WO2012068999A1 - 调度方法、设备和系统 - Google Patents

调度方法、设备和系统 Download PDF

Info

Publication number
WO2012068999A1
WO2012068999A1 PCT/CN2011/082838 CN2011082838W WO2012068999A1 WO 2012068999 A1 WO2012068999 A1 WO 2012068999A1 CN 2011082838 W CN2011082838 W CN 2011082838W WO 2012068999 A1 WO2012068999 A1 WO 2012068999A1
Authority
WO
WIPO (PCT)
Prior art keywords
user equipment
scheduling
state
status
command
Prior art date
Application number
PCT/CN2011/082838
Other languages
English (en)
French (fr)
Inventor
吕淑娟
余晶鑫
徐卫中
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2012068999A1 publication Critical patent/WO2012068999A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present invention relates to the field of communications, and in particular, to a scheduling method, device, and system. Background technique
  • the base station can pass HSSPA (High Speed Downlink Packet Access) to HS-SCCH (High Speed Shared Control Channel) and HS-PDSCH (High Speed Physical Downlink Shared Channel). , High-speed downlink packet access)
  • HSSPA High Speed Downlink Packet Access
  • SCCH High Speed Shared Control Channel
  • HS-PDSCH High Speed Physical Downlink Shared Channel
  • High-speed downlink packet access The user performs scheduling, and the HSDPA user includes a special DC HSDPA (Dual-Carrier High Speed Downlink Packet Access) user.
  • DC HSDPA Dual-Carrier High Speed Downlink Packet Access
  • the DC HSDPA user can simultaneously receive the HS-SCCH information and the HS-PDSCH data from the two inter-frequency cells, and one of the two inter-frequency cells is the primary cell, and the main cell
  • the carrier transmits the data signal, and the other is the secondary cell, and the data signal is transmitted through the secondary carrier.
  • the DC HSDPA user returns the ACK (Acknowledgement) and CQI (Channel Quality Indicator) information to the base station through the uplink HS-DPCCH (High Speed Dedicated Physical Control Channel) to complete the physics.
  • Layer HARQ Hybrid Automatic Repeat Request, mixed from Dynamic retransmission request
  • the UE (User Equipment) supporting the DC HSDPA technology needs to simultaneously listen to up to six HS-SCCHs from two inter-frequency cells, and the UE consumes a large amount of power; in addition, the MIMO is introduced based on the DC HSDPA technology.
  • the uplink HS-DPCCH will occupy more uplink resources and increase the load on the base station side.
  • the state of the UE can be modified to SC HSDPA (Single-Carrier High Speed Down 1 Ink Packet Access) by the HS-SCCH issuing a deactivation command.
  • SC HSDPA Single-Carrier High Speed Down 1 Ink Packet Access
  • the secondary carrier is deactivated, and only the primary carrier is reserved for data signal transmission, thereby achieving the purpose of reducing the power consumption of the UE and reducing the load of the base station.
  • the UE can be reactivated to the DC HSDPA state by using the HS-SCCH to activate the activation command, that is, the secondary carrier is activated to increase the rate of the UE.
  • the HSDPA user supports the HS-SCCH less operation mode.
  • the basic principle of the HS-SCCH less operation is to reduce the transmission of the accompanying channel HS-SCCH of the HSDPA low-speed service, that is, it is not required when the HS-PDSCH newly transmits data.
  • the HS-SCCH new mode accompanying the HS-SCCH is required for retransmission of data.
  • the base station can save HS-SCCH power because the HS-SCCH does not need to be accompanied by new data transmission.
  • the HS-SCCH channel may consume more than 10% of the cell power. Therefore, the HS-SCCH power can save the throughput of the weak coverage area and expand the coverage of the cell. Meanwhile, reducing the HS-SCCH transmission can save the HS-SCCH codeword. Resources, so that the downlink can schedule more UEs within one TTI (Transmission Time Interval) and improve downlink capacity.
  • TTI Transmission Time Interval
  • the uplink HS-DPCCH feedback increases, so the uplink load There will be a slight increase; for the UE, after using the HS-SCCH less operation mode, the UE needs to blindly detect the HS-PDSCH channel, so the consumption ratio is required. It turns out that it has more power and consumes more power.
  • the UE can be modified to a non-HS-SCCH less operation mode by using the deactivation command sent by the HS-SCCH to reduce the power consumption of the UE and reduce the uplink load of the base station.
  • the HS-SCCH can also be used.
  • the activation command reactivates the state of the UE to the HS-SCCH less operation mode, thereby achieving the purpose of improving the cell capacity.
  • the DC HSDPA user secondary carrier activation deactivation technology and the HSDPA user HS-SCCH less operation activation deactivation technology can quickly and flexibly implement UE state modification without increasing the air interface signaling overhead.
  • the inventors have found that the prior art has at least the following disadvantages: whether it is DC HSDPA user secondary carrier activation deactivation technology, or HSDPA user HS-SCCH less operation activation deactivation technology, when the base station passes HS-SCCH After the activation or deactivation command is sent, the state of the UE does not change immediately. During the time interval from the time when the base station sends the command to the state change of the UE, the behavior of the base station side and the UE side may be inconsistent. In this case, the loss of the data frame is likely to occur, and the behavior of the base station side and the state of the UE appear more. Long-term inconsistency leads to system performance loss. Summary of the invention
  • the scheduling behavior of the base station side is consistent with the state of the UE, and the performance of the system is improved. Scheduling methods, devices, and systems.
  • a scheduling method comprising:
  • the status instruction including an activation instruction or a deactivation instruction; determining whether the status of the UE is changed;
  • a scheduling device comprising:
  • a sending module configured to send a status instruction to the HSDPA UE, where the status instruction includes an activation instruction or a deactivation instruction;
  • a determining module configured to determine, after the sending module sends a status command to the HSDPA UE, whether the status of the UE changes;
  • a scheduling module configured to perform downlink scheduling for the UE according to a preset scheduling policy, before the determining module determines that the state of the UE is changed, where the preset scheduling policy ensures downlink scheduling behavior and the UE The status is consistent.
  • a scheduling system including the scheduling device, and an HSDPA UE in communication with the scheduling device.
  • the downlink scheduling for the UE is performed according to a preset scheduling policy in a time interval from the transmission of the state command to the state change of the UE, and the device side and the UE are scheduled after the base station sends an activation or deactivation command through the HS-SCCH.
  • the behavior of the side makes the downlink scheduling behavior of the scheduling device consistent with the state of the UE, improving the performance of the system.
  • FIG. 1 is a flowchart of a scheduling method according to Embodiment 1 of the present invention.
  • FIG. 2 is a flowchart of a scheduling method according to Embodiment 2 of the present invention.
  • FIG. 3 is a schematic diagram of a first specific scheduling state according to Embodiments 2 and 3 of the present invention
  • FIG. 4 is a schematic diagram of a second specific scheduling state provided by Embodiments 2 and 3 of the present invention
  • Scheduling method flow chart 6
  • 6 is a schematic structural diagram of a first scheduling device according to Embodiment 4 of the present invention
  • FIG. 7 is a schematic structural diagram of a second scheduling apparatus according to Embodiment 4 of the present invention.
  • FIG. 8 is a schematic structural diagram of a third scheduling device according to Embodiment 4 of the present invention.
  • FIG. 9 is a schematic structural diagram of a scheduling system according to Embodiment 5 of the present invention. detailed description
  • the embodiment of the invention provides a scheduling method. Referring to FIG. 1, the method flow is as follows:
  • the preset scheduling policy ensures that the downlink scheduling behavior is consistent with the state of the UE.
  • the method provided by the embodiment of the present invention performs downlink scheduling for the UE according to a preset scheduling policy in a time interval from the sending of the state command to the state change of the UE, and clarifies that the base station transmits or deactivates through the HS-SCCH transmission. After the instruction, the behavior of the device side and the UE side is scheduled, so that the downlink scheduling behavior of the scheduling device is consistent with the state of the UE, and the performance of the system is improved.
  • Embodiment 2 Embodiment 2
  • the embodiment of the present invention provides a scheduling method, which is applicable to WCDMA (Wideband Code Division Multiple Access) and TDSCDMA (Time Division-Synchronous Code Division Multiple Access). Technology) In addition to the system, it can also be applied to other communication systems.
  • WCDMA Wideband Code Division Multiple Access
  • TDSCDMA Time Division-Synchronous Code Division Multiple Access
  • the base station in WCDMA schedules a DC HSDPA user according to the R9 version protocol as an example, but is not limited thereto.
  • 201 Send a status command to a DC HSDPA UE, where the status command includes a secondary carrier activation command or a secondary carrier deactivation command;
  • the application scenario in this embodiment is a DC HSDPA user in the R9 version protocol of the WCDMA, that is, when the UE is a DC HSDPA user equipment, the status command specifically includes a secondary carrier activation command or a secondary carrier deactivation command. .
  • the network device for example, the base station, sends a status command to the UE through the HS-SCCH, and activates or deactivates the secondary carrier of the UE.
  • the SC HSDPA state of the UE is activated to the DC HSDPA state; when the secondary carrier deactivation command is sent to the UE, the DC HSDPA state of the UE is to be deactivated. Is the SC HSDPA status.
  • the status command is only one of the secondary carrier activation command or the secondary carrier deactivation command, and the subsequent processes are substantially similar. In the description of the embodiments of the present invention, the two are described together for the purpose of describing the cartridge.
  • step 202 Determine whether the state of the UE changes, if no, perform step 203, and if yes, perform step 204;
  • the feedback information of the UE may be obtained by using an uplink HS-DPCCH, where the feedback information may be ACK, NACK (Negative Acknowledgement), and DTX (Di scont inuous Transi ss ion, One of continuous transmission).
  • the feedback information may be stored in an uplink frame corresponding to a frame in which the base station transmits a status command through the HS-SCCH.
  • the feedback information is not obtained, it is determined that the secondary carrier status of the UE is unchanged; if the obtained feedback information is NACK or DTX (ie, not ACK), it is also determined that the secondary carrier status of the UE has not changed; If the information is ACK, it is judged that the secondary carrier state of the UE has changed.
  • step 204 If the state of the UE is not changed, before the state of the UE is changed, the downlink scheduling for the UE is performed according to a preset scheduling policy, and after the state of the UE is changed, step 204 is performed;
  • the downlink scheduling for the UE is performed according to a preset scheduling policy before the state of the UE is changed, and the preset scheduling policy ensures the scheduling behavior on the secondary carrier and the UE.
  • the secondary carrier state is consistent.
  • the preset scheduling policy here is specifically: not performing downlink scheduling for the UE; or
  • Downlink scheduling for the UE is performed only on the primary carrier.
  • the downlink scheduling for the UE is not performed, that is, the time interval from the status command to the UE to the UE is changed, and the base station side does not send any scheduled data to the UE through the primary carrier and the secondary carrier.
  • the uplink frame sent by the UE is received.
  • the downlink scheduling for the UE is performed according to the original scheduling manner before the status command is sent to the UE, that is, the time interval from the status command to the UE to the secondary carrier state change to the UE, and the base station side sends the status command to the UE.
  • the scheduling mode delivers data to the UE.
  • the uplink frame sent by the UE is received.
  • the base station side only schedules the UE through the primary carrier and sends data to the UE.
  • the base station performs the downlink scheduling for the UE, that is, the time interval from the status command to the UE to the UE.
  • the uplink frame sent by the UE is received.
  • any one of the above three preset scheduling strategies may be selected for implementation.
  • the state of the UE unchanged does not include two cases: In the first case, feedback information is not obtained. In this case, the feedback information is continuously obtained. In the second case, the feedback information is acquired but not the ACK. In this case, the step of transmitting the status command to the UE may be repeatedly performed.
  • the downlink scheduling for the UE may be performed according to the original scheduling manner before the status command is sent to the UE.
  • the embodiment of the present invention does not specifically limit the maximum number of retransmissions, and may be set according to actual conditions, for example, it may be set to 4 times.
  • the state of the UE does not change, before the state of the UE changes, according to the pre-
  • the scheduling policy is performed to perform downlink scheduling for the UE, and after the state of the UE is changed, step 204 is performed.
  • the base station performs downlink scheduling for the UE according to the secondary carrier activation or deactivation state specified by the state instruction. For example, if the secondary carrier after the UE status change is the active state, the downlink scheduling for the UE is performed by using the primary carrier and the secondary carrier; if the secondary carrier after the UE status change is the deactivated state, performing the primary carrier for the UE Downstream scheduling.
  • the uplink HS-DPCCH frame transmission is immediately performed according to the changed state.
