JP5786504B2 - Polymer compound and organic photoelectric conversion device using the same - Google Patents

Polymer compound and organic photoelectric conversion device using the same Download PDF

Info

Publication number
JP5786504B2
JP5786504B2 JP2011151782A JP2011151782A JP5786504B2 JP 5786504 B2 JP5786504 B2 JP 5786504B2 JP 2011151782 A JP2011151782 A JP 2011151782A JP 2011151782 A JP2011151782 A JP 2011151782A JP 5786504 B2 JP5786504 B2 JP 5786504B2
Authority
JP
Japan
Prior art keywords
group
polymer compound
formula
compound
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011151782A
Other languages
Japanese (ja)
Other versions
JP2013018831A (en
Inventor
上谷 保則
保則 上谷
吉村 研
研 吉村
淳 藤原
藤原  淳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2011151782A priority Critical patent/JP5786504B2/en
Publication of JP2013018831A publication Critical patent/JP2013018831A/en
Application granted granted Critical
Publication of JP5786504B2 publication Critical patent/JP5786504B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Photovoltaic Devices (AREA)
  • Light Receiving Elements (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Thin Film Transistor (AREA)

Description

本発明は、高分子化合物並びにそれを用いた有機光電変換素子及び有機薄膜トランジスタに関する。   The present invention relates to a polymer compound, and an organic photoelectric conversion element and an organic thin film transistor using the same.

有機半導体材料は、有機太陽電池、光センサー等の有機光電変換素子への適用が期待されている。中でも、有機半導体材料として高分子化合物を用いれば、安価な塗布法で機能層を作製することができる。有機光電変換素子の諸特性を向上させるために、様々な高分子化合物である有機半導体材料を有機光電変換素子に用いることが検討されている。有機半導体材料として、例えば、9,9−ジオクチルフルオレン−2,7−ジボロン酸エステルと5,5’’’’−ジブロモ−3’’,4’’−ジヘキシル−α−ペンタチオフェンとを重合した高分子化合物が提案されている(特許文献1)。   Organic semiconductor materials are expected to be applied to organic photoelectric conversion elements such as organic solar cells and optical sensors. In particular, when a polymer compound is used as the organic semiconductor material, the functional layer can be manufactured by an inexpensive coating method. In order to improve various characteristics of the organic photoelectric conversion element, use of organic semiconductor materials that are various polymer compounds for the organic photoelectric conversion element has been studied. As an organic semiconductor material, for example, 9,9-dioctylfluorene-2,7-diboronic acid ester and 5,5 ″ ″-dibromo-3 ″, 4 ″ -dihexyl-α-pentathiophene are polymerized. A polymer compound has been proposed (Patent Document 1).

特表2007−529596号公報Special table 2007-529596 gazette

しかしながら、上記高分子化合物は、長波長の光の吸収が十分でないという課題がある。   However, the polymer compound has a problem that long-wavelength light is not sufficiently absorbed.

そこで、本発明は長波長の光の吸光度が大きい高分子化合物を提供することを目的とする。   Then, an object of this invention is to provide the high molecular compound with the large light absorbency of long wavelength light.

即ち、本発明は第一に、式(A)で表される繰り返し単位と式(B)で表される繰り返し単位とを含む高分子化合物を提供する。

Figure 0005786504
〔式(A)及び式(B)中、Q及びRは、同一又は相異なり、水素原子、フッ素原子、アルキル基、アルコキシ基、アリール基、ヘテロアリール基又は式(2)で表される基を表す。これらの基に含まれる水素原子はフッ素原子で置換されていてもよい。複数個あるQは、同一でも相異なっていてもよい。複数個あるRは、同一でも相異なっていてもよい。
Figure 0005786504
(2)
(式(2)中、m1は、0〜6の整数を表し、m2は、0〜6の整数を表す。R’は、アルキル基、アリール基又はヘテロアリール基を表す。)〕 That is, the present invention first provides a polymer compound containing a repeating unit represented by the formula (A) and a repeating unit represented by the formula (B).
Figure 0005786504
[In formula (A) and formula (B), Q and R are the same or different, and are a hydrogen atom, a fluorine atom, an alkyl group, an alkoxy group, an aryl group, a heteroaryl group or a group represented by formula (2) Represents. The hydrogen atom contained in these groups may be substituted with a fluorine atom. Plural Qs may be the same or different. A plurality of R may be the same or different.
Figure 0005786504
(2)
(In formula (2), m1 represents an integer of 0 to 6, m2 represents an integer of 0 to 6. R ′ represents an alkyl group, an aryl group, or a heteroaryl group.)]

本発明は第二に、式(1)で表される繰り返し単位を含む高分子化合物を提供する。

Figure 0005786504
(1)
〔式(1)中、Q及びRは、同一又は相異なり、水素原子、フッ素原子、アルキル基、アルコキシ基、アリール基、ヘテロアリール基又は式(2)で表される基を表す。これらの基に含まれる水素原子はフッ素原子で置換されていてもよい。複数個あるQは、同一でも相異なっていてもよい。複数個あるRは、同一でも相異なっていてもよい。
Figure 0005786504
(2)
(式(2)中、m1は、0〜6の整数を表し、m2は、0〜6の整数を表す。R’は、アルキル基、アリール基又はヘテロアリール基を表す。)〕 Secondly, the present invention provides a polymer compound containing a repeating unit represented by the formula (1).
Figure 0005786504
(1)
[In Formula (1), Q and R are the same or different and represent a hydrogen atom, a fluorine atom, an alkyl group, an alkoxy group, an aryl group, a heteroaryl group, or a group represented by Formula (2). The hydrogen atom contained in these groups may be substituted with a fluorine atom. Plural Qs may be the same or different. A plurality of R may be the same or different.
Figure 0005786504
(2)
(In formula (2), m1 represents an integer of 0 to 6, m2 represents an integer of 0 to 6. R ′ represents an alkyl group, an aryl group, or a heteroaryl group.)]

本発明は第三に、一対の電極と、該電極間に設けられた機能層とを有し、該機能層が電子受容性化合物と前記高分子化合物とを含む有機光電変換素子を提供する。   Thirdly, the present invention provides an organic photoelectric conversion element having a pair of electrodes and a functional layer provided between the electrodes, wherein the functional layer includes an electron accepting compound and the polymer compound.

本発明は第四に、ソース電極と、ドレイン電極と、有機半導体層と、ゲート電極とを備え、前記有機半導体層に前記高分子化合物を含む有機薄膜トランジスタを提供する。   Fourthly, the present invention provides an organic thin film transistor comprising a source electrode, a drain electrode, an organic semiconductor layer, and a gate electrode, wherein the organic semiconductor layer includes the polymer compound.

本発明の高分子化合物は、長波長の光の吸光度が大きいため、極めて有用である。   The polymer compound of the present invention is extremely useful because it has a large absorbance for light having a long wavelength.

高分子化合物1の吸収スペクトルを示す図である。1 is a diagram showing an absorption spectrum of polymer compound 1. FIG. 高分子化合物2の吸収スペクトルを示す図である。2 is a graph showing an absorption spectrum of polymer compound 2. FIG.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

<高分子化合物>
本発明の高分子化合物は、式(A)で表される繰り返し単位と式(B)で表される繰り返し単位とを含む。

Figure 0005786504
〔式(A)及び式(B)中、Q及びRは、同一又は相異なり、水素原子、フッ素原子、アルキル基、アルコキシ基、アリール基、ヘテロアリール基又は式(2)で表される基を表す。これらの基に含まれる水素原子はフッ素原子で置換されていてもよい。複数個あるQは、同一でも相異なっていてもよい。複数個あるRは、同一でも相異なっていてもよい。
Figure 0005786504
(2)
(式(2)中、m1は、0〜6の整数を表し、m2は、0〜6の整数を表す。R’は、アルキル基、アリール基又はヘテロアリール基を表す。)〕 <Polymer compound>
The polymer compound of the present invention includes a repeating unit represented by the formula (A) and a repeating unit represented by the formula (B).
Figure 0005786504
[In formula (A) and formula (B), Q and R are the same or different, and are a hydrogen atom, a fluorine atom, an alkyl group, an alkoxy group, an aryl group, a heteroaryl group or a group represented by formula (2) Represents. The hydrogen atom contained in these groups may be substituted with a fluorine atom. Plural Qs may be the same or different. A plurality of R may be the same or different.
Figure 0005786504
(2)
(In formula (2), m1 represents an integer of 0 to 6, m2 represents an integer of 0 to 6. R ′ represents an alkyl group, an aryl group, or a heteroaryl group.)]

Q又はRで表されるアルキル基としては、例えば、メチル基、エチル基、n−プロピル基、iso−プロピル基、n−ブチル基、iso−ブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基、n−ヘキシル基、n−オクチル基、iso−オクチル基、n−デシル基、n−ドデシル基、n−ペンタデシル基、n−オクタデシル基が挙げられる。アルキル基中の水素原子は、フッ素原子で置換されていてもよい。フッ素原子で水素原子が置換されたアルキル基としては、例えば、トリフルオロメチル基、ペンタフルオロエチル基、パーフルオロブチル基、パーフルオロヘキシル基、パーフルオロオクチル基が挙げられる。   Examples of the alkyl group represented by Q or R include, for example, methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, sec-butyl group, tert-butyl group, Examples include n-pentyl group, n-hexyl group, n-octyl group, iso-octyl group, n-decyl group, n-dodecyl group, n-pentadecyl group and n-octadecyl group. A hydrogen atom in the alkyl group may be substituted with a fluorine atom. Examples of the alkyl group in which a hydrogen atom is substituted with a fluorine atom include a trifluoromethyl group, a pentafluoroethyl group, a perfluorobutyl group, a perfluorohexyl group, and a perfluorooctyl group.

Q又はRで表されるアルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、iso−プロポキシ基、ブトキシ基、iso−ブトキシ基、sec−ブトキシ基、tert−ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、シクロヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、2−エチルヘキシルオキシ基、ノニルオキシ基、デシルオキシ基、3,7−ジメチルオクチルオキシ基が挙げられる。アルコキシ基中の水素原子は、フッ素原子で置換されていてもよい。フッ素原子で水素原子が置換されたアルコキシ基としては、例えば、トリフルオロメトキシ基、ペンタフルオロエトキシ基、パーフルオロブトキシ基、パーフルオロヘキシルオキシ基、パーフルオロオクチルオキシ基が挙げられる。   Examples of the alkoxy group represented by Q or R include a methoxy group, an ethoxy group, a propoxy group, an iso-propoxy group, a butoxy group, an iso-butoxy group, a sec-butoxy group, a tert-butoxy group, a pentyloxy group, Examples include a hexyloxy group, a cyclohexyloxy group, a heptyloxy group, an octyloxy group, a 2-ethylhexyloxy group, a nonyloxy group, a decyloxy group, and a 3,7-dimethyloctyloxy group. A hydrogen atom in the alkoxy group may be substituted with a fluorine atom. Examples of the alkoxy group in which a hydrogen atom is substituted with a fluorine atom include a trifluoromethoxy group, a pentafluoroethoxy group, a perfluorobutoxy group, a perfluorohexyloxy group, and a perfluorooctyloxy group.

Q又はRで表されるアリール基は、置換基を有していてもよい芳香族炭化水素から、水素原子1個を除いた原子団である。アリール基には、ベンゼン環を含む基、芳香族性を有する縮合環を含む基、2個以上のベンゼン環又は芳香族性を有する縮合環が直接結合した構造を有する基、2個以上のベンゼン環又は芳香族性を有する縮合環がビニレン等の基を介して結合した基などが含まれる。アリール基の炭素数は、6〜60であることが好ましく、6〜30であることがより好ましい。アリール基中の水素原子は、フッ素原子で置換されていてもよい。アリール基としては、例えば、フェニル基、1−ナフチル基、2−ナフチル基が挙げられる。芳香族炭化水素が有していてもよい置換基としては、例えば、塩素原子、臭素原子、ヨウ素原子、アルキル基、アルコキシ基が挙げられる。該アルキル基及びアルコキシ基の具体例は、Rで表されるアルキル基及びアルコキシ基の具体例と同じである。   The aryl group represented by Q or R is an atomic group obtained by removing one hydrogen atom from an aromatic hydrocarbon which may have a substituent. The aryl group includes a group containing a benzene ring, a group containing a condensed ring having aromaticity, a group having a structure in which two or more benzene rings or a condensed ring having aromaticity are directly bonded, and two or more benzenes Examples include a group in which a ring or an aromatic condensed ring is bonded via a group such as vinylene. The aryl group preferably has 6 to 60 carbon atoms, more preferably 6 to 30 carbon atoms. A hydrogen atom in the aryl group may be substituted with a fluorine atom. Examples of the aryl group include a phenyl group, a 1-naphthyl group, and a 2-naphthyl group. Examples of the substituent that the aromatic hydrocarbon may have include a chlorine atom, a bromine atom, an iodine atom, an alkyl group, and an alkoxy group. Specific examples of the alkyl group and alkoxy group are the same as the specific examples of the alkyl group and alkoxy group represented by R.

