WO2012070390A1 - Organic photoelectric conversion element - Google Patents

Organic photoelectric conversion element Download PDF

Info

Publication number
WO2012070390A1
WO2012070390A1 PCT/JP2011/075884 JP2011075884W WO2012070390A1 WO 2012070390 A1 WO2012070390 A1 WO 2012070390A1 JP 2011075884 W JP2011075884 W JP 2011075884W WO 2012070390 A1 WO2012070390 A1 WO 2012070390A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
compound
reaction
polymer compound
Prior art date
Application number
PCT/JP2011/075884
Other languages
French (fr)
Japanese (ja)
Inventor
上谷 保則
吉村 研
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2012070390A1 publication Critical patent/WO2012070390A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/115Polyfluorene; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/124Copolymers alternating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/141Side-chains having aliphatic units
    • C08G2261/1412Saturated aliphatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3229Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing nitrogen and sulfur as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/34Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain
    • C08G2261/344Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/414Stille reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/91Photovoltaic applications
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • H10K85/215Fullerenes, e.g. C60 comprising substituents, e.g. PCBM
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a polymer compound and an organic photoelectric conversion element using the same.
  • Organic semiconductor materials are expected to be applied to organic photoelectric conversion elements such as organic solar cells and optical sensors.
  • the functional layer can be manufactured by an inexpensive coating method.
  • organic semiconductor materials that are various polymer compounds for the organic photoelectric conversion element has been studied.
  • an organic semiconductor material for example, 9,9-dioctylfluorene-2,7-diboronic acid ester and 5,5 ′′ ′′-dibromo-3 ′′, 4 ′′ -dihexyl- ⁇ -pentathiophene are polymerized.
  • a polymer compound has been proposed (USP-7803885). However, the polymer compound does not sufficiently absorb light having a long wavelength.
  • the present invention provides a polymer compound having a large absorbance of light having a long wavelength. That is, the present invention provides the formula (1) [In the formula, R represents a hydrogen atom, a fluorine atom, an optionally substituted alkyl group, an optionally substituted alkoxy group, an optionally substituted aryl group, or an optionally substituted heteroaryl. Group or formula (3) (In the formula, m1 represents an integer of 0 to 6, and m2 represents an integer of 0 to 6. R ′ represents an alkyl group which may be substituted with fluorine, an aryl group which may be substituted, or a substituted group.
  • a hydrogen atom in the formula represented by (CH 2 ) m1 or (CH 2 ) m2 may be fluorine-substituted).
  • the four Rs may be the same or different from each other.
  • a repeating unit represented by formula (2) [Wherein R represents the same meaning as described above. ]
  • the high molecular compound containing the repeating unit represented by these is provided.
  • R is a hydrogen atom, a fluorine atom, an alkyl group having 1 to 20 carbon atoms that may be fluorine-substituted, or a carbon atom having 1 to 20 carbon atoms that may be fluorine-substituted.
  • the present invention also provides an organic photoelectric conversion element having a pair of electrodes and a functional layer provided between the electrodes, wherein the functional layer includes an electron-accepting compound and the polymer compound.
  • FIG. 1 is a graph showing an absorption spectrum of the polymer compound 1.
  • FIG. 2 is a diagram showing an absorption spectrum of the polymer compound 2. As shown in FIG.
  • the polymer compound of the present invention includes a repeating unit represented by the formula (1) and a repeating unit represented by the formula (2).
  • the alkyl group represented by R is a chain or cyclic group, for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec- Examples thereof include a butyl group, a tert-butyl group, a pentyl group, a hexyl group, an octyl group, an isooctyl group, a decyl group, a dodecyl group, a pentadecyl group, and an octadecyl group.
  • a hydrogen atom in the alkyl group may be substituted with a fluorine atom.
  • Examples of the alkyl group substituted with a fluorine atom include a trifluoromethyl group, a pentafluoroethyl group, a perfluorobutyl group, a perfluorohexyl group, and a perfluorooctyl group.
  • the alkoxy group represented by R is a chain or cyclic group, for example, methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, isobutoxy group, sec -Butoxy group, tert-butoxy group, pentyloxy group, hexyloxy group, cyclohexyloxy group, heptyloxy group, octyloxy group, 2-ethylhexyloxy group, nonyloxy group, decyloxy group, 3,7-dimethyloctyloxy group Can be mentioned.
  • a hydrogen atom in the alkoxy group may be substituted with a fluorine atom.
  • alkoxy group substituted with a fluorine atom examples include a trifluoromethoxy group, a pentafluoroethoxy group, a perfluorobutoxy group, a perfluorohexyloxy group, and a perfluorooctyloxy group.
  • the aryl group represented by R is an atomic group obtained by removing one hydrogen atom from an aromatic hydrocarbon.
  • the aryl group includes a group containing a benzene ring, a group containing a condensed ring having aromaticity, a group having a structure in which two or more benzene rings or a condensed ring having aromaticity are directly bonded, and two or more benzenes A group having a structure in which a ring or a condensed ring having aromaticity is bonded via a group such as vinylene is included.
  • the number of carbon atoms of the aryl group is preferably 6 to 60, and more preferably 6 to 30. Examples of the aryl group include a phenyl group, a 1-naphthyl group, and a 2-naphthyl group.
  • the aryl group may have a substituent.
  • substituent that the aryl group may have include a halogen atom such as a fluorine atom, an alkyl group having 1 to 20 carbon atoms, and an alkoxy group having 1 to 20 carbon atoms.
  • examples of the heteroaryl group represented by R include a chenyl group, a pyrrolyl group, a furyl group, a pyridyl group, a quinolyl group, and an isoquinolyl group.
  • the heteroaryl group may have a substituent.
  • heteroaryl group may have examples of the substituent that the heteroaryl group may have include a halogen atom such as a fluorine atom, an alkyl group having 1 to 20 carbon atoms, and an alkoxy group having 1 to 20 carbon atoms.
  • a halogen atom such as a fluorine atom
  • an alkyl group having 1 to 20 carbon atoms and an alkoxy group having 1 to 20 carbon atoms.
  • m1 represents an integer of 0 to 6
  • m2 represents an integer of 0 to 6.
  • R ′ represents an alkyl group which may be substituted with fluorine, an aryl group which may be substituted or a heteroaryl group which may be substituted.
  • Definitions and specific examples of the optionally substituted alkyl group represented by R ′, the optionally substituted aryl group, and the optionally substituted heteroaryl group are as follows: The definition and specific examples of the alkyl group which may be substituted, the aryl group which may be substituted and the heteroaryl group which may be substituted are the same. (CH 2 ) m1 Or (CH 2 ) m2 The hydrogen atom in the formula represented by may be fluorine-substituted.
  • CH 2 Is CHF or CF 2 It may be replaced by a group represented by In the formulas (1) and (2), when R is an alkyl group or an alkoxy group, the alkyl group or the alkoxy group has 1 to 20 carbon atoms from the viewpoint of the solubility of the polymer compound in the solvent. Preferably, it is 2-18, more preferably 3-12.
  • R is an alkyl group or an alkoxy group
  • the alkyl group or the alkoxy group has 1 to 20 carbon atoms from the viewpoint of the solubility of the polymer compound in the solvent.
  • it is 2-18, more preferably 3-12.
  • Examples of the repeating unit represented by the formula (1) include the following repeating units.
  • Examples of the repeating unit represented by the formula (2) include the following repeating units.
  • the total of the amount of the repeating unit represented by the formula (1) and the amount of the repeating unit represented by the formula (2) contained in the polymer compound of the present invention is an organic having a functional layer containing the polymer compound.
  • the photoelectric conversion efficiency of the photoelectric conversion element it is preferably 20 to 100 mol%, more preferably 30 to 100 mol%, based on the total amount of repeating units contained in the polymer compound.
  • the amount of the repeating unit represented by the formula (1) contained in the polymer compound of the present invention is preferably 10 to 50 mol% with respect to the total amount of the repeating units contained in the polymer compound, More preferably, it is 15 to 50 mol%.
  • the amount of the repeating unit represented by the formula (2) contained in the polymer compound of the present invention is preferably 10 to 50 mol% with respect to the total amount of repeating units contained in the polymer compound, More preferably, it is 15 to 50 mol%.
  • the polymer compound of the present invention may have a repeating unit other than the repeating unit represented by the formula (1) and the repeating unit represented by the formula (2).
  • the repeating unit other than the repeating unit represented by the formula (1) and the repeating unit represented by the formula (2) include an arylene group and a heteroarylene group, and the repeating unit represented by the formula (1) and the formula ( And a heteroarylene group not containing the repeating unit represented by 2).
  • the arylene group include a phenylene group, a naphthalenediyl group, an anthracenediyl group, a pyrenediyl group, and a fluorenediyl group.
  • heteroarylene group examples include a flangyl group, a pyrrole diyl group, a pyridinediyl group, and the like.
  • the heteroarylene group may have a substituent, and examples of the substituent include a halogen atom, an alkyl group having 1 to 20 carbon atoms, and an alkoxy group having 1 to 20 carbon atoms.
  • a preferred embodiment of the polymer compound of the present invention is represented by the formula (4) (In the formula, R represents the same meaning as described above.) It is a high molecular compound containing the repeating unit represented by these.
  • the weight average molecular weight in terms of polystyrene of the polymer compound of the present invention is preferably 10 3 ⁇ 10 8 And more preferably 10 3 ⁇ 10 7 And more preferably 10 3 ⁇ 10 6 It is.
  • the polymer compound of the present invention is preferably a conjugated polymer compound.
  • the conjugated polymer compound means a compound in which atoms constituting the main chain of the polymer compound are substantially conjugated.
  • the polymer compound of the present invention may be produced by any method.
  • the monomer is dissolved in an organic solvent, if necessary, , And can be synthesized by polymerization using a known aryl coupling reaction using a catalyst, a ligand and the like.
  • the monomer can be synthesized with reference to, for example, methods disclosed in USP 2008/145571 and JP-A-2006-335933.
  • Examples of the polymerization by the aryl coupling reaction include polymerization by Stille coupling reaction, polymerization by Suzuki coupling reaction, polymerization by Yamamoto coupling reaction, and polymerization by Kumada-Tamao coupling reaction.
  • palladium complexes such as palladium [tetrakis (triphenylphosphine)], [tris (dibenzylideneacetone)] dipalladium, palladium acetate, bis (triphenylphosphine) palladium dichloride as catalysts.
  • ligands such as triphenylphosphine, tri (2-methylphenyl) phosphine, tri (2-methoxyphenyl) phosphine, diphenylphosphinopropane, tri (cyclohexyl) phosphine, tri (tert-butyl) phosphine
  • a polymerization reaction of a monomer having a group The details of the polymerization by the Stille coupling reaction are described in, for example, Angewante Chemie International Edition, 2005, Vol. 44, p. 4442-4489.
  • Polymerization by Suzuki coupling reaction uses a palladium complex or nickel complex as a catalyst in the presence of an inorganic base or an organic base, and a ligand is added as necessary to have a boronic acid residue or a boric acid ester residue.
  • a monomer having a halogen atom such as a bromine atom, an iodine atom or a chlorine atom, or a monomer having a sulfonate group such as a trifluoromethanesulfonate group or a p-toluenesulfonate group.
  • a monomer having a halogen atom such as a bromine atom, an iodine atom or a chlorine atom
  • a monomer having a sulfonate group such as a trifluoromethanesulfonate group or a p-toluenesulfonate group.
  • the inorganic base include sodium carbonate, potassium carbonate, cesium carbonate, tripotassium phosphate, and potassium fluoride.
  • Examples of the organic base include tetrabutylammonium fluoride, tetrabutylammonium chloride, tetrabutylammonium bromide, and tetraethylammonium hydroxide.
  • Examples of the palladium complex include palladium [tetrakis (triphenylphosphine)], [tris (dibenzylideneacetone)] dipalladium, palladium acetate, and bis (triphenylphosphine) palladium dichloride.
  • Examples of the nickel complex include bis (cyclooctadiene) nickel.
  • Examples of the ligand include triphenylphosphine, tri (2-methylphenyl) phosphine, tri (2-methoxyphenyl) phosphine, diphenylphosphinopropane, tri (cyclohexyl) phosphine, and tri (tert-butyl) phosphine. It is done. Details of the polymerization by the Suzuki coupling reaction are described in, for example, Journal of Polymer Science: Part A: Polymer Chemistry (Part A: Polymer Chemistry), 2001, Vol. 39, p. 1533-1556.
  • Polymerization by Yamamoto coupling reaction uses a catalyst and a reducing agent to react monomers having halogen atoms, monomers having sulfonate groups such as trifluoromethanesulfonate groups, or monomers having halogen atoms and monomers having sulfonate groups.
  • Catalysts include nickel zero-valent complexes such as bis (cyclooctadiene) nickel and ligands such as bipyridyl, [bis (diphenylphosphino) ethane] nickel dichloride, [bis (diphenylphosphino) propane] nickel.
  • a catalyst comprising a nickel complex other than a nickel zero-valent complex such as dichloride and a ligand such as triphenylphosphine, diphenylphosphinopropane, tri (cyclohexyl) phosphine, tri (tert-butyl) phosphine, if necessary.
  • the reducing agent include zinc and magnesium.
  • Polymerization by the Yamamoto coupling reaction may be performed using a dehydrated solvent in the reaction, may be performed in an inert atmosphere, or may be performed by adding a dehydrating agent to the reaction system. Details of the polymerization by Yamamoto coupling are described in, for example, Macromolecules, 1992, Vol. 25, p. 1214-1223.
  • Polymerization by Kumada-Tamao coupling reaction uses a nickel catalyst such as [bis (diphenylphosphino) ethane] nickel dichloride, [bis (diphenylphosphino) propane] nickel dichloride, a compound having a magnesium halide group and a halogen atom.
  • a dehydrated solvent may be used for the reaction, the reaction may be performed in an inert atmosphere, or a dehydrating agent may be added to the reaction system.
  • a solvent is usually used. The solvent may be selected in consideration of the polymerization reaction used, the solubility of the monomer and polymer, and the like.
  • the solvent used in the Stille coupling reaction is preferably an organic solvent such as tetrahydrofuran, toluene, N, N-dimethylformamide, a mixed solvent obtained by mixing two or more of these solvents, or a solvent having two phases of an organic solvent phase and an aqueous phase.
  • the solvent used for the Stille coupling reaction is preferably deoxygenated before the reaction in order to suppress side reactions.
  • Solvents used in the Suzuki coupling reaction are organic solvents such as tetrahydrofuran, toluene, 1,4-dioxane, dimethoxyethane, N, N-dimethylacetamide, N, N-dimethylformamide, and mixed solvents in which two or more of these solvents are mixed.
  • a solvent and a solvent having two phases of an organic solvent phase and an aqueous phase are preferred.
  • the solvent used for the Suzuki coupling reaction is preferably deoxygenated before the reaction in order to suppress side reactions.
  • the solvent used for the Yamamoto coupling reaction is an organic solvent such as tetrahydrofuran, toluene, 1,4-dioxane, dimethoxyethane, N, N-dimethylacetamide, N, N-dimethylformamide, or a mixed solvent in which two or more of these solvents are mixed.
  • a solvent is preferred.
  • the solvent used for the Yamamoto coupling reaction is preferably deoxygenated before the reaction in order to suppress side reactions.
  • a method of polymerizing by a Stille coupling reaction a method of polymerizing by a Suzuki coupling reaction, a method of polymerizing by a Yamamoto coupling reaction are preferable, and a Stille coupling reaction More preferred are a method of polymerizing, a method of polymerizing by a Suzuki coupling reaction, and a method of polymerizing by a Yamamoto coupling reaction using a nickel zero-valent complex.
  • the lower limit of the reaction temperature of the aryl coupling reaction is preferably ⁇ 100 ° C., more preferably ⁇ 20 ° C., and particularly preferably 0 ° C. from the viewpoint of reactivity.
  • the upper limit of the reaction temperature is preferably 200 ° C., more preferably 150 ° C., and particularly preferably 120 ° C. from the viewpoint of the stability of the monomer and the polymer compound.
  • a known method can be used as a method for removing the polymer compound of the present invention from the reaction solution after completion of the reaction.
  • the polymer compound of the present invention can be obtained by adding a reaction solution to a lower alcohol such as methanol, filtering the deposited precipitate, and drying the filtrate.
  • a lower alcohol such as methanol
  • the polymer compound of the present invention When the polymer compound of the present invention is used for the production of an organic photoelectric conversion element, if a polymerization active group remains at the terminal of the polymer compound, characteristics such as durability of the organic photoelectric conversion element may be deteriorated. It is preferable to protect the terminal of the polymer compound with a stable group.
  • the stable group for protecting the terminal include an alkyl group, an alkoxy group, a fluoroalkyl group, a fluoroalkoxy group, an aryl group, an arylamino group, and a monovalent heterocyclic group.
  • the arylamino group include a phenylamino group and a diphenylamino group.
  • the monovalent heterocyclic group examples include a chenyl group, a pyrrolyl group, a furyl group, a pyridyl group, a quinolyl group, and an isoquinolyl group.
  • the polymerization active group remaining at the terminal of the polymer compound may be replaced with a hydrogen atom instead of a stable group.
  • the stable group for protecting the terminal is a group imparting electron donating properties such as an arylamino group.
  • the polymer compound is a conjugated polymer compound
  • the end of a group having a conjugated bond in which the conjugated structure of the main chain of the polymer compound and the conjugated structure of a stable group protecting the end are continuous is also protected. It can preferably be used as a stable group. Examples of the group include an aryl group and a monovalent heterocyclic group having aromaticity.
  • the polymer compound of the present invention is produced using Stille coupling, for example, the formula (5) (In the formula, R represents the same meaning as described above. Z represents a bromine atom, an iodine atom or a chlorine atom. The two Zs may be the same or different.) And a compound represented by formula (6) (Wherein R represents the same meaning as described above.
  • Z 2 Represents an organotin residue. 2 Z 2 May be the same or different.
  • the polymer represented by the formula can be polymerized to produce the polymer compound of the present invention.
  • Z in Formula (5) is preferably a bromine atom or a chlorine atom, and more preferably a bromine atom.
  • the compound represented by the formula (5) is, for example, Macromolecules, 2009, Vol. 42, No. 17, p. Synthesis using the method described in 6564-6571 Can do.
  • a compound represented by Formula (6) the following compounds are mentioned, for example.
  • Examples of the organic lithium compound include butyl lithium (n-BuLi), sec-butyl lithium (sec-BuLi), tert-butyl lithium (tert-BuLi), and lithium diisopropylamide.
  • organolithium compounds n-BuLi is preferable.
  • Examples of the trialkyltin halide include trimethyltin chloride, triethyl chloride, and tributyl chloride.
  • the temperature for reacting the organolithium compound with the compound represented by formula (7) is usually ⁇ 100 to 50 ° C., preferably ⁇ 80 to 0 ° C.
  • the reaction time of the organolithium compound and the compound represented by the formula (7) is usually 1 minute to 10 hours, preferably 30 minutes to 5 hours.
  • the amount of the organolithium compound to be reacted is usually 2 to 5 equivalents, preferably 2 to 3 equivalents, relative to the compound represented by the formula (7).
  • the temperature at which the intermediate and the trialkyltin halide are reacted is usually ⁇ 100 to 100 ° C., preferably ⁇ 80 ° C. to 50 ° C.
  • the reaction time of the intermediate and the trialkyltin halide is usually 1 minute to 30 hours, preferably 1 to 10 hours.
  • the amount of the trialkyltin halide to be reacted is usually 2 to 6 equivalents, preferably 2 to 3 equivalents, relative to the compound represented by the formula (7).
  • normal post-treatment can be performed to obtain the compound represented by the formula (6). For example, after the reaction is stopped by adding water, the product is extracted with an organic solvent and the solvent is distilled off.
  • the product can be isolated and purified by a method such as fractionation by chromatography or recrystallization.
  • the compound represented by the formula (7) can be produced, for example, by reacting the compound represented by the formula (8) in the presence of an acid.
  • the acid used in the reaction for producing the compound represented by the formula (7) from the compound represented by the formula (8) may be Lewis acid or Bronsted acid, Hydrochloric acid, bromic acid, hydrofluoric acid, sulfuric acid, nitric acid, formic acid, acetic acid, propionic acid, oxalic acid, benzoic acid, boron fluoride, aluminum chloride, tin chloride (IV), iron chloride (II), titanium tetrachloride, Examples include benzenesulfonic acid, p-toluenesulfonic acid and mixtures of these compounds.
  • the reaction for producing the compound represented by formula (7) from the compound represented by formula (8) is preferably carried out in the presence of a solvent.
  • the reaction temperature is preferably from ⁇ 80 ° C. to the boiling point of the solvent.
  • Solvents used in the reaction include saturated hydrocarbons such as pentane, hexane, heptane, octane and cyclohexane, unsaturated hydrocarbons such as benzene, toluene, ethylbenzene and xylene, carbon tetrachloride, chloroform, dichloromethane, chlorobutane, bromobutane, chloro Halogenated hydrocarbons such as pentane, bromopentane, chlorohexane, bromohexane, chlorocyclohexane, bromocyclohexane, chlorobenzene, dichlorobenzene, trichlorobenzene, methanol, ethanol, 1-propanol, 2-propanol, butanol, tert-butyl alcohol, etc.
  • saturated hydrocarbons such as pentane, hexane, heptane, octan
  • Carboxylic acids such as alcohol, formic acid, acetic acid, propionic acid, dimethyl ether, diethyl ether, methyl-tert-butyl ether, tetrahydro Orchids, tetrahydropyran, ethers such as dioxane.
  • the solvent may be used alone or in combination.
  • normal post-treatment can be performed to obtain the compound represented by the formula (7).
  • the reaction is stopped by adding water, the product is extracted with an organic solvent and the solvent is distilled off.
  • the product can be isolated and purified by a method such as fractionation by chromatography or recrystallization.
  • the compound represented by Formula (8) is, for example, Formula (9).
  • Grignard reagent can be produced by reacting a Grignard reagent or an organolithium compound.
  • a Grignard reagent used in the above reaction, methyl magnesium chloride, methyl magnesium bromide, ethyl magnesium chloride, ethyl magnesium bromide, propyl magnesium chloride, propyl magnesium bromide, butyl magnesium chloride, butyl magnesium bromide, hexyl magnesium bromide, octyl magnesium bromide, Examples include decylmagnesium bromide, allylmagnesium chloride, allylmagnesium bromide, benzylmagnesium chloride, phenylmagnesium bromide, naphthylmagnesium bromide, and tolylmagnesium bromide.
  • Examples of the organic lithium compound include methyl lithium, ethyl lithium, propyl lithium, butyl lithium, phenyl lithium, naphthyl lithium, benzyl lithium, and tolyl lithium.
  • the reaction for producing the compound represented by the formula (8) from the compound represented by the formula (9) and a Grignard reagent or an organolithium compound may be carried out in an inert gas atmosphere such as nitrogen or argon. preferable. Moreover, it is preferable to implement this reaction in presence of a solvent. When the reaction is carried out in the presence of a solvent, the reaction temperature is preferably from ⁇ 80 ° C. to the boiling point of the solvent.
  • Solvents used in the reaction include saturated hydrocarbons such as pentane, hexane, heptane, octane and cyclohexane, unsaturated hydrocarbons such as benzene, toluene, ethylbenzene and xylene, dimethyl ether, diethyl ether, methyl-tert-butyl ether, tetrahydrofuran, And ethers such as tetrahydropyran and dioxane. These solvents may be used alone or in combination. After the reaction, normal post-treatment can be performed to obtain the compound represented by the formula (8).
  • the compound represented by Formula (9) is, for example, Formula (10). It can manufacture by making the compound and peroxide which are represented by these react.
  • the peroxide include sodium perborate, m-chloroperbenzoic acid, hydrogen peroxide, and benzoyl peroxide. Preferred are sodium perborate and m-chloroperbenzoic acid, and particularly preferred is sodium perborate.
  • the reaction for producing the compound represented by the formula (9) from the compound represented by the formula (10) and the peroxide is carried out in the presence of a carboxylic acid solvent such as acetic acid, trifluoroacetic acid, propionic acid and butyric acid. It is preferable.
  • a carboxylic acid solvent such as acetic acid, trifluoroacetic acid, propionic acid and butyric acid. It is preferable.
  • a mixed solvent obtained by mixing a carboxylic acid solvent with one or more solvents selected from the group consisting of carbon tetrachloride, chloroform, dichloromethane, benzene, and toluene. It is preferable to carry out the reaction.
  • the reaction temperature is preferably 0 ° C. or higher and 50 ° C. or lower.
  • the reaction normal post-treatment can be performed to obtain the compound represented by the formula (9).
  • the reaction is stopped by adding water, the product is extracted with an organic solvent and the solvent is distilled off.
  • the product can be isolated and purified by methods such as chromatographic fractionation and recrystallization. Since the polymer compound of the present invention has a high absorbance of light having a long wavelength such as 600 nm light and efficiently absorbs sunlight, an organic photoelectric conversion element manufactured using the polymer compound of the present invention has a short-circuit current. Density increases.
  • the organic photoelectric conversion element of the present invention has a pair of electrodes and a functional layer provided between the electrodes, and the functional layer includes an electron-accepting compound, a repeating unit represented by the formula (1), and a formula And a polymer compound containing the repeating unit represented by (2).
  • an electron-accepting compound fullerene and a fullerene derivative are preferable.
  • the organic photoelectric conversion element 1. An organic photoelectric conversion element having a pair of electrodes and a functional layer between the electrodes, the functional layer containing an electron-accepting compound and a polymer compound containing a repeating unit represented by the formula (1); 2.
  • An organic photoelectric conversion element having a pair of electrodes and a functional layer between the electrodes, the functional layer containing an electron-accepting compound and a polymer compound containing a repeating unit represented by formula (1)
  • at least one of the pair of electrodes is transparent or translucent.
  • the amount of the electron accepting compound in the functional layer containing the electron accepting compound and the polymer compound is 10 to 1000 parts by weight with respect to 100 parts by weight of the polymer compound. It is preferably 20 to 500 parts by weight. In addition, 2.
  • the amount of the fullerene derivative in the functional layer containing the fullerene derivative and the polymer compound is preferably 10 to 1000 parts by weight with respect to 100 parts by weight of the polymer compound. More preferably, it is ⁇ 500 parts by weight. From the viewpoint of increasing the photoelectric conversion efficiency, the amount of the fullerene derivative in the functional layer is preferably 20 to 400 parts by weight, and preferably 40 to 250 parts by weight with respect to 100 parts by weight of the polymer compound. More preferred is 80 to 120 parts by weight.
  • the amount of the fullerene derivative in the functional layer is preferably 20 to 250 parts by weight, and preferably 40 to 120 parts by weight with respect to 100 parts by weight of the polymer compound. More preferred.
  • a polymer compound containing the electron accepting compound and the repeating unit represented by the formula (1) and the repeating unit represented by the formula (2) is desirable. It has an absorption region that can efficiently absorb the spectrum of incident light, and the heterojunction interface contains many heterojunction interfaces in order to efficiently separate excitons, and the charge generated by the heterojunction interface It is important to have a charge transporting property for quickly transporting to the electrode.
  • the organic photoelectric conversion element the above 1. , 2. From the standpoint of including a large number of heterojunction interfaces, the organic photoelectric conversion element is preferable.
  • the organic photoelectric conversion element is more preferable.
  • an additional layer may be provided between at least one electrode and the functional layer in the element. Examples of the additional layer include a charge transport layer that transports holes or electrons, and a buffer layer.
  • the organic photoelectric conversion element of the present invention is usually formed on a substrate.
  • the substrate may be any substrate that does not chemically change when an electrode is formed and an organic layer is formed. Examples of the material for the substrate include glass, plastic, polymer film, and silicon.
  • the opposite electrode that is, the electrode far from the substrate is preferably transparent or translucent.
  • a material for the pair of electrodes a metal, a conductive polymer, or the like can be used.
  • the material of one of the pair of electrodes is preferably a material having a low work function.
  • metals such as lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, strontium, barium, aluminum, scandium, vanadium, zinc, yttrium, indium, cerium, samarium, europium, terbium, ytterbium, and those metals
  • An alloy with metal, graphite, a graphite intercalation compound, or the like is used.
  • the alloy examples include magnesium-silver alloy, magnesium-indium alloy, magnesium-aluminum alloy, indium-silver alloy, lithium-aluminum alloy, lithium-magnesium alloy, lithium-indium alloy, and calcium-aluminum alloy.
  • the material of the transparent or translucent electrode include a conductive metal oxide film and a translucent metal thin film. Specifically, a film formed using a conductive material made of indium oxide, zinc oxide, tin oxide, and indium tin oxide (ITO), indium zinc oxide, etc., which is a composite thereof, NESA Gold, platinum, silver, and copper are used, and ITO, indium / zinc / oxide, and tin oxide are preferable.
  • Examples of the method for producing the electrode include a vacuum deposition method, a sputtering method, an ion plating method, a plating method, and the like.
  • organic transparent conductive films such as polyaniline and its derivative (s), polythiophene, and its derivative (s) as an electrode material.
  • a material used for the charge transport layer as the additional layer that is, the hole transport layer or the electron transport layer
  • an electron donating compound and an electron accepting compound described later can be used, respectively.
  • As a material used for the buffer layer as an additional layer halides or oxides of alkali metals or alkaline earth metals such as lithium fluoride can be used.
  • fine particles of an inorganic semiconductor such as titanium oxide can be used.
  • an organic thin film containing the polymer compound of the present invention and an electron-accepting compound can be used as the functional layer in the organic photoelectric conversion element of the present invention.
  • the organic thin film generally has a thickness of 1 nm to 100 ⁇ m, preferably 2 nm to 1000 nm, more preferably 5 nm to 500 nm, and further preferably 20 nm to 200 nm.
  • the organic thin film may contain the polymer compound alone or in combination of two or more.
  • a low molecular compound and / or a high molecular compound other than the high molecular compound can be mixed and used as the electron donating compound in the organic thin film.
  • Examples of the electron-donating compound that the organic thin film may contain in addition to the polymer compound containing the repeating unit represented by the formula (1) and the repeating unit represented by the formula (2) include pyrazoline derivatives, aryl Amine derivatives, stilbene derivatives, triphenyldiamine derivatives, oligothiophene and derivatives thereof, polyvinylcarbazole and derivatives thereof, polysilane and derivatives thereof, polysiloxane derivatives having aromatic amines in the side chain or main chain, polyaniline and derivatives thereof, polythiophene and Examples thereof include polypyrrole and derivatives thereof, polyphenylene vinylene and derivatives thereof, and polythienylene vinylene and derivatives thereof.
  • Examples of the electron accepting compound include oxadiazole derivatives, anthraquinodimethane and derivatives thereof, benzoquinone and derivatives thereof, naphthoquinone and derivatives thereof, anthraquinone and derivatives thereof, tetracyanoanthraquinodimethane and derivatives thereof, and fluorenone derivatives.
  • Diphenyldicyanoethylene and derivatives thereof diphenoquinone derivatives, metal complexes of 8-hydroxyquinoline and derivatives thereof, polyquinoline and derivatives thereof, polyquinoxaline and derivatives thereof, polyfluorene and derivatives thereof, C 60 And phenanthroline derivatives such as carbon nanotubes and 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline.
  • Fullerene and derivatives thereof are particularly preferable.
  • the electron-donating compound and the electron-accepting compound are relatively determined from the energy levels of these compounds.
  • Fullerene and its derivatives include C 60 , C 70 , C 84 And derivatives thereof.
  • a fullerene derivative represents a compound in which at least a part of fullerene is modified.
  • Examples of the fullerene derivative include a compound represented by the formula (I), a compound represented by the formula (II), a compound represented by the formula (III), and a compound represented by the formula (IV).
  • R a Is a group having an alkyl group, an aryl group, a heteroaryl group or an ester structure. Multiple R a May be the same or different.
  • R b Represents an alkyl group or an aryl group. Multiple R b May be the same or different.
  • R a And R b The definitions and specific examples of the alkyl group, aryl group and heteroaryl group represented by are the same as the definitions and specific examples of the alkyl group, aryl group and heteroaryl group represented by R.
  • R a The group having an ester structure represented by, for example, formula (V) (Wherein u1 represents an integer of 1 to 6, u2 represents an integer of 0 to 6, R c Represents an alkyl group, an aryl group or a heteroaryl group. ) The group represented by these is mentioned.
  • the definitions and specific examples of the alkyl group, aryl group and heteroaryl group represented by are the same as the definitions and specific examples of the alkyl group, aryl group and heteroaryl group represented by R.
  • C 60 Specific examples of the derivatives include the following.
  • C 70 Specific examples of the derivatives include the following.
  • the organic thin film may be produced by any method.
  • the organic thin film may be produced by a film formation method from a solution containing the polymer compound of the present invention, or an organic thin film may be formed by a vacuum deposition method. Good.
  • Examples of the method for producing an organic thin film by film formation from a solution include a method of producing an organic thin film by applying the solution on one electrode and then evaporating the solvent.
  • the solvent used for film formation from a solution is not particularly limited as long as it dissolves the polymer compound of the present invention.
  • the solvent include unsaturated hydrocarbons such as toluene, xylene, mesitylene, tetralin, decalin, bicyclohexyl, butylbenzene, sec-butylbenzene, and tert-butylbenzene, carbon tetrachloride, chloroform, dichloromethane, dichloroethane, and chlorobutane.
  • Halogenated hydrocarbons such as bromobutane, chloropentane, bromopentane, chlorohexane, bromohexane, chlorocyclohexane, bromocyclohexane, chlorobenzene, dichlorobenzene and trichlorobenzene, and ethers such as tetrahydrofuran and tetrahydropyran.
  • the polymer compound of the present invention can usually be dissolved in the solvent in an amount of 0.1% by weight or more.
  • a coating method such as a printing method, an offset printing method, an inkjet printing method, a dispenser printing method, a nozzle coating method, a capillary coating method can be used, and a spin coating method, a flexographic printing method, an inkjet printing method, and a dispenser printing method are preferable.
  • the organic photoelectric conversion element By irradiating light such as sunlight from a transparent or translucent electrode, the organic photoelectric conversion element generates a photovoltaic force between the electrodes and can be operated as an organic thin film solar cell.
  • It can also be used as an organic thin film solar cell module by integrating a plurality of organic thin film solar cells.
  • a photocurrent flows and it can be operated as an organic photosensor.
  • It can also be used as an organic image sensor by integrating a plurality of organic photosensors.
  • the polystyrene equivalent weight average molecular weight of the polymer compound was determined by size exclusion chromatography (SEC). Column: TOSOH TSKgel SuperHM-H (2) + TSKgel SuperH2000 (4.6 mm Id ⁇ 15 cm); Detector: RI (SHIMADZU RID-10A); Mobile phase: tetrahydrofuran reference example 1 (synthesis of compound 1) A 1000 mL four-necked flask in which the gas in the flask was replaced with argon was charged with 13.0 g (80.0 mmol) of 3-bromothiophene and 80 mL of diethyl ether to obtain a uniform solution.
  • SEC size exclusion chromatography
  • reaction solution was cooled again to ⁇ 78 ° C., and 62 mL (161 mmol) of 2.6 M n-BuLi in hexane was added dropwise over 15 minutes. After dropping, the reaction solution was stirred at ⁇ 25 ° C. for 2 hours, and further stirred at room temperature (25 ° C.) for 1 hour. Thereafter, the reaction solution was cooled to ⁇ 25 ° C., and a solution in which 60 g of iodine (236 mmol) was dissolved in 1000 mL of diethyl ether was added dropwise over 30 minutes.
  • reaction solution was stirred at room temperature (25 ° C.) for 2 hours, and 50 mL of 1N aqueous sodium thiosulfate solution was added to stop the reaction. Diethyl ether was added to the reaction solution to extract the reaction product, and then the organic layer containing the reaction product was dried over magnesium sulfate and concentrated to obtain 35 g of a crude product. The crude product was purified by recrystallization using chloroform to obtain 28 g of Compound 1.
  • the solution was kept at ⁇ 78 ° C., and 4.37 mL (11.4 mmol) of 2.6M n-BuLi in hexane was added dropwise to the solution over 10 minutes. After the addition, the reaction solution was stirred at -78 ° C for 30 minutes, and then stirred at room temperature (25 ° C) for 2 hours. Thereafter, the flask was cooled to ⁇ 78 ° C., and 4.07 g (12.5 mmol) of tributyltin chloride was added to the reaction solution. After the addition, the reaction solution was stirred at ⁇ 78 ° C. for 30 minutes, and then stirred at room temperature (25 ° C.) for 3 hours.
  • Example 1 Synthesis of polymer compound 1
  • a 100 mL flask in which the gas in the flask was replaced with argon 198.9 mg (0.189 mmol) of compound 7
  • 90 mg (0.182 mmol) of compound 8 manufactured by Luminescence Technology Corporation
  • 14 ml of toluene were placed in a uniform solution. did.
  • the resulting toluene solution was bubbled with argon for 30 minutes.
  • the precipitated polymer was filtered, and the obtained polymer was put in a cylindrical filter paper and extracted with methanol, acetone and hexane for 5 hours using a Soxhlet extractor.
  • the polymer remaining in the cylindrical filter paper was dissolved in 100 mL of o-dichlorobenzene, 2 g of sodium diethyldithiocarbamate and 40 mL of water were added, and the mixture was stirred under reflux for 8 hours.
  • the organic layer is washed twice with 50 ml of water, then twice with 50 mL of a 3 wt% aqueous acetic acid solution, then twice with 50 mL of water, and then 50 mL of 5% aqueous potassium fluoride solution. And then washed twice with 50 mL of water, and the resulting solution was poured into methanol to precipitate a polymer. The polymer was filtered and dried, and the obtained polymer was dissolved again in 50 mL of o-dichlorobenzene and passed through an alumina / silica gel column.
  • the polymer compound 2 had a weight average molecular weight in terms of polystyrene of 1.1 ⁇ 10 5 .
  • Measurement Example 1 Measurement of absorbance of organic thin film
  • the polymer compound 1 was dissolved in o- dichlorobenzene at a concentration of 0.5 wt%, to prepare a coating solution.
  • the obtained coating solution was applied onto a glass substrate by spin coating.
  • the coating operation was performed at 23 ° C.
  • the absorption spectrum of the organic thin film was measured with a spectrophotometer (trade name: V-670, manufactured by JASCO Corporation). The measured spectrum is shown in FIG.
  • Table 1 shows the absorbance at 600 nm and 650 nm.
  • Comparative Example 1 Measurement of absorbance of organic thin film
  • An organic thin film was prepared in the same manner as in Measurement Example 1 except that the polymer compound 2 was used instead of the polymer compound 1, and the absorption spectrum of the organic thin film was measured. The measured spectrum is shown in FIG. Table 1 shows the absorbance at 600 nm and 650 nm.
  • Example 2 (Production and Evaluation of Organic Thin Film Solar Cell) Fullerene derivative C60PCBM (phenyl C61-butyric acid methyl ester, product name: E100), which is an electron-accepting compound, and polymer compound 1, which is an electron-donating compound, at a weight ratio of 3: 1.
  • the mixture was dissolved in o-dichlorobenzene so that the concentration of the mixture was 2% by weight.
  • the obtained solution was filtered through a Teflon (registered trademark) filter having a pore size of 1.0 ⁇ m to prepare a coating solution 1.
  • a glass substrate provided with an ITO film with a thickness of 150 nm by a sputtering method was subjected to surface treatment by ozone UV treatment.
  • a PEDOT: PSS solution (CleviosP VP AI4083 manufactured by HC Starck Co., Ltd.) is applied onto the ITO film by spin coating, and heated at 120 ° C. for 10 minutes in the atmosphere to thereby form a hole injection layer having a thickness of 50 nm. It was created.
  • the coating solution 1 was applied onto the ITO film by spin coating to obtain a functional layer of an organic thin film solar cell.
  • the film thickness of the functional layer was 100 nm.
  • the organic thin film solar cell was produced by vapor-depositing calcium with a film thickness of 4 nm with a vacuum evaporation machine, and vapor-depositing aluminum with a film thickness of 100 nm.
  • the degree of vacuum at the time of vapor deposition was all 1 to 9 ⁇ 10 ⁇ 3 Pa.
  • the shape of the organic thin film solar cell thus obtained was a square of 2 mm ⁇ 2 mm.
  • the obtained organic thin film solar cell is irradiated with constant light using a solar simulator (trade name OTENTO-SUNII: AM1.5G filter, irradiance 100 mW / cm 2 , manufactured by Spectrometer Co., Ltd.), and the generated current and voltage are measured. did.
  • the photoelectric conversion efficiency is 2.3%
  • Jsc short circuit current density
  • Voc open circuit voltage
  • FF fill factor
  • the polymer compound of the present invention is useful for an organic photoelectric conversion element because of its large absorbance of light having a long wavelength.

