정 센서부의 작동여부를 감시하고, 상기 연속 혈당 측정 센서부로부터 측정된 혈당 데이터를 유/무선으로 수신 받아 상기 혈당 데이터를 필터링, 분석, 비교, 저장, 전송, 표시하는 통합 관리 단말기부; 및 상기 통합 관리 단말기로부터 수신한 데이터를 유/무선으로 가입자에게 송신하는 데이터 송수신부를 포함하는 연속 혈당 측정 시스템이 제공될 수 있다.  According to an aspect of the present invention, the blood glucose of the subject is continuously measured, a non-labeled sensor for detecting a signal generated from the binding of the reversible glucose antibody and glucose molecules in the body fluid is fixed to the reversible glucose antibody on the surface Continuous blood glucose measurement sensor unit comprising; Integrated management terminal unit for monitoring the operation of the continuous blood glucose measurement sensor unit, and receives the blood sugar data measured by the continuous blood glucose measurement sensor unit via wired / wireless to filter, analyze, compare, store, transmit and display the blood glucose data. ; And it can be provided a continuous blood glucose measurement system including a data transmission and reception unit for transmitting data received from the integrated management terminal to the subscriber via wired / wireless.
또한, 상기 통합 관리 단말기부는, 상기 연속 혈당 측정 센서부의 작동여부를 감시하는 혈당 센서 감시 모듈; 상기 연속 혈당 측정 센서부로부터 측정된 혈당 데이터를 유/무선으로 수신 받아 상기 혈당 데이터 중 노이즈를 제거하는 필터링 모듈; 상기 필터링 모듈에서 필터링된 혈당 데이터를 분석하여, 미리 저장된 피측정자의 혈당 정보 및 정상 혈당 데이터와 비교하여 비교 결과를 산출하는 혈당 분석비교 모듈; 및 상기 혈당 분석비교 모듈에서 산출된 비교 결과를 상기 데이터 송수신부로 전송하는 전송 모듈을 포함할 수 있다.  In addition, the integrated management terminal unit, the blood sugar sensor monitoring module for monitoring whether the continuous blood glucose measurement sensor unit; A filtering module which receives the blood glucose data measured by the continuous blood glucose measurement sensor unit via wire / wireless and removes noise from the blood sugar data; A blood sugar analysis comparison module which analyzes the blood sugar data filtered by the filtering module and compares the blood sugar information and the normal blood sugar data of a pre-stored measured person to calculate a comparison result; And a transmission module for transmitting the comparison result calculated by the blood sugar analysis comparison module to the data transceiver.
또한, 상기 연속 혈당 측정 센서부는 피측정자의 신체 적어도 일부에 부착되어 체액을 추출하는 체액추출부 및 상기 체액추출부로부터 체액을 공급받는 본체부를 구비하고, 상기 본체부는 기판 상부에 적층되는 클래드층과, 상기 클래드층 상부에 형성되고, 상기 클래드층 일측에 형성된 광입사부에서 분기되어 상기 클래드층 타측에 형성된 광출력부를 통과하는 구조를 갖는 제 1 광도파로 및 제 2 광도파로를 포함하는 코어층과, 상기 제 1 광도파로 상부에 배치되어 상기 체액이 통과하는 비표지 센서를 포함할 수 있다.  In addition, the continuous blood glucose measurement sensor unit is attached to at least a portion of the body of the subject to extract a body fluid extracting the body fluid and the body portion receiving the body fluid from the body fluid extracting portion, the body portion and the clad layer laminated on the substrate; And a core layer formed on the clad layer, the core layer including a first optical waveguide and a second optical waveguide having a structure branched from the light incidence part formed on one side of the clad layer and passing through the light output part formed on the other side of the clad layer. And a non-labeled sensor disposed above the first optical waveguide through which the body fluid passes.
또한, 상기 본체부는, 상기 제 1 광도파로 및 상기 제 2 광도파로 사이에 배치되어 상기 광출력부를 통과하도록 형성된 제 3 광도파로를 더 포함할 수 있다.  The body unit may further include a third optical waveguide disposed between the first optical waveguide and the second optical waveguide to pass through the optical output unit.
또한, 상기 본체부는, 상기 제 1 광도파로, 상기 제 2 광도파로 또는 상기 제 3 광도파로 중 적어도 하나의 상부에 배치되고, TiO2, Ta2O5 또는 Si3N4 중 어느 하나인 고굴절률 물질을 더 포함할 수 있다. The main body portion may be disposed on at least one of the first optical waveguide, the second optical waveguide, or the third optical waveguide, and has a high refractive index, which is any one of TiO 2 , Ta 2 O 5, or Si 3 N 4 . It may further comprise a substance.
또한, 상기 가역반응성 글루코스 항체는 상기 체액 내의 글루코스 분자와 반응 시 1×104 L·mol-1·sec-1 내지 1×107 L·mol-1·sec-1의 부착속도상수(ka) 및 1×10-5 sec-1 내지 1×10-2 sec-1 의 탈착속도상수(kd) 범위의 가역반응 특성을 가질 수 있다. In addition, the reversible glucose antibody has an adhesion rate constant of 1 × 10 4 L · mol −1 · sec −1 to 1 × 10 7 L · mol −1 · sec −1 when reacting with glucose molecules in the body fluid (k a ) And a desorption rate constant (k d ) of 1 × 10 −5 sec −1 to 1 × 10 −2 sec −1 .
또한, 상기 비표지 센서는 상기 체액 내의 글루코스 분자를 선택적으로 투과하는 반투과성 막에 의해 구획이 나뉘어져 상기 가역반응성 글루코스 항체가 고정된 표면 쪽에 인식반응 셀을 형성할 수 있다.  In addition, the non-labeled sensor may be divided by a semipermeable membrane that selectively permeates glucose molecules in the body fluid to form a recognition reaction cell on the surface where the reversible glucose antibody is fixed.
또한, 상기 비표지 센서는 상기 인식반응 셀 내에 글루코스 분자가 중합된 나노입자를 더 포함할 수 있다.In addition, the unlabeled sensor may further include nanoparticles in which glucose molecules are polymerized in the recognition reaction cell.
본 발명의 실시예들에 따른 연속 혈당 측정 시스템은 탈부착 반응이 신속한 가역반응성 글루코스 항체를 표면에 고정하여 사용함으로써, 피측정자의 혈당을 반영구적이고 실시간적으로 측정 가능하다는 효과가 있다. The continuous blood glucose measurement system according to the embodiments of the present invention has an effect that the blood glucose of the subject can be measured semi-permanently and in real time by immobilizing a reversible glucose antibody having a rapid detachable reaction on the surface.
또한, 가역반응성 글루코스 항체의 부착 및 탈착속도상수가 높아 센서 응답 시간이 빨라지고, 평형부착상수가 높아 센서 측정민감도를 향상시키는 효과가 있다.  In addition, the high responsive glucose antibody adhesion and desorption rate constants increase sensor response time, and the equilibrium adhesion constant is high, thereby improving sensor sensitivity.
또한, 제 1 광도파로 및 제 2 광도파로에서 일부 천이된 위상을 출력하는 제 3 광도파로를 배치하여 혈당 센서의 측정 지속성을 향상시키는 효과가 있다.  In addition, by arranging a third optical waveguide for outputting a phase shifted partially in the first optical waveguide and the second optical waveguide, there is an effect of improving the measurement persistence of the blood glucose sensor.