  • a TTI is required for the base station to deliver a status command, and the UE returns feedback information after 4 TTIs after the status command is completely sent.
  • After the status command is sent to a certain UE it is determined whether the state of the UE is changed according to whether the feedback information of the UE is ACK, and the following two situations are processed according to the timing relationship:
  • the feedback information is ACK, see Figure 3: At the first TTI, sending a status command to the UE through the HS-SCCH;
  • the feedback information is not obtained in the first to fifth TTIs, and the state of the UE is not changed during the time interval, and the downlink scheduling for the UE is performed according to a preset scheduling policy.
  • the base station acquires feedback information of the UE, and the feedback information is obtained from a frame corresponding to the HS-SCCH status command sent by the UE through the uplink HS-DPCCH, and is determined to be an ACK; in the sixth TTI, The base station starts to perform downlink scheduling for the UE according to the secondary carrier status specified by the status command;
  • the uplink HS-DPCCH frame transmission is performed according to the changed state.
  • the second case The feedback information is NACK or DTX, see Figure 4:
  • the feedback information is not obtained in the first to fifth TTIs, and the state of the UE is not changed during the time interval, and the downlink scheduling for the UE is performed according to a preset scheduling policy.
  • the base station acquires feedback information of the UE, and the feedback information is obtained from a frame corresponding to the HS-SCCH status command sent by the UE through the uplink HS-DPCCH, and is determined to be NACK or DTX;
  • the TTI base station acquires feedback information of the UE, and the feedback information is sent from the UE to the HS-SCCH through the uplink HS-DPCCH.
  • the frame corresponding to the instruction is obtained, and the feedback information is determined:
  • the TTI base station If it is judged as ACK, it is processed according to the first case, that is, at the 6th X N+6 (N is a natural number greater than or equal to 1, and N is the number of retransmissions), and the TTI base station starts to perform the state according to the state specified by the state instruction.
  • the downlink scheduling of the UE after the state of the UE is changed, the frame is transmitted through the uplink HS-DPCCH according to the changed state;
  • the status command is continuously retransmitted to the UE, where from the first
  • the TTI is based on the receipt of the ACK (ie, the state change of the UE) or the maximum number of retransmissions.
  • the scheduling policy is set to perform downlink scheduling for the UE.
  • the downlink scheduling for the UE is performed according to the original scheduling manner before the status command is sent to the UE.
  • the method provided by the embodiment of the present invention performs downlink scheduling for the UE according to a preset scheduling policy in a time interval from the sending of the state command to the state change of the UE, and clarifies that the base station transmits or deactivates through the HS-SCCH transmission.
  • the behavior of the device side and the UE side is scheduled, so that the downlink scheduling behavior of the scheduling device is consistent with the state of the UE, and the performance of the system is improved, as follows:
  • the preset policy is the time interval from the sending of the state command to the state change of the UE
  • the system implementation is implemented, and the base station side scheduling and the secondary carrier state of the UE may be inconsistent.
  • the loss of the data frame and the retransmission caused by the loss; at the same time, the base station can schedule other UEs during the time interval in which the downlink scheduling for the UE is not performed, which ensures the downlink throughput rate of the base station and the stability of the system. Applicable to secondary carrier activation to deactivate the scene.
  • the downlink scheduling for the UE is performed according to the original scheduling mode before the state command is sent to the UE, so that the base station side is on the primary carrier and the secondary carrier.
  • the data scheduling and receiving are consistent with the state of the UE.
  • performing downlink scheduling for the UE according to the original scheduling mode before sending the state command to the UE also reduces the complexity of the processing on the base station side, and the channel condition is good.
  • the data downloading experience on the UE side will not decrease. It is mainly used for secondary carrier deactivation scenarios.
  • the UE passes the uplink HS-DPCCH of the primary carrier regardless of whether the secondary carrier is activated or deactivated, whether the primary carrier performs downlink scheduling for the UE.
  • the transmitted data information is not affected, that is, the base station side can correctly parse the ACK information of the single carrier, and can also be compatible with the ACK information of the primary carrier of the dual carrier, so that the information transmission is not affected by the inconsistent state between the base station side and the UE side.
  • it solves the subsequent processing risk of the base station side scheduling data after the command is sent to the UE to respond to the ACK, thereby improving the reliability of the system. Applicable to secondary carrier activation and deactivation scenarios.
  • Embodiments of the present invention provide a scheduling method that can be applied to other communication systems in addition to WCDMA and TDS CDMA systems.
  • the embodiment of the present invention only uses the base station in WCDMA to schedule HSDPA users (including DC HSDPA users) according to the R7 version protocol as an example, but is not limited thereto.
  • the status command includes an HS-SCCH less operation mode or an HS-SCCH less operat deactivation command; wherein, since the application scenario of the embodiment is for WCDMA
  • the HSDPA user in the R7 version protocol that is, when the UE is an HSDPA user equipment, the status command specifically includes an HS-SCCH less operat mode activation command or an HS-SCCH less operat mode deactivation command.
  • the network device for example, the base station, sends a status command to the UE through the HS-SCCH, and activates or deactivates the HS-SCCH less operation mode of the UE.
  • the UE when the HS-SCCH less operat mode activation command is sent to the UE, the UE is to be activated from the original mode to the HS-SCCH less operation mode; when the HS-SCCH less operation mode deactivation command is sent to the UE At this time, the UE is deactivated from the HS-SCCH less operation mode to the original mode.
  • the UE may receive data according to the HS-SCCH less operation mode, or may receive data according to the original mode, that is, the non-HS-SCCH less operation mode.
  • the base station can perform scheduling transmission in the HS-SCCH less operat mode or the original mode for the UE in the HS-SCCH less operat mode, and for the UE in the non-HS-SCCH less operat mode.
  • the original mode is scheduled to be sent.
  • the status command will only be HS-SCCH less The operation mode activation command or one of the HS-SCCH less operat mode deactivation commands, and the subsequent processes are substantially similar.
  • the two are described together for the purpose of describing the cartridge.
  • step 502 Determine whether the state of the UE is changed, if not, go to step 503, and if yes, go to step 504;
  • determining whether the state of the UE is changed whether the state of the UE is changed according to whether the acknowledgment information of the UE is obtained, and if the feedback information of the UE is not obtained, the feedback information is not obtained. If the acknowledgment information is not obtained, or the feedback information is obtained, but the feedback information is not ACK (Acknowledgement), it is determined that the state of the UE has not changed.
  • the feedback information of the UE may be obtained by using the uplink HS-DPCCH, and the feedback information may be ACK or DTX.
  • the feedback information may be stored in an upstream frame corresponding to a frame in which the base station transmits a status command through the HS-SCCH. If the feedback information is not obtained, it is determined that the UE's HS-SCCH less operat mode state has not changed; if the obtained feedback information is DTX (ie, not ACK), the UE's HS-SCCH less operation mode state is also determined. No change; if the obtained feedback information is ACK, it is judged that the HS-SCCH less operat mode state of the UE has changed.
  • step 503 If the state of the UE is unchanged, before the state of the UE is changed, the downlink scheduling for the UE is performed according to a preset scheduling policy, and after the state of the UE is changed, step 504 is performed;
  • the downlink scheduling for the UE is performed according to a preset scheduling policy before the state of the UE is changed, and the preset scheduling policy ensures the downlink scheduling behavior and the HS adopted by the UE.
  • the SCCH less operat mode matches.
  • the default scheduling policy here is:
  • the downlink scheduling for the UE is performed according to the non-HS-SCCH es s operat ion mode. Specifically, the downlink scheduling for the UE is not performed, that is, within a time interval from the state command to the UE to the HS-SCCH les s operat mode state change of the UE, the base station side does not perform scheduling transmission processing on the UE. At the same time, the uplink frame sent by the UE is received.
  • the base station side follows The original scheduling mode before the UE sends the status command sends data to the UE.
  • the uplink frame sent by the UE is received.
  • the downlink scheduling for the UE is performed according to the non-HS-SCCH les s operat ion mode, that is, the time interval from the state command to the UE to the change of the HS-SCCH es s operat mode state of the UE, the base station side follows the non-HS- The SCCH es s operat mode (ie, the original mode) schedules the UE, and sends data to the UE. At the same time, the uplink frame sent by the UE is received.
  • any one of the above three preset scheduling strategies may be selected for implementation.
  • the state of the UE unchanged does not include two cases:
  • the feedback information is not obtained. In this case, the feedback information is continuously obtained. In the second case, the feedback information is acquired but not the ACK. In this case, the step of transmitting the status command to the UE may be repeatedly performed.
  • the downlink scheduling for the UE may be performed according to the original scheduling manner before the status command is sent to the UE.
  • the embodiment of the present invention does not specifically limit the maximum number of retransmissions, and may be set according to actual conditions, for example, it may be set to 4 times.
  • step 504 determines whether the feedback information is not obtained or the obtained feedback information is DTX, or the process of transmitting the status command to the UE is repeatedly performed. If the feedback information is not obtained or the obtained feedback information is DTX, or the process of transmitting the status command to the UE is repeatedly performed, the state of the UE does not change, before the state of the UE changes, according to the preset
  • the scheduling policy performs downlink scheduling for the UE, and is in the UE After the state changes, step 504 is performed.
  • the base station performs downlink scheduling for the UE according to the HS-SCCH less operat mode or the non-HS-SCCH less operation mode specified by the state instruction. For example, if the state of the UE is changed to the HS-SCCH less operation mode, the downlink scheduling for the UE may be performed by using the HS-SCCH less operat ion mode or the original mode; if the UE state is changed, the non-HS-SCCH less operation mode is performed. Then, the downlink scheduling for the UE is performed in the original manner.
  • the base station needs to send a status command to require one TTI. After the four TTIs after the status command is completely sent, the UE returns feedback information. After the status command is sent to a certain UE, it is determined whether the state of the UE is changed according to whether the feedback information of the UE is ACK, and the following two situations are processed according to the timing relationship:
  • the feedback information is ACK, see Figure 3:
  • the feedback information is not obtained in the first to fifth TTIs, and the state of the UE is not changed during the time interval, and the downlink scheduling for the UE is performed according to a preset scheduling policy.
  • the base station acquires feedback information of the UE, and the feedback information is obtained from a frame corresponding to the HS-SCCH status command sent by the UE through the uplink HS-DPCCH, and is determined to be an ACK; in the sixth TTI, The base station starts to perform downlink scheduling for the UE according to the HS-SCCH less operation mode state specified by the state instruction;
  • the feedback information is DTX, see Figure 4:
  • the feedback information is not obtained in the first to fifth TTIs, and the state of the UE is not changed during the time interval, and the downlink scheduling for the UE is performed according to a preset scheduling policy.
  • the base station obtains feedback information of the UE, and the feedback information is uplinked from the UE.
  • the TTI base station acquires feedback information of the UE, and the feedback information is sent from the UE to the HS-SCCH through the uplink HS-DPCCH.
  • the frame corresponding to the instruction is obtained, and the feedback information is determined:
  • the TTI base station If it is judged as ACK, it is processed according to the first case, that is, at the 6th X N+6 (N is a natural number greater than or equal to 1, and N is the number of retransmissions), and the TTI base station starts to perform the state according to the state specified by the state instruction.
  • the downlink scheduling of the UE after the state of the UE is changed, the frame is transmitted through the uplink HS-DPCCH according to the changed state;
  • the state command is retransmitted to the UE, where the UE is performed according to a preset scheduling policy from the first TTI to the received ACK (ie, the state change of the UE) or the maximum number of retransmissions is reached. Downstream scheduling.
  • the downlink scheduling for the UE is performed according to the original scheduling manner before the status command is sent to the UE.