Abstract

A high-molecular compound comprising repeating units represented by formula (1) and repeating units represented by formula (2) exhibits high absorbance in a long-wavelength region and is therefore useful for an organic photoelectric conversion element. In formula (1), R is a hydrogen atom, a fluorine atom, optionally fluorine-substituted alkyl, optionally fluorine -substituted alkoxy, optionally substituted aryl, optionally substituted heteroaryl, or a group represented by formula (3) [wherein m1 is an integer of 0 to 6, m2 is an integer of 0 to 6, R' is optionally fluorine-substituted alkyl, optionally substituted aryl, or optionally substituted heteroaryl, and a hydrogen atom in the (CH2)m1 or (CH2)m2 moiety may be replaced by a fluorine atom]; and the four R groups may be the same or different from each other. In formula (2), R is as defined above.

Description

有機光電変換素子Organic photoelectric conversion element
 本発明は、高分子化合物及びそれを用いた有機光電変換素子に関する。 The present invention relates to a polymer compound and an organic photoelectric conversion element using the same.
 有機半導体材料は、有機太陽電池、光センサー等の有機光電変換素子への適用が期待されている。中でも、有機半導体材料として高分子化合物を用いれば、安価な塗布法で機能層を作製することができる。有機光電変換素子の諸特性を向上させるために、様々な高分子化合物である有機半導体材料を有機光電変換素子に用いることが検討されている。有機半導体材料として、例えば、9,9−ジオクチルフルオレン−2,7−ジボロン酸エステルと5,5’’’’−ジブロモ−3’’,4’’−ジヘキシル−α−ペンタチオフェンとを重合した高分子化合物が提案されている(USP−7803885)。
 しかしながら、該高分子化合物は、長波長の光の吸収が十分ではない。
Organic semiconductor materials are expected to be applied to organic photoelectric conversion elements such as organic solar cells and optical sensors. In particular, when a polymer compound is used as the organic semiconductor material, the functional layer can be manufactured by an inexpensive coating method. In order to improve various characteristics of the organic photoelectric conversion element, use of organic semiconductor materials that are various polymer compounds for the organic photoelectric conversion element has been studied. As an organic semiconductor material, for example, 9,9-dioctylfluorene-2,7-diboronic acid ester and 5,5 ″ ″-dibromo-3 ″, 4 ″ -dihexyl-α-pentathiophene are polymerized. A polymer compound has been proposed (USP-7803885).
However, the polymer compound does not sufficiently absorb light having a long wavelength.
 本発明は長波長の光の吸光度が大きい高分子化合物を提供する。
 即ち、本発明は、式(1)
Figure JPOXMLDOC01-appb-I000004
〔式中、Rは、水素原子、フッ素原子、フッ素置換されていてもよいアルキル基、フッ素置換されていてもよいアルコキシ基、置換されていてもよいアリール基、置換されていてもよいヘテロアリール基又は式(3)
Figure JPOXMLDOC01-appb-I000005
(式中、m1は、0~6の整数を表し、m2は、0~6の整数を表す。R’は、フッ素置換されていてもよいアルキル基、置換されていてもよいアリール基又は置換されていてもよいヘテロアリール基を表す。(CHm1又は(CHm2で示される式中の水素原子はフッ素置換されていてもよい。)で表される基を表す。4個あるRは、それぞれ同一でも相異なっていてもよい。〕
で表される繰り返し単位と式(2)
Figure JPOXMLDOC01-appb-I000006
〔式中、Rは、前述と同じ意味を表す。〕
で表される繰り返し単位とを含む高分子化合物を提供する。
 高分子化合物のより具体的な例としては、Rが、水素原子、フッ素原子、フッ素置換されていてもよい炭素数1~20のアルキル基、フッ素置換されていてもよい炭素数1~20のアルコキシ基又は置換されていてもよいフェニル基であり、ここで、フェニル基の置換基は、ハロゲン原子、炭素数1~20のアルキル基又は炭素数1~20のアルコキシ基であるものが挙げられる。
 また、本発明は、一対の電極と電極間に設けられた機能層とを有し、該機能層が電子受容性化合物と前記高分子化合物とを含む有機光電変換素子を提供する。
The present invention provides a polymer compound having a large absorbance of light having a long wavelength.
That is, the present invention provides the formula (1)
Figure JPOXMLDOC01-appb-I000004
[In the formula, R represents a hydrogen atom, a fluorine atom, an optionally substituted alkyl group, an optionally substituted alkoxy group, an optionally substituted aryl group, or an optionally substituted heteroaryl. Group or formula (3)
Figure JPOXMLDOC01-appb-I000005
(In the formula, m1 represents an integer of 0 to 6, and m2 represents an integer of 0 to 6. R ′ represents an alkyl group which may be substituted with fluorine, an aryl group which may be substituted, or a substituted group. A hydrogen atom in the formula represented by (CH 2 ) m1 or (CH 2 ) m2 may be fluorine-substituted). The four Rs may be the same or different from each other. ]
And a repeating unit represented by formula (2)
Figure JPOXMLDOC01-appb-I000006
[Wherein R represents the same meaning as described above. ]
The high molecular compound containing the repeating unit represented by these is provided.
As more specific examples of the polymer compound, R is a hydrogen atom, a fluorine atom, an alkyl group having 1 to 20 carbon atoms that may be fluorine-substituted, or a carbon atom having 1 to 20 carbon atoms that may be fluorine-substituted. An alkoxy group or an optionally substituted phenyl group, wherein the substituent of the phenyl group includes a halogen atom, an alkyl group having 1 to 20 carbon atoms, or an alkoxy group having 1 to 20 carbon atoms. .
The present invention also provides an organic photoelectric conversion element having a pair of electrodes and a functional layer provided between the electrodes, wherein the functional layer includes an electron-accepting compound and the polymer compound.
 図1は、高分子化合物1の吸収スペクトルを示す図である。
 図2は、高分子化合物2の吸収スペクトルを示す図である。
FIG. 1 is a graph showing an absorption spectrum of the polymer compound 1.
FIG. 2 is a diagram showing an absorption spectrum of the polymer compound 2. As shown in FIG.
 以下、本発明を詳細に説明する。
 本発明の高分子化合物は、式(1)で表される繰り返し単位及び式(2)で表される繰り返し単位を含む。
 式(1)及び式(2)中、Rで表されるアルキル基としては、鎖状又は環状のもの、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、オクチル基、イソオクチル基、デシル基、ドデシル基、ペンタデシル基、オクタデシル基が挙げられる。アルキル基中の水素原子は、フッ素原子で置換されていてもよい。フッ素原子で置換されたアルキル基としては、例えば、トリフルオロメチル基、ペンタフルオロエチル基、パーフルオロブチル基、パーフルオロヘキシル基、パーフルオロオクチル基が挙げられる。
 式(1)及び式(2)中、Rで表されるアルコキシ基としては、鎖状又は環状のもの、例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、sec−ブトキシ基、tert−ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、シクロヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、2−エチルヘキシルオキシ基、ノニルオキシ基、デシルオキシ基、3,7−ジメチルオクチルオキシ基が挙げられる。アルコキシ基中の水素原子は、フッ素原子で置換されていてもよい。フッ素原子で置換されたアルコキシ基としては、例えば、トリフルオロメトキシ基、ペンタフルオロエトキシ基、パーフルオロブトキシ基、パーフルオロヘキシルオキシ基、パーフルオロオクチルオキシ基が挙げられる。
 式(1)及び式(2)中、Rで表されるアリール基は、芳香族炭化水素から、水素原子1個を除いた原子団である。アリール基には、ベンゼン環を含む基、芳香族性を有する縮合環を含む基、2個以上のベンゼン環又は芳香族性を有する縮合環が直接結合した構造を有する基、2個以上のベンゼン環又は芳香族性を有する縮合環がビニレン等の基を介して結合した構造を有する基が含まれる。アリール基の炭素数は、6~60であることが好ましく、6~30であることがより好ましい。アリール基としては、例えば、フェニル基、1−ナフチル基、2−ナフチル基が挙げられる。アリール基は、置換基を有していてもよい。アリール基が有していてもよい置換基としては、例えば、フッ素原子等のハロゲン原子、炭素数が1~20のアルキル基、炭素数が1~20のアルコキシ基が挙げられる。
 式(1)及び式(2)中、Rで表されるヘテロアリール基としては、例えば、チェニル基、ピロリル基、フリル基、ピリジル基、キノリル基、イソキノリル基が挙げられる。ヘテロアリール基は、置換基を有していてもよい。ヘテロアリール基が有していてもよい置換基としては、例えば、フッ素原子等のハロゲン原子、炭素数が1~20のアルキル基、炭素数が1~20のアルコキシ基が挙げられる。
 式(3)で表される基において、m1は、0~6の整数を表し、m2は、0~6の整数を表す。R’は、フッ素置換されていてもよいアルキル基、置換されていてもよいアリール基又は置換されていてもよいヘテロアリール基を表す。R’で表されるフッ素置換されていてもよいアルキル基、置換されていてもよいアリール基及び置換されていてもよいヘテロアリール基の定義及び具体例は、Rで表されるフッ素置換されていてもよいアルキル基、置換されていてもよいアリール基及び置換されていてもよいヘテロアリール基の定義及び具体例と同じである。(CHm1又は(CHm2で示される式中の水素原子はフッ素置換されていてもよい。即ち、CHがCHF又はCFで示される基で置き換えられていてもよい。
 式(1)及び式(2)中、Rが、アルキル基又はアルコキシ基である場合、高分子化合物の溶媒への溶解性の観点からは、アルキル基又はアルコキシ基の炭素数が1~20であることが好ましく、2~18であることがより好ましく、3~12であることがさらに好ましい。
 式(1)で表される繰り返し単位としては、例えば、以下の繰り返し単位が挙げられる。
Figure JPOXMLDOC01-appb-I000007
 式(2)で表される繰り返し単位としては、例えば、以下の繰り返し単位が挙げられる。
Figure JPOXMLDOC01-appb-I000008
 本発明の高分子化合物に含まれる式(1)で表される繰り返し単位の量と式(2)で表される繰り返し単位の量との合計は、該高分子化合物を含む機能層を有する有機光電変換素子の光電変換効率を高める観点からは、該高分子化合物が含有する繰り返し単位の合計量に対して、20~100モル%であることが好ましく、30~100モル%であることがより好ましい。本発明の高分子化合物に含まれる式(1)で表される繰り返し単位の量は、該高分子化合物が含有する繰り返し単位の合計量に対して、10~50モル%であることが好ましく、15~50モル%であることがより好ましい。本発明の高分子化合物に含まれる式(2)で表される繰り返し単位の量は、該高分子化合物が含有する繰り返し単位の合計量に対して、10~50モル%であることが好ましく、15~50モル%であることがより好ましい。
 本発明の高分子化合物は、式(1)で表される繰り返し単位、式(2)で表される繰り返し単位以外の繰り返し単位を有していてもよい。式(1)で表される繰り返し単位、式(2)で表される繰り返し単位以外の繰り返し単位としては、アリーレン基、ヘテロアリーレン基であって式(1)で表される繰り返し単位及び式(2)で表される繰り返し単位を含まないヘテロアリーレン基等が挙げられる。該アリーレン基としては、フェニレン基、ナフタレンジイル基、アントラセンジイル基、ピレンジイル基、フルオレンジイル基等が挙げられる。該ヘテロアリーレン基としては、フランジイル基、ピロールジイル基、ピリジンジイル基等が挙げられる。該ヘテロアリーレン基は置換基を有していてもよく、該置換基としては、例えば、ハロゲン原子、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基が挙げられる。
 本発明の高分子化合物の好ましい一態様は、式(4)
Figure JPOXMLDOC01-appb-I000009
(式中、Rは前述と同じ意味を表す。)
で表される繰り返し単位を含む高分子化合物である。
 本発明の高分子化合物のポリスチレン換算の重量平均分子量は、好ましくは10~10であり、より好ましくは10~10であり、さらに好ましくは10~10である。
 本発明の高分子化合物は、共役系高分子化合物であることが好ましい。ここで、共役系高分子化合物とは、高分子化合物の主鎖を構成する原子が実質的に共役している化合物を意味する。
 本発明の高分子化合物は、如何なる方法で製造してもよいが、例えば、用いる重合反応に適した官能基を有するモノマーを合成した後に、必要に応じて該モノマーを有機溶媒に溶解し、アルカリ、触媒、配位子等を用いた公知のアリールカップリング反応を用いて重合することにより合成することができる。前記モノマーの合成は、例えば、USP2008/145571、特開2006−335933号公報に示された方法を参考にして行うことができる。
 アリールカップリング反応による重合は、例えば、Stilleカップリング反応による重合、Suzukiカップリング反応による重合、Yamamotoカップリング反応による重合、Kumada−Tamaoカップリング反応による重合が挙げられる。
 Stilleカップリング反応による重合は、パラジウム[テトラキス(トリフェニルホスフィン)]、[トリス(ジベンジリデンアセトン)]ジパラジウム、パラジウムアセテート、ビス(トリフェニルホスフィン)パラジウムジクロライドなどのパラジウム錯体を触媒として用い、必要に応じて、トリフェニルホスフィン、トリ(2−メチルフェニル)ホスフィン、トリ(2−メトキシフェニル)ホスフィン、ジフェニルホスフィノプロパン、トリ(シクロヘキシル)ホスフィン、トリ(tert−ブチル)ホスフィン等の配位子を添加し、有機スズ残基を有するモノマーと、臭素原子、ヨウ素原子、塩素原子等のハロゲン原子を有するモノマー、又は、トリフルオロメタンスルホネート基、p−トルエンスルホネート基等のスルホネート基を有するモノマーとを反応させる重合である。Stilleカップリング反応による重合の詳細は、例えば、アンゲヴァンテ ケミー インターナショナル エディション(Angewandte Chemie International Edition),2005年,第44巻,p.4442−4489に記載されている。
 Suzukiカップリング反応による重合は、無機塩基又は有機塩基の存在下、パラジウム錯体又はニッケル錯体を触媒として用い、必要に応じて配位子を添加し、ボロン酸残基又はホウ酸エステル残基を有するモノマーと、臭素原子、ヨウ素原子、塩素原子等のハロゲン原子を有するモノマー、又は、トリフルオロメタンスルホネート基、p−トルエンスルホネート基等のスルホネート基を有するモノマーとを反応させる重合である。
 無機塩基としては、例えば、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、リン酸三カリウム、フッ化カリウムが挙げられる。有機塩基としては、例えば、フッ化テトラブチルアンモニウム、塩化テトラブチルアンモニウム、臭化テトラブチルアンモニウム、水酸化テトラエチルアンモニウムが挙げられる。パラジウム錯体としては、例えば、パラジウム[テトラキス(トリフェニルホスフィン)]、[トリス(ジベンジリデンアセトン)]ジパラジウム、パラジウムアセテート、ビス(トリフェニルホスフィン)パラジウムジクロライドが挙げられる。ニッケル錯体としては、例えば、ビス(シクロオクタジエン)ニッケルが挙げられる。配位子としては、例えば、トリフェニルホスフィン、トリ(2−メチルフェニル)ホスフィン、トリ(2−メトキシフェニル)ホスフィン、ジフェニルホスフィノプロパン、トリ(シクロヘキシル)ホスフィン、トリ(tert−ブチル)ホスフィンが挙げられる。
 Suzukiカップリング反応による重合の詳細は、例えば、ジャーナル オブ ポリマー サイエンス:パート エー:ポリマー ケミストリー(Journal of Polymer Science:Part A:Polymer Chemistry),2001年,第39巻,p.1533−1556に記載されている。
 Yamamotoカップリング反応による重合は、触媒と還元剤とを用い、ハロゲン原子を有するモノマー同士、トリフルオロメタンスルホネート基等のスルホネート基を有するモノマー同士又はハロゲン原子を有するモノマーとスルホネート基を有するモノマーとを反応させる重合である。
 触媒としては、ビス(シクロオクタジエン)ニッケル等のニッケルゼロ価錯体とビピリジル等の配位子からなる触媒、[ビス(ジフェニルホスフィノ)エタン]ニッケルジクロライド、[ビス(ジフェニルホスフィノ)プロパン]ニッケルジクロライド等のニッケルゼロ価錯体以外のニッケル錯体と、必要に応じ、トリフェニルホスフィン、ジフェニルホスフィノプロパン、トリ(シクロヘキシル)ホスフィン、トリ(tert−ブチル)ホスフィン等の配位子からなる触媒が挙げられる。還元剤としては、例えば、亜鉛、マグネシウムが挙げられる。Yamamotoカップリング反応による重合は、脱水した溶媒を反応に用いてもよく、不活性雰囲気下で反応を行ってもよく、脱水剤を反応系中に添加して行ってもよい。
 Yamamotoカップリングによる重合の詳細は、例えば、マクロモルキュルズ(Macromolecules),1992年,第25巻,p.1214−1223に記載されている。
 Kumada−Tamaoカップリング反応による重合は、[ビス(ジフェニルホスフィノ)エタン]ニッケルジクロライド、[ビス(ジフェニルホスフィノ)プロパン]ニッケルジクロライド等のニッケル触媒を用い、ハロゲン化マグネシウム基を有する化合物とハロゲン原子を有する化合物とを反応させる重合するである。反応は、脱水した溶媒を反応に用いてもよく、不活性雰囲気下で反応を行ってもよく、脱水剤を反応系中に添加して行ってもよい。
 前記アリールカップリング反応による重合では、通常、溶媒が用いられる。該溶媒は、用いる重合反応、モノマー及びポリマーの溶解性等を考慮して選択すればよい。具体的には、テトラヒドロフラン、トルエン、1,4−ジオキサン、ジメトキシエタン、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、これらの溶媒を2種以上混合した混合溶媒等の有機溶媒、有機溶媒相と水相の二相を有する溶媒が挙げられる。Stilleカップリング反応に用いる溶媒は、テトラヒドロフラン、トルエン、N,N−ジメチルホルムアミド、これらの溶媒を2種以上混合した混合溶媒等の有機溶媒、有機溶媒相と水相の二相を有する溶媒が好ましい。Stilleカップリング反応に用いる溶媒は、副反応を抑制するために、反応前に脱酸素処理を行うことが好ましい。Suzukiカップリング反応に用いる溶媒は、テトラヒドロフラン、トルエン、1,4−ジオキサン、ジメトキシエタン、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、これらの溶媒を2種以上混合した混合溶媒等の有機溶媒、有機溶媒相と水相の二相を有する溶媒が好ましい。Suzukiカップリング反応に用いる溶媒は、副反応を抑制するために、反応前に脱酸素処理を行うことが好ましい。Yamamotoカップリング反応に用いる溶媒は、テトラヒドロフラン、トルエン、1,4−ジオキサン、ジメトキシエタン、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、これらの溶媒を2種以上混合した混合溶媒等の有機溶媒が好ましい。Yamamotoカップリング反応に用いる溶媒は、副反応を抑制するために、反応前に脱酸素処理を行うことが好ましい。
 前記アリールカップリング反応による重合の中でも、反応性の観点からは、Stilleカップリング反応により重合する方法、Suzukiカップリング反応により重合する方法、Yamamotoカップリング反応により重合する方法が好ましく、Stilleカップリング反応により重合する方法、Suzukiカップリング反応による重合する方法、ニッケルゼロ価錯体を用いたYamamotoカップリング反応による重合する方法がより好ましい。
 前記アリールカップリング反応の反応温度の下限は、反応性の観点からは、好ましくは−100℃であり、より好ましくは−20℃であり、特に好ましくは0℃である。反応温度の上限は、モノマー及び高分子化合物の安定性の観点からは、好ましくは200℃であり、より好ましくは150℃であり、特に好ましくは120℃である。
 前記アリールカップリング反応による重合において、反応終了後の反応溶液からの本発明の高分子化合物を取り出す方法としては、公知の方法が挙げられる。例えば、メタノール等の低級アルコールに反応溶液を加え、析出した沈殿をろ過し、ろ物を乾燥することにより、本発明の高分子化合物を得ることができる。得られた高分子化合物の純度が低い場合は、再結晶、ソックスレー抽出器による連続抽出、カラムクロマトグラフィー等により精製することができる。
 本発明の高分子化合物を有機光電変換素子の製造に用いる場合、高分子化合物の末端に重合活性基が残っていると、有機光電変換素子の耐久性等の特性が低下することがあるため、高分子化合物の末端を安定な基で保護することが好ましい。
 末端を保護する安定な基としては、アルキル基、アルコキシ基、フルオロアルキル基、フルオロアルコキシ基、アリール基、アリールアミノ基、1価の複素環基等が挙げられる。アリールアミノ基としては、フェニルアミノ基、ジフェニルアミノ基等が挙げられる。1価の複素環基としては、チェニル基、ピロリル基、フリル基、ピリジル基、キノリル基、イソキノリル基等が挙げられる。また、高分子化合物の末端に残っている重合活性基を、安定な基に代えて、水素原子で置換してもよい。ホール輸送性を高める観点からは、末端を保護する安定な基がアリールアミノ基などの電子供与性を付与する基であることが好ましい。高分子化合物が共役高分子化合物である場合、高分子化合物の主鎖の共役構造と末端を保護する安定な基の共役構造とが連続するような共役結合を有している基も末端を保護する安定な基として好ましく用いることができる。該基としては、例えば、アリール基、芳香族性を有する1価の複素環基が挙げられる。
 Stilleカップリングを用いて本発明の高分子化合物を製造する場合、例えば、式(5)
Figure JPOXMLDOC01-appb-I000010
(式中、Rは、前述と同じ意味を表す。Zは、臭素原子、ヨウ素原子又は塩素原子を表す。2個あるZは、同一でも相異なっていてもよい。)
で表される化合物と式(6)
Figure JPOXMLDOC01-appb-I000011
(式中、Rは、前述と同じ意味を表す。Zは、有機スズ残基を表す。2個あるZは、同一でも相異なっていてもよい。)
で表される化合物とを重合して、本発明の高分子化合物を製造することができる。
 式(5)で表される化合物としては、例えば、以下の化合物が挙げられる。
Figure JPOXMLDOC01-appb-I000012
Figure JPOXMLDOC01-appb-I000013
 Stilleカップリングを用いた重合の反応性を高める観点からは、式(5)中のZが臭素原子又は塩素原子であることが好ましく、臭素原子であることがさらに好ましい。式(5)で表される化合物は、例えば、マクロモルキュルズ(Macromolecules)、2009年、第42巻、第17号、p.6564~6571に記載の方法を用いて合成すること
ができる。
 式(6)で表される化合物としては、例えば、以下の化合物が挙げられる。
Figure JPOXMLDOC01-appb-I000014
Figure JPOXMLDOC01-appb-I000015
(式中、BuはCH(CH基を表す。)
 式(6)で表される化合物の合成のしやすさの観点からは、式(6)中のZが−SnMe、−SnEt又は−SnBuであることが好ましい。ここで、MeはCH基を表し、EtはCHCH基を表し、BuはCH(CH基を表す。
 式(6)で表される化合物は、例えば、式(7)で表される化合物と有機リチウム化合物とを反応させて中間体を製造した後に、該中間体とトリアルキルスズハライドとを反応させることによって製造することができる。
Figure JPOXMLDOC01-appb-I000016
(式中、Rは前述と同じ意味を表す。)
 有機リチウム化合物としては、例えば、ブチルリチウム(n−BuLi)、sec−ブチルリチウム(sec−BuLi)、tert−ブチルリチウム(tert−BuLi)、リチウムジイソプロピルアミドが挙げられる。有機リチウム化合物の中でも、n−BuLiが好ましい。トリアルキルスズハライドとしては、例えば、トリメチルスズクロリド、トリエチルクロリド、トリブチルクロリドが挙げられる。
 式(7)で表される化合物と有機リチウム化合物から中間体を製造する反応及び該中間体とトリアルキルスズハライドから式(6)で表される化合物を製造する反応は、通常、溶媒中で行われる。溶媒としては、十分に脱水したテトラヒドロフラン、十分に脱水した1,4−ジオキサン、十分に脱水したジエチルエーテルが好ましく用いられる。
 有機リチウム化合物と式(7)で表される化合物とを反応させる際の温度は、通常、−100~50℃であり、好ましくは−80~0℃である。有機リチウム化合物と式(7)で表される化合物とを反応させる時間は、通常、1分~10時間であり、好ましくは30分~5時間である。反応させる有機リチウム化合物の量は、式(7)で表される化合物に対して、通常、2~5当量であり、好ましくは2~3当量である。
 前記中間体とトリアルキルスズハライドとを反応させる時の温度は、通常、−100~100℃であり、好ましくは−80℃~50℃である。前記中間体とトリアルキルスズハライドとを反応させる時間は、通常、1分~30時間であり、好ましくは1~10時間である。反応させるトリアルキルスズハライドの量は、式(7)で表される化合物に対して、通常、2~6当量であり、好ましくは2~3当量である。
 反応後は、通常の後処理を行い、式(6)で表される化合物を得ることができる。例えば、水を加えて反応を停止した後に、生成物を有機溶媒で抽出し、溶媒を留去する後処理が挙げられる。生成物の単離及び精製は、クロマトグラフィーによる分取や再結晶などの方法により行うことができる。
 式(7)で表される化合物は、例えば、式(8)で表される化合物を酸の存在下で、反応させることにより製造することができる。
Figure JPOXMLDOC01-appb-I000017
(式中、Rは前述と同じ意味を表す)
 式(8)で表される化合物から式(7)で表される化合物を製造する反応に用いられる酸は、ルイス(Lewis)酸であってもブレンステッド(Bronsted)酸であってもよく、塩酸、臭素酸、フッ化水素酸、硫酸、硝酸、蟻酸、酢酸、プロピオン酸、シュウ酸、安息香酸、フッ化ホウ素、塩化アルミニウム、塩化スズ(IV)、塩化鉄(II)、四塩化チタン、ベンゼンスルホン酸、p−トルエンスルホン酸及びこれらの化合物の混合物が例示される。
 式(8)で表される化合物から式(7)で表される化合物を製造する反応は、溶媒の存在下で実施することが好ましい。反応を溶媒の存在下で行う場合、該反応の反応温度は、−80℃以上溶媒の沸点以下の温度が好ましい。
 反応に用いられる溶媒としては、ペンタン、ヘキサン、ヘプタン、オクタン、シクロヘキサンなどの飽和炭化水素、ベンゼン、トルエン、エチルベンゼン、キシレンなどの不飽和炭化水素、四塩化炭素、クロロホルム、ジクロロメタン、クロロブタン、ブロモブタン、クロロペンタン、ブロモペンタン、クロロヘキサン、ブロモヘキサン、クロロシクロヘキサン、ブロモシクロヘキサン、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼンなどのハロゲン化炭化水素、メタノール、エタノール、1−プロパノール、2−プロパノール、ブタノール、tert−ブチルアルコールなどのアルコール、蟻酸、酢酸、プロピオン酸などのカルボン酸、ジメチルエーテル、ジエチルエーテル、メチル−tert−ブチルエーテル、テトラヒドロフラン、テトラヒドロピラン、ジオキサンなどのエーテル等が挙げられる。溶媒は、単一で用いても、混合して用いてもよい。
 反応後は、通常の後処理を行い、式(7)で表される化合物を得ることができる。例えば、水を加えて反応を停止した後に、生成物を有機溶媒で抽出し、溶媒を留去する後処理が挙げられる。生成物の単離及び精製は、クロマトグラフィーによる分取や再結晶などの方法により行うことができる。
 式(8)で表される化合物は、例えば、式(9)
Figure JPOXMLDOC01-appb-I000018
で表される化合物とグリニャール(Grignard)試薬又は有機リチウム化合物とを反応させることにより製造することができる。
 上記反応に用いられるGrignard試薬としては、メチルマグネシウムクロライド、メチルマグネシウムブロマイド、エチルマグネシウムクロライド、エチルマグネシウムブロマイド、プロピルマグネシウムクロライド、プロピルマグネシウムブロマイド、ブチルマグネシウムクロライド、ブチルマグネシウムブロマイド、ヘキシルマグネシウムブロマイド、オクチルマグネシウムブロマイド、デシルマグネシウムブロマイド、アリルマグネシウムクロライド、アリルマグネシウムブロマイド、ベンジルマグネシウムクロライド、フェニルマグネシウムブロマイド、ナフチルマグネシウムブロマイド、トリルマグネシウムブロマイドなどが挙げられる。
 有機リチウム化合物としては、メチルリチウム、エチルリチウム、プロピルリチウム、ブチルリチウム、フェニルリチウム、ナフチルリチウム、ベンジルリチウム、トリルリチウムなどが挙げられる。
 式(9)で表される化合物とグリニャール(Grignard)試薬又は有機リチウム化合物から式(8)で表される化合物を製造する反応は、窒素、アルゴンなどの不活性ガス雰囲気下で実施することが好ましい。また、該反応は、溶媒の存在下で実施することが好ましい。反応を溶媒の存在下で行う場合、該反応の反応温度は、−80℃以上溶媒の沸点以下の温度が好ましい。
 反応に用いられる溶媒としては、ペンタン、ヘキサン、ヘプタン、オクタン、シクロヘキサンなどの飽和炭化水素、ベンゼン、トルエン、エチルベンゼン、キシレンなどの不飽和炭化水素、ジメチルエーテル、ジエチルエーテル、メチル−tert−ブチルエーテル、テトラヒドロフラン、テトラヒドロピラン、ジオキサンなどのエーテル等が挙げられる。該溶媒を単一で用いても、混合して用いてもよい。
 反応後は、通常の後処理を行い、式(8)で表される化合物を得ることができる。例えば、水を加えて反応を停止した後に、生成物を有機溶媒で抽出し、溶媒を留去する後処理が挙げられる。生成物の単離及び精製は、クロマトグラフィーによる分取や再結晶などの方法により行うことができる。
 式(9)で表される化合物は、例えば、式(10)
Figure JPOXMLDOC01-appb-I000019
で表される化合物と過酸化物とを反応させることにより製造することができる。
 過酸化物としては、過ホウ酸ナトリウム、m−クロロ過安息香酸、過酸化水素、ベンゾイルパーオキサイドなどが挙げられる。好ましくは過ホウ酸ナトリウム、m−クロロ過安息香酸であり、特に好ましくは過ホウ酸ナトリウムである。
 式(10)で表される化合物と過酸化物から式(9)で表される化合物を製造する反応は、酢酸、トリフルオロ酢酸、プロピオン酸、酪酸などのカルボン酸溶媒の存在下で実施することが好ましい。
 式(10)で表される化合物の溶解性を上げるためには、カルボン酸溶媒に、四塩化炭素、クロロホルム、ジクロロメタン、ベンゼン、トルエンからなる群から選ばれる1種以上の溶媒を混合した混合溶媒で反応を行うことが好ましい。該反応の反応温度は、0℃以上50℃以下の温度が好ましい。
 反応後は、通常の後処理を行い、式(9)で表される化合物を得ることができる。例えば、水を加えて反応を停止した後に、生成物を有機溶媒で抽出し、溶媒を留去する後処理が挙げられる。生成物の単離及び精製はクロマトグラフィーによる分取や再結晶などの方法により行うことができる。
 本発明の高分子化合物は、600nmの光等の長波長の光の吸光度が高く、太陽光を効率的に吸収するため、本発明の高分子化合物を用いて製造した有機光電変換素子は短絡電流密度が大きくなる。
 本発明の有機光電変換素子は、一対の電極と、該電極間に設けられた機能層とを有し、該機能層が電子受容性化合物と、式(1)で表される繰り返し単位と式(2)で表される繰り返し単位とを含む高分子化合物とを含有する。電子受容性化合物としては、フラーレン、フラーレン誘導体が好ましい。有機光電変換素子の具体例としては、