또한, 연속 혈당 측정 센서부의 작동여부를 감시하고, 측정된 혈당 데이터를 유/무선으로 수신 받아 혈당 데이터를 분석, 비교, 저장, 전송, 표시하는 통합 관리 단말기부를 제공함으로써 피측정자가 연속적으로 혈당 상태를 체크할 수 있는 효과가 있다.  In addition, by monitoring the operation of the continuous blood glucose measurement sensor unit and receiving the measured blood glucose data via wired / wireless, an integrated management terminal unit which analyzes, compares, stores, transmits and displays the blood sugar data is continuously measured. There is an effect that can be checked.
또한, 통합 관리 단말기로부터 수신한 데이터를 유/무선으로 환자, 주치의, 병원(의원)등의 가입자에게 송신하는 데이터 송수신부를 포함하여 당뇨병 환자를 원격관리 가능하다는 효과가 있다. In addition, there is an effect that can remotely manage a diabetic patient, including a data transmission and reception unit for transmitting the data received from the integrated management terminal to subscribers, such as patients, doctors, hospitals (hospitals) via wired / wireless.
도 1은 본 발명의 실시예에 따른 연속 혈당 측정 시스템의 개략도이다. 1 is a schematic diagram of a continuous blood glucose measurement system according to an embodiment of the present invention.
도 2는 도 1의 연속 혈당 측정 시스템의 블록도이다.  FIG. 2 is a block diagram of the continuous blood glucose measurement system of FIG. 1.
도 3은 도 1의 연속 혈당 측정 시스템의 연속 혈당 측정 센서부를 도시한 사시도이다.  3 is a perspective view illustrating a continuous blood glucose measurement sensor unit of the continuous blood glucose measurement system of FIG. 1.
도 4는 도 3의 연속 혈당 측정 센서부의 작동원리를 나타낸 개념도이다. 4 is a conceptual diagram illustrating an operation principle of the continuous blood glucose measurement sensor unit of FIG. 3.
<부호의 설명><Description of the code>
S: 연속 혈당 측정 시스템 S: continuous blood glucose measurement system
10: 광원 11: 광입사부 10: light source 11: light incident part
20: 디텍터 21: 광출력부 20: detector 21: light output unit
100: 연속 혈당 측정 센서부 100: continuous glucose measurement sensor unit
110: 체액 추출부 110a: 체액 내의 글루코스 분자 110: body fluid extracting unit 110a: glucose molecules in the body fluid
120: 본체부 120: main body
121: 기판 123: 클래드층 121: substrate 123: cladding layer
125: 코어층 125a: 제 1 광도파로 125: core layer 125a: first optical waveguide
125b: 제 2 광도파로 125c: 제 3 광도파로 125b: second optical waveguide 125c: third optical waveguide
127: 비표지센서 127a: 가역반응성 글루코스 항체 127: unlabeled sensor 127a: reversible glucose antibody
127b: 반투과성 막 127c: 글루코스 분자가 중합된 나노입자 127b: semipermeable membrane 127c: nanoparticles polymerized with glucose molecules
129: 고굴절률 물질 A: 인식반응 셀 129: high refractive index material A: recognition reaction cell
200: 통합관리 단말기부  200: integrated management terminal unit
210: 혈당센서 감시모듈 220: 필터링 모듈 210: blood sugar sensor monitoring module 220: filtering module
230: 혈당 분석 비교 모듈 240: 전송 모듈 230: blood sugar analysis comparison module 240: transmission module
250: 저장 모듈 260: 표시 모듈 250: storage module 260: display module
270: 알림 모듈 270: notification module
300: 데이터 송수신부300: data transceiver
이하에서는 첨부된 도면을 참조하여 본 발명의 실시예들에 대하여 상세히 설명하도록 한다.  Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명의 실시예에 따른 연속 혈당 측정 시스템(S)의 개략도이다.  1 is a schematic diagram of a continuous blood glucose measurement system S according to an embodiment of the present invention.
도 1을 참조하면, 연속 혈당 측정 시스템(S)은 연속 혈당 측정 센서부(100), 통합 관리 단말기부(200) 및 데이터 송수신부(300)를 포함한다.  Referring to FIG. 1, the continuous blood glucose measurement system S includes a continuous blood glucose measurement sensor unit 100, an integrated management terminal unit 200, and a data transmission / reception unit 300.
연속 혈당 측정 센서부(100)는 피측정자의 신체 일부에 부착되어 피측정자의 혈당을 연속적으로 측정하는 역할을 수행한다. 연속 혈당 측정 센서부(100)는 표면에 가역반응성 글루코스 항체가 고정되어 상기 가역반응성 글루코스 항체 및 체액 내의 글루코스 분자의 결합으로부터 발생되는 신호를 탐지하는 비표지 센서를 포함한다. 상기 비표지 센서를 포함하여, 연속 혈당 측정 센서부(100)에 대해서는 상세히 후술하도록 한다. 한편, 연속 혈당 측정 센서부(100)는 항상 피측정자의 신체에 부착되어 있으므로, 피측정자의 일상생활에 지장을 주지 않도록 소형으로 제작될 수 있고, 외부 습격 또는 충격에 영향을 받지 않도록 방수 및 방진 케이스 형태로 제작될 수 있다.  The continuous blood glucose measurement sensor unit 100 is attached to a part of the body of the subject to serve to continuously measure the blood sugar of the subject. The continuous blood glucose measurement sensor unit 100 includes a non-labeled sensor to which a reversible glucose antibody is immobilized on a surface to detect a signal generated from the binding of the reversible glucose antibody and glucose molecules in the body fluid. Including the non-labeled sensor, the continuous blood glucose measurement sensor unit 100 will be described in detail later. On the other hand, since the continuous blood glucose measurement sensor unit 100 is always attached to the body of the subject, it can be made compact so as not to interfere with the daily life of the subject, and waterproof and dustproof so as not to be affected by external raids or shocks. It can be manufactured in the form of a case.
통합 관리 단말기부(200)는 연속 혈당 측정 센서부(100)로부터 피측정자의 혈당 데이터를 수신하여, 혈당 데이터를 종합적으로 관리하는 역할을 수행한다. 통합 관리 단말기부(200)는 연속 혈당 측정 센서부(100)와 유선 또는 무선으로 연결될 수 있다. 또한, 피측정자가 몸에 지니고 다닐 수 있는 크기로 제작할 수 있다. 통합 관리 단말기부(200)는 혈당 데이터를 분석한 결과를 데이터 송수신부(300)로 송신한다.  The integrated management terminal unit 200 receives the blood sugar data of the subject from the continuous blood sugar measurement sensor unit 100 and comprehensively manages the blood sugar data. The integrated management terminal unit 200 may be connected to the continuous blood glucose measurement sensor unit 100 by wire or wirelessly. In addition, it can be manufactured in a size that can be carried by the subject. The integrated management terminal unit 200 transmits the result of analyzing the blood sugar data to the data transmission / reception unit 300.
데이터 송수신부(300)는 통합 관리 단말기부(200)로부터 수신한 혈당 데이터 분석 결과를 유선 또는 무선으로 가입자에게 송신하는 역할을 수행한다. 예를 들면, 데이터 송수신부(300)는 가입자의 유무선 전화, 인터넷 전화, E-MAIL계정으로 상기 혈당 데이터 분석 결과를 송신할 수 있다.  The data transmission / reception unit 300 transmits the blood sugar data analysis result received from the integrated management terminal unit 200 to the subscriber by wire or wirelessly. For example, the data transmission / reception unit 300 may transmit the blood sugar data analysis result to a subscriber's wired / wireless phone, an Internet phone, or an E-MAIL account.
