WO2012070497A1 - 端末装置、基地局装置、通信システムおよび通信方法 - Google Patents

端末装置、基地局装置、通信システムおよび通信方法 Download PDF

Info

Publication number
WO2012070497A1
WO2012070497A1 PCT/JP2011/076686 JP2011076686W WO2012070497A1 WO 2012070497 A1 WO2012070497 A1 WO 2012070497A1 JP 2011076686 W JP2011076686 W JP 2011076686W WO 2012070497 A1 WO2012070497 A1 WO 2012070497A1
Authority
WO
WIPO (PCT)
Prior art keywords
reception quality
quality information
data
base station
information
Prior art date
Application number
PCT/JP2011/076686
Other languages
English (en)
French (fr)
Other versions
WO2012070497A9 (ja
Inventor
智造 野上
寿之 示沢
立志 相羽
翔一 鈴木
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to EP11843539.5A priority Critical patent/EP2645763B1/en
Priority to US13/989,722 priority patent/US9065513B2/en
Priority to CN201180055931.6A priority patent/CN103222301B/zh
Publication of WO2012070497A1 publication Critical patent/WO2012070497A1/ja
Publication of WO2012070497A9 publication Critical patent/WO2012070497A9/ja
Priority to US14/714,051 priority patent/US9866304B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0632Channel quality parameters, e.g. channel quality indicator [CQI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/063Parameters other than those covered in groups H04B7/0623 - H04B7/0634, e.g. channel matrix rank or transmit mode selection