1.一対の電極と、該電極間に機能層を有し、該機能層が電子受容性化合物と、式(1)で表される繰り返し単位を含む高分子化合物とを含有する有機光電変換素子;
2.一対の電極と、該電極間に機能層を有し、該機能層が電子受容性化合物と、式(1)で表される繰り返し単位を含む高分子化合物とを含有する有機光電変換素子であって、該電子受容性化合物がフラーレン誘導体である有機光電変換素子;
が挙げられる。前記一対の電極は、通常、少なくとも一方が透明又は半透明であり、以下、その場合を一例として説明する。
 前記1.の有機光電変換素子では、電子受容性化合物及び前記高分子化合物を含有する機能層における該電子受容性化合物の量が、前記高分子化合物100重量部に対して、10~1000重量部であることが好ましく、20~500重量部であることがより好ましい。また、前記2.の有機光電変換素子では、フラーレン誘導体及び前記高分子化合物を含有する機能層における該フラーレン誘導体の量が、前記高分子化合物100重量部に対して、10~1000重量部であることが好ましく、20~500重量部であることがより好ましい。光電変換効率を高める観点からは、機能層における該フラーレン誘導体の量が、前記高分子化合物100重量部に対して、20~400重量部であることが好ましく、40~250重量部であることがより好ましく、80~120重量部であることがさらに好ましい。短絡電流密度を高める観点からは、機能層における該フラーレン誘導体の量が、前記高分子化合物100重量部に対して、20~250重量部であることが好ましく、40~120重量部であることがより好ましい。
 有機光電変換素子が高い光電変換効率を有するためには、前記電子受容性化合物及び式(1)で表される繰り返し単位と式(2)で表される繰り返し単位とを含む高分子化合物が所望の入射光のスペクトルを効率よく吸収することができる吸収域を有するものであること、ヘテロ接合界面が励起子を効率よく分離するためにヘテロ接合界面を多く含むこと、ヘテロ接合界面が生成した電荷を速やかに電極へ輸送する電荷輸送性を有することが重要である。
 このような観点から、有機光電変換素子としては、前記1.、前記2.の有機光電変換素子が好ましく、ヘテロ接合界面を多く含むという観点からは、前記2.の有機光電変換素子がより好ましい。また、本発明の有機光電変換素子には、少なくとも一方の電極と該素子中の機能層との間に付加的な層を設けてもよい。付加的な層としては、ホール又は電子を輸送する電荷輸送層、バッファ層等が挙げられる。
 本発明の有機光電変換素子は、通常、基板上に形成される。該基板は、電極を形成し、有機物の層を形成する際に化学的に変化しないものであればよい。基板の材料としては、例えば、ガラス、プラスチック、高分子フィルム、シリコンが挙げられる。不透明な基板の場合には、反対の電極、即ち、基板から遠い方の電極が透明又は半透明であることが好ましい。
 一対の電極の材料には、金属、導電性高分子等を用いることができる。一対の電極のうち一方の電極の材料は仕事関数の小さい材料が好ましい。例えば、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、マグネシウム、カルシウム、ストロンチウム、バリウム、アルミニウム、スカンジウム、バナジウム、亜鉛、イットリウム、インジウム、セリウム、サマリウム、ユーロピウム、テルビウム、イッテルビウム等の金属、及びそれらの金属のうちの2つ以上の金属の合金、又はそれらの金属のうちの1つ以上の金属と、金、銀、白金、銅、マンガン、チタン、コバルト、ニッケル、タングステン、錫のうちの1つ以上の金属との合金、グラファイト、グラファイト層間化合物等が用いられる。合金の例としては、マグネシウム−銀合金、マグネシウム−インジウム合金、マグネシウム−アルミニウム合金、インジウム−銀合金、リチウム−アルミニウム合金、リチウム−マグネシウム合金、リチウム−インジウム合金、カルシウム−アルミニウム合金が挙げられる。
 前記の透明又は半透明の電極の材料としては、導電性の金属酸化物膜、半透明の金属薄膜等が挙げられる。具体的には、酸化インジウム、酸化亜鉛、酸化スズ、及びそれらの複合体であるインジウム・スズ・オキサイド(ITO)、インジウム・亜鉛・オキサイド等からなる導電性材料を用いて作製された膜、NESA、金、白金、銀、銅が用いられ、ITO、インジウム・亜鉛・オキサイド、酸化スズが好ましい。電極の作製方法としては、真空蒸着法、スパッタリング法、イオンプレーティング法、メッキ法等が挙げられる。また、電極材料として、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体等の有機の透明導電膜を用いてもよい。
 前記付加的な層としての電荷輸送層、即ち、ホール輸送層又は電子輸送層に用いられる材料として、それぞれ後述の電子供与性化合物、電子受容性化合物を用いることができる。
 付加的な層としてのバッファ層に用いられる材料としては、フッ化リチウム等のアルカリ金属又はアルカリ土類金属のハロゲン化物又は酸化物等を用いることができる。また、酸化チタン等の無機半導体の微粒子を用いることもできる。
 本発明の有機光電変換素子における前記機能層としては、例えば、本発明の高分子化合物と電子受容性化合物とを含有する有機薄膜を用いることができる。
 前記有機薄膜は、膜厚が、通常、1nm~100μmであり、好ましくは2nm~1000nmであり、より好ましくは5nm~500nmであり、さらに好ましくは20nm~200nmである。
 前記有機薄膜は、前記高分子化合物を一種単独で含んでいても二種以上を組み合わせて含んでいてもよい。また、前記有機薄膜のホール輸送性を高めるため、前記有機薄膜中に電子供与性化合物として、低分子化合物及び/又は前記高分子化合物以外の高分子化合物を混合して用いることもできる。
 式(1)で表される繰り返し単位と式(2)で表される繰り返し単位とを含む高分子化合物以外に有機薄膜が含んでいてもよい電子供与性化合物としては、例えば、ピラゾリン誘導体、アリールアミン誘導体、スチルベン誘導体、トリフェニルジアミン誘導体、オリゴチオフェン及びその誘導体、ポリビニルカルバゾール及びその誘導体、ポリシラン及びその誘導体、側鎖又は主鎖に芳香族アミンを有するポリシロキサン誘導体、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体、ポリピロール及びその誘導体、ポリフェニレンビニレン及びその誘導体、ポリチエニレンビニレン及びその誘導体が挙げられる。
 前記電子受容性化合物としては、例えば、オキサジアゾール誘導体、アントラキノジメタン及びその誘導体、ベンゾキノン及びその誘導体、ナフトキノン及びその誘導体、アントラキノン及びその誘導体、テトラシアノアントラキノジメタン及びその誘導体、フルオレノン誘導体、ジフェニルジシアノエチレン及びその誘導体、ジフェノキノン誘導体、8−ヒドロキシキノリン及びその誘導体の金属錯体、ポリキノリン及びその誘導体、ポリキノキサリン及びその誘導体、ポリフルオレン及びその誘導体、C60等のフラーレン及びその誘導体、カーボンナノチューブ、2,9−ジメチル−4,7−ジフェニル−1,10−フェナントロリン等のフェナントロリン誘導体が挙げられ、とりわけフラーレン及びその誘導体が好ましい。
 なお、前記電子供与性化合物、前記電子受容性化合物は、これらの化合物のエネルギー準位のエネルギーレベルから相対的に決定される。
 フラーレン及びその誘導体としては、C60、C70、C84及びその誘導体が挙げられる。フラーレン誘導体とは、フラーレンの少なくとも一部が修飾された化合物を表す。
 フラーレン誘導体としては、例えば、式(I)で表される化合物、式(II)で表される化合物、式(III)で表される化合物、式(IV)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-I000020
(式(I)~(IV)中、Rは、アルキル基、アリール基、ヘテロアリール基又はエステル構造を有する基である。複数個あるRは、同一であっても相異なってもよい。Rはアルキル基又はアリール基を表す。複数個あるRは、同一であっても相異なってもよい。)
 R及びRで表されるアルキル基、アリール基及びヘテロアリール基の定義及び具体例は、Rで表されるアルキル基、アリール基及びヘテロアリール基の定義及び具体例と同じである。
 Rで表されるエステル構造を有する基は、例えば、式(V)
Figure JPOXMLDOC01-appb-I000021
(式中、u1は、1~6の整数を表す、u2は、0~6の整数を表す、Rは、アルキル基、アリール基又はヘテロアリール基を表す。)
で表される基が挙げられる。
 Rで表されるアルキル基、アリール基及びヘテロアリール基の定義及び具体例は、Rで表されるアルキル基、アリール基及びヘテロアリール基の定義及び具体例と同じである。
 C60の誘導体の具体例としては、以下のようなものが挙げられる。
Figure JPOXMLDOC01-appb-I000022
Figure JPOXMLDOC01-appb-I000023
 C70の誘導体の具体例としては、以下のようなものが挙げられる。
Figure JPOXMLDOC01-appb-I000024
 前記有機薄膜は、如何なる方法で製造してもよく、例えば、本発明の高分子化合物を含む溶液からの成膜による方法で製造してもよいし、真空蒸着法により有機薄膜を形成してもよい。溶液からの成膜により有機薄膜を製造する方法としては、例えば、一方の電極上に該溶液を塗布し、その後、溶媒を蒸発させて有機薄膜を製造する方法が挙げられる。
 溶液からの成膜に用いる溶媒は、本発明の高分子化合物を溶解させるものであれば特に制限はない。この溶媒としては、例えば、トルエン、キシレン、メシチレン、テトラリン、デカリン、ビシクロヘキシル、ブチルベンゼン、sec−ブチルベンゼン、tert−ブチルベンゼン等の不飽和炭化水素、四塩化炭素、クロロホルム、ジクロロメタン、ジクロロエタン、クロロブタン、ブロモブタン、クロロペンタン、ブロモペンタン、クロロヘキサン、ブロモヘキサン、クロロシクロヘキサン、ブロモシクロヘキサン、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン等のハロゲン化炭化水素、テトラヒドロフラン、テトラヒドロピラン等のエーテルが挙げられる。本発明の高分子化合物は、通常、前記溶媒に0.1重量%以上溶解させることができる。
 溶液からの成膜には、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェット印刷法、ディスペンサー印刷法、ノズルコート法、キャピラリーコート法等の塗布法を用いることができ、スピンコート法、フレキソ印刷法、インクジェット印刷法及びディスペンサー印刷法が好ましい。
 有機光電変換素子は、透明又は半透明の電極から太陽光等の光を照射することにより、電極間に光起電力が発生し、有機薄膜太陽電池として動作させることができる。有機薄膜太陽電池を複数集積することにより有機薄膜太陽電池モジュールとして用いることもできる。
 また、電極間に電圧を印加した状態で、透明又は半透明の電極から光を照射することにより、光電流が流れ、有機光センサーとして動作させることができる。有機光センサーを複数集積することにより有機イメージセンサーとして用いることもできる。
Hereinafter, the present invention will be described in detail.
The polymer compound of the present invention includes a repeating unit represented by the formula (1) and a repeating unit represented by the formula (2).
In formula (1) and formula (2), the alkyl group represented by R is a chain or cyclic group, for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec- Examples thereof include a butyl group, a tert-butyl group, a pentyl group, a hexyl group, an octyl group, an isooctyl group, a decyl group, a dodecyl group, a pentadecyl group, and an octadecyl group. A hydrogen atom in the alkyl group may be substituted with a fluorine atom. Examples of the alkyl group substituted with a fluorine atom include a trifluoromethyl group, a pentafluoroethyl group, a perfluorobutyl group, a perfluorohexyl group, and a perfluorooctyl group.
In the formulas (1) and (2), the alkoxy group represented by R is a chain or cyclic group, for example, methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, isobutoxy group, sec -Butoxy group, tert-butoxy group, pentyloxy group, hexyloxy group, cyclohexyloxy group, heptyloxy group, octyloxy group, 2-ethylhexyloxy group, nonyloxy group, decyloxy group, 3,7-dimethyloctyloxy group Can be mentioned. A hydrogen atom in the alkoxy group may be substituted with a fluorine atom. Examples of the alkoxy group substituted with a fluorine atom include a trifluoromethoxy group, a pentafluoroethoxy group, a perfluorobutoxy group, a perfluorohexyloxy group, and a perfluorooctyloxy group.
In formula (1) and formula (2), the aryl group represented by R is an atomic group obtained by removing one hydrogen atom from an aromatic hydrocarbon. The aryl group includes a group containing a benzene ring, a group containing a condensed ring having aromaticity, a group having a structure in which two or more benzene rings or a condensed ring having aromaticity are directly bonded, and two or more benzenes A group having a structure in which a ring or a condensed ring having aromaticity is bonded via a group such as vinylene is included. The number of carbon atoms of the aryl group is preferably 6 to 60, and more preferably 6 to 30. Examples of the aryl group include a phenyl group, a 1-naphthyl group, and a 2-naphthyl group. The aryl group may have a substituent. Examples of the substituent that the aryl group may have include a halogen atom such as a fluorine atom, an alkyl group having 1 to 20 carbon atoms, and an alkoxy group having 1 to 20 carbon atoms.
In formula (1) and formula (2), examples of the heteroaryl group represented by R include a chenyl group, a pyrrolyl group, a furyl group, a pyridyl group, a quinolyl group, and an isoquinolyl group. The heteroaryl group may have a substituent. Examples of the substituent that the heteroaryl group may have include a halogen atom such as a fluorine atom, an alkyl group having 1 to 20 carbon atoms, and an alkoxy group having 1 to 20 carbon atoms.
In the group represented by the formula (3), m1 represents an integer of 0 to 6, and m2 represents an integer of 0 to 6. R ′ represents an alkyl group which may be substituted with fluorine, an aryl group which may be substituted or a heteroaryl group which may be substituted. Definitions and specific examples of the optionally substituted alkyl group represented by R ′, the optionally substituted aryl group, and the optionally substituted heteroaryl group are as follows: The definition and specific examples of the alkyl group which may be substituted, the aryl group which may be substituted and the heteroaryl group which may be substituted are the same. (CH 2 ) m1 Or (CH 2 ) m2 The hydrogen atom in the formula represented by may be fluorine-substituted. That is, CH 2 Is CHF or CF 2 It may be replaced by a group represented by
In the formulas (1) and (2), when R is an alkyl group or an alkoxy group, the alkyl group or the alkoxy group has 1 to 20 carbon atoms from the viewpoint of the solubility of the polymer compound in the solvent. Preferably, it is 2-18, more preferably 3-12.
Examples of the repeating unit represented by the formula (1) include the following repeating units.
Figure JPOXMLDOC01-appb-I000007
Examples of the repeating unit represented by the formula (2) include the following repeating units.
Figure JPOXMLDOC01-appb-I000008
The total of the amount of the repeating unit represented by the formula (1) and the amount of the repeating unit represented by the formula (2) contained in the polymer compound of the present invention is an organic having a functional layer containing the polymer compound. From the viewpoint of increasing the photoelectric conversion efficiency of the photoelectric conversion element, it is preferably 20 to 100 mol%, more preferably 30 to 100 mol%, based on the total amount of repeating units contained in the polymer compound. preferable. The amount of the repeating unit represented by the formula (1) contained in the polymer compound of the present invention is preferably 10 to 50 mol% with respect to the total amount of the repeating units contained in the polymer compound, More preferably, it is 15 to 50 mol%. The amount of the repeating unit represented by the formula (2) contained in the polymer compound of the present invention is preferably 10 to 50 mol% with respect to the total amount of repeating units contained in the polymer compound, More preferably, it is 15 to 50 mol%.
The polymer compound of the present invention may have a repeating unit other than the repeating unit represented by the formula (1) and the repeating unit represented by the formula (2). Examples of the repeating unit other than the repeating unit represented by the formula (1) and the repeating unit represented by the formula (2) include an arylene group and a heteroarylene group, and the repeating unit represented by the formula (1) and the formula ( And a heteroarylene group not containing the repeating unit represented by 2). Examples of the arylene group include a phenylene group, a naphthalenediyl group, an anthracenediyl group, a pyrenediyl group, and a fluorenediyl group. Examples of the heteroarylene group include a flangyl group, a pyrrole diyl group, a pyridinediyl group, and the like. The heteroarylene group may have a substituent, and examples of the substituent include a halogen atom, an alkyl group having 1 to 20 carbon atoms, and an alkoxy group having 1 to 20 carbon atoms.
A preferred embodiment of the polymer compound of the present invention is represented by the formula (4)
Figure JPOXMLDOC01-appb-I000009
(In the formula, R represents the same meaning as described above.)
It is a high molecular compound containing the repeating unit represented by these.
The weight average molecular weight in terms of polystyrene of the polymer compound of the present invention is preferably 10 3 ~ 10 8 And more preferably 10 3 ~ 10 7 And more preferably 10 3 ~ 10 6 It is.
The polymer compound of the present invention is preferably a conjugated polymer compound. Here, the conjugated polymer compound means a compound in which atoms constituting the main chain of the polymer compound are substantially conjugated.
The polymer compound of the present invention may be produced by any method. For example, after synthesizing a monomer having a functional group suitable for the polymerization reaction to be used, the monomer is dissolved in an organic solvent, if necessary, , And can be synthesized by polymerization using a known aryl coupling reaction using a catalyst, a ligand and the like. The monomer can be synthesized with reference to, for example, methods disclosed in USP 2008/145571 and JP-A-2006-335933.
Examples of the polymerization by the aryl coupling reaction include polymerization by Stille coupling reaction, polymerization by Suzuki coupling reaction, polymerization by Yamamoto coupling reaction, and polymerization by Kumada-Tamao coupling reaction.
Polymerization by Stille coupling reaction is required using palladium complexes such as palladium [tetrakis (triphenylphosphine)], [tris (dibenzylideneacetone)] dipalladium, palladium acetate, bis (triphenylphosphine) palladium dichloride as catalysts. Depending on the ligand, ligands such as triphenylphosphine, tri (2-methylphenyl) phosphine, tri (2-methoxyphenyl) phosphine, diphenylphosphinopropane, tri (cyclohexyl) phosphine, tri (tert-butyl) phosphine A monomer having an organic tin residue and a monomer having a halogen atom such as a bromine atom, an iodine atom or a chlorine atom, or a sulfonate group such as a trifluoromethanesulfonate group or a p-toluenesulfonate group. A polymerization reaction of a monomer having a group. The details of the polymerization by the Stille coupling reaction are described in, for example, Angewante Chemie International Edition, 2005, Vol. 44, p. 4442-4489.
Polymerization by Suzuki coupling reaction uses a palladium complex or nickel complex as a catalyst in the presence of an inorganic base or an organic base, and a ligand is added as necessary to have a boronic acid residue or a boric acid ester residue. Polymerization in which a monomer is reacted with a monomer having a halogen atom such as a bromine atom, an iodine atom or a chlorine atom, or a monomer having a sulfonate group such as a trifluoromethanesulfonate group or a p-toluenesulfonate group.
Examples of the inorganic base include sodium carbonate, potassium carbonate, cesium carbonate, tripotassium phosphate, and potassium fluoride. Examples of the organic base include tetrabutylammonium fluoride, tetrabutylammonium chloride, tetrabutylammonium bromide, and tetraethylammonium hydroxide. Examples of the palladium complex include palladium [tetrakis (triphenylphosphine)], [tris (dibenzylideneacetone)] dipalladium, palladium acetate, and bis (triphenylphosphine) palladium dichloride. Examples of the nickel complex include bis (cyclooctadiene) nickel. Examples of the ligand include triphenylphosphine, tri (2-methylphenyl) phosphine, tri (2-methoxyphenyl) phosphine, diphenylphosphinopropane, tri (cyclohexyl) phosphine, and tri (tert-butyl) phosphine. It is done.
Details of the polymerization by the Suzuki coupling reaction are described in, for example, Journal of Polymer Science: Part A: Polymer Chemistry (Part A: Polymer Chemistry), 2001, Vol. 39, p. 1533-1556.
Polymerization by Yamamoto coupling reaction uses a catalyst and a reducing agent to react monomers having halogen atoms, monomers having sulfonate groups such as trifluoromethanesulfonate groups, or monomers having halogen atoms and monomers having sulfonate groups. Polymerization.
Catalysts include nickel zero-valent complexes such as bis (cyclooctadiene) nickel and ligands such as bipyridyl, [bis (diphenylphosphino) ethane] nickel dichloride, [bis (diphenylphosphino) propane] nickel. A catalyst comprising a nickel complex other than a nickel zero-valent complex such as dichloride and a ligand such as triphenylphosphine, diphenylphosphinopropane, tri (cyclohexyl) phosphine, tri (tert-butyl) phosphine, if necessary. . Examples of the reducing agent include zinc and magnesium. Polymerization by the Yamamoto coupling reaction may be performed using a dehydrated solvent in the reaction, may be performed in an inert atmosphere, or may be performed by adding a dehydrating agent to the reaction system.
Details of the polymerization by Yamamoto coupling are described in, for example, Macromolecules, 1992, Vol. 25, p. 1214-1223.
