WO2012070512A1 - Insulated power source device and lighting device - Google Patents

Insulated power source device and lighting device Download PDF

Info

Publication number
WO2012070512A1
WO2012070512A1 PCT/JP2011/076752 JP2011076752W WO2012070512A1 WO 2012070512 A1 WO2012070512 A1 WO 2012070512A1 JP 2011076752 W JP2011076752 W JP 2011076752W WO 2012070512 A1 WO2012070512 A1 WO 2012070512A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
output
circuit
signal
terminal
Prior art date
Application number
PCT/JP2011/076752
Other languages
French (fr)
Japanese (ja)
Inventor
稔 加戸
聡史 有馬
Original Assignee
ミツミ電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ミツミ電機株式会社 filed Critical ミツミ電機株式会社
Publication of WO2012070512A1 publication Critical patent/WO2012070512A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33523Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/382Switched mode power supply [SMPS] with galvanic isolation between input and output

Definitions

  • the present invention relates to an insulation type power supply device provided with a voltage conversion transformer and a technology effective for use in a lighting device using the same.
  • the power supply device includes an insulated AC-DC converter that includes a voltage conversion transformer, converts the voltage of AC power, rectifies the AC induced on the secondary side, and converts it into a DC voltage of a desired potential.
  • an insulated AC-DC converter for example, a switching power supply device is known which controls the power induced in the secondary winding by controlling the current flowing in the primary winding of the voltage conversion transformer. It has been.
  • PWM pulse width modulation
  • a detection signal of a secondary side output is primary by a photocoupler.
  • the primary side control circuit is fed back to the side control circuit and the switching element is turned on and off by PWM pulses to control the current flowing through the primary side coil (see, for example, Patent Document 1).
  • the detection signal of the secondary side output in the isolated AC-DC converter is obtained by subjecting the output voltage or the voltage obtained by converting the output current to current-voltage to resistance division, and the voltage and reference
  • the voltage Vref is compared with an error amplifier, and a voltage (feedback voltage VFB) corresponding to the potential difference is output to drive the light-emitting element (photodiode) of the photocoupler and transmit it to the primary side control circuit via the photocoupler.
  • VFB feedback voltage
  • the cutoff frequency fc of the low-pass filter (smoothing choke coil and smoothing capacitor) connected to the secondary coil side to stabilize the output voltage is set. It is necessary to set higher than the frequency of the PWM control signal.
  • 1 / 2 ⁇ fc between the filter time constant ⁇ and the cut-off frequency fc
  • the time constant decreases as the filter fc is increased. Therefore, it is necessary to set a large time constant for the error amplifier. As a result, there is a problem that when the power supply voltage Vcc is raised, the time until the feedback voltage VFB output from the error amplifier reaches the convergence value becomes long.
  • An object of the present invention is to provide an isolated power supply apparatus such as an AC-DC converter having an error amplifier on the secondary side that generates and outputs a feedback voltage corresponding to a potential difference between a voltage proportional to an output and a reference voltage.
  • the purpose is to shorten the time from when the voltage is raised to when the feedback voltage reaches the target value, so that the control loop can be stabilized in a short time when the power is turned on.
  • Another object of the present invention is to start up a power supply while ensuring the stability of a feedback control loop in a steady state in an isolated power supply device configured to be able to change an output voltage with an external PWM control signal. Sometimes it is possible to shorten the time until the control loop stabilizes.
  • the present invention Power conversion means for converting AC power input to the primary side and outputting it to the secondary side, rectification means provided on the secondary side of the power conversion means, and current / voltage rectified by the rectification means Among them, a filter for passing a current / voltage in a predetermined frequency band, a detection means for detecting an output current or output voltage supplied to a load through the filter, and a feedback voltage corresponding to a detection signal by the detection means are generated.
  • a feedback voltage generation circuit that generates, a control circuit that generates and outputs a control signal for a switching element that controls a current that flows to the primary side of the power conversion unit according to the feedback signal, and a voltage generated by the feedback voltage generation circuit.
  • the feedback voltage generation circuit includes: An error amplifying circuit for outputting a voltage corresponding to a potential difference between the detection signal and a predetermined reference voltage; and a buffer amplifier for converting the output of the error amplifying circuit by impedance conversion and inverting the output terminal of the buffer amplifier.
  • An offset applying means for applying an offset higher than the input voltage by a predetermined potential to the output voltage of the buffer amplifier is connected between the input terminal and the input terminal.
  • the output voltage of the buffer amplifier becomes a voltage obtained by adding a predetermined offset to the output voltage of the error amplifier circuit in the previous stage, so that the feedback voltage reaches the target value after the power supply voltage is raised.
  • the control loop can be stabilized in a short time when the power is turned on.
  • the offset applying means is a two-terminal switching element that becomes conductive when a predetermined potential difference is exceeded, and is connected so that a conductive current flows from the output terminal of the buffer amplifier toward the inverting input terminal.
  • a two-terminal switching element such as a diode as an offset providing means, an offset is added to the output of the buffer amplifier by adding only one element, and the time until the feedback voltage reaches the target value is increased. It can be shortened.
  • the error amplifier circuit includes a differential amplifier, and a capacitive element is connected between the output terminal and the inverting input terminal of the differential amplifier.
  • a capacitive element By connecting a capacitive element between the output terminal and the inverting input terminal of the differential amplifier that constitutes the error amplifier circuit provided on the secondary side, the apparent capacitance value increases and the cutoff frequency is reduced. While functioning as a low-pass filter to stabilize the control loop, the lower cutoff frequency increases the time constant and delays the feedback voltage rise at power-up. The amount of change in the output voltage of the error amplifier circuit necessary for reaching the target voltage can be reduced and avoided by the action of the rectifying element provided between the terminals. That is, it is possible to shorten the time until the control loop is stabilized at the time of power activation while ensuring the stability of the feedback control loop in a steady state.
  • the cutoff frequency of the filter is lower than the switching frequency of the control signal generated by the control circuit, and higher than the frequency of the output control pulse signal having control information in the duty ratio supplied from the outside.
  • a correction circuit for correcting the detection signal based on the output control pulse signal having control information in a duty ratio is provided on the secondary side of the power conversion means,
  • the control circuit includes a pulse generation circuit that generates a PWM control pulse having a pulse width corresponding to a feedback signal, and a pulse limiting circuit that limits the PWM control pulse generated by the pulse generation circuit according to the output control pulse signal And comprising
  • the correction circuit is configured to have a function of canceling the change of the detection signal that changes when the output control pulse signal is input to the primary side circuit and the output is controlled by feedforward. By providing the correction circuit, the output current or the output voltage can be controlled based on the output control pulse signal supplied from the outside, and the output voltage is set to a desired value by the supplied output control pulse signal. It is possible to avoid deviation.
  • the correction circuit includes a resistor connected in series between a constant potential terminal to which a predetermined constant potential is supplied and an input terminal to which the detection signal of the error amplifier circuit is input. And the output control pulse signal is applied to the control terminal of the transistor.
  • the signal transmission means is a photocoupler including a light emitting element and a light receiving element, and the light emitting element is connected between an output terminal of the buffer amplifier and a ground potential point, and an output voltage of the buffer amplifier. A current corresponding to the current is passed through the light emitting element.
  • a current proportional to the output of the error amplifier circuit can be passed through the light emitting element with a relatively simple circuit, and an accurate feedback signal can be transmitted to the control circuit on the secondary side.
  • an insulated power supply device having the above configuration, an LED lamp that is connected to the output terminal of the insulated power supply device and lights when the output current flows, and a control signal that generates the output control pulse signal
  • An illuminating device is comprised with a production
  • an isolated power supply device such as an AC-DC converter that includes an error amplifier on the secondary side that generates and outputs a feedback voltage corresponding to a potential difference between a voltage proportional to an output and a reference voltage.
  • the time from when the voltage is raised to when the feedback voltage reaches the target value can be shortened so that the control loop can be stabilized in a short time when the power is turned on.
  • the control loop is stabilized at the time of power activation while ensuring the stability of the feedback control loop in a steady state. This has the effect of shortening the time until.
  • FIG. 1 is a block configuration diagram showing a first embodiment of an AC-DC converter as an effective insulated power supply apparatus to which the present invention is applied.
  • FIG. 2 is a timing chart showing changes in an enable signal, a reference voltage, a feedback voltage, and the like when the AC-DC converter of FIG. 1 is powered on.
  • FIG. 2 is a circuit configuration diagram illustrating a specific configuration example of the AC-DC converter of FIG. 1. It is a block block diagram which shows 2nd Embodiment of the AC-DC converter as an insulation type power supply device effective by applying this invention.
  • FIG. 5 is a circuit configuration diagram showing a specific configuration example of the AC-DC converter of FIG. 4. It is a circuit diagram which shows the other example of the method of applying the bias voltage to the light reception transistor of a photocoupler.
  • 6 is a timing chart showing changes in an enable signal, a reference voltage, a feedback voltage, and the like at the time of starting a power supply of a conventional insulated AC-DC converter.
  • FIG. 1 is a block configuration diagram of a power supply device according to the first embodiment configured by an insulating AC-DC converter or the like.
  • the power supply device includes a power conversion unit 10 including a transformer that converts the AC input voltage Vin, a rectification unit 11 that rectifies the converted AC, and a predetermined frequency of the rectified voltage / current.
  • a filter circuit 12 that passes the voltage / current of the band and supplies it to the load 30; a detection means 13 that detects a current flowing through the load 30; and a feedback voltage generation circuit 14 that generates a feedback signal corresponding to the detected current value.
  • an insulated signal transmission means 15 comprising a photocoupler or the like in which the input side and the output side are electrically isolated, and transmitting the feedback signal FB to the primary side, and a current to the primary side of the power conversion means 10
  • a switching means 16 comprising a self-extinguishing element such as a MOS transistor, and a pulse for controlling on / off of the switching means 16 in accordance with a signal transmitted by the signal transmission means 15.
  • a control circuit 17 which generates a signal.
  • the rectifying means 11 is composed of a diode
  • the filter circuit 12 is a smoothing capacitor provided between a coil provided in series between the rectifying means 11 and an output terminal to which a load is connected, and a ground point. (See FIG. 3).
  • FIG. 3 shows a specific circuit configuration of the isolated AC-DC converter of FIG.
  • the AC-DC converter of this embodiment includes a noise blocking filter 21 composed of a common mode coil and the like, a diode bridge circuit 22 that rectifies AC voltage (AC) and converts it into DC voltage, and As a transformer T1 having a smoothing capacitor C0, a primary winding Np, an auxiliary winding Nb, and a secondary winding Ns, and switch means 16 connected in series with the primary winding Np of the transformer T1 And a power supply control IC (semiconductor integrated circuit) as a primary side control circuit 17 for driving the switching element SW.
  • the power conversion means 10 is composed of the diode bridge circuit 22 and the transformer T1.
  • the secondary side of the transformer T1 includes a rectifying diode D1 connected in series between the secondary winding Ns and the output terminal OUT1, and the cathode terminal of the diode D1 and the other of the secondary winding Ns. And a filter circuit 12 having a coil L1 connected in series with a rectifying diode D1 and a capacitor C1 connected between the terminals of the first and second terminals of the secondary winding by passing current intermittently through the primary winding Np. The alternating current induced in the side winding Ns is rectified, and the filter circuit 12 stabilizes the output voltage / current and outputs it from the output terminal OUT1.
  • a sense resistor Rs is connected between the output terminal OUT2 and the ground point as detection means 13 for detecting a current flowing through a load connected between the output terminals OUT1 and OUT2.
  • the cut-off frequency of the filter circuit 12 is set lower than the switching frequency by the control circuit 17 so that the switching noise on the primary side is cut off and not transmitted to the output.
  • the voltage Vd that has been subjected to current-voltage conversion by the sense resistor Rs is input to the inverting input terminal via the resistor R1, and the reference voltage Vref1 is input to the non-inverting input terminal to detect it.
  • a standard for generating a reference voltage Vref1 which includes an error amplifier AMP1 that outputs a voltage corresponding to a current value, a buffer amplifier (voltage follower) AMP2 that receives the output of the error amplifier and generates a feedback signal VFB, a band gap reference circuit, and the like.
  • a feedback voltage generation circuit 14 as a secondary side circuit including a voltage generation circuit VRG and the like is provided.
  • the feedback voltage generation circuit 14 is configured as a semiconductor integrated circuit (secondary side IC).
  • the signal generated by the feedback voltage generation circuit 14 is transmitted to the primary side by the photocoupler PC as the signal transmission means 15.
  • a light emitting side photodiode PD1 constituting the photocoupler PC is connected between the output terminal of the buffer amplifier AMP2 and the ground point, and a current corresponding to the output voltage of the buffer amplifier AMP2 is supplied to the photodiode PD1.
  • a collector current proportional to the light emission amount is caused to flow through the phototransistor that has received the light, converted into a voltage by a resistor, and supplied to the error amplifier AMP3 of the primary side control circuit 17. Yes.
  • a phase compensation capacitor Cf is provided between the output terminal and the inverting input terminal of the secondary side error amplifier AMP1, and the capacitor Cf and the resistor R1 constitute a low-pass filter.
  • the capacitance Cf has a value (1 + A) Cf that is substantially a gain multiple of the original capacitance value when viewed from the input side due to the mirror effect of the amplifier, and functions as a low-pass filter with a low cutoff frequency.
  • the voltage Vd that changes according to the current can be smoothed. As a result, a DC voltage corresponding to the average voltage Vd is input to the inverting input terminal of the error amplifier AMP1.
  • the buffer amplifier (voltage follower) AMP2 is connected between the output terminal and the inverting input terminal so as to be in the forward direction from the output terminal toward the inverting input terminal, and becomes conductive when a predetermined potential difference is exceeded.
  • a diode D2 is provided as a terminal switching element. By providing the diode D2, an offset is added to the output Va of the error amplifier AMP1, and the output of the buffer amplifier AMP2 becomes a voltage higher than Va by the forward threshold voltage Vf of the diode D2.
  • the point where the diode D2 is provided is one of the points of the present invention.
  • a PN junction diode having a relatively large forward threshold voltage is more suitable than a shocky barrier having a small forward threshold voltage.
  • the means for adding an offset to the output of the error amplifier AMP1 is not limited to a diode, and may be, for example, a diode-connected MOS transistor in which a gate and a drain are coupled.
  • the buffer amplifier AMP2 is configured by a current output amplifier, a desired offset can be added by simply changing the setting of the VI characteristic without adding a diode.
  • the feedback voltage generation circuit 14 of the present embodiment is provided with a low voltage detection circuit UVLO for detecting whether the power supply voltage Vcc of the secondary side IC is lower than a predetermined potential, and from the low voltage detection circuit UVLO.
  • the constant current sources of the amplifiers AMP1 and AMP2 in the secondary IC are controlled by the output enable signal EN so that the operation of these circuits is deactivated (the operation is turned off) at a low voltage. It is configured.
  • a resistor R2 and a capacitor C2 are connected between the error amplifier AMP1 and the subsequent buffer amplifier AMP2, and the transfer function as a secondary low-pass filter having two poles together with the error amplifier AMP1. By functioning, it is configured to effectively block high frequency band noise.
  • the time constant as a filter including the error amplifier AMP1 increases as the cutoff frequency decreases.
  • the power supply control IC 17 that receives a feedback signal from the secondary side via the photocoupler PC and turns the switching element SW on and off will be described.
