WO2012067035A1 - ガラス製フレネルレンズの製造方法 - Google Patents
ガラス製フレネルレンズの製造方法 Download PDFInfo
- Publication number
- WO2012067035A1 WO2012067035A1 PCT/JP2011/076065 JP2011076065W WO2012067035A1 WO 2012067035 A1 WO2012067035 A1 WO 2012067035A1 JP 2011076065 W JP2011076065 W JP 2011076065W WO 2012067035 A1 WO2012067035 A1 WO 2012067035A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fresnel lens
- molten glass
- glass
- lower mold
- mold
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B11/00—Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
- C03B11/06—Construction of plunger or mould
- C03B11/08—Construction of plunger or mould for making solid articles, e.g. lenses
- C03B11/082—Construction of plunger or mould for making solid articles, e.g. lenses having profiled, patterned or microstructured surfaces
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B3/00—Simple or compound lenses
- G02B3/02—Simple or compound lenses with non-spherical faces
- G02B3/08—Simple or compound lenses with non-spherical faces with discontinuous faces, e.g. Fresnel lens
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2215/00—Press-moulding glass
- C03B2215/64—Spinning, centrifuging or using g-force to distribute the glass
Definitions
- the present invention relates to a glass Fresnel lens used for concentrating solar power generation, and more particularly to a method for manufacturing a large-diameter thin glass Fresnel lens.
- a method of pressing a molten glass with a press mold to make a glass intermediate molded body (lens blank) approximate to a lens shape is called a direct press method.
- glass Fresnel lenses have been manufactured by the direct press method.
- the solar cell having the highest conversion efficiency is not limited to terrestrial or space use, but is a three-junction multi-junction solar cell of InGaP / InGaAs / Ge.
- This InGaP / InGaAs / Ge three-junction multi-junction solar cell converts light in the wavelength region where the top cell of InGaP is 660 nm or less, the middle cell of InGaAs is 660 nm to 890 nm, and the bottom cell of Ge is 890 nm or more. For this reason, it is possible to convert energy in a wider wavelength range compared to conventional silicon-based solar cells, and it is characterized by having higher conversion efficiency than silicon-based solar cells.
- the absorption edge wavelength can be shortened by adding Al to the top cell to increase the Al composition ratio of the (Al) InGaP cell.
- a sufficient short-circuit current can be achieved, and at the same time, an improvement in voltage due to an increase in the band gap of the (Al) InGaP cell can be achieved. .
- it becomes possible to improve the efficiency of a multijunction solar cell for example, refer patent document 1).
- a plastic lens Since there is no technology for manufacturing a thin glass Fresnel lens at a low cost as a condensing Fresnel lens, a plastic lens has been mainly used.
- a plastic Fresnel lens one obtained by molding a colorless and highly transparent thermoplastic resin such as polymethyl methacrylate (PMMA) or polycarbonate (PC) has been used (see, for example, Patent Document 3).
- the light collection magnification is 100 to 1000 times. It is known that there is an optimum value in the range (see, for example, Non-Patent Document 1).
- a Fresnel lens having a large aperture is required to increase the light collecting magnification.
- the cell size is assumed to be 10 mm x 10 mm
- a 100 mm x 100 mm Fresnel lens is required to increase the condensing magnification to 100 times, and a larger Fresnel lens is required to further increase the condensing magnification. It becomes.
- the Fresnel lens produced by the conventional press molding method disclosed in Japanese Utility Model Laid-Open No. 5-14129 is limited to a thickness of 5 mm or more and a diameter of 100 mm ⁇ 100 mm or less. It was not suitable for use in a light collection system. In order to reduce the thickness, the flat side of the Fresnel lens is subjected to grinding and polishing after the press molding, but there is a problem that the cost is increased by the grinding process.
- the manufacturing method (1st method) of the Fresnel lens blank characterized by including the process of press-molding by 1 is provided.
- the first method is a Fresnel lens blank manufacturing method (second method) characterized in that the lower mold 10 is rotated at a predetermined speed when the viscosity of the molten glass is 10 3 poise or less. Also good.
- the Fresnel lens blank manufactured by the first method is gradually cooled, it is cut into a substantially square shape, and the back surface of the surface on which the Fresnel lens shape is formed is ground and polished.
- a method for producing a glass Fresnel lens is provided.
- a thin and large-diameter glass Fresnel lens that can be suitably used in a condensing power generation system can be manufactured at low cost.
- a glass Fresnel lens having a diameter of 100 mm ⁇ 100 mm or more and a thickness of 5 mm or less and a Fresnel lens blank that is a pre-stage product in the production can be manufactured at low cost.
