WO2012068871A1 - 一种宽带同频干扰噪声估计和干扰抑制的方法及相应系统 - Google Patents

一种宽带同频干扰噪声估计和干扰抑制的方法及相应系统 Download PDF

Info

Publication number
WO2012068871A1
WO2012068871A1 PCT/CN2011/075918 CN2011075918W WO2012068871A1 WO 2012068871 A1 WO2012068871 A1 WO 2012068871A1 CN 2011075918 W CN2011075918 W CN 2011075918W WO 2012068871 A1 WO2012068871 A1 WO 2012068871A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
subcarrier
pilot
data stream
interference noise
Prior art date
Application number
PCT/CN2011/075918
Other languages
English (en)
French (fr)
Inventor
肖华华
宁迪浩
朱登魁
鲁照华
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2012068871A1 publication Critical patent/WO2012068871A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/20Arrangements for detecting or preventing errors in the information received using signal quality detector
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/022Channel estimation of frequency response
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0228Channel estimation using sounding signals with direct estimation from sounding signals
    • H04L25/023Channel estimation using sounding signals with direct estimation from sounding signals with extension to other symbols
    • H04L25/0232Channel estimation using sounding signals with direct estimation from sounding signals with extension to other symbols by interpolation between sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only

Definitions

  • the present invention relates to the field of communications, and in particular, to a method and a corresponding system for wideband co-channel interference noise estimation and interference suppression.
  • Wireless communication systems are always subject to various interferences, and the fourth generation of communication systems based on OFDMA (Orthogonal Frequency Division Multiple Access) technology (such as 4G (fourth generation mobile communication and its OFDM (Orthogonal Frequency Division Multiplexing) Co-Channel Interference (CCI).
  • OFDMA Orthogonal Frequency Division Multiple Access
  • 4G fourth generation mobile communication and its OFDM (Orthogonal Frequency Division Multiplexing) Co-Channel Interference (CCI).
  • CCI Co-Channel Interference
  • the fourth generation communication system widely uses Multiple-Input Multiple-Output (MIMO), and the MIMO system is widely used in the spatial dimension to combine and receive the diversity of signal response samples on multiple antennas.
  • MIMO Multiple-Input Multiple-Output
  • MRC Maximum Ratio Combining
  • the traditional Maximum Ratio Combining (MRC) technology has excellent performance in a noise-limited channel environment, but the performance is not ideal in a channel environment with limited interference, because The technology only utilizes the channel information of each antenna and does not exploit the statistical characteristics of the interference.
  • MRC Maximum Ratio Combining
  • IRC Interference Rejection Combining
  • the present invention provides a method for wideband co-channel interference noise estimation, which is used for receiving at an receiving end of an Orthogonal Frequency Division Multiplexing (OFDM) or Orthogonal Frequency Division Multiple Access (OFDMA) system.
  • OFDM Orthogonal Frequency Division Multiplexing
  • OFDMA Orthogonal Frequency Division Multiple Access
  • pilot subcarrier position For each pilot subcarrier corresponding to the data stream, according to the pilot signal sent by the transmitting end on the pilot subcarrier, the received signal on the pilot subcarrier, and the channel coefficient estimated value of the pilot subcarrier position Calculating an estimated value of the interference noise covariance matrix of the pilot subcarrier position;
  • the interference suppression area is a time-frequency two-dimensional resource block in the received data bearer area.
  • the interference suppression area is a time-frequency two-dimensional resource block in the received data bearer area.
  • the preliminary estimate of the data signal sent by the transmitting end on each data subcarrier corresponding to the data stream is obtained as follows:
  • the interference noise covariance matrix estimated value of each pilot subcarrier position corresponding to the data stream is pressed
  • the number of pilot subcarriers corresponding to the data stream; the pilot signal transmitted by the transmitting end on the first pilot subcarrier, and () is the received signal on the zth pilot subcarrier
  • the estimated channel coefficient of the zth pilot subcarrier position, (y p ⁇ i) - h p ( ⁇ is the conjugate transpose of the matrix ( , ⁇ - ⁇ ).
  • the estimated value of the interference noise covariance matrix of each data subcarrier position corresponding to the data stream is calculated by the following formula
  • the interference noise covariance matrix is calculated as follows:
  • R w Region of the data stream data corresponding to the J-th sub-carrier positions of interference noise covariance matrix ( ⁇ ) for interference suppression; W - in the region corresponding to the first data stream / D data subbands (/) for suppressing interference
  • the method further includes:
  • each interference noise estimation unit is a time-frequency two-dimensional resource block and wherein At least one pilot subcarrier and one data subcarrier;
  • the same weight is given to the interference noise covariance matrix estimation value of each pilot subcarrier position in the same interference noise estimation unit, which is the same interference noise estimation.
  • the interference noise covariance matrix estimates for each data subcarrier position in the unit are assigned the same weight.
  • the method further includes:
  • the interference suppression region is divided into interference noise estimation units, each of the interference noise estimation units is a time-frequency two-dimensional resource block and includes at least one pilot subcarrier and one data subcarrier, which are positive integers;
  • R ⁇ _ D m-th interference noise estimation means in the data stream corresponding to each data sub-carrier positions of interference and noise covariance matrix, ⁇ ⁇ , 2, ⁇ , ⁇
  • N 1 _ D (j) is an estimated value of the interference noise covariance matrix of the jth data subcarrier position corresponding to the data stream in the interference suppression region;
  • ⁇ ⁇ 1 is a weight assigned to the position of each pilot subcarrier in the first/interference noise estimating unit when R ⁇ -D is calculated;
  • 7ml is the weight assigned to the position of each data subcarrier in the third interference noise estimation unit when calculating R ⁇ -D; ⁇ ,
  • I is the number of pilot subcarrier indices included; the number of indexes of the included data subcarriers is calculated.
  • the channel coefficient estimation value of each pilot subcarrier position corresponding to the data stream is obtained in the following manner: the received signal on the pilot subcarrier and the transmitting end are sent on the pilot subcarrier The conjugate of the transmitted pilot signal is multiplied to obtain an estimated channel coefficient of the pilot subcarrier position; and the estimated channel coefficient of each data subcarrier position corresponding to the data stream by the transmitting end is obtained as follows: For each data subcarrier corresponding to the data stream, the weighted average of the channel coefficient estimation values of the respective pilot subcarrier positions corresponding to the data stream is used as the channel coefficient estimation value of the data subcarrier position.
  • the method further includes:
  • the interference suppression area is divided into f channel estimation units, each channel estimation unit is a time-frequency two-dimensional resource block and includes at least one pilot subcarrier and one data subcarrier, where f is a positive integer; For each data subcarrier corresponding to the stream, the weighted average of the channel coefficient estimation values of the respective pilot subcarrier positions corresponding to the data stream is used as the channel coefficient estimation value of the data subcarrier position, and the calculation formula is as follows:
  • ⁇ () is an estimated channel coefficient of the first pilot subcarrier position corresponding to the data stream in the interference suppression region
  • the weight of ⁇ (/) assigned to each pilot subcarrier in the channel estimation unit is ⁇ .
  • ⁇ ⁇ ′′ 1 , 0 ⁇ ⁇ 1 ,
  • indicates the number of pilot subcarriers included, and is at weight
  • the present invention also provides a system for wideband co-channel interference noise estimation, which is applied to a receiving end of an Orthogonal Frequency Division Multiplexing (OFDM) or Orthogonal Frequency Division Multiple Access (OFDMA) system, where the system is configured. And performing: performing interference noise estimation on a data stream carried in the interference suppression area, where the interference suppression area is a time-frequency two-dimensional resource block in the received data bearer area, the system includes:
  • a first device configured to: each pilot subcarrier corresponding to the data stream, according to a pilot signal sent by the transmitting end on the pilot subcarrier, a received signal on the pilot subcarrier, and the pilot Estimating the interference coefficient covariance matrix of the pilot subcarrier position by estimating the channel coefficient of the subcarrier position;
  • a second device configured to: for each data subcarrier corresponding to the data stream, according to a preliminary estimation value of a data signal sent by the transmitting end on the data subcarrier, a received signal on the data subcarrier, and the data subcarrier Estimating an interference noise covariance matrix of the data subcarrier position by estimating a channel coefficient of the carrier position;
  • a third device configured to: weight-average the estimated values of the interference pilot covariance matrix of each pilot subcarrier position corresponding to the data stream and the data subcarrier position of each data subcarrier corresponding to the data stream, As the interference noise covariance matrix of the data subcarrier position.
  • the system also includes a fourth device:
  • the fourth device is configured to: multiply the conjugate transpose of the channel coefficient estimation value of the data subcarrier position by the received signal on the data subcarrier; and then, the multiplied result is used as the transmitting end in the data A preliminary estimate of the data signal transmitted on the subcarrier; or, a hard decision is made on the multiplied result, and the result of the hard decision is used as a preliminary estimate of the data signal transmitted by the transmitting end on the data subcarrier.
  • the first device is configured to calculate interference noise of the pilot subcarrier position by using a calculation formula as follows
  • the number of pilot subcarriers corresponding to the data stream; the pilot signal transmitted by the transmitting end on the first pilot subcarrier, ( ) is the received signal on the zth pilot subcarrier, Zth pilot subcarrier
  • the channel coefficient estimate of the wave position, (y p (i)-h p ( ()) is the conjugate transpose of the matrix ( ⁇ i)-h p ( ());
  • the second device is configured to calculate an interference noise covariance matrix estimate for each data subcarrier position corresponding to the data stream by using the following formula:
  • the received signal, 4( ) is the channel coefficient estimate of the jth data subcarrier position, and (C/)-C/; ⁇ C/;)f represents the matrix
  • the system also includes a fifth device:
  • the fifth device is configured to: divide the interference suppression region into interference noise estimation units, each interference noise estimation unit is a time-frequency two-dimensional resource block and includes at least one pilot subcarrier and one data subcarrier. Is a positive integer;
  • the third device is configured to use each of the data subcarriers corresponding to the data stream by using the following calculation formula, and the interference and noise of each pilot subcarrier position corresponding to the data stream and each data subcarrier position.
  • the weighted average of the variance matrix estimates as the interference noise covariance matrix for the data subcarrier position:
  • R ⁇ _ D m-th interference noise estimation means in the data stream corresponding to each data sub-carrier positions of interference and noise covariance matrix, ⁇ ⁇ , 2, ⁇ , ⁇
  • / is a loop variable
  • N 1 _ D (j) is an estimated value of the interference noise covariance matrix of the jth data subcarrier position corresponding to the data stream in the interference suppression region;
  • I is the number of pilot subcarrier indices included;
  • is the number of indexes of the included data subcarriers, and R is calculated; ⁇ ⁇ used weights, ⁇ awake is greater than or equal to other weights; D preclude a weight value of 7 m i, TM other weights greater than or equal, / 1,2, ⁇ ⁇ , ⁇ .
  • the system also includes a sixth device and a seventh device;
  • the sixth device is configured to obtain, at the following manner, a channel coefficient estimation value of each pilot subcarrier position corresponding to the data stream at the transmitting end, and output the result to the first device: the received signal on the pilot subcarrier Multiplying a conjugate of a pilot signal transmitted by the transmitting end on the pilot subcarrier to obtain an estimated channel coefficient of the pilot subcarrier position;
  • the seventh device is configured to obtain an estimated channel coefficient value of each data subcarrier position corresponding to the data stream in the following manner, and output to the second device: each data subcarrier corresponding to the data stream, A weighted average of channel coefficient estimates for respective pilot subcarrier locations corresponding to the data stream is used as a channel coefficient estimate for the data subcarrier position.
  • the system also includes an eighth device;
  • the eighth device is configured to divide the interference suppression region into f channel estimation units, each channel estimation unit is a time-frequency two-dimensional resource block and includes at least one pilot subcarrier and one data subcarrier, where f is positive Integer
  • the seventh device is configured to use, as a calculation formula, a weighted average of channel coefficient estimates of respective pilot subcarrier positions corresponding to the data stream for each data subcarrier corresponding to the data stream.
  • Estimated channel coefficient of the data subcarrier position :
  • ⁇ () is an estimated channel coefficient of the first pilot subcarrier position corresponding to the data stream in the interference suppression region
  • the weight of ⁇ (/) assigned to each pilot subcarrier in the channel estimation unit is ⁇ .
  • ⁇ ⁇ ′′ 1 , 0 ⁇ ⁇ 1 ,
  • indicates the number of pilot subcarriers included, and is at weight
  • the present invention also provides a method for wideband co-channel interference suppression, which is applied to a receiving end of an Orthogonal Frequency Division Multiplexing (OFDM) or Orthogonal Frequency Division Multiple Access (OFDMA) system, in an interference suppression region, where When one data stream performs interference suppression, the method includes:
  • the interference suppression area is a time-frequency two-dimensional resource block in the received data bearer area.
  • the present invention also provides a system for wideband co-channel interference suppression applied to a receiving end of an Orthogonal Frequency Division Multiplexing (OFDM) or Orthogonal Frequency Division Multiple Access (OFDMA) system, the system being configured to Interference suppression is performed on a data stream carried in an interference suppression area, where the interference suppression area is a time-frequency two-dimensional resource block in the received data bearer area, and the system includes:
  • OFDM Orthogonal Frequency Division Multiplexing
  • OFDMA Orthogonal Frequency Division Multiple Access
  • a first subsystem configured to: obtain channel coefficient estimates and interference noise covariance matrices for each data subcarrier position corresponding to the data stream in the same manner as the system for wideband co-channel interference noise estimation described above;
  • a second subsystem configured to: perform data on each data subcarrier corresponding to the data stream according to the received signal on the data subcarrier, and the channel coefficient estimation value and the interference noise covariance matrix of the data subcarrier position Detecting, obtaining an estimated value of the data signal on the data subcarrier.
  • the statistical characteristics and channel information of the interference can be accurately estimated, and the interference is eliminated, so as to greatly improve the signal to interference and noise ratio of the system.
  • Figure 3 shows the interference suppression region pattern of two data streams in the embodiment of the present invention.
  • the estimation and suppression method for wideband co-channel interference in this embodiment is applied to an OFDM/OFDMA system.
  • the sender of the text can be a control device such as a station or a relay station, or a terminal device such as a mobile phone, a notebook computer, or a handheld computer.
  • the receiving end is configured to receive the data signal of the transmitting end, and the receiving end may be a terminal device such as a mobile phone, a notebook computer, a handheld computer, or a control device such as a base station or a relay station.
  • the receiving end divides the received data bearer area into one or more interference suppression areas, and each interference suppression area is a time-frequency two-dimensional resource block in the frame/field structure, that is, each interference suppression area includes multiple times in time.
  • a continuous OFDM/OFDMA symbol comprising a plurality of consecutive subcarriers in the frequency domain.
  • the receiving data bearer area may include a time-frequency two-dimensional resource block, and may also include a plurality of separate time-frequency two-dimensional resource blocks.
  • each of the independent time-frequency two-dimensional resource blocks is used as an interference. Suppress area.
  • the relatively independent time-frequency two-dimensional resource blocks in the received data bearer region may be further divided into multiple interference suppression regions.
  • the interference suppression region may carry one or more data streams, and each data stream corresponds to one or more data subcarriers and pilot subcarriers, and different data streams correspond to different pilot subcarriers.
  • the method includes:
  • Step 10 Multiply the received signal on each pilot subcarrier corresponding to the data stream and the conjugate of the corresponding pilot signal to obtain an estimated channel coefficient of the pilot subcarrier position, and then according to each pilot. a weighted average of channel coefficient estimates of the carrier locations, to obtain channel coefficient estimates for each data subcarrier location corresponding to the data stream;
  • Step 20 Obtain a preliminary estimated value of the data signal on the data subcarrier according to the channel coefficient estimation value of the data subcarrier position and the received signal on the data subcarrier for each data subcarrier corresponding to the data stream.
  • Step 30 Obtain an interference noise covariance matrix estimation value of the subcarrier position according to the data signal, the received signal, and the channel coefficient estimation value of the subcarrier position for each subcarrier corresponding to the data stream. Then, according to the weighted average of the estimated values of the interference noise covariance matrix of each subcarrier position, the interference noise covariance matrix of each data subcarrier position corresponding to the data stream is obtained; after step 30 is completed, the interference suppression region is completed. Broadband co-channel interference of the data stream Noise estimate.
  • Step 40 According to the obtained received signal on the data subcarrier corresponding to the data stream, and the channel coefficient estimation value and interference noise of the data subcarrier position Covariance matrix for data detection.
  • Step 1 Multiply the received signal on the pilot subcarrier by the conjugate of the pilot signal sent by the transmitting end on the pilot subcarrier for each pilot subcarrier corresponding to the data stream, to obtain the guide. Estimated channel coefficient of the frequency subcarrier position;
  • the first pilot subcarrier corresponding to the data stream in the interference suppression region is denoted as PsC (0, and the channel coefficient estimation value ⁇ ( ) at the PsC (i) position is obtained by:
  • Step 2 For each data subcarrier corresponding to the data stream in the interference suppression area, the receiving end weights the channel coefficient estimation value of each pilot subcarrier position in the interference suppression region as the data subcarrier position.
  • Channel coefficient estimate For each data subcarrier corresponding to the data stream in the interference suppression area, the receiving end weights the channel coefficient estimation value of each pilot subcarrier position in the interference suppression region as the data subcarrier position.
  • the channel coefficient estimate ( ⁇ ) of the position of the jth data subcarrier DsCG in the interference suppression region is obtained by:
  • ⁇ ⁇ 1, ⁇ , J is the number of data subcarriers in the interference suppression region
  • the channel estimation unit partitioning when the channel coefficient estimation value of a certain data subcarrier position is calculated according to the formula (2), the channel coefficient estimation value of each pilot subcarrier position in the same channel estimation unit is given. The same weight.