Q又はRで表されるヘテロアリール基は、置換基を有していてもよい芳香族複素環式化合物から、水素原子1個を除いた原子団である。ヘテロアリール基としては、例えば、チェニル基、ピロリル基、フリル基、ピリジル基、キノリル基、イソキノリル基が挙げられる。ヘテロアリール基中の水素原子は、フッ素原子で置換されていてもよい。芳香族複素環式化合物が有していてもよい置換基としては、例えば、塩素原子、臭素原子、ヨウ素原子、アルキル基、アルコキシ基が挙げられる。該アルキル基及びアルコキシ基の具体例は、Rで表されるアルキル基及びアルコキシ基の具体例と同じである。   The heteroaryl group represented by Q or R is an atomic group obtained by removing one hydrogen atom from an aromatic heterocyclic compound which may have a substituent. Examples of the heteroaryl group include a chenyl group, a pyrrolyl group, a furyl group, a pyridyl group, a quinolyl group, and an isoquinolyl group. The hydrogen atom in the heteroaryl group may be substituted with a fluorine atom. Examples of the substituent that the aromatic heterocyclic compound may have include a chlorine atom, a bromine atom, an iodine atom, an alkyl group, and an alkoxy group. Specific examples of the alkyl group and alkoxy group are the same as the specific examples of the alkyl group and alkoxy group represented by R.

式(2)で表される基において、m1は、0〜6の整数を表し、m2は、0〜6の整数を表す。R’は、アルキル基、アリール基又はヘテロアリール基を表す。R’で表されるアルキル基、アリール基及びヘテロアリール基の定義及び具体例は、Rで表されるアルキル基、アリール基及びヘテロアリール基の定義及び具体例と同じである。式(2)で表される基中の水素原子は、フッ素原子で置換されていてもよい。   In the group represented by the formula (2), m1 represents an integer of 0 to 6, and m2 represents an integer of 0 to 6. R 'represents an alkyl group, an aryl group or a heteroaryl group. The definitions and specific examples of the alkyl group, aryl group and heteroaryl group represented by R ′ are the same as the definitions and specific examples of the alkyl group, aryl group and heteroaryl group represented by R. The hydrogen atom in the group represented by the formula (2) may be substituted with a fluorine atom.

Q又はRが、アルキル基又はアルコキシ基である場合、高分子化合物の溶媒への溶解性の観点からは、アルキル基又はアルコキシ基の炭素数が1〜20であることが好ましく、2〜18であることがより好ましく、3〜12であることがさらに好ましい。   When Q or R is an alkyl group or an alkoxy group, from the viewpoint of solubility of the polymer compound in a solvent, the alkyl group or alkoxy group preferably has 1 to 20 carbon atoms, and 2 to 18 More preferably, it is more preferably 3-12.

式(A)で表される繰り返し単位としては、例えば、下記繰り返し単位が挙げられる。

Figure 0005786504
Examples of the repeating unit represented by the formula (A) include the following repeating units.
Figure 0005786504

式(B)で表される繰り返し単位としては、例えば、下記繰り返し単位が挙げられる。

Figure 0005786504
Examples of the repeating unit represented by the formula (B) include the following repeating units.
Figure 0005786504

本発明の高分子化合物に含まれる式(A)で表される繰り返し単位と式(B)で表される繰り返し単位の合計量は、該高分子化合物を含む機能層を有する有機光電変換素子の光電変換効率を高める観点からは、該高分子化合物が含有する繰り返し単位の合計量に対して、20〜100モル%であることが好ましく、30〜100モル%であることがより好ましい。
また本発明の高分子化合物に含まれる式(A)で表される繰り返し単位と式(B)で表される繰り返し単位の合計量は、該高分子化合物を含む有機半導体層を有する有機薄膜トランジスタの移動度を高める観点からは、該高分子化合物が含有する繰り返し単位の合計量に対して、20〜100モル%であることが好ましく、30〜100モル%であることがより好ましい。
また本発明の高分子化合物に含まれる式(A)で表される繰り返し単位の数と、式(B)で表される繰り返し単位の数との比は、1:9〜9:1であり、3:7〜7:3が好ましい。
The total amount of the repeating unit represented by the formula (A) and the repeating unit represented by the formula (B) contained in the polymer compound of the present invention is that of the organic photoelectric conversion element having a functional layer containing the polymer compound. From the viewpoint of increasing the photoelectric conversion efficiency, it is preferably 20 to 100 mol%, more preferably 30 to 100 mol%, based on the total amount of repeating units contained in the polymer compound.
The total amount of the repeating unit represented by the formula (A) and the repeating unit represented by the formula (B) contained in the polymer compound of the present invention is the same as that of the organic thin film transistor having an organic semiconductor layer containing the polymer compound. From the viewpoint of increasing mobility, the content is preferably 20 to 100 mol%, more preferably 30 to 100 mol%, based on the total amount of repeating units contained in the polymer compound.
The ratio of the number of repeating units represented by formula (A) contained in the polymer compound of the present invention to the number of repeating units represented by formula (B) is 1: 9 to 9: 1. 3: 7-7: 3 is preferable.

本発明の高分子化合物の他の態様は、式(1)で表される繰り返し単位を含む高分子化合物である。

Figure 0005786504
(1)
〔式(1)中、Q及びRは、前述と同じ意味を表す。〕 Another embodiment of the polymer compound of the present invention is a polymer compound containing a repeating unit represented by the formula (1).
Figure 0005786504
(1)
[In Formula (1), Q and R represent the same meaning as the above-mentioned. ]

式(1)で表される繰り返し単位としては、例えば、以下の繰り返し単位が挙げられる。

Figure 0005786504
Examples of the repeating unit represented by the formula (1) include the following repeating units.
Figure 0005786504

本発明の高分子化合物に含まれる式(1)で表される繰り返し単位の量は、該高分子化合物を含む機能層を有する有機光電変換素子の光電変換効率を高める観点からは、該高分子化合物が含有する繰り返し単位の合計量に対して、20〜100モル%であることが好ましく、30〜100モル%であることがより好ましい。
また本発明の高分子化合物に含まれる式(1)で表される繰り返し単位の量は、該高分子化合物を含む有機半導体層を有する有機薄膜トランジスタの移動度を高める観点からは、該高分子化合物が含有する繰り返し単位の合計量に対して、20〜100モル%であることが好ましく、30〜100モル%であることがより好ましい。
The amount of the repeating unit represented by the formula (1) contained in the polymer compound of the present invention is selected from the viewpoint of increasing the photoelectric conversion efficiency of an organic photoelectric conversion device having a functional layer containing the polymer compound. The amount is preferably 20 to 100 mol%, more preferably 30 to 100 mol%, based on the total amount of repeating units contained in the compound.
The amount of the repeating unit represented by the formula (1) contained in the polymer compound of the present invention is such that the polymer compound has a high mobility from the viewpoint of increasing the mobility of an organic thin film transistor having an organic semiconductor layer containing the polymer compound. It is preferable that it is 20-100 mol% with respect to the total amount of the repeating unit which contains, and it is more preferable that it is 30-100 mol%.

本発明の高分子化合物のポリスチレン換算の重量平均分子量は、好ましくは103〜108であり、より好ましくは103〜107であり、さらに好ましくは103〜106である。 The weight average molecular weight in terms of polystyrene of the polymer compound of the present invention is preferably 10 3 to 10 8 , more preferably 10 3 to 10 7 , and still more preferably 10 3 to 10 6 .

本発明の高分子化合物は、共役系高分子化合物であることが好ましい。ここで、共役系高分子化合物とは、高分子化合物の主鎖を構成する原子が実質的に共役している化合物を意味する。   The polymer compound of the present invention is preferably a conjugated polymer compound. Here, the conjugated polymer compound means a compound in which atoms constituting the main chain of the polymer compound are substantially conjugated.

本発明の高分子化合物は、式(A)で表される繰り返し単位、式(B)で表される繰り返し単位、式(1)で表される繰り返し単位以外の繰り返し単位を有していてもよい。該繰り返し単位としては、アリーレン基、ヘテロアリーレン基等が挙げられる。アリーレン基としては、フェニレン基、ナフタレンジイル基、アントラセンジイル基、ピレンジイル基、フルオレンジイル基等が挙げられる。ヘテロアリーレン基としては、フランジイル基、ピロールジイル基、ピリジンジイル基等が挙げられる。   The polymer compound of the present invention may have a repeating unit other than the repeating unit represented by the formula (A), the repeating unit represented by the formula (B), and the repeating unit represented by the formula (1). Good. Examples of the repeating unit include an arylene group and a heteroarylene group. Examples of the arylene group include a phenylene group, a naphthalenediyl group, an anthracenediyl group, a pyrenediyl group, and a fluorenediyl group. Examples of the heteroarylene group include a flangyl group, a pyrrole diyl group, a pyridinediyl group, and the like.

<高分子化合物の製造方法>
本発明の高分子化合物は、如何なる方法で製造してもよいが、例えば、用いる重合反応に適した官能基を有するモノマーを合成した後に、必要に応じて該モノマーを有機溶媒に溶解し、アルカリ、触媒、配位子等を用いた公知のアリールカップリング反応を用いて重合することにより合成することができる。前記モノマーの合成は、例えば、特開2006−182920号公報、特開2006−335933号公報に示された方法を参考にして行うことができる。
<Method for producing polymer compound>
The polymer compound of the present invention may be produced by any method. For example, after synthesizing a monomer having a functional group suitable for the polymerization reaction to be used, the monomer is dissolved in an organic solvent, if necessary, , And can be synthesized by polymerization using a known aryl coupling reaction using a catalyst, a ligand and the like. The synthesis of the monomer can be performed, for example, with reference to the methods disclosed in JP-A Nos. 2006-182920 and 2006-335933.

アリールカップリング反応による重合は、例えば、Stilleカップリング反応による重合、Suzukiカップリング反応による重合、Yamamotoカップリング反応による重合、Kumada−Tamaoカップリング反応による重合が挙げられる。   Examples of the polymerization by the aryl coupling reaction include polymerization by Stille coupling reaction, polymerization by Suzuki coupling reaction, polymerization by Yamamoto coupling reaction, and polymerization by Kumada-Tamao coupling reaction.

Stilleカップリング反応による重合は、パラジウム[テトラキス(トリフェニルホスフィン)]、[トリス(ジベンジリデンアセトン)]ジパラジウム、パラジウムアセテート、ビス(トリフェニルホスフィン)パラジウムジクロライドなどのパラジウム錯体を触媒として用い、必要に応じて、トリフェニルホスフィン、トリ(2−メチルフェニル)ホスフィン、トリ(2-メトキシフェニル)ホスフィン、ジフェニルホスフィノプロパン、トリ(シクロヘキシル)ホスフィン、トリ(tert−ブチル)ホスフィン等の配位子を添加し、有機スズ残基を有するモノマーと、臭素原子、ヨウ素原子、塩素原子等のハロゲン原子を有するモノマー、又は、トリフルオロメタンスルホネート基、p-トルエンスルホネート基等のスルホネート基を有するモノマーとを反応させる重合である。Stilleカップリング反応による重合の詳細は、例えば、アンゲヴァンテ ケミー インターナショナル エディション(Angewandte Chemie International Edition),2005年,第44巻,p.4442−4489に記載されている。   Polymerization by Stille coupling reaction is necessary using palladium complexes such as palladium [tetrakis (triphenylphosphine)], [tris (dibenzylideneacetone)] dipalladium, palladium acetate, bis (triphenylphosphine) palladium dichloride as catalysts. Depending on the ligand, ligands such as triphenylphosphine, tri (2-methylphenyl) phosphine, tri (2-methoxyphenyl) phosphine, diphenylphosphinopropane, tri (cyclohexyl) phosphine, tri (tert-butyl) phosphine A monomer having an organotin residue and a monomer having a halogen atom such as a bromine atom, an iodine atom or a chlorine atom, or a sulfonate group such as a trifluoromethanesulfonate group or a p-toluenesulfonate group. This is a polymerization in which the monomer is reacted. The details of the polymerization by the Stille coupling reaction are described in, for example, Angewante Chemie International Edition, 2005, Vol. 44, p. 4442-4489.