- the glass material used for this invention is not specifically limited, A glass material preferable as a material of the Fresnel lens for condensing electric power generation systems can be selected suitably, and can be used.
- soda lime glass mainly composed of SiO 2 , Na 2 O, CaO
- the molten glass is caused to flow out of the nozzle, and the flow of the molten glass is continuously directed toward the central portion of the upper surface of the lower mold 10 located immediately below the nozzle. Drop it.
- this flow reaches the central portion of the lower mold 10 and further accumulates a predetermined amount on the central portion, two V-shaped parts are formed at a predetermined position between the nozzle and the lower mold 10 in the vertical direction.
- the flow of the molten glass is shear-cut with a cutting blade. Immediately after the shear cutting, the lower mold 10 is moved in the horizontal direction and separated from the position immediately below the nozzle. As a result, a predetermined amount of molten glass is accurately placed on the central portion of the lower mold 10.
- the molten glass is spread on the lower mold 10 by rotating the lower mold 10 at a predetermined speed (for example, 50 to 500 rpm or 100 to 300 rpm).
- the rotation of the lower mold 10 is preferably gradually changed from a low rotational speed to a high rotational speed in order to spread the glass material uniformly. In order to spread the glass material more thinly, it is better that the lower mold has a higher rotational speed. However, if the rotational speed is too high, the molten glass is cooled and the temperature is lowered too much, so that shape transfer by press molding becomes impossible. From the relationship between the thickness of the glass after spreading and the temperature, the upper limit of the rotational speed is preferably 500 rpm.
- the upper limit of the rotation time is preferably 10 seconds.
- the viscosity of the glass material when the molten glass is spread by rotating the lower mold is 10 3 poise or less. If the viscosity is higher than 10 3 poise, it is impossible to spread the glass thinly even if the lower mold is rotated.
- the material of the lower mold to be rotated is not particularly limited, but it is necessary to have a sufficient frictional force so that the molten glass does not slip when rotating, and at the same time, it must have a good releasability.
- silicon carbide, various types of carbon, or tungsten carbide (WC), Inconel, Stabux, and die steel whose surface is treated with DLC (diamond-like carbon) or the like can be used.
- the dimensions of the glass material after spreading are not particularly limited, but depending on the amount of molten glass supplied and the rotation conditions for spreading, for example, the diameter is 100 mm to 300 mm, and the thickness is Preforms from 4mm to 6mm can be obtained.
- the preform obtained above is press-molded with an upper mold (plunger) having an inverted shape of a Fresnel lens to obtain a Fresnel lens blank.
- the lower mold on which the preform used for spreading is placed is moved to the press molding position after or while rotating.
- the material of the upper mold in which the inverted shape of the Fresnel lens is formed is not particularly limited, but the base material is preferably made of steel in terms of rigidity and corrosion resistance.
- the steel used is not particularly limited, and examples thereof include martensitic stainless steel, austenitic stainless steel, and ferritic stainless steel. Specific examples include JIS SKD61, JIS ⁇ SUS420J2, SUS430, SUS304, and SUS316. Among these, JIS SUS420J2 is preferable.
- a surface film (release film) is provided on the molding surface of the upper mold in order to prevent the mold and glass from being fused, to improve the mold release property and to extend the life of the mold.
- Various films are known as surface films, such as platinum, iridium, rhenium, palladium, osmium, and other precious metal films, diamond-like carbon (DLC), tetrahedral amorphous carbon (TAC), and other carbon films, chromium nitride, and nitride.
- Nitride films such as titanium are well known.
- the viscosity of the preform at the time of molding is preferably in the range of 10 2 to 10 4 poise from the viewpoint of accurately transferring the shape of the Fresnel lens. Moreover, it does not specifically limit as a pressurizing means, What is necessary is just to employ
- the thickness of the Fresnel lens blank obtained after pressing depends on the viscosity and pressure of the preform at the time of press molding. For example, when the preform viscosity is 10 3 poise and the pressure is 30 kgf / cm 2 , a 4.6 mm molded product is obtained. can get.
- the thickness of the Fresnel lens blank refers to the thickness of the thickest portion corresponding to the prism tip in the Fresnel lens.
- the Fresnel lens After annealing the Fresnel lens blank obtained above, the Fresnel lens can be obtained by cooling to room temperature and processing.
- a Fresnel lens used in a condensing power generation system a method in which a large number of square lenses are divided and arranged is the mainstream, and a Fresnel lens suitably used for this purpose is a square shape. Therefore, the Fresnel lens blank is cut into a square shape.