Polymerization by Kumada-Tamao coupling reaction uses a nickel catalyst such as [bis (diphenylphosphino) ethane] nickel dichloride, [bis (diphenylphosphino) propane] nickel dichloride, a compound having a magnesium halide group and a halogen atom. Polymerization to react with the compound having For the reaction, a dehydrated solvent may be used for the reaction, the reaction may be performed in an inert atmosphere, or a dehydrating agent may be added to the reaction system.
In the polymerization by the aryl coupling reaction, a solvent is usually used. The solvent may be selected in consideration of the polymerization reaction used, the solubility of the monomer and polymer, and the like. Specifically, tetrahydrofuran, toluene, 1,4-dioxane, dimethoxyethane, N, N-dimethylacetamide, N, N-dimethylformamide, an organic solvent such as a mixed solvent obtained by mixing two or more of these solvents, an organic solvent Examples thereof include a solvent having two phases of a phase and an aqueous phase. The solvent used in the Stille coupling reaction is preferably an organic solvent such as tetrahydrofuran, toluene, N, N-dimethylformamide, a mixed solvent obtained by mixing two or more of these solvents, or a solvent having two phases of an organic solvent phase and an aqueous phase. . The solvent used for the Stille coupling reaction is preferably deoxygenated before the reaction in order to suppress side reactions. Solvents used in the Suzuki coupling reaction are organic solvents such as tetrahydrofuran, toluene, 1,4-dioxane, dimethoxyethane, N, N-dimethylacetamide, N, N-dimethylformamide, and mixed solvents in which two or more of these solvents are mixed. A solvent and a solvent having two phases of an organic solvent phase and an aqueous phase are preferred. The solvent used for the Suzuki coupling reaction is preferably deoxygenated before the reaction in order to suppress side reactions. The solvent used for the Yamamoto coupling reaction is an organic solvent such as tetrahydrofuran, toluene, 1,4-dioxane, dimethoxyethane, N, N-dimethylacetamide, N, N-dimethylformamide, or a mixed solvent in which two or more of these solvents are mixed. A solvent is preferred. The solvent used for the Yamamoto coupling reaction is preferably deoxygenated before the reaction in order to suppress side reactions.
Among the polymerizations by the aryl coupling reaction, from the viewpoint of reactivity, a method of polymerizing by a Stille coupling reaction, a method of polymerizing by a Suzuki coupling reaction, a method of polymerizing by a Yamamoto coupling reaction are preferable, and a Stille coupling reaction More preferred are a method of polymerizing, a method of polymerizing by a Suzuki coupling reaction, and a method of polymerizing by a Yamamoto coupling reaction using a nickel zero-valent complex.
The lower limit of the reaction temperature of the aryl coupling reaction is preferably −100 ° C., more preferably −20 ° C., and particularly preferably 0 ° C. from the viewpoint of reactivity. The upper limit of the reaction temperature is preferably 200 ° C., more preferably 150 ° C., and particularly preferably 120 ° C. from the viewpoint of the stability of the monomer and the polymer compound.
In the polymerization by the aryl coupling reaction, a known method can be used as a method for removing the polymer compound of the present invention from the reaction solution after completion of the reaction. For example, the polymer compound of the present invention can be obtained by adding a reaction solution to a lower alcohol such as methanol, filtering the deposited precipitate, and drying the filtrate. When the purity of the obtained polymer compound is low, it can be purified by recrystallization, continuous extraction with a Soxhlet extractor, column chromatography, or the like.
When the polymer compound of the present invention is used for the production of an organic photoelectric conversion element, if a polymerization active group remains at the terminal of the polymer compound, characteristics such as durability of the organic photoelectric conversion element may be deteriorated. It is preferable to protect the terminal of the polymer compound with a stable group.
Examples of the stable group for protecting the terminal include an alkyl group, an alkoxy group, a fluoroalkyl group, a fluoroalkoxy group, an aryl group, an arylamino group, and a monovalent heterocyclic group. Examples of the arylamino group include a phenylamino group and a diphenylamino group. Examples of the monovalent heterocyclic group include a chenyl group, a pyrrolyl group, a furyl group, a pyridyl group, a quinolyl group, and an isoquinolyl group. Further, the polymerization active group remaining at the terminal of the polymer compound may be replaced with a hydrogen atom instead of a stable group. From the viewpoint of enhancing hole transportability, it is preferable that the stable group for protecting the terminal is a group imparting electron donating properties such as an arylamino group. When the polymer compound is a conjugated polymer compound, the end of a group having a conjugated bond in which the conjugated structure of the main chain of the polymer compound and the conjugated structure of a stable group protecting the end are continuous is also protected. It can preferably be used as a stable group. Examples of the group include an aryl group and a monovalent heterocyclic group having aromaticity.
When the polymer compound of the present invention is produced using Stille coupling, for example, the formula (5)
Figure JPOXMLDOC01-appb-I000010
(In the formula, R represents the same meaning as described above. Z represents a bromine atom, an iodine atom or a chlorine atom. The two Zs may be the same or different.)
And a compound represented by formula (6)
Figure JPOXMLDOC01-appb-I000011
(Wherein R represents the same meaning as described above. Z 2 Represents an organotin residue. 2 Z 2 May be the same or different. )
The polymer represented by the formula can be polymerized to produce the polymer compound of the present invention.
As a compound represented by Formula (5), the following compounds are mentioned, for example.
Figure JPOXMLDOC01-appb-I000012
Figure JPOXMLDOC01-appb-I000013
From the viewpoint of increasing the reactivity of polymerization using Stille coupling, Z in Formula (5) is preferably a bromine atom or a chlorine atom, and more preferably a bromine atom. The compound represented by the formula (5) is, for example, Macromolecules, 2009, Vol. 42, No. 17, p. Synthesis using the method described in 6564-6571
Can do.
As a compound represented by Formula (6), the following compounds are mentioned, for example.
Figure JPOXMLDOC01-appb-I000014
Figure JPOXMLDOC01-appb-I000015
(Where Bu is CH 3 (CH 2 ) 3 Represents a group. )
From the viewpoint of ease of synthesis of the compound represented by the formula (6), Z in the formula (6) 2 -SnMe 3 , -SnEt 3 Or -SnBu 3 It is preferable that Where Me is CH 3 Represents a group, Et is CH 3 CH 2 Represents a group, Bu is CH 3 (CH 2 ) 3 Represents a group.
The compound represented by formula (6) is prepared by, for example, reacting the compound represented by formula (7) with an organolithium compound to produce an intermediate, and then reacting the intermediate with a trialkyltin halide. Can be manufactured.
Figure JPOXMLDOC01-appb-I000016
(In the formula, R represents the same meaning as described above.)
Examples of the organic lithium compound include butyl lithium (n-BuLi), sec-butyl lithium (sec-BuLi), tert-butyl lithium (tert-BuLi), and lithium diisopropylamide. Among organolithium compounds, n-BuLi is preferable. Examples of the trialkyltin halide include trimethyltin chloride, triethyl chloride, and tributyl chloride.
The reaction for producing an intermediate from a compound represented by formula (7) and an organolithium compound and the reaction for producing a compound represented by formula (6) from the intermediate and trialkyltin halide are usually carried out in a solvent. Done. As the solvent, sufficiently dehydrated tetrahydrofuran, fully dehydrated 1,4-dioxane, and sufficiently dehydrated diethyl ether are preferably used.
The temperature for reacting the organolithium compound with the compound represented by formula (7) is usually −100 to 50 ° C., preferably −80 to 0 ° C. The reaction time of the organolithium compound and the compound represented by the formula (7) is usually 1 minute to 10 hours, preferably 30 minutes to 5 hours. The amount of the organolithium compound to be reacted is usually 2 to 5 equivalents, preferably 2 to 3 equivalents, relative to the compound represented by the formula (7).
The temperature at which the intermediate and the trialkyltin halide are reacted is usually −100 to 100 ° C., preferably −80 ° C. to 50 ° C. The reaction time of the intermediate and the trialkyltin halide is usually 1 minute to 30 hours, preferably 1 to 10 hours. The amount of the trialkyltin halide to be reacted is usually 2 to 6 equivalents, preferably 2 to 3 equivalents, relative to the compound represented by the formula (7).
After the reaction, normal post-treatment can be performed to obtain the compound represented by the formula (6). For example, after the reaction is stopped by adding water, the product is extracted with an organic solvent and the solvent is distilled off. The product can be isolated and purified by a method such as fractionation by chromatography or recrystallization.
The compound represented by the formula (7) can be produced, for example, by reacting the compound represented by the formula (8) in the presence of an acid.
Figure JPOXMLDOC01-appb-I000017
(Wherein R represents the same meaning as described above)
The acid used in the reaction for producing the compound represented by the formula (7) from the compound represented by the formula (8) may be Lewis acid or Bronsted acid, Hydrochloric acid, bromic acid, hydrofluoric acid, sulfuric acid, nitric acid, formic acid, acetic acid, propionic acid, oxalic acid, benzoic acid, boron fluoride, aluminum chloride, tin chloride (IV), iron chloride (II), titanium tetrachloride, Examples include benzenesulfonic acid, p-toluenesulfonic acid and mixtures of these compounds.
The reaction for producing the compound represented by formula (7) from the compound represented by formula (8) is preferably carried out in the presence of a solvent. When the reaction is carried out in the presence of a solvent, the reaction temperature is preferably from −80 ° C. to the boiling point of the solvent.
Solvents used in the reaction include saturated hydrocarbons such as pentane, hexane, heptane, octane and cyclohexane, unsaturated hydrocarbons such as benzene, toluene, ethylbenzene and xylene, carbon tetrachloride, chloroform, dichloromethane, chlorobutane, bromobutane, chloro Halogenated hydrocarbons such as pentane, bromopentane, chlorohexane, bromohexane, chlorocyclohexane, bromocyclohexane, chlorobenzene, dichlorobenzene, trichlorobenzene, methanol, ethanol, 1-propanol, 2-propanol, butanol, tert-butyl alcohol, etc. Carboxylic acids such as alcohol, formic acid, acetic acid, propionic acid, dimethyl ether, diethyl ether, methyl-tert-butyl ether, tetrahydro Orchids, tetrahydropyran, ethers such as dioxane. The solvent may be used alone or in combination.
After the reaction, normal post-treatment can be performed to obtain the compound represented by the formula (7). For example, after the reaction is stopped by adding water, the product is extracted with an organic solvent and the solvent is distilled off. The product can be isolated and purified by a method such as fractionation by chromatography or recrystallization.
The compound represented by Formula (8) is, for example, Formula (9).
Figure JPOXMLDOC01-appb-I000018
Can be produced by reacting a Grignard reagent or an organolithium compound.
As the Grignard reagent used in the above reaction, methyl magnesium chloride, methyl magnesium bromide, ethyl magnesium chloride, ethyl magnesium bromide, propyl magnesium chloride, propyl magnesium bromide, butyl magnesium chloride, butyl magnesium bromide, hexyl magnesium bromide, octyl magnesium bromide, Examples include decylmagnesium bromide, allylmagnesium chloride, allylmagnesium bromide, benzylmagnesium chloride, phenylmagnesium bromide, naphthylmagnesium bromide, and tolylmagnesium bromide.
Examples of the organic lithium compound include methyl lithium, ethyl lithium, propyl lithium, butyl lithium, phenyl lithium, naphthyl lithium, benzyl lithium, and tolyl lithium.
The reaction for producing the compound represented by the formula (8) from the compound represented by the formula (9) and a Grignard reagent or an organolithium compound may be carried out in an inert gas atmosphere such as nitrogen or argon. preferable. Moreover, it is preferable to implement this reaction in presence of a solvent. When the reaction is carried out in the presence of a solvent, the reaction temperature is preferably from −80 ° C. to the boiling point of the solvent.
Solvents used in the reaction include saturated hydrocarbons such as pentane, hexane, heptane, octane and cyclohexane, unsaturated hydrocarbons such as benzene, toluene, ethylbenzene and xylene, dimethyl ether, diethyl ether, methyl-tert-butyl ether, tetrahydrofuran, And ethers such as tetrahydropyran and dioxane. These solvents may be used alone or in combination.
After the reaction, normal post-treatment can be performed to obtain the compound represented by the formula (8). For example, after the reaction is stopped by adding water, the product is extracted with an organic solvent and the solvent is distilled off. The product can be isolated and purified by a method such as fractionation by chromatography or recrystallization.
The compound represented by Formula (9) is, for example, Formula (10).
Figure JPOXMLDOC01-appb-I000019
It can manufacture by making the compound and peroxide which are represented by these react.
Examples of the peroxide include sodium perborate, m-chloroperbenzoic acid, hydrogen peroxide, and benzoyl peroxide. Preferred are sodium perborate and m-chloroperbenzoic acid, and particularly preferred is sodium perborate.
The reaction for producing the compound represented by the formula (9) from the compound represented by the formula (10) and the peroxide is carried out in the presence of a carboxylic acid solvent such as acetic acid, trifluoroacetic acid, propionic acid and butyric acid. It is preferable.
In order to increase the solubility of the compound represented by formula (10), a mixed solvent obtained by mixing a carboxylic acid solvent with one or more solvents selected from the group consisting of carbon tetrachloride, chloroform, dichloromethane, benzene, and toluene. It is preferable to carry out the reaction. The reaction temperature is preferably 0 ° C. or higher and 50 ° C. or lower.
After the reaction, normal post-treatment can be performed to obtain the compound represented by the formula (9). For example, after the reaction is stopped by adding water, the product is extracted with an organic solvent and the solvent is distilled off. The product can be isolated and purified by methods such as chromatographic fractionation and recrystallization.
Since the polymer compound of the present invention has a high absorbance of light having a long wavelength such as 600 nm light and efficiently absorbs sunlight, an organic photoelectric conversion element manufactured using the polymer compound of the present invention has a short-circuit current. Density increases.
The organic photoelectric conversion element of the present invention has a pair of electrodes and a functional layer provided between the electrodes, and the functional layer includes an electron-accepting compound, a repeating unit represented by the formula (1), and a formula And a polymer compound containing the repeating unit represented by (2). As an electron-accepting compound, fullerene and a fullerene derivative are preferable. As a specific example of the organic photoelectric conversion element,
1. An organic photoelectric conversion element having a pair of electrodes and a functional layer between the electrodes, the functional layer containing an electron-accepting compound and a polymer compound containing a repeating unit represented by the formula (1);
2. An organic photoelectric conversion element having a pair of electrodes and a functional layer between the electrodes, the functional layer containing an electron-accepting compound and a polymer compound containing a repeating unit represented by formula (1) An organic photoelectric conversion element in which the electron-accepting compound is a fullerene derivative;
Is mentioned. In general, at least one of the pair of electrodes is transparent or translucent. Hereinafter, this case will be described as an example.
