WO2012067026A1 - Method for producing color filter, display element, and color filter - Google Patents

Method for producing color filter, display element, and color filter Download PDF

Info

Publication number
WO2012067026A1
WO2012067026A1 PCT/JP2011/076040 JP2011076040W WO2012067026A1 WO 2012067026 A1 WO2012067026 A1 WO 2012067026A1 JP 2011076040 W JP2011076040 W JP 2011076040W WO 2012067026 A1 WO2012067026 A1 WO 2012067026A1
Authority
WO
WIPO (PCT)
Prior art keywords
color filter
pattern
colored pattern
colored
color
Prior art date
Application number
PCT/JP2011/076040
Other languages
French (fr)
Japanese (ja)
Inventor
政完 柳
龍 恭一郎
栗山 敬祐
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to KR1020137012751A priority Critical patent/KR101900518B1/en
Priority to JP2012544214A priority patent/JP5895844B2/en
Priority to CN201180055502.9A priority patent/CN103221849B/en
Publication of WO2012067026A1 publication Critical patent/WO2012067026A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/201Filters in the form of arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • G02F1/133516Methods for their manufacture, e.g. printing, electro-deposition or photolithography
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/03Function characteristic scattering

Definitions

  • the present invention relates to a method for manufacturing a color filter, a display element, and a color filter.
  • the color filter transmits light in a specific wavelength region of visible light, and generates colored transmitted light.
  • a liquid crystal display element using liquid crystal cannot develop color by itself, but can function as a color liquid crystal display element by using a color filter.
  • the color filter is also used for color display of an organic EL (Electro Luminescence) element using a white light emitting layer, electronic paper, and the like. Furthermore, if a color filter is used, color imaging of a solid-state imaging device such as a CCD image sensor or a CMOS image sensor becomes possible.
  • a color filter is composed of a transparent substrate such as glass and a minute coloring pattern containing red, green and blue pigments or dyes.
  • the coloring pattern is provided on the transparent substrate and arranged in a regular shape such as a lattice shape.
  • a colored radiation-sensitive composition is applied on a transparent substrate or a transparent substrate on which a light-shielding layer having a desired pattern is formed, as a colored composition that is sensitive to appropriate irradiation rays.
  • the coating film is dried, the dried coating film is irradiated with radiation (hereinafter referred to as “exposure”) through a mask and subjected to a development treatment.
  • Exposure irradiated with radiation
  • This is a method for obtaining a colored pattern (see, for example, Patent Document 1 or 2).
  • the method etc. which obtain the pattern of each color by the inkjet system using a coloring thermosetting resin composition are also known (for example, refer patent document 3).
  • the color filter is required to have such characteristics that can improve the performance. Specifically, a color filter having a high brightness stimulus value (Y) in the CIE color system is required.
  • a coloring pattern formed using a coloring composition containing a dye has a problem that heat resistance and solvent resistance are remarkably inferior compared with a coloring pattern formed using a coloring composition containing a pigment. . Therefore, when mass-producing a color filter using a coloring composition containing a dye, it is necessary to improve performance such as improvement of heat resistance and solvent resistance in addition to improvement of luminance.
  • an object of the present invention is to provide a method for producing a color filter useful for increasing the brightness, a display element having excellent display characteristics, and a color filter useful for increasing the brightness.
  • a first aspect of the present invention includes a step of forming a colored pattern on a substrate; And a step of forming irregularities on the surface of the colored pattern.
  • the unevenness is preferably formed by an etching method, a nanoimprint method or a polishing method.
  • WHEREIN The process of forming an unevenness
  • the height of the projection is 10 nm or more and the width of the bottom of the projection is 10 nm or more.
  • the coloring pattern includes at least one of a red coloring pattern and a green coloring pattern, and forms an unevenness on the surface of at least one of the red coloring pattern and the green coloring pattern. can do.
  • the first aspect of the present invention further includes a step of forming a protective film on the colored pattern on which the unevenness is formed.
  • the second aspect of the present invention relates to a display element having the color filter manufactured according to the first aspect of the present invention.
  • a third aspect of the present invention is a color filter having a plurality of colored patterns on a substrate, Concavities and convexities are formed on the surface of the colored pattern of at least one of the colored patterns, and the height of the convex portions of the concave and convex portions is 10 nm or more, and the width of the base of the convex portions is 10 nm or more. It is what.
  • a method of manufacturing a color filter useful for increasing the brightness is provided.
  • the display element excellent in the display characteristic is provided.
  • a color filter useful for increasing the brightness is provided.