  • the method provided by the embodiment of the present invention performs downlink scheduling for the UE according to a preset scheduling policy in a time interval from the sending of the state command to the state change of the UE, and clarifies that the base station transmits or deactivates through the HS-SCCH transmission.
  • the behavior of the device side and the UE side is scheduled, so that the downlink scheduling behavior of the scheduling device is consistent with the state of the UE, and the performance of the system is improved, as follows:
  • the preset policy is the time interval from the transmission of the state command to the state change of the UE
  • the system implementation is implemented, and the data scheduling and reception on the base station side is performed.
  • the UE is always consistent with the state of the UE, and the loss of the data frame may be avoided to cause high-level retransmission.
  • the base station side may schedule other UEs during the period in which the UE is not scheduled, improve the downlink throughput rate of the base station, and improve the system. performance.
  • the preset policy is the time interval from the transmission of the state command to the state change of the UE
  • the downlink scheduling for the UE is performed according to the original scheduling manner before the state command is sent to the UE, the complexity of the processing on the base station side is reduced as much as possible.
  • the scheduling of the UE is not changed.
  • the channel condition is good, the throughput rate of the cell and the system capacity are not decreased.
  • the UE state is converted from the HS-SCCH less operation mode.
  • the UE can perform data reception in the non-HS-SCCH less operation mode (ie, the original mode), thus avoiding The HS-SCCH less operat mode is used to schedule the transmission of dropped frames that may occur during the activation deactivation process.
  • the embodiment of the invention provides a scheduling device, which can be applied to other communication systems in addition to WCDMA and TDSCDMA systems.
  • the embodiment of the present invention is described by taking the base station in the WCDMA as the scheduling device as an example, but is not limited thereto.
  • the device includes:
  • the sending module 601 is configured to send a status instruction to the HSDPA UE, where the status instruction includes an activation instruction or a deactivation instruction;
  • the determining module 602 is configured to determine, after the sending module 601 sends a status command to the HSDPA UE, whether the status of the UE is changed.
  • the scheduling module 603 is configured to perform downlink scheduling for the UE according to a preset scheduling policy before the determining module 602 determines that the state of the UE is changed.
  • the preset scheduling policy ensures that the downlink scheduling behavior is consistent with the state of the UE.
  • the status command sent by the sending module 601 to the UE specifically includes a secondary carrier activation command or a secondary carrier deactivation command.
  • the SC HSDPA state of the UE is activated to the DC HSDPA state;
  • the secondary carrier deactivation command is sent to the UE, the DC HSDPA state of the UE is deactivated to the SC HSDPA state.
  • the preset scheduling policy ensures that the scheduling behavior on the secondary carrier is consistent with the secondary carrier state of the UE
  • the specific manner in which the scheduling module 603 performs downlink scheduling for the UE according to the preset scheduling policy is: For the downlink scheduling of the UE, or performing downlink scheduling for the UE according to the original scheduling manner before the status command is sent to the UE; or, performing downlink scheduling for the UE only on the primary carrier.
  • the downlink scheduling for the UE is not performed, that is, the base station side does not send any scheduled data to the UE by using the primary carrier and the secondary carrier pin within a time interval from when the status command is sent to the UE to the secondary carrier state of the UE.
  • the uplink frame sent by the UE is received.
  • the downlink scheduling for the UE is performed according to the original scheduling manner before the status command is sent to the UE, that is, the time interval from the status command to the UE to the secondary carrier state change to the UE, and the base station side sends the status command to the UE.
  • the scheduling mode delivers data to the UE.
  • the uplink frame sent by the UE is received.
  • the UE performs the downlink scheduling for the UE only, that is, the time interval from the transmission of the status command to the UE to the change of the secondary carrier state of the UE, the base station side only schedules the UE through the primary carrier, and sends data to the UE.
  • the uplink frame sent by the UE is received. In practical application In the above, any one of the above three preset scheduling strategies may be selected for implementation.
  • the status command sent by the sending module 601 to the UE specifically includes an HS-SCCH less operat mode activation command or an HS-SCCH less operation mode deactivation command.
  • the HS-SCCH less operat mode activation command is sent to the UE, the UE is activated from the original mode to the HS-SCCH less operation mode; when the HS-SCCH less operat mode deactivation command is sent to the UE, Deactivate the UE from the HS-SCCH less operat mode to the original mode.
  • the UE may receive data according to the HS-SCCH less operation mode, or may receive data according to the original mode, that is, the non-HS-SCCH less operation mode. However, if the state of the UE is in the non-HS-SCCH less operat mode, the UE receives data according to the non-HS-SCCH less operation mode. Therefore, the base station can perform scheduling transmission in the HS-SCCH less operat mode or the original mode for the UE in the HS-SCCH less operation mode, and the original UE in the non-HS-SCCH less operation mode. The mode is scheduled to be sent.
  • the preset scheduling policy ensures that the downlink scheduling behavior is consistent with the HS-SCCH less operation mode adopted by the UE, and the specific manner in which the scheduling module 603 performs downlink scheduling for the UE according to the preset scheduling policy is: For the downlink scheduling of the UE, or performing downlink scheduling for the UE according to the original scheduling manner before sending the status command to the UE; or performing downlink scheduling for the UE according to the non-HS-SCCH less operat mode. Specifically, the downlink scheduling for the UE is not performed, that is, the time interval from the state command to the UE to the change of the HS-SCCH less operation mode of the UE is performed, and the base station side does not perform scheduling transmission processing on the UE.
  • the uplink frame sent by the UE is received.
  • the base station side sends the UE to the UE according to the time interval.
  • the original scheduling mode before the status command sends data to the UE.
  • the uplink frame sent by the UE is received.
  • the base station side schedules the UE according to the non-HS-SCCH es s operat ion mode (ie, the original mode) Send data to the UE.
  • the uplink frame sent by the UE is received.
  • any one of the three preset scheduling strategies may be selected for implementation.
  • the determining module 602 is specifically configured to determine whether the state of the UE is changed according to whether the acknowledgment information of the UE is obtained. If the feedback information of the UE is not obtained or the obtained feedback information is not the acknowledgment information, determine the The status of the UE has not changed.
  • the state of the UE does not change includes two cases: the first case is that no feedback information is acquired, and in this case, the feedback information is continuously obtained; the second case is that the feedback information is acquired but not the ACK.
  • the device further includes:
  • the retransmission module 604 is configured to: after the feedback information obtained by the determining module 602 is not an ACK, determine that the sending module 601 sends a status command to the UE after determining that the state of the UE is unchanged.
  • the device further includes:
  • the restoring module 605 is configured to: when the retransmission module 604 repeatedly performs the step of the sending module 601 to send a status command to the UE, the number of times exceeds the maximum number of retransmissions, according to the original scheduling mode before the sending module 601 sends the status command to the UE, Downstream scheduling of the UE.
  • the embodiment of the present invention does not specifically limit the maximum number of retransmissions, and may be set according to actual conditions, for example, it may be set to 4 times.
  • the scheduling module 603 performs downlink scheduling for the UE according to the state specified by the state command. At this time, the UE performs uplink HS-DPCCH frame transmission according to the changed state.
  • the sending module 601 completely sends a status command requiring one TTI, and the four TTIs after the status command is completely sent Return feedback.
  • the status command is sent to a certain UE, whether the status of the UE is changed according to whether the feedback information of the UE is ACK or not, the following two situations are processed according to the timing relationship: The first case: The feedback information is ACK, see FIG. 3:
  • the sending module 601 sends a status command to the UE through the HS-SCCH; the feedback information is not obtained in the first to fifth TTIs, and the determining module 602 determines that the status of the UE has not changed, during the time interval.
  • the scheduling module 603 performs downlink scheduling for the UE according to a preset scheduling policy.
  • the base station acquires feedback information of the UE, and the feedback information is obtained from a frame corresponding to the HS-SCCH status command sent by the UE through the uplink HS-DPCCH, and is determined to be an ACK by the determining module 602.
  • the scheduling module 603 begins to perform downlink scheduling for the UE according to the state specified by the state command.
  • the uplink HS-DPCCH frame transmission is performed according to the changed state immediately after the state of the UE is changed.
  • the second case The feedback information is not ACK, see Figure 4:
  • the sending module 601 sends a status command to the UE through the HS-SCCH; the feedback information is not obtained in the first to fifth TTIs, and the determining module 602 determines that the status of the UE has not changed, during the time interval.
  • the scheduling module 603 performs downlink scheduling for the UE according to a preset scheduling policy.
  • the base station acquires the feedback information of the UE, and the feedback information is obtained from a frame corresponding to the HS-SCCH status command sent by the UE through the uplink HS-DPCCH, and is determined by the determining module 602 to be not an ACK;
  • the retransmission module 604 retransmits the status command to the UE;
  • the TTI base station acquires feedback information of the UE, and the feedback information is sent from the UE to the HS-SCCH through the uplink HS-DPCCH.
  • the determining module 602 determines the feedback information: If it is determined to be ACK, the processing is performed according to the first case, that is, at the 6th X N+6 (N is a natural number greater than or equal to 1, and N is represented by The number of retransmissions) TTIs start to follow the status specified by the status command. Performing downlink scheduling for the UE, and immediately transmitting the frame through the uplink HS-DPCCH according to the changed state after the state of the UE is changed;
  • the method further retransmits the status command to the UE, where the period from the first TTI to the received ACK (ie, the state change of the UE) or the maximum number of retransmissions is performed according to a preset scheduling policy. Downstream scheduling of the UE.
  • the restoration module 605 After the number of retransmissions exceeds the maximum number of retransmissions, the restoration module 605 performs downlink scheduling for the UE according to the original scheduling mode before the sending module 601 sends the status command to the UE.
  • the device provided by the embodiment of the present invention performs downlink scheduling for the UE according to a preset scheduling policy in a time interval from a sending state command to a state change of the UE, and clarifies that the base station transmits or deactivates through the HS-SCCH transmission. After the instruction, the behavior of the device side and the UE side is scheduled, so that the downlink scheduling behavior of the scheduling device is consistent with the state of the UE, and the performance of the system is improved.
  • Embodiment 5 Embodiment 5
  • an embodiment of the present invention provides a scheduling system, where the scheduling system includes a scheduling device 901 as described in Embodiment 4, and an HSDPA UE 902 in communication with the scheduling device.
  • the scheduling system is not limited to the WCDMA and TDS CDMA systems, and may be other communication systems.
  • the embodiment of the present invention performs downlink scheduling for the UE according to a preset scheduling policy in a time interval from the transmission of the state command to the state change of the UE, and clarifies that the base station transmits or activates through the HS-SCCH transmission. After the activated command, the behaviors of the device side and the UE side are scheduled, so that the downlink scheduling behavior of the scheduling device is consistent with the state of the UE, and the performance of the system is improved.
  • the scheduling device provided by the foregoing embodiment performs downlink scheduling for the UE, only the division of each functional module is used for example. In an actual application, the foregoing function may be allocated by different functional modules according to requirements.
  • the internal structure of the device is divided into different functional modules to perform all or part of the functions described above.
  • the above implementation The scheduling device provided by the example is in the same concept as the scheduling method embodiment, and the specific implementation process is described in the method embodiment, and details are not described herein again.
  • All or part of the steps in the embodiment of the present invention may be implemented by software, and the corresponding software program may be stored in a readable storage medium such as an optical disk or a hard disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