1 above. In the organic photoelectric conversion element, the amount of the electron accepting compound in the functional layer containing the electron accepting compound and the polymer compound is 10 to 1000 parts by weight with respect to 100 parts by weight of the polymer compound. It is preferably 20 to 500 parts by weight. In addition, 2. In the organic photoelectric conversion element, the amount of the fullerene derivative in the functional layer containing the fullerene derivative and the polymer compound is preferably 10 to 1000 parts by weight with respect to 100 parts by weight of the polymer compound. More preferably, it is ~ 500 parts by weight. From the viewpoint of increasing the photoelectric conversion efficiency, the amount of the fullerene derivative in the functional layer is preferably 20 to 400 parts by weight, and preferably 40 to 250 parts by weight with respect to 100 parts by weight of the polymer compound. More preferred is 80 to 120 parts by weight. From the viewpoint of increasing the short-circuit current density, the amount of the fullerene derivative in the functional layer is preferably 20 to 250 parts by weight, and preferably 40 to 120 parts by weight with respect to 100 parts by weight of the polymer compound. More preferred.
In order for the organic photoelectric conversion element to have high photoelectric conversion efficiency, a polymer compound containing the electron accepting compound and the repeating unit represented by the formula (1) and the repeating unit represented by the formula (2) is desirable. It has an absorption region that can efficiently absorb the spectrum of incident light, and the heterojunction interface contains many heterojunction interfaces in order to efficiently separate excitons, and the charge generated by the heterojunction interface It is important to have a charge transporting property for quickly transporting to the electrode.
From such a viewpoint, as the organic photoelectric conversion element, the above 1. , 2. From the standpoint of including a large number of heterojunction interfaces, the organic photoelectric conversion element is preferable. The organic photoelectric conversion element is more preferable. Further, in the organic photoelectric conversion element of the present invention, an additional layer may be provided between at least one electrode and the functional layer in the element. Examples of the additional layer include a charge transport layer that transports holes or electrons, and a buffer layer.
The organic photoelectric conversion element of the present invention is usually formed on a substrate. The substrate may be any substrate that does not chemically change when an electrode is formed and an organic layer is formed. Examples of the material for the substrate include glass, plastic, polymer film, and silicon. In the case of an opaque substrate, the opposite electrode, that is, the electrode far from the substrate is preferably transparent or translucent.
As a material for the pair of electrodes, a metal, a conductive polymer, or the like can be used. The material of one of the pair of electrodes is preferably a material having a low work function. For example, metals such as lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, strontium, barium, aluminum, scandium, vanadium, zinc, yttrium, indium, cerium, samarium, europium, terbium, ytterbium, and those metals An alloy of two or more of these metals, or one or more of those metals and one or more of gold, silver, platinum, copper, manganese, titanium, cobalt, nickel, tungsten, tin An alloy with metal, graphite, a graphite intercalation compound, or the like is used. Examples of the alloy include magnesium-silver alloy, magnesium-indium alloy, magnesium-aluminum alloy, indium-silver alloy, lithium-aluminum alloy, lithium-magnesium alloy, lithium-indium alloy, and calcium-aluminum alloy.
Examples of the material of the transparent or translucent electrode include a conductive metal oxide film and a translucent metal thin film. Specifically, a film formed using a conductive material made of indium oxide, zinc oxide, tin oxide, and indium tin oxide (ITO), indium zinc oxide, etc., which is a composite thereof, NESA Gold, platinum, silver, and copper are used, and ITO, indium / zinc / oxide, and tin oxide are preferable. Examples of the method for producing the electrode include a vacuum deposition method, a sputtering method, an ion plating method, a plating method, and the like. Moreover, you may use organic transparent conductive films, such as polyaniline and its derivative (s), polythiophene, and its derivative (s) as an electrode material.
As a material used for the charge transport layer as the additional layer, that is, the hole transport layer or the electron transport layer, an electron donating compound and an electron accepting compound described later can be used, respectively.
As a material used for the buffer layer as an additional layer, halides or oxides of alkali metals or alkaline earth metals such as lithium fluoride can be used. In addition, fine particles of an inorganic semiconductor such as titanium oxide can be used.
As the functional layer in the organic photoelectric conversion element of the present invention, for example, an organic thin film containing the polymer compound of the present invention and an electron-accepting compound can be used.
The organic thin film generally has a thickness of 1 nm to 100 μm, preferably 2 nm to 1000 nm, more preferably 5 nm to 500 nm, and further preferably 20 nm to 200 nm.
The organic thin film may contain the polymer compound alone or in combination of two or more. Moreover, in order to improve the hole transport property of the organic thin film, a low molecular compound and / or a high molecular compound other than the high molecular compound can be mixed and used as the electron donating compound in the organic thin film.
Examples of the electron-donating compound that the organic thin film may contain in addition to the polymer compound containing the repeating unit represented by the formula (1) and the repeating unit represented by the formula (2) include pyrazoline derivatives, aryl Amine derivatives, stilbene derivatives, triphenyldiamine derivatives, oligothiophene and derivatives thereof, polyvinylcarbazole and derivatives thereof, polysilane and derivatives thereof, polysiloxane derivatives having aromatic amines in the side chain or main chain, polyaniline and derivatives thereof, polythiophene and Examples thereof include polypyrrole and derivatives thereof, polyphenylene vinylene and derivatives thereof, and polythienylene vinylene and derivatives thereof.
Examples of the electron accepting compound include oxadiazole derivatives, anthraquinodimethane and derivatives thereof, benzoquinone and derivatives thereof, naphthoquinone and derivatives thereof, anthraquinone and derivatives thereof, tetracyanoanthraquinodimethane and derivatives thereof, and fluorenone derivatives. Diphenyldicyanoethylene and derivatives thereof, diphenoquinone derivatives, metal complexes of 8-hydroxyquinoline and derivatives thereof, polyquinoline and derivatives thereof, polyquinoxaline and derivatives thereof, polyfluorene and derivatives thereof, C 60 And phenanthroline derivatives such as carbon nanotubes and 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline. Fullerene and derivatives thereof are particularly preferable.
The electron-donating compound and the electron-accepting compound are relatively determined from the energy levels of these compounds.
Fullerene and its derivatives include C 60 , C 70 , C 84 And derivatives thereof. A fullerene derivative represents a compound in which at least a part of fullerene is modified.
Examples of the fullerene derivative include a compound represented by the formula (I), a compound represented by the formula (II), a compound represented by the formula (III), and a compound represented by the formula (IV).
Figure JPOXMLDOC01-appb-I000020
(In the formulas (I) to (IV), R a Is a group having an alkyl group, an aryl group, a heteroaryl group or an ester structure. Multiple R a May be the same or different. R b Represents an alkyl group or an aryl group. Multiple R b May be the same or different. )
R a And R b The definitions and specific examples of the alkyl group, aryl group and heteroaryl group represented by are the same as the definitions and specific examples of the alkyl group, aryl group and heteroaryl group represented by R.
R a The group having an ester structure represented by, for example, formula (V)
Figure JPOXMLDOC01-appb-I000021
(Wherein u1 represents an integer of 1 to 6, u2 represents an integer of 0 to 6, R c Represents an alkyl group, an aryl group or a heteroaryl group. )
The group represented by these is mentioned.
R c The definitions and specific examples of the alkyl group, aryl group and heteroaryl group represented by are the same as the definitions and specific examples of the alkyl group, aryl group and heteroaryl group represented by R.
C 60 Specific examples of the derivatives include the following.
Figure JPOXMLDOC01-appb-I000022
Figure JPOXMLDOC01-appb-I000023
C 70 Specific examples of the derivatives include the following.
Figure JPOXMLDOC01-appb-I000024
The organic thin film may be produced by any method. For example, the organic thin film may be produced by a film formation method from a solution containing the polymer compound of the present invention, or an organic thin film may be formed by a vacuum deposition method. Good. Examples of the method for producing an organic thin film by film formation from a solution include a method of producing an organic thin film by applying the solution on one electrode and then evaporating the solvent.
The solvent used for film formation from a solution is not particularly limited as long as it dissolves the polymer compound of the present invention. Examples of the solvent include unsaturated hydrocarbons such as toluene, xylene, mesitylene, tetralin, decalin, bicyclohexyl, butylbenzene, sec-butylbenzene, and tert-butylbenzene, carbon tetrachloride, chloroform, dichloromethane, dichloroethane, and chlorobutane. , Halogenated hydrocarbons such as bromobutane, chloropentane, bromopentane, chlorohexane, bromohexane, chlorocyclohexane, bromocyclohexane, chlorobenzene, dichlorobenzene and trichlorobenzene, and ethers such as tetrahydrofuran and tetrahydropyran. The polymer compound of the present invention can usually be dissolved in the solvent in an amount of 0.1% by weight or more.
For film formation from solution, spin coating method, casting method, micro gravure coating method, gravure coating method, bar coating method, roll coating method, wire bar coating method, dip coating method, spray coating method, screen printing method, flexographic method A coating method such as a printing method, an offset printing method, an inkjet printing method, a dispenser printing method, a nozzle coating method, a capillary coating method can be used, and a spin coating method, a flexographic printing method, an inkjet printing method, and a dispenser printing method are preferable.
By irradiating light such as sunlight from a transparent or translucent electrode, the organic photoelectric conversion element generates a photovoltaic force between the electrodes and can be operated as an organic thin film solar cell. It can also be used as an organic thin film solar cell module by integrating a plurality of organic thin film solar cells.
In addition, by applying light from a transparent or translucent electrode in a state where a voltage is applied between the electrodes, a photocurrent flows and it can be operated as an organic photosensor. It can also be used as an organic image sensor by integrating a plurality of organic photosensors.
 以下、本発明をさらに詳細に説明するために実施例を示すが、本発明はこれらに限定されるものではない。
 高分子化合物のポリスチレン換算の重量平均分子量はサイズエクスクルージョンクロマトグラフィー(SEC)により求めた。
 カラム:TOSOH TSKgel SuperHM−H(2本)+TSKgel SuperH2000(4.6mm I.d.×15cm);検出器:RI(SHIMADZU RID−10A);移動相:テトラヒドロフラン
参考例1(化合物1の合成)
Figure JPOXMLDOC01-appb-I000025
 フラスコ内の気体をアルゴンで置換した1000mLの4つ口フラスコに、3−ブロモチオフェンを13.0g(80.0mmol)、ジエチルエーテルを80mL入れて均一な溶液とした。該溶液を−78℃に保ったまま、2.6Mのブチルリチウム(n−BuLi)のヘキサン溶液を31mL(80.6mmol)滴下した。−78℃で2時間反応させた後、8.96gの3−チオフェンアルデヒド(80.0mmol)を20mLのジエチルエーテルに溶解させた溶液を反応液に滴下した。滴下後、反応液を−78℃で30分攪拌し、さらに室温(25℃)で30分攪拌した。反応液を再度−78℃に冷却し、2.6Mのn−BuLiのヘキサン溶液62mL(161mmol)を15分かけて滴下した。滴下後、反応液を−25℃で2時間攪拌し、さらに室温(25℃)で1時間攪拌した。その後、反応液を−25℃に冷却し、60gのヨウ素(236mmol)を1000mLのジエチルエーテルに溶解させた溶液を30分かけて滴下した。滴下後、反応液を室温(25℃)で2時間攪拌し、1規定のチオ硫酸ナトリウム水溶液50mLを加えて反応を停止させた。反応液にジエチルエーテルを加え、反応生成物を抽出した後、反応生成物を含む有機層を硫酸マグネシウムで乾燥し、濃縮して35gの粗生成物を得た。クロロホルムを用いて粗生成物を再結晶することにより精製し、化合物1を28g得た。
参考例2(化合物2の合成)
Figure JPOXMLDOC01-appb-I000026
 300mLの4つ口フラスコに、ビスヨードチエニルメタノール(化合物1)を10g(22.3mmol)、塩化メチレンを150mL加えて均一な溶液とした。該溶液にクロロクロム酸ピリジニウムを7.50g(34.8mmol)加え、室温(25℃)で10時間攪拌した。反応液をろ過して不溶物を除去後、ろ液を濃縮し、化合物2を10.0g(22.4mmol)得た。
参考例3(化合物3の合成)
Figure JPOXMLDOC01-appb-I000027
 フラスコ内の気体をアルゴンで置換した300mLフラスコに、化合物2を10.0g(22.3mmol)、銅粉末を6.0g(94.5mmol)、脱水N,N−ジメチルホルムアミドを120mL加えて、120℃で4時間攪拌した。反応後、フラスコを室温(25℃)まで冷却し、反応液をシリカゲルカラムに通して不溶成分を除去した。その後、反応液に水500mLを加え、さらにクロロホルムを加え、反応生成物を含む有機層を抽出した。有機層を硫酸マグネシウムで乾燥し、濃縮して粗製物を得た。粗製物を展開液がクロロホルムであるシリカゲルカラムで精製し、化合物3を3.26g得た。
参考例4(化合物4の合成)
Figure JPOXMLDOC01-appb-I000028
 メカニカルスターラーを備え、フラスコ内の気体をアルゴンで置換した300mL4つ口フラスコに、化合物3を3.85g(20.0mmol)、クロロホルムを50mL、トリフルオロ酢酸を50mL入れて均一な溶液とした。該溶液に過ホウ酸ナトリウム1水和物を5.99g(60mmol)加え、室温(25℃)で45分間攪拌した。その後、反応液に水200mLを加え、さらにクロロホルムを加え、反応生成物を抽出した。反応生成物を含む有機層をシリカゲルカラムに通し、エバポレーターで溶媒を留去した。メタノールを用いて残渣を再結晶し、化合物4を534mg得た。
H NMR in CDCl(ppm):7.64(d、1H)、7.43(d、1H)、7.27(d、1H)、7.10(d、1H)
参考例5(化合物5の合成)
Figure JPOXMLDOC01-appb-I000029
 フラスコ内の気体をアルゴンで置換した100mL四つ口フラスコに、化合物4を1.00g(4.80mmol)と乾燥テトラヒドロフランを30ml入れて均一な溶液とした。フラスコを−20℃に保ちながら、1Mの3,7−ジメチルオクチルマグネシウムブロミドのエーテル溶液を12.7mL加えた。30分かけて混合物の温度を−5℃まで上げ、−5℃で30分攪拌した。次いで、10分かけて温度を0℃に上げ、0℃で反応液を1.5時間攪拌した。その後、反応液に水を加えて反応を停止し、さらに酢酸エチルを加え、反応生成物を抽出した。反応生成物を含む有機層を硫酸ナトリウムで乾燥し、シリカゲルカラムに通した後、溶媒を留去して化合物5を1.50g得た。
H NMR in CDCl(ppm):8.42(b、1H)、7.25(d、1H)、7.20(d、1H)、6.99(d、1H)、6.76(d、1H)、2.73(b、1H)、1.90(m、4H)、1.58‐1.02(b、20H)、0.92(s、6H)、0.88(s、12H)
参考例6(化合物6の合成)
Figure JPOXMLDOC01-appb-I000030
 フラスコ内の気体をアルゴンで置換した200mLフラスコに、化合物5を1.50g、トルエンを30mL入れて均一な溶液とした。該溶液にp−トルエンスルホン酸ナトリウム1水和物を100mg入れて100℃で1.5時間攪拌を行った。反応液を室温(25℃)まで冷却後、水50mLを加え、さらにトルエンを加えて反応生成物を抽出した。反応生成物を含む有機層を硫酸ナトリウムで乾燥し、溶媒を留去した。得られた粗生成物を、展開溶媒がヘキサンであるシリカゲルカラムで生成し、化合物6を1.33g得た。ここまでの操作を複数回行った。
H NMR in CDCl(ppm):6.98(d、1H)、6.93(d、1H)、6.68(d、1H)、6.59(d、1H)、1.89(m、4H)、1.58‐1.00(b、20H)、0.87(s、6H)、0.86(s、12H)
参考例7(化合物7の合成)
Figure JPOXMLDOC01-appb-I000031
 フラスコ内の気体をアルゴンで置換した200mLフラスコに、化合物6を2.16g(4.55mmol)、乾燥テトラヒドロフランを100mL入れて均一な溶液とした。該溶液を−78℃に保ち、該溶液に2.6Mのn−BuLiのヘキサン溶液4.37mL(11.4mmol)を10分かけて滴下した。滴下後、反応液を−78℃で30分攪拌し、次いで、室温(25℃)で2時間攪拌した。その後、フラスコを−78℃に冷却し、反応液にトリブチルスズクロリドを4.07g(12.5mmol)加えた。添加後、反応液を−78℃で30分攪拌し、次いで、室温(25℃)で3時間攪拌した。その後、反応液に水200mlを加えて反応を停止し、酢酸エチルを加えて反応生成物を抽出した。反応生成物を含む有機層を硫酸ナトリウムで乾燥し、エバポレーターで溶媒を留去した。得られたオイル状の物質を展開溶媒がヘキサンであるシリカゲルカラムで精製した。シリカゲルカラムのシリカゲルには、あらかじめ5重量%のトリエチルアミンを含むヘキサンに5分間浸し、その後、ヘキサンで濯いだシリカゲルを用いた。精製後、化合物7を3.52g(3.34mmol)得た。
実施例1(高分子化合物1の合成)
Figure JPOXMLDOC01-appb-I000032
 フラスコ内の気体をアルゴンで置換した100mLフラスコに、化合物7を198.9mg(0.189mmol)、化合物8(Luminescence Technology Corporation社製)を90mg(0.182mmol)、トルエンを14ml入れて均一溶液とした。得られたトルエン溶液を、アルゴンで30分バブリングした。その後、トルエン溶液に、トリス(ジベンジリデンアセトン)ジパラジウムを2.59mg(0.00283mmol)、トリス(2−トルイル)ホスフィンを5.2mg(0.017mmol)加え、100℃で6時間攪拌した。その後、反応液にフェニルブロミドを271mg加え、さらに5時間攪拌した。その後、フラスコを25℃に冷却し、反応液をメタノール300mLに注いだ。析出したポリマーをろ過し、得られたポリマーを、円筒ろ紙に入れ、ソックスレー抽出器を用いて、メタノール、アセトン及びヘキサンでそれぞれ5時間抽出した。円筒ろ紙内に残ったポリマーを、o−ジクロロベンゼン100mLに溶解させ、ジエチルジチオカルバミン酸ナトリウム2gと水40mLを加え、8時間還流下で攪拌を行った。水層を除去後、有機層を水50mlで2回洗浄し、次いで、3wt%の酢酸水溶液50mLで2回洗浄し、次いで、水50mLで2回洗浄し、次いで、5%フッ化カリウム水溶液50mLで2回洗浄し、次いで、水50mLで2回洗浄し、得られた溶液をメタノールに注いでポリマーを析出させた。ポリマーをろ過後、乾燥し、得られたポリマーをo−ジクロロベンゼン50mLに再度溶解し、アルミナ/シリカゲルカラムを通した。得られた溶液をメタノールに注いでポリマーを析出させ、ポリマーをろ過後、乾燥し、精製された高分子化合物72mgを得た。以下、この高分子を高分子化合物1と呼称する。
参考例8(高分子化合物2の合成)
Figure JPOXMLDOC01-appb-I000033
 フラスコ内の気体をアルゴンで置換した2L四つ口フラスコに、化合物(E)を7.928g(16.72mmol)、化合物(F)を13.00g(17.60mmol)、トリオクチルメチルアンモニウムクロリド(商品名Aliquat336(登録商標)、シグマアルドリッチ社製、CHN[(CHCHCl、density 0.884g/ml、25℃)を4.979g、及びトルエンを405ml入れ、撹拌しながら反応系内を30分間アルゴンバブリングした。フラスコ内にジクロロビス(トリフェニルホスフィン)パラジウム(II)を0.02g加え、105℃に昇温し、撹拌しながら2mol/Lの炭酸ナトリウム水溶液42.2mlを滴下した。滴下終了後5時間反応させ、その後、フェニルボロン酸2.6gとトルエン1.8mlとを加え、105℃で16時間撹拌した。その後、反応液にトルエン700ml及び7.5wt%のジエチルジチオカルバミン酸ナトリウム三水和物水溶液200mlを加え、85℃で3時間撹拌した。反応液の水層を除去後、有機層を60℃のイオン交換水300mlで2回、60℃の3wt%酢酸300mlで1回、さらに60℃のイオン交換水300mlで3回洗浄した。有機層をセライト、アルミナ及びシリカを充填したカラムに通し、溶出液を得た。その後、熱トルエン800mlでカラムを洗浄し、洗浄したトルエン溶液と溶出液とを合わせた。得られた溶液を700mlまで濃縮した後、濃縮した溶液を2Lのメタノールに加え、ポリマーを再沈殿させた。ポリマーをろ過し、次いで、500mlのメタノール、500mlのアセトン、500mlのメタノールで順次ポリマーを洗浄した。ポリマーを50℃で一晩真空乾燥することにより、ペンタチエニル−フルオレンコポリマー(高分子化合物2)12.21gを得た。高分子化合物2のポリスチレン換算の重量平均分子量は1.1×10であった。
