WO2012069519A2 - Module à led muni d'un élément préfabriqué - Google Patents

Module à led muni d'un élément préfabriqué Download PDF

Info

Publication number
WO2012069519A2
WO2012069519A2 PCT/EP2011/070770 EP2011070770W WO2012069519A2 WO 2012069519 A2 WO2012069519 A2 WO 2012069519A2 EP 2011070770 W EP2011070770 W EP 2011070770W WO 2012069519 A2 WO2012069519 A2 WO 2012069519A2
Authority
WO
WIPO (PCT)
Prior art keywords
particles
led
led chip
led module
module according
Prior art date
Application number
PCT/EP2011/070770
Other languages
German (de)
English (en)
Other versions
WO2012069519A3 (fr
Inventor
Peter Pachler
Franz Schrank
Original Assignee
Tridonic Jennersdorf Gmbh
Lumitech Produktion Und Entwicklung Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tridonic Jennersdorf Gmbh, Lumitech Produktion Und Entwicklung Gmbh filed Critical Tridonic Jennersdorf Gmbh
Publication of WO2012069519A2 publication Critical patent/WO2012069519A2/fr
Publication of WO2012069519A3 publication Critical patent/WO2012069519A3/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/508Wavelength conversion elements having a non-uniform spatial arrangement or non-uniform concentration, e.g. patterned wavelength conversion layer, wavelength conversion layer with a concentration gradient of the wavelength conversion material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/644Heat extraction or cooling elements in intimate contact or integrated with parts of the device other than the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0091Scattering means in or on the semiconductor body or semiconductor body package