한편, 가입자란 피측정자(환자), 주치의, 병원, 의원 등을 의미한다. 예를 들면, 데이터 송수신부(300)는 웹서버시스템을 구비하여 상기 가입자들이 가입을 할 수 있도록 구성할 수 있고, 상기 가입자들이 상기 웹서버시스템에 접속하여 통합 관리 단말기부(200)에서 산출된 상기 혈당 데이터 분석 결과를 열람할 수 있다. 따라서, 당뇨병 환자(피측정자)에 대해 진로효율 및 관리효율을 높일 수 있는 의료시스템을 제공 가능하며, 당뇨병 환자에 대한 정보/분석 결과를 주치의, 병원(의원) 간 연계하여 제공하므로 주치의, 병원(의원)이 신속하고 편리하게 상기 정보/분석 결과를 확인할 수 있다.  On the other hand, a subscriber means a subject (patient), a doctor, a hospital, or a clinic. For example, the data transmission / reception unit 300 may include a web server system configured to allow the subscribers to subscribe, and the subscribers may access the web server system to calculate the integrated management terminal unit 200. The blood sugar data analysis result can be viewed. Therefore, it is possible to provide a medical system that can improve the career efficiency and management efficiency for diabetics (measured), and provide information / analysis results for diabetics in connection with the attending physician and hospital (hospital). Representative) can check the information / analysis results quickly and conveniently.
도 2는 도 1의 연속 혈당 측정 시스템(S)의 블록도이다. 도 2를 참조하면, 연속 혈당 측정 시스템(S)은 연속 혈당 측정 센서부(100) 및 통합 관리 단말기부(200)가 서로 유/무선으로 연결되고, 통합 관리 단말기부(200) 및 데이터 송수신부(300)가 무선으로 연결된다.  FIG. 2 is a block diagram of the continuous blood glucose measurement system S of FIG. 1. Referring to FIG. 2, in the continuous blood glucose measurement system S, the continuous blood glucose measurement sensor unit 100 and the integrated management terminal unit 200 are connected to each other via wire / wireless, the integrated management terminal unit 200 and the data transmission / reception unit. 300 is connected wirelessly.
통합 관리 단말기부(200)는 혈당 센서 감시 모듈(210) 필터링 모듈(220), 혈당 분석 비교 모듈(230), 전송 모듈(240), 저장모듈(250), 표시 모듈(260), 알림 모듈(270)을 포함할 수 있다. Integrated management terminal 200 is the blood sugar sensor monitoring module 210, filtering module 220, blood sugar analysis comparison module 230, transmission module 240, storage module 250, display module 260, notification module ( 270).
혈당 센서 감시 모듈(210)은 연속 혈당 측정 센서부(100)의 작동여부를 감시하는 역할을 수행한다. 예를 들어, 연속 혈당 측정 센서부(100)가 작동을 안하는 경우, 혈당 센서 감시 모듈(210)은 이를 감지하여 알림 모듈(270)에 신호를 전송하고, 알림 모듈(270)에서는 피측정자에게 이를 알릴 수 있다. 알리는 방법은 통합 관리 단말기 본체에 스피커를 부착하여 경고음을 내도록 하거나, 피측정자의 통신수단(전화, 휴대폰, E-MAIL)에 메시지를 전송할 수 있다. Blood glucose sensor monitoring module 210 serves to monitor the operation of the continuous blood glucose measurement sensor unit 100. For example, when the continuous blood glucose measurement sensor unit 100 does not operate, the blood glucose sensor monitoring module 210 detects this and transmits a signal to the notification module 270, and the notification module 270 sends the signal to the subject. You can inform. The notification method may include attaching a speaker to the integrated management terminal to generate a warning sound, or transmit a message to a communication means (telephone, mobile phone, E-mail) of the subject.
필터링 모듈(220)은 연속 혈당 측정 센서부(100)로부터 측정된 혈당 데이터를 유선 또는 무선으로 수신 받고, 상기 혈당 데이터 중 노이즈를 제거하는 역할을 수행한다. 여기서 노이즈란 상기 혈당 데이터 중 분석영역에 해당하지 않는 데이터를 의미한다. 예를 들면, 연속 혈당 측정 센서부(100)가 작동을 개시할 때 안정적인 센서 작동 상태에 도달하기 위한 시간이 필요할 수 있으므로, 상기 시간에 해당하는 혈당 데이터의 경우에는 분석에 적합하지 않은 데이터가 산출될 수 있다. 따라서, 필터링 모듈(220)에서는 상술한 분석에 적합하지 않은 데이터를 제거하게 된다. 또는, 일부 신호 오류에 따른 혈당 데이터 역시 제거 가능하다.  The filtering module 220 receives the blood sugar data measured by the continuous blood glucose measurement sensor unit 100 by wire or wirelessly, and removes noise from the blood sugar data. Here, the noise refers to data that does not correspond to the analysis region of the blood sugar data. For example, when the continuous glucose measuring sensor unit 100 starts to operate, a time for reaching a stable sensor operating state may be required, and thus, in the case of blood sugar data corresponding to the time, data that is not suitable for analysis is calculated. Can be. Therefore, the filtering module 220 removes data that is not suitable for the above-described analysis. Alternatively, blood glucose data according to some signal errors may be removed.
혈당 분석비교 모듈(230)은 필터링 모듈(220)에서 필터링된 혈당 데이터를 분석하고, 미리 저장된 피측정자의 혈당 정보 및 정상 혈당 데이터와 비교하여 비교 결과를 산출하는 역할을 수행한다. 예를 들면, 혈당 분석비교 모듈(230)은 피측정자의 시간별, 날짜별 혈당 데이터를 그래프화 하거나 정상 혈당 데이터와 비교하여 초과된 수치량을 산출할 수 있다.  The blood sugar analysis comparison module 230 analyzes the blood sugar data filtered by the filtering module 220 and compares the blood sugar information and the normal blood sugar data of the pre-stored test subject to calculate a comparison result. For example, the blood sugar analysis comparison module 230 may calculate the amount of excess value by graphing the blood sugar data of the subject time and date or by comparing the blood sugar data with normal blood sugar data.
전송 모듈(240)은 혈당 분석비교 모듈(230)에서 산출된 비교 결과를 데이터 송수신부(300)로 전송하는 역할을 수행한다. 데이터 송수신부(300)는 상술하였으므로, 여기서는 생략하기로 한다.  The transmission module 240 transmits the comparison result calculated by the blood sugar analysis comparison module 230 to the data transmission / reception unit 300. Since the data transmission / reception unit 300 has been described above, it will be omitted here.
저장 모듈(250)은 혈당 분석비교 모듈(230)에서 산출된 비교 결과를 데이터베이스 또는 메모리 중 적어도 하나에 저장하는 역할을 수행한다. 상기 데이터 베이스 또는 메모리는 피측정자의 혈당 수치를 실시간적으로 저장 가능하다. 상기 메모리는 예를 들면, 메모리 비휘발성을 가지는 플래쉬 메모리(Flash Memory)일 수 있다.  The storage module 250 stores the comparison result calculated by the blood sugar analysis comparison module 230 in at least one of a database and a memory. The database or memory may store the blood sugar level of the subject in real time. The memory may be, for example, a flash memory having memory nonvolatile.
표시 모듈(260)은 혈당 분석비교 모듈(230)에서 산출된 비교 결과를 가공하여 통합 관리 단말기부(200)의 화면에 표시하는 역할을 수행한다. 예를 들면, 피측정자의 혈당 수치를 실시간적으로 화면에 표시하거나, 시간별/날짜별로 혈당 수치를 그래프를 작성하여 화면에 표시할 수 있다.  The display module 260 processes the comparison result calculated by the blood sugar analysis comparison module 230 and displays the result on the screen of the integrated management terminal 200. For example, the blood sugar level of the subject may be displayed on the screen in real time, or the blood sugar level may be created and displayed on the screen by time / date.
알림 모듈(270)은 측정된 혈당 데이터가 기준이 되는 혈당 데이터를 초과하는 경우에, 피측정자에게 통보하는 역할을 수행한다. 통보 방식에 대해서는 상술하였으므로, 설명을 생략하기로 한다.  The notification module 270 notifies the subject when the measured blood sugar data exceeds the reference blood sugar data. Since the notification method has been described above, a description thereof will be omitted.