调度方法、 设备和系统 本申请要求于 2010 年 11 月 26 日提交中国专利局、 申请号为 201010575916.1、 发明名称为"调度方法、 设备和系统"的中国专利申请、 以 及 2011年 1月 26日提交中国专利局、 申请号为 201110027925.1、发明名称 为"调度方法、设备和系统"的中国专利申请的优先权,其全部内容通过引用 结合在本申请中。 技术领域
本发明涉及通信领域, 特别涉及一种调度方法、 设备和系统。 背景技术
在无线通信中, 基站可以通过 HS-SCCH (High Speed Shared Control Channel, 高速共享控制信道)和 HS-PDSCH ( High Speed Physical Downlink Shared Channel, 高速物理下行共享信道)对 HSDPA ( High Speed Downl ink Packet Access, 高速下行分组接入)用户进行调度, 该 HSDPA用户中又包 括比较特殊的 DC HSDPA ( Dual-Carrier High Speed Downlink Packet Access, 双载波高速下行分组接入)用户。
针对 DC HSDPA用户进行调度时:
DC HSDPA用户接入支持 DC HSDPA技术的小区后, 可同时接收来自两个 异频小区的 HS-SCCH的信息和 HS-PDSCH的数据, 这两个异频小区中的一个 为主小区, 通过主载波传输数据信号, 另一个为辅小区, 通过辅载波传输 数据信号。 同时, DC HSDPA用户通过上行 HS-DPCCH (High Speed Dedicated Physical Control Channel,专用物理控制信道)将 ACK ( Acknowledgement , 确认信息)和 CQI (Channel Quality Indicator, 信道质量指示)信息返 馈给基站, 完成物理层 HARQ ( Hybrid Automatic Repeat Request, 混合自 动重传请求)功能。
支持 DC HSDPA技术的 UE (User Equipment, 用户设备) 需要同时监听 来自两个异频小区的最多 6条 HS-SCCH, UE的耗电量较大;此外,在 DC HSDPA 技术的基础上再引入 MIMO (Multiple Input Multiple Output, 多入多出 ) 技术后, 上行 HS-DPCCH会占用较多的上行资源, 增加了基站侧的负载。
针对上述问题,在 UE的数据传输量较低或基站的负载达到最大门限时, 可通过 HS-SCCH 下发去激活指令将 UE 的状态修改为 SC HSDPA ( Single-Carrier High Speed Down 1 ink Packet Access, 单载波高速下 行分组接入)状态, 即辅载波去激活, 只保留主载波进行数据信号的传输, 达到减小 UE耗电量和降低基站负载的目的。 辅载波去激活后, 还可以通过 HS-SCCH下发激活指令将 UE重新激活为 DC HSDPA状态, 即辅载波激活, 提 高 UE的速率。
针对 HSDPA用户进行调度时:
HSDPA用户支持 HS-SCCH less operation (无 HS- SCCH伴随)模式, HS-SCCH less operation 的基本原理是减少 HSDPA低速业务的伴随信道 HS-SCCH的发送, 即在 HS-PDSCH新传数据时不需要伴随 HS-SCCH, 重传数 据时需要伴随 HS-SCCH的 HS-SCCH新模式。
在无线环境较好、 下行发送重传率较低时, 在 HS-SCCH less operation 模式下,由于新传数据时不需要伴随 HS-SCCH,基站可以节省 HS-SCCH功率, 对于弱覆盖区域, 由于 HS-SCCH信道可能消耗 10%以上的小区功率, 所以 HS-SCCH 功率节省下来后可以提升弱覆盖区域的吞吐率, 扩大小区覆盖范 围; 同时, 减少 HS-SCCH的发送可以节省 HS-SCCH码字资源, 从而下行能 够在一个 TTI (Transmission Time Interval, 传输时间间隔) 内调度更多 的 UE, 提高下行容量; 不过, 由于下行调度的 UE数增加, 上行 HS-DPCCH 反馈变多, 所以上行负载会稍有增加; 对 UE 来说, 使用 HS-SCCH less operation模式后, UE需要对 HS-PDSCH信道进行盲检测, 因此需要消耗比 原来更多的功率, 耗电量大。
目前,可以通过 HS-SCCH下发去激活指令将 UE的状态修改为非 HS-SCCH less operation模式, 达到减小 UE耗电量和降低基站上行负载的目的; 同 样,也可以通过 HS-SCCH下发激活指令将 UE的状态重新激活为 HS-SCCH less operation模式, 达到提升小区容量的目的。
综上所述, DC HSDPA用户辅载波激活去激活技术和 HSDPA用户 HS-SCCH less operation激活去激活技术均可以在不增加空口信令开销的情况下快 速灵活的实现 UE状态修改。
在实现本发明的过程中, 发明人发现现有技术至少存在以下缺点: 无论是 DC HSDPA用户辅载波激活去激活技术,还是 HSDPA用户 HS-SCCH less operation激活去激活技术, 当基站通过 HS-SCCH发送激活或去激活 的指令后, UE的状态不会立即改变。从基站发送指令到 UE状态改变的这段 时间间隔内, 基站侧和 UE侧的行为可能不一致, 此种情况下, 容易出现丢 失数据帧的情况,进而使基站侧的行为与 UE的状态出现更长时间的不一致, 导致系统性能损失。 发明内容
为了明确基站通过 HS-SCCH发送激活或去激活的指令后基站侧和 UE侧 的行为, 使基站侧的调度行为与 UE的状态相符合, 并提高系统的性能, 本 发明实施例提供了一种调度方法、 设备和系统。
所述技术方案如下:
一方面, 提供了一种调度方法, 所述方法包括:
向 HSDPA UE发送状态指令,所述状态指令包括激活指令或去激活指令; 判断所述 UE的状态是否改变;
在所述 UE的状态改变之前, 按照预设的调度策略进行针对所述 UE的 另一方面, 提供了一种调度设备, 所述设备包括:
发送模块, 用于向 HSDPA UE发送状态指令, 所述状态指令包括激活指 令或去激活指令;
判断模块, 用于在所述发送模块向 HSDPA UE发送状态指令后, 判断所 述 UE的状态是否改变;
调度模块, 用于在所述判断模块判断所述 UE的状态改变之前, 按照预 设的调度策略进行针对所述 UE的下行调度, 所述预设的调度策略保证下行 调度行为与所述 UE的状态相符合。
再一方面, 还提供了一种调度系统, 所述调度系统包括上述调度设备, 以及与所述调度设备通信的 HSDPA UE。
本发明实施例提供的技术方案的有益效果是:
通过从发送状态指令到 UE的状态改变之前的时间间隔内, 按照预设的 调度策略进行针对该 UE的下行调度, 明确了基站通过 HS-SCCH发送激活或 去激活的指令后调度设备侧和 UE侧的行为, 使调度设备的下行调度行为与 UE的状态相符合, 提高了系统的性能。 附图说明
为了更清楚地说明本发明实施例中的技术方案, 下面将对实施例描述 中所需要使用的附图作筒单地介绍, 显而易见地, 下面描述中的附图仅仅 是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性 劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1是本发明实施例一提供的调度方法流程图;
图 2是本发明实施例二提供的调度方法流程图;
图 3是本发明实施例二和三提供的第一种具体调度状态示意图; 图 4是本发明实施例二和三提供的第二种具体调度状态示意图; 图 5是本发明实施例三提供的调度方法流程图; 图 6是本发明实施例四提供的第一种调度设备结构示意图;
图 7是本发明实施例四提供的第二种调度设备结构示意图;
图 8是本发明实施例四提供的第三种调度设备结构示意图;
图 9是本发明实施例五提供的调度系统结构示意图。 具体实施方式
为使本发明的目的、 技术方案和优点更加清楚, 下面将结合附图对本 发明实施方式作进一步地详细描述。
实施例一
本发明实施例提供了一种调度方法, 参见图 1, 方法流程具体如下:
101: 向 HSDPA UE发送状态指令, 该状态指令包括激活指令或去激活 指令;
102: 判断该 UE的状态是否改变;
103: 在该 UE的状态改变之前, 按照预设的调度策略进行针对该 UE的 下行调度。
其中, 该预设的调度策略保证下行调度行为与该 UE的状态相符合。 本发明实施例提供的方法, 通过从发送状态指令到 UE的状态改变之前 的时间间隔内, 按照预设的调度策略进行针对该 UE的下行调度, 明确了基 站通过 HS-SCCH发送激活或去激活的指令后调度设备侧和 UE侧的行为, 使 调度设备的下行调度行为与 UE的状态相符合, 提高了系统的性能。 实施例二
本发明实施例提供了一种调度方法, 该方法除了适用于 WCDMA (Wideband Code Division Multiple Access, 宽带码分多址)和 TDSCDMA ( Time Divis ion-Synchronous Code Division Multiple Access, 时分同 步的码分多址技术) 系统之外, 还可以应用于其他通信系统。 本发明实施 例仅以 WCDMA中的基站按照 R9版本协议调度 DC HSDPA用户为例进行说明, 但不限定于此。
参见图 2 , 方法流程具体如下:
201: 向 DC HSDPA UE发送状态指令, 该状态指令包括辅载波激活指令 或辅载波去激活指令;
其中, 由于本实施例的应用场景是针对 WCDMA的 R9版本协议中的 DC HSDPA用户, 也就是说, 当 UE为 DC HSDPA用户设备时, 该状态指令具体包 括辅载波激活指令或辅载波去激活指令。
具体地, 可以是网络设备, 比如基站, 通过 HS-SCCH向 UE发送状态指 令, 激活或去激活 UE的辅载波。 在 WCDMA系统中, 当向 UE发送辅载波激 活指令时, 是要将 UE的 SC HSDPA状态激活为 DC HSDPA状态; 当向 UE发 送辅载波去激活指令时, 是要将 UE的 DC HSDPA状态去激活为 SC HSDPA状 态。 可以理解的是, 在一次过程中, 状态指令只会是辅载波激活指令或辅 载波去激活指令中的一种, 且后续的流程大体类似。 本发明实施例的描述 中, 将两者放在一起描述的目的仅仅是为了叙述筒便。
202: 判断该 UE的状态是否改变, 如果否, 则执行步骤 203 , 如果是, 则执行步骤 204 ;
