WO2012068993A1 - 直接式被动激光角位传感器 - Google Patents

直接式被动激光角位传感器 Download PDF

Info

Publication number
WO2012068993A1
WO2012068993A1 PCT/CN2011/082750 CN2011082750W WO2012068993A1 WO 2012068993 A1 WO2012068993 A1 WO 2012068993A1 CN 2011082750 W CN2011082750 W CN 2011082750W WO 2012068993 A1 WO2012068993 A1 WO 2012068993A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
angular position
identifier
mark
position sensor
Prior art date
Application number
PCT/CN2011/082750
Other languages
English (en)
French (fr)
Inventor
曹伟龙
Original Assignee
上海宏曲电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海宏曲电子科技有限公司 filed Critical 上海宏曲电子科技有限公司
Publication of WO2012068993A1 publication Critical patent/WO2012068993A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes

Definitions

  • the present invention relates to a sensing device, and more particularly to an angular position sensor for a vehicle.
  • the detection of angular position can be done in many ways. Potentiometers, Hall elements, variable capacitors, rotary encoders, etc. can all be used as sensors for detecting angular positions. These devices have a common form of use: they are A linkage mechanism drives the devices to rotate in synchronization with the detection object. When rotating, the sensor generates numerical changes in magnetism, electricity, pulses, and the like. The problem is: 1, the linkage organization will inevitably produce accuracy errors, and the accuracy is poor.
  • the detection of the rudder angle is a linkage mechanism based on the principle that the parallelograms are parallel to each other, and the actual accuracy is difficult to reach 0.1 degrees.
  • the object of the present invention is to invent a direct reading of angular position change information directly along with an object to be detected Direct passive laser angular position sensor.
  • the direct passive laser angular position sensor is composed of a laser identifier, a marking member, a circuit board and an outer casing, and the laser identifier, the marking member and the circuit board are sealed in the outer casing, and the markings are arranged on the marking member.
  • a mark indicates a value.
  • the laser recognizer can read the mark on the mark.
  • the board can convert the mark read by the laser recognizer into a format that can be directly used by encoding and decoding. Digital information.
  • the feature is that the identifier is fixed on the object to be detected, the laser identifier is fixed, and the reading port of the laser identifier is opposite to the identifier on the identifier.
  • the length of the identifier on the identifier is greater than the length of the path through which the read port passes on the identifier.
  • the identifier includes corner information and verification information.
  • the identifier has a plane identifier and a stereo identifier.
  • the accuracy of the present invention is quite high and can be applied to various angular position detection applications.
  • Figure 1 is a side elevational cross-sectional view showing a parallel practice example.
  • Figure 2 is a side cross-sectional view of a vertical practice example.
  • Figure 1 is a side cross-sectional view of a parallel practice.
  • the detected object 60 is rotated, the fixed object 61 is fixed, the outer casing 50 is connected to the fixed object 61, and the outer casing 50 is fixed.
  • the laser identifier 10 is also fixed on the outer casing 50. moveable.
  • the reading port 11 of the laser discriminator 10 is opposite to the marking 21 on the marking member 20, and the marking member 20 is attached to the detected object 60, so the marking member 20 is synchronized with the detected object 60, when the detected object 60 When rotated, the marker 20 rotates in the same manner as the object 60 to be detected.
  • the mark 21 arranged on the identifier 20 is a mark that the laser recognizer 10 can recognize.
  • the mark 21 has a plane mark 22 and a three-dimensional mark 23, and a mark indicates a value.
  • the arrangement of the mark 21 on the mark 20 is detected and detected.
  • the direction in which the object 60 rotates is uniform.
  • the mark 21 includes angular position information and check information.
  • the length of the mark 21 on the mark member 20 is greater than the length of the path through which the read port 11 passes on the mark member 20.
  • the laser recognizer 10 reads through The port 11 reads the mark 21 on the identifier 20, and the read information is transmitted to the circuit board 40 through the connection line 12.
  • the circuit board 40 is composed of the electronic component 41, and the information that the laser recognizer 10 can read from the mark 21 can be read. It is formatted digital information that can be directly used by codec and calculation, and interface 51 is a component for accessing power and receiving information.
  • Fig. 2 is a side cross-sectional view showing a vertical practice example.
  • the configuration and principle of the vertical practice example are basically the same as those of the horizontal practice example of FIG. 1, except that the laser recognizer 10 of the vertical practice example reads the mark 21 in a vertical manner, and the mark member 20 is horizontally fixed to the object to be detected. 60 On the other hand, when the detected object 60 is rotated, the marker 20 is rotated in the same manner, and the laser recognizer 10 reads the rotation information of the detected object 60 from the rotating marker 20.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Optical Transform (AREA)