한편, 통합 관리 단말기부(200)는 전원을 ON/OFF할 수 있는 전원부, 단말기 전면에 형성되는 LCD 등의 표시창(미표기), 단말기의 기능을 조작하는 조작부(미표기)를 더 포함할 수 있다. Meanwhile, the integrated management terminal unit 200 may further include a power unit capable of turning on / off the power, a display window (not shown) such as an LCD formed on the front of the terminal, and an operation unit (not displayed) for operating a function of the terminal.
이하에서는, 연속 혈당 측정 센서부(100)의 구성에 대하여 상세히 설명하도록 한다.  Hereinafter, the configuration of the continuous blood glucose measurement sensor unit 100 will be described in detail.
도 3은 도 1의 연속 혈당 측정 시스템(S)의 연속 혈당 측정 센서부(100)를 도시한 사시도이다.  3 is a perspective view illustrating the continuous blood glucose measurement sensor unit 100 of the continuous blood glucose measurement system S of FIG. 1.
도 3을 참조하면, 연속 혈당 측정 센서부(100)는 피측정자의 신체 적어도 일부에 부착되어 체액을 추출하는 체액추출부(110)와, 체액추출부(110)로부터 체액을 공급받아 혈당을 측정하는 본체부(120)를 구비한다.  Referring to FIG. 3, the continuous blood glucose measurement sensor unit 100 is attached to at least a portion of a body of a subject to measure body blood extracting unit 110 and body fluid extracting unit 110 and extracts body fluids to measure blood glucose levels. The main body 120 is provided.
본체부(120)는 기판(121) 상부에 적층되는 클래드층(123)과, 클래드층(123) 상부에 형성되고 클래드층(123) 일측에 형성된 광입사부(11)에서 분기되어 클래드층(123) 타측에 형성된 광출력부(21)를 통과하는 구조를 갖는 제 1 광도파로(125a) 및 제 2 광도파로(125b)를 포함하는 코어층(125)과, 제 1 광도파로(125a) 상부에 배치되어 상기 체액이 통과하는 비표지 센서(127)를 포함한다.  The main body 120 is a cladding layer 123 stacked on an upper surface of the substrate 121 and a light incidence portion 11 formed on the cladding layer 123 and formed on one side of the cladding layer 123, thereby being clad with a cladding layer ( 123) a core layer 125 including a first optical waveguide 125a and a second optical waveguide 125b having a structure passing through the optical output unit 21 formed on the other side, and an upper portion of the first optical waveguide 125a It is disposed on the non-label sensor 127 through which the body fluid passes.
한편, 본체부(120)는 측정된 체액을 배출하는 체액배출부(미도시)를 더 포함할 수 있다. 상기 체액배출부는 본체부의 적어도 일부와 연결되어 형성될 수 있다. 예를 들어, 상기 체액배출부는 제 1 광도파로(125a)를 통과하여 혈당측정이 완료된 체액을 임시 저장한 후에 일정량의 체액이 모이면 배출되도록 제작할 수 있다.  On the other hand, the body portion 120 may further include a body fluid discharge unit (not shown) for discharging the measured body fluid. The body fluid discharge part may be connected to at least a portion of the body part. For example, the body fluid discharge part may be manufactured to be discharged when a certain amount of body fluid is collected after temporarily storing the body fluid whose blood glucose measurement is completed by passing through the first optical waveguide 125a.
연속 혈당 측정 센서부(100)는 광원(10)으로부터 조사된 광이 연속 혈당 측정 센서부(100)에 형성된 제 1 광도파로(125a)를 경유하여 진행하게 되고, 체액 추출부(110)를 통해 제 1 광도파로(125a)로 주입된 체액에 의해 변화된 광신호량을 디텍터(20)에서 분석함으로써 혈당을 연속적으로 측정한다.  The continuous blood glucose measurement sensor unit 100 proceeds the light irradiated from the light source 10 via the first optical waveguide 125a formed in the continuous blood glucose measurement sensor unit 100 and through the body fluid extracting unit 110. Blood glucose is continuously measured by analyzing the amount of optical signal changed by the body fluid injected into the first optical waveguide 125a by the detector 20.
기판(121)은 클래드층(123) 및 코어층(125)을 지지하는 역할을 수행하며, 예를 들면, 유리기판, 반도체 기판, 실리콘 기판 등을 사용할 수 있다. 클래드층(123)은 광도파로(125a,125b)를 구성하는 물질보다 덜 밀한 매질을 사용하는 것이 가능하며, 동일한 물질을 사용하는 것도 가능하다. 클래드층(123)은 예를 들어 SiO2로 형성될 수 있다. The substrate 121 serves to support the cladding layer 123 and the core layer 125 and may be, for example, a glass substrate, a semiconductor substrate, a silicon substrate, or the like. The cladding layer 123 may use a less dense medium than the materials constituting the optical waveguides 125a and 125b, and may use the same material. The cladding layer 123 may be formed of, for example, SiO 2 .
코어층(125)에서의 광의 진행속도는 광이 경유하는 제 1,2 광도파로(125a,125b)의 표면물질에 의하여 결정된다. 따라서, 광이 진행속도의 변화는 제 1,2 광도파로(125a,125b)의 표면물질 변화량에 비례하여 위상차가 발생하게 되고, 상기 위상차는 광출력부(21)와 연결된 디텍터(20)에서 분석 및 확인 가능하다. The traveling speed of the light in the core layer 125 is determined by the surface material of the first and second optical waveguides 125a and 125b through which the light passes. Therefore, the phase difference occurs in proportion to the amount of change in the surface material of the first and second optical waveguides 125a and 125b, and the phase difference is analyzed by the detector 20 connected to the light output unit 21. And confirmable.
연속 혈당 측정 센서부(100)는 제 1 광도파로(125a) 및 제 2 광도파로(125b) 사이에 배치되는 제 3 광도파로(125c)를 더 포함할 수 있다. 제 1 광도파로(125a) 및 제 2 광도파로(125b) 사이의 출력광 파워 변화량에 따라 발생하는 위상차를 데이터로 분석하는데, 경우에 따라서는 제 1 광도파로(125a) 및 제 2 광도파로(125b)의 간섭에 의하여 데이터 추출이 제대로 이루어지지 않는 영역이 발생할 수 있다. The continuous blood glucose measurement sensor unit 100 may further include a third optical waveguide 125c disposed between the first optical waveguide 125a and the second optical waveguide 125b. The phase difference generated according to the output optical power variation between the first optical waveguide 125a and the second optical waveguide 125b is analyzed by data. In some cases, the first optical waveguide 125a and the second optical waveguide 125b are analyzed. ), An area in which data extraction is not performed properly may occur due to the interference.
따라서, 제 3 광도파로(125c)는 제 1 광도파로(125a) 및 제 2 광도파로(125b) 사이에 배치되어, 제 1 광도파로(125a) 및 제 2 광도파로(125b)로부터 일부 천이된 위상을 출력함으로써 데이터 추출을 보다 용이하게 하여 연속 혈당 측정 센서부(100)의 측정 지속성을 향상시키는 역할을 수행한다.  Accordingly, the third optical waveguide 125c is disposed between the first optical waveguide 125a and the second optical waveguide 125b, so that the phase shifted partially from the first optical waveguide 125a and the second optical waveguide 125b. By outputting the data to facilitate the extraction serves to improve the measurement persistence of the continuous blood glucose measurement sensor unit 100.