測定例1(有機薄膜の吸光度の測定)
 高分子化合物1を0.5重量%の濃度でo−ジクロロベンゼンに溶解させ、塗布溶液を作製した。得られた塗布溶液をガラス基板上に、スピンコートで塗布した。塗布操作は23℃で行った。その後、大気下120℃の条件で5分間ベークし、膜厚約100nmの有機薄膜を得た。有機薄膜の吸収スペクトルを分光光度計(日本分光株式会社製、商品名:V−670)で測定した。測定したスペクトルを図1に示す。600nm、650nm、における吸光度を表1に示す。
 比較例1(有機薄膜の吸光度の測定)
 高分子化合物1の代わりに高分子化合物2を使用した以外は、測定例1と同様にして有機薄膜を作製し、該有機薄膜の吸収スペクトルを測定した。測定したスペクトルを図2に示す。600nm、650nmにおける吸光度を表1に示す。
Figure JPOXMLDOC01-appb-T000034
実施例2(有機薄膜太陽電池の作製、評価)
 電子受容性化合物であるフラーレン誘導体C60PCBM(Phenyl C61−butyric acid methyl ester、フロンティアカーボン社製、商品名:E100)と、電子供与性化合物である高分子化合物1とを、3:1の重量比で混合し、混合物の濃度が2重量%となるよう、o−ジクロロベンゼンに溶解させた。得られた溶液を、孔径1.0μmのテフロン(登録商標)フィルターで濾過し、塗布溶液1を調製した。
 スパッタ法により150nmの厚みでITO膜を付けたガラス基板をオゾンUV処理して表面処理を行った。次に、PEDOT:PSS溶液(H.C.スタルク社製CleviosP VP AI4083)をスピンコートによりITO膜上に塗布し、大気中120℃で10分間加熱することにより、膜厚50nmの正孔注入層を作成した。次に、前記塗布溶液1を、スピンコートによりITO膜上に塗布し、有機薄膜太陽電池の機能層を得た。機能層の膜厚は100nmであった。その後、真空蒸着機によりカルシウムを膜厚4nmで蒸着し、次いで、アルミニウムを膜厚100nmで蒸着することにより、有機薄膜太陽電池を作製した。蒸着のときの真空度は、すべて1~9×10−3Paであった。こうして得られた有機薄膜太陽電池の形状は、2mm×2mmの正方形であった。得られた有機薄膜太陽電池にソーラシミュレーター(分光計器製、商品名OTENTO−SUNII:AM1.5Gフィルター、放射照度 100mW/cm)を用いて一定の光を照射し、発生する電流と電圧を測定した。光電変換効率は2.3%であり、Jsc(短絡電流密度)は6.7mA/cmであり、Voc(開放端電圧)は0.80Vであり、FF(フィルファクター)は0.44であった。
Examples will be shown below for illustrating the present invention in more detail, but the present invention is not limited to these examples.
The polystyrene equivalent weight average molecular weight of the polymer compound was determined by size exclusion chromatography (SEC).
Column: TOSOH TSKgel SuperHM-H (2) + TSKgel SuperH2000 (4.6 mm Id × 15 cm); Detector: RI (SHIMADZU RID-10A); Mobile phase: tetrahydrofuran reference example 1 (synthesis of compound 1)
Figure JPOXMLDOC01-appb-I000025
A 1000 mL four-necked flask in which the gas in the flask was replaced with argon was charged with 13.0 g (80.0 mmol) of 3-bromothiophene and 80 mL of diethyl ether to obtain a uniform solution. While maintaining the solution at −78 ° C., 31 mL (80.6 mmol) of 2.6M butyllithium (n-BuLi) in hexane was added dropwise. After reacting at −78 ° C. for 2 hours, a solution prepared by dissolving 8.96 g of 3-thiophenaldehyde (80.0 mmol) in 20 mL of diethyl ether was added dropwise to the reaction solution. After dropping, the reaction solution was stirred at -78 ° C for 30 minutes, and further stirred at room temperature (25 ° C) for 30 minutes. The reaction solution was cooled again to −78 ° C., and 62 mL (161 mmol) of 2.6 M n-BuLi in hexane was added dropwise over 15 minutes. After dropping, the reaction solution was stirred at −25 ° C. for 2 hours, and further stirred at room temperature (25 ° C.) for 1 hour. Thereafter, the reaction solution was cooled to −25 ° C., and a solution in which 60 g of iodine (236 mmol) was dissolved in 1000 mL of diethyl ether was added dropwise over 30 minutes. After the dropwise addition, the reaction solution was stirred at room temperature (25 ° C.) for 2 hours, and 50 mL of 1N aqueous sodium thiosulfate solution was added to stop the reaction. Diethyl ether was added to the reaction solution to extract the reaction product, and then the organic layer containing the reaction product was dried over magnesium sulfate and concentrated to obtain 35 g of a crude product. The crude product was purified by recrystallization using chloroform to obtain 28 g of Compound 1.
Reference Example 2 (Synthesis of Compound 2)
Figure JPOXMLDOC01-appb-I000026
To a 300 mL four-necked flask, 10 g (22.3 mmol) of bisiodothienylmethanol (Compound 1) and 150 mL of methylene chloride were added to obtain a uniform solution. To the solution, 7.50 g (34.8 mmol) of pyridinium chlorochromate was added and stirred at room temperature (25 ° C.) for 10 hours. The reaction solution was filtered to remove insoluble matters, and then the filtrate was concentrated to obtain 10.0 g (22.4 mmol) of Compound 2.
Reference Example 3 (Synthesis of Compound 3)
Figure JPOXMLDOC01-appb-I000027
To a 300 mL flask in which the gas in the flask was replaced with argon, 10.0 g (22.3 mmol) of Compound 2, 6.0 g (94.5 mmol) of copper powder, and 120 mL of dehydrated N, N-dimethylformamide were added. Stir at 4 ° C. for 4 hours. After the reaction, the flask was cooled to room temperature (25 ° C.), and the reaction solution was passed through a silica gel column to remove insoluble components. Thereafter, 500 mL of water was added to the reaction solution, and chloroform was further added to extract an organic layer containing the reaction product. The organic layer was dried over magnesium sulfate and concentrated to give a crude product. The crude product was purified with a silica gel column whose developing solution was chloroform, and 3.26 g of compound 3 was obtained.
Reference Example 4 (Synthesis of Compound 4)
Figure JPOXMLDOC01-appb-I000028
A uniform solution was prepared by adding 3.85 g (20.0 mmol) of Compound 3, 50 mL of chloroform, and 50 mL of trifluoroacetic acid to a 300 mL four-necked flask equipped with a mechanical stirrer and replacing the gas in the flask with argon. To the solution was added 5.99 g (60 mmol) of sodium perborate monohydrate, and the mixture was stirred at room temperature (25 ° C.) for 45 minutes. Thereafter, 200 mL of water was added to the reaction solution, and chloroform was further added to extract the reaction product. The organic layer containing the reaction product was passed through a silica gel column, and the solvent was distilled off with an evaporator. The residue was recrystallized using methanol to obtain 534 mg of compound 4.
1 H NMR in CDCl 3 (ppm): 7.64 (d, 1H), 7.43 (d, 1H), 7.27 (d, 1H), 7.10 (d, 1H)
Reference Example 5 (Synthesis of Compound 5)
Figure JPOXMLDOC01-appb-I000029
A 100 mL four-necked flask in which the gas in the flask was replaced with argon was charged with 1.00 g (4.80 mmol) of Compound 4 and 30 ml of dry tetrahydrofuran to obtain a uniform solution. While maintaining the flask at −20 ° C., 12.7 mL of 1M 3,7-dimethyloctylmagnesium bromide ether solution was added. The temperature of the mixture was raised to −5 ° C. over 30 minutes and stirred at −5 ° C. for 30 minutes. Subsequently, the temperature was raised to 0 ° C. over 10 minutes, and the reaction solution was stirred at 0 ° C. for 1.5 hours. Thereafter, water was added to the reaction solution to stop the reaction, and ethyl acetate was further added to extract the reaction product. The organic layer containing the reaction product was dried over sodium sulfate and passed through a silica gel column, and then the solvent was distilled off to obtain 1.50 g of compound 5.
1 H NMR in CDCl 3 (ppm): 8.42 (b, 1H), 7.25 (d, 1H), 7.20 (d, 1H), 6.99 (d, 1H), 6.76 ( d, 1H), 2.73 (b, 1H), 1.90 (m, 4H), 1.58-1.02 (b, 20H), 0.92 (s, 6H), 0.88 (s) , 12H)
Reference Example 6 (Synthesis of Compound 6)
Figure JPOXMLDOC01-appb-I000030
In a 200 mL flask in which the gas in the flask was replaced with argon, 1.50 g of Compound 5 and 30 mL of toluene were added to obtain a uniform solution. 100 mg of sodium p-toluenesulfonate monohydrate was added to the solution, and the mixture was stirred at 100 ° C. for 1.5 hours. After cooling the reaction solution to room temperature (25 ° C.), 50 mL of water was added, and toluene was further added to extract the reaction product. The organic layer containing the reaction product was dried over sodium sulfate, and the solvent was distilled off. The obtained crude product was produced on a silica gel column whose developing solvent was hexane, and 1.33 g of compound 6 was obtained. The operation so far was performed several times.
1 H NMR in CDCl 3 (ppm): 6.98 (d, 1H), 6.93 (d, 1H), 6.68 (d, 1H), 6.59 (d, 1H), 1.89 ( m, 4H), 1.58-1.00 (b, 20H), 0.87 (s, 6H), 0.86 (s, 12H)
Reference Example 7 (Synthesis of Compound 7)
Figure JPOXMLDOC01-appb-I000031
Into a 200 mL flask in which the gas in the flask was replaced with argon, 2.16 g (4.55 mmol) of Compound 6 and 100 mL of dry tetrahydrofuran were added to obtain a uniform solution. The solution was kept at −78 ° C., and 4.37 mL (11.4 mmol) of 2.6M n-BuLi in hexane was added dropwise to the solution over 10 minutes. After the addition, the reaction solution was stirred at -78 ° C for 30 minutes, and then stirred at room temperature (25 ° C) for 2 hours. Thereafter, the flask was cooled to −78 ° C., and 4.07 g (12.5 mmol) of tributyltin chloride was added to the reaction solution. After the addition, the reaction solution was stirred at −78 ° C. for 30 minutes, and then stirred at room temperature (25 ° C.) for 3 hours. Thereafter, 200 ml of water was added to the reaction solution to stop the reaction, and ethyl acetate was added to extract the reaction product. The organic layer containing the reaction product was dried over sodium sulfate, and the solvent was distilled off with an evaporator. The obtained oily substance was purified by a silica gel column whose developing solvent was hexane. As the silica gel of the silica gel column, silica gel previously immersed in hexane containing 5% by weight of triethylamine for 5 minutes and then rinsed with hexane was used. After purification, 3.52 g (3.34 mmol) of compound 7 was obtained.
Example 1 (Synthesis of polymer compound 1)
Figure JPOXMLDOC01-appb-I000032
In a 100 mL flask in which the gas in the flask was replaced with argon, 198.9 mg (0.189 mmol) of compound 7, 90 mg (0.182 mmol) of compound 8 (manufactured by Luminescence Technology Corporation), and 14 ml of toluene were placed in a uniform solution. did. The resulting toluene solution was bubbled with argon for 30 minutes. Thereafter, 2.59 mg (0.00283 mmol) of tris (dibenzylideneacetone) dipalladium and 5.2 mg (0.017 mmol) of tris (2-toluyl) phosphine were added to the toluene solution, and the mixture was stirred at 100 ° C. for 6 hours. Thereafter, 271 mg of phenyl bromide was added to the reaction solution, and the mixture was further stirred for 5 hours. Thereafter, the flask was cooled to 25 ° C., and the reaction solution was poured into 300 mL of methanol. The precipitated polymer was filtered, and the obtained polymer was put in a cylindrical filter paper and extracted with methanol, acetone and hexane for 5 hours using a Soxhlet extractor. The polymer remaining in the cylindrical filter paper was dissolved in 100 mL of o-dichlorobenzene, 2 g of sodium diethyldithiocarbamate and 40 mL of water were added, and the mixture was stirred under reflux for 8 hours. After removing the aqueous layer, the organic layer is washed twice with 50 ml of water, then twice with 50 mL of a 3 wt% aqueous acetic acid solution, then twice with 50 mL of water, and then 50 mL of 5% aqueous potassium fluoride solution. And then washed twice with 50 mL of water, and the resulting solution was poured into methanol to precipitate a polymer. The polymer was filtered and dried, and the obtained polymer was dissolved again in 50 mL of o-dichlorobenzene and passed through an alumina / silica gel column. The obtained solution was poured into methanol to precipitate a polymer, and the polymer was filtered and dried to obtain 72 mg of a purified polymer compound. Hereinafter, this polymer is referred to as polymer compound 1.
Reference Example 8 (Synthesis of polymer compound 2)
Figure JPOXMLDOC01-appb-I000033
Into a 2 L four-necked flask in which the gas in the flask was replaced with argon, 7.928 g (16.72 mmol) of compound (E), 13.00 g (17.60 mmol) of compound (F), trioctylmethylammonium chloride ( 4.979 g of trade name Aliquat 336 (registered trademark), manufactured by Sigma-Aldrich, CH 3 N [(CH 2 ) 7 CH 3 ] 3 Cl, density 0.884 g / ml, 25 ° C.), and 405 ml of toluene were added and stirred. Then, argon was bubbled through the reaction system for 30 minutes. 0.02 g of dichlorobis (triphenylphosphine) palladium (II) was added to the flask, the temperature was raised to 105 ° C., and 42.2 ml of a 2 mol / L sodium carbonate aqueous solution was added dropwise with stirring. After completion of the dropwise addition, the reaction was allowed to proceed for 5 hours, and then 2.6 g of phenylboronic acid and 1.8 ml of toluene were added, followed by stirring at 105 ° C. for 16 hours. Thereafter, 700 ml of toluene and 200 ml of a 7.5 wt% sodium diethyldithiocarbamate trihydrate aqueous solution were added to the reaction solution, followed by stirring at 85 ° C. for 3 hours. After removing the aqueous layer of the reaction solution, the organic layer was washed twice with 300 ml of ion exchange water at 60 ° C., once with 300 ml of 3 wt% acetic acid at 60 ° C., and further three times with 300 ml of ion exchange water at 60 ° C. The organic layer was passed through a column packed with celite, alumina and silica to obtain an eluate. Thereafter, the column was washed with 800 ml of hot toluene, and the washed toluene solution and the eluate were combined. After the obtained solution was concentrated to 700 ml, the concentrated solution was added to 2 L of methanol to reprecipitate the polymer. The polymer was filtered and then washed sequentially with 500 ml of methanol, 500 ml of acetone, and 500 ml of methanol. The polymer was vacuum-dried overnight at 50 ° C. to obtain 12.21 g of a pentathienyl-fluorene copolymer (polymer compound 2). The polymer compound 2 had a weight average molecular weight in terms of polystyrene of 1.1 × 10 5 .
Measurement Example 1 (Measurement of absorbance of organic thin film)
The polymer compound 1 was dissolved in o- dichlorobenzene at a concentration of 0.5 wt%, to prepare a coating solution. The obtained coating solution was applied onto a glass substrate by spin coating. The coating operation was performed at 23 ° C. Then, it baked for 5 minutes on the conditions of 120 degreeC in air | atmosphere, and obtained the organic thin film about 100 nm in thickness. The absorption spectrum of the organic thin film was measured with a spectrophotometer (trade name: V-670, manufactured by JASCO Corporation). The measured spectrum is shown in FIG. Table 1 shows the absorbance at 600 nm and 650 nm.
Comparative Example 1 (Measurement of absorbance of organic thin film)
An organic thin film was prepared in the same manner as in Measurement Example 1 except that the polymer compound 2 was used instead of the polymer compound 1, and the absorption spectrum of the organic thin film was measured. The measured spectrum is shown in FIG. Table 1 shows the absorbance at 600 nm and 650 nm.
Figure JPOXMLDOC01-appb-T000034
Example 2 (Production and Evaluation of Organic Thin Film Solar Cell)
Fullerene derivative C60PCBM (phenyl C61-butyric acid methyl ester, product name: E100), which is an electron-accepting compound, and polymer compound 1, which is an electron-donating compound, at a weight ratio of 3: 1. The mixture was dissolved in o-dichlorobenzene so that the concentration of the mixture was 2% by weight. The obtained solution was filtered through a Teflon (registered trademark) filter having a pore size of 1.0 μm to prepare a coating solution 1.
A glass substrate provided with an ITO film with a thickness of 150 nm by a sputtering method was subjected to surface treatment by ozone UV treatment. Next, a PEDOT: PSS solution (CleviosP VP AI4083 manufactured by HC Starck Co., Ltd.) is applied onto the ITO film by spin coating, and heated at 120 ° C. for 10 minutes in the atmosphere to thereby form a hole injection layer having a thickness of 50 nm. It was created. Next, the coating solution 1 was applied onto the ITO film by spin coating to obtain a functional layer of an organic thin film solar cell. The film thickness of the functional layer was 100 nm. Then, the organic thin film solar cell was produced by vapor-depositing calcium with a film thickness of 4 nm with a vacuum evaporation machine, and vapor-depositing aluminum with a film thickness of 100 nm. The degree of vacuum at the time of vapor deposition was all 1 to 9 × 10 −3 Pa. The shape of the organic thin film solar cell thus obtained was a square of 2 mm × 2 mm. The obtained organic thin film solar cell is irradiated with constant light using a solar simulator (trade name OTENTO-SUNII: AM1.5G filter, irradiance 100 mW / cm 2 , manufactured by Spectrometer Co., Ltd.), and the generated current and voltage are measured. did. The photoelectric conversion efficiency is 2.3%, Jsc (short circuit current density) is 6.7 mA / cm 2 , Voc (open circuit voltage) is 0.80 V, and FF (fill factor) is 0.44. there were.
 本発明の高分子化合物は、長波長の光の吸光度が大きいため、有機光電変換素子に有用である。 The polymer compound of the present invention is useful for an organic photoelectric conversion element because of its large absorbance of light having a long wavelength.