Description

直接式被动激光角位传感器
技术领域:
本发明涉及传感装置,特别涉及一种交通工具的角位传感器。
背景技术:
角位的检测可以用很多的方式来完成,如电位器、霍尔元件、可变电容器、旋转编码器等等都可以作为检测角位的传感器,这些器件有一个共同的使用形式:它们是由一个联动机构带动,使这些器件与检测对象同步转动,在转动的时候,传感器产生磁、电、脉冲等的数值变化。问题是:1,联动机构难免产生精度的误差,精确度差。如检测船舵角位是一个根据平行四边形对边平行的原理构成联动机构,实际精度很难达到0.1度。2,这些器件不是专门为角位传感设计的,数值变化的线性不完美,影响精确度。3,零位调整困难,有一类的检测如轮船的舵角、汽车的方向,基本不大于180度,但是需要确定零位,现有的用于角位检测的传感器件,除了旋转编码器都不能360度的检测,给零位的确定增加不少的麻烦。4,这些器件产生的都不是直接可以使用的数码信息,是需要转换的模拟或脉冲信号,影响整体的响应时间。
发明内容:
本发明的目的 是发明一种直接随同被检测物体一起转动的、直接读取角位变化信息的 直接式被动激光角位传感器。
本发明是这样实现的:直接式被动激光角位传感器由激光识别器、标识件、电路板和外壳组成,激光识别器、标识件、电路板密封在外壳内,标识件上排列着标识,标识是激光识别器可以识别的记号,一个记号表示一个数值,激光识别器能够读取标识件上的标识,电路板能够将激光识别器读取的标识通过编解码和计算成为可以直接使用的格式化数码信息。
其特征是:标识件固定在被检测物体上,激光识别器是固定的,激光识别器的读取口对着标识件上的标识。
其中,标识件上标识的长度大于读取口在标识件上经过的路径的长度。
其中,标识包含角位信息和校验信息。
其中,标识有平面标识和立体标识。
本发明的精度相当地高,可以适用于各种角位检测场合使用。
附图说明:
附图1是: 平行式实践例的 侧视剖面示意图。
附图2是: 垂直式实践例的 侧视剖面示意图。
在附图中:
10 :激光识别器, 11: 读取口,12:连接线,
20 : 标识件, 21:标识, 22:平面标识,23:立体标识,
40 :电路板,41:电子元件,
50 :外壳,51:接口,
60 :被检测物体,61:固定的物体。
具体实施方式:
参照图1, 附图1是 平行式实践例的 侧视剖面示意图。
图中,被检测物体60是转动的,固定的物体61是固定不动的,外壳50与固定的物体61连接,外壳50是固定不动的,激光识别器10连接在外壳50上也是固定不动的。
激光识别器10的读取口11对着标识件20上的标识21,标识件20是连接在被检测物体60上,所以标识件20是与被检测物体60同步行动的,当被检测物体60转动的时候,标识件20与被检测物体60也一样转动。
标识件20上排列的标识21,是激光识别器10可以识别的记号,标识21有平面标识22和立体标识23,一个记号表示一个数值,标识21在标识件20上的排列,是与被检测物体60转动的方向是一致的,标识21包含角位信息和校验信息,标识件20上标识21的长度大于读取口11在标识件20上经过的路径的长度,激光识别器10通过读取口11读取标识件20上的标识21,将读取的信息通过连接线12传递给电路板40,电路板40由电子元件41构成,能够将激光识别器10从标识21读取的信息,通过编解码和计算成为可以直接使用的格式化数码信息,接口51是接入电源和接出信息的部件。
图2是垂直式实践例的 侧视剖面示意图。
垂直式实践例的构造、原理与图1的水平式实践例基本相同,不同的是垂直式实践例的激光识别器10垂直的方式读取标识21,标识件20是水平状固定在 被检测物体60 上,当被检测物体60转动的时候,标识件20一样转动,激光识别器10从转动的标识件20上读取被检测物体60的转动信息。

Claims (1)

  1. 1 , 直接式被动激光角位传感器,由激光识别器(10)、标识件(20)、电路板(40)和外壳(50)组成,激光识别器(10)、标识件(20)、电路板(40)密封在外壳(50)内,标识件(20)上排列着标识(21),标识(21)是激光识别器(10)可以识别的记号,一个记号表示一个数值,激光识别器(10)能够读取标识件(20)上的标识(21),电路板(40)能够将激光识别器(10)读取的标识(21)通过编解码和计算成为可以直接使用的格式化数码信息,其特征是:标识件(20)固定在被检测物体(60)上,激光识别器(10)是固定的,激光识别器(10)的读取口(11)对着标识件(20)上的标识(21)。
    2 ,根据权利要求1所述的直接式被动激光角位传感器,其特征是:标识件(20)上标识(21)的长度大于读取口(11)在标识件(20)上经过的路径的长度。
    3 ,根据权利要求1所述的直接式被动激光角位传感器,其特征是:标识(21)包含角位信息和校验信息。
    4 ,根据权利要求1所述的直接式被动激光角位传感器,其特征是:标识(21)有平面标识(22)和立体标识(23)。
PCT/CN2011/082750 2010-11-25 2011-11-23 直接式被动激光角位传感器 WO2012068993A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN 201010559989 CN102478406A (zh) 2010-11-25 2010-11-25 直接式被动激光角位传感器
CN201010559989.1 2010-11-25