  • the constraint conditions of the above two embodiments may be combined as follows:
  • k ⁇ , 2, '-, K; a channel of each data subcarrier position corresponding to the data stream in the kth channel estimation unit
  • the coefficient estimates are equal, and it is recorded that the receiver calculates the 3 ⁇ 4 as follows:
  • step 20 when the receiving end initially estimates the data signal of the transmitting end on each data subcarrier by using the MRC combining algorithm, the formula is as follows:
  • the channel coefficient estimation value indicating the position of the _; data subcarrier DsCG corresponding to the data stream, /; ff represents a conjugate transpose of the matrix (_/ ⁇ ), indicating that the receiving end is on DsC(/) receive signal.
  • This U) can be directly used as a preliminary estimate of the data signal on the DsC() at the transmitting end.
  • a hard decision may be made on the calculated (_/ ⁇ ), and the hard decision result is used as a preliminary estimate of the data signal of the transmitting end on DsC().
  • the hard decision step includes: performing modulo square processing on the difference between each of the normalized constellation point symbols obtained by demodulating (_/ ⁇ ) and the current modulation mode, and using the smallest value as the hard The result of the judgment is:
  • the positive integer is a parameter related to the current modulation mode.
  • calculating the interference noise covariance matrix of each data subcarrier may specifically include: Step 1: For each pilot subcarrier corresponding to the data stream, according to the pilot transmitted by the transmitting end on the pilot subcarrier Calculating an interference noise covariance matrix estimation value of the pilot subcarrier position by using a signal, a received signal on the pilot subcarrier, and a channel coefficient estimation value of the pilot subcarrier position;
  • IP (y P ⁇ - ⁇ r)p ⁇ r)) ⁇ y P ⁇ ⁇ ⁇ ⁇ ) ⁇ (6)
  • the pilot signal transmitted by the transmitting end on PsC(z) is the received signal on PsC(z)
  • () is the estimated channel coefficient of PsC(i) position
  • ( ( ) - ⁇ Indicates the transposition of the matrix ( ()-, the meaning of other parameters are as above.
  • Step 2 Calculate each data subcarrier corresponding to the data stream in the interference suppression area according to a preliminary estimation value of the received signal and the data signal on the data subcarrier, and an estimated channel coefficient of the data subcarrier position. Obtain an interference noise covariance matrix estimate of the data subcarrier position; then the interference noise covariance matrix estimate D (') of the DsCG position is obtained by:
  • Step 3 For each data subcarrier corresponding to the data stream, weighted average of the estimated values of the interference noise covariance matrix of each pilot subcarrier position and data subcarrier position corresponding to the data stream, as the data subcarrier position Interference noise covariance matrix;
  • the interference noise covariance matrix of the first data subcarrier position corresponding to the data stream in the interference suppression region is denoted as R w _ D /), and then:
  • the interference noise covariance matrix of the data subcarrier position is expressed as R M for the data subcarrier position
  • R - D 0 is different, and R N1 - D (j) are still estimated.
  • the operation of data detection in the above step 40 is a conventional operation.
  • the estimated value of the data signal on the data subcarrier DsC(/) is denoted as ⁇ ⁇ ), with:
  • Hj h/U) - D (j) Aj) (9)
  • ⁇ ( ') is a conjugate transpose of 4 ( ;)
  • ⁇ ( ⁇ ⁇ indicates that the element of 4 ( ⁇ ) is conjugated
  • the inverse matrix of R - ( is R W _ D /) is
  • the obtained data signal estimation value on each data subcarrier can be sent to the demodulation decoding device to complete the detection of the data. .
  • the interference noise estimation and/or interference suppression may be performed on each data stream carried by the interference suppression region by using the foregoing method, and the weights may be different.
  • the data signal may not be initially estimated, and the interference noise of the data subcarrier position may be obtained by directly using the weighted average of the interference noise covariance matrix estimation values of the pilot subcarrier position. Covariance matrix. Therefore, the interference suppression area included in the received data bearer area may be used only when the number of pilot subcarriers corresponding to one or more data streams carried in the interference suppression area is less than a set value.
  • the method performs interference noise estimation and/or interference suppression on the one or more data streams in the interference suppression region, which may be equal to the number of receiving antennas at the receiving end or a multiple thereof.
  • the weighted averaging of the data subcarriers and the pilot subcarriers in the third step of calculating the interference noise covariance matrix of the subcarriers described above may be performed based on the interference noise estimating unit.
  • the division of the channel estimation unit and the interference noise estimation unit in the same interference suppression area may be the same or different.
  • the interference noise estimation unit partitioning when the interference noise covariance matrix of a certain subcarrier position is calculated according to formula (8), the interference noise covariance matrix of each pilot subcarrier position in the same interference noise estimation unit is used.
  • the estimated values are assigned the same weight, and the same weight is assigned to the estimated value of the interference noise covariance matrix of each data subcarrier position in the same interference noise estimating unit.
  • the same interference noise is calculated according to formula (8)
  • the constraints of the above two embodiments may be used simultaneously, as follows:
  • an interference noise covariance matrix estimation value of a pilot subcarrier position corresponding to the data stream is defined, denoted as p , and has:
  • / is a loop variable
  • / 1,2, ⁇ , ⁇ ; for calculating 3 ⁇ 4 ⁇ , the weight of ⁇ corresponding to each pilot subcarrier in the first/interference noise estimation unit is given, because it is weighted
  • an interference noise covariance matrix estimation value of a data subcarrier position corresponding to the data stream is defined, which is denoted as ir M — D , and has:
  • the above calculation based on the interference noise estimation unit can simplify the calculation.
  • the embodiment further provides a system for wideband co-channel interference noise estimation, which is used for receiving at an antenna of an orthogonal frequency division multiplexing (OFDM) or orthogonal frequency division multiple access (OFDMA) system.
  • An interference noise estimation is performed on a data stream carried in the area, where the interference suppression area is a time-frequency two-dimensional resource block in the received data bearer area, and the system includes:
  • a first device configured, for each pilot subcarrier corresponding to the data stream, according to a pilot signal sent by the transmitting end on the pilot subcarrier, a received signal on the pilot subcarrier, and the pilot subcarrier Calculating an interference noise covariance matrix of the pilot subcarrier position by using a channel coefficient estimation value of the location;
  • a second device configured to:, for each data subcarrier corresponding to the data stream, according to the transmitting end of the data subcarrier Calculating an interference noise covariance matrix estimation value of the data subcarrier position by using a preliminary estimated value of the transmitted data signal, a received signal on the data subcarrier, and a channel coefficient estimated value of the data subcarrier position;
  • a third device configured, for each data subcarrier corresponding to the data stream, a weighted average of an estimated value of an interference noise covariance matrix of each pilot subcarrier position corresponding to the data stream and each data subcarrier position The interference noise covariance matrix of the data subcarrier position.
  • the system for wideband co-channel interference noise estimation may further include a fourth means for multiplying the conjugate transpose of the channel coefficient estimate of the data subcarrier position by the received signal on the data subcarrier;
  • the multiplied result is used as a preliminary estimation value of the data signal sent by the transmitting end on the data subcarrier; or, the result of the multiplication is hard-decised, and the result of the hard decision is sent as the transmitting end on the data subcarrier.
  • Preliminary estimate of the data signal Preliminary estimate of the data signal.
  • the second device calculates an interference noise covariance matrix estimation value of each data subcarrier position corresponding to the data stream, and the calculation formula used may be as follows:
  • is the preliminary estimate of the data signal transmitted by the transmitting end on the first data subcarrier, (for the received signal on the first data subcarrier, 4() is the Jth
  • the estimated channel coefficient of the data subcarrier position, ( ( ⁇ ) - ( ⁇ denotes the matrix ( ( ⁇ ⁇ ⁇ ⁇ .
  • the system for wideband co-channel interference noise estimation may further include a fifth device, configured to divide the interference suppression region into interference noise estimation units, each interference noise estimation unit is a time-frequency two-dimensional resource block and at least one of a pilot subcarrier and a data subcarrier are positive integers; correspondingly, each third subcarrier corresponds to each data subcarrier corresponding to the data stream, and each pilot subcarrier position and each data substream corresponding to the data stream.
  • the weighted average of the estimated values of the interference noise covariance matrix of the carrier position, as the interference noise covariance matrix of the data subcarrier position is calculated as follows:
  • R ⁇ _ D m-th interference noise estimation means in the data stream corresponding to each data sub-carrier positions of interference and noise covariance matrix, m ⁇ , l, --- , M For a weight, 0 ⁇ ⁇ ⁇ ⁇ ;
  • N 1 _ D (j) is an estimated value of the interference noise covariance matrix of the jth data subcarrier position corresponding to the data stream in the interference suppression region;
  • 7ml is the weight assigned to the position of each data subcarrier in the first/interference noise estimation unit when calculating 3 ⁇ 4 - ⁇ ; ⁇ 1 ,
  • I is included
  • the system for wideband co-channel interference noise estimation may further comprise a sixth device and a seventh device; wherein:
  • the sixth device is configured to obtain, at the following manner, a channel coefficient estimation value of each pilot subcarrier position corresponding to the data stream at the transmitting end, and output the result to the first device: a received signal on the pilot subcarrier Multiplying a conjugate of a pilot signal transmitted by the transmitting end on the pilot subcarrier to obtain an estimated channel coefficient of the pilot subcarrier position;
  • the seventh device is configured to obtain a channel coefficient estimation value of each data subcarrier position corresponding to the data stream in the following manner, and output the result to the second device: for each data subcarrier corresponding to the data stream, a weighted average of channel coefficient estimates for each pilot subcarrier location corresponding to the data stream, The channel coefficient estimate as the data subcarrier position.
  • the system for wideband co-channel interference noise estimation may further include an eighth device, configured to divide the interference suppression region into f channel estimation units, each channel estimation unit being a time-frequency two-dimensional resource block and including At least one pilot subcarrier and one data subcarrier, and f is a positive integer;
  • the seventh device for each data subcarrier corresponding to the data stream, weights the channel coefficient estimation value of each pilot subcarrier position corresponding to the data stream as a channel coefficient of the data subcarrier position.
  • the estimated value the calculation formula used is as follows:
  • ⁇ () is an estimated channel coefficient of the first pilot subcarrier position corresponding to the data stream in the interference suppression region
  • the weight of ⁇ (/) assigned to each pilot subcarrier in the channel estimation unit is ⁇ .
  • ⁇ ⁇ ′′ 1 , 0 ⁇ ⁇ 1 ,
  • indicates the number of pilot subcarriers included, and is at weight
  • the embodiment further provides a system for wideband co-channel interference suppression, which is applied to a receiving end of an Orthogonal Frequency Division Multiplexing (OFDM) or Orthogonal Frequency Division Multiple Access (OFDMA) system, in an interference suppression region.
  • OFDM Orthogonal Frequency Division Multiplexing
  • OFDMA Orthogonal Frequency Division Multiple Access
  • Interference suppression is performed on a data stream carried in the received data, and the interference suppression area is a time-frequency two-dimensional resource block in the received data bearer area, and the system includes: a first subsystem, such as the above-described system for wideband co-channel interference noise estimation, for obtaining a channel coefficient estimation value and an interference noise covariance matrix of each data subcarrier position corresponding to the data stream in the same manner;
  • a first subsystem such as the above-described system for wideband co-channel interference noise estimation, for obtaining a channel coefficient estimation value and an interference noise covariance matrix of each data subcarrier position corresponding to the data stream in the same manner;
  • a second subsystem configured to perform data detection on each data subcarrier corresponding to the data stream according to the received signal on the data subcarrier, and the channel coefficient estimation value and the interference noise covariance matrix of the data subcarrier position, An estimate of the data signal on the data subcarrier is obtained.
  • the receiving end completes the interference noise estimation and data detection of each data stream by the following steps:
  • the receiving end receives the received signal ( ) on the first pilot subcarrier of the current data stream in the interference suppression region and the pilot signal transmitted by the transmitting end on the first pilot subcarrier; Multiplying the yoke to obtain an estimate of the channel coefficient of the pilot subcarrier position (0, ie:
  • the receiving end divides the interference suppression area into n parts, wherein each part is a channel estimation unit, wherein each channel estimation unit includes a pilot subcarrier, and the pilot subcarrier index l ⁇ a belongs to the pilot index set ⁇ . , the pilot subcarrier index (a+l) ⁇ 2*a belongs to the pilot index set ⁇ 2 , and the pilot subcarrier index ((nl)*a+l) ⁇ n*a belongs to the pilot index set ⁇ vide.
  • the channel coefficient estimates for each data subcarrier position in the first channel estimation unit are both:
  • the channel response estimate of the current data subcarrier be ⁇ / ⁇
  • the received signal on the data subcarrier is the result of the merged MRC.
  • the conjugate transpose of the matrix is represented.
  • the obtained ( ⁇ ) is directly used as the preliminary estimate of the data signal of the transmitting end on the first data subcarrier.
  • the obtained (_) / ⁇ ) Perform a hard decision, using the hard decision result as the preliminary estimate of the data signal at the transmitting end on DsC(/). (4) Performing the interference noise covariance estimation for each data subcarrier.
  • the receiving end divides the interference suppression area into n parts, each of which is an interference noise estimation unit, assuming that the division manner is the same as that of the channel estimation unit.
  • Each of the interference noise estimation units includes pilot subcarriers, the pilot subcarrier index belongs to the pilot index set ⁇ , and the pilot subcarrier index 0+1) ⁇ 2* ⁇ belongs to the pilot index set ⁇ 2 7 .
  • the index of the pilot subcarrier index belonging to the pilot index set and the data subcarrier included in the interference noise estimation unit belongs to the data index set ⁇ .
  • the estimated value of the interference noise covariance matrix of the data subcarrier position in the kth interference noise estimation unit is D , and has:
  • ⁇ NI-D Ykl ⁇ lD +... + ⁇ lD (J)
  • the interference noise covariance matrix of each data subcarrier position in the kth interference noise estimation unit is:
  • the interference suppression area carries one data stream, and the 16e uplink pilot structure is used, as shown in FIG. 2.
  • the receiving end completes the interference noise estimation and data detection corresponding to the data stream by the following steps:
  • the receiving end multiplies the received signal on the first pilot subcarrier corresponding to the data stream (the conjugate of the pilot signals ⁇ and ⁇ transmitted by the transmitting end on the first pilot subcarrier to obtain the
  • the estimated channel coefficient of the pilot subcarrier position is:
  • the receiving end divides the interference suppression area into n parts, wherein each part is a channel estimation unit, where each channel estimation unit includes 4 pilot subcarriers, and the pilot subcarrier indexes 1 ⁇ 4 belong to the pilot index set ⁇ . , , the pilot subcarrier index 5 ⁇ 8 belongs to the pilot index set ⁇ 2 , and the pilot subcarrier index (4 ⁇ -3) ⁇ 4 ⁇ belongs to the pilot index set ⁇ barn.
  • the estimated channel coefficient values of the respective data subcarrier positions in the second channel estimation unit are: Where, the condition ⁇
  • l , 0 ⁇ 3 ⁇ 4 ⁇ 1
  • the channel response estimate of the current data subcarrier be ⁇ / ⁇
  • the received signal on the data subcarrier is (7)
  • (_/ ⁇ ) where 0) represents the conjugate symmetric matrix of the matrix.
  • this ( ⁇ ) is directly used as the preliminary estimate of the data signal on the first data subcarrier of the sender (7 ⁇ ).
  • a hard decision is made on the resulting (_/ ⁇ ), and the hard decision result is taken as a preliminary estimate of the data signal at the transmitting end on DsC().
  • the receiving end divides the interference suppression area into n parts, wherein each part is an interference noise estimation unit, where each interference noise estimation unit includes 4 pilot subcarriers, and the pilot subcarrier indexes 1 ⁇ 4 belong to the pilot index.
  • each interference noise estimation unit includes 4 pilot subcarriers, and the pilot subcarrier indexes 1 ⁇ 4 belong to the pilot index.
  • pilot subcarrier index 5 ⁇ 8 belongs to pilot index set ⁇ 2
  • the estimated value of the interference noise covariance matrix of the data subcarrier position in the kth interference noise estimation unit be D , with: Where w satisfies the condition
  • the interference noise covariance matrix of each data subcarrier position in the kth interference noise estimation unit is:
  • the interference suppression area carries two data streams, and the 16e uplink pilot structure is used, as shown in FIG.
  • the receiving end completes the interference noise estimation and data detection corresponding to the data stream by the following steps:
  • the receiving end multiplies the received signal on the first pilot subcarrier of the data stream (the conjugate of the pilot signal transmitted by the transmitting end on the first pilot subcarrier to obtain the pilot subcarrier).
  • the estimated channel coefficient of the position ⁇ ( ), ie: h P (i) y p (i)p*(i) where the definition of each parameter is as above;
  • the receiving end divides the interference suppression area into n parts, wherein each part is a channel estimation unit, wherein each channel of each channel estimation unit has two pilot subcarriers, and the pilot subcarrier index is 1 ⁇ 2. It belongs to the pilot index set ⁇ , the pilot subcarrier index 3 ⁇ 4 belongs to the pilot index set ⁇ 2 , and the pilot subcarrier index (2 ⁇ -1) ⁇ 2 ⁇ belongs to the pilot index set ⁇ barn.
  • Pilot Index Set The number of pilot subcarrier indices included.
  • the channel response estimate of the current data subcarrier be ⁇ / ⁇
  • the received signal on the data subcarrier is (7)
  • (_/ ⁇ ) where 0) represents the conjugate symmetric matrix of the matrix.
  • the obtained ( ⁇ ) is directly used as the preliminary estimate of the data signal on the first data subcarrier of the transmitting end.
  • the hard decision is made on the obtained (_/ ⁇ ), and the hard decision is made.
  • the result is a preliminary estimate of the data signal on the DsC() at the transmitting end.
  • the receiving end divides the interference suppression area into n parts, wherein each part is an interference noise estimation unit, wherein each of the interference noise estimation units has 2 pilot subcarriers corresponding to each data stream, and the pilot subcarrier index 1 ⁇ 2 belongs to pilot index set ⁇ , pilot subcarrier index 3 ⁇ 4 belongs to pilot index set ⁇ 2 pilot subcarrier index (2 «-1) ⁇ 2 « belongs to pilot index set/interference noise estimation
  • the data subcarrier index contained in the unit belongs to the data index set ⁇ .
  • the statistical characteristics and channel information of the interference can be accurately estimated, and the interference is eliminated, so as to greatly improve the signal to interference and noise ratio of the system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

