WO2012069519A2 - Module à led muni d'un élément préfabriqué - Google Patents
Module à led muni d'un élément préfabriqué Download PDFInfo
- Publication number
- WO2012069519A2 WO2012069519A2 PCT/EP2011/070770 EP2011070770W WO2012069519A2 WO 2012069519 A2 WO2012069519 A2 WO 2012069519A2 EP 2011070770 W EP2011070770 W EP 2011070770W WO 2012069519 A2 WO2012069519 A2 WO 2012069519A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- particles
- led
- led chip
- led module
- module according
- Prior art date
Links
- 239000002245 particle Substances 0.000 claims abstract description 76
- 238000006243 chemical reaction Methods 0.000 claims abstract description 28
- 239000011159 matrix material Substances 0.000 claims abstract description 20
- 230000007423 decrease Effects 0.000 claims abstract description 7
- 239000000463 material Substances 0.000 claims description 8
- 229920001296 polysiloxane Polymers 0.000 claims description 8
- 230000017525 heat dissipation Effects 0.000 claims description 2
- 239000010410 layer Substances 0.000 description 12
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000000295 emission spectrum Methods 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000012858 packaging process Methods 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/50—Wavelength conversion elements
- H01L33/508—Wavelength conversion elements having a non-uniform spatial arrangement or non-uniform concentration, e.g. patterned wavelength conversion layer, wavelength conversion layer with a concentration gradient of the wavelength conversion material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/64—Heat extraction or cooling elements
- H01L33/644—Heat extraction or cooling elements in intimate contact or integrated with parts of the device other than the semiconductor body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2933/00—Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
- H01L2933/0091—Scattering means in or on the semiconductor body or semiconductor body package
Definitions
- the present invention relates to LED modules as well as LED lamps, such as retrofit LED lamps having such modules.
- Retrofit LED lamps have electrical and mechanical connections comparable to, for example, halogen or incandescent lamps, so that they can be used as replacement illuminants.
- LED module is understood to mean at least one LED on a carrier, such as a printed circuit board (PCB), an SMD carrier, etc.
- a carrier such as a printed circuit board (PCB), an SMD carrier, etc.
- the invention particularly relates to LED modules for generating white light.
- a monochromatic, in particular blue or blue / UV or UV LED on a support and further provide a color conversion material that converts a portion of the light emitted by the LED light in another, especially longer wavelength light.
- the coordination between the color conversion material and the emission spectrum of the LED is chosen such that the resulting mixed light comes close to the Plank 'see curve in CIE diagram and can be described as white.
- LEDs emitting high power light which is suitable for conversion into
- Color conversion materials is suitable, due to the conversion of primary emitted light into heat energy and longer wavelength light in the Color conversion materials a considerable
- Thermal performance which can be dissipated only poorly over the surrounding matrix materials in which the phosphor particles are embedded, since matrix materials these usually have a low thermal conductivity. Typically, problems from about 200mW light output are noticeable.
- a first aspect of the invention relates to an LED module comprising:
- concentration of the scattering particles decreases with substantially constant first gradient from the side of the element facing the LED chip, and wherein the concentration of color conversion particles
- Color conversion particles in this area are densest possible packed, and
- the thickness of the second region is preferably less than 50%, preferably less than 25% of the first region.
- the concentration of the dye particles may drop from 90% to 10% in the second range when 100% represents the concentration of the dye particles directly on the LED chip facing side of the element.
- the thickness of the first region may be between 25pm and 80 ⁇ , preferably between 40pm and 6opm.
- the concrete value of this thickness depends significantly on the properties of the phosphors used.
- the thickness of the second region may be between 5 and 40 ⁇ , preferably between 20pm and 30 ⁇ .
- Another aspect of the invention relates to an LED module comprising:
- a "prefabricated" element is an element which, like the LED chip, is installed as an independent element during the packaging process and is inherently stable in such a way that it can be easily handled as a component.
- the matrix of the prefabricated element may be a silicone material.
- the (relative) concentration of the scattering particles on the side of the element facing away from the LED chip can be more than
- the total thickness of the element can be between 200 ⁇ and 900 ⁇ , preferably between 350 m and 700 ⁇ .
- the colorant particles may contact each other on the side of the element facing the LED chip or be separated by a thin layer of the matrix material of the element, the thin layer being less than 10% of the average diameter of the dye particles.
- the average diameter of the dye particles may preferably be between 5 ⁇ m and 40 ⁇ m, but preferably 5 ⁇ m and 15 ⁇ m.