제 3 광도파로(125c)는 광입사부(11)와 연결될 필요는 없고, 코어층(125)의 중간 지점부터 광출력부(21)까지 형성할 수 있다. 또한, 제 1 광도파로(125a) 및 제 2 광도파로(125b)는 적어도 일부가 제 3 광도파로(125c) 방향에 근접하도록 형성하여, 일부 광의 전이가 보다 용이하도록 할 수 있다. The third optical waveguide 125c does not need to be connected to the light incident part 11, and may be formed from an intermediate point of the core layer 125 to the light output part 21. In addition, the first optical waveguide 125a and the second optical waveguide 125b may be formed so that at least a portion thereof approaches the direction of the third optical waveguide 125c, thereby making it easier to transfer some light.
연속 혈당 측정 센서부(100)는 제 1 광도파로(125a), 제 2 광도파로(125b) 또는 제 3 광도파로(125c) 중 적어도 하나의 상부에 배치되는 고굴절률 물질(129)을 더 포함할 수 있다.  The continuous blood glucose measurement sensor unit 100 may further include a high refractive index material 129 disposed on at least one of the first optical waveguide 125a, the second optical waveguide 125b, or the third optical waveguide 125c. Can be.
고굴절률 물질(129)은 광도파로(125a, 125b, 125c)보다 굴절률이 높아, 도파광의 분포를 표면으로 유도할 수 있어, 표면물질에 대한 감도를 향상시키는 역할을 수행한다. 고굴절률 물질(129)은 예를 들면 TiO2, Ta2O5 또는 Si3N4 등과 같은 물질을 사용 가능하다.The high refractive index material 129 has a higher refractive index than the optical waveguides 125a, 125b, and 125c, and thus may induce the distribution of the waveguide to the surface, thereby improving sensitivity to the surface material. The high refractive index material 129 may be, for example, a material such as TiO 2 , Ta 2 O 5, or Si 3 N 4 .
이하에서는, 연속 혈당 측정 센서부(100)의 비표지 센서(127)과, 연속 혈당 측정 센서부(100)의 작동 원리에 대하여 상세히 설명하도록 한다.  Hereinafter, the operation principle of the non-labeled sensor 127 of the continuous blood glucose measurement sensor unit 100 and the continuous blood glucose measurement sensor unit 100 will be described in detail.
도 4는 도 3의 연속 혈당 측정 센서부(100)의 작동원리를 나타낸 개념도이다.  4 is a conceptual diagram illustrating an operating principle of the continuous blood glucose measurement sensor unit 100 of FIG. 3.
도 4를 참조하면, 연속 혈당 측정 센서부(100)는 가역반응성 글루코스 항체(127a)가 표면에 고정 결합되고, 가역반응성 글루코스 항체(127a) 및 체액 내의 글루코스 분자(항원, 110a)의 결합으로부터 발생되는 신호를 탐지하는 비표지 센서(127)를 포함한다.  Referring to FIG. 4, the continuous blood glucose measurement sensor unit 100 is fixedly coupled to the surface of the reversible glucose antibody 127a and is generated from the binding of the reversible glucose antibody 127a and the glucose molecule (antigen, 110a) in the body fluid. And an unmarked sensor 127 for detecting a signal to be detected.
비표지 센서(127)는 제 1 광도파로(125a) 또는 제 2 광도파로(125b) 상부에 배치될 수 있으며, 비표지 센서(127)가 배치된 광도파로가 센서 역할을 수행한다. 이하에서는 설명의 편의를 위해 비표지 센서(127)가 제 1 광도파로(125a) 상부에 배치되는 경우를 중심으로 설명하도록 한다.  The non-labeled sensor 127 may be disposed above the first optical waveguide 125a or the second optical waveguide 125b, and the optical waveguide on which the non-labeled sensor 127 is disposed serves as a sensor. Hereinafter, for convenience of description, the case where the unlabeled sensor 127 is disposed above the first optical waveguide 125a will be described.
가역반응성 글루코스 항체(127a)는 비표지 센서(127) 표면에 고정화되어 있어, 체액 내의 글루코스(포도당) 분자(110a)와 특이적으로 결합된다.  The reversible glucose antibody 127a is immobilized on the surface of the unlabeled sensor 127 to specifically bind to the glucose (glucose) molecule 110a in the body fluid.
가역반응성 글루코스 항체(127a)는 탈착 및 부착 속도가 모두 빠른 반응 역학 특성을 가지며 고친화력을 가진다. 따라서, 체액이 제 1 광도파로(125a)를 연속적으로 통과하여도 높은 분석 민감도를 유지할 수 있다. 상기 고친화력은 평형부착상수(KA)로서 표시 가능하며, 상기 평형부착상수(KA)는 부착속도상수(ka)를 탈착속도상수(kb)로 나눈 값으로 정의된다. The reversible glucose antibody 127a has fast reaction and desorption characteristics and high affinity. Therefore, even if the body fluid continuously passes through the first optical waveguide 125a, high analysis sensitivity can be maintained. The high affinity and can be displayed as an equilibrium constant attachment (K A), the equilibrium constant attachment (K A) is defined as the value obtained by dividing the attachment rate constant (k a) a desorption rate constants (k b).
가역반응성 글루코스 항체(127a)는 예를 들면, 상기 체액 내의 글루코스 분자(110a)와 반응 시 1×104 L·mol-1·sec-1 내지 1×107 L·mol-1·sec-1의 부착속도상수(ka), 1×10-5 sec-1 내지 1×10-2 sec-1 의 탈착속도상수(kd) 범위의 가역반응 특성을 가지고, 평형부착상수(KA=ka/kd)가 1×106 L/mol 이상일 수 있다. The reversible glucose antibody 127a is, for example, 1 × 10 4 L · mol −1 · sec −1 to 1 × 10 7 L · mol −1 · sec −1 when reacted with the glucose molecule 110a in the body fluid Has a reversible reaction characteristic in the range of adhesion rate constant (k a ), desorption rate constant of 1 × 10 -5 sec -1 to 1 × 10 -2 sec -1 (k d ), and equilibrium adhesion constant (K A = k a / k d ) may be 1 × 10 6 L / mol or more.
가역반응성 글루코스 항체(127a)는 부착 및 탈착속도상수가 모두 높아 연속 혈당 측정 센서부(100)의 응답시간이 빨라져 체액 내의 글루코스의 실시간 검출이 가능하게 될 뿐만 아니라 평형부착상수가 높아 고도의 측정민감도를 제공하는 역할을 수행한다.  Reversible Glucose Antibody (127a) has both high adhesion and desorption rate constants, resulting in faster response time of continuous blood glucose measurement sensor 100, enabling real-time detection of glucose in body fluids, as well as high equilibrium adhesion constants for high measurement sensitivity. Serves to provide.
한편, 가역반응성 글루코스 항체(127a)의 상기 평형부착상수가 1×106 L/mol보다 작을 경우에는 연속 혈당 측정 센서부(100)의 측정 민감도가 μ mol/L 수준으로 매우 낮아서 글루코스 검출에 적용하기 힘들다는 문제점이 있다. 이는 평형부착상수가 낮을수록 측정 가능한 분석물질의 농도범위가 높아지기 때문이다. On the other hand, when the equilibrium adhesion constant of the reversible glucose antibody 127a is less than 1 × 10 6 L / mol, the measurement sensitivity of the continuous blood glucose measurement sensor unit 100 is very low at μ mol / L, which is applied to glucose detection. There is a problem that is difficult to do. This is because the lower the equilibrium adhesion constant, the higher the concentration range of the analyte that can be measured.
비표지 센서(127)는 체액 내의 글루코스 분자(110a) 및 가역반응성 글루코스 항체(127a)의 실시간 반응결합을 추적하는 역할을 수행한다. 비표지 센서(127)는 체액 내의 글루코스 분자(110a)-가역반응성 글루코스 항체(127a) 결합체에 비례하여 변화하는 연속 혈당 측정 센서부(100) 상의 질량, 진동자의 저항, 전하분포 변화에 의한 표면 왜곡, 에너지 전달 등을 신호로서 측정할 수 있다.  The unlabeled sensor 127 serves to track the real time reaction binding of the glucose molecule 110a and the reversible glucose antibody 127a in the body fluid. The non-labeled sensor 127 is a surface distortion caused by the mass, the resistance of the vibrator, and the charge distribution on the continuous blood glucose measurement sensor unit 100 which changes in proportion to the conjugate of the glucose molecule 110a-reversible glucose antibody 127a in the body fluid. , Energy transfer, and the like can be measured as a signal.