- the cutting method is not particularly limited, but a known method such as scribing with a carbide wheel and subsequent folding, scribing with laser heating and rapid cooling and subsequent folding, cutting with a diamond blade, cutting with a water jet, etc. may be adopted. it can.
- the flattening and smoothing processes include a lapping process and a polishing process. Specifically, a lapping process using a grinding grain with a count # 1000 and a polishing process with an abrasive with a count # 3000 are performed.
- the Fresnel lens used suitably for a condensing electric power generation system can be obtained by passing through said processing process.
- glass may be chemically strengthened by an ion exchange method or the like to provide a Fresnel lens having high mechanical strength.
- Example 1 First, the carbon lower mold 10 and the peripheral mold member 11 are assembled into a structure as shown in FIG. 1 and attached to a rotation shaft of a rotation control device including a servo motor and a control circuit (not shown). The temperature of the mold member was measured with a thermocouple, and the temperature of the molten glass was measured with an infrared radiation thermometer.
- the molten glass of the aluminosilicate glass containing the alkali metal oxide is melted, clarified and homogenized, and continuously flows from the nozzle of the platinum alloy feeder toward the center of the lower mold 10 at a constant speed. It was.
- a predetermined amount of glass gob has accumulated in the center of the lower mold 10
- two V-shaped cutting blades in the molten glass flow at a predetermined position between the lower mold 10 and the nozzle in the vertical direction.
- a molten glass gob having a predetermined weight was cast on the center portion of the lower mold.
- the dimensions of the glass gob at the time of casting were 120 mm in diameter and 20 mm in height.
- the viscosity of the glass during casting and the temperature of the lower mold were 400 poise and 300 ° C.
- the molten glass was spread by rotating the lower mold 10 under the rotation conditions shown in FIG.
- the rotation startup reached 200 rpm in 2 seconds, and after rotating for 1 second at a constant speed of 200 rpm, the rotation startup was 0 rpm, that is, rotation stopped over 1 second.
- the total rotation time from the rotation start to the rotation stop is 4 seconds.
- type 10 was 280 mm in diameter, and 5 mm in thickness.
- the temperature of the molten glass after spreading was 1000 ° C.
- the lower die 10 is transferred to a press position where the upper die waits upward while rotating to spread the molten glass, and is pressed by the upper die shown in FIG. 3 and the lower die shown in FIG. .
- the pressing force during pressing was 30 kg / cm 2 and the pressing time was 3 seconds.
- the upper mold temperature before pressing was 400 ° C.
- the pressed compact was taken out from the lower mold, annealed in a rare furnace (glass lehr furnace), and then cooled to room temperature to obtain a Fresnel lens blank.
- the produced Fresnel lens blank is a molded body in which a square Fresnel lens shape of 140 mm ⁇ 140 mm is formed inside a diameter of 280 mm.
- the thickness of the Fresnel lens blank was measured and found to be 4.6 mm.
- the thickness of the Fresnel lens blank refers to the thickness of the thickest portion corresponding to the prism tip in the Fresnel lens.
- the area where the Fresnel lens shape of 140 mm x 140 mm was formed from the Fresnel lens blank produced in this way was cut out by scribing with a carbide wheel and subsequent splitting, and the back side of the surface on which the Fresnel lens shape was formed was wrapped Processing and polishing were performed to obtain a Fresnel lens.
- the Fresnel lens thus obtained has both high light collection efficiency and thin and light weight, and can be suitably used as a Fresnel lens for a light collection power generation system.
- the obtained Fresnel lens blank had a thickness of 10 mm.
- the labor required for thinning and flattening was greater than that of the above example.