Claims (5)

  1.  式(1)
    Figure JPOXMLDOC01-appb-I000001
    〔式中、Rは、水素原子、フッ素原子、フッ素置換されていてもよいアルキル基、フッ素置換されていてもよいアルコキシ基、置換されていてもよいアリール基、置換されていてもよいヘテロアリール基又は式(3)
    Figure JPOXMLDOC01-appb-I000002
    (式中、m1は、0~6の整数を表し、m2は、0~6の整数を表す。R’は、フッ素置換されていてもよいアルキル基、置換されていてもよいアリール基又は置換されていてもよいヘテロアリール基を表す。(CHm1又は(CHm2で示される式中の水素原子はフッ素置換されていてもよい。)で表される基を表す。4個あるRは、それぞれ同一でも相異なっていてもよい。〕
    で表される繰り返し単位と式(2)
    Figure JPOXMLDOC01-appb-I000003
    〔式中、Rは、前述と同じ意味を表す。〕
    で表される繰り返し単位とを含む高分子化合物。
    Formula (1)
    Figure JPOXMLDOC01-appb-I000001
    [In the formula, R represents a hydrogen atom, a fluorine atom, an optionally substituted alkyl group, an optionally substituted alkoxy group, an optionally substituted aryl group, or an optionally substituted heteroaryl. Group or formula (3)
    Figure JPOXMLDOC01-appb-I000002
    (In the formula, m1 represents an integer of 0 to 6, and m2 represents an integer of 0 to 6. R ′ represents an alkyl group which may be substituted with fluorine, an aryl group which may be substituted, or a substituted group. A hydrogen atom in the formula represented by (CH 2 ) m1 or (CH 2 ) m2 may be fluorine-substituted). The four Rs may be the same or different from each other. ]
    And a repeating unit represented by formula (2)
    Figure JPOXMLDOC01-appb-I000003
    [Wherein R represents the same meaning as described above. ]
    A polymer compound comprising a repeating unit represented by:
  2.  Rが、水素原子、フッ素原子、フッ素置換されていてもよい炭素数1~20のアルキル基、フッ素置換されていてもよい炭素数1~20のアルコキシ基又は置換されていてもよいフェニル基であり、ここで、フェニル基の置換基は、ハロゲン原子、炭素数1~20のアルキル基又は炭素数1~20のアルコキシ基である請求項1に記載の高分子化合物。 R is a hydrogen atom, a fluorine atom, an optionally substituted alkyl group having 1 to 20 carbon atoms, an optionally substituted fluorine group having 1 to 20 carbon atoms, or an optionally substituted phenyl group. The polymer compound according to claim 1, wherein the substituent of the phenyl group is a halogen atom, an alkyl group having 1 to 20 carbon atoms, or an alkoxy group having 1 to 20 carbon atoms.
  3.  一対の電極と、該電極間に設けられた機能層とを有し、該機能層が電子受容性化合物と請求項1に記載の高分子化合物とを含む有機光電変換素子。 An organic photoelectric conversion element having a pair of electrodes and a functional layer provided between the electrodes, wherein the functional layer includes an electron-accepting compound and the polymer compound according to claim 1.
  4.  機能層中に含まれる電子受容性化合物の量が、高分子化合物100重量部に対して、10~1000重量部である請求項2に記載の有機光電変換素子。 The organic photoelectric conversion device according to claim 2, wherein the amount of the electron-accepting compound contained in the functional layer is 10 to 1000 parts by weight with respect to 100 parts by weight of the polymer compound.
  5.  電子受容性化合物が、フラーレン誘導体である請求項3に記載の有機光電変換素子。 The organic photoelectric conversion element according to claim 3, wherein the electron-accepting compound is a fullerene derivative.
PCT/JP2011/075884 2010-11-26 2011-11-02 Organic photoelectric conversion element WO2012070390A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010263266 2010-11-26
JP2010-263266 2010-11-26