비표지 센서(127)는 예를 들면, 연속 혈당 측정 센서부(100) 표면의 결합체 질량 변화에 따라 광 굴절각 차이를 나타내는 표면 플라즈몬 공명(SPR, Surface Plasmon Resonance) 센서, 진동자의 저항이나 전하분포를 감지하는 캔틸레버(cantilever)센서, 광도파로 센서, 광간섭 센서 또는 나노차원의 선 혹은 간격을 이용한 나노센서일 수 있다. The non-labeled sensor 127 may include, for example, a surface plasmon resonance (SPR) sensor that exhibits a difference in optical refraction angle according to a change in the mass of the conjugate on the surface of the continuous blood glucose measurement sensor unit 100, a resistance or charge distribution of the vibrator. It may be a cantilever sensor, an optical waveguide sensor, an optical interference sensor, or a nano sensor using nano-dimensional lines or gaps.
비표지 센서(127)는 체액 내의 글루코스 분자(110a)를 선택적으로 투과하는 반투과성 막(127b)에 의해 구획이 나뉘어져 가역반응성 글루코스 항체(127a)가 고정된 표면 쪽에 인식반응 셀(A)을 형성할 수 있다. 따라서, 체액 내의 글루코스 분자(110a)는 크기가 작아 반투과성 막(127b)를 통과하여 인식반응 셀(A) 내로 확산전달 가능하나, 체액 내의 크기가 큰 다른 불순물들은 여과되게 함으로써 연속 혈당 측정 센서부(100)의 오염을 방지하는 효과가 있다.  The non-labeled sensor 127 is divided by a semi-permeable membrane 127b that selectively permeates the glucose molecules 110a in the body fluid to form a recognition reaction cell A on the surface where the reversible glucose antibody 127a is fixed. Can be. Therefore, the glucose molecule 110a in the body fluid is small in size and can be passed through the semi-permeable membrane 127b into the recognition reaction cell A, but other impurities in the body fluid are filtered so that the continuous blood glucose measurement sensor unit ( It is effective to prevent the contamination of 100).
또한, 비표지 센서(127)는 인식반응 셀(A) 내의 글루코스 분자가 중합된 나노입자(127c)를 더 포함할 수 있다. 나노입자(127c)는 체액 내의 글루코스 분자(110a)와 부착경쟁을 수행하여 혈당 측정에 기여한다.  In addition, the unlabeled sensor 127 may further include nanoparticles 127c to which glucose molecules in the recognition reaction cell A are polymerized. The nanoparticle 127c competes with the glucose molecule 110a in the body fluid to contribute to blood glucose measurement.
예를 들면, 체액이 유입되지 않을 경우에는(도 4 왼쪽 도면 참조), 나노입자(127c)에 중합된 글루코스 분자가 비표지 센서(127)에 부착되어 신호로 감지된다. 반면, 체액이 유입되어 상기 체액 내의 글루코스 분자(110a)의 농도가 증가하면, 저분자인 글루코스 분자(110a)가 반투과성 막(127b)을 통과하여 인식반응 셀(A) 내부로 유입되고, 가역반응성 글루코스 항체(127a)에 대한 부착경쟁에 의해 나노입자(127c)가 탈착됨으로써 비표지 센서(127)로부터의 신호는 감소하게 된다(도 4 오른쪽 도면 참조). 따라서, 상술한 바와 같은 글루코스 분자가 중합된 나노입자(127c) 및 체액 내의 글루코스 분자(110a)의 부착경쟁에 의해 연속적인 혈당 측정이 가능해진다. For example, when body fluid does not flow (see FIG. 4 left), glucose molecules polymerized on the nanoparticles 127c are attached to the non-labeled sensor 127 and sensed as signals. On the other hand, when the body fluid flows in and the concentration of the glucose molecule 110a in the body fluid increases, the low molecular glucose molecule 110a passes through the semi-permeable membrane 127b and flows into the recognition cell A, and reversible glucose As the nanoparticle 127c is desorbed by the competition for adhesion to the antibody 127a, the signal from the non-labeled sensor 127 is reduced (see FIG. 4 right figure). Therefore, continuous blood sugar measurement is possible due to the competition between adhesion of the nanoparticles 127c polymerized with the glucose molecules as described above and the glucose molecules 110a in the body fluid.
상술한 바와 같이, 본 발명의 실시예들에 따른 연속 혈당 측정 시스템은 탈부착 반응이 신속한 가역반응성 글루코스 항체를 표면에 고정하여 사용함으로써, 피측정자의 혈당을 반영구적이고 실시간적으로 측정 가능하다는 효과가 있다. As described above, the continuous blood glucose measurement system according to the embodiments of the present invention has an effect that the blood glucose of the subject can be measured semi-permanently and in real time by fixing a reversible glucose antibody having a rapid detachment reaction on the surface. .
또한, 가역반응성 글루코스 항체의 부착 및 탈착속도상수가 높아 센서 응답 시간이 빨라지고, 평형부착상수가 높아 센서 측정민감도를 향상시키는 효과가 있다.  In addition, the high responsive glucose antibody adhesion and desorption rate constants increase sensor response time, and the equilibrium adhesion constant is high, thereby improving sensor sensitivity.
또한, 제 1 광도파로 및 제 2 광도파로에서 일부 천이된 위상을 출력하는 제 3 광도파로를 배치하여 혈당 센서의 측정 지속성을 향상시키는 효과가 있다.  In addition, by arranging a third optical waveguide for outputting a phase shifted partially in the first optical waveguide and the second optical waveguide, there is an effect of improving the measurement persistence of the blood glucose sensor.
또한, 연속 혈당 측정 센서부의 작동여부를 감시하고, 측정된 혈당 데이터를 유/무선으로 수신 받아 혈당 데이터를 분석, 비교, 저장, 전송, 표시하는 통합 관리 단말기부를 제공함으로써 피측정자가 연속적으로 혈당 상태를 체크할 수 있는 효과가 있다.  In addition, by monitoring the operation of the continuous blood glucose measurement sensor unit and receiving the measured blood glucose data via wired / wireless, an integrated management terminal unit which analyzes, compares, stores, transmits and displays the blood sugar data is continuously measured. There is an effect that can be checked.
또한, 통합 관리 단말기로부터 수신한 데이터를 유/무선으로 환자, 주치의, 병원(의원)등의 가입자에게 송신하는 데이터 송수신부를 포함하여 당뇨병 환자를 원격관리 가능하다는 효과가 있다. In addition, there is an effect that can remotely manage a diabetic patient, including a data transmission and reception unit for transmitting the data received from the integrated management terminal to subscribers, such as patients, doctors, hospitals (hospitals) via wired / wireless.
이상, 본 발명의 실시예들에 대하여 설명하였으나, 해당 기술 분야에서 통상의 지식을 가진 자라면 특허청구범위에 기재된 본 발명의 사상으로부터 벗어나지 않는 범위 내에서, 구성 요소의 부가, 변경, 삭제 또는 추가 등에 의해 본 발명을 다양하게 수정 및 변경시킬 수 있을 것이며, 이 또한 본 발명의 권리범위 내에 포함된다고 할 것이다.As described above, embodiments of the present invention have been described, but those skilled in the art may add, change, delete, or add elements within the scope not departing from the spirit of the present invention described in the claims. The present invention may be modified and changed in various ways, etc., which will also be included within the scope of the present invention.