Definitions

  • the present invention relates to a terminal device, a base station device, a communication system, and a communication method.
  • WCDMA Wideband Code Division Multiple Access
  • LTE Long Term Evolution Evolution
  • LTE-A Long Term Evolution-Adv.E
  • WiMAX Worldwide Interoperability for Microwave Access
  • a terminal device mobile station, receiving station, uplink transmitter, downlink receiver, mobile terminal, cell edge (cell edge) region or sector edge region, Even UE (User Equipment) can communicate without receiving interference of transmission signals from a plurality of base stations.
  • this configuration has a problem that the frequency utilization efficiency is low.
  • frequency utilization efficiency can be improved by using the same frequency between adjacent cells or sectors.
  • Non-Patent Document 1 shows a method for performing these controls.
  • FIG. 13 is a diagram illustrating a base station 1301 and a terminal device 1302 in LTE.
  • terminal apparatus 1302 when adaptively controlling MCS, spatial multiplexing number, and precoder for downlink transmission signal 1303 to be transmitted in LTE, terminal apparatus 1302 performs the following processing.
  • the terminal apparatus 1302 refers to a downlink reference signal (RS: Reference Signal) included in the downlink transmission signal 1303 transmitted from the base station 1301, and rank indicator RI (Rank) that specifies a suitable spatial multiplexing number Indicator quality, reception quality information represented by precoding matrix information PMI (Precoding Matrix Indicator) specifying a suitable precoder, channel quality index CQI (Channel Quality Indicator) specifying a suitable transmission rate, and the like are calculated.
  • PMI Precoding Matrix Indicator
  • CQI Channel Quality Indicator
  • the present invention has been made in view of the above problems, and an object thereof is to efficiently report reception quality information when transmitting reception quality information, which is control information, using a data transmission channel. It is an object to provide a terminal device, a base station device, a communication system, and a communication method.
  • a terminal device is a terminal device that communicates with a base station device, via a channel used for data transmission,
  • the reception quality information is reported to the base station apparatus together with the data
  • the reception quality information is reception quality information reported aperiodically
  • the reception quality information is transmitted by the same spatial multiplexing method as the spatial multiplexing method of the data. If the reception quality information is periodically reported reception quality information, the reception quality information is reported by a spatial multiplexing method independent of the data spatial multiplexing method.
  • a terminal device is the terminal device described above, and the reception quality information is one piece of partial precoder information among a plurality of partial precoder information designating a suitable precoder.
  • a terminal device is a terminal device that communicates with a base station device, and reports reception quality information together with data to the base station device via a channel used for data transmission. If the received quality information is received quality information reported aperiodically, report partial precoder information specifying at least one candidate from a plurality of suitable precoder candidates, and report the received quality information periodically In the case of the received reception quality information, the partial precoder information designating at least one candidate from some candidates among a plurality of suitable precoder candidates is reported.
  • a base station apparatus is a base station apparatus that communicates with a terminal apparatus, and the reception quality information reported together with data from the terminal apparatus via a channel used for data transmission. If the reception quality information is aperiodically reported reception quality information, the reception quality information is assumed to be the same spatial multiplexing method as the data spatial multiplexing method. When the information is extracted and the reception quality information is reception quality information periodically reported, the reception quality information is assumed to be a spatial multiplexing method independent of the data spatial multiplexing method. Extract quality information.
  • the base station apparatus by 1 aspect of this invention is said base station apparatus, Comprising:
  • the said reception quality information is one partial precoder information in the some partial precoder information which designates a suitable precoder. is there.
  • a base station apparatus is a base station apparatus that communicates with a terminal apparatus, and the reception quality information reported together with data from the terminal apparatus via a channel used for data transmission.
  • the reception quality information is aperiodically reported reception quality information
  • partial precoder information specifying at least one candidate is extracted from a plurality of suitable precoder candidates, and the reception quality information is extracted. If the received quality information is periodically reported, partial precoder information specifying at least one candidate is extracted from some candidates among a plurality of suitable precoder candidates.
  • a communication system is a communication system that communicates between a base station device and a terminal device, and the terminal device receives data together with data via a channel used for data transmission.
  • the received quality information is reported by the same spatial multiplexing method as the spatial multiplexing method of the data
  • the reception quality information is reception quality information periodically reported
  • the reception quality information is reported by a spatial multiplexing method independent of the data spatial multiplexing method
  • the base station apparatus When extracting the reception quality information reported together with the data, if the reception quality information is reception quality information reported aperiodically, a spatial multiplexing method of the reception quality information If the reception quality information is extracted as the same spatial multiplexing method as the data spatial multiplexing method, and the reception quality information is periodically reported reception quality information, the reception quality information spatial multiplexing method is The reception quality information is extracted as a spatial multiplexing method independent of the data spatial
  • a communication system is a communication system that performs communication between a base station device and a terminal device, and the terminal device receives data together with data via a channel used for data transmission.
  • report partial precoder information specifying at least one candidate from a plurality of suitable precoder candidates
  • report partial precoder information that specifies at least one candidate from among a plurality of suitable precoder candidates
  • partial precoder information specifying at least one candidate is extracted from a plurality of suitable precoder candidates, and if the reception quality information is periodically reported reception quality information, Partial precoder information specifying at least one candidate is extracted from some of the candidates.
  • a communication method is a communication method in a terminal apparatus that communicates with a base station apparatus, and when receiving reception quality information together with data via a channel used for data transmission,
  • the reception quality information is reception quality information reported aperiodically, the reception quality information is reported by the same spatial multiplexing method as the data spatial multiplexing method, and the reception quality information is periodically reported
  • the method includes reporting the reception quality information by a spatial multiplexing method independent of the data spatial multiplexing method.
  • a communication method is a communication method in a terminal apparatus that communicates with a base station apparatus.
  • When reporting reception quality information together with data via a channel used for data transmission If the received quality information is received quality information reported aperiodically, report partial precoder information specifying at least one candidate from a plurality of suitable precoder candidates, and report the received quality information periodically
  • a communication method is a communication method in a base station device that communicates with a terminal device, and is reported from the terminal device together with data through a channel used for data transmission.
  • the reception quality information is extracted as being the same spatial multiplexing method as the spatial multiplexing method of the data, If the reception quality information is periodically reported reception quality information, the reception quality information may be extracted as a spatial multiplexing method independent of the data spatial multiplexing method.
  • a communication method is a communication method in a base station device that communicates with a terminal device, and is reported from the terminal device together with data through a channel used for data transmission.
  • extracting reception quality information if the reception quality information is reception quality information reported aperiodically, extract partial precoder information specifying at least one candidate from a plurality of suitable precoder candidates, A step of extracting partial precoder information specifying at least one candidate from a plurality of candidates among a plurality of suitable precoder candidates when the reception quality information is periodically reported reception quality information.
  • reception quality information which is control information
  • transmission quality information which is control information
  • FIG. 3 is a diagram illustrating an example of a downlink radio frame configuration according to the embodiment.
  • FIG. FIG. 3 is a diagram illustrating an example of an uplink radio frame configuration according to the embodiment. It is a figure which shows an example of the block configuration of the base station apparatus in the same embodiment. It is a figure which shows an example of the block configuration of the terminal device in the same embodiment. It is a figure which shows an example of the procedure in the aperiodic feedback mode in the embodiment. It is a figure which shows an example of the mapping in the aperiodic feedback mode in the embodiment. It is a figure which shows an example of the procedure in the periodic feedback mode in the embodiment.
  • FIG. 1 is a schematic configuration diagram showing a configuration of a communication system according to an embodiment of the present invention.
  • the communication system of FIG. 1 assumes an LTE-A system.
  • the communication system includes a base station device (base station, transmission station, downlink transmission device, uplink reception device, eNodeB) 101 and a terminal device (mobile station, reception station, uplink transmission device, downlink) constituting a cell.
  • UE User Equipment
  • terminal apparatus 102 When adaptively controlling transmission parameters such as MCS (Modulation and Coding Scheme), rank, and precoder for downlink transmission signal 103 transmitted by Cell # 0 and Cell # 1, terminal apparatus 102 Perform processing. That is, the terminal apparatus 102 refers to a downlink reference signal (RS: Reference Signal) included in the downlink transmission signal 103 transmitted from the base station 101, and rank index RI (Rank) that specifies a suitable spatial multiplexing number Indicator, a plurality of partial precoder information PI (Precoder Information) specifying a suitable precoder (Preferred Precoder), and channel quality specifying a suitable transmission rate (modulation method, coding rate, transport block length, etc.) Receive quality information such as an index CQI (Channel Quality Indicator) is calculated. Next, the terminal apparatus 102 reports the calculated reception quality information to the base station apparatus 101 via the uplink channel 104.
  • RS Reference Signal
  • terminal apparatus 102 reports partial precoder information 1 (PI1, first partial precoder information) and partial precoder information 2 (PI2, second partial precoder information) to base station apparatus 101 as partial precoder information PI.
  • PI1 first partial precoder information
  • PI2 second partial precoder information
  • the terminal apparatus 102 designates a suitable precoder W (i, j) by using an index i that can be represented by m bits as PI1 and an index j that can be represented by n bits as PI2.
  • the terminal apparatus 102 further designates a suitable precoder W (r) (i, j) using the rank r.
  • W (i, j) is a matrix uniquely determined by i and j.
  • the matrix determination method (code book) is shared between the base station apparatus 101 and the terminal apparatus 102.
  • a codebook is a plurality of suitable precoder candidates.
  • a preferable precoder calculation method for example, a method of calculating a precoder that increases the downlink received signal power in consideration of the downlink propagation path can be used.
  • FIG. 2 shows an example of a downlink radio frame configuration according to the present embodiment.
  • OFDM Orthogonal Frequency Division Multiplex
  • a physical downlink control channel (PDCCH; Physical Downlink Control Channel), a physical downlink shared channel (PDSCH; Physical Downlink Shared Channel), and the like are allocated.
  • a downlink reference signal (RS; Reference Signal) is multiplexed on a part of the PDSCH.
  • the downlink radio frame is composed of a downlink resource block (RB) pair.
  • One downlink RB pair is composed of two downlink RBs (RB bandwidth ⁇ slot) that are continuous in the time domain.
  • One downlink RB is composed of 12 subcarriers in the frequency domain, and is composed of 7 OFDM symbols in the time domain.
  • the physical downlink control channel is a physical channel in which downlink control information such as a terminal device identifier, downlink shared channel scheduling information, uplink shared channel scheduling information, modulation scheme, coding rate, and retransmission parameter is transmitted. is there.
  • CC Component Carrier
  • FIG. 3 shows an example of an uplink radio frame configuration according to the present embodiment.
  • SC-FDMA Single Carrier-Frequency Division Multiple Access
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • an uplink reference signal is assigned to a part of PUSCH or PUCCH.
  • the uplink radio frame is composed of uplink RB pairs.
  • the uplink RB pair is a unit such as uplink radio resource allocation.
  • One uplink RB pair is composed of two uplink RBs (RB bandwidth ⁇ slot) that are continuous in the time domain.
  • One uplink RB is composed of 12 subcarriers in the frequency domain, and is composed of 7 SC-FDMA symbols in the time domain.
  • FIG. 4 is a schematic diagram showing an example of a block configuration of base station apparatus 101 according to the present embodiment.
  • base station apparatus 101 includes downlink subframe generating section 401, OFDM signal transmitting section 404, transmitting antenna (base station transmitting antenna) 405, receiving antenna (base station receiving antenna) 406, , An SC-FDMA signal receiving unit 407, a filter unit 408, a code word processing unit 412, and an upper layer 413.
  • the downlink subframe generation unit 401 includes a physical downlink control channel generation unit 402 and a downlink reference signal generation unit 403.
  • the filter unit 408 has a feedback information extraction unit 409.
  • FIG. 5 is a schematic diagram illustrating an example of a block configuration of the terminal device 102 according to the present embodiment.
  • terminal apparatus 102 includes receiving antenna (terminal receiving antenna) 501, OFDM signal receiving section 502, downlink subframe processing section 503, higher layer 506, feedback information generating section 507, It includes a codeword generation unit 508, an uplink subframe generation unit 509, an SC-FDMA signal transmission unit 511, and a transmission antenna (terminal transmission antenna) 512.
  • the downlink subframe processing unit 503 includes a downlink reference signal extraction unit 504 and a physical downlink control channel extraction unit 505.
  • the uplink subframe generation unit 509 includes an uplink reference signal generation unit 510.
  • the downlink subframe generation unit 401 performs error correction on transmission data (also referred to as a transport block) for each codeword (transmission data sequence in the physical layer) transmitted from the higher layer 411.
  • the transmission data is converted into a modulation symbol sequence by performing encoding, rate matching processing, and modulation processing such as PSK (Phase Shift Keying) modulation and QAM (Quadrature Amplitude Modulation) modulation.
  • modulation processing such as PSK (Phase Shift Keying) modulation and QAM (Quadrature Amplitude Modulation) modulation.
  • the downlink subframe generation unit 401 maps the modulation symbol sequence to a resource element (RE; Resource element) that is a mapping unit of the modulation symbol sequence.
  • RE Resource element
  • the downlink subframe generation unit 401 performs precoding processing on the mapped modulation symbol sequence by the precoder instructed by the higher layer 411. Note that the RE in the downlink is defined corresponding to each subcarrier on each OFDM symbol.
  • the transmission data sequence sent from the upper layer 411 includes control data for RRC (Radio Resource Control) signaling.
  • the physical downlink control channel generation unit 402 generates a physical downlink control channel according to an instruction from the higher layer 411.
  • the control information included in the physical downlink control channel includes information such as downlink transmission parameters, uplink resource allocation, uplink transmission parameters, and CQI requests.
  • the downlink reference signal generation unit 403 generates a downlink reference signal DLRS (Down Link Reference Signal).
  • the downlink subframe generation unit 401 maps the physical downlink control channel and the DLRS to the RE in the downlink subframe.
  • the OFDM signal transmission unit 404 modulates the downlink subframe generated by the downlink subframe generation unit 401 into an OFDM signal.
  • the OFDM signal transmission unit 404 transmits the OFDM signal obtained by the modulation via the transmission antenna 405.
  • the OFDM signal receiving unit 502 receives the OFDM signal via the receiving antenna 501.
  • the OFDM signal receiving unit 502 performs OFDM demodulation processing on the received OFDM signal.
  • the downlink subframe processing unit 503 extracts reception data from the received downlink subframe, and sends the extracted reception data to the upper layer 506. More specifically, the downlink subframe processing unit 503 performs modulation processing, rate matching processing, demodulation processing corresponding to error correction coding in the downlink subframe generation unit 401 on the downlink subframe, and Received data is extracted from the downlink subframe by performing error correction decoding or the like.
  • the downlink reference signal extraction unit 504 extracts the DLRS generated in the downlink reference signal generation unit 403 and mapped in the downlink subframe generation unit 401, and sends the extracted DLRS to the feedback information generation unit 507.
  • the physical downlink control channel extraction unit 505 extracts control information generated in the physical downlink control channel generation unit 402 and included in the physical downlink control channel mapped in the downlink subframe generation unit 401, and extracts the control information. The control information is sent to the upper layer 506.
  • processing in downlink subframe generation section 401, OFDM signal transmission section 404, and transmission antenna 405 in base station apparatus 101, and reception antenna 501, OFDM signal reception section 502, and downlink subframe processing section in terminal apparatus 102 The processing in 503 is performed for each downlink cell (CC).
  • the feedback information generation unit 507 generates reception quality information (feedback information) in a plurality of downlink cells.
  • the code word generation unit 508 performs processing such as error correction coding and rate matching processing on transmission data (also referred to as a transport block) for each code word transmitted from the higher layer 506.
  • transmission data also referred to as a transport block
  • the transmission data is converted into a code word CW (Code Word).