  • the power supply control IC 17 is provided with an external terminal P1 to which the collector of the light receiving transistor Tr1 constituting the photocoupler PC is connected.
  • the light receiving transistor Tr1 has its emitter terminal connected to the ground potential GND, and the external terminal P1 is a terminal to which the internal voltage Vreg generated inside the power supply control IC 17 is applied via the pull-up resistor Rp1. And is configured to apply a bias to the collector of the light receiving transistor Tr1.
  • the voltage of the external terminal P1 is input to the inverting input terminal via the resistor R6, the reference voltage Vref2 is input to the non-inverting input terminal, and the voltage of the external terminal P1 and the reference voltage Vref2
  • An error amplifier AMP3 that outputs a voltage corresponding to the potential difference is provided.
  • a combination of the error amplifier AMP3 and the photocoupler PC can be regarded as the signal transmission circuit 15.
  • the power supply control IC 17 receives a waveform generation circuit RAMP including a constant current source CC1, a capacitor C4, and a discharge MOS transistor SW2, an output of the error amplifier AMP3, and a waveform signal generated by the waveform generation circuit RAMP.
  • a comparator (voltage comparison circuit) CMP1 for comparison is provided.
  • the output gradually rises when the capacitor C4 is charged by the current of the constant current source CC1, and when the switching element SW2 is turned on, the charge of the capacitor C4 is discharged at once and the output suddenly falls. By repeating the operation, a sawtooth waveform signal is generated.
  • the comparator CMP1 functions as a PWM comparator that generates a PWM pulse having a pulse width corresponding to the output of the error amplifier AMP3.
  • the power supply control IC 17 has an external terminal P3 to which one terminal of the auxiliary winding Nb provided in the transformer T1 (10) is connected, and an inverting input terminal connected to the external terminal P3 and a non-inverting input.
  • a comparator CMP2 having a reference voltage Vref3 applied to its terminal, a one-shot pulse generation circuit OPG1 that detects a rising edge of the output of the comparator CMP2 and generates a pulse signal, a restart timer circuit RST, and an output of the circuit
  • An OR gate G1 having the output of the shot pulse generation circuit OPG1 as an input, and an RS flip-flop FF1 in which the output of the OR gate G1 is input to the set terminal S and the output of the comparator CMP1 is input to the reset terminal R.
  • An output Q of the RS flip-flop FF1 is output to the outside of the IC as an on / off control signal on / off of the switching element SW, and an inverted output / Q of the FF1 controls on / off of the discharge MOS transistor SW2 of the waveform generation circuit RAMP.
  • a signal is supplied to the gate terminal of SW2.
  • the output of the comparator CMP2 changes to high level when the voltage induced in the auxiliary winding Nb becomes lower than the reference voltage Vref3, that is, when the current of the auxiliary winding decreases to some extent.
  • a one-shot pulse is generated by OPG1, and the flip-flop FF1 is set.
  • the control signal on / off changes to a high level, the switching element SW is turned on, a current flows through the primary side winding Np, and SW2 in the waveform generation circuit RAMP is turned off, so that the input of the comparator CMP1 is gradually increased.
  • the flip-flop FF1 is reset when it becomes higher than the feedback signal FB.
  • the control signal on / off changes to the low level to turn off the switching element SW, and SW2 in the waveform generation circuit RAMP is turned on to discharge the capacitor and the waveform signal falls.
  • the period in which the current flows through the primary winding Np is controlled so that the feedback signal FB becomes constant by repeating the above operation, and the pulse width of the output current pulse is controlled.
  • the on / off control of the current of the primary winding Np by the switching element SW is performed at a frequency sufficiently higher than the frequency of the input AC voltage AC.
  • the output voltage VFB of the buffer amplifier AMP2 is Va + Vf obtained by adding an offset of Vf to the output voltage Va of the error amplifier AMP1.
  • the output voltage Va of the error amplifier AMP1 reaches Vt ⁇ Vf
  • the output voltage VFB of the buffer amplifier AMP2 reaches the target voltage (convergence value) as shown in FIG. Therefore, the required time Td is shortened. That is, it takes a short time until the control loop is stabilized after the power is turned on.
  • the voltage Vf corresponding to the clogging applied to the output of the buffer amplifier AMP2 appears as an error corresponding to one gain of the error amplifier with respect to the output, so that there is no significant problem in accuracy.
  • one diode D2 is provided between the output terminal and the inverting input terminal of the buffer amplifier AMP2.
  • two or more diodes are provided in series. You may do it. Specifically, when the forward threshold voltage Vf of the diode is 0.7 V and the fluctuation range of the feedback voltage VFB in the steady state is to be set to a range such as 1 V to 5 V, for example, as shown in FIG. Diodes D2 are provided. If it is desired to set the fluctuation range of VFB to a range of 2V to 5V, for example, two diodes may be provided.
  • FIG. 4 is a block diagram of the insulation type AC-DC converter according to the second embodiment.
  • a power supply device that drives an LED as a load will be described and described.
  • a power supply device to which the present embodiment can be applied is not limited to a case where the load is an LED.
  • the AC-DC converter according to the present embodiment enables output voltage / current to be controlled by a PWM control signal supplied from the outside.
  • the AC-DC converter according to the present embodiment is similar to the AC-DC converter according to the first embodiment shown in FIG. 1 in that the power conversion means 10 including a transformer, the rectification means 11 that rectifies the converted alternating current, A filter circuit 12 that passes a voltage / current in a predetermined frequency band out of the rectified voltage / current and supplies the voltage / current to the load 30; a detection means 13 that detects a current flowing through the load 30; and a detected current value.
  • a feedback voltage generation circuit 14 for generating a corresponding feedback signal FB, and an insulating signal transmission means 15 for transmitting the feedback signal FB to the primary side, which includes a photocoupler in which the input side and the output side are electrically insulated.
  • Switch means 16 comprising a MOS transistor or the like for passing a current to the primary side of the power conversion means 10; and switch means according to the signal transmitted by the signal transmission means 15
  • a control circuit 17 for generating a pulse signal for controlling on and off 6.
  • the filter circuit 12 is set such that the cutoff frequency is lower than the switching frequency of the switch means 16 by the primary side control circuit 17 and higher than the frequency of the external PWM control signal PWM supplied from the outside. Thus, a pulse current having the same frequency as that of the external PWM control signal PWM is output.
  • the external PWM control signal PWM is a signal for controlling dimming.
  • the PWM dimming control is performed by outputting the PWM-controlled pulse current as in the power supply device of this embodiment.
  • the linearity of the brightness of the LED with respect to the average output current can be improved.
  • the emission color of the LED lamp also changes when the output current value changes.
  • the change in the emission color can be reduced by applying the above embodiment that performs the PWM dimming control.
  • the time constant of the filter circuit 12 is reduced by increasing the cutoff frequency of the filter circuit 12 for PWM control of the output. Therefore, in order to improve the stability of the control loop, the time constant of the error amplifier AMP1 in the subsequent stage is set. It will be set larger.
  • the power supply device outputs a feedback amount correction circuit 18 that corrects a feedback signal sent to the primary side by the feedback voltage generation circuit 14 in accordance with an external PWM control signal PWM supplied from the outside, and an output from the control circuit 17.
  • the mask circuit 19 is configured to change the thinning amount in accordance with the PWM control signal transmitted from the primary side.
  • the external PWM control signal PWM supplied from the outside to the secondary circuit may be transmitted to the secondary side by a photocoupler that is separate from the photocoupler (signal transmission means) that transmits the feedback signal.
  • the external PWM control signal PWM and the feedback signal generated by the feedback voltage generation circuit 14 are combined on the secondary side, and then transmitted to the primary side by one photocoupler, and the PWM control signal is extracted to the primary side A separation function may be provided.
  • FIG. 5 shows a specific circuit configuration of the AC-DC converter of the second embodiment shown in FIG.
  • the control circuit 17 for driving the switching element SW is used as a primary power control IC (semiconductor integrated circuit) 23 together with a mask circuit 19 including OR gates G1 and G2 and a flip-flop FF1. It is configured.
  • the secondary side IC 14 includes an error amplifier AMP1 and a buffer amplifier AMP2. Between the output terminal and the inverting input terminal of the buffer amplifier AMP2, as in the first embodiment, the output terminal is changed to the inverting input terminal.
  • a diode D2 is provided so as to be in the forward direction.
  • the output of the buffer amplifier AMP2 is configured to be higher than the output Va of the error amplifier AMP1 by the forward threshold voltage Vf of the diode D2.
  • the present embodiment is similar to the embodiment of FIG. As shown in d), when the output voltage Va of the error amplifier AMP1 reaches Vt ⁇ Vf, the output voltage VFB of the buffer amplifier AMP2 reaches the target voltage Vt.
  • the required time Td can be shortened.
  • a feedback amount correction circuit 18 is provided, and the detection voltage Vd is relative to Vref1 according to the duty ratio or pulse width of the PWM control signal PWM generated by the external PWM pulse generation means PPG.
  • the voltage Vd which changes when the PWM control signal PWM is input to the primary circuit and the output is controlled by feedforward, can be compensated for.
  • the external PWM control signal PWM is supplied to the primary-side power supply control IC 17 to change the output current, thereby adjusting the brightness of the LED lamp connected as a load and undesirably occurring along with it.
  • the detection voltage Vd is shifted by the feedback amount correction circuit 18 in accordance with the external PWM control signal PWM so as to cancel the change in the detection voltage Vd, and can be avoided by correcting the feedback signal FB. . That is, even if the duty ratio of the external PWM control signal PWM changes, the magnitude of the detection voltage Vd relative to the reference voltage Vref1 is not changed.
  • the feedback amount correction circuit 18 includes a resistor R5 and an N-channel MOS transistor Q5 connected in series between the constant potential terminal to which the reference voltage Vref2 is supplied and the inverting input terminal of the error amplifier AMP1. And an external PWM control signal PWM is input to the gate terminal of Q5 for on / off operation. Note that the connection order of the resistor R5 and the transistor Q5 may be reversed.
  • the feedback amount correction circuit 18 of this embodiment acts to raise or lower the average potential of the voltage input to the inverting input terminal of the error amplifier AMP1 according to the duty ratio of the external PWM control signal PWM. That is, a filter circuit is configured by the resistor R5 in series with the transistor Q5 that is turned on / off by the external PWM control signal PWM and the capacitor Cf connected between the inverting input terminal and the output terminal of the error amplifier AMP1. This filter circuit averages the pulses of the external PWM control signal PWM to generate a potential proportional to the duty, and adds the detected voltage Vd, which is current-voltage converted by the sense resistor Rs, to the smoothed voltage to add the error amplifier AMP1. Is configured to input. Accordingly, the feedback amount correction circuit 18 in FIG. 5 operates so that the voltage at the ( ⁇ ) input terminal of the error amplifier AMP1 does not change even when the duty ratio of the external PWM control signal PWM changes.
  • a reference voltage generation circuit that generates the reference voltage Vref1 is used as a variable voltage source. It is also possible to configure so that the reference voltage Vref1 input to the non-inverting input terminal of the error amplifier AMP1 is changed in proportion to the duty of the external PWM control signal PWM. However, in that case, the shift direction of the reference voltage Vref1 is opposite to the direction of the detection voltage Vd in the above embodiment.
  • the difference between the primary side power supply control IC 23 and the embodiment of FIG. 3 will be described.
  • the external PWM control signal PWM is supplied to the primary side power supply control.
  • a photocoupler PC2 for transmission to the IC 23 is provided, and an external terminal P2 to which the collector of the light receiving transistor Tr2 constituting the photocoupler PC2 is connected is provided.
  • the emitter terminal of the light receiving transistor Tr2 is connected to the ground potential GND, and the external terminal P2 is generated by the internal power supply circuit 20 provided in the power supply control IC 17 via the pull-up resistor Rp2.
  • the external terminal P2 is generated by the internal power supply circuit 20 provided in the power supply control IC 17 via the pull-up resistor Rp2.
  • it is connected to a terminal to which an internal voltage Vreg such as 5 V is applied, and is configured to apply a bias to the collector of the light receiving transistor Tr1.
  • Vreg such as 5 V
  • a rectifying diode D0 connected in series with the auxiliary winding Nb and a smoothing diode connected between the cathode terminal of the diode D0 and the ground potential point.
  • the smoothed voltage is applied to the power supply voltage terminal VCC of the power supply control IC 17.
  • the voltage rectified by the diode bridge circuit 22 and applied to one terminal of the primary winding Np is supplied to the power supply voltage terminal VCC of the power supply control IC 23 via the resistor R0, and assists in starting the power supply.
  • the power supply control IC 23 can be operated before a voltage is induced in the winding Nb.
  • An internal power supply circuit 20 that generates the internal power supply voltage Vreg based on the voltage supplied to the power supply voltage terminal VCC is provided in the power supply control IC 23.
  • the internal power supply circuit 20 is composed of, for example, a series regulator.
  • a regulator composed of a rectifying diode and a smoothing capacitor connected to the auxiliary winding is provided outside the IC and supplied to the transistors Tr1 and Tr2 of the photocouplers PC1 and PC2.
  • the transistors Tr1 and Tr2 and the control IC are externally connected. It can be avoided that a relatively high voltage exceeding the withstand voltage is applied to the elements inside the IC via the terminals to destroy the elements inside the IC.
  • the light receiving transistors Tr1 and Tr2 are biased by applying Vreg to the collector via the pull-up resistors Rp1 and Rp2 as in this embodiment, and receiving Vreg as shown in FIG.
  • a method may be adopted in which a resistor is connected between the emitter and the grounding point by directly applying to the collector of the transistor for grounding the collector.
  • two external terminals that is, a terminal for outputting Vreg and an input terminal for a signal from the secondary side. Must be provided in the IC for each photocoupler.
  • a one-shot pulse generation circuit OPG2 that detects the rising of the external PWM control signal PWM restored by the photocoupler PC2 and generates a pulse signal, and an inverting input to the external terminal P3
  • a logic circuit that generates an on / off control signal on / off of the switching element SW in response to a signal from a one-shot pulse generation circuit OPG1 that detects a rising edge of the output of the comparator CMP2 connected to the terminal and generates a pulse signal LGC.
  • the logic circuit LGC includes an OR gate G1 that receives the outputs of the one-shot pulse generation circuits OPG1 and OPG2, and an OR gate G2 that receives the potential obtained by inverting the voltage of the external terminal P2 by the inverter INV and the output of the comparator CMP1.
  • the output of the OR gate G1 is input to the set terminal S, and the output of the OR gate G2 is configured from the RS flip-flop FF1 input to the reset terminal R.
  • the RS flip-flop FF1 is a reset-priority flip-flop.
  • the output Q of the FF1 is output to the outside of the IC as an on / off control signal on / off of the switching element SW, and the inverted output / Q of the FF1 is discharged from the waveform generation circuit RAMP.
  • the signal is supplied to the gate terminal of SW2 as a signal for controlling on / off of the MOS transistor SW2.
  • the OR gates G2 and FF1 forcibly set the output Q of the RS flip-flop FF1 to the low level during the low level period of the external PWM control signal PWM input from the external terminal P2, and prohibit the output of the on / off control signal on / off. Functions as a mask circuit. At the timing when the external PWM control signal PWM changes to high level, a one-shot pulse is generated by OPG2, the RS flip-flop FF1 is set, and the mask is released.
  • the present invention is not limited to the embodiment.
  • the anode terminals of the photodiodes PD1 and PD2 constituting the photocoupler are connected to the output terminal of the buffer amplifier AMP2, and the output current of the buffer amplifier AMP2 is supplied to drive the lighting.
  • the present invention is not limited to this, and an inverting amplifier circuit is provided after the buffer amplifier AMP2, and the cathode terminals of the photodiodes PD1 and PD2 are connected to the output terminal of the inverting amplifier circuit.
  • a lighting drive may be performed by drawing a current from.
  • 3 and 5 is configured as a current output type because the load is a current load, so that a sense resistor Rs is provided between the output terminal OUT2 and the ground point for output.
  • a voltage dividing circuit composed of a series resistor or the like is provided between the output terminal OUT1 and the ground point. Thus, the output voltage may be detected.
  • the switching element SW that allows current to flow intermittently through the primary winding of the transformer is an element (MOS transistor) that is separate from the power supply control ICs 17 and 23. It may be incorporated into the control ICs 17 and 23 and configured as one semiconductor integrated circuit. Further, the switching element SW is not limited to a MOS transistor and may be a bipolar transistor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