- the average diameter of the scattering particles can be between 0.5 ⁇ and 4 ⁇ .
- a further aspect of the invention relates to an LED lamp, in particular a retrofit LED lamp, having at least one LED module of the type explained above.
- FIG. 1 shows a schematic sectional view of an LED module according to the invention
- FIG. 2 shows the concentration curve of FIG
- an LED module according to the invention has at least one LED 1, which is applied to a carrier 5.
- a prefabricated plate-shaped element 3 with a thickness d is applied to the light-emitting surface of the LED chip 1, for example, by means of an optically transparent and very thin adhesive 2.
- a so-called glob top can then be applied by means of a dispensing method via a sandwich of prefabricated element 3 and LED chip 2.
- This glob top 4 can provide, for example, for a mechanical protection of the LED and can also have the property of a possibly scattering lens.
- dye particles which are shown schematically as spherical particles, are highly concentrated in a layer 6, which layer is located in the area of the prefabricated element 3 facing the LED 1.
- the concentration of the dye particles from the layer 6 decreases in the direction away from the LED 1 abruptly, so that it is almost zero outside the layer 6.
- Superimposed on this very steep gradient gradient course of the dye particles is a much flatter and continuous gradient of scattering particles, so that the concentration of the scattering particles also seen away from the LED steadily decreases.
- heat is generated in the region of the dye particles due to the conversion of light from the LED into light having a longer wavelength in accordance with the energy difference of the photon produced.
- dye particles are incorporated in a matrix of poor thermal conductivity, such as silicone material.
- a matrix of poor thermal conductivity such as silicone material.
- the temperature will greatly increase this range of color conversion and adversely affect the efficiency of dye conversion, the stability of the silicone matrix, etc.
- a possible approach for improving the thermal conductivity would thus be the modification of the matrix material, for example by using ceramic matrix structures. Meanwhile, thin ceramic chips are difficult to handle.
- platelet Order of magnitude of 500 microns thickness (F) platelet is made on a silicone matrix basis, which color conversion particles, scattering particles and known, viscosity-influencing additives may be incorporated in this matrix.
- a densely packed color conversion layer is created, for example, by ultrasonic movement, shaking, at least temporary reduction in the viscosity of the silicone matrix, etc.
- the dye particles are substantially contiguous and, in any case, densely packed.
- a thin pellicle or another thin separating layer of the matrix material may be present between the individual dye particles. Due to the direct contact of the dye particles, the thermal conductivity of this layer increases abruptly.
- one or more color conversion substances for example yellow, green, red or mixtures thereof
- scattering particles for example yellow, green, red or mixtures thereof
- the concentration of the dye particles PH and the concentration of the optional scattering particles STR increases from the side of the prefabricated platelet-shaped one Element 3 (reference 0 in Figure 2) away and the thickness d of the plate from.
- the concentration of the densely packed dye particles PH is substantially constant, i. for example, it decreases to 90% in this area.
- This first area is followed by a second area between D1 and D2, where the concentration decreases abruptly, for example to a value of 10%.
- the gradient of the scattering particles STR is substantially constant and substantially flatter in comparison to the abrupt drop in the concentration of the dye particles PH in the second region, ie between dl and d2.
- the course of the concentration of the scattering particles STR is comparable by a concentration course as can be achieved, for example, by sedimenting the heavier scattering particles STR in the silicone matrix.
- the course of the dye particles PH is typical for compaction to saturation, i. until reaching the densest possible packing of the dye particles PH in the layer, which faces the LED 1 after application of the plate-shaped element 3.
- the range from 0 to dl that is to say the drop in the concentration of the dye particles to 90%, can be, for example, 50 ⁇ m.
- the total thickness of the platelet can be, for example, 500 ⁇ m, so that the platelet is essentially dimensionally stable and in any case is easy to handle.
- the transition region between dl and d2 that is to say for the drop from 90% concentration to 10% concentration of the dye particles, may for example have a thickness of 25 ⁇ m.
- the average diameter (d50 ⁇ of the scattering particles may for example be ⁇ , which is substantially less than the average diameter of the colorant particles, which may for example be between 5 m and ⁇ . All average values in the present specification refer to the d 50 values.
- the thickness of the adhesive layer between the prefabricated platelet-shaped element 3 and the LED chip 1 should be as small as possible, that is to say almost 0 to a maximum of ⁇ .