  • the feedback information generation unit 507 generates feedback information by encoding RI, PI1, PI2, CQI, and the like using the DLRS extracted by the downlink reference signal extraction unit 507 in accordance with an instruction from the higher layer 506.
  • the uplink reference signal generation unit 510 generates an uplink reference signal ULRS (UpLink Reference Signal).
  • the uplink subframe generation unit 509 rearranges the codeword modulation symbol sequence and the feedback information by a predetermined method. Then, the uplink subframe generation unit 509 maps the rearranged codeword modulation symbol sequence and feedback information together with the uplink reference signal to the uplink subframe.
  • the SC-FDMA signal transmission unit 511 performs SC-FDMA modulation on the uplink subframe to generate an SC-FDMA signal.
  • the SC-FDMA signal transmission unit 511 transmits the generated SC-FDMA signal via the transmission antenna 512.
  • the SC-FDMA signal receiving unit 407 receives the SC-FDMA signal via the receiving antenna 406.
  • the SC-FDMA signal receiving unit 407 performs SC-FDMA demodulation processing on the received SC-FDMA signal.
  • the filter unit 503 extracts a code word from the received uplink subframe, and sends the extracted code word to the code word processing unit 410.
  • the code word processing unit 410 extracts received data from the code word and sends the extracted received data to the upper layer 411. More specifically, the codeword processing unit 410 performs rate matching processing, rate matching processing corresponding to error correction coding, error correction decoding, and the like on the codeword in the codeword generation unit 508. Thus, received data is extracted from the codeword.
  • the feedback information extraction unit 409 in the filter unit 408 extracts the feedback information generated in the feedback information generation unit 507 and mapped in the uplink subframe generation unit 401 in accordance with an instruction from the higher layer 411.
  • the feedback information extraction unit 409 decodes the extracted Fordback information and sends the decoded feedback information to the upper layer 411.
  • a method such as ZF (Zero Forcing), MMSE (Minimum Mean Square Error), and MLD (Maximum Likelihood Detection) is used for the reception signal for each reception antenna 406.
  • ZF Zero Forcing
  • MMSE Minimum Mean Square Error
  • MLD Maximum Likelihood Detection
  • FIG. 6 shows an example of a procedure according to the present embodiment.
  • the procedure shown in FIG. 6 is an example of a procedure in an aperiodic feedback mode (first feedback mode) in which RI, PI1, PI2, and W-CQI are fed back aperiodically.
  • the base station apparatus 101 sets a feedback parameter in the terminal apparatus 102 via RRC signaling (step S601).
  • the base station apparatus 101 notifies the terminal apparatus 102 of a CQI request that is information for instructing aperiodic feedback (step S602).
  • the base station apparatus 101 allocates a resource (for example, a physical uplink shared channel) that reports feedback information at the same time.
  • a resource for example, a physical uplink shared channel
  • the terminal apparatus 102 instructed for aperiodic feedback reports RI, PI1, PI2, and W-CQI to the base station apparatus 101 simultaneously (at the same timing) according to the set feedback parameters (step S603).
  • terminal apparatus 102 further reports S-CQI to base station apparatus 101 at the same time.
  • the terminal apparatus 102 reports S-CQIs of a plurality of bands BP to the base station apparatus 101 at the same time.
  • requirement in the terminal device 102 in step S602 by the dynamic signaling via a physical downlink control channel is demonstrated here, it is not restricted to this.
  • the same effect can be obtained even if the base station apparatus 101 instructs the terminal apparatus 102 to perform aperiodic feedback using quasi-static signaling via RRC signaling. In this case, it is preferable to specify a subframe to be further reported.
  • FIG. 7 shows an example of feedback information mapping.
  • the rearrangement and mapping shown in FIG. 7 are examples in the case of transmitting a plurality of CWs (CW0 and CW1) in the uplink.
  • CW0 and CW1 are transmitted using layer 1 and layer 2, respectively.
  • the “layer” is a spatially multiplexed index.
  • the “number of layers” indicates the number of spatial multiplexing.
  • ULRS is mapped to the 4th and 11th SC-FDMA symbols of each layer.
  • the feedback information including the RI and other feedback information (for example, W-CQI, PI1, and PI2) are rearranged as shown in FIG.
  • the parameters here are only examples, and other parameters can be used as a matter of course.
  • the terminal apparatus 102 may perform the same mapping as in layer 1 in FIG.
  • CQI, PI1, and PI2 are first combined with CW0.
  • the feedback information including CQI and PI2 is combined in the order of CW0.
  • the combined symbol sequence is the frontmost of the first SC-FDMA symbol of layer 1, the forefront of the second SC-FDMA symbol of layer 1,... Mapping from the forefront of each SC-FDMA symbol of the layer transmitting CW0, such as the forefront of the 1st SC-FDMA symbol, the 2nd from the front of the 1st SC-FDMA symbol of layer 1, and so on. Sorting is performed as shown.
  • CW1 is, in order from the beginning of the sequence, the forefront of the first SC-FDMA symbol of layer 2, the forefront of the second SC-FDMA symbol of layer 2,..., The 14th SC- of layer 2
  • the forefront of the FDMA symbol, the second from the front of the first SC-FDMA symbol of layer 2, and so on, are mapped sequentially from the forefront of each SC-FDMA symbol of the layer transmitting CW1.
  • Sorting is done.
  • RI is part or all of the SC-FDMA symbols near ULRS in all layers (for example, after the second, sixth, ninth and thirteenth SC-FDMA symbols in layers 1 and 2 as shown in FIG. 7). Rearrangement is performed to be mapped. That is, terminal apparatus 102 transmits (reports) RI and CQI, PI1, and PI2 to base station apparatus 101 using different spatial multiplexing numbers or independent spatial multiplexing methods and mapping methods.
  • the uplink subframe generation unit 509 performs these rearrangement and mapping processes under the instruction of the upper layer 506.
  • the feedback information extraction unit 409 in the base station apparatus 101 performs demapping corresponding to the mapping in the uplink subframe generation unit 509 and rearrangement in the uplink subframe generation unit 509 under the instruction of the higher layer 411. Feedback information is acquired by performing a sorting process to restore the original.
  • the terminal apparatus 102 designates a suitable precoder W (i, j) using an index i that can be represented by m bits as PI1 and an index j that can be represented by n bits as PI2. To do.
  • a code book defines the maximum 2 m + n types of W (i, j). In the aperiodic feedback mode, feedback with a high degree of freedom is possible by increasing the degree of freedom in selecting W (i, j) in the codebook.
  • FIG. 8 shows an example of a procedure in the periodic feedback mode according to the present embodiment.
  • the procedure shown in FIG. 8 is an example of a procedure in a periodic feedback mode (second feedback mode) in which RI, PI1, PI2, and W-CQI (Wideband CQI) in one cell are periodically fed back.
  • the W-CQI is one CQI representing the system bandwidth (component carrier bandwidth).
  • the feedback mode here refers to a combination of contents of reception quality information fed back from the terminal apparatus 102 to the base station apparatus 101, a method of measuring or generating each content, a resource feedback method, or a resource used for feedback, etc. Including settings.
  • the base station apparatus 101 sets a feedback parameter in the terminal apparatus 102 via RRC signaling, and instructs the terminal apparatus 102 to enter the second feedback mode (step S801).
  • the terminal apparatus 102 instructed to perform periodic feedback physically transmits the RI and PI1 (step S802) and PI2 and W-CQI (step S803) to the base station apparatus 101 according to the set feedback parameters.
  • Report via uplink control channel.
  • the report in step S802 is referred to as “feedback type 1A”
  • the report in step S803 is referred to as “feedback type 1B”.
  • FIG. 9 shows another example of the procedure in the periodic feedback mode according to the present embodiment.
  • the procedure shown in FIG. 9 is a periodic feedback mode (third mode) in which RI, PTI (Precoder Type Indication), PI1, PI2, W-CQI, and S-CQI (Subband-CQI) in one cell are periodically fed back.
  • This is an example of a procedure in the feedback mode).
  • terminal apparatus 102 In the feedback mode in which S-CQI (Subband-CQI) is periodically fed back, terminal apparatus 102 further reports S-CQI periodically.
  • the S-CQI is a CQI representing the divided band BP (Bandwidth Part) when the system bandwidth (component carrier bandwidth) is divided into a plurality of narrow bands. More specifically, S-CQI is CQI in one subband of one or more subbands (bands obtained by further dividing BP) included in BP.
  • the PTI is an index for switching the content to be fed back.
  • the base station apparatus 101 sets a feedback parameter in the terminal apparatus 102 via RRC signaling, and instructs the terminal apparatus 102 to enter the third feedback mode (step S901).
  • the terminal apparatus 102 instructed to perform periodic feedback periodically reports the RI and PTI (step S902) to the base station apparatus 101 via the physical uplink control channel according to the set feedback parameter.
  • the terminal apparatus 102 When the PTI reported in step 902 indicates a precoder type that reports PI2 for each subband, the terminal apparatus 102 follows PI1 and W-CQI (step S903) and PI2 and S according to the set feedback parameters. -CQI (step S903) is periodically reported to the base station apparatus 101 via the physical uplink control channel.
  • PI2 is PI2 calculated in a subband corresponding to S-CQI that is transmitted simultaneously.
  • the terminal apparatus 102 when the PTI reported in step 902 indicates a precoder type that reports PI2 in the system bandwidth (component carrier bandwidth), the terminal apparatus 102 follows PI2 and W-CQI according to the set feedback parameters. (Step S905) and S-CQI (Step S906) are periodically reported to the base station apparatus 101 via the physical uplink control channel. In this case, the terminal apparatus 102 uses a code book that does not report PI1 and designates a suitable precoder only by PI2.
  • the report of step S902 is “feedback type 2A”
  • the report of step S903 is “feedback type 2B”
  • the report of step S904 is “feedback type 2C”
  • the report of step S905 is “feedback type 2D”
  • step S906 The report is referred to as “feedback type 2E”.
  • the feedback type 2D may be a report similar to the feedback type 1B, or the calculation method of PI2 and W-CQI can be individually set.
  • FIG. 10 shows another example of the procedure in the periodic feedback mode according to the present embodiment.
  • the procedure shown in FIG. 10 is an example of a procedure in a periodic feedback mode (fourth feedback mode) in which RI, PI1, PI2, W-CQI, and S-CQI in one cell are periodically fed back.
  • the base station apparatus 101 sets a feedback parameter in the terminal apparatus 102 via RRC signaling and instructs a fourth feedback mode (step S1001).
  • the terminal apparatus 102 instructed to perform periodic feedback periodically reports RI (step S1002) to the base station apparatus 101 via the physical uplink control channel according to the set feedback parameter.
  • the terminal apparatus 102 periodically performs PI1, PI2, and W-CQI (step S1003) and S-CQI (step S1003) via the physical uplink control channel.
  • the report in step S1002 is referred to as “feedback type 3A”
  • the report in step S1003 is referred to as “feedback type 3B”
  • the report in step S1004 is referred to as “feedback type 3C”.
  • the feedback type 3C may be the same report as the feedback type 2E, or the S-CQI calculation method can be individually set.
  • FIG. 11 shows an example of a procedure in uplink (UL) data transmission according to the present embodiment.
  • base station apparatus 101 notifies terminal apparatus 102 of UL grant, which is control information (step S1101).
  • the control information includes allocation information indicating allocation of a physical uplink shared channel that is a channel for uplink data transmission in the physical layer.
  • the terminal apparatus 102 notified of the UL grant transmits UL data to the base station apparatus 101 using the physical uplink shared channel indicated by the allocation information (step S1002).
  • any feedback information report (Step S802, Step S803, Step S902, Step S903, Step S904, Step S905, Step S906, Step S1002, Step S1003, Step S1004) is usually performed in the physical layer.
  • a physical uplink control channel which is a channel for reporting control information in
  • the terminal apparatus 102 determines that the physical uplink The feedback information is reported to the base station apparatus 101 simultaneously with the UL data through the shared channel.
  • the operation of reporting control information in the physical layer via the physical uplink shared channel instead of the physical uplink shared channel is referred to as “piggyback”.
  • FIG. 12 shows an example of feedback information mapping.
  • the rearrangement and mapping shown in FIG. 12 are examples in the case of transmitting a plurality of CWs (CW0 and CW1) in the uplink.
  • CW0 and CW1 are transmitted using layer 1 and layer 2, respectively.
  • mapping at the time of piggybacking of feedback type 1A is shown.
  • the terminal apparatus 102 sends feedback information including RI and PI1 to some or all of the SC-FDMA symbols near the ULRS in all layers (for example, layers 1 and 2 as shown in FIG. 12). (2), (6), (9), and (13) after the 13th SC-FDMA symbol). That is, terminal apparatus 102 securely transmits (reports) RI and PI1 to base station apparatus 101 by a spatial multiplexing method independent of UL data (a method of substantially reducing the spatial multiplexing number).
  • the uplink subframe generation unit 509 performs these rearrangement and mapping processes under the instruction of the upper layer 506.
  • the feedback information extraction unit 409 in the base station apparatus 101 performs demapping corresponding to the mapping in the uplink subframe generation unit 509 and rearrangement in the uplink subframe generation unit 509 under the instruction of the higher layer 411. Feedback information is acquired by performing a sorting process to restore the original.
  • a codebook used for calculating PI1 and PI2 at the time of piggybacking in the periodic feedback mode will be described.
  • the code book a code book similar to the code book in the aperiodic feedback mode is used.
  • the overhead due to the feedback information can be reduced by reducing the degree of freedom in selecting W (i, j) in the codebook.
  • the terminal apparatus 102 extracts (subsamples) some possible values of the index i that can be represented by m bits as PI1 from 0, 1,..., 2 m ⁇ 1. Is set to a value smaller than m bits. Similarly, the terminal apparatus 102 sets the number of bits required for PI2 to a value smaller than n bits. By limiting the types of W (i, j) that can be expressed by PI1 and PI2, the number of bits of PI1 and PI2 can be suppressed.
  • the terminal apparatus 102 when the terminal apparatus 102 reports PI1 to the base station apparatus 101 via the physical uplink shared channel in the aperiodic feedback mode, the terminal apparatus 102 multiplexes PI1 into one CW. On the other hand, when reporting PI1 to the base station apparatus 101 via the physical uplink shared channel at the time of piggybacking in the periodic feedback mode, the terminal apparatus 102 multiplexes PI1 to all CWs. In other words, when reporting the PI1 to the base station apparatus 101 via the physical uplink shared channel in the aperiodic feedback mode, the terminal apparatus 102 spatially multiplexes and transmits the PI1 as with the UL data.
  • the terminal apparatus 102 when the terminal apparatus 102 reports PI1 to the base station apparatus 101 via the physical uplink shared channel at the time of piggybacking in the periodic feedback mode, the terminal apparatus 102 is a spatial multiplexing method (substantially different from UL data). In the method of setting the spatial multiplexing number to 1).
  • the terminal apparatus 102 when reporting the reception quality information to the base station apparatus 101 via the physical uplink shared channel, the terminal apparatus 102 transmits the reception quality information in a safe manner if reception quality information can cause error propagation. If the quality information does not cause error propagation, it can be transmitted by a method with reduced overhead. For this reason, the terminal apparatus 102 can perform efficient feedback of reception quality information.
  • the terminal apparatus 102 when reporting PI1 or PI2 to the base station apparatus 101 via the physical uplink shared channel in the aperiodic feedback mode, the terminal apparatus 102 does not subsample the PI1 or PI2 codebook.
  • the terminal apparatus 102 when reporting PI1 or PI2 to the base station apparatus 101 via the physical uplink shared channel at the time of piggybacking in the periodic feedback mode, the terminal apparatus 102 subsamples the codebook of PI1 or PI2. In other words, the terminal apparatus 102 selects a suitable precoder from some candidates among a plurality of suitable precoder candidates.
  • the terminal apparatus 102 when the terminal apparatus 102 reports PI1 or PI2 to the base station apparatus 101 via the physical uplink shared channel in the aperiodic feedback mode, the terminal apparatus 102 transmits PI1 or PI2 that can be expressed in X bits to the base station apparatus 101. Send.
  • the terminal apparatus 102 when reporting PI1 or PI2 to the base station apparatus 101 via the physical uplink shared channel at the time of piggybacking in the periodic feedback mode, the terminal apparatus 102 can be represented by Y bits (Y ⁇ X). PI1 or PI2 is transmitted to the base station apparatus 101.
  • the terminal apparatus 102 when the terminal apparatus 102 reports the reception quality information to the base station apparatus 101 via the physical uplink shared channel, the terminal apparatus 102 transmits the detailed reception quality information when receiving the CQI request, and receives the CQI request. If not, it can be transmitted by a method with reduced overhead. For this reason, the terminal apparatus 102 can perform efficient feedback of reception quality information.
  • PI1 may not be reported.
  • a suitable precoder may be a code book that is uniquely determined only from PI2.
  • the feedback type including PI1 may be a feedback type for reporting content other than PI1.
  • a program for realizing all or part of the functions of base station apparatus 101 or a program for realizing all or part of functions of terminal apparatus 102 is recorded on a computer-readable recording medium.
  • the program recorded on the recording medium may be read into a computer system and the processing of each unit may be performed by executing the program.
  • the “computer system” includes an OS (Operating System) and hardware such as peripheral devices.
  • the “computer system” includes a homepage providing environment (or display environment) if a WWW system is used.
  • the “computer-readable recording medium” refers to a portable medium such as a flexible disk, a magneto-optical disk, a ROM, and a CD-ROM, and a storage device such as a hard disk built in the computer system. Furthermore, the “computer-readable recording medium” dynamically holds a program for a short time like a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line. In this case, a volatile memory in a computer system serving as a server or a client in that case, and a program that holds a program for a certain period of time are also included.
  • the program may be a program for realizing a part of the functions described above, and may be a program capable of realizing the functions described above in combination with a program already recorded in a computer system.
  • each unit may be realized by consolidating all or part of the functions of the base station apparatus 101 into an integrated circuit and consolidating all or part of the functions of the terminal apparatus 102 into the integrated circuit.
  • Each functional block of each of the base station apparatus 101 and the terminal apparatus 102 may be individually chipped, or a part or all of them may be integrated into a chip.
  • the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor.
  • an integrated circuit based on the technology can also be used.
  • the present invention is suitable for use in a wireless terminal device, a wireless base station device, a wireless communication system, and a wireless communication method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