Suzukiカップリング反応による重合は、無機塩基又は有機塩基の存在下、パラジウム錯体又はニッケル錯体を触媒として用い、必要に応じて配位子を添加し、ボロン酸残基又はホウ酸エステル残基を有するモノマーと、臭素原子、ヨウ素原子、塩素原子等のハロゲン原子を有するモノマー、又は、トリフルオロメタンスルホネート基、p-トルエンスルホネート基等のスルホネート基を有するモノマーとを反応させる重合である。
無機塩基としては、例えば、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、リン酸三カリウム、フッ化カリウムが挙げられる。有機塩基としては、例えば、フッ化テトラブチルアンモニウム、塩化テトラブチルアンモニウム、臭化テトラブチルアンモニウム、水酸化テトラエチルアンモニウムが挙げられる。パラジウム錯体としては、例えば、パラジウム[テトラキス(トリフェニルホスフィン)]、[トリス(ジベンジリデンアセトン)]ジパラジウム、パラジウムアセテート、ビス(トリフェニルホスフィン)パラジウムジクロライドが挙げられる。ニッケル錯体としては、例えば、ビス(シクロオクタジエン)ニッケルが挙げられる。配位子としては、例えば、トリフェニルホスフィン、トリ(2−メチルフェニル)ホスフィン、トリ(2-メトキシフェニル)ホスフィン、ジフェニルホスフィノプロパン、トリ(シクロヘキシル)ホスフィン、トリ(tert−ブチル)ホスフィンが挙げられる。
Suzukiカップリング反応による重合の詳細は、例えば、ジャーナル オブ ポリマー サイエンス:パート エー:ポリマー ケミストリー(Journal of Polymer Science:Part A:Polymer Chemistry),2001年,第39巻,p.1533−1556に記載されている。
Polymerization by Suzuki coupling reaction uses a palladium complex or nickel complex as a catalyst in the presence of an inorganic base or an organic base, and a ligand is added as necessary to have a boronic acid residue or a boric acid ester residue. This is a polymerization in which a monomer is reacted with a monomer having a halogen atom such as a bromine atom, an iodine atom or a chlorine atom, or a monomer having a sulfonate group such as a trifluoromethanesulfonate group or a p-toluenesulfonate group.
Examples of the inorganic base include sodium carbonate, potassium carbonate, cesium carbonate, tripotassium phosphate, and potassium fluoride. Examples of the organic base include tetrabutylammonium fluoride, tetrabutylammonium chloride, tetrabutylammonium bromide, and tetraethylammonium hydroxide. Examples of the palladium complex include palladium [tetrakis (triphenylphosphine)], [tris (dibenzylideneacetone)] dipalladium, palladium acetate, and bis (triphenylphosphine) palladium dichloride. Examples of the nickel complex include bis (cyclooctadiene) nickel. Examples of the ligand include triphenylphosphine, tri (2-methylphenyl) phosphine, tri (2-methoxyphenyl) phosphine, diphenylphosphinopropane, tri (cyclohexyl) phosphine, and tri (tert-butyl) phosphine. It is done.
Details of the polymerization by the Suzuki coupling reaction are described in, for example, Journal of Polymer Science: Part A: Polymer Chemistry (Part A: Polymer Chemistry), 2001, Vol. 39, p. 1533-1556.

Yamamotoカップリング反応による重合は、触媒と還元剤とを用い、ハロゲン原子を有するモノマー同士、トリフルオロメタンスルホネート基等のスルホネート基を有するモノマー同士又はハロゲン原子を有するモノマーとスルホネート基を有するモノマーとを反応させる重合である。
触媒としては、ビス(シクロオクタジエン)ニッケル等のニッケルゼロ価錯体とビピリジル等の配位子からなる触媒、[ビス(ジフェニルホスフィノ)エタン]ニッケルジクロライド、[ビス(ジフェニルホスフィノ)プロパン]ニッケルジクロライド等のニッケルゼロ価錯体以外のニッケル錯体と、必要に応じ、トリフェニルホスフィン、ジフェニルホスフィノプロパン、トリ(シクロヘキシル)ホスフィン、トリ(tert−ブチル)ホスフィン等の配位子からなる触媒が挙げられる。還元剤としては、例えば、亜鉛、マグネシウムが挙げられる。Yamamotoカップリング反応による重合は、脱水した溶媒を反応に用いてもよく、不活性雰囲気下で反応を行ってもよく、脱水剤を反応系中に添加して行ってもよい。
Yamamotoカップリングによる重合の詳細は、例えば、マクロモルキュルズ(Macromolecules),1992年,第25巻,p.1214−1223に記載されている。
Polymerization by Yamamoto coupling reaction uses a catalyst and a reducing agent to react monomers having halogen atoms, monomers having sulfonate groups such as trifluoromethanesulfonate groups, or monomers having halogen atoms and monomers having sulfonate groups. Polymerization.
Catalysts include nickel zero-valent complexes such as bis (cyclooctadiene) nickel and ligands such as bipyridyl, [bis (diphenylphosphino) ethane] nickel dichloride, [bis (diphenylphosphino) propane] nickel. A catalyst comprising a nickel complex other than a nickel zero-valent complex such as dichloride and a ligand such as triphenylphosphine, diphenylphosphinopropane, tri (cyclohexyl) phosphine, tri (tert-butyl) phosphine, if necessary. . Examples of the reducing agent include zinc and magnesium. Polymerization by the Yamamoto coupling reaction may be performed using a dehydrated solvent in the reaction, may be performed in an inert atmosphere, or may be performed by adding a dehydrating agent to the reaction system.
Details of the polymerization by Yamamoto coupling are described in, for example, Macromolecules, 1992, Vol. 25, p. 1214-1223.

Kumada−Tamaoカップリング反応による重合は、[ビス(ジフェニルホスフィノ)エタン]ニッケルジクロライド、[ビス(ジフェニルホスフィノ)プロパン]ニッケルジクロライド等のニッケル触媒を用い、ハロゲン化マグネシウム基を有する化合物とハロゲン原子を有する化合物とを反応させる重合するである。反応は、脱水した溶媒を反応に用いてもよく、不活性雰囲気下で反応を行ってもよく、脱水剤を反応系中に添加して行ってもよい。   Polymerization by Kumada-Tamao coupling reaction uses a nickel catalyst such as [bis (diphenylphosphino) ethane] nickel dichloride, [bis (diphenylphosphino) propane] nickel dichloride, and a compound having a magnesium halide group and a halogen atom. Polymerization to react with the compound having For the reaction, a dehydrated solvent may be used for the reaction, the reaction may be performed in an inert atmosphere, or a dehydrating agent may be added to the reaction system.

前記アリールカップリング反応による重合では、通常、溶媒が用いられる。該溶媒は、用いる重合反応、モノマー及びポリマーの溶解性等を考慮して選択すればよい。具体的には、テトラヒドロフラン、トルエン、1,4−ジオキサン、ジメトキシエタン、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、これらの溶媒を2種以上混合した混合溶媒等の有機溶媒、有機溶媒相と水相の二相を有する溶媒が挙げられる。Stilleカップリング反応に用いる溶媒はテトラヒドロフラン、トルエン、N,N−ジメチルホルムアミド、これらの溶媒を2種以上混合した混合溶媒等の有機溶媒、有機溶媒相と水相の二相を有する溶媒が好ましい。Stilleカップリング反応に用いる溶媒は、副反応を抑制するために、反応前に脱酸素処理を行うことが好ましい。Suzukiカップリング反応に用いる溶媒は、テトラヒドロフラン、トルエン、1,4−ジオキサン、ジメトキシエタン、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、これらの溶媒を2種以上混合した混合溶媒等の有機溶媒、有機溶媒相と水相の二相を有する溶媒が好ましい。Suzukiカップリング反応に用いる溶媒は、副反応を抑制するために、反応前に脱酸素処理を行うことが好ましい。Yamamotoカップリング反応に用いる溶媒は、テトラヒドロフラン、トルエン、1,4−ジオキサン、ジメトキシエタン、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、これらの溶媒を2種以上混合した混合溶媒等の有機溶媒が好ましい。Yamamotoカップリング反応に用いる溶媒は、副反応を抑制するために、反応前に脱酸素処理を行うことが好ましい。   In the polymerization by the aryl coupling reaction, a solvent is usually used. The solvent may be selected in consideration of the polymerization reaction used, the solubility of the monomer and polymer, and the like. Specifically, tetrahydrofuran, toluene, 1,4-dioxane, dimethoxyethane, N, N-dimethylacetamide, N, N-dimethylformamide, an organic solvent such as a mixed solvent obtained by mixing two or more of these solvents, an organic solvent Examples thereof include a solvent having two phases of a phase and an aqueous phase. The solvent used in the Stille coupling reaction is preferably an organic solvent such as tetrahydrofuran, toluene, N, N-dimethylformamide, a mixed solvent obtained by mixing two or more of these solvents, or a solvent having two phases of an organic solvent phase and an aqueous phase. The solvent used for the Stille coupling reaction is preferably deoxygenated before the reaction in order to suppress side reactions. Solvents used in the Suzuki coupling reaction are organic solvents such as tetrahydrofuran, toluene, 1,4-dioxane, dimethoxyethane, N, N-dimethylacetamide, N, N-dimethylformamide, and mixed solvents in which two or more of these solvents are mixed. A solvent and a solvent having two phases of an organic solvent phase and an aqueous phase are preferred. The solvent used for the Suzuki coupling reaction is preferably deoxygenated before the reaction in order to suppress side reactions. The solvent used for the Yamamoto coupling reaction is an organic solvent such as tetrahydrofuran, toluene, 1,4-dioxane, dimethoxyethane, N, N-dimethylacetamide, N, N-dimethylformamide, or a mixed solvent in which two or more of these solvents are mixed. A solvent is preferred. The solvent used for the Yamamoto coupling reaction is preferably deoxygenated before the reaction in order to suppress side reactions.

前記アリールカップリング反応による重合の中でも、反応性の観点からは、Stilleカップリング反応により重合する方法、Suzukiカップリング反応により重合する方法、Yamamotoカップリング反応により重合する方法が好ましく、Stilleカップリング反応により重合する方法、Suzukiカップリング反応による重合する方法、ニッケルゼロ価錯体を用いたYamamotoカップリング反応による重合する方法がより好ましい。   Among the polymerizations by the aryl coupling reaction, from the viewpoint of reactivity, a method of polymerizing by a Stille coupling reaction, a method of polymerizing by a Suzuki coupling reaction, a method of polymerizing by a Yamamoto coupling reaction are preferable, and a Stille coupling reaction More preferred are a method of polymerizing, a method of polymerizing by a Suzuki coupling reaction, and a method of polymerizing by a Yamamoto coupling reaction using a nickel zero-valent complex.

前記アリールカップリング反応の反応温度の下限は、反応性の観点からは、好ましくは−100℃であり、より好ましくは−20℃であり、特に好ましくは0℃である。反応温度の上限は、モノマー及び高分子化合物の安定性の観点からは、好ましくは200℃であり、より好ましくは150℃であり、特に好ましくは120℃である。   The lower limit of the reaction temperature of the aryl coupling reaction is preferably −100 ° C., more preferably −20 ° C., and particularly preferably 0 ° C. from the viewpoint of reactivity. The upper limit of the reaction temperature is preferably 200 ° C., more preferably 150 ° C., and particularly preferably 120 ° C. from the viewpoint of the stability of the monomer and the polymer compound.