- the dye particles according to the invention have a higher density than the scattering particles.
- this different density can be given physically by material properties.
- the scattering particles can be modified in this way be that their average density is reduced compared to that of the phosphor particles.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Led Device Packages (AREA)
Abstract
L'invention concerne un module à LED présentant au moins une puce à LED (1) sur un support (5) et un élément préfabriqué (3) qui est monté sur la surface d'émission de lumière de la puce à LED (1). Des particules de diffusion et des particules de conversion des couleurs différentes de celles-ci sont contenues dans une matrice dans l'élément (3), la concentration des particules de diffusion diminuant à un premier gradient sensiblement constant à partir du côté de l'élément (3) orienté vers la puce à LED. Dans une première zone orientée vers la puce à LED, la concentration des particules de conversion des couleurs est sensiblement constante, de sorte que les particules de conversion des couleurs de cette zone sont encapsulées avec la plus grande densité possible, et dans une seconde zone adjacente à la première zone, la concentration des particules de conversion des couleurs chute brusquement à un second gradient qui est sensiblement plus grand que le premier gradient des particules de diffusion.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102010061848.9 | 2010-11-24 | ||
DE102010061848.9A DE102010061848B4 (de) | 2010-11-24 | 2010-11-24 | LED-Modul mit vorgefertigtem Element |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2012069519A2 true WO2012069519A2 (fr) | 2012-05-31 |
WO2012069519A3 WO2012069519A3 (fr) | 2012-07-19 |
Family
ID=45218676
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2011/070770 WO2012069519A2 (fr) | 2010-11-24 | 2011-11-23 | Module à led muni d'un élément préfabriqué |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE102010061848B4 (fr) |
WO (1) | WO2012069519A2 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013160120A1 (fr) * | 2012-04-26 | 2013-10-31 | Osram Opto Semiconductors Gmbh | Procédé de production d'une couche de diffusion d'un rayonnement électromagnétique et couche de diffusion d'un rayonnement électromagnétique |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102012107290A1 (de) | 2012-08-08 | 2014-02-13 | Osram Opto Semiconductors Gmbh | Optoelektronisches Halbleiterbauteil, Konversionsmittelplättchen und Verfahren zur Herstellung eines Konversionsmittelplättchens |
DE202015105428U1 (de) * | 2015-04-29 | 2016-08-01 | Tridonic Jennersdorf Gmbh | LED Modul mit verbesserter Wärmeabfuhr |
DE102017117488A1 (de) | 2017-08-02 | 2019-02-07 | Osram Opto Semiconductors Gmbh | Optoelektronisches Bauelement |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20080049011A (ko) * | 2005-08-05 | 2008-06-03 | 마쯔시다덴기산교 가부시키가이샤 | 반도체 발광장치 |
DE102006051746A1 (de) * | 2006-09-29 | 2008-04-03 | Osram Opto Semiconductors Gmbh | Optoelektronisches Bauelement mit einer Lumineszenzkonversionsschicht |
EP2074668B1 (fr) * | 2006-10-10 | 2018-02-28 | Tridonic Jennersdorf GmbH | Diode electroluminescente a conversion par phosphore |
DE102006054330A1 (de) * | 2006-11-17 | 2008-05-21 | Merck Patent Gmbh | Leuchtstoffplättchen für LEDs aus strukturierten Folien |
US7521862B2 (en) * | 2006-11-20 | 2009-04-21 | Philips Lumileds Lighting Co., Llc | Light emitting device including luminescent ceramic and light-scattering material |
US20090173958A1 (en) * | 2008-01-04 | 2009-07-09 | Cree, Inc. | Light emitting devices with high efficiency phospor structures |
DE102009018087A1 (de) | 2008-04-30 | 2009-12-17 | Ledon Lighting Jennersdorf Gmbh | Lichtemittierende Diode mit erhöhter Farbstabilität |
DE102008030253B4 (de) * | 2008-06-25 | 2020-02-20 | Osram Opto Semiconductors Gmbh | Konversionselement und Leuchtmittel |
ES2667009T3 (es) * | 2008-07-22 | 2018-05-09 | Philips Lighting Holding B.V. | Un elemento óptico para un dispositivo de emisión de luz y un método de fabricación del mismo |