Claims (8)

  1. 피측정자의 혈당을 연속적으로 측정하되, 표면에 가역반응성 글루코스 항체가 고정되어 상기 가역반응성 글루코스 항체 및 체액 내의 글루코스 분자의 결합으로부터 발생되는 신호를 탐지하는 비표지 센서를 포함하는 연속 혈당 측정 센서부; A continuous blood glucose measurement sensor unit configured to continuously measure blood glucose of a subject, wherein the reversible glucose antibody is immobilized on a surface thereof to detect a signal generated from the binding of the reversible glucose antibody and glucose molecules in the body fluid;
    상기 연속 혈당 측정 센서부의 작동여부를 감시하고, 상기 연속 혈당 측정 센서부로부터 측정된 혈당 데이터를 유/무선으로 수신 받아 상기 혈당 데이터를 필터링, 분석, 비교, 저장, 전송, 표시하는 통합 관리 단말기부; 및 Integrated management terminal unit for monitoring the operation of the continuous blood glucose measurement sensor unit, and receives the blood sugar data measured by the continuous blood glucose measurement sensor unit via wired / wireless to filter, analyze, compare, store, transmit and display the blood glucose data. ; And
    상기 통합 관리 단말기로부터 수신한 데이터를 유/무선으로 가입자에게 송신하는 데이터 송수신부를 포함하는 연속 혈당 측정 시스템.Continuous blood glucose measurement system including a data transmission and reception unit for transmitting data received from the integrated management terminal to the subscriber via wired / wireless.
  2. 제 1 항에 있어서,  The method of claim 1,
    상기 통합 관리 단말기부는, The integrated management terminal unit,
    상기 연속 혈당 측정 센서부의 작동여부를 감시하는 혈당 센서 감시 모듈; A blood sugar sensor monitoring module configured to monitor whether the continuous blood sugar measuring sensor is operated;
    상기 연속 혈당 측정 센서부로부터 측정된 혈당 데이터를 유/무선으로 수신 받아 상기 혈당 데이터 중 노이즈를 제거하는 필터링 모듈;  A filtering module which receives the blood glucose data measured by the continuous blood glucose measurement sensor unit via wire / wireless and removes noise from the blood sugar data;
    상기 필터링 모듈에서 필터링된 혈당 데이터를 분석하여, 미리 저장된 피측정자의 혈당 정보 및 정상 혈당 데이터와 비교하여 비교 결과를 산출하는 혈당 분석비교 모듈; 및 A blood sugar analysis comparison module which analyzes the blood sugar data filtered by the filtering module and compares the blood sugar information and the normal blood sugar data of a pre-stored measured subject to calculate a comparison result; And
    상기 혈당 분석비교 모듈에서 산출된 비교 결과를 상기 데이터 송수신부로 전송하는 전송 모듈을 포함하는 연속 혈당 측정 시스템. And a transmission module for transmitting the comparison result calculated by the blood sugar analysis comparison module to the data transmission / reception unit.
  3. 제 1 항에 있어서,  The method of claim 1,
    상기 연속 혈당 측정 센서부는 피측정자의 신체 적어도 일부에 부착되어 체액을 추출하는 체액추출부 및 상기 체액추출부로부터 체액을 공급받는 본체부를 구비하고, The continuous blood glucose measurement sensor unit is attached to at least a portion of the body of the subject to be provided with a body fluid extraction unit for extracting the body fluid and the body portion receiving the body fluid from the body fluid extraction unit,
    상기 본체부는 기판 상부에 적층되는 클래드층과, 상기 클래드층 상부에 형성되고, 상기 클래드층 일측에 형성된 광입사부에서 분기되어 상기 클래드층 타측에 형성된 광출력부를 통과하는 구조를 갖는 제 1 광도파로 및 제 2 광도파로를 포함하는 코어층과, 상기 제 1 광도파로 상부에 배치되어 상기 체액이 통과하는 비표지 센서를 포함하는 연속 혈당 측정 시스템. The first optical waveguide having a structure having a cladding layer stacked on an upper portion of the substrate and a light incidence portion formed on an upper side of the cladding layer and passing through an optical output portion formed on the other side of the cladding layer And a core layer including a second optical waveguide, and an unlabeled sensor disposed above the first optical waveguide and through which the body fluid passes.
  4. 제 3 항에 있어서, The method of claim 3, wherein
    상기 본체부는, The main body portion,
    상기 제 1 광도파로 및 상기 제 2 광도파로 사이에 배치되어 상기 광출력부를 통과하도록 형성된 제 3 광도파로를 더 포함하는 연속 혈당 측정 시스템. And a third optical waveguide disposed between the first optical waveguide and the second optical waveguide and configured to pass through the optical output unit.
  5. 제 4 항에 있어서,  The method of claim 4, wherein
    상기 본체부는, The main body portion,
    상기 제 1 광도파로, 상기 제 2 광도파로 또는 상기 제 3 광도파로 중 적어도 하나의 상부에 배치되고,  Disposed on at least one of the first optical waveguide, the second optical waveguide, or the third optical waveguide,
    TiO2, Ta2O5 또는 Si3N4 중 어느 하나인 고굴절률 물질을 더 포함하는 연속 혈당 측정 시스템.Continuous blood glucose measurement system further comprising a high refractive index material of any one of TiO 2 , Ta 2 O 5 or Si 3 N 4 .
  6. 제 1 항에 있어서, The method of claim 1,
    상기 가역반응성 글루코스 항체는 상기 체액 내의 글루코스 분자와 반응 시 1×104 L·mol-1·sec-1 내지 1×107 L·mol-1·sec-1의 부착속도상수(ka) 및 1×10-5 sec-1 내지 1×10-2 sec-1 의 탈착속도상수(kd) 범위의 가역반응 특성을 갖는 연속 혈당 측정 시스템.  The reversible glucose antibody is 1 × 10 when reacted with glucose molecules in the body fluid4Lmol-OneSec-One To 1 × 107Lmol-OneSec-OneAdhesion rate constant of ka) And 1 × 10-5 sec-One To 1 × 10-2 sec-One Desorption rate constant of kdContinuous blood glucose measurement system having a reversible response characteristic).
  7. 제 1 항에 있어서, The method of claim 1,
    상기 비표지 센서는 상기 체액 내의 글루코스 분자를 선택적으로 투과하는 반투과성 막에 의해 구획이 나뉘어져 상기 가역반응성 글루코스 항체가 고정된 표면 쪽에 인식반응 셀을 형성하는 연속 혈당 측정 시스템. Wherein said unlabeled sensor is partitioned by a semipermeable membrane that selectively permeates glucose molecules in said body fluid to form a recognition cell on the surface onto which said reversible glucose antibody is immobilized.
  8. 제 7 항에 있어서,  The method of claim 7, wherein
    상기 비표지 센서는 상기 인식반응 셀 내에 글루코스 분자가 중합된 나노입자를 더 포함하는 연속 혈당 측정 시스템. The unlabeled sensor further comprises a nanoparticle polymerized with glucose molecules in the recognition reaction cell.
PCT/KR2011/008938 2010-11-22 2011-11-22 System for continuously measuring blood sugar WO2012070852A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0116327 2010-11-22
KR1020100116327A KR101145668B1 (en) 2010-11-22 2010-11-22 The continuous glucose monitoring system