The problem addressed by the present invention is to cause an insulated power source device provided with an error amplifier at the secondary side to be able to reduce the time from starting up a power source voltage until a feedback voltage reaches a target value. The present invention has: a control circuit that generates and outputs a control signal of a switching element that controls the current that flows through the primary side of a power conversion means (transformer) in response to a feedback signal; a detection means that detects output voltage or output current; a feedback voltage generation circuit that generates feedback voltage in response to the detection signal from the detection means; and a signal transfer means that transfers the feedback signal generated by the feedback voltage generation circuit to the control circuit. The feedback voltage generation circuit is provided with: an error amplification circuit that outputs a voltage in response to the potential difference between the output signal and a predetermined baseline voltage; and a buffer amplifier that impedance converts and outputs the output of the error amplification circuit. An offset imparting means that imparts an offset to the output voltage of the buffer amp is provided between the output terminal of the buffer amp and an inverting input terminal.

Description

絶縁型電源装置および照明装置Insulated power supply and lighting device
 本発明は、電圧変換用トランスを備えた絶縁型電源装置およびこれを用いた照明装置に利用して有効な技術に関する。 The present invention relates to an insulation type power supply device provided with a voltage conversion transformer and a technology effective for use in a lighting device using the same.
 電源装置には、電圧変換用トランスを備え交流電力の電圧を変換し二次側に誘起された交流を整流し所望の電位の直流電圧に変換する絶縁型AC-DCコンバータがある。絶縁型のAC-DCコンバータとしては、例えば電圧変換用トランスの一次側巻線に流れる電流をスイッチング制御することで二次側巻線に誘起される電力を制御するようにしたスイッチング電源装置が知られている。 The power supply device includes an insulated AC-DC converter that includes a voltage conversion transformer, converts the voltage of AC power, rectifies the AC induced on the secondary side, and converts it into a DC voltage of a desired potential. As an insulated AC-DC converter, for example, a switching power supply device is known which controls the power induced in the secondary winding by controlling the current flowing in the primary winding of the voltage conversion transformer. It has been.
 ところで、スイッチング電源装置においては、電力効率を高めるためPWM(パルス幅変調)制御が採用されることが多く、絶縁型AC-DCコンバータにおいても、二次側の出力の検出信号をフォトカプラによって一次側制御回路へフィードバックして、一次側制御回路がPWMパルスでスイッチング素子をオン、オフ駆動して一次側コイルに流す電流を制御するようした発明も提案されている(例えば特許文献1参照)。 By the way, in a switching power supply device, PWM (pulse width modulation) control is often employed in order to increase power efficiency. Even in an isolated AC-DC converter, a detection signal of a secondary side output is primary by a photocoupler. There has also been proposed an invention in which the primary side control circuit is fed back to the side control circuit and the switching element is turned on and off by PWM pulses to control the current flowing through the primary side coil (see, for example, Patent Document 1).
特開平7-31142号公報Japanese Patent Laid-Open No. 7-31142 特表2004-527138号公報JP-T-2004-527138
 絶縁型AC-DCコンバータにおける二次側の出力の検出信号は、特許文献1にも開示されているように、出力電圧もしくは出力電流を電流-電圧変換した電圧を抵抗分割し、その電圧と基準電圧Vrefとを誤差増幅器で比較し電位差に応じた電圧(フィードバック電圧VFB)を出力してフォトカプラの発光素子(フォトダイオード)を駆動し、フォトカプラを介して一次側制御回路へ伝達するように構成することが多い。 As disclosed in Patent Document 1, the detection signal of the secondary side output in the isolated AC-DC converter is obtained by subjecting the output voltage or the voltage obtained by converting the output current to current-voltage to resistance division, and the voltage and reference The voltage Vref is compared with an error amplifier, and a voltage (feedback voltage VFB) corresponding to the potential difference is output to drive the light-emitting element (photodiode) of the photocoupler and transmit it to the primary side control circuit via the photocoupler. Often configured.
 ところで、絶縁型AC-DCコンバータの出力制御ループにおいては、ループの安定性を高めるには誤差増幅器の時定数を大きめに設定することが望ましい。しかしながら、誤差増幅器の時定数を大きくすると、図7に示すように、起動時に二次側の回路の電源電圧Vccを立ち上げた際に、フィードバック電圧VFBの変化が緩やかになり、負荷に応じた収束値に達するまでの遅延時間Tdが長くなってしまい、その間負荷の動作が不安定になるという不具合がある。 By the way, in the output control loop of the isolated AC-DC converter, it is desirable to set a large time constant of the error amplifier in order to improve the stability of the loop. However, when the time constant of the error amplifier is increased, as shown in FIG. 7, when the power supply voltage Vcc of the secondary side circuit is raised at the time of startup, the change of the feedback voltage VFB becomes gradual, corresponding to the load. There is a problem that the delay time Td until the convergence value is reached becomes long, and the operation of the load becomes unstable during that time.
 特に、外部からのPWM制御信号で出力電圧を変化させたい場合、二次コイル側に接続されて出力電圧を安定化させるためのローパスフィルタ(平滑用チョークコイルと平滑コンデンサ)のカットオフ周波数fcを、PWM制御信号の周波数よりも高く設定する必要がある。しかし、フィルタの時定数τとカットオフ周波数fcとの間にはτ=1/2πfcで表わされる関係があるため、フィルタのfcを高くすると時定数が小さくなるので、制御ループの安定化のためにはその分誤差増幅器の時定数を大きく設定する必要性が生じる。その結果、電源電圧Vccを立ち上げた際に誤差増幅器から出力されるフィードバック電圧VFBが収束値に達するまでの時間が長くなってしまうという課題がある。 In particular, when it is desired to change the output voltage with an external PWM control signal, the cutoff frequency fc of the low-pass filter (smoothing choke coil and smoothing capacitor) connected to the secondary coil side to stabilize the output voltage is set. It is necessary to set higher than the frequency of the PWM control signal. However, since there is a relationship expressed by τ = 1 / 2πfc between the filter time constant τ and the cut-off frequency fc, the time constant decreases as the filter fc is increased. Therefore, it is necessary to set a large time constant for the error amplifier. As a result, there is a problem that when the power supply voltage Vcc is raised, the time until the feedback voltage VFB output from the error amplifier reaches the convergence value becomes long.
 この発明の目的は、出力に比例した電圧と基準電圧との電位差に応じたフィードバック電圧を生成し出力する誤差増幅器を二次側に備えたAC-DCコンバータのような絶縁型電源装置において、電源電圧を立ち上げてからフィードバック電圧が目標値に達するまでの時間を短縮して、電源起動時に制御ループが短時間で安定できるようにすることにある。
 この発明の他の目的は、外部からのPWM制御信号で出力電圧を変化させることができるように構成された絶縁型電源装置において、定常状態でのフィードバック制御ループの安定性を確保しつつ電源起動時に制御ループが安定するまでの時間を短くできるようにすることにある。
An object of the present invention is to provide an isolated power supply apparatus such as an AC-DC converter having an error amplifier on the secondary side that generates and outputs a feedback voltage corresponding to a potential difference between a voltage proportional to an output and a reference voltage. The purpose is to shorten the time from when the voltage is raised to when the feedback voltage reaches the target value, so that the control loop can be stabilized in a short time when the power is turned on.
Another object of the present invention is to start up a power supply while ensuring the stability of a feedback control loop in a steady state in an isolated power supply device configured to be able to change an output voltage with an external PWM control signal. Sometimes it is possible to shorten the time until the control loop stabilizes.
 上記目的を達成するため本発明は、
 一次側に入力された交流電力を変換して二次側へ出力する電力変換手段と、前記電力変換手段の二次側に設けられた整流手段と、前記整流手段により整流された電流・電圧のうち所定の周波数帯の電流・電圧を通過させるフィルタと、前記フィルタを介して負荷へ供給される出力電流もしくは出力電圧を検出する検出手段と、前記検出手段による検出信号に応じたフィードバック電圧を生成する帰還電圧生成回路と、フィードバック信号に応じて前記電力変換手段の一次側に流す電流を制御するスイッチング素子の制御信号を生成し出力する制御回路と、前記帰還電圧生成回路により生成された電圧に応じて前記フィードバック信号を前記制御回路へ伝達する信号伝達手段と、を有する絶縁型電源装置であって、
 前記帰還電圧生成回路は、
 前記検出信号と所定の基準電圧との電位差に応じた電圧を出力する誤差増幅回路と、該誤差増幅回路の出力をインピーダンス変換して出力するバッファアンプとを備え、前記バッファアンプの出力端子と反転入力端子との間に、該バッファアンプの出力電圧に対して入力電圧よりも所定の電位だけ高いオフセットを付与するオフセット付与手段が接続されているようにした。
In order to achieve the above object, the present invention
Power conversion means for converting AC power input to the primary side and outputting it to the secondary side, rectification means provided on the secondary side of the power conversion means, and current / voltage rectified by the rectification means Among them, a filter for passing a current / voltage in a predetermined frequency band, a detection means for detecting an output current or output voltage supplied to a load through the filter, and a feedback voltage corresponding to a detection signal by the detection means are generated. A feedback voltage generation circuit that generates, a control circuit that generates and outputs a control signal for a switching element that controls a current that flows to the primary side of the power conversion unit according to the feedback signal, and a voltage generated by the feedback voltage generation circuit. And a signal transmission means for transmitting the feedback signal to the control circuit in response.
The feedback voltage generation circuit includes:
An error amplifying circuit for outputting a voltage corresponding to a potential difference between the detection signal and a predetermined reference voltage; and a buffer amplifier for converting the output of the error amplifying circuit by impedance conversion and inverting the output terminal of the buffer amplifier. An offset applying means for applying an offset higher than the input voltage by a predetermined potential to the output voltage of the buffer amplifier is connected between the input terminal and the input terminal.
 上記のような手段によれば、バッファアンプの出力電圧は前段の誤差増幅回路の出力電圧に、所定のオフセットを付加した電圧になるため、電源電圧を立ち上げてからフィードバック電圧が目標値に達するまでの時間を短縮して、電源起動時に制御ループを短時間で安定させることができるようになる。 According to the above means, the output voltage of the buffer amplifier becomes a voltage obtained by adding a predetermined offset to the output voltage of the error amplifier circuit in the previous stage, so that the feedback voltage reaches the target value after the power supply voltage is raised. The control loop can be stabilized in a short time when the power is turned on.
 ここで、望ましくは、前記オフセット付与手段は、所定の電位差以上で導通状態となる2端子スイッチング素子であり、前記バッファアンプの出力端子から反転入力端子に向かって導通電流が流れるように接続された構成とする。
 オフセット付与手段としてダイオードに代表されるような2端子スイッチング素子を使用することにより、素子を1つ追加するだけでバッファアンプの出力にオフセットを付加し、フィードバック電圧が目標値に達するまでの時間を短縮させることができるようになる。
Here, desirably, the offset applying means is a two-terminal switching element that becomes conductive when a predetermined potential difference is exceeded, and is connected so that a conductive current flows from the output terminal of the buffer amplifier toward the inverting input terminal. The configuration.
By using a two-terminal switching element such as a diode as an offset providing means, an offset is added to the output of the buffer amplifier by adding only one element, and the time until the feedback voltage reaches the target value is increased. It can be shortened.
 さらに、望ましくは、前記誤差増幅回路は、差動アンプを有し該差動アンプの出力端子と反転入力端子との間に容量素子が接続されているようにする。
 二次側に設けられた誤差増幅回路を構成する差動アンプの出力端子と反転入力端子との間に容量素子が接続されていることにより、見掛け上の容量値が増大してカットオフ周波数の低いローパスフィルタとして機能して制御ループを安定化させる一方、カットオフ周波数が低くなることで時定数が大きくなり電源起動時のフィードバック電圧の立ち上がりが遅くなるのを、バッファアンプの出力端子と反転入力端子との間に設けた整流素子の作用によって目標電圧の到達に必要な誤差増幅回路の出力電圧の変化量を減少させて回避することができる。すなわち、定常状態でのフィードバック制御ループの安定性を確保しつつ電源起動時に制御ループが安定するまでの時間を短くすることができる。
More preferably, the error amplifier circuit includes a differential amplifier, and a capacitive element is connected between the output terminal and the inverting input terminal of the differential amplifier.
By connecting a capacitive element between the output terminal and the inverting input terminal of the differential amplifier that constitutes the error amplifier circuit provided on the secondary side, the apparent capacitance value increases and the cutoff frequency is reduced. While functioning as a low-pass filter to stabilize the control loop, the lower cutoff frequency increases the time constant and delays the feedback voltage rise at power-up. The amount of change in the output voltage of the error amplifier circuit necessary for reaching the target voltage can be reduced and avoided by the action of the rectifying element provided between the terminals. That is, it is possible to shorten the time until the control loop is stabilized at the time of power activation while ensuring the stability of the feedback control loop in a steady state.
 また、前記フィルタのカットオフ周波数は、前記制御回路により生成される制御信号のスイッチング周波数よりも低く、外部から供給されるデューティ比に制御情報を有する出力制御パルス信号の周波数よりも高くなるように設定され、
 前記電力変換手段の二次側には、デューティ比に制御情報を有する前記出力制御パルス信号に基づいて前記検出信号の補正を行う補正回路が設けられ、
 前記制御回路は、フィードバック信号に応じたパルス幅を有するPWM制御パルスを生成するパルス生成回路と、該パルス生成回路により生成されたPWM制御パルスを前記出力制御パルス信号に応じて制限するパルス制限回路と、を備え、
 前記補正回路は、一次側回路に出力制御パルス信号を入れて出力をフィードフォワードで制御した場合に変化する上記検出信号の変化を相殺する機能を有するように構成する。
 補正回路を設けたことにより、出力電流もしくは出力電圧を外部から供給される出力制御パルス信号に基づいて制御することができるようになるとともに、供給された出力制御パルス信号によって出力電圧が所望の値からずれるのを回避することができる。
Further, the cutoff frequency of the filter is lower than the switching frequency of the control signal generated by the control circuit, and higher than the frequency of the output control pulse signal having control information in the duty ratio supplied from the outside. Set,
A correction circuit for correcting the detection signal based on the output control pulse signal having control information in a duty ratio is provided on the secondary side of the power conversion means,
The control circuit includes a pulse generation circuit that generates a PWM control pulse having a pulse width corresponding to a feedback signal, and a pulse limiting circuit that limits the PWM control pulse generated by the pulse generation circuit according to the output control pulse signal And comprising
The correction circuit is configured to have a function of canceling the change of the detection signal that changes when the output control pulse signal is input to the primary side circuit and the output is controlled by feedforward.
By providing the correction circuit, the output current or the output voltage can be controlled based on the output control pulse signal supplied from the outside, and the output voltage is set to a desired value by the supplied output control pulse signal. It is possible to avoid deviation.
 さらに、望ましくは、前記補正回路は、所定の定電位が供給される定電位端子と、前記誤差増幅回路の前記検出信号が入力される側の入力端子との間に直列に接続された抵抗およびトランジスタとを有し、前記トランジスタの制御端子に前記出力制御パルス信号が印加されるように構成する。
 これにより、比較的簡単な回路で補正回路を実現することができる。
Further preferably, the correction circuit includes a resistor connected in series between a constant potential terminal to which a predetermined constant potential is supplied and an input terminal to which the detection signal of the error amplifier circuit is input. And the output control pulse signal is applied to the control terminal of the transistor.
As a result, the correction circuit can be realized with a relatively simple circuit.
 また、望ましくは、前記信号伝達手段は発光素子と受光素子とからなるフォトカプラであり、前記発光素子は前記バッファアンプの出力端子と接地電位点との間に接続され、前記バッファアンプの出力電圧に応じた電流が前記発光素子に流されるように構成する。
 これにより、比較的簡単な回路で誤差増幅回路の出力に比例した電流を前記発光素子に流して、正確なフィードバック信号を二次側の制御回路へ伝達することができる。
Preferably, the signal transmission means is a photocoupler including a light emitting element and a light receiving element, and the light emitting element is connected between an output terminal of the buffer amplifier and a ground potential point, and an output voltage of the buffer amplifier. A current corresponding to the current is passed through the light emitting element.
As a result, a current proportional to the output of the error amplifier circuit can be passed through the light emitting element with a relatively simple circuit, and an accurate feedback signal can be transmitted to the control circuit on the secondary side.
 また、上記のような構成を有する絶縁型電源装置と、該絶縁型電源装置の出力端子に接続され前記出力電流が流されることで点灯するLEDランプと、前記出力制御パルス信号を生成する制御信号生成手段とにより照明装置を構成する。
 これにより、PWMパルスでLEDランプの明るさを制御できるとともに、電源起動時に速やかに所望の明るさに達することができるLED照明装置を実現することができる。
Also, an insulated power supply device having the above configuration, an LED lamp that is connected to the output terminal of the insulated power supply device and lights when the output current flows, and a control signal that generates the output control pulse signal An illuminating device is comprised with a production | generation means.
Thereby, while being able to control the brightness of an LED lamp with a PWM pulse, the LED illuminating device which can reach desired brightness rapidly at the time of power activation is realizable.