一种宽带同频干扰噪声估计和干扰抑制的方法及相应系统
技术领域
本发明涉及通信领域, 尤其涉及一种宽带同频干扰噪声估计和干扰抑制 的方法及相应系统。
背景技术
无线通信系统总是受到各种各样的干扰, 对于第 4 代以 OFDMA ( Orthogonal Frequency Division Multiple Access , 正交频分多址)技术为基础 的通信系统 (如 4G (第四代移动通信及其技术) 、 Wimax ( Worldwide Interoperability for Microwave Access , 全球微波互联接入)、 LTE ( Long Term Evolution,长期演进))而言,始终受到较严重的 OFDM ( Orthogonal Frequency Division Multiplexing, 正交频分复用 )同道干扰 ( Co-Channel Interference, 简 称为 CCI ) 。 在蜂窝网络中, 由于频谱复用的关系, 此种干扰表现为邻区干 扰, 由于干扰源通常同时干扰多个数据载波, 因而可以认为是一种宽带的干 扰。
目前, 邻区干扰控制、 抑制及消除问题是一个热门的研究课题, 也是 4G 通信系统同频组网过程中必须要解决的问题。 主动式的手段通常表现为功率 控制、 动态的频率复用、 邻区的波束及调度协作、 以及正在讨论中的 CoMP ( Coordinated Multi-points transmission/reception, 协同多点传输) 中的联合传 输, 这些技术在标准制定时就需要做较详细的讨论, 需要网络结构和信令的 支持。 而被动式的干扰消除技术则不需要依赖于信令的交互, 通常仅由接收 机完成, 因此可以广泛适用于各种网络。
通常情况下, 接收机侧的干扰消除过程往往要依赖于空间、 时间和频率 三个维度的资源。 第四代通信系统广泛釆用了多天线技术 ( Multiple-Input Multiple-Output, 简称为 MIMO ) , 而 MIMO系统广泛釆用在空间维度上对 多个天线上的信号响应样本的分集进行合并接收。 传统的最大比合并 ( Maximum Ratio Combining, 简称为 MRC )技术等, 在噪声受限的信道环境 下有着非常优秀的性能, 但在干扰受限的信道环境下性能并不理想, 因为该 技术只利用了每根天线的信道信息, 并没有利用干扰的统计特性。 同时一类 以抑制干扰为目 的的多天线分集合并算法——干扰抑制合并技术
( Interference Rejection Combining, 简称为 IRC ) , 在消除邻区同频干扰上体 现出了优异的性能。 但 IRC算法仅在获得比较准确的干扰统计特性和每根天 线的信道估计的前提下, 性能才会非常好; 如果干扰的统计特性不准确或者 信道估计中包含了干扰, 其性能并不理想。
发明内容
本发明的目的是提供一种宽带同频干扰噪声估计的方法, 已解决现有技 术中对干 4尤估计不准确的缺陷。
为了解决上述技术问题, 本发明提供了一种宽带同频干扰噪声估计的方 法, 用于正交频分复用(OFDM)或正交频分多址 (OFDMA)系统的接收端, 在 一干扰抑制区域内, 对其中承载的一个数据流进行干扰噪声估计, 所述方法 包括:
对该数据流对应的每一导频子载波, 根据发送端在该导频子载波上发送 的导频信号、 该导频子载波上的接收信号和该导频子载波位置的信道系数估 计值, 计算出该导频子载波位置的干扰噪声协方差矩阵估计值;
对该数据流对应的每一数据子载波, 根据发送端在该数据子载波上发送 的数据信号的初步估计值、 该数据子载波上的接收信号和该数据子载波位置 的信道系数估计值,计算出该数据子载波位置的干扰噪声协方差矩阵估计值; 对该数据流对应的每一数据子载波, 将该数据流对应的各个导频子载波 位置和各个数据子载波位置的干扰噪声协方差矩阵估计值的加权平均, 作为 该数据子载波位置的干扰噪声协方差矩阵;
其中, 该干扰抑制区域为接收数据承载区域中的一时频二维资源块。 较佳地,
所述发送端在该数据流对应的每一数据子载波上发送的数据信号的初步 估计值按以下方式得到:
将该数据子载波位置的信道系数估计值的共轭转置与该数据子载波上的 接收信号相乘;
将相乘后的结果作为发送端在该数据子载波上发送的数据信号的初步估 计值; 或者, 对相乘后的结果进行硬判决, 将硬判决的结果作为发送端在该 数据子载波上发送的数据信号的初步估计值。
较佳地,
所述该数据流对应的每一导频子载波位置的干扰噪声协方差矩阵估计值 按下
Figure imgf000005_0001
其中, ^M )为该干扰抑制区域内该数据流对应的第 Ζ·个导频子载波位 置的干扰噪声协方差矩阵估计值, = ι,···,/, /为该干扰抑制区域中该数据流 对应的导频子载波的个数; 为发送端在该第 ,个导频子载波上发送的导频 信号, ()为该第 z个导频子载波上的接收信号, 为该第 z个导频子载 波位置的信道系数估计值, (yp {i)-hp (ζ·Μ 为矩阵 ( 、ή- {ήρ{ή)的共轭转 置。
较佳地, 所述该数据流对应的每一数据子载波位置的干扰噪声协方差矩阵估计值 按下式计算
Figure imgf000005_0002
其中, 。(·)为该干扰抑制区域内该数据流对应的第 _;个数据子载波位 置的干扰噪声协方差矩阵估计值, · = ΐ,··· ,《 /为该干扰抑制区域中该数据流 对应的数据子载波的个数; ^ 为发送端在该第 个数据子载波上发送的数 据信号的初步估计值, ( 为该第 ·个数据子载波上的接收信号, 4( )为该 第 J 个数据子载波位置的信道系数估计值, ( ( ·)- ( ^ 表示矩阵 ( (7)- ( ) ( 》的共辄转置。
较佳地,
所述对该数据流对应的每一数据子载波, 将该数据流对应的各个导频子 载波位置和各个数据子载波位置的干扰噪声协方差矩阵估计值的加权平均, 作为该数据子载波位置的干扰噪声协方差矩阵, 釆用的计算公式如下:
Figure imgf000006_0001
其中,
Rw—。( ·)为该干扰抑制区域中该数据流对应的第 J个数据子载波位置的干 扰噪声协方差矩阵; WD(/)为该干扰抑制区域中该数据流对应的第 /个数据 子载波位置的干扰噪声协方差矩阵估计值, / = V , J , J为该干扰抑制区域中 该数据流对应的数据子载波的个数;
έΜ_Ρ(0为该干扰抑制区域中该数据流对应的第 I个导频子载波位置的干 扰噪声协方差矩阵估计值, = ι,···,/, /为该干扰抑制区域中该数据流对应的 导频子载波的个数;
为 时赋予 ρ(0的权值, 为计算 Rw— )时赋予 D(/) 的权值, i o
Figure imgf000006_0002
较佳地, 所述方法还包括:
按式 (c)计算数据子载波位置的干扰噪声协方差矩阵之前, 将该干扰抑制 区域划分为一个或多个干扰噪声估计单元, 每一干扰噪声估计单元为一个时 频二维资源块且其中至少包含一个导频子载波和一个数据子载波;
按式 (c)计算数据子载波位置的干扰噪声协方差矩阵时, 为同一干扰噪声 估计单元中各个导频子载波位置的干扰噪声协方差矩阵估计值赋予相同的权 值, 为同一干扰噪声估计单元中各个数据子载波位置的干扰噪声协方差矩阵 估计值赋予相同的权值。
较佳地, 所述方法还包括:
将该干扰抑制区域划分为 个干扰噪声估计单元, 每一干扰噪声估计单 元为一个时频二维资源块且其中至少包含一个导频子载波和一个数据子载 波, 为正整数;
所述对该数据流对应的每一数据子载波, 将该数据流对应的各个导频子 载波位置和各个数据子载波位置的干扰噪声协方差矩阵估计值的加权平均, 作为该数据子载波位置的干扰噪声协方差矩阵, 釆用的计算公式如下: Kl-D =
Figure imgf000007_0001
Σ Trm l-D JJ ( d) 其中,
R^_D为第 m 个干扰噪声估计单元中该数据流对应的各个数据子载波位 置的干扰噪声协方差矩阵, πι = \,2,···,Μ
为一权值, 0≤ ≤\;
/为一循环变量, / = 1,2,···,Μ ;
p为第 /个干扰噪声估计单元中该数据流对应的导频子载波的索引 I的 集合, = 1,···,/, /为该干扰抑制区域中该数据流对应的导频子载波的个数; ,rf为第 /个干扰噪声估计单元中该数据流对应的数据子载波的索引 j的 集合, · = 1,··· , 为该干扰抑制区域中该数据流对应的数据子载波的个数; 为该干扰抑制区域中该数据流对应的第 I个导频子载波位置的干 扰噪声协方差矩阵估计值;
N1_D (j)为该干扰抑制区域中该数据流对应的第 j个数据子载波位置的干 扰噪声协方差矩阵估计值;
βη1为计算 R^—D时,赋予第 /个干扰噪声估计单元中各导频子载波位置的 )的权值;
7ml为计算 R^—D时,赋予第 /个干扰噪声估计单元中各数据子载波位置的 的权值; <ι , |
Figure imgf000007_0002
I为 包含 的导频子载波索引的个数; 为 包含的数据子载波的索引的个数, 计算
R; ^釆用的权值 中, β 大于等于其他的权值;计算 R^—D釆用的权值 7ml 中, ™大于等于其他的权值, / = 1,2,···,Μ。
较佳地,
所述发送端在该数据流对应的每一导频子载波位置的信道系数估计值按 以下方式得到: 将该导频子载波上的接收信号与发送端在该导频子载波上发 送的导频信号的共轭相乘, 得到该导频子载波位置的信道系数估计值; 所述发送端在该数据流对应的每一数据子载波位置的信道系数估计值按 以下方式得到: 对该数据流对应的每一数据子载波, 将该数据流对应的各个 导频子载波位置的信道系数估计值的加权平均, 作为该数据子载波位置的信 道系数估计值。
较佳地, 所述方法还包括:
将该干扰抑制区域划分为 f个信道估计单元, 每一信道估计单元为一个 时频二维资源块且包含至少一个导频子载波和一个数据子载波, f为正整数; 所述对该数据流对应的每一数据子载波, 将该数据流对应的各个导频子 载波位置的信道系数估计值的加权平均, 作为该数据子载波位置的信道系数 估计值, 釆用的计算公式如下:
Λ Κ Λ
=ΣΣ Α(Ζ·) d
/=1 ieQf ' 其中,
¾为第 k个信道估计单元中该数据流对应的每一数据子载波位置的信道 系数估计值, k = \,2, ···, ,
/为一循环变量, 1 = 1,2,···,Κ
为第 个信道估计单元包含的导频子载波的索引 ,的集合, = ι,···,/, /为该数据流对应的导频子载波的个数;
^()为该干扰抑制区域中该数据流对应的第 I个导频子载波位置的信道 系数估计值;
OM为计算 时, 赋予第 /个信道估计单元中各导频子载波的 ^ (/)的权 κ
值, ∑ΙΩ= 1,0≤ ≤1, | |表示 包含的导频子载波的个数, 且在权值
1=1
¾中, 1 = 1,2, --·,Κ , ½大于等于其他的权值。 相应地, 本发明还提供了一种宽带同频干扰噪声估计的系统, 应用于正 交频分复用(OFDM)或正交频分多址 (OFDMA)系统的接收端, 所述系统设置 为: 在一干扰抑制区域内对其中承载的一个数据流进行干扰噪声估计, 该干 扰抑制区域为接收数据承载区域中的一时频二维资源块, 该系统包括:
第一装置,其设置为: 对该数据流对应的每一导频子载波, 根据发送端在 该导频子载波上发送的导频信号、 该导频子载波上的接收信号和该导频子载 波位置的信道系数估计值, 计算出该导频子载波位置的干扰噪声协方差矩阵 估计值;
第二装置, 其设置为: 对该数据流对应的每一数据子载波, 根据发送端 在该数据子载波上发送的数据信号的初步估计值、 该数据子载波上的接收信 号和该数据子载波位置的信道系数估计值, 计算出该数据子载波位置的干扰 噪声协方差矩阵估计值; 以及
第三装置, 其设置为: 对该数据流对应的每一数据子载波, 将该数据流 对应的各个导频子载波位置和各个数据子载波位置的干扰噪声协方差矩阵估 计值的加权平均, 作为该数据子载波位置的干扰噪声协方差矩阵。
较佳地,
该系统还包括第四装置:
所述第四装置设置为: 将该数据子载波位置的信道系数估计值的共轭转 置与该数据子载波上的接收信号相乘; 然后, 将相乘后的结果作为发送端在 该数据子载波上发送的数据信号的初步估计值; 或者, 对相乘后的结果进行 硬判决, 将硬判决的结果作为发送端在该数据子载波上发送的数据信号的初 步估计值。
较佳地,
所述第一装置是设置为釆用如下计算公式计算出该导频子载波位置的干 扰噪
Figure imgf000009_0001