 基地局装置(101)と端末装置(102)との間で通信する通信システムにおいて、端末装置は、データ送信に用いるチャネルを介して、データと共に受信品質情報を基地局装置に報告するに際し、受信品質情報が非周期的に報告される情報である場合には受信品質情報をデータの空間多重方法と同じ空間多重方法で報告し、受信品質情報が周期的に報告される情報である場合には受信品質情報をデータの空間多重方法とは独立した空間多重方法で報告する。基地局装置は、端末装置からデータと共に報告された受信品質情報を抽出するに際し、受信品質情報が非周期的に報告される情報である場合には受信品質情報をデータの空間多重方法と同じ空間多重方法であるとして抽出し、受信品質情報が周期的に報告される情報である場合には受信品質情報をデータの空間多重方法とは独立した空間多重方法であるとして抽出する。

Description

端末装置、基地局装置、通信システムおよび通信方法
 本発明は、端末装置、基地局装置、通信システムおよび通信方法に関する。
 従来、3GPP(Third Generation Partnership Project)で規格化されているWCDMA(Wideband Code Division Multiple Access)、LTE(Long Term Evolution)、およびLTE-A(LTE-Advanced)、並びにIEEE802.16委員会において規格化されているWiMAX(Worldwide Interoperability for Microwave Access)のような移動無線通信システムが知られている。これらの移動無線通信システムでは、基地局装置(基地局、送信局、下りリンク送信装置、上りリンク受信装置、eNodeB)あるいは基地局に準じる送信局がカバーするエリアをセル(Cell)状に複数配置するセルラー構成とすることにより、通信エリアを拡大することができる。
 また、隣接するセル間またはセクタ間で異なる周波数を用いることでセル端(セルエッジ)領域またはセクタ端領域にいる端末装置(移動局、受信局、上りリンク送信装置、下りリンク受信装置、移動端末、UE;User Equipment)でも、複数の基地局からの送信信号の干渉を受けることなく通信を行うことができる。しかしながら、この構成の場合、周波数利用効率が低いという問題があった。一方、隣接するセルまたはセクタ間で同一周波数を利用することで、周波数利用効率を向上させることができる。しかしながら、この構成の場合、セル端領域にいる端末装置に対する干渉の対策が必要となる。
 また、基地局と端末装置との間の伝送路状況に応じて、変調方式および符号化率(MCS; Modulation and Coding Scheme)、空間多重数(レイヤー数、ランク)、およびプレコーダ(プリコーダ)などを適応的に制御することで、より効率的なデータ伝送を実現することができる。以下に示す非特許文献1では、これらの制御を行う方法が示されている。
 図13は、LTEにおける基地局1301と端末装置1302とを示す図である。図13を参照して、LTEにおいて、送信される下りリンク送信信号1303に対してMCS、空間多重数、およびプレコーダを適応的に制御するに際し、端末装置1302は以下の処理を行なう。すなわち、端末装置1302は、基地局1301から送信される下りリンク送信信号1303に含まれる下りリンク参照信号(RS:Reference Signal)を参照して、好適な空間多重数を指定するランク指標RI(Rank Indicator)、好適なプレコーダを指定するプレコーディング行列情報PMI(Precoding Matrix Indicator)、および好適な伝送レートを指定するチャネル品質指標CQI(Channel Quality Indicator)などに代表される受信品質情報を計算する。次いで、端末装置1302は、計算された受信品質情報を、上りリンクのチャネル1304を介して基地局1301に報告する。
3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA);Physical layer procedures (Release 8)、2008年12月、3GPP TS36.213 V8.8.0 (2009-9)
 しかしながら、従来の通信方式では、データ送信用のチャネルを用いて制御情報である受信品質情報を送信する際に、状況によらず受信品質情報に対する処理が一義的であったため、伝送効率の向上を妨げる要因となっていた。
 本発明は、上記問題を鑑みてなされたものであり、その目的は、データ送信用のチャネルを用いて制御情報である受信品質情報を送信する際に、効率的な受信品質情報の報告を行なうことができる端末装置、基地局装置、通信システムおよび通信方法を提供することにある。
 (1)この発明は上述した課題を解決するためになされたもので、本発明の一態様による端末装置は、基地局装置と通信する端末装置であって、データ送信に用いるチャネルを介して、データと共に受信品質情報を基地局装置に報告するに際し、前記受信品質情報が非周期的に報告される受信品質情報である場合、前記受信品質情報を前記データの空間多重方法と同じ空間多重方法で報告し、前記受信品質情報が周期的に報告される受信品質情報である場合、前記受信品質情報を前記データの空間多重方法とは独立した空間多重方法で報告する。
 (2)また、本発明の一態様による端末装置は上記の端末装置であって、前記受信品質情報は、好適なプレコーダを指定する複数の部分プレコーダ情報のうちの一つの部分プレコーダ情報である。
 (3)また、本発明の一態様による端末装置は、基地局装置と通信する端末装置であって、データ送信に用いるチャネルを介して、データと共に受信品質情報を基地局装置に報告するに際し、前記受信品質情報が非周期的に報告される受信品質情報である場合、好適なプレコーダの複数の候補から少なくとも一つの候補を指定する部分プレコーダ情報を報告し、前記受信品質情報が周期的に報告される受信品質情報である場合、好適なプレコーダの複数の候補のうちの一部の候補から少なくとも一つの候補を指定する部分プレコーダ情報を報告する。
 (4)また、本発明の一態様による基地局装置は、端末装置と通信する基地局装置であって、前記端末装置から、データ送信に用いるチャネルを介して、データと共に報告された受信品質情報を抽出するに際し、前記受信品質情報が非周期的に報告される受信品質情報である場合、前記受信品質情報の空間多重方法が前記データの空間多重方法と同じ空間多重方法であるとして当該受信品質情報を抽出し、前記受信品質情報が周期的に報告される受信品質情報である場合、前記受信品質情報の空間多重方法が前記データの空間多重方法とは独立した空間多重方法であるとして当該受信品質情報を抽出する。
 (5)また、本発明の一態様による基地局装置は上記の基地局装置であって、前記受信品質情報は、好適なプレコーダを指定する複数の部分プレコーダ情報のうちの一つの部分プレコーダ情報である。
 (6)また、本発明の一態様による基地局装置は、端末装置と通信する基地局装置であって、前記端末装置から、データ送信に用いるチャネルを介して、データと共に報告された受信品質情報を抽出するに際し、前記受信品質情報が非周期的に報告される受信品質情報である場合、好適なプレコーダの複数の候補から少なくとも一つの候補を指定する部分プレコーダ情報を抽出し、前記受信品質情報が周期的に報告される受信品質情報である場合、好適なプレコーダの複数の候補のうちの一部の候補から少なくとも一つの候補を指定する部分プレコーダ情報を抽出する。
 (7)また、本発明の一態様による通信システムは、基地局装置と端末装置との間で通信する通信システムであって、前記端末装置は、データ送信に用いるチャネルを介して、データと共に受信品質情報を基地局装置に報告するに際し、前記受信品質情報が非周期的に報告される受信品質情報である場合、前記受信品質情報を前記データの空間多重方法と同じ空間多重方法で報告し、前記受信品質情報が周期的に報告される受信品質情報である場合、前記受信品質情報を前記データの空間多重方法とは独立した空間多重方法で報告し、前記基地局装置は、前記端末装置から、前記データと共に報告された受信品質情報を抽出するに際し、前記受信品質情報が非周期的に報告される受信品質情報である場合、前記受信品質情報の空間多重方法が前記データの空間多重方法と同じ空間多重方法であるとして当該受信品質情報を抽出し、前記受信品質情報が周期的に報告される受信品質情報である場合、前記受信品質情報の空間多重方法が前記データの空間多重方法とは独立した空間多重方法であるとして当該受信品質情報を抽出する。
 (8)また、本発明の一態様による通信システムは、基地局装置と端末装置との間で通信する通信システムであって、前記端末装置は、データ送信に用いるチャネルを介して、データと共に受信品質情報を基地局装置に報告するに際し、前記受信品質情報が非周期的に報告される受信品質情報である場合、好適なプレコーダの複数の候補から少なくとも一つの候補を指定する部分プレコーダ情報を報告し、前記受信品質情報が周期的に報告される受信品質情報である場合、好適なプレコーダの複数の候補のうちの一部の候補から少なくとも一つの候補を指定する部分プレコーダ情報を報告し、前記基地局装置は、前記端末装置から、前記データと共に報告された受信品質情報を抽出するに際し、前記受信品質情報が非周期的に報告される受信品質情報である場合、好適なプレコーダの複数の候補から少なくとも一つの候補を指定する部分プレコーダ情報を抽出し、前記受信品質情報が周期的に報告される受信品質情報である場合、好適なプレコーダの複数の候補のうちの一部の候補から少なくとも一つの候補を指定する部分プレコーダ情報を抽出する。
 (9)また、本発明の一態様による通信方法は、基地局装置と通信を行う端末装置における通信方法であって、データ送信に用いるチャネルを介して、データと共に受信品質情報を報告するに際し、前記受信品質情報が非周期的に報告される受信品質情報である場合、前記受信品質情報を前記データの空間多重方法と同じ空間多重方法で報告し、前記受信品質情報が周期的に報告される受信品質情報である場合、前記受信品質情報を前記データの空間多重方法とは独立した空間多重方法で報告するステップを有することを特徴とする。
 (10)また、本発明の一態様による通信方法は、基地局装置と通信を行う端末装置における通信方法であって、データ送信に用いるチャネルを介して、データと共に受信品質情報を報告するに際し、前記受信品質情報が非周期的に報告される受信品質情報である場合、好適なプレコーダの複数の候補から少なくとも一つの候補を指定する部分プレコーダ情報を報告し、前記受信品質情報が周期的に報告される受信品質情報である場合、好適なプレコーダの複数の候補のうちの一部の候補から少なくとも一つの候補を指定する部分プレコーダ情報を報告するステップを有することを特徴とする。
 (11)また、本発明の一態様による通信方法は、端末装置と通信を行う基地局装置における通信方法であって、前記端末装置から、データ送信に用いるチャネルを介して、データと共に報告された受信品質情報を抽出するに際し、前記受信品質情報が非周期的に報告される受信品質情報である場合、前記受信品質情報を前記データの空間多重方法と同じ空間多重方法であるとして抽出し、前記受信品質情報が周期的に報告される受信品質情報である場合、前記受信品質情報を前記データの空間多重方法とは独立した空間多重方法であるとして抽出するステップを有することを特徴とする。
 (12)また、本発明の一態様による通信方法は、端末装置と通信を行う基地局装置における通信方法であって、前記端末装置から、データ送信に用いるチャネルを介して、データと共に報告された受信品質情報を抽出するに際し、前記受信品質情報が非周期的に報告される受信品質情報である場合、好適なプレコーダの複数の候補から少なくとも一つの候補を指定する部分プレコーダ情報を抽出し、前記受信品質情報が周期的に報告される受信品質情報である場合、好適なプレコーダの複数の候補のうちの一部の候補から少なくとも一つの候補を指定する部分プレコーダ情報を抽出するステップを有することを特徴とする。
 この発明によれば、データ送信用のチャネルを用いて制御情報である受信品質情報を送信する際に、効率的な受信品質情報の報告を行なうことができる。
本発明の実施の形態に係る通信システムの構成を示す概略構成図である。 同実施の形態における下りリンクの無線フレーム構成の一例を示す図である。 同実施の形態における上りリンクの無線フレーム構成の一例を示す図である。 同実施の形態における基地局装置のブロック構成の一例を示す図である。 同実施の形態における端末装置のブロック構成の一例を示す図である。 同実施の形態における非周期的フィードバックモードにおけるプロシージャの一例を示す図である。 同実施の形態における非周期的フィードバックモードにおけるマッピングの一例を示す図である。 同実施の形態における周期的フィードバックモードにおけるプロシージャの一例を示す図である。 同実施の形態における周期的フィードバックモードにおけるプロシージャの他の一例を示す図である。 同実施の形態における周期的フィードバックモードにおけるプロシージャの他の一例を示す図である。 同実施の形態における上りリンクデータ送信におけるプロシージャの一例を示す図である。 同実施形態における周期的フィードバックモードのピギーバック時におけるマッピングの一例を示す図である。 通信システムの構成を示す概略構成図である。
 以下、図面を参照して、本発明の実施の形態について説明する。以下の説明では、同一の部品には同一の符号を付してある。それらの名称および機能も同じである。したがって、それらについての詳細な説明は繰り返さない。
 図1は、本発明の実施の形態に係る通信システムの構成を示す概略構成図である。図1を参照して、同図の通信システムはLTE-Aシステムを想定している。当該通信システムは、セルを構成する基地局装置(基地局、送信局、下りリンク送信装置、上りリンク受信装置、eNodeB)101と、端末装置(移動局、受信局、上りリンク送信装置、下りリンク受信装置、移動端末、UE;User Equipment)102とを含んで構成される。
 Cell#0とCell#1とにおいて送信される下りリンク送信信号103に対してMCS(Modulation and Coding Scheme)、ランク、およびプレコーダなどの送信パラメータを適応的に制御するに際し、端末装置102は以下の処理を行なう。すなわち、端末装置102は、基地局101から送信される下りリンク送信信号103に含まれる下りリンク参照信号(RS:Reference Signal)を参照して、好適な空間多重数を指定するランク指標RI(Rank Indicator)、好適なプレコーダ(Preferred Precoder)を指定する複数の部分プレコーダ情報PI(Precoder Information)、および好適な伝送レート(変調方式・符号化率・トランスポートブロックの長さなど)を指定するチャネル品質指標CQI(Channel Quality Indicator)などの受信品質情報を計算する。次いで、端末装置102は、計算された受信品質情報を、上りリンクのチャネル104を介して、基地局装置101に報告する。
 以下では、端末装置102が、部分プレコーダ情報PIとして、部分プレコーダ情報1(PI1、第1の部分プレコーダ情報)および部分プレコーダ情報2(PI2、第2の部分プレコーダ情報)を基地局装置101に報告する場合について説明する。例えば、端末装置102は、PI1としてmビットで表すことができるインデクスiと、PI2としてnビットで表すことができるインデクスjとを用いて、好適なプレコーダW(i,j)を指定する。あるいは、端末装置102は、さらにランクrを用いて、好適なプレコーダW(r)(i,j)を指定する。
 ただし、W(i,j)はiとjにより一意に決定される行列である。また、当該行列の決定方法(コードブック)は、基地局装置101と端末装置102との間で共有されている。言い換えると、コードブックとは、好適なプレコーダの複数の候補である。また、好適なプレコーダの算出方法としては、例えば、下りリンクの伝搬路を考慮した上で、下りリンクの受信信号電力が大きくなるようなプレコーダを算出するという方法などを用いることができる。