 本発明によれば、出力に比例した電圧と基準電圧との電位差に応じたフィードバック電圧を生成し出力する誤差増幅器を二次側に備えたAC-DCコンバータのような絶縁型電源装置において、電源電圧を立ち上げてからフィードバック電圧が目標値に達するまでの時間を短縮して、電源起動時に制御ループが短時間で安定できるようにすることができる。また、外部からのPWM制御信号で出力電圧を変化させることができるように構成された絶縁型電源装置において、定常状態でのフィードバック制御ループの安定性を確保しつつ電源起動時に制御ループが安定するまでの時間を短くすることができるという効果がある。 According to the present invention, in an isolated power supply device such as an AC-DC converter that includes an error amplifier on the secondary side that generates and outputs a feedback voltage corresponding to a potential difference between a voltage proportional to an output and a reference voltage. The time from when the voltage is raised to when the feedback voltage reaches the target value can be shortened so that the control loop can be stabilized in a short time when the power is turned on. In addition, in an insulated power supply device configured to be able to change the output voltage with an external PWM control signal, the control loop is stabilized at the time of power activation while ensuring the stability of the feedback control loop in a steady state. This has the effect of shortening the time until.
本発明を適用して有効な絶縁型電源装置としてのAC-DCコンバータの第1の実施形態を示すブロック構成図である。1 is a block configuration diagram showing a first embodiment of an AC-DC converter as an effective insulated power supply apparatus to which the present invention is applied. FIG. 図1のAC-DCコンバータの電源起動時におけるイネーブル信号や基準電圧、フィードバック電圧等の変化を示すタイミングチャートである。2 is a timing chart showing changes in an enable signal, a reference voltage, a feedback voltage, and the like when the AC-DC converter of FIG. 1 is powered on. 図1のAC-DCコンバータの具体的な構成例を示す回路構成図である。FIG. 2 is a circuit configuration diagram illustrating a specific configuration example of the AC-DC converter of FIG. 1. 本発明を適用して有効な絶縁型電源装置としてのAC-DCコンバータの第2の実施形態を示すブロック構成図である。It is a block block diagram which shows 2nd Embodiment of the AC-DC converter as an insulation type power supply device effective by applying this invention. 図4のAC-DCコンバータの具体的な構成例を示す回路構成図である。FIG. 5 is a circuit configuration diagram showing a specific configuration example of the AC-DC converter of FIG. 4. フォトカプラの受光用トランジスタへのバイアス電圧の印加の仕方の他の例を示す回路図である。It is a circuit diagram which shows the other example of the method of applying the bias voltage to the light reception transistor of a photocoupler. 従来の絶縁型AC-DCコンバータの電源起動時におけるイネーブル信号や基準電圧、フィードバック電圧等の変化を示すタイミングチャートである。6 is a timing chart showing changes in an enable signal, a reference voltage, a feedback voltage, and the like at the time of starting a power supply of a conventional insulated AC-DC converter.
 以下、本発明の好適な実施形態を図面に基づいて説明する。
 図1は、絶縁型のAC-DCコンバータなどにより構成される第1の実施形態に係る電源装置のブロック構成図である。
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described with reference to the drawings.
FIG. 1 is a block configuration diagram of a power supply device according to the first embodiment configured by an insulating AC-DC converter or the like.
 本実施形態に係る電源装置は、交流入力電圧Vinを電力変換するトランスなどからなる電力変換手段10と、変換された交流を整流する整流手段11と、整流された電圧・電流のうち所定の周波数帯の電圧・電流を通過させて負荷30へ供給するフィルタ回路12と、負荷30に流れる電流を検出する検出手段13と、検出された電流値に応じた帰還信号を生成する帰還電圧生成回路14と、入力側と出力側とが電気的に絶縁されたフォトカプラなどからなり帰還信号FBを一次側へ伝達する絶縁型の信号伝達手段15と、上記電力変換手段10の一次側に電流を流すMOSトランジスタなどの自己消弧素子からなるスイッチ手段16と、前記信号伝達手段15によって伝達された信号に応じてスイッチ手段16をオン・オフ制御するパルス信号を生成する制御回路17とを備える。
 なお、上記整流手段11はダイオードにより構成され、フィルタ回路12は整流手段11と負荷が接続される出力端子との間に直列に設けられたコイルと、接地点との間に設けられた平滑コンデンサなどから構成される(図3参照)。
The power supply device according to the present embodiment includes a power conversion unit 10 including a transformer that converts the AC input voltage Vin, a rectification unit 11 that rectifies the converted AC, and a predetermined frequency of the rectified voltage / current. A filter circuit 12 that passes the voltage / current of the band and supplies it to the load 30; a detection means 13 that detects a current flowing through the load 30; and a feedback voltage generation circuit 14 that generates a feedback signal corresponding to the detected current value. And an insulated signal transmission means 15 comprising a photocoupler or the like in which the input side and the output side are electrically isolated, and transmitting the feedback signal FB to the primary side, and a current to the primary side of the power conversion means 10 A switching means 16 comprising a self-extinguishing element such as a MOS transistor, and a pulse for controlling on / off of the switching means 16 in accordance with a signal transmitted by the signal transmission means 15. And a control circuit 17 which generates a signal.
The rectifying means 11 is composed of a diode, and the filter circuit 12 is a smoothing capacitor provided between a coil provided in series between the rectifying means 11 and an output terminal to which a load is connected, and a ground point. (See FIG. 3).
 図3には、図1の絶縁型AC-DCコンバータの具体的な回路構成が示されている。
 図3に示すように、この実施形態のAC-DCコンバータは、コモンモードコイルなどからなるノイズ遮断用のフィルタ21と、交流電圧(AC)を整流し直流電圧に変換するダイオード・ブリッジ回路22と、平滑用コンデンサC0と、一次側巻線Npおよび補助巻線Nbと二次側巻線Nsとを有するトランスT1と、このトランスT1の一次側巻線Npと直列に接続されたスイッチ手段16としてのNチャネルMOSトランジスタからなるスイッチング素子SWと、該スイッチング素子SWを駆動する一次側制御回路17としての電源制御用IC(半導体集積回路)を備える。上記ダイオード・ブリッジ回路22とトランスT1とから前記電力変換手段10が構成される。
FIG. 3 shows a specific circuit configuration of the isolated AC-DC converter of FIG.
As shown in FIG. 3, the AC-DC converter of this embodiment includes a noise blocking filter 21 composed of a common mode coil and the like, a diode bridge circuit 22 that rectifies AC voltage (AC) and converts it into DC voltage, and As a transformer T1 having a smoothing capacitor C0, a primary winding Np, an auxiliary winding Nb, and a secondary winding Ns, and switch means 16 connected in series with the primary winding Np of the transformer T1 And a power supply control IC (semiconductor integrated circuit) as a primary side control circuit 17 for driving the switching element SW. The power conversion means 10 is composed of the diode bridge circuit 22 and the transformer T1.
 上記トランスT1の二次側には、二次側巻線Nsと出力端子OUT1との間に直列に接続された整流用ダイオードD1と、このダイオードD1のカソード端子と二次側巻線Nsの他方の端子との間に接続されたコンデンサC1および整流用ダイオードD1と直列に接続されたコイルL1を有するフィルタ回路12とが設けられ、一次側巻線Npに間歇的に電流を流すことで二次側巻線Nsに誘起される交流を整流し、フィルタ回路12が出力電圧・電流を安定化させて、出力端子OUT1より出力する。 The secondary side of the transformer T1 includes a rectifying diode D1 connected in series between the secondary winding Ns and the output terminal OUT1, and the cathode terminal of the diode D1 and the other of the secondary winding Ns. And a filter circuit 12 having a coil L1 connected in series with a rectifying diode D1 and a capacitor C1 connected between the terminals of the first and second terminals of the secondary winding by passing current intermittently through the primary winding Np. The alternating current induced in the side winding Ns is rectified, and the filter circuit 12 stabilizes the output voltage / current and outputs it from the output terminal OUT1.
 また、出力端子OUT2と接地点との間には、出力端子OUT1-OUT2間に接続される負荷に流れる電流を検出する検出手段13としてのセンス抵抗Rsが接続されている。なお、上記フィルタ回路12のカットオフ周波数を、制御回路17によるスイッチング周波数よりも低く設定することによって、一次側のスイッチングノイズを遮断して出力に伝達させないようにしている。 In addition, a sense resistor Rs is connected between the output terminal OUT2 and the ground point as detection means 13 for detecting a current flowing through a load connected between the output terminals OUT1 and OUT2. The cut-off frequency of the filter circuit 12 is set lower than the switching frequency by the control circuit 17 so that the switching noise on the primary side is cut off and not transmitted to the output.
 さらに、トランスT1の二次側には、センス抵抗Rsにより電流-電圧変換された電圧Vdが抵抗R1を介して反転入力端子に入力され、非反転入力端子に参照電圧Vref1が入力され、検出した電流値に応じた電圧を出力する誤差アンプAMP1や、該誤差アンプの出力を受けて帰還信号VFBを生成するバッファアンプ(ボルテージフォロワ)AMP2、バンドギャップリファランス回路などからなり参照電圧Vref1を生成する基準電圧生成回路VRGなどを備えた二次側回路としての帰還電圧生成回路14が設けられている。本実施形態においては、帰還電圧生成回路14は、半導体集積回路(二次側IC)として構成されている。 Further, on the secondary side of the transformer T1, the voltage Vd that has been subjected to current-voltage conversion by the sense resistor Rs is input to the inverting input terminal via the resistor R1, and the reference voltage Vref1 is input to the non-inverting input terminal to detect it. A standard for generating a reference voltage Vref1, which includes an error amplifier AMP1 that outputs a voltage corresponding to a current value, a buffer amplifier (voltage follower) AMP2 that receives the output of the error amplifier and generates a feedback signal VFB, a band gap reference circuit, and the like. A feedback voltage generation circuit 14 as a secondary side circuit including a voltage generation circuit VRG and the like is provided. In the present embodiment, the feedback voltage generation circuit 14 is configured as a semiconductor integrated circuit (secondary side IC).
 そして、該帰還電圧生成回路14によって生成された信号が、信号伝達手段15としてのフォトカプラPCによって一次側へ伝達される。具体的には、バッファアンプAMP2の出力端子と接地点との間に、フォトカプラPCを構成する発光側のフォトダイオードPD1が接続され、バッファアンプAMP2の出力電圧に応じた電流をフォトダイオードPD1に流して発光させ、その光を受信したフォトトランジスタに発光量に比例したコレクタ電流を流し、それを抵抗で電圧に変換して、一次側制御回路17の誤差アンプAMP3に供給するように構成されている。 Then, the signal generated by the feedback voltage generation circuit 14 is transmitted to the primary side by the photocoupler PC as the signal transmission means 15. Specifically, a light emitting side photodiode PD1 constituting the photocoupler PC is connected between the output terminal of the buffer amplifier AMP2 and the ground point, and a current corresponding to the output voltage of the buffer amplifier AMP2 is supplied to the photodiode PD1. A collector current proportional to the light emission amount is caused to flow through the phototransistor that has received the light, converted into a voltage by a resistor, and supplied to the error amplifier AMP3 of the primary side control circuit 17. Yes.
 また、二次側の誤差アンプAMP1の出力端子と反転入力端子との間には位相補償用の容量Cfが設けられ、該容量Cfと前記抵抗R1とによりローパスフィルタが構成される。そして、容量Cfが当該アンプのミラー効果によって入力側から見たときに本来の容量値のほぼゲイン倍の値(1+A)Cfを持つようにされ、カットオフ周波数の低いローパスフィルタとして機能し、出力電流に応じて変化する電圧Vdを平滑することができるようにされている。これによって、誤差アンプAMP1の反転入力端子には、電圧Vdの平均電圧に相当する直流電圧が入力される。 Also, a phase compensation capacitor Cf is provided between the output terminal and the inverting input terminal of the secondary side error amplifier AMP1, and the capacitor Cf and the resistor R1 constitute a low-pass filter. Then, the capacitance Cf has a value (1 + A) Cf that is substantially a gain multiple of the original capacitance value when viewed from the input side due to the mirror effect of the amplifier, and functions as a low-pass filter with a low cutoff frequency. The voltage Vd that changes according to the current can be smoothed. As a result, a DC voltage corresponding to the average voltage Vd is input to the inverting input terminal of the error amplifier AMP1.
 そして、バッファアンプ(ボルテージフォロワ)AMP2には、出力端子と反転入力端子との間に、出力端子から反転入力端子に向かって順方向となるように接続され所定の電位差以上で導通状態となる2端子スイッチング素子としてのダイオードD2が設けられている。このダイオードD2を設けたことにより、誤差アンプAMP1の出力Vaにオフセットが付加され、バッファアンプAMP2の出力はVaよりもダイオードD2の順方向しきい値電圧Vf分だけ高い電圧となる。ダイオードD2を設けた点が本発明のポイントのひとつである。なお、ダイオードD2としては、順方向しきい値電圧の小さなショッキーバリアなどよりも比較的順方向しきい値電圧の大きなPN接合ダイオードの方が適している。所望のオフセットを得るのに必要なダイオードの数を少なくすることができるためである。ただし、誤差アンプAMP1の出力にオフセットが付加する手段は、ダイオードに限定されず、例えばゲートとドレインが結合されたダイオード接続のMOSトランジスタなどであっても良い。また、バッファアンプAMP2を電流出力アンプで構成する場合は、ダイオードを追加しなくても、V-I特性の設定を変更するだけで、所望のオフセットを付加することができる。 The buffer amplifier (voltage follower) AMP2 is connected between the output terminal and the inverting input terminal so as to be in the forward direction from the output terminal toward the inverting input terminal, and becomes conductive when a predetermined potential difference is exceeded. A diode D2 is provided as a terminal switching element. By providing the diode D2, an offset is added to the output Va of the error amplifier AMP1, and the output of the buffer amplifier AMP2 becomes a voltage higher than Va by the forward threshold voltage Vf of the diode D2. The point where the diode D2 is provided is one of the points of the present invention. As the diode D2, a PN junction diode having a relatively large forward threshold voltage is more suitable than a shocky barrier having a small forward threshold voltage. This is because the number of diodes required to obtain a desired offset can be reduced. However, the means for adding an offset to the output of the error amplifier AMP1 is not limited to a diode, and may be, for example, a diode-connected MOS transistor in which a gate and a drain are coupled. Further, when the buffer amplifier AMP2 is configured by a current output amplifier, a desired offset can be added by simply changing the setting of the VI characteristic without adding a diode.
 さらに、本実施形態の帰還電圧生成回路14には、二次側ICの電源電圧Vccが所定の電位よりも低くなっていないか検出する低電圧検出回路UVLOが設けられ、低電圧検出回路UVLOから出力されるイネーブル信号ENによって二次側IC内の上記アンプAMP1やAMP2の定電流源などを制御して、低電圧時にこれらの回路の動作を非活性化(動作をオフ)させたりするように構成されている。
 また、本実施形態においては、誤差アンプAMP1と後段のバッファアンプAMP2との間に抵抗R2と容量C2とが接続されて、誤差アンプAMP1とともに伝達関数が2つのポールを有する2次のローパスフィルタとして機能することで、高い周波数帯のノイズをより効果的に遮断できるように構成されている。ただし、カットオフ周波数が低くなることで、誤差アンプAMP1を含むフィルタとしての時定数は大きくなる。
Further, the feedback voltage generation circuit 14 of the present embodiment is provided with a low voltage detection circuit UVLO for detecting whether the power supply voltage Vcc of the secondary side IC is lower than a predetermined potential, and from the low voltage detection circuit UVLO. The constant current sources of the amplifiers AMP1 and AMP2 in the secondary IC are controlled by the output enable signal EN so that the operation of these circuits is deactivated (the operation is turned off) at a low voltage. It is configured.
In the present embodiment, a resistor R2 and a capacitor C2 are connected between the error amplifier AMP1 and the subsequent buffer amplifier AMP2, and the transfer function as a secondary low-pass filter having two poles together with the error amplifier AMP1. By functioning, it is configured to effectively block high frequency band noise. However, the time constant as a filter including the error amplifier AMP1 increases as the cutoff frequency decreases.
 次に、フォトカプラPCを介して二次側からフィードバック信号を受けてスイッチング素子SWをオン、オフする電源制御用IC17について説明する。
 電源制御用IC17には、フォトカプラPCを構成する受光用トランジスタTr1のコレクタが接続される外部端子P1が設けられている。受光用トランジスタTr1は、そのエミッタ端子が接地電位GNDに接続されているとともに、外部端子P1は、プルアップ抵抗Rp1を介して、電源制御用IC17内部で生成される内部電圧Vregが印加される端子に接続され、受光用トランジスタTr1のコレクタにバイアスを与えるように構成されている。これにより、内部電圧VregによりTr1がバイアスされた状態で、フォトカプラPCのフォトダイオードPD1が点灯されると、Tr1にコレクタ電流が流れ、抵抗Rp1の電圧降下によって外部端子P1の電位が下がり、これを内部回路が増幅して制御動作を行う。
Next, the power supply control IC 17 that receives a feedback signal from the secondary side via the photocoupler PC and turns the switching element SW on and off will be described.
The power supply control IC 17 is provided with an external terminal P1 to which the collector of the light receiving transistor Tr1 constituting the photocoupler PC is connected. The light receiving transistor Tr1 has its emitter terminal connected to the ground potential GND, and the external terminal P1 is a terminal to which the internal voltage Vreg generated inside the power supply control IC 17 is applied via the pull-up resistor Rp1. And is configured to apply a bias to the collector of the light receiving transistor Tr1. As a result, when the photodiode PD1 of the photocoupler PC is turned on while the Tr1 is biased by the internal voltage Vreg, a collector current flows through the Tr1, and the potential of the external terminal P1 decreases due to the voltage drop of the resistor Rp1. The internal circuit amplifies the control operation.
 さらに、上記電源制御用IC17には、外部端子P1の電圧が抵抗R6を介して反転入力端子に入力され、非反転入力端子に参照電圧Vref2が入力され、外部端子P1の電圧と参照電圧Vref2との電位差に応じた電圧を出力する誤差アンプAMP3が設けられている。なお、誤差アンプAMP3とフォトカプラPCを合わせたものを、信号伝達回路15とみなすこともできる。 Further, in the power control IC 17, the voltage of the external terminal P1 is input to the inverting input terminal via the resistor R6, the reference voltage Vref2 is input to the non-inverting input terminal, and the voltage of the external terminal P1 and the reference voltage Vref2 An error amplifier AMP3 that outputs a voltage corresponding to the potential difference is provided. A combination of the error amplifier AMP3 and the photocoupler PC can be regarded as the signal transmission circuit 15.
 また、上記電源制御用IC17には、定電流源CC1とコンデンサC4およびディスチャージ用MOSトランジスタSW2からなる波形生成回路RAMPと、上記誤差アンプAMP3の出力と波形生成回路RAMPで生成された波形信号とを比較するコンパレータ(電圧比較回路)CMP1とが設けられている。波形生成回路RAMPは定電流源CC1の電流によってコンデンサC4が充電することで出力が徐々に上昇し、スイッチング素子SW2がオンされることでコンデンサC4の電荷が一気に放出されて出力が急に立ち下がる動作を繰り返すことで、鋸波状の波形信号を生成する。コンパレータCMP1は、誤差アンプAMP3の出力に応じたパルス幅を有するPWMパルスを生成するPWMコンパレータとして機能する。 The power supply control IC 17 receives a waveform generation circuit RAMP including a constant current source CC1, a capacitor C4, and a discharge MOS transistor SW2, an output of the error amplifier AMP3, and a waveform signal generated by the waveform generation circuit RAMP. A comparator (voltage comparison circuit) CMP1 for comparison is provided. In the waveform generation circuit RAMP, the output gradually rises when the capacitor C4 is charged by the current of the constant current source CC1, and when the switching element SW2 is turned on, the charge of the capacitor C4 is discharged at once and the output suddenly falls. By repeating the operation, a sawtooth waveform signal is generated. The comparator CMP1 functions as a PWM comparator that generates a PWM pulse having a pulse width corresponding to the output of the error amplifier AMP3.