其中, ^M )为该干扰抑制区域内该数据流对应的第 ζ·个导频子载波位 置的干扰噪声协方差矩阵估计值, = 1, · · · , /, /为该干扰抑制区域中该数据流 对应的导频子载波的个数; 为发送端在该第 ,个导频子载波上发送的导频 信号, ( )为该第 z个导频子载波上的接收信号, 为该第 z个导频子载 波位置的信道系数估计值, (yp (i)-hp ( ()) 为矩阵 ( {i)-hp ( ())的共辄转 置;
所述第二装置是设置为釆用如下计算公式计算出该数据流对应的每一数 据子载波位置的干扰噪声协方差矩阵估计值:
其中, 。(·)为该干扰抑制区域内该数据流对应的第 _;个数据子载波位 置的干扰噪声协方差矩阵估计值, , J为该干扰抑制区域中该数据流 对应的数据子载波的个数; ^ 为发送端在该第 个数据子载波上发送的数 据信号的初步估计值, ( 为该第 ·个数据子载波上的接收信号, 4( )为该 第 j 个数据子载波位置的信道系数估计值, ( C/)- C/;^C/;)f表示矩阵
( (7)- ( ) ( 》的共辄转置。
较佳地,
该系统还包括第五装置:
所述第五装置设置为:将该干扰抑制区域划分为 个干扰噪声估计单元, 每一干扰噪声估计单元为一个时频二维资源块且其中至少包含一个导频子载 波和一个数据子载波, 为正整数;
相应地, 所述第三装置是设置为釆用如下计算公式对该数据流对应的每 一数据子载波, 将该数据流对应的各个导频子载波位置和各个数据子载波位 置的干扰噪声协方差矩阵估计值的加权平均, 作为该数据子载波位置的干扰 噪声协方差矩阵:
KI-D =
Figure imgf000010_0002
∑ Υ ΝΙ-DU) 其中,
R^_D为第 m 个干扰噪声估计单元中该数据流对应的各个数据子载波位 置的干扰噪声协方差矩阵, πι = \,2,···,Μ
为一权值, 0≤ ≤\;
/为一循环变量, 1 = \,2,···,Μ ,p为第 /个干扰噪声估计单元中该数据流对应的导频子载波的索引 I的 集合, = 1,···,/, /为该干扰抑制区域中该数据流对应的导频子载波的个数; ,rf为第 /个干扰噪声估计单元中该数据流对应的数据子载波的索引 j的 集合, j = \ , J , J为该干扰抑制区域中该数据流对应的数据子载波的个数; 为该干扰抑制区域中该数据流对应的第 I个导频子载波位置的干 扰噪声协方差矩阵估计值;
N1_D (j)为该干扰抑制区域中该数据流对应的第 j个数据子载波位置的干 扰噪声协方差矩阵估计值;
ml为计算 R^_D时,赋予第 /个干扰噪声估计单元中各导频子载波位置的 Pw的权值;
7ml为计算 ¾— σ时,赋予第 /个干扰噪声估计单元中各数据子载波位置的 的权值; = ≤βηι1≤ o≤7ml < ι , |
Figure imgf000011_0001
I为 包含 的导频子载波索引的个数; | 为 包含的数据子载波的索引的个数, 计算 R; ^釆用的权值 中, β醒大于等于其他的权值;计算 R^_D釆用的权值 7mi 中, ™大于等于其他的权值, / = 1,2,·· ·,Μ。
较佳地,
该系统还包括第六装置和第七装置;
所述第六装置设置为按以下方式得到发送端在该数据流对应的每一导频 子载波位置的信道系数估计值并输出到所述第一装置: 将该导频子载波上的 接收信号与发送端在该导频子载波上发送的导频信号的共轭相乘, 得到该导 频子载波位置的信道系数估计值;
所述第七装置设置为按以下方式得到在该数据流对应的每一数据子载波 位置的信道系数估计值并输出到所述第二装置: 对该数据流对应的每一数据 子载波, 将该数据流对应的各个导频子载波位置的信道系数估计值的加权平 均, 作为该数据子载波位置的信道系数估计值。
较佳地, 该系统还包括第八装置;
所述第八装置设置为将该干扰抑制区域划分为 f个信道估计单元, 每一 信道估计单元为一个时频二维资源块且包含至少一个导频子载波和一个数据 子载波, f为正整数;
相应地, 所述第七装置是设置为釆用如下计算公式对该数据流对应的每 一数据子载波, 将该数据流对应的各个导频子载波位置的信道系数估计值的 加权平均, 作为该数据子载波位置的信道系数估计值:
Λ Κ Λ
=Σ 1=1 iΣ Α(Ζ·)
eQf 其中,
¾为第 k个信道估计单元中该数据流对应的每一数据子载波位置的信道 系数估计值, k = \,2, ···, ,
/为一循环变量, 1 = 1,2,···,Κ
为第 个信道估计单元包含的导频子载波的索引 ,的集合, = ι,···,/, /为该数据流对应的导频子载波的个数;
^()为该干扰抑制区域中该数据流对应的第 I个导频子载波位置的信道 系数估计值;
OM为计算 时, 赋予第 /个信道估计单元中各导频子载波的 ^ (/)的权 κ
值, ∑ΙΩ= 1,0≤ ≤1, | |表示 包含的导频子载波的个数, 且在权值
1=1
¾中, 1 = \,2,---,Κ , ½大于等于其他的权值。 本发明还提供了一种宽带同频干扰抑制的方法, 应用于正交频分复用 ( OFDM )或正交频分多址( OFDMA )系统的接收端 ,在一干扰抑制区域内, 其中承载的一个数据流进行干扰抑制时, 所述方法包括:
按上述宽带同频干扰噪声估计方法, 得到该数据流对应的各数据子载波 位置的信道系数估计值和干扰噪声协方差矩阵;
对该数据流对应的每一数据子载波, 根据该数据子载波上的接收信号, 及该数据子载波位置的信道系数估计值和干扰噪声协方差矩阵进行数据检 测, 得到该数据子载波上的数据信号估计值;
其中, 该干扰抑制区域为接收数据承载区域中的一时频二维资源块。 相应地, 本发明还提供了一种宽带同频干扰抑制的系统, 应用于正交频 分复用 ( OFDM )或正交频分多址( OFDMA ) 系统的接收端, 所述系统设置 为在一干扰抑制区域内对其中承载的一个数据流进行干扰抑制, 该干扰抑制 区域为接收数据承载区域中的一时频二维资源块, 该系统包括:
第一子系统, 其设置为: 按与上述的宽带同频干扰噪声估计的系统相同 的方式, 得到该数据流对应的各数据子载波位置的信道系数估计值和干扰噪 声协方差矩阵; 以及
第二子系统, 其设置为: 对该数据流对应的每一数据子载波, 根据该数 据子载波上的接收信号, 及该数据子载波位置的信道系数估计值和干扰噪声 协方差矩阵进行数据检测, 得到该数据子载波上的数据信号估计值。
釆用本发明后, 可以准确估计出干扰的统计特性和信道信息, 并对干扰 进行消除, 以大幅度提高系统的信干噪比。 附图概述
图 1 本发明实施例中的算法总体流程图;
图 2 本发明实施例中 1个数据流的干扰抑制区域样式;
图 3 本发明实施例中 2个数据流的干扰抑制区域样式。 本发明的较佳实施方式
为使本发明的目的、 技术方案和优点更加清楚明白, 下文中将结合附图 对本发明的实施例进行详细说明。 需要说明的是, 在不冲突的情况下, 本申 请中的实施例及实施例中的特征可以相互任意组合。
本实施例宽带同频干扰的估计和抑制方法应用于 OFDM/OFDMA系统。 文中的发送端可以^ ^站、 中继站等控制设备, 也可以是手机、 笔记本电脑、 手持电脑等终端设备。 类似地, 接收端用于接收发送端的数据信号, 接收端 可以是手机、 笔记本电脑、 手持电脑等终端设备, 也可以是基站, 中继站等 控制设备。
接收端将接收数据承载区域划分为一个或多个干扰抑制区域, 每一干扰 抑制区域为帧 /半帧结构中的一个时频二维资源块, 即每一个干扰抑制区域在 时间上包含多个连续的 OFDM/OFDMA符号, 在频域上包含多个连续的子载 波。 接收数据承载区域可能包括一个时频二维资源块, 也可能包括多个分离 的时频二维资源块, 在本实施例中, 将其中的每一个独立的时频二维资源块 作为一个干扰抑制区域。 当然, 在其他实施例中, 接收数据承载区域中的相 对独立的各个时频二维资源块也可以被进一步划分为多个干扰抑制区域。
在 OFDM/OFDMA系统中, 上述干扰抑制区域可以承载一个或多个数据 流, 每一数据流对应一个或多个数据子载波和导频子载波, 不同数据流对应 的导频子载波不同。
如图 1所示, 在一个干扰抑制区域内, 接收端按本实施例方法对其中承 载的一个数据流进行宽带同频干扰噪声估计和干扰抑制时, 包括:
步骤 10、 将该数据流对应的每一导频子载波上的接收信号和对应的导频 信号的共轭相乘, 得到该导频子载波位置的信道系数估计值, 再根据各导频 子载波位置的信道系数估计值的加权平均, 得到该数据流对应的各数据子载 波位置的信道系数估计值;
步骤 20、 对该数据流对应的每一数据子载波, 根据该数据子载波位置的 信道系数估计值和该数据子载波上的接收信号, 得到该数据子载波上的数据 信号的初步估计值;
步骤 30、 对该数据流对应的每一子载波, 根据该子载波上的数据信号、 接收信号及该子载波位置的信道系数估计值, 得到该子载波位置的干扰噪声 协方差矩阵估计值; 再根据各子载波位置的干扰噪声协方差矩阵估计值的加 权平均, 得到该数据流对应的各数据子载波位置的干扰噪声协方差矩阵; 执行完步骤 30后,即完成了该干扰抑制区域内该数据流的宽带同频干扰 噪声估计。 此后, 可执行下一步骤来进行数据信号检测, 实现干扰抑制: 步骤 40、 根据得到的该数据流对应的数据子载波上的接收信号, 及该数 据子载波位置的信道系数估计值和干扰噪声协方差矩阵, 进行数据检测。
上述步骤 10中, 具体可以通过以下方式计算:
步骤一, 对该数据流对应的每一导频子载波, 将该导频子载波上的接收 信号与发送端在该导频子载波上发送的导频信号的共轭相乘, 得到该导频子 载波位置的信道系数估计值;
将该干扰抑制区域中该数据流对应的第 I个导频子载波记为 PsC(0, 该 PsC(i)位置的信道系数估计值^ ( )由下式得到:
Figure imgf000015_0001
其中, , = 1, · · ·, / , /为该干扰抑制区域中该数据流对应的导频子载波的个 数, ( 为接收端在 PsC(z)上的接收信号, 为发送端在 PsC(z)上发送的 导频信号, 表示对;^)取共轭。 因为相邻小区在同一导频子载波上的导频信号相关性比较低, 通过上述 运算, 可以滤除导频子载波上相邻小区导频带来的干扰信号, 得到较为准确 的信道系数估计值。 进而, 基于各导频子载波位置的信道系数估计值的加权 平均得到的数据子载波位置的信道系数估计值也较为准确。
步骤二, 对该干扰抑制区域中该数据流对应的每一数据子载波, 接收端 将该干扰抑制区域中各导频子载波位置的信道系数估计值的加权平均, 作为 该数据子载波位置的信道系数估计值;
该干扰抑制区域中第 j个数据子载波 DsCG)位置的信道系数估计值 ( ·) 按下式得到:
Figure imgf000015_0002
其中, · = 1,··· , J为该干扰抑制区域中的数据子载波的个数, 《为计算
DsCG)位置的 j、时, 赋予 的权值, ∑ l} = 1 , 部分^ (0的权值可以为 0 , 其他参数含义如上文所述。
接收端可以将该干扰抑制区域再划分为 f个时频二维资源块, =1,2,...; 每个时频二维资源块作为一个信道估计单元, 每一信道估计单元中包括至少 一个导频子载波。
在进行信道估计单元划分的一实施例中, 在按公式(2)计算某个数据子 载波位置的信道系数估计值时, 为同一信道估计单元中各个导频子载波位置 的信道系数估计值赋予相同的权值。
在进行信道估计单元划分的另一实施例中, 在按公式(2)计算同一信道 估计单元中各个数据子载波位置的信道系数估计值时, 使用一组相同的权值 α,, = 1,--,/, 7 = 1,···, J , 得到的各数据子载波位置的信道系数估计值相同。 在进行信道估计单元划分的又一实施例, 可以结合上述两个实施例的约 束条件, 具体如下:
定义第 k个信道估计单元包含的导频子载波的索引构成的集合为 k = \,2,'-、K; 第 k个信道估计单元中该数据流对应的每一数据子载波位置的信道系数 估计值相等, 记为 , 接收端按下式来计算该¾:
Figure imgf000016_0001
1=1 ie^ 其中, /为一循环变量, 1 = 1,2,…, ¾为计算 时, 赋予第 /个信道估 计单元中各导频子载波位置的^ ()的权值, 因为是加权平均, 要满足条件
Κ
∑|Ω,| =1,0<¾<1,其中 | |表示导频索引集合 包含的导频子载波索引
1=1
的个数。 在时域上, 与某个数据子载波位置越近的导频子载波, 信道相关性 就越强。 因此, 较佳地, 在计算 釆用的权值" w中, ¾t大于等于其他的权 值, 1 = \,2,···,Κ。