- the present invention can be used to produce a thin, large-diameter glass Fresnel lens with less energy consumption.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Glass Compositions (AREA)
- Photovoltaic Devices (AREA)
Abstract
開示されているのは、熔融ガラスの流れを下型10の中央部に向けて落とす工程と、該流れをシャーカットすることによって熔融ガラスの所定量を下型10に載置する工程と、次いで下型10を所定の速度で回転することによって熔融ガラスを展延する工程、次いで前記の展延された熔融ガラスに対してフレネルレンズの反転形状の上型(プランジャー)によってプレス成形を行う工程を含むことを特徴とするフレネルレンズ・ブランクの製造方法である。この方法によって、集光発電システムに好適に使用できる薄型で大口径のガラス製フレネルレンズ用のフレネルレンズ・ブランクを安価に製造できる。
Description
本発明は、集光型太陽光発電に使用されるガラス製フレネルレンズに係り、特に大口径薄型のガラス製フレネルレンズの製法に関する。
一般に熔融ガラスをプレス成形型でプレスし、レンズ形状に近似したガラス製の中間成形体(レンズブランク)を作る方法はダイレクトプレス法と呼ばれている。従来、ガラス製のフレネルレンズはダイレクトプレス法により作製されていたが、ダイレクトプレス法では肉厚の薄いフレネルレンズ・ブランクを得ることができないため、機械加工により研削することで薄型レンズとする必要があり、高コストになるという問題があった。そのためガラス製のフレネルレンズは照明用途など薄型である必要性の低い製品に限定されて製造されていた。すなわち薄型のガラス製フレネルレンズを安価に製造する技術は無かった。
一方、太陽電池は、太陽光を直接電気エネルギーに変換できるという、一見理想的なエネルギー源である。しかしながら、実際の太陽電池での発電コストは通常の発電コストと比べて割高である。このため、現実的には、配線や電池交換が不要である事が大きな利便性を生み出すような、人工衛星や腕時計、電卓等への搭載が主な利用範囲となっている。
人工衛星などの宇宙機器の電源に使用される宇宙用太陽電池セルとして、GaAsなどの13~15族系化合物半導体を主材料に用いた多接合型の太陽電池セルを使用する例が増加しつつある。この中でも、地上用または宇宙用に限られず、現在最も高い変換効率を有する太陽電池は、InGaP/InGaAs/Geの3接合型多接合太陽電池である。
このInGaP/InGaAs/Geの3接合型多接合太陽電池は、それぞれInGaPのトップセルが660nm以下、InGaAsのミドルセルが660nm-890nm、Geのボトムセルが890nm以上の波長領域の光をエネルギー変換する。このため、従来のシリコン系太陽電池と比較して幅広い波長域をエネルギー変換する事が可能であり、シリコン系太陽電池よりも高い変換効率を持つことが特徴である。
更に、InGaP/InGaAs/Geの3接合太陽電池において、トップセルにAlを加えて(Al)InGaPセルのAl組成比を増加させることによって吸収端波長を短くすることができる。また、下部のInGaAsセルに透過する光量を調整して電流整合を行うことによって、十分な短絡電流を達成するとともに、(Al)InGaPセルのバンドギャップ増加による電圧の向上も同時に達成することができる。このような手法によって、多接合太陽電池の効率を向上させることが可能となる(例えば特許文献1参照)。
しかしながら、1W(ワット)あたりの発電コストに関しては、発電効率が高くなっても依然としてシリコン系太陽電池よりも高価である。
そこで、レンズや鏡等による集光によって、高価な太陽電池セルの使用量を減らす事で、モジュール全体のコスト低減が試みられている。この技術は、「集光発電システム」と称され、光電流/暗電流比の増加により太陽電池の開放電圧が向上し、変換効率が向上するといった利点を有する。
こうした集光システムには、レンズや鏡によって入射光を特定の位置に集光させる必要がある。そこで、太陽光を追尾する装置が設けられている。これにより、直達光(平行光線)しか集光できないといった短所はあるものの、変換効率向上や太陽光追尾による発電量増加により発電コスト(円/kWh)の低減が可能になる。
このような集光システムによる発電コスト低減構想により、今まで地上での発電システムに利用されることがなかったInGaP/InGaAs/Geの3接合太陽電池を使った地上用発電システムが有望視されている。
その中でも、効率的な発電を行う為にフレネルレンズと太陽電池を一体化したモジュールを用いる手法は、従来の反射型複合放物面集光器よりかなり安価に製作できるようになってきている(例えば特許文献2参照)
集光用のフレネルレンズとしては、薄型のガラス製フレネルレンズを安価に製造する技術が無いため、従来からプラスチック製のレンズが主に使用されている。こうしたプラスチック製のフレネルレンズとしては、ポリメチルメタクリレート(PMMA)やポリカーボネート(PC)などの無色かつ高透明性の熱可塑性樹脂を成形したものが使用されていた (例えば特許文献3参照)。
しかしながら、PMMAおよびPC双方とも、使用時の吸湿や熱の影響により成形品に変形を生じ、そのため、こうした集光体を使用すると太陽電池への焦点位置の変動を来し、エネルギー変換効率の低下を招くという問題があった。そのため耐候性、耐熱性、化学的安定性に優れるガラス製フレネルレンズの提供が望まれていた。しかしながらガラスはプラスチックに比べ重いといった欠点を有する。ガラスの重いといった欠点を可能な限り低減するためにはフレネルレンズの厚みを薄くすることが必要である。
またInGaP/InGaAs/Geの3接合太陽電池を使用した集光システムにおいては集光倍率と変換効率に密接な関係があることが分かっており、具体的には集光倍率が100倍~1000倍の範囲に最適値があることがわかっている(例えば非特許文献1参照)。