Publications (2)

Publication Number Publication Date
WO2012070852A2 true WO2012070852A2 (en) 2012-05-31
WO2012070852A3 WO2012070852A3 (en) 2012-07-19

Family

ID=46146292

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/008938 WO2012070852A2 (en) 2010-11-22 2011-11-22 System for continuously measuring blood sugar

Country Status (2)

Country Link
KR (1) KR101145668B1 (en)
WO (1) WO2012070852A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114098725A (en) * 2021-10-10 2022-03-01 湖南云医链生物科技有限公司 Intelligent health management system for diabetes

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101760899B1 (en) * 2015-10-14 2017-07-25 주식회사 아이센스 Blood Glucose Sensing Module and Continuous Blood Glucose Monitoring Device with Auto-Calibration
KR102665992B1 (en) * 2016-10-20 2024-05-20 삼성전자주식회사 Devices and methods for providing continuous blood glucose monitoring
KR102164782B1 (en) 2017-06-02 2020-10-15 주식회사 아이센스 Sensor and applicator assembly for continuous glucose monitoring system
KR102051811B1 (en) * 2017-07-27 2019-12-04 고려대학교산학협력단 Biosensor for measuring glucose comprising cytoplasmic filter
KR102200136B1 (en) 2018-07-31 2021-01-11 주식회사 아이센스 Continuous glucose monitoring system
KR102222044B1 (en) 2018-07-31 2021-03-04 주식회사 아이센스 Sensor unit for continuous glucose monitoring system
KR102185137B1 (en) 2018-07-31 2020-12-02 주식회사 아이센스 Sensor unit for continuous glucose monitoring system
KR102222045B1 (en) 2018-07-31 2021-03-04 주식회사 아이센스 Continuous glucose monitoring system
KR102197577B1 (en) 2018-07-31 2021-01-05 주식회사 아이센스 Continuous glucose monitoring system
KR102197578B1 (en) 2018-07-31 2021-01-05 주식회사 아이센스 Sensor unit for continuous glucose monitoring system
KR102200138B1 (en) 2018-07-31 2021-01-11 주식회사 아이센스 Continuous glucose monitoring system
KR102200140B1 (en) 2018-07-31 2021-01-11 주식회사 아이센스 Sensor unit for continuous glucose monitoring system
KR102185833B1 (en) 2018-07-31 2020-12-03 주식회사 아이센스 Continuous glucose monitoring system
KR102200137B1 (en) 2018-07-31 2021-01-11 주식회사 아이센스 Sensor unit for continuous glucose monitoring system
KR102200142B1 (en) 2018-09-27 2021-01-11 주식회사 아이센스 Sensor unit for continuous glucose monitoring system
KR102222049B1 (en) 2018-09-27 2021-03-04 주식회사 아이센스 Applicator for continuous glucose monitoring system
KR102094837B1 (en) 2018-09-27 2020-03-30 주식회사 아이센스 Sensor for continuous glucose monitoring system
KR102200141B1 (en) 2018-09-27 2021-01-11 주식회사 아이센스 Sensor unit for continuous glucose monitoring system
KR102237092B1 (en) 2019-04-30 2021-04-13 주식회사 아이센스 Applicator for continuous glucose monitoring system
KR102260779B1 (en) 2019-07-18 2021-06-07 주식회사 아이센스 Near communication connecting method of continuous glucose monitoring system
KR102445698B1 (en) 2019-07-30 2022-09-23 주식회사 아이센스 Stabilization method of continuous glucose monitoring system
KR102312548B1 (en) 2019-08-07 2021-10-18 주식회사 아이센스 Noise processing method of biometric measured data
KR102292512B1 (en) 2019-08-08 2021-08-24 주식회사 아이센스 Notifying method of continuous glucose monitoring system
KR20210017659A (en) 2019-08-09 2021-02-17 주식회사 아이센스 Communication connecting system of continuous glucose monitoring method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010019660A (en) * 1999-08-30 2001-03-15 이동률 Network for medical examination and apparatus for examinating patient
KR20090020252A (en) * 2007-08-23 2009-02-26 (주)씨랩시스 An terminal for recording and managing biometric information based on ubiquitous
KR20090131588A (en) * 2008-06-18 2009-12-29 고려대학교 산학협력단 Real-time detection devices by continuous monitoring
KR20100031152A (en) * 2008-09-12 2010-03-22 광운대학교 산학협력단 Refractometric sensor integrated with a temperature sensor based on a photonic micro resonator and its application to a glucose sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010019660A (en) * 1999-08-30 2001-03-15 이동률 Network for medical examination and apparatus for examinating patient
KR20090020252A (en) * 2007-08-23 2009-02-26 (주)씨랩시스 An terminal for recording and managing biometric information based on ubiquitous
KR20090131588A (en) * 2008-06-18 2009-12-29 고려대학교 산학협력단 Real-time detection devices by continuous monitoring
KR20100031152A (en) * 2008-09-12 2010-03-22 광운대학교 산학협력단 Refractometric sensor integrated with a temperature sensor based on a photonic micro resonator and its application to a glucose sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114098725A (en) * 2021-10-10 2022-03-01 湖南云医链生物科技有限公司 Intelligent health management system for diabetes

Also Published As

Publication number Publication date
KR101145668B1 (en) 2012-05-24
WO2012070852A3 (en) 2012-07-19

Similar Documents

Publication Publication Date Title
WO2012070852A2 (en) System for continuously measuring blood sugar
US20170238854A1 (en) Wearable sweat sensor for health event detection
CN103054559B (en) Urine volume monitor
CN105405842B (en) The wireless bio-sensing IC platform of CMOS of self-powered and battery auxiliary
Bekmurzayeva et al. Label-free fiber-optic spherical tip biosensor to enable picomolar-level detection of CD44 protein
WO2014157945A1 (en) Bio-information measuring watch and method for measuring bio-information
CN105973807A (en) Optical fiber sensing probe for detecting gas and liquid
CN101677783A (en) Respiratory component measurement system
CN106102505A (en) The many equipment of collapsible enclosure integrated-type
KR20100019084A (en) Handheld heathcare device and system for transmitting healthcare information using the same
CN202209960U (en) Multifunctional biochemical analyzer and system of same
WO2016099125A1 (en) Pulse measurement device and computing device using same
WO2016175615A1 (en) Portable insulin resistance diagnosis device and diagnosis method using same
Taha et al. State-of-the-art telemodule-enabled intelligent optical nano-biosensors for proficient SARS-CoV-2 monitoring
CN101900682B (en) Inner-wall waveguide mode capillary fiber based online evanescent field biosensor
WO2010110523A1 (en) Optical sensor employing surface plasmon resonance
WO2013015483A1 (en) Reader for urine analysis
WO2012018162A1 (en) Pulse diagnosis device using optical sensor
WO2011118873A1 (en) Portable algae measuring device
CN210923475U (en) Serum albumin detection system based on optical fiber SPR sensor
WO2018117448A1 (en) Diagnostic device using saliva and diagnostic method using same
WO2012070853A2 (en) Sensor for continuously measuring blood sugar
WO2013137497A1 (en) Portable diagnostic system using mobile terminal
CN109342716A (en) Lack mould-single mode structure D-type optical fiber sensor based on single mode-
JPH10248817A (en) Distributed examination and measurement system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11843735

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11843735

Country of ref document: EP

Kind code of ref document: A2