 図2は、本実施の形態に係る下りリンクの無線フレーム構成の一例を示している。図2を参照して、下りリンクはOFDM(Orthogonal Frequency Division Multiplex)アクセス方式が用いられる。下りリンクでは、物理下りリンク制御チャネル(PDCCH;Physical Downlink Control Channel)、物理下りリンク共用チャネル(PDSCH;Physical Downlink Shared Channel)などが割り当てられる。また、PDSCHの一部に下りリンク参照信号(RS;Reference Signal)が多重される。
 下りリンクの無線フレームは、下りリンクのリソースブロック(RB;Resource Block)ペアから構成されている。当該下りリンクのRBペアは、下りリンクの無線リソースの割り当てなどの単位である。また、下りリンクのRBペアは、予め決められた幅の周波数帯(RB帯域幅)及び時間帯(2個のスロット=1個のサブフレーム)からなる。
 1個の下りリンクのRBペアは、時間領域で連続する2個の下りリンクのRB(RB帯域幅×スロット)から構成される。1個の下りリンクのRBは、周波数領域において12個のサブキャリアから構成され、時間領域において7個のOFDMシンボルから構成される。
 物理下りリンク制御チャネルは、端末装置識別子、下りリンク共用チャネルのスケジューリング情報、上りリンク共用チャネルのスケジューリング情報、変調方式、符号化率、および再送パラメータなどの下りリンク制御情報が送信される物理チャネルである。
 なお、ここでは一つのコンポーネントキャリア(CC:Component Carrier)における下りリンクサブフレームを記載しているが、CC毎に下りリンクサブフレームが規定され、かつ下りリンクサブフレームはCC間でほぼ同期している。
 図3は、本実施の形態に係る上りリンクの無線フレーム構成の一例を示している。図3を参照して、上りリンクはSC-FDMA(Single Carrier-Frequency Division Multiple Access)方式が用いられる。上りリンクでは、物理上りリンク共用チャネル(Physical Uplink Shared Channel;PUSCH)、物理上りリンク制御チャネル(Physical Uplink Control Channel;PUCCH)などが割り当てられる。また、PUSCHやPUCCHの一部に、上りリンク参照信号が割り当てられる。
 上りリンクの無線フレームは、上りリンクのRBペアから構成されている。当該上りリンクのRBペアは、上りリンクの無線リソースの割り当てなどの単位である。また、上りリンクのRBペアは、予め決められた幅の周波数帯(RB帯域幅)及び時間帯(2個のスロット=1個のサブフレーム)からなる。
 1個の上りリンクのRBペアは、時間領域で連続する2個の上りリンクのRB(RB帯域幅×スロット)から構成される。1個の上りリンクのRBは、周波数領域において12個のサブキャリアから構成され、時間領域において7個のSC-FDMAシンボルから構成される。
 図4は、本実施の形態に係る基地局装置101のブロック構成の一例を示す概略図である。図4を参照して、基地局装置101は、下りリンクサブフレーム生成部401と、OFDM信号送信部404と、送信アンテナ(基地局送信アンテナ)405と、受信アンテナ(基地局受信アンテナ)406と、SC-FDMA信号受信部407と、フィルタ部408と、コードワード処理部412と、上位層413とを有する。下りリンクサブフレーム生成部401は、物理下りリンク制御チャネル生成部402と、下りリンク参照信号生成部403とを有する。フィルタ部408はフィードバック情報抽出部409を有する。
 図5は、本実施形態に係る端末装置102のブロック構成の一例を示す概略図である。図5を参照して、端末装置102は、受信アンテナ(端末受信アンテナ)501と、OFDM信号受信部502と、下りリンクサブフレーム処理部503と、上位層506と、フィードバック情報生成部507と、コードワード生成部508と、上りリンクサブフレーム生成部509と、SC-FDMA信号送信部511と、送信アンテナ(端末送信アンテナ)512とを有する。下りリンクサブフレーム処理部503は、下りリンク参照信号抽出部504と、物理下りリンク制御チャネル抽出部505とを有する。上りリンクサブフレーム生成部509は、上りリンク参照信号生成部510を有する。
 まず、図4および図5を用いて、下りリンクの送受信の流れについて説明する。基地局装置101では、下りリンクサブフレーム生成部401が、上位層411から送られてくるコードワード(物理層における送信データ系列)毎の送信データ(トランスポートブロックとも称す)に対して、誤り訂正符号化とレートマッチング処理とPSK(Phase Shift Keying)変調やQAM(Quadrature Amplitude Modulation)変調などの変調処理とを施すことによって、当該送信データを変調シンボル系列に変換する。下りリンクサブフレーム生成部401は、変調シンボル系列を、変調シンボル系列のマッピング単位であるリソースエレメント(RE;Resource element)にマッピングする。下りリンクサブフレーム生成部401は、マッピングされた変調シンボル系列に対して、上位層411により指示されたプレコーダによりプレコーディング処理を施す。なお、下りリンクにおけるREは、各OFDMシンボル上の各サブキャリアに対応して規定される。このとき、上位層411から送られてくる送信データ系列は、RRC(Radio Resource Control)シグナリング用の制御データを含む。
 また、物理下りリンク制御チャネル生成部402は、上位層411の指示により、物理下りリンク制御チャネルを生成する。ここで、物理下りリンク制御チャネルに含まれる制御情報は、下りリンクにおける送信パラメータや、上りリンクのリソース割り当て、上りリンクの送信パラメータ、およびCQIリクエストなどの情報を含む。下りリンク参照信号生成部403は、下りリンク参照信号DLRS(Down Link Reference Signal)を生成する。
 下りリンクサブフレーム生成部401は、物理下りリンク制御チャネルとDLRSとを、下りリンクサブフレーム内のREにマッピングする。OFDM信号送信部404は、下りリンクサブフレーム生成部401で生成された下りリンクサブフレームを、OFDM信号に変調する。OFDM信号送信部404は、当該変調により得られたOFDM信号を、送信アンテナ405を介して送信する。
 端末装置102では、OFDM信号受信部502は、受信アンテナ501を介してOFDM信号を受信する。OFDM信号受信部502は、受信したOFDM信号に対してOFDM復調処理を施す。下りリンクサブフレーム処理部503は、受信した下りリンクサブフレームから受信データを抽出し、当該抽出した受信データを上位層506に送る。より具体的には、下りリンクサブフレーム処理部503は、下りリンクサブフレームに対して、下りリンクサブフレーム生成部401における、変調処理、レートマッチング処理、誤り訂正符号化に対応する復調処理、および誤り訂正復号化などを施すことにより、当該下りリンクサブフレームから受信データを抽出する。
 下りリンク参照信号抽出部504は、下りリンク参照信号生成部403において生成されるとともに下りリンクサブフレーム生成部401においてマッピングされたDLRSを抽出し、当該抽出したDLRSをフィードバック情報生成部507に送る。物理下りリンク制御チャネル抽出部505は、物理下りリンク制御チャネル生成部402において生成されるとともに下りリンクサブフレーム生成部401においてマッピングされた物理下りリンク制御チャネルに含まれる制御情報を抽出し、当該抽出した制御情報を上位層506に送る。
 ここで、基地局装置101における下りリンクサブフレーム生成部401とOFDM信号送信部404と送信アンテナ405とにおける処理、および端末装置102における受信アンテナ501とOFDM信号受信部502と下りリンクサブフレーム処理部503とにおける処理は、下りリンクのセル(CC)毎に行われる。また、フィードバック情報生成部507は、複数の下りリンクセルにおける受信品質情報(フィードバック情報)を生成する。
 次に、図4および図5を用いて、上りリンクの送受信の流れについて説明する。端末装置102では、コードワード生成部508が、上位層506から送られてくるコードワード毎の送信データ(トランスポートブロックとも称す)に対して、誤り訂正符号化およびレートマッチング処理などの処理を施すことによって、当該送信データをコードワードCW(Code Word)に変換する。
 フィードバック情報生成部507は、上位層506の指示に従い、下りリンク参照信号抽出部507によって抽出されたDLRSを用いて、RI、PI1、PI2、CQIなどの符号化してフィードバック情報を生成する。上りリンク参照信号生成部510は、上りリンク参照信号ULRS(UpLink Reference Signal)を生成する。
 上りリンクサブフレーム生成部509は、コードワード変調シンボル系列とフィードバック情報とを所定の方法で並び替える。その後、上りリンクサブフレーム生成部509は、上りリンク参照信号とともに、当該並び替えたコードワード変調シンボル系列とフィードバック情報とを上りリンクサブフレームにマッピングする。SC-FDMA信号送信部511は、上りリンクサブフレームにSC-FDMA変調を施してSC-FDMA信号を生成する。SC-FDMA信号送信部511は、生成したSC-FDMA信号を、送信アンテナ512を介して送信する。
 基地局装置101では、SC-FDMA信号受信部407は、受信アンテナ406を介して、SC-FDMA信号を受信する。SC-FDMA信号受信部407は、受信したSC-FDMA信号に対して、SC-FDMA復調処理を施す。フィルタ部503は、受信した上りリンクサブフレームからコードワードを抽出し、当該抽出したコードワードをコードワード処理部410に送る。コードワード処理部410は、コードワードから受信データを抽出して、当該抽出した受信データを上位層411に送る。より具体的には、コードワード処理部410は、コードワードに対して、コードワード生成部508における、レートマッチング処理、誤り訂正符号化に対応するレートマッチング処理、および誤り訂正復号化などを施すことにより、当該コードワードから受信データを抽出する。
 フィルタ部408内のフィードバック情報抽出部409は、フィードバック情報生成部507において生成されるとともに上りリンクサブフレーム生成部401においてマッピングされたフィードバック情報を、上位層411からの指示に従って抽出する。フィードバック情報抽出部409は、抽出したフォードバック情報を復号化し、当該復号化したフィードバック情報を上位層411に送る。ここで、フィルタ部408が行うフィルタリング処理では、受信アンテナ406毎の受信信号に対して、ZF(Zero Forcing)、MMSE(Minimum Mean Square Error)、およびMLD(Maximum Likelihood Detection)などの方法を用いることによって、コードワード毎の信号を検出する。
 図6は、本実施の形態に係るプロシージャの一例を示している。図6に示したプロシージャは、RI、PI1、PI2、W-CQIを非周期的にフィードバックする非周期的フィードバックモード(第1のフィードバックモード)におけるプロシージャの一例である。まず、基地局装置101は、RRCシグナリングを介して、端末装置102におけるフィードバックのパラメータを設定する(ステップS601)。次に、基地局装置101は、非周期的なフィードバックを指示する情報であるCQIリクエストを、端末装置102に通知する(ステップS602)。また、基地局装置101は、フィードバック情報を同時に報告するリソース(例えば物理上りリンク共用チャネル)を割り当てる。
 非周期的なフィードバックを指示された端末装置102は、設定されたフィードバックのパラメータに従い、RI、PI1、PI2およびW-CQIを同時に(同じタイミングで)基地局装置101に報告する(ステップS603)。S-CQIをフィードバックする非周期的フィードバックモードの場合は、端末装置102は、さらにS-CQIを同時に基地局装置101に報告する。ここで、端末装置102は、複数の帯域BPのS-CQIを同時に基地局装置101に報告する。
 なお、ここではステップS602における端末装置102におけるCQIリクエストの通知を物理下りリンク制御チャネルを介した動的なシグナリングで行う例について説明するが、これに限るものではない。例えば、RRCシグナリングを介した準静的なシグナリングなどで、基地局装置101が非周期的なフィードバックの指示を端末装置102に対して行うようにしても同様の効果を得ることができる。この場合、さらに報告するサブフレームを指定することが好ましい。
 次に、非周期的フィードバックモードにおけるフィードバック情報のマッピングについて説明する。図7は、フィードバック情報のマッピングの一例を示している。図7に示す並び替えとマッピングとは、上りリンクで複数のCW(CW0とCW1)を送信する場合の例である。なお、ここでは、CW0とCW1とは、それぞれレイヤ1とレイヤ2とを用いて送信するものとして説明する。ここで、「レイヤ(レイヤー)」とは、空間多重のインデクスである。また、「レイヤ数」は、空間多重数を示す。ULRSは、各レイヤの4番目と11番目とのSC-FDMAシンボルにマッピングされる。RIを含むフィードバック情報と、それ以外のフィードバック情報(例えばW-CQIやPI1やPI2)とについては、図7に示すような並び替えが行なわれる。なお、ここでのパラメータは一例であり、これ以外のパラメータを用いることができるのは勿論である。例えば、端末装置102は、CW0だけを送信する場合は、図7のレイヤ1と同様のマッピングを行えばよい。
 より具体的には、CQI、PI1、およびPI2は、まずCW0と結合される。このとき、CQIおよびPI2を含むフィードバック情報、CW0の順で結合する。その後、結合されたシンボル系列は系列の先頭から順に、レイヤ1の1番目のSC-FDMAシンボルの最前方、レイヤ1の2番目のSC-FDMAシンボルの最前方、・・・、レイヤ1の14番目のSC-FDMAシンボルの最前方、レイヤ1の1番目のSC-FDMAシンボルの前方から2番目、・・・というように、CW0を送信するレイヤの各SC-FDMAシンボルの最前方から順次マッピングされるように並び替えが行われる。一方、CW1は系列の先頭から順に、レイヤ2の1番目のSC-FDMAシンボルの最前方、レイヤ2の2番目のSC-FDMAシンボルの最前方、・・・、レイヤ2の14番目のSC-FDMAシンボルの最前方、レイヤ2の1番目のSC-FDMAシンボルの前方から2番目、・・・というように、CW1を送信するレイヤの各SC-FDMAシンボルの最前方から順次マッピングされるように並び替えが行われる。RIは、すべてのレイヤにおけるULRSの近くのSC-FDMAシンボルの一部あるいは全部(例えば図7に示すようにレイヤ1および2の2、6、9、13番目のSC-FDMAシンボルの後方)にマッピングされるように並び替えが行われる。すなわち、端末装置102は、RIとCQI、PI1、PI2とを、異なる空間多重数あるいはそれぞれ独立した空間多重方法およびマッピング方法によって、基地局装置101に送信(報告)する。
 上りリンクサブフレーム生成部509は、これらの並び替えおよびマッピング処理を、上位層506の指示の下で行なう。一方、基地局装置101内のフィードバック情報抽出部409は、上位層411の指示の下で、上りリンクサブフレーム生成部509におけるマッピングに対応したデマッピング、上りリンクサブフレーム生成部509における並べ替えを元に戻すような並べ替え処理を行うことにより、フィードバック情報を取得する。
 ここで、PI1とPI2との算出に用いるコードブックについて説明する。前述したように、端末装置102は、PI1としてmビットで表すことができるインデクスiと、PI2としてnビットで表すことができるインデクスjとを用いて、好適なプレコーダW(i、j)を指定する。この最大2m+n種類のW(i、j)を規定するものがコードブックである。非周期的フィードバックモードにおいては、コードブック内のW(i、j)の選択の自由度を高くすることにより、自由度の高いフィードバックが可能となる。