其中, 判断该 UE 的状态是否改变, 具体可以为根据是否获取到该 UE 的确认信息来判断该 UE的状态是否改变, 如果未获取到该 UE的反馈信息 (未获取到反馈信息, 也就肯定不会获取到确认信息), 或虽然获取到的反 馈信息, 但该反馈信息不是 ACK ( Acknowl edgement , 确认信息), 则判断该 UE的状态未改变。
具体地, 针对该步骤, 首先可以通过上行 HS-DPCCH获取该 UE的反馈 信息, 该反馈信息可能为 ACK、 NACK ( Nega t ive Acknowl edgement , 否认信 息)和 DTX ( Di scont inuous Transmi s s ion , 非连续发送) 中的一种。 反馈 信息可以存储在与基站通过 HS-SCCH发送状态指令的帧所对应的上行帧中。 如果未获取到反馈信息, 则判断该 UE的辅载波状态未改变; 如果获取到的 反馈信息是 NACK或 DTX (即不是 ACK ), 则也判断该 UE的辅载波状态未改 变; 如果获取到反馈信息是 ACK , 则判断该 UE的辅载波状态已经改变。
203 : 如果该 UE的状态未改变, 在该 UE的状态改变之前, 按照预设的 调度策略进行针对该 UE的下行调度, 在该 UE的状态改变之后, 执行步骤 204 ;
其中, 如果该 UE的状态未改变, 则在该 UE的状态改变之前, 按照预 设的调度策略进行针对该 UE的下行调度, 该预设的调度策略保证在辅载波 上的调度行为与该 UE的辅载波状态相符合。此处的预设的调度策略具体为: 不进行针对该 UE的下行调度; 或,
按照向该 UE发送状态指令前原有的调度方式进行针对该 UE的下行调 度; 或,
只在主载波进行针对该 UE的下行调度。
具体地, 不进行针对该 UE的下行调度, 即从向 UE发送状态指令到 UE 的辅载波状态改变的时间间隔内, 基站侧不通过主载波和辅载波向该 UE下 发任何调度的数据。 同时, 接收该 UE发送的上行帧。
按照向该 UE发送状态指令前原有的调度方式进行针对该 UE的下行调 度, 即从向 UE发送状态指令到 UE的辅载波状态改变的时间间隔内, 基站 侧按照向该 UE发送状态指令前原有的调度方式向该 UE下发数据。 同时, 接收该 UE发送的上行帧。
只在主载波进行针对该 UE的下行调度, 即从向 UE发送状态指令到 UE 的辅载波状态改变的时间间隔内, 基站侧只通过主载波调度该 UE , 向该 UE 下发数据。 同时, 接收该 UE发送的上行帧。
在实际应用中, 可以选择上述三种预设的调度策略中的任意一种来实 施。
进一步地, UE的状态未改变包括两种情况: 第一种情况是未获取到反馈信息, 此种情况下, 继续获取反馈信息; 第二种情况是获取到了反馈信息但不是 ACK, 此种情况下, 可以重复执 行向 UE发送状态指令的步骤。
在第二种情况下, 当重复执行向 UE发送状态指令的步骤的次数超过最 大重传次数后, 可以按照向该 UE发送状态指令前原有的调度方式进行针对 该 UE的下行调度。 其中, 本发明实施例不对最大重传次数进行具体限定, 可以根据实际情况进行设定, 如可以设为 4次。
总之, 无论未获取到反馈信息或获取到的反馈信息为 NACK或 DTX, 又 或者重复执行向 UE发送状态指令的过程当中, 该 UE的状态均未改变, 在 该 UE的状态改变之前, 按照预设的调度策略进行针对该 UE的下行调度, 并在该 UE的状态改变之后, 执行步骤 204。
204: 如果该 UE 的状态已改变, 则按照状态指令指定的状态进行针对 该 UE的下行调度, 流程结束;
具体地, 一旦确定 UE的状态发生改变, 基站则按照状态指令指定的辅 载波激活或去激活状态, 进行针对该 UE的下行调度。 比如, 如果 UE状态 改变后的辅载波为激活状态, 则通过主载波和辅载波进行针对该 UE的下行 调度; 如果 UE状态改变后的辅载波为去激活状态, 则通过主载波进行针对 该 UE的下行调度。
另一方面, 当 UE 的状态改变后, 立即按照改变后的状态进行上行 HS-DPCCH帧发送。
进一步地, 针对本发明实施例提供的方法, 具体举例说明如下: 每个帧占用的时间为 1个 TTI , lTTI=3s lo t (时隙)。 基站完全下发一 条状态指令需要 1个 TTI , 状态指令完全下发后的 4个 TTI后 UE返回反馈 信息。 当针对某一 UE发送状态指令后, 根据 UE的反馈信息是否为 ACK判 断 UE的状态是否改变, 按照定时关系分以下两种情况进行处理:
第一种情况: 反馈信息是 ACK, 参见图 3: 在第 1个 TTI , 通过 HS-SCCH向 UE发送状态指令;
在第 1至第 5个 TTI内未获取到反馈信息, 这段时间间隔内 UE的状态 未改变, 根据预设的调度策略进行针对该 UE的下行调度;
在第 6个 TTI ,基站获取到 UE的反馈信息, 该反馈信息从 UE通过上行 HS-DPCCH发送的与 HS-SCCH的状态指令对应的帧中获取, 并判断为 ACK; 在第 6 个 TTI , 基站开始按照状态指令指定的辅载波状态进行针对该 UE的下行调度;
UE的辅载波状态改变后立即按照改变后的状态进行上行 HS-DPCCH帧发 送。
第二种情况: 反馈信息是 NACK或 DTX, 参见图 4 :
在第 1个 TTI , 通过 HS-SCCH向 UE发送状态指令;
在第 1至第 5个 TTI内未获取到反馈信息, 这段时间间隔内 UE的状态 未改变, 根据预设的调度策略进行针对该 UE的下行调度;
在第 6个 TTI ,基站获取到 UE的反馈信息, 该反馈信息从 UE通过上行 HS-DPCCH发送的与 HS-SCCH的状态指令对应的帧中获取,并判断为 NACK或 DTX;
在第 7个 TTI向 UE重传状态指令;
在第 6 X N+6 ( N为大于等于 1的自然数, N表示重传次数)个 TTI基站 获取到 UE 的反馈信息, 该反馈信息从 UE 通过上行 HS-DPCCH 发送的与 HS-SCCH的状态指令对应的帧中获取, 对该反馈信息进行判断:
如果判断为 ACK, 则按第一种情况进行处理, 即在第 6 X N+6 ( N为大于 等于 1的自然数, N表示重传次数)个 TTI基站开始按照状态指令指定的状 态进行针对该 UE的下行调度, 该 UE的状态改变后立即按照改变后的状态 通过上行 HS-DPCCH进行帧的发送;
如果判断为 NACK或 DTX, 则继续向 UE重传状态指令, 其中从第 1个
TTI至收到 ACK (即 UE的状态改变)或达到最大重传次数期间, 都根据预 设的调度策略进行针对该 UE的下行调度。
当重传的次数超过最大重传次数后, 按照向 UE发送状态指令前原有的 调度方式进行针对该 UE的下行调度。
本发明实施例提供的方法, 通过从发送状态指令到 UE的状态改变之前 的时间间隔内, 按照预设的调度策略进行针对该 UE的下行调度, 明确了基 站通过 HS-SCCH发送激活或去激活的指令后调度设备侧和 UE侧的行为, 使 调度设备的下行调度行为与 UE的状态相符合, 提高了系统的性能, 具体如 下:
当预设的策略为从发送状态指令到 UE的状态改变的时间间隔内, 不进 行针对该 UE的下行调度时, 筒化了系统实现, 避免了基站侧调度和 UE的 辅载波状态可能不一致导致的数据帧的丢失及丢失后引起的重传; 同时, 在不进行针对该 UE的下行调度的这段时间间隔内, 基站可以调度其他 UE , 保障了基站的下行吞吐率和系统的稳定性。 适用于辅载波激活去激活场景。
当预设的策略为从发送状态指令到 UE的状态改变的时间间隔内, 按照 向 UE发送状态指令前原有的调度方式进行针对该 UE的下行调度时, 使基 站侧在主载波和辅载波上的数据调度和接收与 UE的状态始终保持一致; 同 时, 按照向 UE发送状态指令前原有的调度方式进行针对该 UE的下行调度 还降低了基站侧处理的复杂度, 在信道条件较好的情况下, UE侧的数据下 载感受也不会下降。 主要适用于辅载波去激活场景。
当预设的策略为从发送状态指令到 UE的状态改变的时间间隔内, 只在 主载波进行针对该 UE的下行调度时, 无论激活或者去激活辅载波, UE通过 主载波的上行 HS-DPCCH发送的数据信息都不会受影响, 即基站侧可以正确 解析单载波的 ACK信息,也可以兼容解析双载波的主载波的 ACK信息, 使信 息的传送不受基站侧与 UE侧状态不一致的影响; 同时, 解决了在指令下发 后到 UE响应 ACK之前,基站侧调度数据的后续处理风险,提升了系统的可靠 性。 适用于辅载波激活和去激活场景。 实施例三
本发明实施例提供了一种调度方法, 该方法除了适用于 WCDMA 和 TDSCDMA系统之外, 还可以应用于其他通信系统。 本发明实施例仅以 WCDMA 中的基站按照 R7版本协议调度 HSDPA用户 (包括 DC HSDPA用户) 为例进 行说明, 但不限定于此。
参见图 5, 方法流程具体如下:
501: 向 HSDPA UE 发送状态指令, 该状态指令包括 HS-SCCH less operation才莫式激活指令或 HS—SCCH less operat ion才莫式去激活指令; 其中,由于本实施例的应用场景是针对 WCDMA的 R7版本协议中的 HSDPA 用户,也就是说, 当 UE为 HSDPA用户设备时,该状态指令具体包括 HS-SCCH less operat ion模式激活指令或 HS-SCCH less operat ion模式去激活指令。
具体地, 可以是网络设备, 比如基站, 通过 HS-SCCH向 UE发送状态指 令, 激活或去激活 UE的 HS-SCCH less operation模式。 在 WCDMA系统中, 当向 UE发送 HS-SCCH less operat ion模式激活指令时, 是要将 UE从原有 模式激活为 HS- SCCH less operation模式; 当向 UE发送 HS-SCCH less operation模式去激活指令时, 是要将 UE从 HS-SCCH less operation模式 去激活为原有模式。 当 UE的状态在 HS-SCCH less operation模式下, UE 既可以按照 HS-SCCH less operation方式接收数据, 也可以按照原有方式, 即非 HS-SCCH less operation 方式接收数据。 但是如果 UE 的状态在非 HS-SCCH less operat ion模式下, 那么 UE按照非 HS- SCCH less operation 方式接收数据。 因此,基站对于处于 HS-SCCH less operat ion模式下的 UE, 采用 HS-SCCH less operat ion方式或原有方式都可以进行调度发送; 而对 于处于非 HS-SCCH less operat ion模式下的 UE, 采用原有方式进行调度发 送。