 さらに、上記電源制御用IC17には、トランスT1(10)に設けられた補助巻線Nbの一方の端子が接続される外部端子P3と、該外部端子P3に反転入力端子が接続され非反転入力端子に参照電圧Vref3が印加されたコンパレータCMP2と、該コンパレータCMP2の出力の立上がりを検出してパルス信号を生成するワンショットパルス生成回路OPG1と、リスタートタイマ回路RSTと、該回路の出力とワンショットパルス生成回路OPG1の出力を入力とするORゲートG1と、ORゲートG1の出力がセット端子Sに入力され、前記コンパレータCMP1の出力がリセット端子Rに入力されたRSフリップフロップFF1とから構成されている。
 RSフリップフロップFF1の出力Qはスイッチング素子SWのオン、オフ制御信号on/offとしてIC外部へ出力され、FF1の反転出力/Qは波形生成回路RAMPのディスチャージ用MOSトランジスタSW2をオン、オフ制御する信号としてSW2のゲート端子に供給される。
Further, the power supply control IC 17 has an external terminal P3 to which one terminal of the auxiliary winding Nb provided in the transformer T1 (10) is connected, and an inverting input terminal connected to the external terminal P3 and a non-inverting input. A comparator CMP2 having a reference voltage Vref3 applied to its terminal, a one-shot pulse generation circuit OPG1 that detects a rising edge of the output of the comparator CMP2 and generates a pulse signal, a restart timer circuit RST, and an output of the circuit An OR gate G1 having the output of the shot pulse generation circuit OPG1 as an input, and an RS flip-flop FF1 in which the output of the OR gate G1 is input to the set terminal S and the output of the comparator CMP1 is input to the reset terminal R. ing.
An output Q of the RS flip-flop FF1 is output to the outside of the IC as an on / off control signal on / off of the switching element SW, and an inverted output / Q of the FF1 controls on / off of the discharge MOS transistor SW2 of the waveform generation circuit RAMP. A signal is supplied to the gate terminal of SW2.
 本実施形態のAC-DCコンバータにおいては、補助巻線Nbに誘起される電圧が参照電圧Vref3以下になるタイミングすなわち補助巻線の電流がある程度減少したタイミングで、コンパレータCMP2の出力がハイレベルに変化して、OPG1によりワンショットパルスが生成され、フリップフロップFF1がセット状態にされる。すると、制御信号on/offがハイレベルに変化してスイッチング素子SWがオンされて一次側巻線Npに電流が流されるとともに、波形生成回路RAMP内のSW2がオフされてコンパレータCMP1の入力が次第に高くなりフィードバック信号FBよりも高くなった時点でフリップフロップFF1にリセットがかかる。そして、制御信号on/offがロウレベルに変化してスイッチング素子SWがオフされるとともに、波形生成回路RAMP内のSW2がオンされてコンデンサが放電され波形信号が立ち下がる。 In the AC-DC converter of this embodiment, the output of the comparator CMP2 changes to high level when the voltage induced in the auxiliary winding Nb becomes lower than the reference voltage Vref3, that is, when the current of the auxiliary winding decreases to some extent. Then, a one-shot pulse is generated by OPG1, and the flip-flop FF1 is set. Then, the control signal on / off changes to a high level, the switching element SW is turned on, a current flows through the primary side winding Np, and SW2 in the waveform generation circuit RAMP is turned off, so that the input of the comparator CMP1 is gradually increased. The flip-flop FF1 is reset when it becomes higher than the feedback signal FB. Then, the control signal on / off changes to the low level to turn off the switching element SW, and SW2 in the waveform generation circuit RAMP is turned on to discharge the capacitor and the waveform signal falls.
 上記動作を繰り返すことでフィードバック信号FBが一定になるように、一次側巻線Npに電流が流れる期間が制御されて、出力電流パルスのパルス幅が制御される。なお、スイッチング素子SWによる一次側巻線Npの電流のオン、オフ制御は、入力交流電圧ACの周波数よりも充分に高い周波数にて行われる。 The period in which the current flows through the primary winding Np is controlled so that the feedback signal FB becomes constant by repeating the above operation, and the pulse width of the output current pulse is controlled. The on / off control of the current of the primary winding Np by the switching element SW is performed at a frequency sufficiently higher than the frequency of the input AC voltage AC.
 図3の実施例の二次側IC(14)においては、図2に示すように、電源電圧Vccがある電位まで立ち上がると基準電圧Vref1が立ち上がるとともに低電圧検出回路UVLOから出力されるイネーブル信号ENがロウレベルからハイレベルに立ち上がる。これにより、誤差アンプAMP1およびバッファアンプAMP2が活性化されて、誤差アンプAMP1の出力電圧VaおよびバッファアンプAMP2の出力電圧VFBが次第に高くなる。この際、ダイオードD2を設けないものにおいては、図2の(e)のように、バッファアンプAMP2の出力電圧VFBが目標電圧(収束値)に到達するまでの時間Tdが長くなってしまう。 In the secondary side IC (14) of the embodiment of FIG. 3, as shown in FIG. 2, when the power supply voltage Vcc rises to a certain potential, the reference voltage Vref1 rises and the enable signal EN output from the low voltage detection circuit UVLO. Rises from low level to high level. As a result, the error amplifier AMP1 and the buffer amplifier AMP2 are activated, and the output voltage Va of the error amplifier AMP1 and the output voltage VFB of the buffer amplifier AMP2 are gradually increased. At this time, when the diode D2 is not provided, as shown in FIG. 2E, the time Td until the output voltage VFB of the buffer amplifier AMP2 reaches the target voltage (convergence value) becomes long.
 これに対し、ダイオードD2を設けた図3の実施例の二次側IC(14)においては、バッファアンプAMP2の出力電圧VFBは誤差アンプAMP1の出力電圧VaにVf分のオフセットを付加したVa+Vfの電圧になるため、図2(d)のように、誤差アンプAMP1の出力電圧VaがVt-Vfに到達した時点で、バッファアンプAMP2の出力電圧VFBが目標電圧(収束値)に到達するようになるので、所要時間がTdが短縮されるようになる。つまり、電源起動後、制御ループが安定するまでの時間が短くて済むようになる。なお、バッファアンプAMP2の出力に下駄を履かせた分の電圧Vfは、出力に対して誤差アンプの利得分の1の誤差として現れるので、精度上で大きな支障にはならない。 On the other hand, in the secondary side IC (14) of the embodiment of FIG. 3 provided with the diode D2, the output voltage VFB of the buffer amplifier AMP2 is Va + Vf obtained by adding an offset of Vf to the output voltage Va of the error amplifier AMP1. As shown in FIG. 2D, when the output voltage Va of the error amplifier AMP1 reaches Vt−Vf, the output voltage VFB of the buffer amplifier AMP2 reaches the target voltage (convergence value) as shown in FIG. Therefore, the required time Td is shortened. That is, it takes a short time until the control loop is stabilized after the power is turned on. Note that the voltage Vf corresponding to the clogging applied to the output of the buffer amplifier AMP2 appears as an error corresponding to one gain of the error amplifier with respect to the output, so that there is no significant problem in accuracy.
 上記のように、図3の実施例では、バッファアンプAMP2の出力端子と反転入力端子との間に、1個のダイオードD2を設けたものを示したが、2個以上のダイオードを直列に設けるようにしても良い。具体的には、ダイオードの順方向しきい電圧Vfが0.7Vで、定常状態におけるフィードバック電圧VFBの変動範囲を例えば1V~5Vのような範囲に設定したい場合には、図3のように1個のダイオードD2を設ける。また、VFBの変動範囲を例えば2V~5Vのような範囲に設定したい場合には、2個のダイオードを設けるようにすればよい。 As described above, in the embodiment of FIG. 3, one diode D2 is provided between the output terminal and the inverting input terminal of the buffer amplifier AMP2. However, two or more diodes are provided in series. You may do it. Specifically, when the forward threshold voltage Vf of the diode is 0.7 V and the fluctuation range of the feedback voltage VFB in the steady state is to be set to a range such as 1 V to 5 V, for example, as shown in FIG. Diodes D2 are provided. If it is desired to set the fluctuation range of VFB to a range of 2V to 5V, for example, two diodes may be provided.
 次に、本発明の第2の実施形態について説明する。
 図4は、第2の実施形態の絶縁型AC-DCコンバータのブロック構成図である。なお、以下の実施形態では、負荷としてLEDを駆動する電源装置を示して説明するが、本実施形態を適用可能な電源装置は、負荷がLEDである場合に限定されるものではない。本実施形態のAC-DCコンバータは、外部から供給されるPWM制御信号によって出力電圧・電流を制御できるようにするものである。
Next, a second embodiment of the present invention will be described.
FIG. 4 is a block diagram of the insulation type AC-DC converter according to the second embodiment. In the following embodiments, a power supply device that drives an LED as a load will be described and described. However, a power supply device to which the present embodiment can be applied is not limited to a case where the load is an LED. The AC-DC converter according to the present embodiment enables output voltage / current to be controlled by a PWM control signal supplied from the outside.
 本実施形態に係るAC-DCコンバータは、図1に示す第1の実施形態のAC-DCコンバータと同様に、トランスなどからなる電力変換手段10と、変換された交流を整流する整流手段11と、整流された電圧・電流のうち所定の周波数帯の電圧・電流を通過させて負荷30へ供給するフィルタ回路12と、負荷30に流れる電流を検出する検出手段13と、検出された電流値に応じた帰還信号FBを生成する帰還電圧生成回路14と、入力側と出力側とが電気的に絶縁されたフォトカプラなどからなり帰還信号FBを一次側へ伝達する絶縁型の信号伝達手段15と、上記電力変換手段10の一次側に電流を流すMOSトランジスタなどからなるスイッチ手段16と、前記信号伝達手段15によって伝達された信号に応じてスイッチ手段16をオン・オフ制御するパルス信号を生成する制御回路17とを備える。 The AC-DC converter according to the present embodiment is similar to the AC-DC converter according to the first embodiment shown in FIG. 1 in that the power conversion means 10 including a transformer, the rectification means 11 that rectifies the converted alternating current, A filter circuit 12 that passes a voltage / current in a predetermined frequency band out of the rectified voltage / current and supplies the voltage / current to the load 30; a detection means 13 that detects a current flowing through the load 30; and a detected current value. A feedback voltage generation circuit 14 for generating a corresponding feedback signal FB, and an insulating signal transmission means 15 for transmitting the feedback signal FB to the primary side, which includes a photocoupler in which the input side and the output side are electrically insulated. Switch means 16 comprising a MOS transistor or the like for passing a current to the primary side of the power conversion means 10; and switch means according to the signal transmitted by the signal transmission means 15 And a control circuit 17 for generating a pulse signal for controlling on and off 6.
 なお、フィルタ回路12は、カットオフ周波数が、一次側の制御回路17によるスイッチ手段16のスイッチング周波数よりも低く外部から供給される外部PWM制御信号PWMの周波数よりも高くなるように設定されることによって、外部PWM制御信号PWMの周波数と同一の周波数のパルス電流を出力させるようになっている。負荷がLEDランプであるシステムにおいては、外部PWM制御信号PWMは調光を制御するための信号とされる。
 上記のようにフィルタ回路12のカットオフ周波数を、外部PWM制御信号PWMの周波数よりも低く設定した場合には、外部PWM制御信号PWMのデューティ比に応じた絶対値の電流を出力し、DC調光制御が可能となる。DC調光制御の場合には平均出力電流に対するLEDの明るさのリニアリティが悪くなるが、本実施形態の電源装置のように、PWM制御されたパルス電流を出力させてPWM調光制御を行うことによって、平均出力電流に対するLEDの明るさのリニアリティを向上させることができる。また、DC調光制御では出力電流値が変わるとLEDランプの発光色も変わるが、PWM調光制御を行う上記実施形態を適用することで発光色の変化も少なくすることができる。なお、出力のPWM制御のためフィルタ回路12のカットオフ周波数を高くすることで、フィルタ回路12の時定数は小さくなるので、制御ループの安定性を高めるには後段の誤差アンプAMP1の時定数を大きく設定することとなる。
The filter circuit 12 is set such that the cutoff frequency is lower than the switching frequency of the switch means 16 by the primary side control circuit 17 and higher than the frequency of the external PWM control signal PWM supplied from the outside. Thus, a pulse current having the same frequency as that of the external PWM control signal PWM is output. In a system in which the load is an LED lamp, the external PWM control signal PWM is a signal for controlling dimming.
When the cutoff frequency of the filter circuit 12 is set to be lower than the frequency of the external PWM control signal PWM as described above, an absolute current corresponding to the duty ratio of the external PWM control signal PWM is output, and the DC adjustment is performed. Light control is possible. In the case of DC dimming control, the linearity of the brightness of the LED with respect to the average output current is deteriorated, but the PWM dimming control is performed by outputting the PWM-controlled pulse current as in the power supply device of this embodiment. Thus, the linearity of the brightness of the LED with respect to the average output current can be improved. In addition, in the DC dimming control, the emission color of the LED lamp also changes when the output current value changes. However, the change in the emission color can be reduced by applying the above embodiment that performs the PWM dimming control. Note that the time constant of the filter circuit 12 is reduced by increasing the cutoff frequency of the filter circuit 12 for PWM control of the output. Therefore, in order to improve the stability of the control loop, the time constant of the error amplifier AMP1 in the subsequent stage is set. It will be set larger.
 さらに、本発明に係る電源装置は、外部から供給される外部PWM制御信号PWMに応じて帰還電圧生成回路14により一次側へ送る帰還信号を補正するフィードバック量補正回路18と、制御回路17から出力されるオン・オフパルス信号をマスクしてパルスの間引きを行うマスク回路19とを備える。マスク回路19は一次側より伝達されたPWM制御信号に応じて間引き量を変化させるように構成されている。
 なお、二次側回路に外部から供給された外部PWM制御信号PWMは、帰還信号を伝達するフォトカプラ(信号伝達手段)とは別個のフォトカプラにより二次側へ伝達するように構成しても良いが、外部PWM制御信号PWMと帰還電圧生成回路14により生成された帰還信号を二次側で合成してから1つのフォトカプラにより一次側へ伝達し、一次側にPWM制御信号を抽出する信号分離機能を設けるようにしても良い。
Further, the power supply device according to the present invention outputs a feedback amount correction circuit 18 that corrects a feedback signal sent to the primary side by the feedback voltage generation circuit 14 in accordance with an external PWM control signal PWM supplied from the outside, and an output from the control circuit 17. And a mask circuit 19 for thinning out the pulses by masking the ON / OFF pulse signal. The mask circuit 19 is configured to change the thinning amount in accordance with the PWM control signal transmitted from the primary side.
Note that the external PWM control signal PWM supplied from the outside to the secondary circuit may be transmitted to the secondary side by a photocoupler that is separate from the photocoupler (signal transmission means) that transmits the feedback signal. Although it is good, the external PWM control signal PWM and the feedback signal generated by the feedback voltage generation circuit 14 are combined on the secondary side, and then transmitted to the primary side by one photocoupler, and the PWM control signal is extracted to the primary side A separation function may be provided.
 図5には、図4の第2実施形態のAC-DCコンバータの具体的な回路構成が示されている。以下、主として図3の第1実施形態のAC-DCコンバータとの相違点について説明する。
 この第2実施形態の電源装置においては、スイッチング素子SWを駆動する制御回路17は、ORゲートG1,G2およびフリップフロップFF1からなるマスク回路19とともに一次側電源制御用IC(半導体集積回路)23として構成されている。
FIG. 5 shows a specific circuit configuration of the AC-DC converter of the second embodiment shown in FIG. Hereinafter, differences from the AC-DC converter of the first embodiment shown in FIG. 3 will be mainly described.
In the power supply device according to the second embodiment, the control circuit 17 for driving the switching element SW is used as a primary power control IC (semiconductor integrated circuit) 23 together with a mask circuit 19 including OR gates G1 and G2 and a flip-flop FF1. It is configured.
 また、二次側IC14は、誤差アンプAMP1とバッファアンプAMP2を備え、バッファアンプAMP2の出力端子と反転入力端子との間には、第1の実施例と同様に、出力端子から反転入力端子に向かって順方向となるように接続されたダイオードD2が設けられている。このダイオードD2を設けたことにより、バッファアンプAMP2の出力は誤差アンプAMP1の出力VaよりもダイオードD2の順方向しきい値電圧Vf分だけ高い電圧となるように構成されている。
 このように、二次側IC(14)のバッファアンプAMP2の出力端子と反転入力端子との間にダイオードD2を設けたことにより、本実施例においても図3の実施例と同様、図2(d)のように、誤差アンプAMP1の出力電圧VaがVt-Vfに到達した時点で、バッファアンプAMP2の出力電圧VFBが目標電圧Vtに到達するため、電源起動後、制御ループが安定するまでの所要時間Tdが短くて済むようになる。
Further, the secondary side IC 14 includes an error amplifier AMP1 and a buffer amplifier AMP2. Between the output terminal and the inverting input terminal of the buffer amplifier AMP2, as in the first embodiment, the output terminal is changed to the inverting input terminal. A diode D2 is provided so as to be in the forward direction. By providing the diode D2, the output of the buffer amplifier AMP2 is configured to be higher than the output Va of the error amplifier AMP1 by the forward threshold voltage Vf of the diode D2.
Thus, by providing the diode D2 between the output terminal and the inverting input terminal of the buffer amplifier AMP2 of the secondary IC (14), the present embodiment is similar to the embodiment of FIG. As shown in d), when the output voltage Va of the error amplifier AMP1 reaches Vt−Vf, the output voltage VFB of the buffer amplifier AMP2 reaches the target voltage Vt. The required time Td can be shortened.
 また、本実施例においては、フィードバック量補正回路18を設け、外部のPWMパルス生成手段PPGにより生成されたPWM制御信号PWMのデューティ比もしくはパルス幅に応じて、検出電圧VdをVref1に対して相対的に変化させ、一次側回路にPWM制御信号PWMを入れて出力をフィードフォワードで制御した場合に変化する上記電圧Vdの変化を相殺するような働きをすることができるように構成されている。 In this embodiment, a feedback amount correction circuit 18 is provided, and the detection voltage Vd is relative to Vref1 according to the duty ratio or pulse width of the PWM control signal PWM generated by the external PWM pulse generation means PPG. The voltage Vd, which changes when the PWM control signal PWM is input to the primary circuit and the output is controlled by feedforward, can be compensated for.