ガラス製フレネルレンズを成形する方法としてはプレス成形法がある。この方法は比較的安価であり、口径が小さいものであれば生産性も良い(例えば非特許文献2参照)。
T. Takamoto, M. Kaneiwa, "Concentrator Compound Solar Cells", シャープ技報, Vol. 93, p49-53 (2005).
実開平5-14129号公報
設計および製造されるセルのサイズは5mm×5mmから10mm×10mm程度と決まっているため、集光倍率を大きくとるためには、口径の大きなフレネルレンズが必要となる。例えばセルサイズを10mm×10mmと仮定すれば、集光倍率を100倍にするためには100mm×100mmのフレネルレンズが必要となり、集光倍率をさらに上げるにはこれ以上の口径のフレネルレンズが必要となる。しかし従来技術では、例えば口径100mm×100mm以上厚み5mm以下といった大口径で薄型のガラス製フレネルレンズを安価に作製出来る技術は無かった。
すなわち、実開平5-14129号公報に開示されている従来のプレス成形法で作製されるフレネルレンズは、厚みが5mm以上と厚く、さらに口径も100mm×100mm以下と限定されており、太陽電池の集光システムに好適に使用可能なものではなかった。厚みを薄くするためにはプレス成形した後、冷間においてフレネルレンズの平面側を研削・研磨加工が行うことになるが、研削工程によりコスト高になるという問題があった。
本発明に依れば、熔融ガラスの流れを下型10の中央部に向けて落とす工程と、該流れをシャーカット(剪断、shear cut)することによって熔融ガラスの所定量を下型10に載置する工程と、次いで下型10を所定の速度で回転することによって熔融ガラスを展延する工程、次いで前記の展延された熔融ガラスに対してフレネルレンズの反転形状の上型(プランジャー)によってプレス成形を行う工程を含むことを特徴とするフレネルレンズ・ブランクの製造方法(第1方法)が提供される。
第1方法は、上記熔融ガラスの粘度が103ポアズ以下にあるときに、下型10を所定の速度で回転させることを特徴とするフレネルレンズ・ブランクの製造方法(第2方法)であってもよい。
さらにまた、本発明に依れば、第1方法によって製造されたフレネルレンズ・ブランクを徐冷したのち、略正方形状へ切断し、フレネルレンズ形状を形成した面の裏側の面を研削および研磨してフレネルレンズを得ることを特徴とするガラス製フレネルレンズの製造方法が提供される。
本発明により、集光発電システムに好適に使用できる薄型で大口径のガラス製フレネルレンズを安価に製造することができる。具体的には口径100mm×100mm以上厚み5mm以下のガラス製フレネルレンズとその製造上の前段の製品であるフレネルレンズ・ブランクを安価に製造することができる。
以下、本発明の実施形態を図面に沿って例示的に説明する。本発明に用いるガラス素材は特に限定されるものでは無く、集光発電システム用のフレネルレンズの材料として好ましいガラス素材を適宜選択して用いることができる。例えば、SiO2、Na2O、CaOを主成分としたソーダライムガラス、SiO2、Al2O3、R2O (R=K、Na、Li)を主成分としたアルミノシリケートガラス、ボロシリケートガラス、Li2O-SiO2系ガラス、Li2O-Al2O3-SiO2系ガラス、R’O- Al2O3-SiO2系ガラス (R’=Mg、Ca、Sr、Ba)などが挙げられる。
上記いずれかのガラス素材を熔融・清澄させた後、熔融ガラスをノズルから流出させて、ノズルの直下に位置する成形型の下型10の上面の中央部分に向けて、熔融ガラスの流れを連続的に落とす。この流れが下型10の中央部分に到達し、さらに、該中央部分の上に所定量溜まった段階で、鉛直方向におけるノズルと下型10との間の所定位置で、2枚のV字形状の切断刃で熔融ガラスの流れをシャーカット(剪断、shear cut)する。このシャーカットの直後、下型10を水平方向に移動させて、ノズル直下から離す。これによって、下型10の中央部分には正確に所定量の熔融ガラスが載置される。
下型10をノズル直下から離した直後に、別の下型10をノズル直下に配置して、上記と同じ操作(下型の中央部へ熔融ガラスを落として、シャーカットする操作)を行うことができる。このようにすれば、フレネルレンズ・ブランク及びフレネルレンズを量産できる。
下型10をノズル直下から離した後に、下型10を所定の速度(例えば、50~500rpm又は100~300rpm)で回転させることによって、熔融ガラスを下型10の上で展延する。下型10の回転はガラス素材を均一に展延するために、低回転数から徐々に高回転数に変化させることが好ましい。ガラス素材をより薄く展延するためには下型の回転数は高いほうが良いが、回転数が高すぎると熔融ガラスが冷却され温度が下がりすぎてプレス成形による形状転写が不可能となる。展延後のガラスの厚みと温度の関係から、回転数の上限は500rpmとすることが好ましい。
同様にガラス素材をより薄く展延するためには回転時間を長くしたほうが良いが、回転時間が長すぎると熔融ガラスが冷却され温度が下がりすぎてプレス成形による形状転写が不可能となる。展延後のガラスの厚みと温度の関係から、回転時間の上限は10秒とすることが好ましい。