可以理解的是, 在一次过程中, 状态指令只会是 HS-SCCH less operation模式激活指令或 HS-SCCH less operat ion模式去激活指令中的 一种, 且后续的流程大体类似。 本发明实施例的描述中, 将两者放在一起 描述的目的仅仅是为了叙述筒便。
502: 判断该 UE的状态是否改变, 如果否, 则执行步骤 503, 如果是, 则执行步骤 504;
其中, 判断该 UE 的状态是否改变, 具体可以为根据是否获取到该 UE 的确认信息来判断该 UE的状态是否改变, 如果未获取到该 UE的反馈信息 (未获取到反馈信息, 也就肯定不会获取到确认信息), 或虽然获取到的反 馈信息, 但该反馈信息不是 ACK (Acknowledgement, 确认信息), 则判断该 UE的状态未改变。
具体地, 针对该步骤, 首先可以通过上行 HS-DPCCH获取该 UE的反馈 信息, 该反馈信息可能为 ACK 或 DTX。 反馈信息可以存储在与基站通过 HS-SCCH发送状态指令的帧所对应的上行帧中。如果未获取到反馈信息, 则 判断该 UE的 HS-SCCH less operat ion模式状态未改变; 如果获取到的反 馈信息是 DTX (即不是 ACK), 则也判断该 UE的 HS-SCCH less operation 模式状态未改变;如果获取到反馈信息是 ACK,则判断该 UE的 HS-SCCH less operat ion模式状态已经改变。
503: 如果该 UE的状态未改变, 在该 UE的状态改变之前, 按照预设的 调度策略进行针对该 UE的下行调度, 在该 UE的状态改变之后, 执行步骤 504;
其中, 如果该 UE的状态未改变, 则在该 UE的状态改变之前, 按照预 设的调度策略进行针对该 UE的下行调度, 该预设的调度策略保证下行调度 行为与该 UE采用的 HS-SCCH less operat ion模式相符合。 此处的预设的 调度策略具体为:
不进行针对该 UE的下行调度; 或,
按照向该 UE发送状态指令前原有的调度方式进行针对该 UE的下行调 度; 或,
按照非 HS-SCCH l es s operat ion模式进行针对该 UE的下行调度。 具体地, 不进行针对该 UE的下行调度, 即从向 UE发送状态指令到 UE 的 HS-SCCH les s operat ion模式状态改变的时间间隔内, 基站侧不再对该 UE进行调度发送处理。 同时, 接收该 UE发送的上行帧。
按照向该 UE发送状态指令前原有的调度方式进行针对该 UE的下行调 度, 即从向 UE发送状态指令到 UE的 HS-SCCH l es s operat ion模式状态改 变的时间间隔内, 基站侧按照向该 UE发送状态指令前原有的调度方式向该 UE下发数据。 同时, 接收该 UE发送的上行帧。
按照非 HS- SCCH les s operat ion模式进行针对该 UE的下行调度, 即 从向 UE发送状态指令到 UE的 HS-SCCH l es s operat ion模式状态改变的时 间间隔内, 基站侧按照非 HS-SCCH l es s operat ion模式(即原有方式)调 度该 UE, 向该 UE下发数据。 同时, 接收该 UE发送的上行帧。
在实际应用中, 可以选择上述三种预设的调度策略中的任意一种来实 施。
进一步地, UE的状态未改变包括两种情况:
第一种情况是未获取到反馈信息, 此种情况下, 继续获取反馈信息; 第二种情况是获取到了反馈信息但不是 ACK, 此种情况下, 可以重复执 行向 UE发送状态指令的步骤。
在第二种情况下, 当重复执行向 UE发送状态指令的步骤的次数超过最 大重传次数后, 可以按照向该 UE发送状态指令前原有的调度方式进行针对 该 UE的下行调度。 其中, 本发明实施例不对最大重传次数进行具体限定, 可以根据实际情况进行设定, 如可以设为 4次。
总之, 无论未获取到反馈信息或获取到的反馈信息为 DTX, 又或者重复 执行向 UE发送状态指令的过程当中, 该 UE的状态均未改变, 在该 UE的状 态改变之前, 按照预设的调度策略进行针对该 UE 的下行调度, 并在该 UE 的状态改变之后, 执行步骤 504。
504: 如果该 UE 的状态已改变, 则按照状态指令指定的状态进行针对 该 UE的下行调度, 流程结束;
具体地, 一旦确定 UE 的状态发生改变, 基站则按照状态指令指定的 HS-SCCH less operat ion模式或非 HS-SCCH less operation模式, 进行针 对该 UE的下行调度。 比如, 如果 UE状态改变后为 HS-SCCH less operation 模式, 则可以采用 HS-SCCH less operat ion方式或原有方式进行针对该 UE 的下行调度; 如果 UE状态改变后为非 HS-SCCH less operation模式, 则 采用原有方式进行针对该 UE的下行调度。
另一方面, 当 UE 的状态改变后, 立即按照改变后的状态进行上行
HS-DPCCH帧发送。
进一步地, 针对本发明实施例提供的方法, 具体举例说明如下: 每个帧占用的时间为 1个 TTI, lTTI=3slot (时隙)。 基站完全下发一 条状态指令需要 1个 TTI, 状态指令完全下发后的 4个 TTI后 UE返回反馈 信息。 当针对某一 UE发送状态指令后, 根据 UE的反馈信息是否为 ACK判 断 UE的状态是否改变, 按照定时关系分以下两种情况进行处理:
第一种情况: 反馈信息是 ACK, 参见图 3:
在第 1个 TTI, 通过 HS-SCCH向 UE发送状态指令;
在第 1至第 5个 TTI内未获取到反馈信息, 这段时间间隔内 UE的状态 未改变, 根据预设的调度策略进行针对该 UE的下行调度;
在第 6个 TTI,基站获取到 UE的反馈信息, 该反馈信息从 UE通过上行 HS-DPCCH发送的与 HS-SCCH的状态指令对应的帧中获取, 并判断为 ACK; 在第 6个 TTI, 基站开始按照状态指令指定的 HS-SCCH less operation 模式状态进行针对该 UE的下行调度;
UE的 HS-SCCH less operation模式状态改变后立即按照改变后的状态 进行上行 HS-DPCCH帧发送。 第二种情况: 反馈信息是 DTX, 参见图 4 :
在第 1个 TTI , 通过 HS-SCCH向 UE发送状态指令;
在第 1至第 5个 TTI内未获取到反馈信息, 这段时间间隔内 UE的状态 未改变, 根据预设的调度策略进行针对该 UE的下行调度;
在第 6个 TTI ,基站获取到 UE的反馈信息, 该反馈信息从 UE通过上行
HS-DPCCH发送的与 HS-SCCH的状态指令对应的帧中获取, 并判断为 DTX; 在第 7个 TTI向 UE重传状态指令;
在第 6 X N+6 ( N为大于等于 1的自然数, N表示重传次数)个 TTI基站 获取到 UE 的反馈信息, 该反馈信息从 UE 通过上行 HS-DPCCH 发送的与 HS-SCCH的状态指令对应的帧中获取, 对该反馈信息进行判断:
如果判断为 ACK, 则按第一种情况进行处理, 即在第 6 X N+6 ( N为大于 等于 1的自然数, N表示重传次数)个 TTI基站开始按照状态指令指定的状 态进行针对该 UE的下行调度, 该 UE的状态改变后立即按照改变后的状态 通过上行 HS-DPCCH进行帧的发送;
如果判断为 DTX, 则继续向 UE重传状态指令, 其中从第 1个 TTI至收 到 ACK (即 UE的状态改变)或达到最大重传次数期间, 都根据预设的调度 策略进行针对该 UE的下行调度。
当重传的次数超过最大重传次数后, 按照向 UE发送状态指令前原有的 调度方式进行针对该 UE的下行调度。
本发明实施例提供的方法, 通过从发送状态指令到 UE的状态改变之前 的时间间隔内, 按照预设的调度策略进行针对该 UE的下行调度, 明确了基 站通过 HS-SCCH发送激活或去激活的指令后调度设备侧和 UE侧的行为, 使 调度设备的下行调度行为与 UE的状态相符合, 提高了系统的性能, 具体如 下:
当预设的策略为从发送状态指令到 UE的状态改变的时间间隔内, 不进 行针对该 UE的下行调度时, 筒化了系统实现, 使基站侧的数据调度和接收 与 UE状态始终保持一致, 避免了可能出现的数据帧的丢失以至于引起高层 重传; 同时, 基站侧可以在不调度该 UE的时间段内调度其他 UE, 提高基站 下行吞吐率, 提升了系统性能。
当预设的策略为从发送状态指令到 UE的状态改变的时间间隔内, 按照 向 UE发送状态指令前原有的调度方式进行针对该 UE的下行调度时, 尽可 能降低了基站侧处理的复杂度; 在 UE返回 ACK之前, 对 UE的调度不做改 变, 在信道条件较好的情况下, 小区的吞吐率以及系统容量不会下降。
当预设的策略为从发送状态指令到 UE的状态改变的时间间隔内, 按照 非 HS-SCCH less operat ion模式进行针对该 UE的下行调度时, 无论 UE状 态是从 HS-SCCH less operation模式转换到非 HS-SCCH less operation 模式, 还是从非 HS- SCCH less operation 模式转换到 HS- SCCH less operation模式, UE都可以进行非 HS-SCCH less operation方式(即原有 方式) 的数据接收, 这样避免了采用 HS-SCCH less operat ion方式调度发 送在激活去激活过程中可能出现的丢帧。 实施例四
本发明实施例提供了一种调度设备, 该设备除了适用于 WCDMA 和 TDSCDMA系统之外, 还可以应用于其他通信系统。 本发明实施例仅以 WCDMA 中的基站作为调度设备调度 UE为例进行说明, 但不限定于此。 在 WCDMA系 统中, 针对 R9版本协议中的 DC HSDPA用户, 当向 UE发送辅载波激活指令 时, 是要将 UE的 SC HSDPA状态激活为 DC HSDPA状态; 当向 UE发送辅载 波去激活指令时, 是要将 UE的 DC HSDPA状态去激活为 SC HSDPA状态; 针 对 R7版本协议中的 HSDPA用户, 当向 UE发送 HS-SCCH less operation模 式激活指令时, 是要将 UE从原有模式激活为 HS-SCCH less operation模 式; 当向 UE发送 HS-SCCH less operat ion模式去激活指令时, 是要将 UE HS-SCCH less operat ion模式去激活为原有模式。 参见图 6 , 该设备包括:
发送模块 601 , 用于向 HSDPA UE发送状态指令, 该状态指令包括激活 指令或去激活指令;
判断模块 602 , 用于在发送模块 601向 HSDPA UE发送状态指令后, 判 断该 UE的状态是否改变;