 図8は、本実施の形態に係る周期的フィードバックモードにおけるプロシージャの一例を示している。図8に示したプロシージャは、一つのセルにおけるRI、PI1、PI2、W-CQI(Wideband CQI)を周期的にフィードバックする周期的フィードバックモード(第2のフィードバックモード)におけるプロシージャの一例である。なお、W-CQIは、システム帯域幅(コンポーネントキャリア帯域幅)を代表する1つのCQIである。また、ここでいうフィードバックモードは、端末装置102から基地局装置101にフィードバックする受信品質情報のコンテンツの組み合わせ、各々のコンテンツの測定あるいは生成方法、および各々のコンテンツのフィードバック方法あるいはフィードバックに用いるリソースなどの設定を含む。
 まず、基地局装置101は、RRCシグナリングを介して、端末装置102におけるフィードバックのパラメータを設定し、端末装置102に対して第2のフィードバックモードを指示する(ステップS801)。周期的なフィードバックを指示された端末装置102は、設定されたフィードバックのパラメータに従い、RIおよびPI1(ステップS802)とPI2およびW-CQI(ステップS803)とをそれぞれ周期的に基地局装置101に物理上りリンク制御チャネルを介して報告する。以下では、ステップS802の報告を「フィードバックタイプ1A」、ステップS803の報告を「フィードバックタイプ1B」と称す。
 図9は、本実施形態に係る周期的フィードバックモードにおけるプロシージャの他の一例を示している。図9に示したプロシージャは、一つのセルにおけるRI、PTI(Precoder Type Indication)、PI1、PI2、W-CQI、S-CQI(Subband-CQI)を周期的にフィードバックする周期的フィードバックモード(第3のフィードバックモード)におけるプロシージャの一例である。S-CQI(Subband-CQI)を周期的にフィードバックするフィードバックモードの場合は、端末装置102は、さらにS-CQIを周期的に報告する。ここで、S-CQIは、システム帯域幅(コンポーネントキャリア帯域幅)を複数の狭帯域に分割した場合における当該分割された帯域BP(Bandwidth Part)を代表するCQIである。より具体的には、S-CQIは、BPに含まれる一つ以上サブバンド(BPをさらに分割した帯域)のうちの一つのサブバンドにおけるCQIである。また、後述するように、PTIは、フィードバックする内容を切り替えるための指標である。
 まず、基地局装置101は、RRCシグナリングを介して、端末装置102におけるフィードバックのパラメータを設定し、端末装置102に対して第3のフィードバックモードを指示する(ステップS901)。周期的なフィードバックを指示された端末装置102は、設定されたフィードバックのパラメータに従い、RIおよびPTI(ステップS902)を周期的に物理上りリンク制御チャネルを介して基地局装置101に報告する。
 ステップ902において報告したPTIがサブバンド毎のPI2を報告するようなプレコーダタイプを示す場合、端末装置102は、設定されたフィードバックのパラメータに従い、PI1およびW-CQI(ステップS903)とPI2およびS-CQI(ステップS903)とを、それぞれ周期的に物理上りリンク制御チャネルを介して基地局装置101に報告する。ここで、PI2は、同時に送信するS-CQIに対応するサブバンドにおいて算出されたPI2である。
 一方、ステップ902において報告したPTIがシステム帯域幅(コンポーネントキャリア帯域幅)におけるPI2を報告するようなプレコーダタイプを示す場合、端末装置102は、設定されたフィードバックのパラメータに従い、PI2およびW-CQI(ステップS905)とS-CQI(ステップS906)とを、それぞれ周期的に物理上りリンク制御チャネルを介して基地局装置101に報告する。なお、この場合は、端末装置102は、PI1を報告せず、PI2のみで好適なプレコーダを指定するようなコードブックを用いる。以下では、ステップS902の報告を「フィードバックタイプ2A」、ステップS903の報告を「フィードバックタイプ2B」、ステップS904の報告を「フィードバックタイプ2C」、ステップS905の報告を「フィードバックタイプ2D」、ステップS906の報告を「フィードバックタイプ2E」と称す。なお、フィードバックタイプ2Dは、フィードバックタイプ1Bと同様の報告でもよいし、PI2およびW-CQIの算出方法をそれぞれ個別に設定することもできる。
 図10は、本実施の形態に係る周期的フィードバックモードにおけるプロシージャの他の一例を示している。図10に示したプロシージャは、一つのセルにおけるRI、PI1、PI2、W-CQI、およびS-CQIを周期的にフィードバックする周期的フィードバックモード(第4のフィードバックモード)におけるプロシージャの一例である。まず、基地局装置101は、RRCシグナリングを介して、端末装置102におけるフィードバックのパラメータを設定し、第4のフィードバックモードを指示する(ステップS1001)。周期的なフィードバックを指示された端末装置102は、設定されたフィードバックのパラメータに従い、RI(ステップS1002)を周期的に物理上りリンク制御チャネルを介して基地局装置101に報告する。
 次に、端末装置102は、設定されたフィードバックのパラメータに従い、PI1、PI2、およびW-CQI(ステップS1003)とS-CQI(ステップS1003)とを、それぞれ周期的に物理上りリンク制御チャネルを介して基地局装置101に報告する。ここで、ステップS1002の報告を「フィードバックタイプ3A」、ステップS1003の報告を「フィードバックタイプ3B」、ステップS1004の報告を「フィードバックタイプ3C」と称す。なお、フィードバックタイプ3Cは、フィードバックタイプ2Eと同様の報告でもよいし、S-CQIの算出方法をそれぞれ個別に設定することもできる。
 図11は、本実施の形態に係る上りリンク(UL)データ送信におけるプロシージャの一例を示している。図11を参照して、まず、基地局装置101は、制御情報であるULグラントを端末装置102に通知する(ステップS1101)。当該制御情報は、物理層における上りリンクデータ送信用のチャネルである物理上りリンク共用チャネルの割り当てを示す割り当て情報を含む。ULグラントを通知された端末装置102は、割り当て情報により示された物理上りリンク共用チャネルを用いて、ULデータを基地局装置101に送信する(ステップS1002)。
 周期的フィードバックモードにおいて、いずれかのフィードバック情報の報告(ステップS802、ステップS803、ステップS902、ステップS903、ステップS904、ステップS905、ステップS906、ステップS1002、ステップS1003、ステップS1004)は、通常は物理層における制御情報を報告するチャネルである物理上りリンク制御チャネルを介して行われる。しかしながら、ステップS1101により、これらいずれかのフィードバック情報の報告が行われるタイミングで、物理層におけるデータを送信するチャネルである物理上りリンク共用チャネルが割り当てられている場合、端末装置102は、物理上りリンク共用チャネルを介して、ULデータと同時にフィードバック情報を基地局装置101に報告する。なお、物理層における制御情報を物理上りリンク共用チャネルの代わりに物理上りリンク共用チャネルを介して報告する動作を、「ピギーバック」と称する。
 次に、周期的フィードバックモードにおけるピギーバック時のフィードバック情報のマッピングについて説明する。図12は、フィードバック情報のマッピングの一例を示している。図12に示す並び替えとマッピングとは、上りリンクで複数のCW(CW0およびCW1)を送信する場合の例である。なお、以下では、CW0とCW1とは、それぞれレイヤ1とレイヤ2とを用いて送信するものとして説明する。ここでは、フィードバックタイプ1Aのピギーバック時のマッピングを示している。
 より具体的には、端末装置102は、RIとPI1とを含むフィードバック情報を、すべてのレイヤにおけるULRSの近くのSC-FDMAシンボルの一部あるいは全部(例えば図12に示すようにレイヤ1および2の2、6、9、13番目のSC-FDMAシンボルの後方)にマッピングされるように並び替えを行なう。すなわち、端末装置102は、RI、PI1を、ULデータとは独立した空間多重方法(実質的に空間多重数を低くする方法)で、安全に基地局装置101に送信(報告)する。
 上りリンクサブフレーム生成部509は、これらの並び替えおよびマッピング処理を、上位層506の指示の下で行なう。一方、基地局装置101内のフィードバック情報抽出部409は、上位層411の指示の下で、上りリンクサブフレーム生成部509におけるマッピングに対応したデマッピング、上りリンクサブフレーム生成部509における並べ替えを元に戻すような並べ替え処理を行うことにより、フィードバック情報を取得する。
 ここで、周期的フィードバックモードのピギーバック時におけるPI1とPI2との算出に用いるコードブックについて説明する。当該コードブックとしては、非周期的フィードバックモードにおけるコードブックと同様のコードブックが用いられる。しかしながら、周期的フィードバックモードにおいては、コードブック内のW(i、j)の選択の自由度を低くすることにより、フィードバック情報によるオーバヘッドの低減が可能となる。
 より具体的には、端末装置102は、PI1としてmビットで表すことができるインデクスiの取り得る値を0、1、・・・、2-1から一部抜き出し(サブサンプリングし)、PI1に要するビット数をmビットより小さい値にする。同様に、端末装置102は、PI2に要するビット数をnビットより小さい値にする。PI1とPI2とにより表現可能なW(i、j)の種類を制限することにより、PI1とPI2とのビット数を抑えることができる。
 以上のように、端末装置102は、非周期的フィードバックモードにおいて物理上りリンク共用チャネルを介してPI1を基地局装置101に報告する場合には、PI1を一つのCWに多重する。一方、端末装置102は、周期的フィードバックモードにおけるピギーバック時に物理上りリンク共用チャネルを介してPI1を基地局装置101に報告する場合には、PI1をすべてのCWに多重する。言い換えると、端末装置102は、非周期的フィードバックモードにおいて物理上りリンク共用チャネルを介してPI1を基地局装置101に報告する場合には、PI1をULデータと同様に空間多重して送信する。一方、端末装置102は、周期的フィードバックモードにおけるピギーバック時に物理上りリンク共用チャネルを介してPI1を基地局装置101に報告する場合には、PI1をULデータとは独立した空間多重方法(実質的に空間多重数を1とする方法)で送信する。
 これにより、端末装置102は、物理上りリンク共用チャネルを介して受信品質情報を基地局装置101に報告する際に、受信品質情報が誤り伝搬の原因となり得る場合は安全な方法で送信し、受信品質情報が誤り伝搬の原因とならない場合はオーバヘッドを抑えた方法で送信することができる。このため、端末装置102は、効率的な受信品質情報のフィードバックを行うことができる。
 また、端末装置102は、非周期的フィードバックモードにおいて物理上りリンク共用チャネルを介してPI1あるいはPI2を基地局装置101に報告する場合には、PI1あるいはPI2のコードブックをサブサンプリングしない。一方、端末装置102は、周期的フィードバックモードにおけるピギーバック時に物理上りリンク共用チャネルを介してPI1あるいはPI2を基地局装置101に報告する場合には、PI1あるいはPI2のコードブックをサブサンプリングする。言い換えると、端末装置102は、好適なプレコーダの複数の候補のうちの一部の候補から好適なプレコーダを選択する。すなわち、端末装置102は、非周期的フィードバックモードにおいて物理上りリンク共用チャネルを介してPI1あるいはPI2を基地局装置101に報告する場合には、Xビットで表現できるPI1あるいはPI2を基地局装置101に送信する。一方、端末装置102は、周期的フィードバックモードにおけるピギーバック時に物理上りリンク共用チャネルを介してPI1あるいはPI2を基地局装置101に報告する場合には、Yビット(ただし、Y<X)で表現できるPI1あるいはPI2を基地局装置101に送信する。
 これにより、端末装置102は、物理上りリンク共用チャネルを介して受信品質情報を基地局装置101に報告する際に、CQIリクエストを受けた場合は詳細な受信品質情報を送信し、CQIリクエストを受けなかった場合はオーバヘッドを抑えた方法で送信することができる。このため、端末装置102は、効率的な受信品質情報のフィードバックを行うことができる。
 なお、以上の説明では、各フィードバックモードにおいて端末装置102がPI1を基地局装置101に報告する場合について説明したが、これに限るものではない。例えば、基地局装置101の送信アンテナ数が少ない場合に、PI1を報告しないようにしてもよい。この場合、好適なプレコーダはPI2のみから一意に決まるようなコードブックにしておけばよい。また、PI1を含むフィードバックタイプは、PI1以外のコンテンツを報告するフィードバックタイプとすればよい。
 なお、基地局装置101の全部または一部の機能を実現するためのプログラムと、あるいは端末装置102の全部または一部の機能を実現するためのプログラムとをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、当該プログラムを実行することにより各部の処理を行ってもよい。なお、ここでいう「コンピュータシステム」とは、OS(Operating System)と周辺機器等のハードウェアとを含むものとする。
 また、「コンピュータシステム」は、WWWシステムを利用している場合であれば、ホームページ提供環境(あるいは表示環境)も含むものとする。
 また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、およびコンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含むものとする。また上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであっても良い。
 また、基地局装置101の全部または一部の機能を集積回路に集約し、端末装置102の全部または一部の機能を集積回路に集約することによって各部の処理を実現してもよい。基地局装置101および端末装置102の各々の各機能ブロックは個別にチップ化してもよいし、一部、又は全部を集積してチップ化してもよい。また、集積回路化の手法はLSIに限らず専用回路、又は汎用プロセッサで実現しても良い。また、半導体技術の進歩によりLSIに代替する集積回路化の技術が出現した場合、当該技術による集積回路を用いることも可能である。
 以上、この発明の実施の形態を図面を参照して詳述してきたが、具体的な構成はこの実施の形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更等も含まれる。また、本発明は、請求の範囲に示した範囲で種々の変更が可能であり、異なる実施の形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施の形態についても本発明の技術的範囲に含まれる。また、上記各実施の形態に記載された要素であり、同様の効果を奏する要素同士を置換した構成も含まれる。
 本発明は、無線端末装置や無線基地局装置や無線通信システムや無線通信方法に用いて好適である。
 101,1301 基地局装置、102,1302 端末装置、103,1303 下りリンク送信信号、104,1304 フィードバック情報、401 下りリンクサブフレーム生成部、402 物理下りリンク制御チャネル生成部、403 下り参照信号生成部、404 OFDM信号送信部、405 送信アンテナ、406 受信アンテナ、407 SC-FDMA信号受信部、408 フィルタ部、409 フィードバック情報抽出部、410 コードワード処理部、411 上位層、501 受信アンテナ、502 OFDM信号受信部、503 下りリンクサブフレーム処理部、504 下り参照信号抽出部、505 物理下りリンク制御チャネル抽出部、506 上位層、507 フィードバック情報生成部、508 コードワード生成部、509 上りリンクサブフレーム生成部、510 上り参照信号生成部、511 SC-FDMA信号送信部、512 送信アンテナ。