本発明の方法において下型を回転することによって熔融ガラスを展延する際のガラス素材の粘度は103ポアズ以下である。当該粘度が103ポアズよりも高いと、下型を回転してもガラスを薄く展延することが不可能である。
回転させる下型の材質は特に限定されないが、回転する際に熔融ガラスが滑らないように十分な摩擦力を有する必要があると同時に良好な離型性を有する必要がある。このような材料として炭化珪素、各種カーボン、あるいはタングステンカーバイト(WC)、インコネル、スタバックス、及びダイス鋼の表面にDLC(ダイヤモンドライクカーボン)等の表面処理を施したものを用いることができる。
展延後のガラス素材 (以下、プリフォームと呼ぶ) の寸法は特に限定されるものでは無いが、熔融ガラスの供給量と展延するための回転条件によって、例えば直径が100mmから300mm、厚みが4mmから6mmのプリフォームを得ることができる。
上記で得たプリフォームに対してフレネルレンズの反転形状の上型(プランジャー)によってプレス成形しフレネルレンズ・ブランクを得る。展延に利用したプリフォームを載せた下型は、回転後あるいは回転しながらプレス成形位置に移動させる。
フレネルレンズの反転形状を形成した上型の材料は特に限定されないが、剛性、耐食性の点で、母材は鋼からなることが好ましい。用いられる鋼は、特に限定されないが、例えば、マルテンサイト系ステンレス鋼、オーステナイト系ステンレス鋼、フェライト系ステンレス鋼が挙げられる。具体的には、例えば、JIS SKD61、JIS SUS420J2、SUS430、SUS304、SUS316が挙げられる。中でも、JIS SUS420J2が好ましい。
また上型の成形面には型とガラスの融着を防ぎ、離型性を向上させ、型の寿命を延ばすために表面膜(離型膜)が設けられる。表面膜としては種々な膜が公知であり、白金、イリジウム、レニウム、パラジウム、オスミウム等の貴金属膜、ダイヤモンドライクカーボン(DLC)、テトラヘドラルアモルファスカーボン(TAC)等の炭素膜、窒化クロム、窒化チタン等の窒化物膜が周知である。
プレス成形においては予め加熱した上型を展延後のプリフォームに加圧することで成形する。成形時のプリフォームの粘度はフレネルレンズの形状を正確に転写するという点から102~104ポアズの範囲であることが好ましい。また加圧手段としては特に限定されず、油圧プレス、エアープレス、サーボプレス、ハンドプレス等を採用すれば良い。プレス後に得られるフレネルレンズ・ブランクの厚みはプレス成形時のプリフォームの粘度と加圧力に依存し、例えばプリフォーム粘度が103ポアズで加圧力30kgf/cm2の場合に4.6mmの成形品が得られる。なお、ここで言うフレネルレンズ・ブランクの厚みとはフレネルレンズにおけるプリズム先端部に相当する一番厚い部分の厚みを指す。
上記で得たフレネルレンズ・ブランクをアニールした後、室温まで冷却し加工を行うことでフレネルレンズを得ることができる。集光発電システムに使用されるフレネルレンズは正方形状のレンズを多数分割並べる方式が主流であり、この目的に好適に使用されるフレネルレンズは正方形状である。そこでフレネルレンズ・ブランクを正方形状に切断する。切断方法は特に限定されないが、超硬ホイールによるスクライブとそれに続く折割、レーザー加熱および急冷によるスクライブとそれに続く折割、ダイヤモンドブレードによる切断、ウォータージェットによる切断等、公知の方法を採用することができる。
フレネルレンズ・ブランクを正方形状に切断した後、フレネルレンズ形状を形成した面に対して反対側の面を平坦化および平滑化加工を行う。平坦化および平滑化加工はラッピング加工、研磨加工からなり、具体的には番手#1000の研削砥粒によるラッピング加工と番手#3000の研磨剤による研磨加工を行う。
上記の加工工程を経ることで集光発電システムに好適に使用されるフレネルレンズを得ることができる。
また本発明において、イオン交換法などによりガラスに化学強化を施して高い機械的強度を持つフレネルレンズとしても良い。
以下、実施例に基づき、説明する。
(実施例1)
まず、カーボン製の下型10、周辺型部材11を図1のような構造に組み立てて、図示されていないサーボモータおよび制御回路からなる回転制御装置の回転軸に取り付ける。なお型部材の温度は熱電対で測定し、熔融ガラスの温度は赤外線放射温度計で測定した。
まず、カーボン製の下型10、周辺型部材11を図1のような構造に組み立てて、図示されていないサーボモータおよび制御回路からなる回転制御装置の回転軸に取り付ける。なお型部材の温度は熱電対で測定し、熔融ガラスの温度は赤外線放射温度計で測定した。
次にアルカリ金属酸化物を含むアルミノ珪酸塩ガラスの熔融ガラスを溶解、清澄、均質化し、これを一定速度で白金合金製のフィーダーのノズルから連続的に下型10の中央部に向けて流下させた。下型10の中央部に熔融ガラスゴブ(glass gob)が所定量溜まった段階で、その熔融ガラス流を鉛直方向における下型10とノズルの間の所定位置で、2枚のV字形状の切断刃で切断(剪断)して所定重量の熔融ガラスゴブを下型の中央部にキャストした。キャスト時のガラスゴブの寸法は直径120mm、高さ20mmであった。キャスト時のガラスの粘度および下型の温度を400ポアズおよび300℃とした。