釆用上述基于信道估计单元的方式可以简化计算。 在步骤 20中, 接收端利用 MRC合并算法初步估计发送端在各数据子载 波上的数据信号时, 公式如下:
Figure imgf000017_0001
其中, 表示该数据流对应的第 _;个数据子载波 DsCG)位置的信道系 数估计值, /; ff表示矩阵 (_/·)的共轭转置, 表示接收端在 DsC(/)上的 接收信号。 可以将该 U)直接作为发送端在 DsC()上的数据信号的初步估计值
S(j) ' 或者, 还可以对该计算出的 (_/·)进行硬判决, 将硬判决结果作为发送 端在 DsC()上的数据信号的初步估计值。 硬判决的步骤, 包括: 将对 (_/·)进行解调后得到的 分别与当前调制方 式下的各归一化星座点符号的差值进行取模平方处理, 将其中最小的值作为 硬判决结果 即:
Figure imgf000017_0002
其中, 表示当前调制方式下第 个归一化星座点符号, 正整数 为与 当前调制方式有关的参数。
在步骤 30中, 计算各数据子载波的干扰噪声协方差矩阵具体可包括: 步骤一, 对该数据流对应的每一导频子载波, 根据发送端在该导频子载 波上发送的导频信号、 该导频子载波上的接收信号和该导频子载波位置的信 道系数估计值, 计算得到该导频子载波位置的干扰噪声协方差矩阵估计值;
PsC(i)位置的干扰噪声协方差矩阵估计值 έΜp(0由下式得到: I-P ) = (yP {ή- {r)p{r)){yP { ~Κ {ήρ{ή)Η ( 6 ) 其中, 为发送端在 PsC(z)上发送的导频信号, 为 PsC(z)上的接收 信号, ()为 PsC(i)位置的信道系数估计值, ( ( )-^ ( 表示矩阵 ( ()- 的共辄转置, 其他参数含义见上文。 步骤二, 对该干扰抑制区域中该数据流对应的每一数据子载波, 根据该 数据子载波上的接收信号和数据信号的初步估计值, 及该数据子载波位置的 信道系数估计值,计算得到该数据子载波位置的干扰噪声协方差矩阵估计值; 则 DsCG位置的干扰噪声协方差矩阵估计值 D(')由下式得到:
Figure imgf000018_0001
其中, 为 DsC(z)上的数据信号的初步估计值, W为 DsC()上的接 收信号, 4 (·)为 DsCG)位置的信道系数估计值, ( C/)-^C/;^C/)f表示矩阵 ( C)- 的共辄转置。 步骤三: 对该数据流对应的每一数据子载波, 将该数据流对应的各导频 子载波位置和数据子载波位置的干扰噪声协方差矩阵估计值的加权平均, 作 为该数据子载波位置的干扰噪声协方差矩阵;
将该干扰抑制区域中该数据流对应的第 I个数据子载波位置的干扰噪声 协方差矩阵记为 Rw_D /), 则有:
Figure imgf000018_0002
其中, 为计算 RwD /)时赋予 έΜp(0的权值, ^为计算 RwD Z)时赋予
^^― D(/)的权值, ^.+ „; =1 ,部分权值可以为 0,/为一循环变量, / = i,--,J ,
;=1 n=\
其他参数含义见上文。
将数据子载波位置的干扰噪声协方差矩阵表示为 RM 是为了和
R -D 0)相区别, RN1D (j)仍是估计得到的。
上述步骤 40中数据检测的运算是常规运算。将数据子载波 DsC(/)上的数 据信号估计值记为 ^ ·), 有:
当 表示为列向量时,
Hj) = h/U) -D(j) Aj) (9) 当 表示为行向量时, = conJ{ U)) R~Ni-DU)yd U) ( 10 ) 其中, 为 DsC( )位置的信道系数估计值, ^ ( ')为4 ( ;)的共轭转置, ^ ( ·》表示对 4 ( ·)的元素取共轭, R - ( 为 RW_D /)的逆矩阵, 为
DsC( )上的接收信号, 其他参数含义见上文。 本实施例中, ( 表示为列向 量, 如 ( 表示为行向量, 上述公式可以做相应变化。 得到的各数据子载波上的数据信号估计值可以送到解调译码装置, 完成 数据的检测。
对接收数据承载区域包含的每一干扰抑制区域, 均可用上述方法对该干 扰抑制区域承载的每一数据流进行干扰噪声估计和 /或干扰抑制, 权值可以不 同。 但是在数据流对应的导频子载波个数较多时, 也可以不对数据信号进行 初步估计, 直接利用导频子载波位置的干扰噪声协方差矩阵估计值的加权平 均得到数据子载波位置的干扰噪声协方差矩阵。 因此, 也可以是: 对接收数 据承载区域包含的每一干扰抑制区域, 只有在该干扰抑制区域承载的一个或 多个数据流对应的导频子载波个数小于一设定值时, 才用该方法对该干扰抑 制区域中的该一个或多个数据流进行干扰噪声估计和 /或干扰抑制, 该设定值 如可以等于接收端的接收天线数或其倍数。
在上述计算子载波的干扰噪声协方差矩阵的步骤三中对各数据子载波和 导频子载波的加权平均可以基于干扰噪声估计单元来进行。 接收端将该干扰 抑制区域再划分为 个时频二维资源块, Λ =1,2,...; 每个时频二维资源块作 为一个干扰噪声估计单元, 每一干扰噪声估计单元中包括至少一个导频子载 波和一个数据子载波。 同一干扰抑制区域中信道估计单元和干扰噪声估计单 元的划分可以相同, 也可以不同。
在进行干扰噪声估计单元划分的一实施例中, 按公式 (8)计算某个子载波 位置的干扰噪声协方差矩阵时, 为同一干扰噪声估计单元中各个导频子载波 位置的干扰噪声协方差矩阵估计值赋予相同的权值, 为同一干扰噪声估计单 元中各个数据子载波位置的干扰噪声协方差矩阵估计值赋予相同的权值。
在进行干扰噪声估计单元划分的另一实施例, 按公式 (8)计算同一干扰噪 声估计单元中各个数据子载波位置的干扰噪声协方差矩阵时, 可以取相同的 一组权值 和 , = 1,···,/ , 7 = 1,···, J, 以得到相同的干扰噪声协方差矩阵。 在进行干扰噪声估计单元划分的又一实施例, 可以同时釆用上述两个实 施例的约束条件, 如下:
定义第 m 个干扰噪声估计单元包含的导频子载波的索引构成的集合为
, τη = \,2,···,Μ。 第 w个干扰噪声估计单元中, 定义一个该数据流对应的 导频子载波位置的干扰噪声协方差矩阵估计值, 记为 p, 有:
其中, /为一循环变量, / = 1,2,···,Μ ; 为计算 ¾ ^时, 赋予第 /个干 扰噪声估计单元中各导频子载波对应的^ 的权值,因为是加权平均, β 要满足条件∑ I , = 1, 0≤凡,≤ 1 ,其中 |q I表示导频索引集合 包含的
1=1 ' ' 导频子载波索引的个数, 在权值 中, / = 1,2,···,Μ , 可以令; ¾^大于等于其 他的权值。
同理, 定义第 m个干扰噪声估计单元包含的数据子载波的索引构成的集 合为 τη = \,2,···,Μ。 在第 w个干扰噪声估计单元中, 定义一个该数据流 对应的数据子载波位置的干扰噪声协方差矩阵估计值, 记为 irMD, 有:
Figure imgf000020_0002
其中, /为一循环变量, / = 1,2,···,Μ; ^为计算 ¾,—。时, 赋予第 /个干扰 噪声估计单元中各数据子载波对应的^ 的权值,因为是加权平均, yml
M
满足条件∑|¾| / = i,o< /≤i , 其中 | d |表示导频索引集合 包含的数
1=1 ' ' 据子载波索引的个数, 在权值? 中, / = 1,2,···,Μ , 可以令 ΜΜ大于等于其他 的权值。
之后, 对于第 m个干扰噪声估计单元包含的各个数据子载波位置的干扰 噪声协方差矩阵, 均可以通过下式来计算: ^NI-D = ^NI-P + (1 - a)^NI-D
釆用上述基于干扰噪声估计单元的方式可以简化计算。
相应地, 本实施例还提供了一种宽带同频干扰噪声估计的系统, 用于正 交频分复用(OFDM)或正交频分多址 (OFDMA)系统的接收端, 在一干扰抑制 区域内对其中承载的一个数据流进行干扰噪声估计, 该干扰抑制区域为接收 数据承载区域中的一时频二维资源块, 该系统包括:
第一装置,用于对该数据流对应的每一导频子载波, 根据发送端在该导频 子载波上发送的导频信号、 该导频子载波上的接收信号和该导频子载波位置 的信道系数估计值,计算出该导频子载波位置的干扰噪声协方差矩阵估计值; 第二装置, 用于对该数据流对应的每一数据子载波, 根据发送端在该数 据子载波上发送的数据信号的初步估计值、 该数据子载波上的接收信号和该 数据子载波位置的信道系数估计值, 计算出该数据子载波位置的干扰噪声协 方差矩阵估计值;
第三装置, 用于对该数据流对应的每一数据子载波, 将该数据流对应的 各个导频子载波位置和各个数据子载波位置的干扰噪声协方差矩阵估计值的 加权平均, 作为该数据子载波位置的干扰噪声协方差矩阵。
较佳地,
该宽带同频干扰噪声估计的系统还可以包括第四装置, 用于将该数据子 载波位置的信道系数估计值的共轭转置与该数据子载波上的接收信号相乘; 然后, 将相乘后的结果作为发送端在该数据子载波上发送的数据信号的初步 估计值; 或者, 对相乘后的结果进行硬判决, 将硬判决的结果作为发送端在 该数据子载波上发送的数据信号的初步估计值。
较佳地,
所述第一装置计算出该导频子载波位置的干扰噪声协方差矩阵估计值, 釆用
Figure imgf000021_0001
其中, ^M )为该干扰抑制区域内该数据流对应的第 Ζ·个导频子载波位 置的干扰噪声协方差矩阵估计值, = ι,···,/, /为该干扰抑制区域中该数据流 对应的导频子载波的个数; 为发送端在该第 ,个导频子载波上发送的导频 信号, ()为该第 z个导频子载波上的接收信号, 为该第 z个导频子载 波位置的信道系数估计值, (yp {i)-hp (M 为矩阵 ( 、ή- {ήρ{ή)的共轭转 置;
所述第二装置计算出该数据流对应的每一数据子载波位置的干扰噪声协 方差矩阵估计值, 釆用的计算公式可以如下:
其中, 。(_/·)为该干扰抑制区域内该数据流对应的第 个数据子载波位 置的干扰噪声协方差矩阵估计值, _/ = V ,J, J为该干扰抑制区域中该数据流 对应的数据子载波的个数; ^ 为发送端在该第 个数据子载波上发送的数 据信号的初步估计值, ( 为该第 ·个数据子载波上的接收信号, 4( )为该 第 J 个数据子载波位置的信道系数估计值, ( ( ·)- ( ^ 表示矩阵 ( ( - 的共辄转置。
较佳地,
该宽带同频干扰噪声估计的系统还可以包括第五装置, 用于将该干扰抑 制区域划分为 个干扰噪声估计单元, 每一干扰噪声估计单元为一个时频二 维资源块且其中至少包含一个导频子载波和一个数据子载波, 为正整数; 相应地, 所述第三装置对该数据流对应的每一数据子载波, 将该数据流 对应的各个导频子载波位置和各个数据子载波位置的干扰噪声协方差矩阵估 计值的加权平均, 作为该数据子载波位置的干扰噪声协方差矩阵, 釆用的计 算公式如下:
KI-D =
Figure imgf000022_0001
∑ Υ ΝΙ-DU) 其中,
R^_D为第 m 个干扰噪声估计单元中该数据流对应的各个数据子载波位 置的干扰噪声协方差矩阵, m = \,l,---,M 为一权值, 0≤α≤\ ;
/为一循环变量, / = 1,2,·· ·,Μ ;
p为第 /个干扰噪声估计单元中该数据流对应的导频子载波的索引 I的 集合, = 1,···,/, /为该干扰抑制区域中该数据流对应的导频子载波的个数; 为第 /个干扰噪声估计单元中该数据流对应的数据子载波的索引 J的 集合, j = \ , J , J为该干扰抑制区域中该数据流对应的数据子载波的个数; 为该干扰抑制区域中该数据流对应的第 I个导频子载波位置的干 扰噪声协方差矩阵估计值;
N1_D (j)为该干扰抑制区域中该数据流对应的第 j个数据子载波位置的干 扰噪声协方差矩阵估计值;
ml为计算 R^_D时,赋予第 /个干扰噪声估计单元中各导频子载波位置的 )的权值;
7ml为计算 ¾— σ时,赋予第 /个干扰噪声估计单元中各数据子载波位置的 的权值; < 1 , | I为 包含
Figure imgf000023_0001
的导频子载波索引的个数; | 为 包含的数据子载波的索引的个数, 计算 R; ^釆用的权值 中, β醒大于等于其他的权值;计算 R^—D釆用的权值 7ml 中, ™大于等于其他的权值, / = 1,2,·· ·,Μ。
较佳地, 该宽带同频干扰噪声估计的系统还可以包括第六装置和第七装 置; 其中:
所述第六装置用于按以下方式得到发送端在该数据流对应的每一导频子 载波位置的信道系数估计值并输出到所述第一装置: 将该导频子载波上的接 收信号与发送端在该导频子载波上发送的导频信号的共轭相乘, 得到该导频 子载波位置的信道系数估计值;