Publications (1)

Publication Number Publication Date
WO2012070390A1 true WO2012070390A1 (en) 2012-05-31

Family

ID=46145738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/075884 WO2012070390A1 (en) 2010-11-26 2011-11-02 Organic photoelectric conversion element

Country Status (3)

Country Link
JP (1) JP5834819B2 (en)
TW (1) TW201229087A (en)
WO (1) WO2012070390A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013079302A (en) * 2011-10-03 2013-05-02 Sumitomo Chemical Co Ltd Polymer compound and electronic element using the same
JP2014511420A (en) * 2011-02-28 2014-05-15 コーニング インコーポレイテッド Mixed solvent for controlling molecular weight
JP2014189666A (en) * 2013-03-27 2014-10-06 Mitsubishi Chemicals Corp Composition for forming semiconductor layer and solar cell element using the composition
WO2016124694A1 (en) * 2015-02-06 2016-08-11 Technische Universität Dresden Light absorber

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6003399B2 (en) * 2011-09-07 2016-10-05 住友化学株式会社 Polymer compound and organic photoelectric conversion device using the same
CN107615504B (en) 2015-05-29 2020-07-21 索尼半导体解决方案公司 Photoelectric conversion element and solid-state imaging device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5536808A (en) * 1994-10-05 1996-07-16 The Regents Of The University Of Michigan Thiazole polymers and method of producing same
JPH0977854A (en) * 1995-09-13 1997-03-25 Tokyo Inst Of Technol Poly(2,2'-bithiazol-5,5'-diyl) polymer bearing long-chain alkyl group
JP2006063334A (en) * 2004-07-30 2006-03-09 Sumitomo Chemical Co Ltd Polymer compound, polymer film and polymer film element using the same
JP2006241359A (en) * 2005-03-04 2006-09-14 Mitsubishi Chemicals Corp Conductive alternate copolymer, its manufacturing method, and organic electron device and field effect transister using the same
EP1993105A1 (en) * 2007-05-16 2008-11-19 Samsung Electronics Co., Ltd. Organic semiconductor polymer having liquid crystal properties, organic active layer, organic thin film transistor, and electronic device including the same, and methods of fabricating the same
WO2011052710A1 (en) * 2009-10-29 2011-05-05 住友化学株式会社 Polymeric compound
WO2011052709A1 (en) * 2009-10-29 2011-05-05 住友化学株式会社 Polymeric compound
WO2011052568A1 (en) * 2009-10-30 2011-05-05 住友化学株式会社 Organic photoelectric conversion element

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5536808A (en) * 1994-10-05 1996-07-16 The Regents Of The University Of Michigan Thiazole polymers and method of producing same
JPH0977854A (en) * 1995-09-13 1997-03-25 Tokyo Inst Of Technol Poly(2,2'-bithiazol-5,5'-diyl) polymer bearing long-chain alkyl group
JP2006063334A (en) * 2004-07-30 2006-03-09 Sumitomo Chemical Co Ltd Polymer compound, polymer film and polymer film element using the same
JP2006241359A (en) * 2005-03-04 2006-09-14 Mitsubishi Chemicals Corp Conductive alternate copolymer, its manufacturing method, and organic electron device and field effect transister using the same
EP1993105A1 (en) * 2007-05-16 2008-11-19 Samsung Electronics Co., Ltd. Organic semiconductor polymer having liquid crystal properties, organic active layer, organic thin film transistor, and electronic device including the same, and methods of fabricating the same
WO2011052710A1 (en) * 2009-10-29 2011-05-05 住友化学株式会社 Polymeric compound
WO2011052709A1 (en) * 2009-10-29 2011-05-05 住友化学株式会社 Polymeric compound
WO2011052568A1 (en) * 2009-10-30 2011-05-05 住友化学株式会社 Organic photoelectric conversion element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014511420A (en) * 2011-02-28 2014-05-15 コーニング インコーポレイテッド Mixed solvent for controlling molecular weight
JP2013079302A (en) * 2011-10-03 2013-05-02 Sumitomo Chemical Co Ltd Polymer compound and electronic element using the same
JP2014189666A (en) * 2013-03-27 2014-10-06 Mitsubishi Chemicals Corp Composition for forming semiconductor layer and solar cell element using the composition
WO2016124694A1 (en) * 2015-02-06 2016-08-11 Technische Universität Dresden Light absorber

Also Published As

Publication number Publication date
TW201229087A (en) 2012-07-16
JP5834819B2 (en) 2015-12-24
JP2012126895A (en) 2012-07-05

Similar Documents

Publication Publication Date Title
JP5720178B2 (en) High molecular compound
JP5810818B2 (en) Polymer compound and organic photoelectric conversion device using the same
JP5991324B2 (en) Polymer compound and organic photoelectric conversion element
JP5720180B2 (en) Photoelectric conversion element
JP5740836B2 (en) Photoelectric conversion element
JP5834819B2 (en) Polymer compound and organic photoelectric conversion device using the same
JP5747789B2 (en) Polymer compound and organic photoelectric conversion device using the same
JP6003399B2 (en) Polymer compound and organic photoelectric conversion device using the same
WO2012165128A1 (en) High-molecular-weight compound and organic photoelectric conversion element
JP2014028912A (en) Polymer compound and organic photoelectric conversion element using the same
WO2012090971A1 (en) Photoelectric conversion element and composition used in same
WO2012029675A1 (en) Method for producing polymer compound
WO2012032949A1 (en) Polymer compound and organic photoelectric transducer
JP2014019781A (en) Polymer compound, and organic photoelectric conversion element using the same
WO2011138885A1 (en) Polymer compound and organic photoelectric conversion element using same
JP5810837B2 (en) Polymer compound and organic photoelectric conversion device using the same
JP5884423B2 (en) Polymer compound and organic photoelectric conversion device using the same
JP5786504B2 (en) Polymer compound and organic photoelectric conversion device using the same
JP5874302B2 (en) Polymer compound and organic photoelectric conversion device using the same
JP2015174900A (en) Compound and organic photoelectric conversion element using the same
WO2013047293A1 (en) Photoelectric conversion element
JP2013004722A (en) Photoelectric conversion element
JP2010010438A (en) Organic photoelectric conversion element and composition useful for its manufacture
JP2011165789A (en) Photoelectric conversion element
JP2012253212A (en) Polymer compound and organic photoelectric conversion element manufactured using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11843142

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11843142

Country of ref document: EP

Kind code of ref document: A1