 本実施例においては、外部PWM制御信号PWMを一次側の電源制御用IC17へ供給して出力電流を変化させ、負荷として接続されるLEDランプの明るさを調整するとともに、それに伴って生じる不所望な検出電圧Vdの変化を相殺するように、外部PWM制御信号PWMに応じてフィードバック量補正回路18により検出電圧Vdをシフトさせて、フィードバック信号FBを補正することで回避できるように構成されている。つまり、外部PWM制御信号PWMのデューティ比が変化しても、参照電圧Vref1に対する相対的な検出電圧Vdの大きさを変化させないようにしている。 In the present embodiment, the external PWM control signal PWM is supplied to the primary-side power supply control IC 17 to change the output current, thereby adjusting the brightness of the LED lamp connected as a load and undesirably occurring along with it. The detection voltage Vd is shifted by the feedback amount correction circuit 18 in accordance with the external PWM control signal PWM so as to cancel the change in the detection voltage Vd, and can be avoided by correcting the feedback signal FB. . That is, even if the duty ratio of the external PWM control signal PWM changes, the magnitude of the detection voltage Vd relative to the reference voltage Vref1 is not changed.
 具体的には、フィードバック量補正回路18は、基準電圧Vref2が供給される定電位端子と誤差アンプAMP1の反転入力端子との間に、直列形態に接続された抵抗R5とNチャネルMOSトランジスタQ5を設け、Q5のゲート端子に外部PWM制御信号PWMを入力してオン/オフ動作させるように構成されている。なお、抵抗R5とトランジスタQ5の接続順序は逆であっても良い。 Specifically, the feedback amount correction circuit 18 includes a resistor R5 and an N-channel MOS transistor Q5 connected in series between the constant potential terminal to which the reference voltage Vref2 is supplied and the inverting input terminal of the error amplifier AMP1. And an external PWM control signal PWM is input to the gate terminal of Q5 for on / off operation. Note that the connection order of the resistor R5 and the transistor Q5 may be reversed.
 この実施例のフィードバック量補正回路18は、外部PWM制御信号PWMのデューティ比に応じて誤差アンプAMP1の反転入力端子へ入力される電圧の平均電位を引き上げるあるいは引き下げるように作用する。すなわち、外部PWM制御信号PWMによってオン/オフされるトランジスタQ5と直列の抵抗R5と、誤差アンプAMP1の反転入力端子と出力端子との間に接続されている容量Cfとでフィルタ回路が構成され、このフィルタ回路によって外部PWM制御信号PWMのパルスを平均化してデューティに比例した電位を発生し、それをセンス抵抗Rsにより電流-電圧変換された検出電圧Vdを平滑した電圧に加算して誤差アンプAMP1へ入力するように構成されている。これにより、図5のフィードバック量補正回路18は、外部PWM制御信号PWMのデューティ比が変化しても誤差アンプAMP1の(-)入力端子の電圧が変化しないように動作することとなる。 The feedback amount correction circuit 18 of this embodiment acts to raise or lower the average potential of the voltage input to the inverting input terminal of the error amplifier AMP1 according to the duty ratio of the external PWM control signal PWM. That is, a filter circuit is configured by the resistor R5 in series with the transistor Q5 that is turned on / off by the external PWM control signal PWM and the capacitor Cf connected between the inverting input terminal and the output terminal of the error amplifier AMP1. This filter circuit averages the pulses of the external PWM control signal PWM to generate a potential proportional to the duty, and adds the detected voltage Vd, which is current-voltage converted by the sense resistor Rs, to the smoothed voltage to add the error amplifier AMP1. Is configured to input. Accordingly, the feedback amount correction circuit 18 in FIG. 5 operates so that the voltage at the (−) input terminal of the error amplifier AMP1 does not change even when the duty ratio of the external PWM control signal PWM changes.
 なお、フィードバック量補正回路18を誤差アンプAMP1の(-)入力端子に接続されたトランジスタQ5と直列の抵抗R5により構成する代わりに、基準電圧Vref1を生成する基準電圧生成回路を、可変電圧源として構成し、誤差アンプAMP1の非反転入力端子へ入力される参照電圧Vref1を外部PWM制御信号PWMのデューティに比例して変化させるように構成することも可能である。ただし、その場合、基準電圧Vref1のシフト方向は上記実施例における検出電圧Vdの方向とは逆の方向となる。 Instead of configuring the feedback amount correction circuit 18 by the resistor R5 in series with the transistor Q5 connected to the (−) input terminal of the error amplifier AMP1, a reference voltage generation circuit that generates the reference voltage Vref1 is used as a variable voltage source. It is also possible to configure so that the reference voltage Vref1 input to the non-inverting input terminal of the error amplifier AMP1 is changed in proportion to the duty of the external PWM control signal PWM. However, in that case, the shift direction of the reference voltage Vref1 is opposite to the direction of the detection voltage Vd in the above embodiment.
 次に、一次側の電源制御用IC23について、図3の実施例との差異について説明する。
 この実施例の電源制御用IC23には、フィードバック信号VFBを二次側のIC14から一次側の電源制御用IC23へ伝達するフォトカプラPC1の他に、外部PWM制御信号PWMを一次側の電源制御用IC23へ伝達するフォトカプラPC2が設けられ、該フォトカプラPC2を構成する受光用トランジスタTr2のコレクタが接続される外部端子P2が設けられている。
Next, the difference between the primary side power supply control IC 23 and the embodiment of FIG. 3 will be described.
In the power supply control IC 23 of this embodiment, in addition to the photocoupler PC1 that transmits the feedback signal VFB from the secondary side IC 14 to the primary side power supply control IC 23, the external PWM control signal PWM is supplied to the primary side power supply control. A photocoupler PC2 for transmission to the IC 23 is provided, and an external terminal P2 to which the collector of the light receiving transistor Tr2 constituting the photocoupler PC2 is connected is provided.
 受光用トランジスタTr2は、そのエミッタ端子が接地電位GNDに接続されているとともに、外部端子P2は、プルアップ抵抗Rp2を介して、電源制御用IC17内部に設けられている内部電源回路20により生成される例えば5Vのような内部電圧Vregが印加される端子に接続され、受光用トランジスタTr1のコレクタにバイアスを与えるように構成されている。これにより、内部電圧VregによりTr2がバイアスされた状態で、フォトカプラPC2のフォトダイオードPD2が点灯されると、Tr2にコレクタ電流が流れ、抵抗Rp2の電圧降下によって外部端子P2の電位が下がり、PWM制御信号PWMが復元され、マスク回路19へ供給される。プルアップ抵抗Rp1,Rp2の代わりに定電流源でプルアップするように構成しても良い。 The emitter terminal of the light receiving transistor Tr2 is connected to the ground potential GND, and the external terminal P2 is generated by the internal power supply circuit 20 provided in the power supply control IC 17 via the pull-up resistor Rp2. For example, it is connected to a terminal to which an internal voltage Vreg such as 5 V is applied, and is configured to apply a bias to the collector of the light receiving transistor Tr1. As a result, when the photodiode PD2 of the photocoupler PC2 is turned on while the Tr2 is biased by the internal voltage Vreg, the collector current flows through the Tr2, and the potential of the external terminal P2 decreases due to the voltage drop of the resistor Rp2, and the PWM The control signal PWM is restored and supplied to the mask circuit 19. Instead of the pull-up resistors Rp1 and Rp2, it may be configured to pull up with a constant current source.
 また、この実施形態の電源装置の一次側には、上記補助巻線Nbと直列に接続された整流用ダイオードD0と、このダイオードD0のカソード端子と接地電位点との間に接続された平滑用コンデンサC2とを有し、平滑された電圧が上記電源制御用IC17の電源電圧端子VCCに印加されている。これとともに、ダイオード・ブリッジ回路22で整流され一次側巻線Npの一方の端子に印加される電圧が、抵抗R0を介して電源制御用IC23の電源電圧端子VCCに供給され、電源起動時の補助巻線Nbに電圧が誘起される前に電源制御用IC23を動作させることができるように構成されている。そして、電源電圧端子VCCに供給された電圧に基づいて上記内部電源電圧Vregを生成する内部電源回路20が、電源制御用IC23内に設けられている。内部電源回路20は、例えばシリーズレギュレータなどで構成される。 Further, on the primary side of the power supply device of this embodiment, a rectifying diode D0 connected in series with the auxiliary winding Nb and a smoothing diode connected between the cathode terminal of the diode D0 and the ground potential point. The smoothed voltage is applied to the power supply voltage terminal VCC of the power supply control IC 17. At the same time, the voltage rectified by the diode bridge circuit 22 and applied to one terminal of the primary winding Np is supplied to the power supply voltage terminal VCC of the power supply control IC 23 via the resistor R0, and assists in starting the power supply. The power supply control IC 23 can be operated before a voltage is induced in the winding Nb. An internal power supply circuit 20 that generates the internal power supply voltage Vreg based on the voltage supplied to the power supply voltage terminal VCC is provided in the power supply control IC 23. The internal power supply circuit 20 is composed of, for example, a series regulator.
 なお、特許文献2に記載されているように、補助巻線に接続された整流用ダイオードと平滑コンデンサとからなるレギュレータをIC外部に設けてフォトカプラPC1,PC2のトランジスタTr1,Tr2に供給してバイアスするように構成することも考えられるが、上記のように、内部電圧VregをフォトカプラPC2のトランジスタTr2に供給してバイアスするように構成することにより、トランジスタTr1,Tr2および制御用ICの外部端子を介して、IC内部の素子に耐圧を越えるような比較的高い電圧が印加されてIC内部の素子が破壊されるのを回避することができる。 As described in Patent Document 2, a regulator composed of a rectifying diode and a smoothing capacitor connected to the auxiliary winding is provided outside the IC and supplied to the transistors Tr1 and Tr2 of the photocouplers PC1 and PC2. Although it is conceivable to configure such that it is biased, as described above, by supplying the internal voltage Vreg to the transistor Tr2 of the photocoupler PC2 and biasing it, the transistors Tr1 and Tr2 and the control IC are externally connected. It can be avoided that a relatively high voltage exceeding the withstand voltage is applied to the elements inside the IC via the terminals to destroy the elements inside the IC.
 また、受光用トランジスタTr1,Tr2のバイアスの仕方としては、本実施形態のように、プルアップ抵抗Rp1,Rp2を介してVregをコレクタに印加する形式の他、図6のように、Vregを受光用トランジスタのコレクタに直接印加してエミッタと接地点との間に抵抗を接続してコレクタ接地とする方式であっても良い。
 しかし、受光用トランジスタをコレクタ接地としかつIC内部で生成した電圧Vregをコレクタに印加するように構成した場合には、Vregを出力する端子と二次側からの信号の入力端子の2つの外部端子を、フォトカプラごとにICに設ける必要がある。これに対し、本実施例のようにプルアップ抵抗Rp1,Rp2を介してVregをTr1,Tr2のコレクタに印加する構成とすることによって、ICの外部端子を増やす必要がなく、コストアップを回避できるという利点がある。
 また、図示しないが、プルアップ抵抗Rp1として抵抗値を調整可能な可変抵抗もしくは可変抵抗回路を使用することで、フォトカプラの特性ばらつきに起因する受信信号のレベルばらつきを補償し、使用するフォトカプラにかかわらず精度の高い信号FBを伝達できるように構成することも可能である。
The light receiving transistors Tr1 and Tr2 are biased by applying Vreg to the collector via the pull-up resistors Rp1 and Rp2 as in this embodiment, and receiving Vreg as shown in FIG. Alternatively, a method may be adopted in which a resistor is connected between the emitter and the grounding point by directly applying to the collector of the transistor for grounding the collector.
However, when the light receiving transistor is connected to the collector ground and the voltage Vreg generated in the IC is applied to the collector, two external terminals, that is, a terminal for outputting Vreg and an input terminal for a signal from the secondary side. Must be provided in the IC for each photocoupler. On the other hand, by adopting a configuration in which Vreg is applied to the collectors of Tr1 and Tr2 via pull-up resistors Rp1 and Rp2 as in this embodiment, it is not necessary to increase the number of external terminals of the IC, and an increase in cost can be avoided. There is an advantage.
Although not shown in the drawings, the use of a variable resistor or a variable resistor circuit whose resistance value can be adjusted as the pull-up resistor Rp1 compensates for variations in received signal level caused by variations in characteristics of the photocoupler, and uses the photocoupler. Regardless of this, it is also possible to configure so that a highly accurate signal FB can be transmitted.
 さらに、本実施例の電源制御用IC23には、フォトカプラPC2により復元された外部PWM制御信号PWMの立上がりを検出してパルス信号を生成するワンショットパルス生成回路OPG2と、外部端子P3に反転入力端子が接続された前記コンパレータCMP2の出力の立上がりを検出してパルス信号を生成するワンショットパルス生成回路OPG1からの信号に応じてスイッチング素子SWのオン、オフ制御信号on/offを生成するロジック回路LGCと、が設けられている。 Further, in the power supply control IC 23 of this embodiment, a one-shot pulse generation circuit OPG2 that detects the rising of the external PWM control signal PWM restored by the photocoupler PC2 and generates a pulse signal, and an inverting input to the external terminal P3 A logic circuit that generates an on / off control signal on / off of the switching element SW in response to a signal from a one-shot pulse generation circuit OPG1 that detects a rising edge of the output of the comparator CMP2 connected to the terminal and generates a pulse signal LGC.
 ロジック回路LGCは、ワンショットパルス生成回路OPG1とOPG2の出力を入力とするORゲートG1と、外部端子P2の電圧をインバータINVで反転した電位とコンパレータCMP1の出力とを入力とするORゲートG2と、ORゲートG1の出力がセット端子Sに入力され、ORゲートG2の出力がリセット端子Rに入力されたRSフリップフロップFF1とから構成されている。
 RSフリップフロップFF1はリセット優先のフリップフロップであり、FF1の出力Qはスイッチング素子SWのオン、オフ制御信号on/offとしてIC外部へ出力され、FF1の反転出力/Qは波形生成回路RAMPのディスチャージ用MOSトランジスタSW2をオン、オフ制御する信号としてSW2のゲート端子に供給される。
The logic circuit LGC includes an OR gate G1 that receives the outputs of the one-shot pulse generation circuits OPG1 and OPG2, and an OR gate G2 that receives the potential obtained by inverting the voltage of the external terminal P2 by the inverter INV and the output of the comparator CMP1. The output of the OR gate G1 is input to the set terminal S, and the output of the OR gate G2 is configured from the RS flip-flop FF1 input to the reset terminal R.
The RS flip-flop FF1 is a reset-priority flip-flop. The output Q of the FF1 is output to the outside of the IC as an on / off control signal on / off of the switching element SW, and the inverted output / Q of the FF1 is discharged from the waveform generation circuit RAMP. The signal is supplied to the gate terminal of SW2 as a signal for controlling on / off of the MOS transistor SW2.
 ORゲートG2とFF1は、外部端子P2から入力される外部PWM制御信号PWMのロウレベルの期間はRSフリップフロップFF1の出力Qを強制的にロウレベルにしてオン、オフ制御信号on/offの出力を禁止するマスク回路として機能する。また、外部PWM制御信号PWMがハイレベルに変化するタイミングで、OPG2によりワンショットパルスが生成されてRSフリップフロップFF1がセットされ、マスクが解除される。 The OR gates G2 and FF1 forcibly set the output Q of the RS flip-flop FF1 to the low level during the low level period of the external PWM control signal PWM input from the external terminal P2, and prohibit the output of the on / off control signal on / off. Functions as a mask circuit. At the timing when the external PWM control signal PWM changes to high level, a one-shot pulse is generated by OPG2, the RS flip-flop FF1 is set, and the mask is released.
 以上本発明者によってなされた発明を実施形態に基づき具体的に説明したが、本発明は前記実施形態に限定されるものではない。例えば、図3や図5の実施例では、フォトカプラを構成するフォトダイオードPD1,PD2のアノード端子をバッファアンプAMP2の出力端子に接続してバッファアンプAMP2の出力電流を流して点灯駆動するように構成されているが、これに限定されず、バッファアンプAMP2の後段に反転増幅回路を設け、該反転増幅回路の出力端子にフォトダイオードPD1,PD2のカソード端子を接続し、反転増幅回路でフォトダイオードから電流を引き込むことで点灯駆動するように構成してもよい。 Although the invention made by the present inventor has been specifically described based on the embodiment, the present invention is not limited to the embodiment. For example, in the embodiments of FIGS. 3 and 5, the anode terminals of the photodiodes PD1 and PD2 constituting the photocoupler are connected to the output terminal of the buffer amplifier AMP2, and the output current of the buffer amplifier AMP2 is supplied to drive the lighting. However, the present invention is not limited to this, and an inverting amplifier circuit is provided after the buffer amplifier AMP2, and the cathode terminals of the photodiodes PD1 and PD2 are connected to the output terminal of the inverting amplifier circuit. Alternatively, a lighting drive may be performed by drawing a current from.
 また、図3や図5の実施例の電源装置は、負荷が電流性負荷であるため電流出力型として構成されているので、出力端子OUT2と接地点との間にセンス抵抗Rsを設けて出力電流を検出するようにしているが、PWM信号で出力電圧の制御を行う電圧出力型の電源装置においては、出力端子OUT1と接地点との間に直列形態の抵抗等からなる分圧回路を設けて出力電圧を検出するようにしてもよい。 3 and 5 is configured as a current output type because the load is a current load, so that a sense resistor Rs is provided between the output terminal OUT2 and the ground point for output. In the voltage output type power supply device that controls the output voltage with a PWM signal, a voltage dividing circuit composed of a series resistor or the like is provided between the output terminal OUT1 and the ground point. Thus, the output voltage may be detected.
 さらに、前記実施形態では、トランスの一次側巻線に間歇的に電流を流すスイッチング素子SWを、電源制御用IC17,23とは別個の素子(MOSトランジスタ)としているが、このスイッチング素子SWを電源制御用IC17,23に取り込んで、1つの半導体集積回路として構成してもよい。また、スイッチング素子SWはMOSトランジスタに限定されずバイポーラトランジスタであってもよい。 Furthermore, in the above embodiment, the switching element SW that allows current to flow intermittently through the primary winding of the transformer is an element (MOS transistor) that is separate from the power supply control ICs 17 and 23. It may be incorporated into the control ICs 17 and 23 and configured as one semiconductor integrated circuit. Further, the switching element SW is not limited to a MOS transistor and may be a bipolar transistor.
 10 電力変換手段
 11 整流手段
 12 フィルタ回路
 13 検出手段
 14 帰還電圧生成回路
 15 信号伝達回路
 15a 信号合成回路
 15b 信号分離回路
 16 スイッチ手段(スイッチング素子)
 17 制御回路(制御用IC)
 18 フィードバック量補正回路
 19 マスク回路
 20 内部電源回路
 21 フィルタ
 22 ダイオード・ブリッジ回路(整流回路)
 23 電源制御用IC
 AMP1 誤差アンプ
 AMP2 バッファアンプ
 AMP3 誤差アンプ
 D2 ダイオード(オフセット付与手段、2端子スイッチング素子)
 PC,PC1,PC2 フォトカプラ(信号伝達手段)
 CMP1,CMP2 コンパレータ
 OPG1,OPG2 ワンショットパルス生成回路
 RAMP 波形信号生成回路
 LGC ロジック回路
DESCRIPTION OF SYMBOLS 10 Power conversion means 11 Rectification means 12 Filter circuit 13 Detection means 14 Feedback voltage generation circuit 15 Signal transmission circuit 15a Signal synthesis circuit 15b Signal separation circuit 16 Switch means (switching element)
17 Control circuit (control IC)
18 Feedback amount correction circuit 19 Mask circuit 20 Internal power supply circuit 21 Filter 22 Diode bridge circuit (rectifier circuit)
23 IC for power control
AMP1 error amplifier AMP2 buffer amplifier AMP3 error amplifier D2 diode (offset applying means, two-terminal switching element)
PC, PC1, PC2 Photocoupler (signal transmission means)
CMP1, CMP2 Comparator OPG1, OPG2 One-shot pulse generation circuit RAMP Waveform signal generation circuit LGC Logic circuit