Publications (1)

Publication Number Publication Date
WO2012068993A1 true WO2012068993A1 (zh) 2012-05-31

Family

ID=46091118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/082750 WO2012068993A1 (zh) 2010-11-25 2011-11-23 直接式被动激光角位传感器

Country Status (2)

Country Link
CN (1) CN102478406A (zh)
WO (1) WO2012068993A1 (zh)

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1064453A (zh) * 1992-03-18 1992-09-16 荣成市大渔岛渔业综合公司船厂 舵角指示器
US5900930A (en) * 1997-10-21 1999-05-04 Eaton Corporation Angle sensor using a multi-pixel optical device
CN1311852A (zh) * 1998-07-24 2001-09-05 毕晓普创新有限公司 角度编码器
JP2005037333A (ja) * 2003-07-18 2005-02-10 Hamamatsu Photonics Kk アブソリュートエンコーダ及び角度検出方法
CN1641319A (zh) * 2004-01-14 2005-07-20 Trw车辆电气与零件有限两合公司 旋转角发射器和扫描旋转角发射器代码盘的方法
CN1826510A (zh) * 2003-06-11 2006-08-30 S.N.R.鲁尔门斯公司 通过识别二进制序列来确定方向盘的绝对角位置
CN201647117U (zh) * 2010-05-10 2010-11-24 上海宏曲电子科技有限公司 激光式数码舵角指示系统
CN201748903U (zh) * 2010-05-10 2011-02-16 上海宏曲电子科技有限公司 激光角位传感器
CN201903334U (zh) * 2010-12-08 2011-07-20 上海宏曲电子科技有限公司 直接式被动激光角位传感器
CN201903353U (zh) * 2010-12-08 2011-07-20 上海宏曲电子科技有限公司 间接式分体型被动激光角位传感器
CN201923311U (zh) * 2010-12-31 2011-08-10 上海宏曲电子科技有限公司 一种非水平的被动式半直接激光船舵角位发送装置
CN201926455U (zh) * 2010-12-08 2011-08-10 上海宏曲电子科技有限公司 直接式分体型被动激光角位传感器
CN201926453U (zh) * 2010-12-08 2011-08-10 上海宏曲电子科技有限公司 间接式被动激光角位传感器
CN201923304U (zh) * 2010-12-31 2011-08-10 上海宏曲电子科技有限公司 被动式直接激光船舵角位发送装置
CN201923307U (zh) * 2010-12-31 2011-08-10 上海宏曲电子科技有限公司 被动式半直接激光船舵角位发送装置
CN201923310U (zh) * 2010-12-31 2011-08-10 上海宏曲电子科技有限公司 一种非水平的被动式分体型直接激光船舵角位发送装置
CN201941972U (zh) * 2010-12-31 2011-08-24 上海宏曲电子科技有限公司 一种非水平的被动式半直接分体型激光船舵角位发送装置
CN201961526U (zh) * 2010-12-31 2011-09-07 上海宏曲电子科技有限公司 一种非水平的被动式直接激光船舵角位发送装置
CN201961525U (zh) * 2010-12-31 2011-09-07 上海宏曲电子科技有限公司 被动式分体型直接激光船舵角位发送装置
CN202003502U (zh) * 2010-12-31 2011-10-05 上海宏曲电子科技有限公司 被动式半直接分体型激光船舵角位发送装置
CN102241273A (zh) * 2010-05-10 2011-11-16 上海宏曲电子科技有限公司 激光式数码舵角指示系统
CN102243081A (zh) * 2010-05-10 2011-11-16 上海宏曲电子科技有限公司 激光角位传感器