CN102171844A (zh) * | 2008-10-01 | 2011-08-31 | 皇家飞利浦电子股份有限公司 | 用于增大的光提取和非黄色的断开状态颜色的在封装剂中具有颗粒的led |
US8323748B2 (en) * | 2009-05-15 | 2012-12-04 | Achrolux Inc. | Methods for forming uniform particle layers of phosphor material on a surface |
-
2010
- 2010-11-24 DE DE102010061848.9A patent/DE102010061848B4/de not_active Expired - Fee Related
-
2011
- 2011-11-23 WO PCT/EP2011/070770 patent/WO2012069519A2/fr active Application Filing
Non-Patent Citations (1)
Title |
---|
None |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013160120A1 (fr) * | 2012-04-26 | 2013-10-31 | Osram Opto Semiconductors Gmbh | Procédé de production d'une couche de diffusion d'un rayonnement électromagnétique et couche de diffusion d'un rayonnement électromagnétique |
US9945989B2 (en) | 2012-04-26 | 2018-04-17 | Osram Oled Gmbh | Process for producing a scattering layer for electromagnetic radiation and scattering layer for scattering electromagnetic radiation |
Also Published As
Publication number | Publication date |
---|---|
DE102010061848B4 (de) | 2022-11-03 |
WO2012069519A3 (fr) | 2012-07-19 |
DE102010061848A1 (de) | 2012-05-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102010042217A1 (de) | Optoelektronisches Halbleiterbauelement und Verfahren zu seiner Herstellung | |
DE102010053362B4 (de) | Verfahren zur Herstellung eines strahlungsemittierenden Halbleiterchips, strahlungsemittierender Halbleiterchip und strahlungsemittierendes Bauelement | |
EP2382673A1 (fr) | Composant semi-conducteur optoélectronique | |
DE112014004933T5 (de) | Wellenlängenumwandlungselement, Verfahren zur Herstellung und Licht emittierender Halbleiterbauteil, welcher dasselbe aufweist | |
WO2013186365A1 (fr) | Composant semi-conducteur optoélectronique | |
DE112016004313B4 (de) | Stabile rote Keramikleuchtstoffe und Technologien damit | |
DE102011010118A1 (de) | Keramisches Konversionselement, Halbleiterchip mit einem keramischen Konversionselement und Verfahren zur Herstellung eines keramischen Konversionselements | |
DE102011113962B4 (de) | Verfahren zur Herstellung eines keramischen Konversionselements | |
DE102011102350A1 (de) | Optisches Element, optoelektronisches Bauelement und Verfahren zur Herstellung dieser | |
DE102010009456A1 (de) | Strahlungsemittierendes Bauelement mit einem Halbleiterchip und einem Konversionselement und Verfahren zu dessen Herstellung | |
WO2012069519A2 (fr) | Module à led muni d'un élément préfabriqué | |
DE102015113759A1 (de) | Lichtemittierende vorrichtung und beleuchtungsvorrichtung | |
DE102017104606A1 (de) | Lichtemittierender Apparat und Beleuchtungsapparat | |
AT13372U1 (de) | LED-Modul mit hoher Lichtstromdichte | |
WO2009039816A1 (fr) | Élément rayonnant doté d'un couvercle de verre et procédé de fabrication | |
DE112018005684T5 (de) | Wellenlängenumwandlungselement und Licht emittierende Vorrichtung | |
WO2014056903A1 (fr) | Élément de conversion céramique, composant semi-conducteur optoélectronique et procédé de fabrication d'un élément de conversion céramique | |
DE102016102778A1 (de) | Lichtemittierende Vorrichtung und Beleuchtungsvorrichtung | |
DE112017002467B4 (de) | Beleuchtungsvorrichtungen mit einer linse und einer kompositverkapselung und verfahren zur herstellung hiervon | |
DE102011009803B4 (de) | Lichtemittierendes Element | |
WO2013056895A1 (fr) | Élément de conversion céramique, composant optoélectronique pourvu d'un élément de conversion céramique et procédé de production d'un élément de conversion céramique | |
DE102005012953A1 (de) | Verfahren zur Herstellung eines optoelektronischen Bauelements | |
WO2012089531A1 (fr) | Procédé de fabrication d'une pluralité de composants à semi-conducteurs | |
WO2016083448A1 (fr) | Puce semi-conductrice optoélectronique, procédé de fabrication d'une puce semi-conductrice optoélectronique, élément de conversion et substance luminescente pour un élément de conversion | |
DE202015103126U1 (de) | LED-Modul |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11793703 Country of ref document: EP Kind code of ref document: A2 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11793703 Country of ref document: EP Kind code of ref document: A2 |