调度模块 603 , 用于在判断模块 602判断该 UE的状态改变之前, 按照 预设的调度策略进行针对该 UE的下行调度, 该预设的调度策略保证下行调 度行为与该 UE的状态相符合。
其中, 当该 UE为 DC HSDPA用户设备时, 发送模块 601向该 UE发送的 状态指令具体包括辅载波激活指令或辅载波去激活指令。 当向 UE发送辅载 波激活指令时, 是要将 UE的 SC HSDPA状态激活为 DC HSDPA状态; 当向 UE 发送辅载波去激活指令时, 是要将 UE的 DC HSDPA状态去激活为 SC HSDPA 状态。
相应地, 该预设的调度策略保证在辅载波上的调度行为与该 UE的辅载 波状态相符合, 调度模块 603按照预设的调度策略进行针对该 UE的下行调 度的具体方式为: 不进行针对该 UE的下行调度; 或, 按照向该 UE发送状 态指令前原有的调度方式进行针对该 UE的下行调度; 或, 只在主载波进行 针对该 UE的下行调度。 具体地, 不进行针对该 UE的下行调度, 即从向 UE 发送状态指令到 UE的辅载波状态改变的时间间隔内, 基站侧不通过主载波 和辅载波针向该 UE下发任何调度的数据。 同时, 接收该 UE发送的上行帧。 按照向该 UE发送状态指令前原有的调度方式进行针对该 UE的下行调度, 即从向 UE发送状态指令到 UE的辅载波状态改变的时间间隔内, 基站侧按 照向该 UE发送状态指令前原有的调度方式向该 UE下发数据。 同时, 接收 该 UE发送的上行帧。 只在主载波进行针对该 UE的下行调度, 即从向 UE发 送状态指令到 UE的辅载波状态改变的时间间隔内, 基站侧只通过主载波调 度该 UE , 向该 UE下发数据。 同时, 接收该 UE发送的上行帧。 在实际应用 中, 可以选择上述三种预设的调度策略中的任意一种来实施。
当该 UE为 HSDPA用户设备时, 发送模块 601向该 UE发送的状态指令 具体包括 HS-SCCH less operat ion模式激活指令或 HS-SCCH less operation 模式去激活指令。 当向 UE发送 HS-SCCH less operat ion模式激活指令时, 是要将 UE从原有模式激活为 HS-SCCH less operation模式; 当向 UE发送 HS-SCCH less operat ion模式去激活指令时, 是要将 UE从 HS- SCCH less operat ion模式去激活为原有模式。当 UE的状态在 HS-SCCH less operation 模式下, UE既可以按照 HS-SCCH less operation方式接收数据, 也可以按 照原有方式, 即非 HS-SCCH less operation 方式接收数据。 但是如果 UE 的状态在非 HS-SCCH less operat ion模式下, 那么 UE按照非 HS-SCCH less operation方式接收数据。 因此, 基站对于处于 HS- SCCH less operation 模式下的 UE, 采用 HS-SCCH less operat ion方式或原有方式都可以进行调 度发送; 而对于处于非 HS-SCCH less operation模式下的 UE, 采用原有方 式进行调度发送。
相应地, 该预设的调度策略保证下行调度行为与该 UE采用的 HS-SCCH less operation模式相符合, 调度模块 603按照预设的调度策略进行针对 该 UE的下行调度的具体方式为: 不进行针对该 UE的下行调度; 或, 按照 向该 UE发送状态指令前原有的调度方式进行针对该 UE的下行调度; 或, 按照非 HS-SCCH less operat ion模式进行针对该 UE的下行调度。 具体地, 不进行针对该 UE的下行调度,即从向 UE发送状态指令到 UE的 HS-SCCH less operation模式状态改变的时间间隔内, 基站侧不再对该 UE进行调度发送 处理。 同时, 接收该 UE发送的上行帧。 按照向该 UE发送状态指令前原有 的调度方式进行针对该 UE的下行调度, 即从向 UE发送状态指令到 UE的 HS-SCCH less operation模式状态改变的时间间隔内, 基站侧按照向该 UE 发送状态指令前原有的调度方式向该 UE下发数据。 同时, 接收该 UE发送 的上行帧。 按照非 HS-SCCH less operat ion模式进行针对该 UE的下行调 度, 即从向 UE发送状态指令到 UE的 HS-SCCH l es s operat ion模式状态改 变的时间间隔内, 基站侧按照非 HS-SCCH l es s operat ion模式(即原有方 式)调度该 UE, 向该 UE下发数据。 同时, 接收该 UE发送的上行帧。 在实 际应用中, 可以选择上述三种预设的调度策略中的任意一种来实施。
具体地, 判断模块 602 , 具体用于根据是否获取到该 UE的确认信息来 判断该 UE的状态是否改变, 如果未获取到该 UE的反馈信息或获取到的反 馈信息不是确认信息, 则判断该 UE的状态未改变。
进一步地, UE的状态未改变包括两种情况: 第一种情况是未获取到反 馈信息, 此种情况下, 继续获取反馈信息; 第二种情况是获取到了反馈信 息但不是 ACK, 此种情况下, 参见图 7 , 该设备还包括:
重传模块 604 , 用于在判断模块 602获取到的反馈信息不是 ACK, 则判 断该 UE的状态未改变之后, 重复执行发送模块 601向 UE发送状态指令的 步骤。
更进一步地, 参见图 8 , 该设备还包括:
还原模块 605 , 用于当重传模块 604重复执行发送模块 601向 UE发送 状态指令的步骤的次数超过最大重传次数后, 按照发送模块 601向该 UE发 送状态指令前原有的调度方式进行针对该 UE的下行调度。 其中, 本发明实 施例不对最大重传次数进行具体限定, 可以根据实际情况进行设定, 如可 以设为 4次。
另一方面, 如果该 UE的状态已改变, 则调度模块 603按照状态指令指 定的状态进行针对该 UE的下行调度, 此时 UE按照改变后的状态进行上行 HS-DPCCH帧发送。
本发明实施例提供的调度设备中的模块在实际应用时, 具体举例说明 如下:
每个帧占用的时间为 1个 TTI , lTTI=3s lot (时隙)。 发送模块 601完 全下发一条状态指令需要 1个 TTI , 状态指令完全下发后的 4个 TTI后 UE 返回反馈信息。 当针对某一 UE发送状态指令后, 根据 UE的反馈信息是否 为 ACK判断 UE的状态是否改变, 按照定时关系分以下两种情况进行处理: 第一种情况: 反馈信息是 ACK, 参见图 3:
在第 1个 TTI , 发送模块 601通过 HS-SCCH向 UE发送状态指令; 在第 1至第 5个 TTI内未获取到反馈信息, 判断模块 602判断该 UE的 状态未改变, 这段时间间隔内, 调度模块 603按照预设的调度策略进行针 对该 UE的下行调度;
在第 6个 TTI ,基站获取到 UE的反馈信息, 该反馈信息从 UE通过上行 HS-DPCCH发送的与 HS-SCCH的状态指令对应的帧中获取, 并通过判断模块 602判断为 ACK, 则从第 6个 TTI开始, 调度模块 603开始按照状态指令指 定的状态进行针对该 UE的下行调度。 同时, UE的状态改变后立即按照改变 后的状态进行上行 HS-DPCCH帧发送。
第二种情况: 反馈信息不是 ACK, 参见图 4:
在第 1个 TTI , 发送模块 601通过 HS-SCCH向 UE发送状态指令; 在第 1至第 5个 TTI内未获取到反馈信息, 判断模块 602判断该 UE的 状态未改变, 这段时间间隔内, 调度模块 603按照预设的调度策略进行针 对该 UE的下行调度;
在第 6个 TTI ,基站获取到 UE的反馈信息, 该反馈信息从 UE通过上行 HS-DPCCH发送的与 HS-SCCH的状态指令对应的帧中获取, 并通过判断模块 602判断为不是 ACK;
在第 7个 TTI , 重传模块 604向 UE重传状态指令;
在第 6 X N+6 ( N为大于等于 1的自然数, N表示重传次数)个 TTI基站 获取到 UE 的反馈信息, 该反馈信息从 UE 通过上行 HS-DPCCH 发送的与 HS-SCCH的状态指令对应的帧中获取,判断模块 602对该反馈信息进行判断: 如果判断为 ACK, 则按第一种情况进行处理, 即在第 6 X N+6 ( N为大于 等于 1的自然数, N表示重传次数)个 TTI开始按照状态指令指定的状态进 行针对该 UE的下行调度, 该 UE的状态改变后立即按照改变后的状态通过 上行 HS-DPCCH进行帧的发送;
如果判断为不是 ACK, 则继续向 UE重传状态指令, 其中从第 1个 TTI 至收到 ACK (即 UE的状态改变 )或达到最大重传次数期间, 都根据预设的 调度策略进行针对该 UE的下行调度。
当重传的次数超过最大重传次数后,用还原模块 605按照发送模块 601 向该 UE发送状态指令前原有的调度方式进行针对该 UE的下行调度。
本发明实施例提供的设备, 通过从发送状态指令到 UE的状态改变之前 的时间间隔内, 按照预设的调度策略进行针对该 UE的下行调度, 明确了基 站通过 HS-SCCH发送激活或去激活的指令后调度设备侧和 UE侧的行为, 使 调度设备的下行调度行为与 UE的状态相符合, 提高了系统的性能。 实施例五
参见图 9 , 本发明实施例提供了一种调度系统, 该调度系统包括如实施 例四所述的调度设备 901 , 以及与上述调度设备通信的 HSDPA UE 902。
其中, 该调度系统既可以为 WCDMA和 TDSCDMA系统, 也可以是其他通 信系统, 本发明实施例对此不作具体限定。
综上所述, 本发明实施例通过从发送状态指令到 UE的状态改变之前的 时间间隔内, 按照预设的调度策略进行针对该 UE的下行调度, 明确了基站 通过 HS-SCCH发送激活或去激活的指令后调度设备侧和 UE侧的行为, 使调 度设备的下行调度行为与 UE的状态相符合, 提高了系统的性能。 需要说明的是: 上述实施例提供的调度设备在进行针对 UE的下行调度 时, 仅以上述各功能模块的划分进行举例说明, 实际应用中, 可以根据需 要而将上述功能分配由不同的功能模块完成, 即将设备的内部结构划分成 不同的功能模块, 以完成以上描述的全部或者部分功能。 另外, 上述实施 例提供的调度设备与调度方法实施例属于同一构思, 其具体实现过程详见 方法实施例, 这里不再赘述。
上述本发明实施例序号仅仅为了描述, 不代表实施例的优劣。
本发明实施例中的全部或部分步骤, 可以利用软件实现, 相应的软件 程序可以存储在可读取的存储介质中, 如光盘或硬盘等。
以上所述仅为本发明的较佳实施例, 并不用以限制本发明, 凡在本发 明的精神和原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在 本发明的保护范围之内。