Definitions

  • the present invention relates to LED modules as well as LED lamps, such as retrofit LED lamps having such modules.
  • Retrofit LED lamps have electrical and mechanical connections comparable to, for example, halogen or incandescent lamps, so that they can be used as replacement illuminants.
  • LED module is understood to mean at least one LED on a carrier, such as a printed circuit board (PCB), an SMD carrier, etc.
  • a carrier such as a printed circuit board (PCB), an SMD carrier, etc.
  • the invention particularly relates to LED modules for generating white light.
  • a monochromatic, in particular blue or blue / UV or UV LED on a support and further provide a color conversion material that converts a portion of the light emitted by the LED light in another, especially longer wavelength light.
  • the coordination between the color conversion material and the emission spectrum of the LED is chosen such that the resulting mixed light comes close to the Plank 'see curve in CIE diagram and can be described as white.
  • LEDs emitting high power light which is suitable for conversion into
  • Color conversion materials is suitable, due to the conversion of primary emitted light into heat energy and longer wavelength light in the Color conversion materials a considerable
  • Thermal performance which can be dissipated only poorly over the surrounding matrix materials in which the phosphor particles are embedded, since matrix materials these usually have a low thermal conductivity. Typically, problems from about 200mW light output are noticeable.
  • a first aspect of the invention relates to an LED module comprising:
  • concentration of the scattering particles decreases with substantially constant first gradient from the side of the element facing the LED chip, and wherein the concentration of color conversion particles
  • Color conversion particles in this area are densest possible packed, and
  • the thickness of the second region is preferably less than 50%, preferably less than 25% of the first region.
  • the concentration of the dye particles may drop from 90% to 10% in the second range when 100% represents the concentration of the dye particles directly on the LED chip facing side of the element.
  • the thickness of the first region may be between 25pm and 80 ⁇ , preferably between 40pm and 6opm.
  • the concrete value of this thickness depends significantly on the properties of the phosphors used.
  • the thickness of the second region may be between 5 and 40 ⁇ , preferably between 20pm and 30 ⁇ .
  • Another aspect of the invention relates to an LED module comprising:
  • a "prefabricated" element is an element which, like the LED chip, is installed as an independent element during the packaging process and is inherently stable in such a way that it can be easily handled as a component.
  • the matrix of the prefabricated element may be a silicone material.
  • the (relative) concentration of the scattering particles on the side of the element facing away from the LED chip can be more than
  • the total thickness of the element can be between 200 ⁇ and 900 ⁇ , preferably between 350 m and 700 ⁇ .
  • the colorant particles may contact each other on the side of the element facing the LED chip or be separated by a thin layer of the matrix material of the element, the thin layer being less than 10% of the average diameter of the dye particles.
  • the average diameter of the dye particles may preferably be between 5 ⁇ m and 40 ⁇ m, but preferably 5 ⁇ m and 15 ⁇ m.
  • the average diameter of the scattering particles can be between 0.5 ⁇ and 4 ⁇ .
  • a further aspect of the invention relates to an LED lamp, in particular a retrofit LED lamp, having at least one LED module of the type explained above.
  • FIG. 1 shows a schematic sectional view of an LED module according to the invention
  • FIG. 2 shows the concentration curve of FIG
  • an LED module according to the invention has at least one LED 1, which is applied to a carrier 5.
  • a prefabricated plate-shaped element 3 with a thickness d is applied to the light-emitting surface of the LED chip 1, for example, by means of an optically transparent and very thin adhesive 2.
  • a so-called glob top can then be applied by means of a dispensing method via a sandwich of prefabricated element 3 and LED chip 2.
  • This glob top 4 can provide, for example, for a mechanical protection of the LED and can also have the property of a possibly scattering lens.
  • dye particles which are shown schematically as spherical particles, are highly concentrated in a layer 6, which layer is located in the area of the prefabricated element 3 facing the LED 1.
  • the concentration of the dye particles from the layer 6 decreases in the direction away from the LED 1 abruptly, so that it is almost zero outside the layer 6.
  • Superimposed on this very steep gradient gradient course of the dye particles is a much flatter and continuous gradient of scattering particles, so that the concentration of the scattering particles also seen away from the LED steadily decreases.
  • heat is generated in the region of the dye particles due to the conversion of light from the LED into light having a longer wavelength in accordance with the energy difference of the photon produced.
  • dye particles are incorporated in a matrix of poor thermal conductivity, such as silicone material.
  • a matrix of poor thermal conductivity such as silicone material.
  • the temperature will greatly increase this range of color conversion and adversely affect the efficiency of dye conversion, the stability of the silicone matrix, etc.
  • a possible approach for improving the thermal conductivity would thus be the modification of the matrix material, for example by using ceramic matrix structures. Meanwhile, thin ceramic chips are difficult to handle.
  • platelet Order of magnitude of 500 microns thickness (F) platelet is made on a silicone matrix basis, which color conversion particles, scattering particles and known, viscosity-influencing additives may be incorporated in this matrix.
  • a densely packed color conversion layer is created, for example, by ultrasonic movement, shaking, at least temporary reduction in the viscosity of the silicone matrix, etc.
  • the dye particles are substantially contiguous and, in any case, densely packed.
  • a thin pellicle or another thin separating layer of the matrix material may be present between the individual dye particles. Due to the direct contact of the dye particles, the thermal conductivity of this layer increases abruptly.
  • one or more color conversion substances for example yellow, green, red or mixtures thereof
  • scattering particles for example yellow, green, red or mixtures thereof
  • the concentration of the dye particles PH and the concentration of the optional scattering particles STR increases from the side of the prefabricated platelet-shaped one Element 3 (reference 0 in Figure 2) away and the thickness d of the plate from.
  • the concentration of the densely packed dye particles PH is substantially constant, i. for example, it decreases to 90% in this area.
  • This first area is followed by a second area between D1 and D2, where the concentration decreases abruptly, for example to a value of 10%.
  • the gradient of the scattering particles STR is substantially constant and substantially flatter in comparison to the abrupt drop in the concentration of the dye particles PH in the second region, ie between dl and d2.
  • the course of the concentration of the scattering particles STR is comparable by a concentration course as can be achieved, for example, by sedimenting the heavier scattering particles STR in the silicone matrix.
  • the course of the dye particles PH is typical for compaction to saturation, i. until reaching the densest possible packing of the dye particles PH in the layer, which faces the LED 1 after application of the plate-shaped element 3.
  • the range from 0 to dl that is to say the drop in the concentration of the dye particles to 90%, can be, for example, 50 ⁇ m.
  • the total thickness of the platelet can be, for example, 500 ⁇ m, so that the platelet is essentially dimensionally stable and in any case is easy to handle.
  • the transition region between dl and d2 that is to say for the drop from 90% concentration to 10% concentration of the dye particles, may for example have a thickness of 25 ⁇ m.
  • the average diameter (d50 ⁇ of the scattering particles may for example be ⁇ , which is substantially less than the average diameter of the colorant particles, which may for example be between 5 m and ⁇ . All average values in the present specification refer to the d 50 values.
  • the thickness of the adhesive layer between the prefabricated platelet-shaped element 3 and the LED chip 1 should be as small as possible, that is to say almost 0 to a maximum of ⁇ .
  • the dye particles according to the invention have a higher density than the scattering particles.
  • this different density can be given physically by material properties.
  • the scattering particles can be modified in this way be that their average density is reduced compared to that of the phosphor particles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)