前記アリールカップリング反応による重合において、反応終了後の反応溶液からの本発明の高分子化合物を取り出す方法としては、公知の方法が挙げられる。例えば、メタノール等の低級アルコールに反応溶液を加え、析出した沈殿をろ過し、ろ物を乾燥することにより、本発明の高分子化合物を得ることができる。得られた高分子化合物の純度が低い場合は、再結晶、ソックスレー抽出器による連続抽出、カラムクロマトグラフィー等により精製することができる。   In the polymerization by the aryl coupling reaction, a known method can be used as a method for removing the polymer compound of the present invention from the reaction solution after completion of the reaction. For example, the polymer compound of the present invention can be obtained by adding a reaction solution to a lower alcohol such as methanol, filtering the deposited precipitate, and drying the filtrate. When the purity of the obtained polymer compound is low, it can be purified by recrystallization, continuous extraction with a Soxhlet extractor, column chromatography, or the like.

本発明の高分子化合物を有機光電変換素子の製造に用いる場合、高分子化合物の末端に重合活性基が残っていると、有機光電変換素子の耐久性等の特性が低下することがあるため、高分子化合物の末端を安定な基で保護することが好ましい。   When the polymer compound of the present invention is used for the production of an organic photoelectric conversion element, if a polymerization active group remains at the terminal of the polymer compound, characteristics such as durability of the organic photoelectric conversion element may be deteriorated. It is preferable to protect the terminal of the polymer compound with a stable group.

末端を保護する安定な基としては、アルキル基、アルコキシ基、フルオロアルキル基、フルオロアルコキシ基、アリール基、アリールアミノ基、1価の複素環基等が挙げられる。アリールアミノ基としては、フェニルアミノ基、ジフェニルアミノ基等が挙げられる。1価の複素環基としては、チエニル基、ピロリル基、フリル基、ピリジル基、キノリル基、イソキノリル基等が挙げられる。また、高分子化合物の末端に残っている重合活性基を、安定な基に代えて、水素原子で置換してもよい。ホール輸送性を高める観点からは、末端を保護する安定な基がアリールアミノ基などの電子供与性を付与する基であることが好ましい。高分子化合物が共役高分子化合物である場合、高分子化合物の主鎖の共役構造と末端を保護する安定な基の共役構造とが連続するような共役結合を有している基も末端を保護する安定な基として好ましく用いることができる。該基としては、例えば、アリール基、芳香族性を有する1価の複素環基が挙げられる。   Examples of the stable group for protecting the terminal include an alkyl group, an alkoxy group, a fluoroalkyl group, a fluoroalkoxy group, an aryl group, an arylamino group, and a monovalent heterocyclic group. Examples of the arylamino group include a phenylamino group and a diphenylamino group. Examples of the monovalent heterocyclic group include thienyl group, pyrrolyl group, furyl group, pyridyl group, quinolyl group, and isoquinolyl group. Further, the polymerization active group remaining at the terminal of the polymer compound may be replaced with a hydrogen atom instead of a stable group. From the viewpoint of enhancing hole transportability, it is preferable that the stable group for protecting the terminal is a group imparting electron donating properties such as an arylamino group. When the polymer compound is a conjugated polymer compound, the end of a group having a conjugated bond in which the conjugated structure of the main chain of the polymer compound and the conjugated structure of a stable group protecting the end are continuous is also protected. It can preferably be used as a stable group. Examples of the group include an aryl group and a monovalent heterocyclic group having aromaticity.

本発明の高分子化合物において、式(1)で表される繰り返し単位を含む高分子化合物
は、例えば、式(4)で表される化合物と式(5)で表される化合物とを重合して製造することができる。重合反応としては、例えば、Suzukiカップリング反応が挙げられる。

Figure 0005786504
(4)
Figure 0005786504
(5)
(式(4)、(5)中、R、Qは、前述と同じ意味を表す。Zは、ホウ酸、ホウ酸エステル残基を表す。2個あるZは、同一でも相異なっていてもよい。)
In the polymer compound of the present invention, the polymer compound containing the repeating unit represented by the formula (1) polymerizes, for example, a compound represented by the formula (4) and a compound represented by the formula (5). Can be manufactured. Examples of the polymerization reaction include a Suzuki coupling reaction.
Figure 0005786504
(4)
Figure 0005786504
(5)
(In formulas (4) and (5), R and Q represent the same meaning as described above. Z represents boric acid or a boric acid ester residue. Two Zs may be the same or different. Good.)

式(4)中、Zで表されるホウ酸エステル残基は、ホウ酸エステルから水素原子を1個
除いた基を表し、その具体例としては、下記式で表される基が挙げられる。

Figure 0005786504
(式中、Meはメチル基を表し、Etはエチル基を表す。) In the formula (4), the boric acid ester residue represented by Z represents a group obtained by removing one hydrogen atom from a boric acid ester, and specific examples thereof include groups represented by the following formula.
Figure 0005786504
(In the formula, Me represents a methyl group, and Et represents an ethyl group.)

式(4)で表される化合物としては、例えば、以下の化合物が挙げられる。

Figure 0005786504
As a compound represented by Formula (4), the following compounds are mentioned, for example.
Figure 0005786504

式(4)で表される化合物は、式(6)で表される化合物を、有機溶媒中で、ジホウ酸、またはジホウ酸エステルと反応させることにより製造することができる。

Figure 0005786504
(6)
(式(6)中、Rは、前述と同じ意味を表す。) The compound represented by the formula (4) can be produced by reacting the compound represented by the formula (6) with diboric acid or diboric acid ester in an organic solvent.

Figure 0005786504
(6)
(In formula (6), R represents the same meaning as described above.)

式(6)で表される化合物と反応させるジホウ酸またはジホウ酸エステルは、反応性の観点からジホウ酸エステルであることが好ましい。ジホウ酸エステルとしては例えば下記の(B−1)〜(B−6)の構造が挙げられる。

Figure 0005786504
The diboric acid or diboric acid ester to be reacted with the compound represented by the formula (6) is preferably a diboric acid ester from the viewpoint of reactivity. Examples of the diboric acid ester include the following structures (B-1) to (B-6).
Figure 0005786504

ジホウ酸エステルとして好ましくは(B−1)、(B−3)であり、特に好ましくは(B−3)である。ジホウ酸またはジホウ酸エステルの使用量は式(6)であらわされる化合物に対して通常2モル当量(以下、本明細書ではモル当量を単に当量と記載する。)〜10当量であり、好ましくは2当量〜4当量であり、さらに好ましくは2〜3当量である。   The diborates are preferably (B-1) and (B-3), particularly preferably (B-3). The amount of diboric acid or diboric acid ester used is usually 2 molar equivalents (hereinafter, the molar equivalents are simply referred to as equivalents) to 10 equivalents relative to the compound represented by formula (6), preferably 2 to 4 equivalents, more preferably 2 to 3 equivalents.

式(6)で表される化合物とジホウ酸またはジホウ酸エステルの反応は通常有機溶媒中で行われるが、該有機溶媒としては、芳香族炭化水素溶媒、脂肪族炭化水素溶媒、エーテル系溶媒、ハロゲン系溶媒、非プロトン性極性溶媒等が挙げられる。芳香族炭化水素溶媒としては、ベンゼン、トルエン、キシレン、クメン等が挙げられる。脂肪族炭化水素溶媒としては、ヘキサン、オクタン、デカンなどが挙げられる。エーテル系溶媒としては、ジエチルエーテル、ジブチルエーテル、ジメトキシエタン、テトラヒドロフラン、1,4−ジオキサン等が挙げられる。ハロゲン系溶媒としては、ジクロロメタン、クロロホルム、クロロベンゼン、ジクロロベンゼン等が挙げられる。非プロトン性極性溶媒としては、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシド、N−メチルピロリドンなどが挙げられる。溶媒として好ましくは芳香族炭化水素溶媒、エーテル溶媒であり、さらに好ましくはエーテル溶媒である。エーテル系溶媒の中でも好ましくはテトラヒドロフラン、1,4−ジオキサンであり、さらに好ましくは1,4−ジオキサンである。   The reaction of the compound represented by the formula (6) and diboric acid or diboric acid ester is usually carried out in an organic solvent. Examples of the organic solvent include aromatic hydrocarbon solvents, aliphatic hydrocarbon solvents, ether solvents, Examples thereof include halogen-based solvents and aprotic polar solvents. Examples of the aromatic hydrocarbon solvent include benzene, toluene, xylene, cumene and the like. Examples of the aliphatic hydrocarbon solvent include hexane, octane, decane and the like. Examples of ether solvents include diethyl ether, dibutyl ether, dimethoxyethane, tetrahydrofuran, 1,4-dioxane and the like. Examples of the halogen solvent include dichloromethane, chloroform, chlorobenzene, dichlorobenzene and the like. Examples of the aprotic polar solvent include N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, N-methylpyrrolidone and the like. The solvent is preferably an aromatic hydrocarbon solvent or an ether solvent, and more preferably an ether solvent. Of the ether solvents, tetrahydrofuran and 1,4-dioxane are preferable, and 1,4-dioxane is more preferable.

式(6)で表される化合物とジホウ酸またはジホウ酸エステルの反応は触媒存在下で行うことが好ましい。触媒としてはパラジウム触媒、ロジウム触媒、ルテニウム触媒、白金触媒が挙げられるが、中でもパラジウム触媒が好ましい。パラジウム触媒としては、例えば、Pd(0)触媒、Pd(II)触媒が挙げられる。具体的には、パラジウム[テトラキス(トリフェニルホスフィン)]、パラジウムアセテート類、ジクロロビス(トリフェニルホスフィン)パラジウム、パラジウムアセテート、トリス(ジベンジリデンアセトン)ジパラジウム、ビス(ジベンジリデンアセトン)パラジウム、ジクロロビス(ジフェニルホスフィノフェロセン)パラジウムが挙げられ、反応操作の容易さ、反応速度の観点からは、ジクロロビス(ジフェニルホスフィノフェロセン)パラジウムが好ましい。パラジウム触媒の添加量は、特に限定されず、触媒としての有効量であればよいが、式(6)で表される化合物1モルに対して、通常、0.0001モル〜0.5モル、好ましくは0.0003モル〜0.2モルである。反応において、必要に応じて配位子を用いることもできる。配位子としては、例えば、トリフェニルホスフィン、トリ(o−トリル)ホスフィン、トリ(o−メトキシフェニル)ホスフィン、トリス(2−フリル)ホスフィン、1,1’−ビス(ジフェニルホスフィノ)フェロセン等のリン化合物やトリフェニルアルシン、トリフェノキシアルシン等の砒素化合物が挙げられる。配位子として好ましくは1,1’−ビス(ジフェニルホスフィノ)フェロセンである。配位子を用いる場合、配位子の添加量は、パラジウム触媒1モルに対して、通常、0.5モル〜100モルであり、好ましくは0.9モル〜20モル、さらに好ましくは1モル〜10モルである。   The reaction between the compound represented by formula (6) and diboric acid or diboric acid ester is preferably performed in the presence of a catalyst. Examples of the catalyst include a palladium catalyst, a rhodium catalyst, a ruthenium catalyst, and a platinum catalyst, and among them, a palladium catalyst is preferable. Examples of the palladium catalyst include a Pd (0) catalyst and a Pd (II) catalyst. Specifically, palladium [tetrakis (triphenylphosphine)], palladium acetates, dichlorobis (triphenylphosphine) palladium, palladium acetate, tris (dibenzylideneacetone) dipalladium, bis (dibenzylideneacetone) palladium, dichlorobis (diphenyl) Phosphinoferrocene) palladium, and dichlorobis (diphenylphosphinoferrocene) palladium is preferred from the viewpoint of ease of reaction operation and reaction rate. The addition amount of the palladium catalyst is not particularly limited as long as it is an effective amount as a catalyst, but is usually 0.0001 mol to 0.5 mol, preferably 0.0003 mol, relative to 1 mol of the compound represented by the formula (6). ~ 0.2 mol. In the reaction, a ligand can be used as necessary. Examples of the ligand include triphenylphosphine, tri (o-tolyl) phosphine, tri (o-methoxyphenyl) phosphine, tris (2-furyl) phosphine, 1,1′-bis (diphenylphosphino) ferrocene, and the like. And arsenic compounds such as triphenylarsine and triphenoxyarsine. The ligand is preferably 1,1'-bis (diphenylphosphino) ferrocene. When using a ligand, the addition amount of the ligand is usually 0.5 mol to 100 mol, preferably 0.9 mol to 20 mol, more preferably 1 mol to 10 mol, relative to 1 mol of the palladium catalyst. is there.