次に下型10を図2に示す回転条件で回転させることで熔融ガラスを展延した。回転立上げは2秒で200rpmに達し、200rpmの一定速度で1sec回転させたのち、回転立ち下げは1秒かけて0rpmすなわち回転停止とした。回転開始から回転停止までの総回転時間は4秒である。このように下型10を回転させることで展延した熔融ガラスの寸法は直径280mm、厚み5mmであった。また展延後の熔融ガラスの温度は1000℃であった。
下型10は熔融ガラスを展延させるために回転させながら上型が上方で待機するプレス位置へ移送され、この位置において図3で示した上型および図1で示した下型によってプレスされる。プレス時の加圧力は30kg/cm2、プレス時間は3秒とした。なおプレス前の上型温度は400℃とした。プレス後の成形体を下型からテイクアウトしレア炉(ガラス徐冷炉、glass lehr furnace)でアニールを施した後に、室温まで冷却してフレネルレンズ・ブランクを得た。ここで作製したフレネルレンズ・ブランクは直径280mmの内側に140mm×140mmの正方形状のフレネルレンズ形状が形成されている成形体である。フレネルレンズ・ブランクの厚みを測定したところ4.6mmであった。
なお、ここで言うフレネルレンズ・ブランクの厚みとはフレネルレンズにおけるプリズム先端部に相当する一番厚い部分の厚みを指す。このようにして作製したフレネルレンズ・ブランクから140mm×140mmのフレネルレンズ形状が形成された領域を超硬ホイールによるスクライブとそれに続く折割によって切り出し、フレネルレンズ形状を形成した面の裏側の面をラッピング加工、研磨加工を施し、フレネルレンズを得た。
このようにして得たフレネルレンズは高い集光効率と薄型軽量化を兼ね備えており、集光発電システム用のフレネルレンズとして好適に使用できる。
(比較例1)
下型を回転せず、熔融ガラスを展延させないまま回転時間に相当する4secを熔融ガラスのキャストからプレス成形までの待機時間とし、これ以外は実施例1と同様の成形を行った。
下型を回転せず、熔融ガラスを展延させないまま回転時間に相当する4secを熔融ガラスのキャストからプレス成形までの待機時間とし、これ以外は実施例1と同様の成形を行った。
得られたフレネルレンズ・ブランクは厚みが10mmであった。フレネルレンズ・ブランクに機械加工を施してフレネルレンズを作製したところ薄型化及び平坦化に要した労力は上記実施例に比べ大きなものであった。
本発明は、より少ないエネルギー消費で、薄型で大口径のガラス製フレネルレンズを製造することに利用される。
10 下型
11 下型周辺型部材
20 上型
21 上型ガス抜き穴
11 下型周辺型部材
20 上型
21 上型ガス抜き穴
Claims (3)
- 熔融ガラスの流れを下型10の中央部に向けて落とす工程と、該流れをシャーカットすることによって熔融ガラスの所定量を下型10に載置する工程と、次いで下型10を所定の速度で回転することによって熔融ガラスを展延する工程、次いで前記の展延された熔融ガラスに対してフレネルレンズの反転形状の上型(プランジャー)によってプレス成形を行う工程を含むことを特徴とするフレネルレンズ・ブランクの製造方法。
- 熔融ガラスの粘度が103ポアズ以下にあるときに、下型10を所定の速度で回転させることを特徴とする請求項1に記載のフレネルレンズ・ブランクの製造方法。
- 請求項1に記載の方法で製造されたフレネルレンズ・ブランクを徐冷したのち、略正方形状へ切断し、フレネルレンズ形状を形成した面の裏側の面を研削および研磨してフレネルレンズを得ることを特徴とするガラス製フレネルレンズの製造方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-256932 | 2010-11-17 | ||
JP2010256932A JP2012106884A (ja) | 2010-11-17 | 2010-11-17 | ガラス製フレネルレンズの製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012067035A1 true WO2012067035A1 (ja) | 2012-05-24 |
Family
ID=46083967
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/076065 WO2012067035A1 (ja) | 2010-11-17 | 2011-11-11 | ガラス製フレネルレンズの製造方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2012106884A (ja) |
WO (1) | WO2012067035A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01155303A (ja) * | 1987-12-14 | 1989-06-19 | Ichikoh Ind Ltd | ガラス製フレネル形プリズムレンズ、及び同製造方法 |