所述第七装置用于按以下方式得到在该数据流对应的每一数据子载波位 置的信道系数估计值并输出到所述第二装置: 对该数据流对应的每一数据子 载波,将该数据流对应的各个导频子载波位置的信道系数估计值的加权平均, 作为该数据子载波位置的信道系数估计值。
较佳地, 该宽带同频干扰噪声估计的系统还可以包括第八装置, 用于将该干扰抑 制区域划分为 f个信道估计单元, 每一信道估计单元为一个时频二维资源块 且包含至少一个导频子载波和一个数据子载波, f为正整数;
相应地, 所述第七装置对该数据流对应的每一数据子载波, 将该数据流 对应的各个导频子载波位置的信道系数估计值的加权平均, 作为该数据子载 波位置的信道系数估计值, 釆用的计算公式如下:
Λ Κ Λ
=Σ 1=1 iΣ Α(Ζ·)
eQf 其中,
¾为第 k个信道估计单元中该数据流对应的每一数据子载波位置的信道 系数估计值, k = \,2, ···, ,
/为一循环变量, 1 = 1,2,···,Κ
为第 个信道估计单元包含的导频子载波的索引 ,的集合, = ι,···,/, /为该数据流对应的导频子载波的个数;
^()为该干扰抑制区域中该数据流对应的第 I个导频子载波位置的信道 系数估计值;
OM为计算 时, 赋予第 /个信道估计单元中各导频子载波的 ^ (/)的权 κ
值, ∑ΙΩ= 1,0≤ ≤1, | |表示 包含的导频子载波的个数, 且在权值
1=1
¾中, 1 = 1,2, ---,Κ , ½大于等于其他的权值。 相应地, 本实施例还提供了一种宽带同频干扰抑制的系统, 应用于正交 频分复用 (OFDM)或正交频分多址(OFDMA) 系统的接收端, 在一干扰抑 制区域内对其中承载的一个数据流进行干扰抑制, 该干扰抑制区域为接收数 据承载区域中的一时频二维资源块, 该系统包括: 第一子系统, 如上述的宽带同频干扰噪声估计的系统, 用于按相同的方 式, 得到该数据流对应的各数据子载波位置的信道系数估计值和干扰噪声协 方差矩阵;
第二子系统, 用于对该数据流对应的每一数据子载波, 根据该数据子载 波上的接收信号, 及该数据子载波位置的信道系数估计值和干扰噪声协方差 矩阵进行数据检测, 得到该数据子载波上的数据信号估计值。
下面结合具体的应用场景, 对本发明进行进一步说明。
应用示例 1
接收端通过下述步骤完成每个数据流的干扰噪声估计和数据检测:
( 1 )接收端将干扰抑制区域内当前数据流的第 I个导频子载波上的接收 信号 ( )与发送端在第 ,个导频子载波上发送的导频信号; ^;)的共轭相乘, 得到该导频子载波位置的信道系数估计值 (0 , 即:
Figure imgf000025_0001
其中各参数的定义参见上文;
(2)进行信道系数估计:
接收端将干扰抑制区域平均分成 n份,其中每一份为一个信道估计单元, 其中每个信道估计单元中包含 a个导频子载波, 导频子载波索引 l~a属于导 频索引集合 Ω,, 导频子载波索引(a+l)~2*a属于导频索引集合 Ω2, 导频子载 波索引((n-l)*a+l)~n*a属于导频索引集合 Ω„。 在进行信道估计时:
第 Α个信道估计单元内的各个数据子载波位置的信道系数估计值均为 , 有:
a 2a na i=\ i=a+\ i=(n-\)a+\ 其中, -满足条件 | =l, 0 < ¾ < 1 , k = \,---,n, / = !,···,«, | |表示 导频索引集合 包含的导频子载波索引的个数, 均等于 a。
(3)对数据流进行 MRC合并, 计算当前数据子载波的 MRC合并结果, 具体过程如下:
设当前数据子载波的信道响应估计值为^ /·) ,在该数据子载波 上的接收 信号为 则经过 MRC合并后的结果为 C/)
Figure imgf000026_0001
这里 表示矩阵 ( 的共轭转置。 在本示例中, 将得到的 (·)直接作为发送端在第 个数据子载波上的数 据信号的初步估计值 在另一示例中, 对得到的 (_/·)进行硬判决, 将硬 判决结果作为发送端在 DsC(/)上的数据信号的初步估计值 。 (4)进行各数据子载波的干扰噪声协方差估计
接收端将干扰抑制区域平均分成 n份, 其中每一份为一个干扰噪声估计 单元, 假定划分方式与信道估计单元的划分方式相同。 其中每个干扰噪声估 计单元中包含 个导频子载波, 导频子载波索引 属于导频索引集合 Ω^, 导频子载波索引 0+1)~2*α 属于导频索引集合 Ω2 7 , 导频子载波索引 属于导频索引集合 第 /个干扰噪声估计单元中包含的数 据子载波的索引属于数据索引集合^ 。 在进行干扰噪声估计时:
令第 k个干扰噪声估计单元内的导频子载波位置的干扰噪声协方差矩阵 估计值为 — p, 有:
Figure imgf000026_0002
其中, 满足条件 ^ =1, 0<^<1, k = l,...,n, ί = 1,···,η。
1=1
公第 k个干扰噪声估计单元内的数据子载波位置的干扰噪声协方差矩阵 估计值为 D, 有:
^NI-D = Ykl Σ l-D +… + Σ l-D (J) 其中, 满足条件∑| | =1, 0≤γΜ≤1, k = l,---,n , ί = 1,···,η。
1=1
则第 k个干扰噪声估计单元内的各数据子载波位置的干扰噪声协方差矩 阵均为:
RJV/— D ~
Figure imgf000027_0001
+ (1 _ "t )^NI-D。
( 5 )对当前数据流进行检测, 见上文。
应用示例 2
在本示例中, 该干扰抑制区域中承载 1个数据流, 且釆用 16e上行导频 结构, 如图 2所示。
接收端通过下述步骤完成该数据流对应的干扰噪声估计和数据检测:
(1 )接收端将该数据流对应的第 I导频子载波上的接收信号 ( 与发 送端在第 I个导频子载波上发送的导频信号 ρ、ή的共轭相乘,得到该导频子载 波位置的信道系数估计值 即:
Figure imgf000027_0002
其中各参数的定义参见上文;
(2)进行信道系数估计:
接收端将干扰抑制区域平均分成 n份,其中每一份为一个信道估计单元, 其中每个信道估计单元中包含 4个导频子载波, 导频子载波索引 1~4属于导 频索引集合 Ω, , 导频子载波索引 5~8属于导频索引集合 Ω2, 导频子载波索引 (4η-3)~4η属于导频索引集合 Ω„。 在进行信道估计时:
第 Α个信道估计单元内的各个数据子载波位置的信道系数估计值均为 , 有:
Figure imgf000027_0003
其中, 满足条件∑| | =l , 0<¾<1, k = l, ···," , l = l,--,n, | |表
1=1
示导频索引集合 包含的导频子载波索引的个数。
(3)对数据流进行 MRC合并, 计算当前数据子载波的 MRC合并结果, 具体过程如下:
设当前数据子载波的信道响应估计值为^ /·), 在该数据子载波上的接收 信号为 (7), 则经过 MRC合并后的结果符号为 0) = (^0) . (_/·), 这里 0) 表示矩阵 的共轭对称矩阵。 在本示例中, 将该 (·)直接作为发送端在第 个数据子载波上的数据信 号的初步估计值 (7·)。 在另一示例中, 对得到的 (_/·)进行硬判决, 将硬判决 结果作为发送端在 DsC()上的数据信号的初步估计值 。
(4)再接着完成干扰噪声协方差估计
接收端将干扰抑制区域平均分成 n份, 其中每一份为一个干扰噪声估计 单元, 其中每个干扰噪声估计单元中包含 4个导频子载波, 导频子载波索引 1~4属于导频索引集合 Ω^, 导频子载波索引 5~8属于导频索引集合 Ω2 导 频子载波索引 4«-3~4«属于导频索引集合 第 /个干扰噪声估计单元中包 含的数据子载波索引属于数据索引集合^^。 在进行干扰噪声估计时:
令第 k个干扰噪声估计单元内的导频子载波位置的干扰噪声协方差矩阵 估计值为¾^— p, 有:
Figure imgf000028_0001
其中, A满足条件 =1, 0<^<1, k = l,...,n , ί = 1,···,η。
1=1
令第 k个干扰噪声估计单元内的数据子载波位置的干扰噪声协方差矩阵 估计值为 D, 有:
Figure imgf000028_0002
其中, w满足条件 | |^ = , ≤7kl≤l , k = l,-,n, / = 1,···,"。
1=1
则第 k个干扰噪声估计单元内的各数据子载波位置的干扰噪声协方差矩 阵均为:
Figure imgf000029_0001
( 5 )对当前数据流进行检测, 如上文。
应用示例 3
在本示例中, 该干扰抑制区域中承载 2个数据流, 且釆用 16e上行导频 结构, 如图 3所示。
对每一个数据流, 接收端通过下述步骤完成该数据流对应的干扰噪声估 计和数据检测:
(1 )接收端将该数据流的第 I导频子载波上的接收信号 ( 与发送端 在第 I个导频子载波上发送的导频信号 的共轭相乘,得到该导频子载波位 置的信道系数估计值 ^( ), 即: hP(i) = yp(i)p*(i) 其中各参数的定义参见上文;
(2)进行信道系数估计:
接收端将干扰抑制区域平均分成 n份,其中每一份为一个信道估计单元, 其中每个信道估计单元中每一数据流对应的导频子载波为 2个, 导频子载波 索引 1~2属于导频索引集合 Ω,, 导频子载波索引 3~4属于导频索引集合 Ω2, 导频子载波索引 (2η-1)~2η属于导频索引集合 Ω„。 在进行信道估计时:
第 Α个信道估计单元内的各个数据子载波位置的信道系数估计值均为 , 有:
Figure imgf000029_0002
其中, =1 , 0 < ¾ < 1 , k = l,---,n , l = l,---,n, | |表示
Figure imgf000030_0001
导频索引集合 包含的导频子载波索引的个数。
(3)对数据流进行 MRC合并, 计算当前数据子载波的 MRC合并结果, 具体过程如下:
设当前数据子载波的信道响应估计值为^ /·), 在该数据子载波上的接收 信号为 (7), 则经过 MRC合并后的结果符号为 0) = (^0) . (_/·), 这里 0) 表示矩阵 的共轭对称矩阵。 在本示例中, 将得到的 (·)直接作为发送端在第 个数据子载波上的数 据信号的初步估计值 在另一示例中, 对得到的 (_/·)进行硬判决, 将硬 判决结果作为发送端在 DsC()上的数据信号的初步估计值 。
(4)再接着完成干扰噪声协方差估计
接收端将干扰抑制区域平均分成 n份, 其中每一份为一个干扰噪声估计 单元, 其中每个干扰噪声估计单元中每一数据流对应的导频子载波有 2个, 导频子载波索引 1~2属于导频索引集合 Ω^,导频子载波索引 3~4属于导频索 引集合 Ω2 导频子载波索引 (2«-1)~2«属于导频索引集合 第 /个干扰噪 声估计单元中包含的数据子载波索引属于数据索引集合^^。 在进行干扰噪声估计时:
令第 k个干扰噪声估计单元内的导频子载波位置的干扰噪声协方差矩阵 估计值为¾^— p, 有:
\,···,η。
Figure imgf000030_0002
令第 k个干扰噪声估计单元内的数据子载波位置的干扰噪声协方差矩阵 估计值为 D, 有: l-D = Tkl Σ Κ )十…+^ Σ l-D (J) 其中, 满足条件 | d| « = , ≤7kl≤l , k = l, - , n , ! = 1 、"。
1=1
则第 k个干扰噪声估计单元内的各数据子载波位置的干扰噪声协方差矩 阵均
Figure imgf000031_0001
( 5 )对当前数据流进行检测, 略。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序 来指令相关硬件完成, 所述程序可以存储于计算机可读存储介质中, 如只读 存储器、 磁盘或光盘等。 可选地, 上述实施例的全部或部分步骤也可以使用 一个或多个集成电路来实现。 相应地, 上述实施例中的各模块 /单元可以釆用 硬件的形式实现, 也可以釆用软件功能模块的形式实现。 本发明不限制于任 何特定形式的硬件和软件的结合。
以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本 领域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和 原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护 范围之内。
工业实用性
釆用本发明后, 可以准确估计出干扰的统计特性和信道信息, 并对干扰 进行消除, 以大幅度提高系统的信干噪比。