式(6)で表される化合物とジホウ酸またはジホウ酸エステルの反応を行う温度は、前記溶媒にもよるが、通常、50〜160℃程度であり、60〜120℃が好ましい。また、溶媒の沸点近くまで昇温し、還流させてもよい。前記反応を行う時間(反応時間)は、高速液体クロマトグラフィ等で分析を行い、目的の転化率に達したときを終点としてもよいが、通常、0.1時間〜200時間程度である。1時間〜30時間程度が効率的で好ましい。   The temperature at which the compound represented by formula (6) is reacted with diboric acid or diboric acid ester is usually about 50 to 160 ° C, preferably 60 to 120 ° C, although it depends on the solvent. Alternatively, the temperature may be raised to near the boiling point of the solvent and refluxed. The time for performing the reaction (reaction time) is usually about 0.1 to 200 hours, although it may be analyzed by high performance liquid chromatography or the like and the target conversion rate may be reached as an end point. About 1 to 30 hours is efficient and preferable.

式(6)で表される化合物は、例えば、マクロモルキュルズ、2009年、第42巻、第17号、p.6564〜6571(Macromolecules, 42(17), 6564 (2009))に記載の方法を用いて合成することができる。   The compound represented by formula (6) is, for example, Macromolecules, 2009, Vol. 42, No. 17, p. It can be synthesized using the method described in 6564-6571 (Macromolecules, 42 (17), 6564 (2009)).

<有機光電変換素子>
本発明の高分子化合物は、600nmの光等の長波長の光の吸光度が高く、太陽光を効率的に吸収するため、本発明の高分子化合物を用いて製造した有機光電変換素子は短絡電流密度が大きくなる。
<Organic photoelectric conversion element>
Since the polymer compound of the present invention has a high absorbance of light having a long wavelength such as 600 nm light and efficiently absorbs sunlight, an organic photoelectric conversion element manufactured using the polymer compound of the present invention has a short-circuit current. Density increases.

本発明の有機光電変換素子は、一対の電極と、該電極間に機能層を有し、該機能層が電子受容性化合物と本発明の高分子化合物を含有する。電子受容性化合物としては、フラーレン、フラーレン誘導体が好ましい。有機光電変換素子の具体例としては、
1.一対の電極と、該電極間に機能層を有し、該機能層が電子受容性化合物と、本発明の高分子化合物とを含有する有機光電変換素子;
2.一対の電極と、該電極間に機能層を有し、該機能層が電子受容性化合物と、本発明の高分子化合物とを含有する有機光電変換素子であって、該電子受容性化合物がフラーレン誘導体である有機光電変換素子;
が挙げられる。前記一対の電極は、通常、少なくとも一方が透明又は半透明であり、以下、その場合を一例として説明する。
The organic photoelectric conversion device of the present invention has a pair of electrodes and a functional layer between the electrodes, and the functional layer contains the electron-accepting compound and the polymer compound of the present invention. As an electron-accepting compound, fullerene and a fullerene derivative are preferable. As a specific example of the organic photoelectric conversion element,
1. An organic photoelectric conversion element having a pair of electrodes and a functional layer between the electrodes, the functional layer containing an electron-accepting compound and the polymer compound of the present invention;
2. An organic photoelectric conversion element comprising a pair of electrodes and a functional layer between the electrodes, the functional layer containing an electron-accepting compound and the polymer compound of the present invention, wherein the electron-accepting compound is a fullerene An organic photoelectric conversion element which is a derivative;
Is mentioned. In general, at least one of the pair of electrodes is transparent or translucent. Hereinafter, this case will be described as an example.

前記1.の有機光電変換素子では、電子受容性化合物及び前記高分子化合物を含有する機能層における該電子受容性化合物の量が、前記高分子化合物100重量部に対して、10〜1000重量部であることが好ましく、20〜500重量部であることがより好ましい。また、前記2.の有機光電変換素子では、フラーレン誘導体及び前記高分子化合物を含有する機能層における該フラーレン誘導体の量が、該重合体100重量部に対して、10〜1000重量部であることが好ましく、20〜500重量部であることがより好ましい。光電変換効率を高める観点からは、機能層における該フラーレン誘導体の量が、該重合体100重量部に対して、20〜400重量部であることが好ましく、40〜250重量部であることがより好ましく、80〜120重量部であることがさらに好ましい。短絡電流密度を高める観点からは、機能層における該フラーレン誘導体の量が、該重合体100重量部に対して、20〜250重量部であることが好ましく、40〜120重量部であることがより好ましい。   1 above. In the organic photoelectric conversion element, the amount of the electron-accepting compound in the functional layer containing the electron-accepting compound and the polymer compound is 10 to 1000 parts by weight with respect to 100 parts by weight of the polymer compound. Is preferable, and it is more preferable that it is 20-500 weight part. In addition, 2. In the organic photoelectric conversion element, the amount of the fullerene derivative in the functional layer containing the fullerene derivative and the polymer compound is preferably 10 to 1000 parts by weight with respect to 100 parts by weight of the polymer. More preferably, it is 500 parts by weight. From the viewpoint of increasing the photoelectric conversion efficiency, the amount of the fullerene derivative in the functional layer is preferably 20 to 400 parts by weight and more preferably 40 to 250 parts by weight with respect to 100 parts by weight of the polymer. Preferably, it is 80 to 120 parts by weight. From the viewpoint of increasing the short-circuit current density, the amount of the fullerene derivative in the functional layer is preferably 20 to 250 parts by weight and more preferably 40 to 120 parts by weight with respect to 100 parts by weight of the polymer. preferable.

有機光電変換素子が高い光電変換効率を有するためには、前記電子受容性化合物と、式(1)または式(A)及び式(B)で表される繰り返し単位を有する高分子化合物とが所望の入射光のスペクトルを効率よく吸収することができる吸収域を有するものであること、ヘテロ接合界面が励起子を効率よく分離するためにヘテロ接合界面を多く含むこと、ヘテロ接合界面が生成した電荷を速やかに電極へ輸送する電荷輸送性を有することが重要である。   In order for the organic photoelectric conversion element to have high photoelectric conversion efficiency, the electron-accepting compound and a polymer compound having a repeating unit represented by formula (1) or formula (A) and formula (B) are desired. It has an absorption region that can efficiently absorb the spectrum of incident light, and the heterojunction interface contains many heterojunction interfaces in order to efficiently separate excitons, and the charge generated by the heterojunction interface It is important to have a charge transporting property for quickly transporting to the electrode.

このような観点から、有機光電変換素子としては、前記1.、前記2.の有機光電変換素子が好ましく、ヘテロ接合界面を多く含むという観点からは、前記2.の有機光電変換素子がより好ましい。また、本発明の有機光電変換素子には、少なくとも一方の電極と該素子中の機能層との間に付加的な層を設けてもよい。付加的な層としては、ホール又は電子を輸送する電荷輸送層、バッファ層等が挙げられる。   From such a viewpoint, as the organic photoelectric conversion element, the above 1. , 2. From the standpoint of including a large number of heterojunction interfaces, the organic photoelectric conversion element is preferable. The organic photoelectric conversion element is more preferable. Further, in the organic photoelectric conversion element of the present invention, an additional layer may be provided between at least one electrode and the functional layer in the element. Examples of the additional layer include a charge transport layer that transports holes or electrons, and a buffer layer.

本発明の有機光電変換素子は、通常、基板上に形成される。該基板は、電極を形成し、有機物の層を形成する際に化学的に変化しないものであればよい。基板の材料としては、例えば、ガラス、プラスチック、高分子フィルム、シリコンが挙げられる。不透明な基板の場合には、反対の電極(即ち、基板から遠い方の電極)が透明又は半透明であることが好ましい。   The organic photoelectric conversion element of the present invention is usually formed on a substrate. The substrate may be any substrate that does not chemically change when an electrode is formed and an organic layer is formed. Examples of the material for the substrate include glass, plastic, polymer film, and silicon. In the case of an opaque substrate, the opposite electrode (that is, the electrode far from the substrate) is preferably transparent or translucent.

一対の電極の材料には、金属、導電性高分子等を用いることができる。一対の電極のうち一方の電極の材料は仕事関数の小さい材料が好ましい。例えば、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、マグネシウム、カルシウム、ストロンチウム、バリウム、アルミニウム、スカンジウム、バナジウム、亜鉛、イットリウム、インジウム、セリウム、サマリウム、ユーロピウム、テルビウム、イッテルビウム等の金属、及びそれらの金属のうちの2つ以上の金属の合金、又はそれらの金属のうちの1つ以上の金属と、金、銀、白金、銅、マンガン、チタン、コバルト、ニッケル、タングステン、錫のうちの1つ以上の金属との合金、グラファイト、グラファイト層間化合物等が用いられる。合金の例としては、マグネシウム−銀合金、マグネシウム−インジウム合金、マグネシウム−アルミニウム合金、インジウム−銀合金、リチウム−アルミニウム合金、リチウム−マグネシウム合金、リチウム−インジウム合金、カルシウム−アルミニウム合金が挙げられる。
前記の透明又は半透明の電極の材料としては、導電性の金属酸化物膜、半透明の金属薄膜等が挙げられる。具体的には、酸化インジウム、酸化亜鉛、酸化スズ、及びそれらの複合体であるインジウム・スズ・オキサイド(ITO)、インジウム・亜鉛・オキサイド等からなる導電性材料を用いて作製された膜、NESA、金、白金、銀、銅が用いられ、ITO、インジウム・亜鉛・オキサイド、酸化スズが好ましい。電極の作製方法としては、真空蒸着法、スパッタリング法、イオンプレーティング法、メッキ法等が挙げられる。また、電極材料として、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体等の有機の透明導電膜を用いてもよい。
As a material for the pair of electrodes, a metal, a conductive polymer, or the like can be used. The material of one of the pair of electrodes is preferably a material having a low work function. For example, metals such as lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, strontium, barium, aluminum, scandium, vanadium, zinc, yttrium, indium, cerium, samarium, europium, terbium, ytterbium, and those metals An alloy of two or more of these metals, or one or more of those metals and one or more of gold, silver, platinum, copper, manganese, titanium, cobalt, nickel, tungsten, tin An alloy with metal, graphite, a graphite intercalation compound, or the like is used. Examples of the alloy include magnesium-silver alloy, magnesium-indium alloy, magnesium-aluminum alloy, indium-silver alloy, lithium-aluminum alloy, lithium-magnesium alloy, lithium-indium alloy, and calcium-aluminum alloy.
Examples of the material of the transparent or translucent electrode include a conductive metal oxide film and a translucent metal thin film. Specifically, a film formed using a conductive material made of indium oxide, zinc oxide, tin oxide, and indium tin oxide (ITO), indium zinc oxide, etc., which is a composite thereof, NESA Gold, platinum, silver, and copper are used, and ITO, indium / zinc / oxide, and tin oxide are preferable. Examples of the method for producing the electrode include a vacuum deposition method, a sputtering method, an ion plating method, a plating method, and the like. Moreover, you may use organic transparent conductive films, such as polyaniline and its derivative (s), polythiophene, and its derivative (s) as an electrode material.

前記付加的な層としての電荷輸送層、即ち、ホール輸送層又は電子輸送層に用いられる材料として、それぞれ後述の電子供与性化合物、電子受容性化合物を用いることができる。
付加的な層としてのバッファ層に用いられる材料としては、フッ化リチウム等のアルカリ金属又はアルカリ土類金属のハロゲン化物又は酸化物等を用いることができる。また、酸化チタン等の無機半導体の微粒子を用いることもできる。
As a material used for the charge transport layer as the additional layer, that is, the hole transport layer or the electron transport layer, an electron donating compound and an electron accepting compound described later can be used, respectively.
As a material used for the buffer layer as an additional layer, halides or oxides of alkali metals or alkaline earth metals such as lithium fluoride can be used. In addition, fine particles of an inorganic semiconductor such as titanium oxide can be used.