Claims

权利要求
1、 一种调度方法, 其特征在于, 所述方法包括:
向高速下行分组接入 HSDPA用户设备发送状态指令, 所述状态指令包 括激活指令或去激活指令;
判断所述用户设备的状态是否改变;
在所述用户设备的状态改变之前, 按照预设的调度策略进行针对所述 设备的状态相符合。
2、 根据权利要求 1所述的方法, 其特征在于, 当所述用户设备为双载 波高速下行分组接入 DC HSDPA用户设备时, 所述状态指令具体包括辅载波 激活指令或辅载波去激活指令;
相应地, 所述预设的调度策略保证在辅载波上的调度行为与所述用户 设备的辅载波状态相符合, 所述按照预设的调度策略进行针对所述用户设 备的下行调度, 具体包括:
不进行针对所述用户设备的下行调度; 或,
按照向所述用户设备发送状态指令前原有的调度方式进行针对所述用 户设备的下行调度; 或,
只在主载波进行针对所述用户设备的下行调度。
3、 根据权利要求 1所述的方法, 其特征在于, 所述状态指令具体包括 无高速共享控制信道伴随 HS-SCCH les s operat ion模式激活指令或 HS-SCCH les s operat ion模式去激活指令;
相应地, 所述预设的调度策略保证下行调度行为与所述用户设备采用 的 HS-SCCH les s operat ion模式相符合, 所述按照预设的调度策略进行针 对所述用户设备的下行调度, 具体包括: 不进行针对所述用户设备的下行调度; 或,
按照向所述用户设备发送状态指令前原有的调度方式进行针对所述用 户设备的下行调度; 或,
按照非 HS-SCCH l es s opera t ion模式进行针对所述用户设备的下行调 度。
4、 根据权利要求 1-3任一权利要求所述的方法, 其特征在于, 所述判 断所述用户设备的状态是否改变, 具体包括:
根据是否获取到所述用户设备的确认信息来判断所述用户设备的状态 是否改变, 如果未获取到所述用户设备的反馈信息或获取到的所述反馈信 息不是确认信息, 则判断所述用户设备的状态未改变。
5、 根据权利要求 4所述的方法, 其特征在于, 所述获取到的所述反馈 信息不是确认信息, 则判断所述用户设备的状态未改变之后, 还包括: 重复执行所述向用户设备发送状态指令的步骤。
6、 根据权利要求 5所述的方法, 其特征在于, 所述重复执行所述向用 户设备发送状态指令的步骤之后, 还包括:
当重复执行所述向用户设备发送状态指令的步骤的次数超过最大重传 次数后, 按照向所述用户设备发送状态指令前原有的调度方式进行针对所 述用户设备的下行调度。
7、 一种调度设备, 其特征在于, 所述设备包括:
发送模块, 用于向高速下行分组接入 HSDPA用户设备发送状态指令, 所述状态指令包括激活指令或去激活指令;
判断模块, 用于在所述发送模块向 HSDPA用户设备发送状态指令后, 判断所述用户设备的状态是否改变;
调度模块, 用于在所述判断模块判断所述用户设备的状态改变之前, 按照预设的调度策略进行针对所述用户设备的下行调度, 所述预设的调度 策略保证下行调度行为与所述用户设备的状态相符合。
8、 根据权利要求 7所述的设备, 其特征在于, 当所述用户设备为双载 波高速下行分组接入 DC HSDPA用户设备时, 所述发送模块向所述用户设备 发送的状态指令具体包括辅载波激活指令或辅载波去激活指令;
相应地, 所述预设的调度策略保证在辅载波上的调度行为与所述用户 设备的辅载波状态相符合, 所述调度模块按照预设的调度策略进行针对所 述用户设备的下行调度的具体方式为:
不进行针对所述用户设备的下行调度; 或,
按照向所述用户设备发送状态指令前原有的调度方式进行针对所述用 户设备的下行调度; 或,
只在主载波进行针对所述用户设备的下行调度。
9、 根据权利要求 7所述的设备, 其特征在于, 所述发送模块向所述用 户设备发送的状态指令具体包括无高速共享控制信道伴随 HS-SCCH les s operat ion才莫式激活指令或 HS—SCCH l es s operat ion才莫式去激活指令; 相应地, 所述预设的调度策略保证下行调度行为与所述用户设备采用 的 HS-SCCH les s operat ion模式相符合, 所述调度模块按照预设的调度策 略进行针对所述用户设备的下行调度的具体方式为:
不进行针对所述用户设备的下行调度; 或,
按照向所述用户设备发送状态指令前原有的调度方式进行针对所述用 户设备的下行调度; 或,
按照非 HS-SCCH l es s operat ion模式进行针对所述用户设备的下行调 度。
1 0、 根据权利要求 7-9任一权利要求所述的设备, 其特征在于, 所述 判断模块具体用于根据是否获取到所述用户设备的确认信息来判断所述用 户设备的状态是否改变, 如果未获取到所述用户设备的反馈信息或获取到 的所述反馈信息不是确认信息, 则判断所述用户设备的状态未改变。
1 1、 根据权利要求 10所述的设备, 其特征在于, 所述设备还包括: 重传模块, 用于在所述判断模块获取到的所述反馈信息不是确认信息, 则判断所述用户设备的状态未改变之后, 重复执行所述发送模块向用户设 备发送状态指令的步骤。
12、 根据权利要求 11所述的设备, 其特征在于, 所述设备还包括: 还原模块, 用于当所述重传模块重复执行所述发送模块向用户设备发 送状态指令的步骤的次数超过最大重传次数后, 按照所述发送模块向所述 用户设备发送状态指令前原有的调度方式进行针对所述用户设备的下行调 度。
1 3、 一种调度系统, 其特征在于, 所述调度系统包括如权利要求 7-12 任一权利要求所述的调度设备, 以及与所述调度设备通信的高速下行分组 接入 HSDPA用户设备。
PCT/CN2011/082838 2010-11-26 2011-11-24 调度方法、设备和系统 WO2012068999A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201010575916.1 2010-11-26
CN201010575916 2010-11-26
CN201110027925.1 2011-01-26
CN201110027925.1A CN102065562B (zh) 2010-11-26 2011-01-26 调度方法、设备和系统

Publications (1)

Publication Number Publication Date
WO2012068999A1 true WO2012068999A1 (zh) 2012-05-31

Family

ID=44000589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/082838 WO2012068999A1 (zh) 2010-11-26 2011-11-24 调度方法、设备和系统

Country Status (2)

Country Link
CN (1) CN102065562B (zh)
WO (1) WO2012068999A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102065562B (zh) * 2010-11-26 2013-11-06 华为技术有限公司 调度方法、设备和系统
CN113170306A (zh) * 2019-06-14 2021-07-23 谷歌有限责任公司 通信设备的节能

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101361389A (zh) * 2005-10-27 2009-02-04 高通股份有限公司 用于无线通信系统中的命令处理的方法和设备
CN101431370A (zh) * 2007-11-09 2009-05-13 华为技术有限公司 控制高速下行分组接入系统工作模式的方法、装置及系统
CN101600245A (zh) * 2009-06-30 2009-12-09 中兴通讯股份有限公司 双载波hsdpa中辅载波激活与去激活方法及装置
US20100034176A1 (en) * 2008-08-08 2010-02-11 Samsung Electronics Co., Ltd. Method and apparatus for dynamically activating and deactivating a supplementary cell for a wcdma system
CN102065562A (zh) * 2010-11-26 2011-05-18 华为技术有限公司 调度方法、设备和系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100837351B1 (ko) * 2002-04-06 2008-06-12 엘지전자 주식회사 이동통신 시스템의 무선링크 파라미터 갱신 방법
CN101409608B (zh) * 2007-10-12 2012-05-09 中兴通讯股份有限公司 混合自动重传请求的传输方法
CN101616454B (zh) * 2008-06-23 2012-12-12 华为技术有限公司 数据传输方法、装置及通信系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101361389A (zh) * 2005-10-27 2009-02-04 高通股份有限公司 用于无线通信系统中的命令处理的方法和设备
CN101431370A (zh) * 2007-11-09 2009-05-13 华为技术有限公司 控制高速下行分组接入系统工作模式的方法、装置及系统
US20100034176A1 (en) * 2008-08-08 2010-02-11 Samsung Electronics Co., Ltd. Method and apparatus for dynamically activating and deactivating a supplementary cell for a wcdma system
CN101600245A (zh) * 2009-06-30 2009-12-09 中兴通讯股份有限公司 双载波hsdpa中辅载波激活与去激活方法及装置
CN102065562A (zh) * 2010-11-26 2011-05-18 华为技术有限公司 调度方法、设备和系统

Also Published As

Publication number Publication date
CN102065562B (zh) 2013-11-06
CN102065562A (zh) 2011-05-18

Similar Documents

Publication Publication Date Title
TWI364952B (en) Method of enhancing continuous packet connectivity in a wireless communications system and related apparatus
JP5180309B2 (ja) 音声及びデータパケット送信のための無線通信システムにおける送信装置内でのタイマの運用
RU2336641C2 (ru) Способ управления передачей, мобильная станция, базовая радиостанция и контроллер радиосети
US7924776B2 (en) Auxiliary ACK channel feedback for control channels and broadcast multicast signals
KR101073915B1 (ko) 자동 재전송 기능을 가지는 이동통신 시스템에서, 제어정보 전송 방법
US20080175177A1 (en) Method of enhancing continuous packet connectivity in a wireless communications system and related apparatus
JP4954189B2 (ja) 無線通信システムにおいて不連続受信機能を改善する方法及び装置
EP2009832B1 (en) Methods and apparatus for H-ARQ process memory management
US8942162B2 (en) Method and apparatus of continuous packet connectivity enhancement in a wireless communications system
WO2017166213A1 (zh) 一种数据传输方法及装置
WO2007123377A1 (en) Method and apparatus for performing harq of packet in a mobile communication system
JP5372640B2 (ja) Harq機能を改善する方法及び通信装置
WO2021170136A1 (zh) 一种通信方法及装置
WO2020029840A1 (zh) 一种混合自动重传请求传输方法和装置
CN103338501B (zh) 移动通信系统中控制非连续接收期间活跃期的方法和装置
CN101568153A (zh) 一种实时小分组业务的传输方法及装置
JP2007267374A (ja) データ伝送レートを制御する方法とシステム
JP2005517370A6 (ja) 無線通信システム
WO2012068999A1 (zh) 调度方法、设备和系统
CN101610545B (zh) 时分同步码分多址系统中的数据包收发方法及设备
WO2010124452A1 (zh) 多载波高速上行分组接入发送的控制方法、装置和系统
EP4307600A2 (en) Hybrid automatic repeat request method, semi-persistent scheduling method, and communication apparatus
TW202308437A (zh) 避免存續時間錯誤的方法和相關裝置
KR20050098995A (ko) 무선 패킷 통신 시스템에서의 데이터 패킷 재전송 제어 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11842729

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11842729

Country of ref document: EP

Kind code of ref document: A1