Claims

权 利 要 求 书
1、 一种宽带同频干扰噪声估计的方法, 应用于正交频分复用(OFDM)或 正交频分多址 (OFDMA)系统的接收端, 在一干扰抑制区域内, 对其中承载的 一个数据流进行干扰噪声估计时, 所述方法包括:
对所述数据流对应的每一导频子载波, 根据发送端在所述导频子载波上 发送的导频信号、 所述导频子载波上的接收信号和所述导频子载波位置的信 道系数估计值, 计算出所述导频子载波位置的干扰噪声协方差矩阵估计值; 对所述数据流对应的每一数据子载波, 根据发送端在所述数据子载波上 发送的数据信号的初步估计值、 所述数据子载波上的接收信号和所述数据子 载波位置的信道系数估计值, 计算出所述数据子载波位置的干扰噪声协方差 矩阵估计值;
对所述数据流对应的每一数据子载波, 将所述数据流对应的各个导频子 载波位置和各个数据子载波位置的干扰噪声协方差矩阵估计值的加权平均, 作为所述数据子载波位置的干扰噪声协方差矩阵;
其中, 所述干扰抑制区域为接收数据承载区域中的一时频二维资源块。
2、 如权利要求 1所述的方法, 其中:
所述发送端在所述数据流对应的每一数据子载波上发送的数据信号的初 步估计值按以下方式得到:
将所述数据子载波位置的信道系数估计值的共轭转置与所述数据子载波 上的接收信号相乘;
将相乘后的结果作为发送端在所述数据子载波上发送的数据信号的初步 估计值; 或者, 对相乘后的结果进行硬判决, 将硬判决的结果作为发送端在 所述数据子载波上发送的数据信号的初步估计值。
3、 如权利要求 1所述的方法, 其中:
所述数据流对应的每一导频子载波位置的干扰噪声协方差矩阵估计值按 下式计算得到: 其中, 为所述干扰抑制区域内所述数据流对应的第 ,个导频子载 波位置的干扰噪声协方差矩阵估计值, = ι,···,/, /为所述干扰抑制区域中所 述数据流对应的导频子载波的个数; 为发送端在所述第 ,个导频子载波上 发送的导频信号, 为所述第 ,个导频子载波上的接收信号, 为所述 第 I 个导频子载波位置的信道系数估计值, ( ()- 为矩阵
^w-^w^))的共辄转置。
4、 如权利要求 1所述的方法, 其中:
所述数据流对应的每一数据子载波位置的干扰噪声协方差矩阵估计值按 下式计算得到: -D(j) = ( dU)-^U)sU))( A )- U)sU)f (b ) 其中, 。(·)为所述干扰抑制区域内所述数据流对应的第 J个数据子载 波位置的干扰噪声协方差矩阵估计值, j = l,---,J, J为所述干扰抑制区域中所 述数据流对应的数据子载波的个数; ^ 为发送端在所述第 _;个数据子载波 上发送的数据信号的初步估计值, ( 为所述第 _;个数据子载波上的接收信 的信道系数估计值, [ydU)- U)s{j)
Figure imgf000033_0001
5、 如权利要求 1所述的方法, 其中:
所述对所述数据流对应的每一数据子载波, 将所述数据流对应的各个导 频子载波位置和各个数据子载波位置的干扰噪声协方差矩阵估计值的加权平 均, 方差矩阵, 釆用的计算公式如下:
Figure imgf000033_0002
Rw—。(7·)为所述干扰抑制区域中所述数据流对应的第 j个数据子载波位置 的干扰噪声协方差矩阵; D(/)为所述干扰抑制区域中所述数据流对应的第
/个数据子载波位置的干扰噪声协方差矩阵估计值, /=v ,J, J为所述干扰 抑制区域中所述数据流对应的数据子载波的个数; MP(0为所述干扰抑制区域中所述数据流对应的第 I个导频子载波位置 的干扰噪声协方差矩阵估计值, = ι,···,/, /为所述干扰抑制区域中所述数据 流对应的导频子载波的个数;
为 时赋予 ρ(0的权值, 为计算 RwD /)时赋予 D(/) 的权值, i o
Figure imgf000034_0001
6、 如权利要求 5所述的方法, 所述方法还包括:
按式 (c)计算数据子载波位置的干扰噪声协方差矩阵之前, 将所述干扰抑 制区域划分为一个或多个干扰噪声估计单元, 每一干扰噪声估计单元为一个 时频二维资源块且其中至少包含一个导频子载波和一个数据子载波; 按式 (c)计算数据子载波位置的干扰噪声协方差矩阵时, 为同一干扰噪声 估计单元中各个导频子载波位置的干扰噪声协方差矩阵估计值赋予相同的权 值, 为同一干扰噪声估计单元中各个数据子载波位置的干扰噪声协方差矩阵 估计值赋予相同的权值。
7、 如权利要求 1所述的方法, 所述方法还包括:
将所述干扰抑制区域划分为 个干扰噪声估计单元, 每一干扰噪声估计 单元为一个时频二维资源块且其中至少包含一个导频子载波和一个数据子载 波, 为正整数;
所述对所述数据流对应的每一数据子载波, 将所述数据流对应的各个导 频子载波位置和各个数据子载波位置的干扰噪声协方差矩阵估计值的加权平 均, 作为所述数据子载波位置的干扰噪声协方差矩阵, 釆用的计算公式如下: Kl-D = Σ Υ ΝΙ-DU) ( D )
Figure imgf000034_0002
其中,
R^_D为第 m 个干扰噪声估计单元中所述数据流对应的各个数据子载波 位置的干扰噪声协方差矩阵, πι = \, 2, · · ·,Μ 为一权值, 0≤ ≤\ ; /为一循环变量, / = 1,2,···,Μ ;
p为第 /个干扰噪声估计单元中所述数据流对应的导频子载波的索引 I 的集合, = 1,···,/, /为所述干扰抑制区域中所述数据流对应的导频子载波的 个数;
为第 /个干扰噪声估计单元中所述数据流对应的数据子载波的索引 J 的集合, j = \ 、 J , J为所述干扰抑制区域中所述数据流对应的数据子载波的 个数;
为所述干扰抑制区域中所述数据流对应的第 I个导频子载波位置 的干扰噪声协方差矩阵估计值;
N1_D (j)为所述干扰抑制区域中所述数据流对应的第 j个数据子载波位置 的干扰噪声协方差矩阵估计值;
ml为计算 R^_D时,赋予第 /个干扰噪声估计单元中各导频子载波位置的 )的权值;
7ml为计算 R^—D时,赋予第 /个干扰噪声估计单元中各数据子载波位置的 ^^( 的权值; <ι , |
Figure imgf000035_0001
I为 包含 的导频子载波索引的个数; | 为 包含的数据子载波的索引的个数, 计算
R; ^釆用的权值 中, β 大于等于其他的权值;计算 R^—D釆用的权值 7ml 中, ™大于等于其他的权值, / = 1,2,···,Μ。
8、 如权利要求 1至 7中任一权利要求所述的方法, 其中,
所述发送端在所述数据流对应的每一导频子载波位置的信道系数估计值 按以下方式得到: 将所述导频子载波上的接收信号与发送端在所述导频子载 波上发送的导频信号的共轭相乘, 得到所述导频子载波位置的信道系数估计 值;
所述发送端在所述数据流对应的每一数据子载波位置的信道系数估计值 按以下方式得到: 对所述数据流对应的每一数据子载波, 将所述数据流对应 的各个导频子载波位置的信道系数估计值的加权平均, 作为所述数据子载波 位置的信道系数估计值。
9、 如权利要求 8所述的方法, 所述方法还包括,
将所述干扰抑制区域划分为 f个信道估计单元, 每一信道估计单元为一 个时频二维资源块且包含至少一个导频子载波和一个数据子载波, K为正整 数;
所述对所述数据流对应的每一数据子载波, 将所述数据流对应的各个导 频子载波位置的信道系数估计值的加权平均, 作为所述数据子载波位置的信 道系数估计值, 釆用的计算公式如下:
Λ Κ Λ
=ΣΣ Α(Ζ·) d
1=1 ieQf ' 其中,
¾为第 k个信道估计单元中所述数据流对应的每一数据子载波位置的信 道系数估计值, k = \,2, ···, ,
/为一循环变量, 1 = 1,2,···,Κ
为第 个信道估计单元包含的导频子载波的索引 ,的集合, = ι,···,/, /为所述数据流对应的导频子载波的个数;
^()为所述干扰抑制区域中所述数据流对应的第 I个导频子载波位置的 信道系数估计值;
OM为计算 时, 赋予第 /个信道估计单元中各导频子载波的 ^ (/)的权 κ
值, ∑ΙΩ= 1,0≤ ≤1, | |表示 包含的导频子载波的个数, 且在权值
1=1
¾中, 1 = 1,2, ---,Κ , ½大于等于其他的权值。
10、 一种宽带同频干扰抑制的方法, 应用于正交频分复用 (OFDM)或 正交频分多址( OFDMA )系统的接收端, 在一干扰抑制区域内, 对其中承载 的一个数据流进行干扰抑制时, 所述方法包括:
按权利要求 8或 9所述的宽带同频干扰噪声估计方法, 得到所述数据流 对应的各数据子载波位置的信道系数估计值和干扰噪声协方差矩阵; 对所述数据流对应的每一数据子载波, 根据所述数据子载波上的接收信 号, 及所述数据子载波位置的信道系数估计值和干扰噪声协方差矩阵进行数 据检测 , 得到所述数据子载波上的数据信号估计值;
其中, 所述干扰抑制区域为接收数据承载区域中的一时频二维资源块。
11、 一种宽带同频干扰噪声估计的系统, 应用于正交频分复用(OFDM) 或正交频分多址 (OFDMA)系统的接收端, 所述系统设置为在一干扰抑制区域 内对其中承载的一个数据流进行干扰噪声估计, 所述干扰抑制区域为接收数 据承载区域中的一时频二维资源块, 所述系统包括:
第一装置,其设置为: 对所述数据流对应的每一导频子载波, 根据发送端 在所述导频子载波上发送的导频信号、 所述导频子载波上的接收信号和所述 导频子载波位置的信道系数估计值, 计算出所述导频子载波位置的干扰噪声 协方差矩阵估计值;
第二装置, 其设置为: 对所述数据流对应的每一数据子载波, 根据发送 端在所述数据子载波上发送的数据信号的初步估计值、 所述数据子载波上的 接收信号和所述数据子载波位置的信道系数估计值, 计算出所述数据子载波 位置的干扰噪声协方差矩阵估计值; 以及
第三装置, 其设置为: 对所述数据流对应的每一数据子载波, 将所述数 据流对应的各个导频子载波位置和各个数据子载波位置的干扰噪声协方差矩 阵估计值的加权平均, 作为所述数据子载波位置的干扰噪声协方差矩阵。
12、 如权利要求 11所述的系统, 所述系统还包括第四装置;
所述第四装置设置为: 将所述数据子载波位置的信道系数估计值的共轭 转置与所述数据子载波上的接收信号相乘; 然后, 将相乘后的结果作为发送 端在所述数据子载波上发送的数据信号的初步估计值; 或者, 对相乘后的结 果进行硬判决, 将硬判决的结果作为发送端在所述数据子载波上发送的数据 信号的初步估计值。
13、 如权利要求 11所述的系统, 其中: 所述第一装置是釆用如下计算公式计算出所述导频子载波位置的干扰噪 声协
Figure imgf000038_0001
其中, 为所述干扰抑制区域内所述数据流对应的第 I个导频子载 波位置的干扰噪声协方差矩阵估计值, = 1,···,/, /为所述干扰抑制区域中所 述数据流对应的导频子载波的个数; 为发送端在所述第 ,个导频子载波上 发送的导频信号, ;^;)为所述第 ,个导频子载波上的接收信号, 为所述 第 I 个导频子载波位置的信道系数估计值, ( ( - 为矩阵 ^W-^W^))的共辄转置;
所述第二装置是设置为釆用如下计算公式计算出所述数据流对应的每一 数据
Figure imgf000038_0002
其中, 。(_/·)为所述干扰抑制区域内所述数据流对应的第 j个数据子载 波位置的干扰噪声协方差矩阵估计值, j = l,---,J, J为所述干扰抑制区域中所 述数据流对应的数据子载波的个数; ^ 为发送端在所述第 _;个数据子载波 上发送的数据信号的初步估计值, 3^ ·)为所述第 _;个数据子载波上的接收信
·)为所述第 个数据子载波位置的信道系数估计值, {yd{j)- U)s{j))H
Figure imgf000038_0003
14、 如权利要求 11所述的系统, 所述系统还包括第五装置;
所述第五装置设置为: 将所述干扰抑制区域划分为 个干扰噪声估计单 元, 每一干扰噪声估计单元为一个时频二维资源块且其中至少包含一个导频 子载波和一个数据子载波, 为正整数;
相应地, 所述第三装置是设置为釆用如下计算公式对所述数据流对应的 每一数据子载波, 将所述数据流对应的各个导频子载波位置和各个数据子载 波位置的干扰噪声协方差矩阵估计值的加权平均, 作为所述数据子载波位置 的干扰噪声协方差矩阵:
Figure imgf000038_0004
其中, R^_D为第 个干扰噪声估计单元中所述数据流对应的各个数据子 载波位置的干扰噪声协方差矩阵, πι = 1,2,···,Μ 为一权值, 0≤ ≤\;
/为一循环变量, / = 1,2,···,Μ;
Q,p为第 /个干扰噪声估计单元中所述数据流对应的导频子载波的索引 I 的集合, = 1,···,/, /为所述干扰抑制区域中所述数据流对应的导频子载波的 个数;