Abstract

L'invention concerne un module à LED présentant au moins une puce à LED (1) sur un support (5) et un élément préfabriqué (3) qui est monté sur la surface d'émission de lumière de la puce à LED (1). Des particules de diffusion et des particules de conversion des couleurs différentes de celles-ci sont contenues dans une matrice dans l'élément (3), la concentration des particules de diffusion diminuant à un premier gradient sensiblement constant à partir du côté de l'élément (3) orienté vers la puce à LED. Dans une première zone orientée vers la puce à LED, la concentration des particules de conversion des couleurs est sensiblement constante, de sorte que les particules de conversion des couleurs de cette zone sont encapsulées avec la plus grande densité possible, et dans une seconde zone adjacente à la première zone, la concentration des particules de conversion des couleurs chute brusquement à un second gradient qui est sensiblement plus grand que le premier gradient des particules de diffusion.
PCT/EP2011/070770 2010-11-24 2011-11-23 Module à led muni d'un élément préfabriqué WO2012069519A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010061848.9 2010-11-24
DE102010061848.9A DE102010061848B4 (de) 2010-11-24 2010-11-24 LED-Modul mit vorgefertigtem Element

Publications (2)

Publication Number Publication Date
WO2012069519A2 true WO2012069519A2 (fr) 2012-05-31
WO2012069519A3 WO2012069519A3 (fr) 2012-07-19

Family

ID=45218676

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/070770 WO2012069519A2 (fr) 2010-11-24 2011-11-23 Module à led muni d'un élément préfabriqué

Country Status (2)

Country Link
DE (1) DE102010061848B4 (fr)
WO (1) WO2012069519A2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013160120A1 (fr) * 2012-04-26 2013-10-31 Osram Opto Semiconductors Gmbh Procédé de production d'une couche de diffusion d'un rayonnement électromagnétique et couche de diffusion d'un rayonnement électromagnétique

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012107290A1 (de) 2012-08-08 2014-02-13 Osram Opto Semiconductors Gmbh Optoelektronisches Halbleiterbauteil, Konversionsmittelplättchen und Verfahren zur Herstellung eines Konversionsmittelplättchens
DE202015105428U1 (de) * 2015-04-29 2016-08-01 Tridonic Jennersdorf Gmbh LED Modul mit verbesserter Wärmeabfuhr
DE102017117488A1 (de) 2017-08-02 2019-02-07 Osram Opto Semiconductors Gmbh Optoelektronisches Bauelement

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080049011A (ko) * 2005-08-05 2008-06-03 마쯔시다덴기산교 가부시키가이샤 반도체 발광장치
DE102006051746A1 (de) * 2006-09-29 2008-04-03 Osram Opto Semiconductors Gmbh Optoelektronisches Bauelement mit einer Lumineszenzkonversionsschicht
EP2074668B1 (fr) * 2006-10-10 2018-02-28 Tridonic Jennersdorf GmbH Diode electroluminescente a conversion par phosphore
DE102006054330A1 (de) * 2006-11-17 2008-05-21 Merck Patent Gmbh Leuchtstoffplättchen für LEDs aus strukturierten Folien
US7521862B2 (en) * 2006-11-20 2009-04-21 Philips Lumileds Lighting Co., Llc Light emitting device including luminescent ceramic and light-scattering material
US20090173958A1 (en) * 2008-01-04 2009-07-09 Cree, Inc. Light emitting devices with high efficiency phospor structures
DE102009018087A1 (de) 2008-04-30 2009-12-17 Ledon Lighting Jennersdorf Gmbh Lichtemittierende Diode mit erhöhter Farbstabilität
DE102008030253B4 (de) * 2008-06-25 2020-02-20 Osram Opto Semiconductors Gmbh Konversionselement und Leuchtmittel
ES2667009T3 (es) * 2008-07-22 2018-05-09 Philips Lighting Holding B.V. Un elemento óptico para un dispositivo de emisión de luz y un método de fabricación del mismo
CN102171844A (zh) * 2008-10-01 2011-08-31 皇家飞利浦电子股份有限公司 用于增大的光提取和非黄色的断开状态颜色的在封装剂中具有颗粒的led
US8323748B2 (en) * 2009-05-15 2012-12-04 Achrolux Inc. Methods for forming uniform particle layers of phosphor material on a surface