<有機薄膜>
本発明の有機光電変換素子における前記機能層としては、例えば、本発明の高分子化合物と電子受容性化合物とを含有する有機薄膜を用いることができる。
<Organic thin film>
As the functional layer in the organic photoelectric conversion element of the present invention, for example, an organic thin film containing the polymer compound of the present invention and an electron-accepting compound can be used.

前記有機薄膜は、膜厚が、通常、1nm〜100μmであり、好ましくは2nm〜1000nmであり、より好ましくは5nm〜500nmであり、さらに好ましくは20nm〜200nmである。   The organic thin film has a thickness of usually 1 nm to 100 μm, preferably 2 nm to 1000 nm, more preferably 5 nm to 500 nm, and further preferably 20 nm to 200 nm.

前記有機薄膜は、前記高分子化合物を一種単独で含んでいても二種以上を組み合わせて含んでいてもよい。また、前記有機薄膜のホール輸送性を高めるため、前記有機薄膜中に電子供与性化合物として、低分子化合物及び/又は前記高分子化合物以外の高分子化合物を混合して用いることもできる。   The organic thin film may contain the polymer compound alone or in combination of two or more. Moreover, in order to improve the hole transport property of the organic thin film, a low molecular compound and / or a high molecular compound other than the high molecular compound can be mixed and used as the electron donating compound in the organic thin film.

式(1)または式(A)及び式(B)で表される繰り返し単位を有する高分子化合物以外に有機薄膜が含んでいてもよい電子供与性化合物としては、例えば、ピラゾリン誘導体、アリールアミン誘導体、スチルベン誘導体、トリフェニルジアミン誘導体、オリゴチオフェン及びその誘導体、ポリビニルカルバゾール及びその誘導体、ポリシラン及びその誘導体、側鎖又は主鎖に芳香族アミンを有するポリシロキサン誘導体、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体、ポリピロール及びその誘導体、ポリフェニレンビニレン及びその誘導体、ポリチエニレンビニレン及びその誘導体が挙げられる。   Examples of the electron-donating compound that the organic thin film may contain in addition to the polymer compound having the repeating unit represented by formula (1) or formula (A) and formula (B) include pyrazoline derivatives and arylamine derivatives. , Stilbene derivatives, triphenyldiamine derivatives, oligothiophene and derivatives thereof, polyvinylcarbazole and derivatives thereof, polysilane and derivatives thereof, polysiloxane derivatives having aromatic amines in the side chain or main chain, polyaniline and derivatives thereof, polythiophene and derivatives thereof , Polypyrrole and derivatives thereof, polyphenylene vinylene and derivatives thereof, and polythienylene vinylene and derivatives thereof.

前記電子受容性化合物としては、例えば、オキサジアゾール誘導体、アントラキノジメタン及びその誘導体、ベンゾキノン及びその誘導体、ナフトキノン及びその誘導体、アントラキノン及びその誘導体、テトラシアノアントラキノジメタン及びその誘導体、フルオレノン誘導体、ジフェニルジシアノエチレン及びその誘導体、ジフェノキノン誘導体、8−ヒドロキシキノリン及びその誘導体の金属錯体、ポリキノリン及びその誘導体、ポリキノキサリン及びその誘導体、ポリフルオレン及びその誘導体、C60等のフラーレン及びその誘導体、カーボンナノチューブ、2,9−ジメチル−4,7−ジフェニル−1,10−フェナントロリン等のフェナントロリン誘導体が挙げられ、とりわけフラーレン及びその誘導体が好ましい。 Examples of the electron-accepting compound include oxadiazole derivatives, anthraquinodimethane and derivatives thereof, benzoquinone and derivatives thereof, naphthoquinone and derivatives thereof, anthraquinones and derivatives thereof, tetracyanoanthraquinodimethane and derivatives thereof, and fluorenone derivatives. , diphenyldicyanoethylene and derivatives thereof, diphenoquinone derivatives, 8-hydroxyquinoline and metal complexes of derivatives thereof, polyquinoline and derivatives thereof, polyquinoxaline and its derivatives, polyfluorene and its derivatives, fullerene and derivatives thereof such as C 60, carbon nanotube And phenanthroline derivatives such as 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline, and fullerene and derivatives thereof are particularly preferable.

なお、前記電子供与性化合物、前記電子受容性化合物は、これらの化合物のエネルギー準位のエネルギーレベルから相対的に決定される。   The electron-donating compound and the electron-accepting compound are relatively determined from the energy levels of these compounds.

フラーレン及びその誘導体としては、C60、C70、C84及びその誘導体が挙げられる。フラーレン誘導体とは、フラーレンの少なくとも一部が修飾された化合物を表す。 Fullerenes and derivatives thereof include C 60 , C 70 , C 84 and derivatives thereof. A fullerene derivative represents a compound in which at least a part of fullerene is modified.

フラーレン誘導体としては、例えば、式(I)で表される化合物、式(II)で表される化合物、式(III)で表される化合物、式(IV)で表される化合物が挙げられる。

Figure 0005786504
(I) (II) (III) (IV)

(式(I)〜(IV)中、Rは、アルキル基、アリール基、ヘテロアリール基又はエステル構造を有する基である。複数個あるRは、同一であっても相異なってもよい。Rはアルキル基又はアリール基を表す。複数個あるRは、同一であっても相異なってもよい。) Examples of the fullerene derivative include a compound represented by the formula (I), a compound represented by the formula (II), a compound represented by the formula (III), and a compound represented by the formula (IV).
Figure 0005786504
(I) (II) (III) (IV)

(In formulas (I) to (IV), R a is an alkyl group, aryl group, heteroaryl group or group having an ester structure. A plurality of R a may be the same or different. R b represents an alkyl group or an aryl group, and a plurality of R b may be the same or different.)

及びRで表されるアルキル基、アリール基及びヘテロアリール基の定義、具体例は、Rで表されるアルキル基、アリール基及びヘテロアリール基の定義、具体例と同じである。 The definitions and specific examples of the alkyl group, aryl group and heteroaryl group represented by R a and R b are the same as the definitions and specific examples of the alkyl group, aryl group and heteroaryl group represented by R.

で表されるエステル構造を有する基は、例えば、式(V)で表される基が挙げられる。

Figure 0005786504
(V)
(式(V)中、u1は、1〜6の整数を表す、u2は、0〜6の整数を表す、Rは、アルキル基、アリール基又はヘテロアリール基を表す。) Examples of the group having an ester structure represented by Ra include a group represented by the formula (V).
Figure 0005786504
(V)
(In formula (V), u1 represents an integer of 1 to 6, u2 represents an integer of 0 to 6, and R c represents an alkyl group, an aryl group, or a heteroaryl group.)

で表されるアルキル基、アリール基及びヘテロアリール基の定義、具体例は、Rで表されるアルキル基、アリール基及びヘテロアリール基の定義、具体例と同じである。 The definitions and specific examples of the alkyl group, aryl group and heteroaryl group represented by R c are the same as the definitions and specific examples of the alkyl group, aryl group and heteroaryl group represented by R.

60の誘導体の具体例としては、以下のようなものが挙げられる。

Figure 0005786504
Specific examples of the C 60 derivative include the following.
Figure 0005786504

Figure 0005786504
Figure 0005786504

Figure 0005786504
Figure 0005786504

70の誘導体の具体例としては、以下のようなものが挙げられる。

Figure 0005786504
Specific examples of the C 70 derivative include the following.
Figure 0005786504

<有機薄膜の製造方法>
前記有機薄膜は、如何なる方法で製造してもよく、例えば、本発明の高分子化合物を含む溶液からの成膜による方法で製造してもよいし、真空蒸着法により有機薄膜を形成してもよい。溶液からの成膜により有機薄膜を製造する方法としては、例えば、一方の電極上に該溶液を塗布し、その後、溶媒を蒸発させて有機薄膜を製造する方法が挙げられる。
<Method for producing organic thin film>
The organic thin film may be produced by any method. For example, the organic thin film may be produced by a film formation method from a solution containing the polymer compound of the present invention, or an organic thin film may be formed by a vacuum deposition method. Good. Examples of the method for producing an organic thin film by film formation from a solution include a method of producing an organic thin film by applying the solution on one electrode and then evaporating the solvent.

溶液からの成膜に用いる溶媒は、本発明の高分子化合物を溶解させるものであれば特に制限はない。この溶媒としては、例えば、トルエン、キシレン、メシチレン、テトラリン、デカリン、ビシクロヘキシル、n−ブチルベンゼン、sec−ブチルベンゼン、tert−ブチルベンゼン等の不飽和炭化水素系溶媒、四塩化炭素、クロロホルム、ジクロロメタン、ジクロロエタン、クロロブタン、ブロモブタン、クロロペンタン、ブロモペンタン、クロロヘキサン、ブロモヘキサン、クロロシクロヘキサン、ブロモシクロヘキサン等のハロゲン化飽和炭化水素系溶媒、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン等のハロゲン化不飽和炭化水素系溶媒、テトラヒドロフラン、テトラヒドロピラン等のエーテル類系溶媒が挙げられる。本発明の高分子化合物は、通常、前記溶媒に0.1重量%以上溶解させることができる。   The solvent used for film formation from a solution is not particularly limited as long as it dissolves the polymer compound of the present invention. Examples of the solvent include unsaturated hydrocarbon solvents such as toluene, xylene, mesitylene, tetralin, decalin, bicyclohexyl, n-butylbenzene, sec-butylbenzene, tert-butylbenzene, carbon tetrachloride, chloroform, dichloromethane. Halogenated saturated hydrocarbon solvents such as dichloroethane, chlorobutane, bromobutane, chloropentane, bromopentane, chlorohexane, bromohexane, chlorocyclohexane and bromocyclohexane, and halogenated unsaturated hydrocarbons such as chlorobenzene, dichlorobenzene and trichlorobenzene Examples of the solvent include ether solvents such as tetrahydrofuran and tetrahydropyran. The polymer compound of the present invention can usually be dissolved in the solvent in an amount of 0.1% by weight or more.

溶液からの成膜には、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェット印刷法、ディスペンサー印刷法、ノズルコート法、キャピラリーコート法等の塗布法を用いることができ、スピンコート法、フレキソ印刷法、インクジェット印刷法、ディスペンサー印刷法が好ましい。   For film formation from solution, spin coating method, casting method, micro gravure coating method, gravure coating method, bar coating method, roll coating method, wire bar coating method, dip coating method, spray coating method, screen printing method, flexographic method Coating methods such as a printing method, an offset printing method, an ink jet printing method, a dispenser printing method, a nozzle coating method, a capillary coating method can be used, and a spin coating method, a flexographic printing method, an ink jet printing method, and a dispenser printing method are preferable.

<素子の用途>
有機光電変換素子は、透明又は半透明の電極から太陽光等の光を照射することにより、電極間に光起電力が発生し、有機薄膜太陽電池として動作させることができる。有機薄膜太陽電池を複数集積することにより有機薄膜太陽電池モジュールとして用いることもできる。
<Application of device>
By irradiating light such as sunlight from a transparent or translucent electrode, the organic photoelectric conversion element generates a photovoltaic force between the electrodes and can be operated as an organic thin film solar cell. It can also be used as an organic thin film solar cell module by integrating a plurality of organic thin film solar cells.

また、電極間に電圧を印加した状態で、透明又は半透明の電極から光を照射することにより、光電流が流れ、有機光センサーとして動作させることができる。有機光センサーを複数集積することにより有機イメージセンサーとして用いることもできる。   In addition, by applying light from a transparent or translucent electrode in a state where a voltage is applied between the electrodes, a photocurrent flows and it can be operated as an organic photosensor. It can also be used as an organic image sensor by integrating a plurality of organic photosensors.