rf为第 /个干扰噪声估计单元中所述数据流对应的数据子载波的索引 J 的集合, j = \ 、 J , J为所述干扰抑制区域中所述数据流对应的数据子载波的 个数;
为所述干扰抑制区域中所述数据流对应的第 I个导频子载波位置 的干扰噪声协方差矩阵估计值;
N1_D (j)为所述干扰抑制区域中所述数据流对应的第 j个数据子载波位置 的干扰噪声协方差矩阵估计值;
βη1为计算 R^—D时,赋予第 /个干扰噪声估计单元中各导频子载波位置的 )的权值;
7ml为计算 ¾— σ时,赋予第 /个干扰噪声估计单元中各数据子载波位置的 的权值; <ι , |
Figure imgf000039_0001
I为 包含 的导频子载波索引的个数; 为 包含的数据子载波的索引的个数, 计算
R; ^釆用的权值 中, β 大于等于其他的权值;计算 R^—D釆用的权值 7ml 中, ™大于等于其他的权值, / = 1,2,···,Μ。
15、 如权利要求 11-14任意一项所述的系统, 所述系统还包括第六装置 和第七装置;
所述第六装置设置为按以下方式得到发送端在所述数据流对应的每一导 频子载波位置的信道系数估计值并输出到所述第一装置: 将所述导频子载波 上的接收信号与发送端在所述导频子载波上发送的导频信号的共轭相乘, 得 到所述导频子载波位置的信道系数估计值;
所述第七装置设置为按以下方式得到在所述数据流对应的每一数据子载 波位置的信道系数估计值并输出到所述第二装置: 对所述数据流对应的每一 数据子载波, 将所述数据流对应的各个导频子载波位置的信道系数估计值的 加权平均, 作为所述数据子载波位置的信道系数估计值。
16、 如权利要求 15所述的系统, 所述系统还包括第八装置;
所述第八装置设置为: 将所述干扰抑制区域划分为 K个信道估计单元, 每一信道估计单元为一个时频二维资源块且包含至少一个导频子载波和一个 数据子载波, f为正整数;
相应地, 所述第七装置是设置为釆用如下计算公式对所述数据流对应的 每一数据子载波, 将所述数据流对应的各个导频子载波位置的信道系数估计 值的加权平均, 作为所述数据子载波位置的信道系数估计值:
Λ κ Λ
=ΣΣ Α(Ζ·)
1=1 ieQf 其中,
为第 k个信道估计单元中所述数据流对应的每一数据子载波位置的信 道系数估计值, k = \,2, ···, ,
/为一循环变量, 1 = 1,2,···,Κ
为第 个信道估计单元包含的导频子载波的索引 ,的集合, = ι,···,/, /为所述数据流对应的导频子载波的个数;
^()为所述干扰抑制区域中所述数据流对应的第 I个导频子载波位置的 信道系数估计值;
oM为计算 时, 赋予第 /个信道估计单元中各导频子载波的 ^ (/)的权 κ
值, ∑ΙΩ= 1,0≤ ≤1, | |表示 包含的导频子载波的个数, 且在权值
1=1
¾中, 1 = 1,2, ---,Κ , ½大于等于其他的权值:
17、 一种宽带同频干扰抑制的系统, 应用于正交频分复用 (OFDM )或 正交频分多址( OFDMA )系统的接收端, 所述系统设置为在一干扰抑制区域 内对其中承载的一个数据流进行干扰抑制, 所述干扰抑制区域为接收数据承 载区域中的一时频二维资源块, 所述系统包括:
第一子系统, 其设置为: 按与权利要求 15或 16所述的宽带同频干扰噪 声估计的系统相同的方式, 得到所述数据流对应的各数据子载波位置的信道 系数估计值和干扰噪声协方差矩阵; 以及
第二子系统, 其设置为: 对所述数据流对应的每一数据子载波, 根据所 述数据子载波上的接收信号, 及所述数据子载波位置的信道系数估计值和干 扰噪声协方差矩阵进行数据检测,得到所述数据子载波上的数据信号估计值。
PCT/CN2011/075918 2010-11-23 2011-06-20 一种宽带同频干扰噪声估计和干扰抑制的方法及相应系统 WO2012068871A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010557326.6A CN102480453B (zh) 2010-11-23 2010-11-23 一种宽带同频干扰噪声估计和干扰抑制的方法及相应系统
CN201010557326.6 2010-11-23

Publications (1)

Publication Number Publication Date
WO2012068871A1 true WO2012068871A1 (zh) 2012-05-31

Family

ID=46092935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/075918 WO2012068871A1 (zh) 2010-11-23 2011-06-20 一种宽带同频干扰噪声估计和干扰抑制的方法及相应系统

Country Status (2)

Country Link
CN (1) CN102480453B (zh)
WO (1) WO2012068871A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114257256A (zh) * 2021-12-15 2022-03-29 哲库科技(北京)有限公司 噪声估计方法、装置、设备和可读存储介质

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108738064B (zh) * 2017-04-18 2021-08-17 中国移动通信集团山西有限公司 上行干扰定位方法及装置
CN114629754B (zh) * 2022-05-13 2022-08-02 成都爱瑞无线科技有限公司 干扰噪声均衡方法、系统及存储介质
CN115865109B (zh) * 2022-11-11 2024-05-14 北京智芯微电子科技有限公司 多接收天线的干扰抑制合并方法、装置及介质、接收终端

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101056286A (zh) * 2006-02-16 2007-10-17 西门子公司 改善突发干扰变化期间无线电网中的信道估计的方法
CN101364846A (zh) * 2007-08-07 2009-02-11 中兴通讯股份有限公司 一种基于导频的子载波上噪声功率估计方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1114296C (zh) * 2000-07-18 2003-07-09 华为技术有限公司 一种频率选择性信道下的可变带宽信道估计方法及其装置
US7733975B1 (en) * 2008-12-31 2010-06-08 Mediatek Inc. Method for estimating phase error in MIMO OFDM communications system
CN101753176B (zh) * 2009-12-24 2012-12-19 北京北方烽火科技有限公司 一种干扰抑制合并方法及系统

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101056286A (zh) * 2006-02-16 2007-10-17 西门子公司 改善突发干扰变化期间无线电网中的信道估计的方法
CN101364846A (zh) * 2007-08-07 2009-02-11 中兴通讯股份有限公司 一种基于导频的子载波上噪声功率估计方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114257256A (zh) * 2021-12-15 2022-03-29 哲库科技(北京)有限公司 噪声估计方法、装置、设备和可读存储介质
CN114257256B (zh) * 2021-12-15 2023-08-15 哲库科技(北京)有限公司 噪声估计方法、装置、设备和可读存储介质

Also Published As

Publication number Publication date
CN102480453A (zh) 2012-05-30
CN102480453B (zh) 2015-06-03

Similar Documents

Publication Publication Date Title
US8855240B2 (en) Channel estimation and data detection in a wireless communication system in the presence of inter-cell interference
CN102882575B (zh) 用于确定信道状态信息的方法和装置
WO2019041470A1 (zh) 大规模mimo鲁棒预编码传输方法
WO2011090028A1 (ja) 通信装置及び基地局装置
CN102480444B (zh) 一种宽带同频干扰噪声估计和干扰抑制的方法及相应系统
CN102571659B (zh) 一种干扰噪声估计和干扰抑制方法及相应系统
KR102318817B1 (ko) 무선통신 시스템에서 필터 뱅크 다중 반송파 기법을 위한 전처리 방법 및 장치
KR20160025487A (ko) 신호 처리 장치, 신호 처리 방법 및 기록 매체
JP2011151803A (ja) 送信機及び受信機を含むネットワークにおいてシンボルを通信するための方法
CN102594737B (zh) 一种邻区干扰检测方法及系统
WO2012079348A1 (zh) 一种宽带同频干扰噪声估计和干扰抑制的方法及相应系统
WO2012068871A1 (zh) 一种宽带同频干扰噪声估计和干扰抑制的方法及相应系统
WO2012106963A1 (zh) 干扰和噪声消除方法及装置
Kotzsch et al. On synchronization requirements and performance limitations for CoMP systems in large cells
Yin et al. Design and performance analysis of AFDM with multiple antennas in doubly selective channels
KR100932260B1 (ko) 다중입력 다중출력 시스템을 위한 복호화 장치 및 그 방법
JP2007515834A (ja) マルチキャリア信号を事前コード化するための装置及び方法
da Silva et al. Improved data-aided channel estimation in LTE PUCCH using a tensor modeling approach
Abou Saleh et al. Receive antenna selection for time-varying channels using discrete prolate spheroidal sequences
KR101238919B1 (ko) 공간 다중화 다중안테나 시스템에서의 신호 대 간섭 및 잡음비 예측 장치 및 방법
CN104322130A (zh) 干扰抑制方法、数据传输方法、装置、用户设备和基站
CN102480440B (zh) 一种宽带同频干扰环境下的信道估计方法及系统
Shibu et al. Ordering parallel successive interference cancellation mechanism to mitigate ICI interference at downlink of the LTE-A HetNet
Hsiao et al. Case study and performance evaluation of MDMA–A non-orthogonal multiple access scheme for 5G cellular systems
L. Tavares et al. Interference-robust air interface for 5G ultra-dense small cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11842668

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11842668

Country of ref document: EP

Kind code of ref document: A1