Claims (7)

  1.  一次側に入力された交流電力を変換して二次側へ出力する電力変換手段と、前記電力変換手段の二次側に設けられた整流手段と、前記整流手段により整流された電流・電圧のうち所定の周波数帯の電流・電圧を通過させるフィルタと、前記フィルタを介して負荷へ供給される出力電流もしくは出力電圧を検出する検出手段と、前記検出手段による検出信号に応じたフィードバック電圧を生成する帰還電圧生成回路と、フィードバック信号に応じて前記電力変換手段の一次側に流す電流を制御するスイッチング素子の制御信号を生成し出力する制御回路と、前記帰還電圧生成回路により生成された電圧に応じて前記フィードバック信号を前記制御回路へ伝達する信号伝達手段と、を有する絶縁型電源装置であって、
     前記帰還電圧生成回路は、
     前記検出信号と所定の基準電圧との電位差に応じた電圧を出力する誤差増幅回路と、該誤差増幅回路の出力をインピーダンス変換して出力するバッファアンプとを備え、前記バッファアンプの出力端子と反転入力端子との間に、該バッファアンプの出力電圧に対して入力電圧よりも所定の電位だけ高いオフセットを付与するオフセット付与手段が接続されていることを特徴とする絶縁型電源装置。
    Power conversion means for converting AC power input to the primary side and outputting it to the secondary side, rectification means provided on the secondary side of the power conversion means, and current / voltage rectified by the rectification means Among them, a filter for passing a current / voltage in a predetermined frequency band, a detection means for detecting an output current or output voltage supplied to a load through the filter, and a feedback voltage corresponding to a detection signal by the detection means are generated. A feedback voltage generation circuit that generates, a control circuit that generates and outputs a control signal for a switching element that controls a current that flows to the primary side of the power conversion unit according to the feedback signal, and a voltage generated by the feedback voltage generation circuit. And a signal transmission means for transmitting the feedback signal to the control circuit in response.
    The feedback voltage generation circuit includes:
    An error amplifying circuit for outputting a voltage corresponding to a potential difference between the detection signal and a predetermined reference voltage; and a buffer amplifier for converting the output of the error amplifying circuit by impedance conversion and inverting the output terminal of the buffer amplifier. An insulated power supply apparatus, wherein an offset applying means for applying an offset higher than the input voltage by a predetermined potential to the output voltage of the buffer amplifier is connected between the input terminal and the input terminal.
  2.  前記オフセット付与手段は、所定の電位差以上で導通状態となる2端子スイッチング素子であり、前記バッファアンプの出力端子から反転入力端子に向かって導通電流が流れるように接続されていることを特徴とする請求項1に記載の絶縁型電源装置。 The offset applying means is a two-terminal switching element that becomes conductive when a predetermined potential difference is exceeded, and is connected so that a conductive current flows from the output terminal of the buffer amplifier toward the inverting input terminal. The insulated power supply device according to claim 1.
  3.  前記誤差増幅回路は、差動アンプを有し該差動アンプの出力端子と反転入力端子との間に容量素子が接続されていることを特徴とする請求項1または2に記載の絶縁型電源装置。 3. The isolated power supply according to claim 1, wherein the error amplifier circuit includes a differential amplifier, and a capacitance element is connected between an output terminal and an inverting input terminal of the differential amplifier. apparatus.
  4.  前記フィルタのカットオフ周波数は、前記制御回路により生成される制御信号のスイッチング周波数よりも低く、外部から供給されるデューティ比に制御情報を有する出力制御パルス信号の周波数よりも高くなるように設定され、
     前記電力変換手段の二次側には、デューティ比に制御情報を有する前記出力制御パルス信号に基づいて前記検出信号の補正を行う補正回路が設けられ、
     前記制御回路は、フィードバック信号に応じたパルス幅を有するPWM制御パルスを生成するパルス生成回路と、該パルス生成回路により生成されたPWM制御パルスを前記出力制御パルス信号に応じて制限するパルス制限回路と、を備え、
     前記補正回路は、一次側回路に出力制御パルス信号を入れて出力をフィードフォワードで制御した場合に変化する上記検出信号の変化を相殺する機能を有するように構成されていることを特徴とする請求項3に記載の絶縁型電源装置。
    The cutoff frequency of the filter is set to be lower than the switching frequency of the control signal generated by the control circuit and higher than the frequency of the output control pulse signal having control information in the duty ratio supplied from the outside. ,
    A correction circuit for correcting the detection signal based on the output control pulse signal having control information in a duty ratio is provided on the secondary side of the power conversion means,
    The control circuit includes a pulse generation circuit that generates a PWM control pulse having a pulse width corresponding to a feedback signal, and a pulse limiting circuit that limits the PWM control pulse generated by the pulse generation circuit according to the output control pulse signal And comprising
    The correction circuit is configured to have a function of canceling a change in the detection signal that changes when an output control pulse signal is input to the primary side circuit and the output is controlled by feedforward. Item 4. The insulated power supply device according to Item 3.
  5.  前記補正回路は、所定の定電位が供給される定電位端子と、前記誤差増幅回路の前記検出信号が入力される側の入力端子との間に直列に接続された抵抗およびトランジスタとを有し、前記トランジスタの制御端子に前記出力制御パルス信号が印加されるように構成されていることを特徴とする請求項4に記載の絶縁型電源装置。 The correction circuit includes a resistor and a transistor connected in series between a constant potential terminal to which a predetermined constant potential is supplied and an input terminal to which the detection signal of the error amplifier circuit is input. 5. The insulated power supply device according to claim 4, wherein the output control pulse signal is applied to a control terminal of the transistor.
  6.  前記信号伝達手段は発光素子と受光素子とからなるフォトカプラであり、
     前記発光素子は前記バッファアンプの出力端子と接地電位点との間に接続され、前記バッファアンプの出力電圧に応じた電流が前記発光素子に流されるように構成されていることを特徴とする請求項4または5に記載の絶縁型電源装置。
    The signal transmission means is a photocoupler composed of a light emitting element and a light receiving element,
    The light emitting element is connected between an output terminal of the buffer amplifier and a ground potential point, and a current corresponding to the output voltage of the buffer amplifier is passed through the light emitting element. Item 6. The insulated power supply device according to Item 4 or 5.
  7.  請求項4~6のいずれかに記載の絶縁型電源装置と、該絶縁型電源装置の出力端子に接続され前記出力電流が流されることで点灯するLEDランプと、前記出力制御パルス信号を生成する制御信号生成手段とを備えた照明装置であって、前記出力制御パルス信号は前記LEDランプの明るさを制御するための調光制御パルスであることを特徴とする照明装置。 The isolated power supply device according to any one of claims 4 to 6, an LED lamp that is connected to an output terminal of the insulated power supply device and that is turned on when the output current flows, and generates the output control pulse signal An illumination device comprising a control signal generating means, wherein the output control pulse signal is a dimming control pulse for controlling the brightness of the LED lamp.
PCT/JP2011/076752 2010-11-26 2011-11-21 Insulated power source device and lighting device WO2012070512A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010263042A JP2012115074A (en) 2010-11-26 2010-11-26 Insulation type power supply device and illumination device
JP2010-263042 2010-11-26