  • 3 is a surface SEM photograph of the red cured film obtained in Examples 1 to 3 and Comparative Example 1.
  • 2 is a cross-sectional SEM photograph of a red cured film obtained in Examples 1 to 3 and Comparative Example 1.
  • 3 is a surface SEM photograph of the green cured film obtained in Examples 4 to 6 and Comparative Example 2.
  • 4 is a cross-sectional SEM photograph of a green cured film obtained in Examples 4 to 6 and Comparative Example 2. It is a surface SEM photograph of the blue cured film obtained in Example 7, Example 8, and Comparative Example 3.
  • 4 is a cross-sectional SEM photograph of a blue cured film obtained in Example 7, Example 8, and Comparative Example 3.
  • the manufacturing method of the color filter of this Embodiment is characterized by including the process of following (1) and (2) at least. (1) Step of forming a colored pattern on the substrate (2) Step of forming irregularities on the surface of the colored pattern
  • a substrate is prepared.
  • a transparent glass substrate such as borosilicate glass, aluminoborosilicate glass, alkali-free glass, quartz glass, synthetic quartz glass, soda lime glass, and white sapphire can be used.
  • acrylic such as polymethyl methacrylate, polyamide, polyacetal, polybutylene terephthalate, polyethylene terephthalate, polyethylene naphthalate, triacetyl cellulose, syndiotactic polystyrene, polyphenylene sulfide, polyether ketone, polyether ether ketone, fluororesin, poly
  • a transparent resin film such as ether nitrile, polycarbonate, modified polyphenylene ether, polycyclohexene, polynorbornene resin, polysulfone, polyethersulfone, polyarylate, polyamideimide, polyetherimide, or thermoplastic polyimide can also be used.
  • alkali-free glass is a material having a small coefficient of thermal expansion, and is preferably used from the viewpoint of excellent dimensional stability and characteristics in high-temperature heat treatment.
  • a silicon dioxide film is formed by ion plating, sputtering, gas phase reaction or vacuum deposition, etc. Appropriate pretreatment can be applied.
  • a light-shielding layer (black matrix) is formed on the substrate so as to partition a portion where a pixel is to be formed.
  • a metal thin film such as chromium formed by sputtering or vapor deposition is processed into a desired pattern by using a photolithography method.
  • a coloring composition containing a black colorant may be applied on a substrate and processed into a desired pattern by a photolithography method.
  • the thickness of the light shielding layer made of a metal thin film is usually preferably 0.1 ⁇ m to 0.2 ⁇ m.
  • the thickness of the light shielding film formed using the black coloring composition is preferably about 1 ⁇ m. In some cases, the light shielding layer is unnecessary, and in this case, the process of forming the light shielding layer can be omitted.
  • a negative radiation-sensitive colored radiation-sensitive composition containing a red colorant is applied onto the substrate.
  • pre-baking is performed to evaporate the solvent, thereby forming a coating film.
  • it develops with an alkali developing solution, and the unexposed part of a coating film is dissolved and removed.
  • post-baking is performed to form a pixel array in which red coloring patterns are arranged in a predetermined arrangement.
  • a negative radiation-sensitive colored radiation-sensitive composition containing a green colorant is applied onto the substrate on which the red coloring pattern is formed, and the green coloring pattern is formed in the same manner as described above.
  • a negative radiation-sensitive colored radiation-sensitive composition containing a green colorant is applied onto the substrate on which the red coloring pattern is formed, and the green coloring pattern is formed in the same manner as described above.
  • a negative radiation-sensitive colored radiation-sensitive composition containing a blue colorant is applied onto the substrate on which each of the red and green coloring patterns is formed.
  • a pixel array in which coloring patterns are arranged in a predetermined arrangement is formed.
  • a color filter in which a pixel array of the three primary colors of red, green and blue is arranged on the substrate is obtained.
  • the order in which the colored patterns of the respective colors are formed on the substrate is not limited to the above example. The order of forming each color can be changed as appropriate.
  • a spray method, a roll coating method, a spin coating method (spin coating method), a slit die coating method, a bar coating method, or the like can be appropriately selected.
  • a spin coating method or a slit die coating method it is preferable to employ a spin coating method or a slit die coating method.
  • the pre-bake is usually performed by combining vacuum drying and heat drying.
  • the drying under reduced pressure is usually performed until the pressure reaches 50 Pa to 200 Pa.
  • the conditions for heat drying are usually about 1 to 10 minutes at a temperature of 70 to 110 ° C. using a hot plate.
  • the thickness of the applied coating is usually 0.6 ⁇ m to 8.0 ⁇ m, preferably 1.2 ⁇ m to 5.0 ⁇ m, as the film thickness after drying.
  • Examples of radiation light sources used for exposure include lamp light sources such as xenon lamps, halogen lamps, tungsten lamps, high-pressure mercury lamps, ultrahigh-pressure mercury lamps, metal halide lamps, medium-pressure mercury lamps, and low-pressure mercury lamps, argon ion lasers, and YAG lasers.
  • laser light sources such as a XeCl excimer laser and a nitrogen laser.