Claims (12)

  1.  基地局装置と通信する端末装置であって、
     データ送信に用いるチャネルを介して、データと共に受信品質情報を前記基地局装置に報告するに際し、
      前記受信品質情報が非周期的に報告される受信品質情報である場合、前記受信品質情報を前記データの空間多重方法と同じ空間多重方法で報告し、
      前記受信品質情報が周期的に報告される受信品質情報である場合、前記受信品質情報を前記データの空間多重方法とは独立した空間多重方法で報告する、端末装置。
  2.  前記受信品質情報は、好適なプレコーダを指定する複数の部分プレコーダ情報のうちの一つの部分プレコーダ情報である、請求項1に記載の端末装置。
  3.  基地局装置と通信する端末装置であって、
     データ送信に用いるチャネルを介して、データと共に受信品質情報を前記基地局装置に報告するに際し、
      前記受信品質情報が非周期的に報告される受信品質情報である場合、好適なプレコーダの複数の候補から少なくとも一つの候補を指定する部分プレコーダ情報を報告し、
      前記受信品質情報が周期的に報告される受信品質情報である場合、好適なプレコーダの複数の候補のうちの一部の候補から少なくとも一つの候補を指定する部分プレコーダ情報を報告する、端末装置。
  4.  端末装置と通信する基地局装置であって、
     前記端末装置から、データ送信に用いるチャネルを介して、データと共に報告された受信品質情報を抽出するに際し、
      前記受信品質情報が非周期的に報告される受信品質情報である場合、前記受信品質情報の空間多重方法が前記データの空間多重方法と同じ空間多重方法であるとして当該受信品質情報を抽出し、
      前記受信品質情報が周期的に報告される受信品質情報である場合、前記受信品質情報の空間多重方法が前記データの空間多重方法とは独立した空間多重方法であるとして当該受信品質情報を抽出する、基地局装置。
  5.  前記受信品質情報は、好適なプレコーダを指定する複数の部分プレコーダ情報のうちの一つの部分プレコーダ情報である、請求項4に記載の基地局装置。
  6.  端末装置と通信する基地局装置であって、
     前記端末装置から、データ送信に用いるチャネルを介して、データと共に報告された受信品質情報を抽出するに際し、
      前記受信品質情報が非周期的に報告される受信品質情報である場合、好適なプレコーダの複数の候補から少なくとも一つの候補を指定する部分プレコーダ情報を抽出し、
      前記受信品質情報が周期的に報告される受信品質情報である場合、好適なプレコーダの複数の候補のうちの一部の候補から少なくとも一つの候補を指定する部分プレコーダ情報を抽出する、基地局装置。
  7.  基地局装置と端末装置との間で通信する通信システムであって、
     前記端末装置は、
     データ送信に用いるチャネルを介して、データと共に受信品質情報を前記基地局装置に報告するに際し、
      前記受信品質情報が非周期的に報告される受信品質情報である場合、前記受信品質情報を前記データの空間多重方法と同じ空間多重方法で報告し、
      前記受信品質情報が周期的に報告される受信品質情報である場合、前記受信品質情報を前記データの空間多重方法とは独立した空間多重方法で報告し、
     前記基地局装置は、
     前記端末装置から、前記データと共に報告された受信品質情報を抽出するに際し、
      前記受信品質情報が非周期的に報告される受信品質情報である場合、前記受信品質情報の空間多重方法が前記データの空間多重方法と同じ空間多重方法であるとして当該受信品質情報を抽出し、
      前記受信品質情報が周期的に報告される受信品質情報である場合、前記受信品質情報の空間多重方法が前記データの空間多重方法とは独立した空間多重方法であるとして当該受信品質情報を抽出する、通信システム。
  8.  基地局装置と端末装置との間で通信する通信システムであって、
     前記端末装置は、
     データ送信に用いるチャネルを介して、データと共に受信品質情報を前記基地局装置に報告するに際し、
      前記受信品質情報が非周期的に報告される受信品質情報である場合、好適なプレコーダの複数の候補から少なくとも一つの候補を指定する部分プレコーダ情報を報告し、
      前記受信品質情報が周期的に報告される受信品質情報である場合、好適なプレコーダの複数の候補のうちの一部の候補から少なくとも一つの候補を指定する部分プレコーダ情報を報告し、
     前記基地局装置は、
     前記端末装置から、前記データと共に報告された受信品質情報を抽出するに際し、
      前記受信品質情報が非周期的に報告される受信品質情報である場合、好適なプレコーダの複数の候補から少なくとも一つの候補を指定する部分プレコーダ情報を抽出し、
      前記受信品質情報が周期的に報告される受信品質情報である場合、好適なプレコーダの複数の候補のうちの一部の候補から少なくとも一つの候補を指定する部分プレコーダ情報を抽出する、通信システム。
  9.  基地局装置と通信を行う端末装置における通信方法であって、
     データ送信に用いるチャネルを介して、データと共に受信品質情報を報告するに際し、
     前記受信品質情報が非周期的に報告される受信品質情報である場合、前記受信品質情報を前記データの空間多重方法と同じ空間多重方法で報告し、
     前記受信品質情報が周期的に報告される受信品質情報である場合、前記受信品質情報を前記データの空間多重方法とは独立した空間多重方法で報告するステップを有することを特徴とする通信方法。
  10.  基地局装置と通信を行う端末装置における通信方法であって、
     データ送信に用いるチャネルを介して、データと共に受信品質情報を報告するに際し、
     前記受信品質情報が非周期的に報告される受信品質情報である場合、好適なプレコーダの複数の候補から少なくとも一つの候補を指定する部分プレコーダ情報を報告し、
     前記受信品質情報が周期的に報告される受信品質情報である場合、好適なプレコーダの複数の候補のうちの一部の候補から少なくとも一つの候補を指定する部分プレコーダ情報を報告するステップを有することを特徴とする通信方法。
  11.  端末装置と通信を行う基地局装置における通信方法であって、
     前記端末装置から、データ送信に用いるチャネルを介して、データと共に報告された受信品質情報を抽出するに際し、
     前記受信品質情報が非周期的に報告される受信品質情報である場合、前記受信品質情報を前記データの空間多重方法と同じ空間多重方法であるとして抽出し、
     前記受信品質情報が周期的に報告される受信品質情報である場合、前記受信品質情報を前記データの空間多重方法とは独立した空間多重方法であるとして抽出するステップを有することを特徴とする通信方法。
  12.  端末装置と通信を行う基地局装置における通信方法であって、
     前記端末装置から、データ送信に用いるチャネルを介して、データと共に報告された受信品質情報を抽出するに際し、
     前記受信品質情報が非周期的に報告される受信品質情報である場合、好適なプレコーダの複数の候補から少なくとも一つの候補を指定する部分プレコーダ情報を抽出し、
     前記受信品質情報が周期的に報告される受信品質情報である場合、好適なプレコーダの複数の候補のうちの一部の候補から少なくとも一つの候補を指定する部分プレコーダ情報を抽出するステップを有することを特徴とする通信方法。
PCT/JP2011/076686 2010-11-26 2011-11-18 端末装置、基地局装置、通信システムおよび通信方法 WO2012070497A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11843539.5A EP2645763B1 (en) 2010-11-26 2011-11-18 Terminal device, base station device, communication system and communication method
US13/989,722 US9065513B2 (en) 2010-11-26 2011-11-18 Terminal apparatus, base-station apparatus, communication system, and communication method
CN201180055931.6A CN103222301B (zh) 2010-11-26 2011-11-18 终端装置、基站装置、通信系统及通信方法
US14/714,051 US9866304B2 (en) 2010-11-26 2015-05-15 Terminal apparatus, base-station apparatus, communication system, and communication method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-263657 2010-11-26
JP2010263657A JP5255043B2 (ja) 2010-11-26 2010-11-26 端末装置、基地局装置、通信システムおよび通信方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/989,722 A-371-Of-International US9065513B2 (en) 2010-11-26 2011-11-18 Terminal apparatus, base-station apparatus, communication system, and communication method
US14/714,051 Continuation US9866304B2 (en) 2010-11-26 2015-05-15 Terminal apparatus, base-station apparatus, communication system, and communication method