JPH06144845A (ja) * | 1992-11-12 | 1994-05-24 | Olympus Optical Co Ltd | ガラス光学素子の成形方法 |
JP2003531805A (ja) * | 2000-04-27 | 2003-10-28 | カール−ツァイス−スティフツング | 薄いガラス製品を製造するための方法及びその方法の使用 |
-
2010
- 2010-11-17 JP JP2010256932A patent/JP2012106884A/ja active Pending
-
2011
- 2011-11-11 WO PCT/JP2011/076065 patent/WO2012067035A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01155303A (ja) * | 1987-12-14 | 1989-06-19 | Ichikoh Ind Ltd | ガラス製フレネル形プリズムレンズ、及び同製造方法 |
JPH06144845A (ja) * | 1992-11-12 | 1994-05-24 | Olympus Optical Co Ltd | ガラス光学素子の成形方法 |
JP2003531805A (ja) * | 2000-04-27 | 2003-10-28 | カール−ツァイス−スティフツング | 薄いガラス製品を製造するための方法及びその方法の使用 |
Also Published As
Publication number | Publication date |
---|---|
JP2012106884A (ja) | 2012-06-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101513340B1 (ko) | 패턴화된 유리 집중기를 갖는 광발전 디바이스 | |
US9139461B2 (en) | Solar concentrator | |
CN104011579A (zh) | 用于制造太阳能集中器的方法 | |
US9864181B2 (en) | Solar concentrator and production method thereof | |
CN103165717A (zh) | 一种由小型菲涅尔透镜阵列组成的聚光太阳能模组 | |
AU2010311955B2 (en) | Solar concentrator and production method | |
US20130160852A1 (en) | Solar concentrator and production method | |
CN201804888U (zh) | 聚光光伏发电模组 | |
CN102809770B (zh) | 一种线性菲涅尔透镜的制备方法及其所得的菲涅尔透镜 | |
CN103529503B (zh) | 一种用于聚光太阳能模组的双曲面反射镜 | |
WO2012067035A1 (ja) | ガラス製フレネルレンズの製造方法 | |
CN101169287A (zh) | 一种太阳聚光透镜制造方法和一种太阳聚光装置 | |
CN202022849U (zh) | 超短脉冲激光异形切割钢化玻璃的装置 | |
CN101719748A (zh) | 一种余热发电的太阳能聚光发电装置 | |
CN102385076A (zh) | 一种线型聚光透镜面板及其制造方法 | |
CN101293728A (zh) | 光学元件的制造装置及光学元件的制造方法 | |
CN102789012A (zh) | 一种玻璃波形瓦聚光透镜 | |
CN104953943A (zh) | 聚光式太阳能电池 | |
KR101347619B1 (ko) | 유리 분말을 이용한 비구면 렌즈의 제조방법 | |
JP5081866B2 (ja) | 集光式太陽光発電用2次光学系ガラス部材ホモジナイザーの製造方法 | |
CN107324639B (zh) | 一种聚光镜加工成型装置和成型工艺 | |
CN109687821A (zh) | 聚光型太阳能模组 | |
CN216427083U (zh) | 一种菱形双曲面高倍聚光光伏反射镜模具 | |
US20220342123A1 (en) | Apparatus and method for the manufacture of large glass lens arrays | |
CN102621679A (zh) | 六边形凸透镜及其太阳能聚光板制作方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11841291 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11841291 Country of ref document: EP Kind code of ref document: A1 |