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1064453A (zh) * 1992-03-18 1992-09-16 荣成市大渔岛渔业综合公司船厂 舵角指示器
US5900930A (en) * 1997-10-21 1999-05-04 Eaton Corporation Angle sensor using a multi-pixel optical device
CN1311852A (zh) * 1998-07-24 2001-09-05 毕晓普创新有限公司 角度编码器
CN1826510A (zh) * 2003-06-11 2006-08-30 S.N.R.鲁尔门斯公司 通过识别二进制序列来确定方向盘的绝对角位置
JP2005037333A (ja) * 2003-07-18 2005-02-10 Hamamatsu Photonics Kk アブソリュートエンコーダ及び角度検出方法
CN1641319A (zh) * 2004-01-14 2005-07-20 Trw车辆电气与零件有限两合公司 旋转角发射器和扫描旋转角发射器代码盘的方法
CN201647117U (zh) * 2010-05-10 2010-11-24 上海宏曲电子科技有限公司 激光式数码舵角指示系统
CN201748903U (zh) * 2010-05-10 2011-02-16 上海宏曲电子科技有限公司 激光角位传感器
CN102241273A (zh) * 2010-05-10 2011-11-16 上海宏曲电子科技有限公司 激光式数码舵角指示系统
CN102243081A (zh) * 2010-05-10 2011-11-16 上海宏曲电子科技有限公司 激光角位传感器
CN201903334U (zh) * 2010-12-08 2011-07-20 上海宏曲电子科技有限公司 直接式被动激光角位传感器
CN201903353U (zh) * 2010-12-08 2011-07-20 上海宏曲电子科技有限公司 间接式分体型被动激光角位传感器
CN201926455U (zh) * 2010-12-08 2011-08-10 上海宏曲电子科技有限公司 直接式分体型被动激光角位传感器
CN201926453U (zh) * 2010-12-08 2011-08-10 上海宏曲电子科技有限公司 间接式被动激光角位传感器
CN201923311U (zh) * 2010-12-31 2011-08-10 上海宏曲电子科技有限公司 一种非水平的被动式半直接激光船舵角位发送装置
CN201923310U (zh) * 2010-12-31 2011-08-10 上海宏曲电子科技有限公司 一种非水平的被动式分体型直接激光船舵角位发送装置
CN201941972U (zh) * 2010-12-31 2011-08-24 上海宏曲电子科技有限公司 一种非水平的被动式半直接分体型激光船舵角位发送装置
CN201961526U (zh) * 2010-12-31 2011-09-07 上海宏曲电子科技有限公司 一种非水平的被动式直接激光船舵角位发送装置
CN201961525U (zh) * 2010-12-31 2011-09-07 上海宏曲电子科技有限公司 被动式分体型直接激光船舵角位发送装置
CN202003502U (zh) * 2010-12-31 2011-10-05 上海宏曲电子科技有限公司 被动式半直接分体型激光船舵角位发送装置
CN201923307U (zh) * 2010-12-31 2011-08-10 上海宏曲电子科技有限公司 被动式半直接激光船舵角位发送装置
CN201923304U (zh) * 2010-12-31 2011-08-10 上海宏曲电子科技有限公司 被动式直接激光船舵角位发送装置

Also Published As

Publication number Publication date
CN102478406A (zh) 2012-05-30

Similar Documents

Publication Publication Date Title
US10260906B2 (en) Absolute rotary encoder
JP6414936B2 (ja) マルチターンアブソリュート磁気エンコーダ
JP6412014B2 (ja) 磁気角エンコーダおよび電子水道メータ
RU2008140739A (ru) Система определения ориентации на основе датчиков
CN104634367B (zh) 一种大中心孔结构的磁电式绝对位置传感器及测量绝对位置的方法
CN106595726B (zh) 一种基于缺齿结构的齿轮型磁性编码器
WO2012065883A3 (de) Volumenmessauswerteverfahren und -messeinrichtung
CN201903334U (zh) 直接式被动激光角位传感器
CN102435767A (zh) 一种一体式风速风向仪
WO2012068993A1 (zh) 直接式被动激光角位传感器
WO2012068995A1 (zh) 直接式主动激光角位传感器
CN201926455U (zh) 直接式分体型被动激光角位传感器
CN201903353U (zh) 间接式分体型被动激光角位传感器
WO2012068994A1 (zh) 直接式分体型被动激光角位传感器
WO2012068991A1 (zh) 间接式分体型被动激光角位传感器
CN201903335U (zh) 间接式主动激光角位传感器
CN201926453U (zh) 间接式被动激光角位传感器
WO2012068992A1 (zh) 间接式分体型主动激光角位传感器
WO2012068988A1 (zh) 间接式被动激光角位传感器
CN201926454U (zh) 直接式主动激光角位传感器
CN201926432U (zh) 直接式分体型主动激光角位传感器
CN201926433U (zh) 间接式分体型主动激光角位传感器
CN201413140Y (zh) 二自由度矢量型数字式倾角测试仪
CN103604448B (zh) 绝对式编码器
CN102478407A (zh) 间接式主动激光角位传感器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11843255

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11843255

Country of ref document: EP

Kind code of ref document: A1