<有機トランジスタ>
本発明の有機薄膜トランジスタは、ソース電極と、ドレイン電極と、有機半導体層と、ゲート電極とを備え、前記有機半導体層に式(A)で表される繰り返し単位と式(B)で表される繰り返し単位とを含む高分子化合物、または式(1)で表される繰り返し単位を含む高分子化合物を含有する。
本発明の高分子化合物は電荷移動度が高いため、本発明の高分子化合物を含む有機半導体層を有する有機薄膜トランジスタは、電界効果移動度が高くなる。
<Organic transistor>
The organic thin film transistor of the present invention includes a source electrode, a drain electrode, an organic semiconductor layer, and a gate electrode, and the organic semiconductor layer is represented by the repeating unit represented by the formula (A) and the formula (B). A polymer compound containing a repeating unit or a polymer compound containing a repeating unit represented by formula (1) is contained.
Since the polymer compound of the present invention has high charge mobility, the organic thin film transistor having the organic semiconductor layer containing the polymer compound of the present invention has high field effect mobility.

以下、本発明をさらに詳細に説明するために実施例を示すが、本発明はこれらに限定されるものではない。   Examples will be shown below for illustrating the present invention in more detail, but the present invention is not limited to these examples.

高分子化合物のポリスチレン換算の重量平均分子量はサイズエクスクルージョンクロマトグラフィー(SEC)により求めた。
カラム: TOSOH TSKgel SuperHM-H(2本)+ TSKgel SuperH2000(4.6mm I.d. × 15cm);検出器:RI (SHIMADZU RID-10A);移動相:テトラヒドロフラン(THF)
The polystyrene equivalent weight average molecular weight of the polymer compound was determined by size exclusion chromatography (SEC).
Column: TOSOH TSKgel SuperHM-H (2) + TSKgel SuperH2000 (4.6 mm Id x 15 cm); Detector: RI (SHIMADZU RID-10A); Mobile phase: Tetrahydrofuran (THF)

参考例1
(化合物2の合成)

Figure 0005786504

窒素気流雰囲気下ジムロートを取付けた100ml3口フラスコに化合物1(Luminescence Technology社より購入、0.50g、0.73mmol)、bis(pinacolato)diboron(0.41g、1.61mmol)、酢酸カリウム(0.35g、4.03mmol)、PdCl2(dppf)(0.01g、0.01mmol)、dppf(0.01g、0.02mmol)、無水1,4-ジオキサン50mlを室温下にて仕込み、15時間加熱還流下攪拌した。攪拌後反応液をセライトろ過し、セライトケーキをTHF20mlを用い、3回洗浄した。ろ液をエバポレータにて濃縮し、得られた残渣にトルエン20mlを加え80℃にて加熱攪拌し、そこへメタノール40ml加え、攪拌を続けながら、室温まで放冷後さらに1時間攪拌した。得られたスラリーをろ取、メタノール20mlを用い2回洗浄した後減圧乾燥(50mmHg、70℃、3hr)することで、化合物2を183mg(0.24mmol、収率32.9%)得た。 Reference example 1
(Synthesis of Compound 2)

Figure 0005786504

Compound 1 (purchased from Luminescence Technology, 0.50 g, 0.73 mmol), bis (pinacolato) diboron (0.41 g, 1.61 mmol), potassium acetate (0.35 g, 4.03 mmol) in a 100 ml three-necked flask fitted with a Dimroth in a nitrogen stream atmosphere , PdCl2 (dppf) (0.01 g, 0.01 mmol), dppf (0.01 g, 0.02 mmol), and 50 ml of anhydrous 1,4-dioxane were charged at room temperature and stirred for 15 hours while heating under reflux. After stirring, the reaction solution was filtered through Celite, and the Celite cake was washed 3 times with 20 ml of THF. The filtrate was concentrated with an evaporator, 20 ml of toluene was added to the obtained residue, and the mixture was heated and stirred at 80 ° C., 40 ml of methanol was added thereto, and the mixture was allowed to cool to room temperature and further stirred for 1 hour. The obtained slurry was collected by filtration, washed twice with 20 ml of methanol, and then dried under reduced pressure (50 mmHg, 70 ° C., 3 hr) to obtain 183 mg (0.24 mmol, yield 32.9%) of Compound 2.

1H−NMR(270MHz/CDCl3):
δ8.93(d、2H)、7.72(d、2H)、4.07(m、4H)、1.85(m、2H)、1.37(s、24H)、1.50−1.15(m、16H)、0.95−0.80(d、12H)
1 H-NMR (270 MHz / CDCl 3 ):
δ8.93 (d, 2H), 7.72 (d, 2H), 4.07 (m, 4H), 1.85 (m, 2H), 1.37 (s, 24H), 1.50-1 .15 (m, 16H), 0.95-0.80 (d, 12H)

実施例1
(高分子化合物1の合成)

Figure 0005786504
3 2

フラスコ内の気体をアルゴンで置換した100mLフラスコに、Journal of Materials Chemistry., 2011, 21, 1196-1205に記載の方法で合成した化合物3を100.0mg(0.129mmol)、化合物2を80.0mg(0.128mmol)、メチルトリアルキルアンモニウムクロリド(商品名Aliquat336(登録商標)、アルドリッチ社製)を50.0mg加え、トルエン10mLに溶解させ、得られたトルエン溶液をアルゴンで30分バブリングした。その後、酢酸パラジウム 0.43mg、トリス(2−メトキシフェニル)ホスフィン(Tris(2−methoxyphenyl)phosphine)2.36mg、炭酸ナトリウム水溶液(16.7重量(wt)%)1mLを加え、100℃で5.5時間攪拌を行った。その後、ジエチルジチオカルバミン酸ナトリウム1gと水20mLを加えて2時間還流下で攪拌を行った。反応終了後、反応溶液を室温(25℃)付近まで冷却した後、得られた反応溶液を静置し、分液したトルエン層を回収した。該トルエン層を水10mLで2回、3%酢酸水10mLで2回、さらに水10mLで2回洗浄し、得られたトルエン層をメタノール中に注ぎ込み、析出した沈殿物を回収した。この沈殿物を減圧乾燥した後、トルエン12mLに溶解した。次に、得られたトルエン溶液をろ過し、不溶物を除去した後、シリカゲル/アルミナカラムに通し、精製した。得られたクロロホルム溶液を減圧濃縮した後、メタノール中に注ぎ込み、沈殿させ、生成した沈殿を回収した。この沈殿をメタノールで洗浄した後、減圧乾燥して、重合体20mgを得た。以下、この重合体を高分子化合物1と呼称する。高分子化合物1は、ポリスチレン換算の重量平均分子量が16000であり、ポリスチレン換算の数平均分子量が5100であった。 Example 1
(Synthesis of polymer compound 1)
Figure 0005786504
3 2

100.0 mg (0.129 mmol) of Compound 3 synthesized by the method described in Journal of Materials Chemistry., 2011, 21, 1196-1205 and 80. Compound 2 in a 100 mL flask in which the gas in the flask was replaced with argon. 0 mg (0.128 mmol), 50.0 mg of methyltrialkylammonium chloride (trade name Aliquat 336 (registered trademark), manufactured by Aldrich) were added and dissolved in 10 mL of toluene, and the resulting toluene solution was bubbled with argon for 30 minutes. Thereafter, 0.43 mg of palladium acetate, 2.36 mg of tris (2-methoxyphenyl) phosphine (Tris (2-methoxyphenyl) phosphine), and 1 mL of an aqueous sodium carbonate solution (16.7% by weight) were added at 100 ° C. Stir for 5 hours. Thereafter, 1 g of sodium diethyldithiocarbamate and 20 mL of water were added and stirred for 2 hours under reflux. After completion of the reaction, the reaction solution was cooled to around room temperature (25 ° C.), and then the obtained reaction solution was allowed to stand and a separated toluene layer was recovered. The toluene layer was washed twice with 10 mL of water, twice with 10 mL of 3% aqueous acetic acid and twice with 10 mL of water, and the obtained toluene layer was poured into methanol, and the deposited precipitate was collected. This precipitate was dried under reduced pressure and then dissolved in 12 mL of toluene. Next, the obtained toluene solution was filtered to remove insolubles, and then passed through a silica gel / alumina column for purification. The obtained chloroform solution was concentrated under reduced pressure, poured into methanol and precipitated, and the generated precipitate was collected. This precipitate was washed with methanol and then dried under reduced pressure to obtain 20 mg of a polymer. Hereinafter, this polymer is referred to as polymer compound 1. The polymer compound 1 had a polystyrene-equivalent weight average molecular weight of 16000 and a polystyrene-equivalent number average molecular weight of 5100.

参考例2
(高分子化合物2の合成)

Figure 0005786504
フラスコ内の気体をアルゴンで置換した2L四つ口フラスコに、化合物(E)を7.928g(16.72mmol)、化合物(F)を13.00g(17.60mmol)、トリオクチルメチルアンモニウムクロリド(商品名Aliquat336(登録商標)、アルドリッチ社製、CH3N[(CH2)7CH3]3Cl、density 0.884g/ml、25℃)を4.979g、及びトルエンを405ml入れ、撹拌しながら反応系内を30分間アルゴンバブリングした。フラスコ内にジクロロビス(トリフェニルホスフィン)パラジウム(II)を0.02g加え、105℃に昇温し、撹拌しながら2mol/Lの炭酸ナトリウム水溶液42.2mlを滴下した。滴下終了後5時間反応させ、その後、フェニルボロン酸2.6gとトルエン1.8mlとを加え、105℃で16時間撹拌した。その後、反応液にトルエン700ml及び7.5wt%のジエチルジチオカルバミン酸ナトリウム三水和物水溶液200mlを加え、85℃で3時間撹拌した。反応液の水層を除去後、有機層を60℃のイオン交換水300mlで2回、60℃の3wt%酢酸300mlで1回、さらに60℃のイオン交換水300mlで3回洗浄した。有機層をセライト、アルミナ及びシリカを充填したカラムに通し、ろ液を回収した。その後、熱トルエン800mlでカラムを洗浄し、洗浄後のトルエン溶液をろ液に加えた。得られた溶液を700mlまで濃縮した後、濃縮した溶液を2Lのメタノールに加え、重合体を再沈殿させた。重合体をろ過して回収し、500mlのメタノール、500mlのアセトン、500mlのメタノールで重合体を洗浄した。重合体を50℃で一晩真空乾燥することにより、ペンタチエニル−フルオレンコポリマー(高分子化合物2)12.21gを得た。高分子化合物2のポリスチレン換算の重量平均分子量は1.1×105であった。 Reference example 2
(Synthesis of polymer compound 2)
Figure 0005786504
Into a 2 L four-necked flask in which the gas in the flask was replaced with argon, 7.928 g (16.72 mmol) of compound (E), 13.00 g (17.60 mmol) of compound (F), trioctylmethylammonium chloride ( 4.979 g of trade name Aliquat 336 (registered trademark), manufactured by Aldrich, CH 3 N [(CH 2 ) 7 CH 3 ] 3 Cl, density 0.884 g / ml, 25 ° C.) and 405 ml of toluene are added and stirred. The reaction system was bubbled with argon for 30 minutes. 0.02 g of dichlorobis (triphenylphosphine) palladium (II) was added to the flask, the temperature was raised to 105 ° C., and 42.2 ml of a 2 mol / L sodium carbonate aqueous solution was added dropwise with stirring. After completion of the dropwise addition, the reaction was allowed to proceed for 5 hours, and then 2.6 g of phenylboronic acid and 1.8 ml of toluene were added and stirred at 105 ° C. for 16 hours. Thereafter, 700 ml of toluene and 200 ml of a 7.5 wt% sodium diethyldithiocarbamate trihydrate aqueous solution were added to the reaction solution, followed by stirring at 85 ° C. for 3 hours. After removing the aqueous layer of the reaction solution, the organic layer was washed twice with 300 ml of ion exchange water at 60 ° C., once with 300 ml of 3 wt% acetic acid at 60 ° C., and further three times with 300 ml of ion exchange water at 60 ° C. The organic layer was passed through a column packed with celite, alumina and silica, and the filtrate was recovered. Thereafter, the column was washed with 800 ml of hot toluene, and the washed toluene solution was added to the filtrate. After the obtained solution was concentrated to 700 ml, the concentrated solution was added to 2 L of methanol to reprecipitate the polymer. The polymer was recovered by filtration, and the polymer was washed with 500 ml of methanol, 500 ml of acetone, and 500 ml of methanol. The polymer was vacuum-dried at 50 ° C. overnight to obtain 12.21 g of a pentathienyl-fluorene copolymer (polymer compound 2). The weight average molecular weight in terms of polystyrene of the polymer compound 2 was 1.1 × 10 5 .