Publications (1)

Publication Number Publication Date
WO2012070512A1 true WO2012070512A1 (en) 2012-05-31

Family

ID=46145854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/076752 WO2012070512A1 (en) 2010-11-26 2011-11-21 Insulated power source device and lighting device

Country Status (2)

Country Link
JP (1) JP2012115074A (en)
WO (1) WO2012070512A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103281839A (en) * 2013-06-08 2013-09-04 陈资格 Wireless intelligent household illuminating system
US10277133B2 (en) * 2016-12-06 2019-04-30 Rohm Co., Ltd. Isolated DC/DC converter, primary side controller, power adapter, and electronic device
CN113623255A (en) * 2020-05-09 2021-11-09 中国石油天然气股份有限公司 Detection method and device of ventilator and variable frequency motor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6417930B2 (en) 2014-12-25 2018-11-07 ミツミ電機株式会社 Non-insulated power supply
JP7066472B2 (en) * 2018-03-26 2022-05-13 ローム株式会社 Light emitting element drive device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03276168A (en) * 1990-03-27 1991-12-06 Canon Inc High voltage power source device
JPH0714693A (en) * 1993-06-25 1995-01-17 R D S Kk Flicker-free electric discharge lamp lighting device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03276168A (en) * 1990-03-27 1991-12-06 Canon Inc High voltage power source device
JPH0714693A (en) * 1993-06-25 1995-01-17 R D S Kk Flicker-free electric discharge lamp lighting device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103281839A (en) * 2013-06-08 2013-09-04 陈资格 Wireless intelligent household illuminating system
US10277133B2 (en) * 2016-12-06 2019-04-30 Rohm Co., Ltd. Isolated DC/DC converter, primary side controller, power adapter, and electronic device
CN113623255A (en) * 2020-05-09 2021-11-09 中国石油天然气股份有限公司 Detection method and device of ventilator and variable frequency motor
CN113623255B (en) * 2020-05-09 2024-05-28 中国石油天然气股份有限公司 Ventilator detection method and device and variable frequency motor

Also Published As

Publication number Publication date
JP2012115074A (en) 2012-06-14

Similar Documents

Publication Publication Date Title
JP5304745B2 (en) Insulated power supply and lighting device
JP5526857B2 (en) Semiconductor integrated circuit for power control and isolated DC power supply
CN109392218B (en) Light modulation device and power conversion device
US6980444B2 (en) Switching power supply
US10128762B2 (en) Semiconductor device for controlling power source
JP5304746B2 (en) Insulated power supply and lighting device
US9312774B2 (en) Switch control method, switch controller, and converter comprising the switch controller
JP5691712B2 (en) Constant current power supply
JP5304747B2 (en) Insulated power supply and lighting device
KR20060044625A (en) Voltage detection circuit, power supply unit and semiconductor device
US20180026523A1 (en) Switching power supply device
WO2012070512A1 (en) Insulated power source device and lighting device
US10104729B2 (en) LED driver circuit, and LED arrangement and a driving method
JP5842420B2 (en) Light control device
US20120314459A1 (en) Feedback circuit and power supply device including the same
US8803433B2 (en) Lighting power source and luminaire
RU153218U1 (en) SECONDARY POWER SUPPLY WITH ELECTRICALLY DISCONNECTED CONTROL
JP6381963B2 (en) Switching power supply circuit
JP2011034728A (en) Light source device for illumination
JP5304748B2 (en) Insulated power supply and lighting device
US7881083B2 (en) Switch control device, switch control method, and converter using the same
JP6409304B2 (en) Isolated DC power supply
KR20040076100A (en) Digital soft start circuit for pulse width modulation signal generator and switching mode power supply including the same
JP2022095331A (en) Switching power source device
JP2024011611A (en) Integrated circuit and power supply circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11842964

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11842964

Country of ref document: EP

Kind code of ref document: A1