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013160120A1 (fr) * 2012-04-26 2013-10-31 Osram Opto Semiconductors Gmbh Procédé de production d'une couche de diffusion d'un rayonnement électromagnétique et couche de diffusion d'un rayonnement électromagnétique
US9945989B2 (en) 2012-04-26 2018-04-17 Osram Oled Gmbh Process for producing a scattering layer for electromagnetic radiation and scattering layer for scattering electromagnetic radiation

Also Published As

Publication number Publication date
DE102010061848B4 (de) 2022-11-03
WO2012069519A3 (fr) 2012-07-19
DE102010061848A1 (de) 2012-05-24

Similar Documents

Publication Publication Date Title
DE102010042217A1 (de) Optoelektronisches Halbleiterbauelement und Verfahren zu seiner Herstellung
DE102010053362B4 (de) Verfahren zur Herstellung eines strahlungsemittierenden Halbleiterchips, strahlungsemittierender Halbleiterchip und strahlungsemittierendes Bauelement
EP2382673A1 (fr) Composant semi-conducteur optoélectronique
DE112014004933T5 (de) Wellenlängenumwandlungselement, Verfahren zur Herstellung und Licht emittierender Halbleiterbauteil, welcher dasselbe aufweist
WO2013186365A1 (fr) Composant semi-conducteur optoélectronique
DE112016004313B4 (de) Stabile rote Keramikleuchtstoffe und Technologien damit
DE102011010118A1 (de) Keramisches Konversionselement, Halbleiterchip mit einem keramischen Konversionselement und Verfahren zur Herstellung eines keramischen Konversionselements
DE102011113962B4 (de) Verfahren zur Herstellung eines keramischen Konversionselements
DE102011102350A1 (de) Optisches Element, optoelektronisches Bauelement und Verfahren zur Herstellung dieser
DE102010009456A1 (de) Strahlungsemittierendes Bauelement mit einem Halbleiterchip und einem Konversionselement und Verfahren zu dessen Herstellung
WO2012069519A2 (fr) Module à led muni d'un élément préfabriqué
DE102015113759A1 (de) Lichtemittierende vorrichtung und beleuchtungsvorrichtung
DE102017104606A1 (de) Lichtemittierender Apparat und Beleuchtungsapparat
AT13372U1 (de) LED-Modul mit hoher Lichtstromdichte
WO2009039816A1 (fr) Élément rayonnant doté d'un couvercle de verre et procédé de fabrication
DE112018005684T5 (de) Wellenlängenumwandlungselement und Licht emittierende Vorrichtung
WO2014056903A1 (fr) Élément de conversion céramique, composant semi-conducteur optoélectronique et procédé de fabrication d'un élément de conversion céramique
DE102016102778A1 (de) Lichtemittierende Vorrichtung und Beleuchtungsvorrichtung
DE112017002467B4 (de) Beleuchtungsvorrichtungen mit einer linse und einer kompositverkapselung und verfahren zur herstellung hiervon
DE102011009803B4 (de) Lichtemittierendes Element
WO2013056895A1 (fr) Élément de conversion céramique, composant optoélectronique pourvu d'un élément de conversion céramique et procédé de production d'un élément de conversion céramique
DE102005012953A1 (de) Verfahren zur Herstellung eines optoelektronischen Bauelements
WO2012089531A1 (fr) Procédé de fabrication d'une pluralité de composants à semi-conducteurs
WO2016083448A1 (fr) Puce semi-conductrice optoélectronique, procédé de fabrication d'une puce semi-conductrice optoélectronique, élément de conversion et substance luminescente pour un élément de conversion
DE202015103126U1 (de) LED-Modul

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11793703

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11793703

Country of ref document: EP

Kind code of ref document: A2