測定例1
(有機薄膜の吸光度の測定)
高分子化合物1を1重量%の濃度でo−ジクロロベンゼンに溶解させ、塗布溶液を作製した。得られた塗布溶液をガラス基板上に、スピンコートで塗布した。塗布操作は23℃で行った。その後、大気下120℃の条件で5分間ベークし、膜厚約100nmの有機薄膜を得た。有機薄膜の吸収スペクトルを分光光度計(日本分光株式会社製、商品名:V−670)で測定した。測定したスペクトルを図1に示す。600nm、700nm、800nm及び900nmにおける吸光度を表1に示す。
Measurement example 1
(Measurement of absorbance of organic thin film)
Polymer compound 1 was dissolved in o-dichlorobenzene at a concentration of 1% by weight to prepare a coating solution. The obtained coating solution was applied onto a glass substrate by spin coating. The coating operation was performed at 23 ° C. Then, it baked for 5 minutes on 120 degreeC conditions in air | atmosphere, and obtained the organic thin film with a film thickness of about 100 nm. The absorption spectrum of the organic thin film was measured with a spectrophotometer (trade name: V-670, manufactured by JASCO Corporation). The measured spectrum is shown in FIG. Table 1 shows the absorbance at 600 nm, 700 nm, 800 nm, and 900 nm.

比較例1
(有機薄膜の吸光度の測定)
高分子化合物1の代わりに高分子化合物2を使用し、0.5重量%の濃度で溶解した以外は、測定例1と同様にして有機薄膜を作製し、該有機薄膜の吸収スペクトルを測定した。測定したスペクトルを図2に示す。600nm、700nm、800nm及び900nmにおける吸光度を表1に示す。
Comparative Example 1
(Measurement of absorbance of organic thin film)
An organic thin film was prepared in the same manner as in Measurement Example 1 except that the high molecular compound 2 was used instead of the high molecular compound 1 and dissolved at a concentration of 0.5% by weight, and the absorption spectrum of the organic thin film was measured. . The measured spectrum is shown in FIG. Table 1 shows the absorbance at 600 nm, 700 nm, 800 nm, and 900 nm.

Figure 0005786504
Figure 0005786504

実施例2
(有機薄膜太陽電池の作製及び評価)
電子受容性化合物であるフラーレン誘導体C60PCBM(Phenyl C61-butyric acid methyl ester、フロンティアカーボン社製、商品名:E100)と、電子供与性化合物である高分子化合物1とを、2:1の重量比で混合し、混合物の濃度が2重量%となるよう、o−ジクロロベンゼンに溶解させた。得られた溶液を、孔径1.0μmのテフロン(登録商標)フィルターで濾過し、塗布溶液1を調製した。
Example 2
(Production and evaluation of organic thin-film solar cells)
The fullerene derivative C60PCBM (Phenyl C61-butyric acid methyl ester, product name: E100), which is an electron-accepting compound, and the polymer compound 1, which is an electron-donating compound, in a weight ratio of 2: 1 The mixture was dissolved in o-dichlorobenzene so that the concentration of the mixture was 2% by weight. The obtained solution was filtered through a Teflon (registered trademark) filter having a pore size of 1.0 μm to prepare a coating solution 1.

スパッタ法により150nmの厚みでITO膜を付けたガラス基板をオゾンUV処理して表面処理を行った。次に、PEDOT:PSS溶液(H.C.スタルク社製CleviosP VP AI4083)をスピンコートによりITO膜上に塗布し、大気中120℃で10分間加熱することにより、膜厚50nmの正孔注入層を作成した。次に、前記塗布溶液1を、スピンコートによりITO膜上に塗布し、有機薄膜太陽電池の機能層を得た。機能層の膜厚は100nmであった。その後、真空蒸着機によりカルシウムを膜厚4nmで蒸着し、次いで、アルミニウムを膜厚100nmで蒸着することにより、有機薄膜太陽電池を作製した。蒸着のときの真空度は、すべて1〜9×10-3Paであった。こうして得られた有機薄膜太陽電池の形状は、2mm×2mmの正方形であった。得られた有機薄膜太陽電池にソーラシミュレーター(分光計器製、商品名OTENTO-SUNII:AM1.5Gフィルター、放射照度100mW/cm2)を用いて一定の光を照射し、有機薄膜太陽電池が発電することを確認した。
A glass substrate provided with an ITO film with a thickness of 150 nm by a sputtering method was subjected to surface treatment by ozone UV treatment. Next, a PEDOT: PSS solution (CleviosP VP AI4083 manufactured by HC Starck Co., Ltd.) is applied onto the ITO film by spin coating, and heated at 120 ° C. for 10 minutes in the atmosphere to thereby form a hole injection layer having a thickness of 50 nm. It was created. Next, the coating solution 1 was applied onto the ITO film by spin coating to obtain a functional layer of an organic thin film solar cell. The film thickness of the functional layer was 100 nm. Then, the organic thin film solar cell was produced by vapor-depositing calcium with a film thickness of 4 nm with a vacuum evaporation machine, and vapor-depositing aluminum with a film thickness of 100 nm. The degree of vacuum at the time of vapor deposition was 1 to 9 × 10 −3 Pa in all cases. The shape of the organic thin film solar cell thus obtained was a square of 2 mm × 2 mm. The obtained organic thin film solar cell is irradiated with a certain amount of light using a solar simulator (trade name: OTENTO-SUNII: AM1.5G filter, irradiance: 100 mW / cm 2 ), and the organic thin film solar cell generates power. It was confirmed.

Claims (5)

式(1)で表される繰り返し単位を含む高分子化合物。
Figure 0005786504
(1)
〔式(1)中、Q及びRは、同一又は相異なり、水素原子、フッ素原子、アルキル基、アルコキシ基、アリール基、ヘテロアリール基又は式(2)で表される基を表す。これらの基に含まれる水素原子はフッ素原子で置換されていてもよい。複数個あるQは、同一でも相異なっていてもよい。複数個あるRは、同一でも相異なっていてもよい。
Figure 0005786504
(2)
(式(2)中、m1は、0〜6の整数を表し、m2は、0〜6の整数を表す。R’は、アルキル基、アリール基又はヘテロアリール基を表す。)〕
The high molecular compound containing the repeating unit represented by Formula (1).
Figure 0005786504
(1)
[In Formula (1), Q and R are the same or different and represent a hydrogen atom, a fluorine atom, an alkyl group, an alkoxy group, an aryl group, a heteroaryl group, or a group represented by Formula (2). The hydrogen atom contained in these groups may be substituted with a fluorine atom. Plural Qs may be the same or different. A plurality of R may be the same or different.
Figure 0005786504
(2)
(In formula (2), m1 represents an integer of 0 to 6, m2 represents an integer of 0 to 6. R ′ represents an alkyl group, an aryl group, or a heteroaryl group.)]
一対の電極と、該電極間に設けられた機能層とを有し、該機能層が電子受容性化合物と請求項1に記載の高分子化合物とを含む有機光電変換素子。 An organic photoelectric conversion element comprising a pair of electrodes and a functional layer provided between the electrodes, wherein the functional layer includes an electron-accepting compound and the polymer compound according to claim 1 . 機能層中に含まれる電子受容性化合物の量が、高分子化合物100重量部に対して、10〜1000重量部である請求項に記載の有機光電変換素子。 The organic photoelectric conversion element according to claim 2 , wherein the amount of the electron-accepting compound contained in the functional layer is 10 to 1000 parts by weight with respect to 100 parts by weight of the polymer compound. 電子受容性化合物が、フラーレン誘導体である請求項又はに記載の有機光電変換素
子。
The organic photoelectric conversion device according to claim 2 or 3 , wherein the electron-accepting compound is a fullerene derivative.
ソース電極と、ドレイン電極と、有機半導体層と、ゲート電極とを備え、前記有機半導
体層に請求項1に記載の高分子化合物を含む有機薄膜トランジスタ。
An organic thin film transistor comprising a source electrode, a drain electrode, an organic semiconductor layer, and a gate electrode, wherein the organic semiconductor layer includes the polymer compound according to claim 1 .
JP2011151782A 2011-07-08 2011-07-08 Polymer compound and organic photoelectric conversion device using the same Active JP5786504B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011151782A JP5786504B2 (en) 2011-07-08 2011-07-08 Polymer compound and organic photoelectric conversion device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011151782A JP5786504B2 (en) 2011-07-08 2011-07-08 Polymer compound and organic photoelectric conversion device using the same

Publications (2)

Publication Number Publication Date
JP2013018831A JP2013018831A (en) 2013-01-31
JP5786504B2 true JP5786504B2 (en) 2015-09-30

Family

ID=47690603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011151782A Active JP5786504B2 (en) 2011-07-08 2011-07-08 Polymer compound and organic photoelectric conversion device using the same

Country Status (1)

Country Link
JP (1) JP5786504B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107074830B (en) * 2014-10-22 2021-01-22 香港科技大学 Difluorobithiophene-based D-A polymers for photovoltaic applications
CN105622902A (en) * 2016-03-30 2016-06-01 郑州轻工业学院 Bithiophene benzothiadiazole-bithiophene pyrrolopyrrole conjugated polymer and preparation method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4908222B2 (en) * 2003-10-28 2012-04-04 チバ ホールディング インコーポレーテッド New diketopyrrolopyrrole polymer
JP2008208289A (en) * 2007-02-28 2008-09-11 Sumitomo Chemical Co Ltd Aromatic polymer and organic photoelectric conversion element using the same
WO2010108873A1 (en) * 2009-03-23 2010-09-30 Basf Se Diketopyrrolopyrrole polymers for use in organic semiconductor devices
WO2011025454A1 (en) * 2009-08-28 2011-03-03 Agency For Science, Technology And Research Ambipolar polymeric semiconductor materials and organic electronic devices
EP2550688B1 (en) * 2010-03-20 2016-10-26 Raynergy Tek Inc. Pyrrolo[3,2-b]pyrrole semiconducting compounds and devices incorporating same
US20130228771A1 (en) * 2010-12-22 2013-09-05 Basf Se Semiconductor structure and method for its production
JP2014515043A (en) * 2011-03-11 2014-06-26 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング Conjugated polymer

Also Published As

Publication number Publication date
JP2013018831A (en) 2013-01-31

Similar Documents

Publication Publication Date Title
JP5991324B2 (en) Polymer compound and organic photoelectric conversion element
JP5369384B2 (en) Organic photoelectric conversion device and polymer useful for production thereof
JP5810818B2 (en) Polymer compound and organic photoelectric conversion device using the same
JP2010034494A (en) Organic photoelectric conversion element
KR20120098603A (en) Photoelectric conversion element
JP5834819B2 (en) Polymer compound and organic photoelectric conversion device using the same
JP5747789B2 (en) Polymer compound and organic photoelectric conversion device using the same
JP6003399B2 (en) Polymer compound and organic photoelectric conversion device using the same
WO2012165128A1 (en) High-molecular-weight compound and organic photoelectric conversion element
JP2014028912A (en) Polymer compound and organic photoelectric conversion element using the same
JP5834682B2 (en) Polymer compound and electronic device using the same
WO2012032949A1 (en) Polymer compound and organic photoelectric transducer
JP5786504B2 (en) Polymer compound and organic photoelectric conversion device using the same
WO2011138885A1 (en) Polymer compound and organic photoelectric conversion element using same
WO2012090971A1 (en) Photoelectric conversion element and composition used in same
WO2012029675A1 (en) Method for producing polymer compound
JP2014019781A (en) Polymer compound, and organic photoelectric conversion element using the same
JP5810837B2 (en) Polymer compound and organic photoelectric conversion device using the same
JP5884423B2 (en) Polymer compound and organic photoelectric conversion device using the same
JP5874302B2 (en) Polymer compound and organic photoelectric conversion device using the same
JP2010010438A (en) Organic photoelectric conversion element and composition useful for its manufacture
JP2013004722A (en) Photoelectric conversion element
JP2013107972A (en) Compound and organic photoelectric conversion element using the same
JP2012253212A (en) Polymer compound and organic photoelectric conversion element manufactured using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150713

R151 Written notification of patent or utility model registration

Ref document number: 5786504

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350