Publications (2)

Publication Number Publication Date
WO2012070497A1 true WO2012070497A1 (ja) 2012-05-31
WO2012070497A9 WO2012070497A9 (ja) 2012-08-16

Family

ID=46145839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/076686 WO2012070497A1 (ja) 2010-11-26 2011-11-18 端末装置、基地局装置、通信システムおよび通信方法

Country Status (5)

Country Link
US (2) US9065513B2 (ja)
EP (1) EP2645763B1 (ja)
JP (1) JP5255043B2 (ja)
CN (1) CN103222301B (ja)
WO (1) WO2012070497A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5255043B2 (ja) * 2010-11-26 2013-08-07 シャープ株式会社 端末装置、基地局装置、通信システムおよび通信方法
JP5999849B2 (ja) * 2014-04-21 2016-09-28 シャープ株式会社 端末装置、基地局装置、通信システムおよび通信方法
GB2538286A (en) * 2015-05-14 2016-11-16 Fujitsu Ltd Control channels in wireless communication

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009088225A2 (en) * 2008-01-08 2009-07-16 Lg Electronics Inc. Method for transmitting and receiving channel state information periodically or aperiodically

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005096523A1 (ja) * 2004-03-30 2005-10-13 Matsushita Electric Industrial Co., Ltd. 基地局装置、移動局装置およびデータチャネルの割当方法
KR101124932B1 (ko) * 2005-05-30 2012-03-28 삼성전자주식회사 어레이 안테나를 이용하는 이동 통신 시스템에서의 데이터송/수신 장치 및 방법
KR101119281B1 (ko) * 2005-08-29 2012-03-15 삼성전자주식회사 무선 통신 시스템에서 채널 품질 정보 피드백 장치 및방법과 이를 이용한 스케줄링 장치 및 방법
WO2009022790A1 (en) * 2007-08-14 2009-02-19 Lg Electronics Inc. Method of transmitting data in a wireless communication system
KR101638900B1 (ko) * 2008-08-05 2016-07-12 엘지전자 주식회사 무선 통신 시스템에서 하향링크 멀티 캐리어에 대한 제어정보를 전송하는 방법
GB2467303B (en) * 2008-08-07 2012-07-11 Icera Inc Feedback in a wireless communication system
US8315217B2 (en) * 2008-09-23 2012-11-20 Qualcomm Incorporated Method and apparatus for controlling UE emission in a wireless communication system
WO2010069610A1 (en) * 2008-12-17 2010-06-24 Telefonaktiebolaget Lm Ericsson (Publ) Positioning in telecommunication systems
US8369429B2 (en) * 2009-03-18 2013-02-05 Lg Electronics Inc. Method and apparatus for transmitting precoding matrix index in a wireless communication system using CoMP scheme
CN101867447B (zh) * 2010-04-30 2015-09-16 中兴通讯股份有限公司 信道状态信息的反馈方法及终端
US10333650B2 (en) * 2010-08-16 2019-06-25 Qualcomm Incorporated Aperiodic channel quality indicator report in carrier aggregation
US8687555B2 (en) * 2010-09-29 2014-04-01 Lg Electronics Inc. Method and apparatus for performing effective feedback in wireless communication system supporting multiple antennas
US8711907B2 (en) * 2010-10-01 2014-04-29 Intel Corporation PMI feedback with codebook interpolation
US8600393B2 (en) * 2010-10-04 2013-12-03 Samsung Electronics Co. Ltd. Methods and apparatus for enabling interference coordination in heterogeneous networks
US8687727B2 (en) * 2010-11-05 2014-04-01 Intel Corporation Coordinated multi-point transmission using interference feedback
WO2012064998A2 (en) * 2010-11-10 2012-05-18 Interdigital Patent Holdings, Inc. Method and apparatus for interference mitigation via successive cancellation in heterogeneous networks
JP5255043B2 (ja) * 2010-11-26 2013-08-07 シャープ株式会社 端末装置、基地局装置、通信システムおよび通信方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009088225A2 (en) * 2008-01-08 2009-07-16 Lg Electronics Inc. Method for transmitting and receiving channel state information periodically or aperiodically

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NTT DOCOMO: "Views on CSI Reporting Scheme Based on Double Codebook Structure for LTE-Advanced", 3GPP TSG RAN WG1 MEETING #61 R1-103259, 14 May 2010 (2010-05-14), pages 1 - 5, XP050420285 *

Also Published As

Publication number Publication date
JP5255043B2 (ja) 2013-08-07
US20130244587A1 (en) 2013-09-19
US20150249492A1 (en) 2015-09-03
US9065513B2 (en) 2015-06-23
WO2012070497A9 (ja) 2012-08-16
CN103222301A (zh) 2013-07-24
CN103222301B (zh) 2016-11-02
EP2645763B1 (en) 2018-11-07
EP2645763A4 (en) 2016-10-12
JP2012114803A (ja) 2012-06-14
US9866304B2 (en) 2018-01-09
EP2645763A1 (en) 2013-10-02

Similar Documents

Publication Publication Date Title
US9883519B2 (en) Wireless communication system, communication device and communication method
CN110073704B (zh) 基站装置、终端装置、通信方法以及集成电路
JP5896619B2 (ja) 端末装置、基地局装置、通信システムおよび通信方法
CN109997381B (zh) 基站装置、终端装置以及通信方法
JP4959030B2 (ja) 移動通信システム、移動局装置、基地局装置および通信方法
KR20150034808A (ko) Mcs 지시 정보 전송 방법 및 장치
KR102485818B1 (ko) 단말 장치, 기지국 장치, 통신 방법 및 집적 회로
WO2016163369A1 (ja) 端末装置、基地局装置、通信方法、および、集積回路
JP5324526B2 (ja) 端末装置、基地局装置、通信システム、および処理方法
WO2017051660A1 (ja) 基地局装置、端末装置および通信方法
WO2017051659A1 (ja) 基地局装置、端末装置および通信方法
CN110178400B (zh) 基站装置、终端装置和通信方法
WO2010122910A1 (ja) 無線通信システム、基地局装置および移動局装置
US9866304B2 (en) Terminal apparatus, base-station apparatus, communication system, and communication method
JP2012114814A (ja) 端末装置、基地局装置、通信システムおよび通信方法
JP5542988B2 (ja) 端末装置、基地局装置、通信システムおよび通信方法
JP5999849B2 (ja) 端末装置、基地局装置、通信システムおよび通信方法
JP2010098580A (ja) 移動通信システム、基地局装置、移動局装置および移動通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11843539

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13989722

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011843539

Country of ref document: EP