  • the emitted wavelength is preferably in the range of 190 nm to 450 nm.
  • the exposure dose of radiation is generally preferably 10 J / m 2 to 10,000 J / m 2 .
  • alkali developer examples include sodium carbonate, sodium hydroxide, potassium hydroxide, tetramethylammonium hydroxide, choline, 1,8-diazabicyclo- [5.4.0] -7-undecene, 1,5-diazabicyclo
  • An aqueous solution such as-[4.3.0] -5-nonene is preferably used.
  • An appropriate amount of a water-soluble organic solvent such as methanol or ethanol, a surfactant, or the like can be added to the alkaline developer. Incidentally, after the alkali development treatment, washing with water is usually performed.
  • a shower development method for example, a spray development method, a dip (immersion) development method, or a paddle (liquid accumulation) development method can be applied.
  • the development conditions can be, for example, 5 seconds to 300 seconds at room temperature.
  • the post-baking conditions can be set at, for example, 180 ° C. to 280 ° C. for about 20 minutes to 40 minutes when a hot air heating furnace is used.
  • the film thickness of the colored pattern formed as described above is usually 0.5 ⁇ m to 5.0 ⁇ m, preferably 1.0 ⁇ m to 3.0 ⁇ m.
  • a partition having a light shielding function is formed on the surface of the substrate.
  • a colored thermosetting composition containing a red colorant is discharged into the partition wall by an ink jet apparatus. Thereafter, pre-baking is performed to evaporate the solvent. Next, the coating film is exposed as necessary, and then cured by post-baking to form a red pixel pattern.
  • thermosetting composition containing a green colorant is discharged onto the substrate on which the red colored pattern is formed by an ink jet apparatus to form a green pixel pattern in the same manner as described above.
  • thermosetting composition containing a blue colorant is ejected onto the substrate on which each of the red and green colored patterns is formed by an ink jet apparatus to form a blue pixel pattern in the same manner as described above.
  • a color filter in which coloring patterns of the three primary colors of red, green, and blue are arranged on the substrate is obtained.
  • the order of forming the coloring patterns of the respective colors is not limited to the above example. The order of forming each color can be changed as appropriate.
  • the above-mentioned partition fulfill
  • a partition is normally formed using a black composition.
  • the substrate used for forming the color filter, the light source of radiation, and the pre-baking and post-baking methods and conditions are the same as in the first example.
  • the film thickness of the colored pattern formed by the inkjet method is about the same as the height of the partition wall.
  • the color pattern constituting the color filter is not limited to red, green, and blue, but may be a color pattern having three primary colors of yellow, magenta, and cyan.
  • the fourth and fifth coloring patterns can also be formed.
  • a fifth pixel (cyan pixel) can be arranged.
  • the coloring pattern is usually formed using a radiation-sensitive or thermosetting coloring composition.
  • the coloring composition used in the step of forming the coloring pattern contains at least a coloring agent, a binder resin, and a crosslinking agent. Moreover, a photoinitiator can be contained as needed for the purpose of imparting radiation sensitivity to the colored composition.
  • the colored composition is usually used as a liquid composition by blending a solvent. Hereinafter, each component will be described.
  • the colorant is not particularly limited as long as it has colorability, and the color and material can be appropriately selected according to the use of the color filter. Specifically, any of pigments, dyes, and natural pigments can be used as the colorant. Since the color filter is required to have high color purity, brightness, contrast and the like, a pigment, a dye or a mixture thereof is preferably used.
  • pigment either an organic pigment or an inorganic pigment can be used.
  • organic pigment examples include compounds classified as pigments in the color index (CI; issued by The Society of Dyer's and Colorists). Preferably, the following color index (CI) names are given.
  • inorganic pigments include titanium oxide, barium sulfate, calcium carbonate, zinc white, lead sulfate, yellow lead, zinc yellow, red bean (red iron oxide (III)), cadmium red, ultramarine blue, bitumen, chromium oxide green, and cobalt.
  • examples include green, amber, titanium black, synthetic iron black, and carbon black.
  • the organic pigment by refining primary particles by so-called salt milling.
  • a salt milling method for example, a method disclosed in Japanese Patent Laid-Open No. 8-179111 can be employed.
  • the dye can be appropriately selected from various oil-soluble dyes, direct dyes, acid dyes and metal complex dyes.
  • color index (CI) names are given.
  • the colorants can be used alone or in admixture of two or more.
  • the binder resin used in the coloring composition is not particularly limited, but preferably contains a polymer having an acidic functional group.
  • the acidic functional group include a carboxyl group, a phenolic hydroxyl group, an imido acid group, a sulfo group, a sulfino group, and a sulfeno group. Of these, a carboxyl group is preferably used.
  • Examples of the polymer having a carboxyl group include, for example, JP-A-5-19467, JP-A-6-230212, JP-A-7-140654, JP-A-7-207211, and JP-A-8-259876.
  • Examples include polymers disclosed in Kaihei 11-258415, JP-A 2000-56118, JP-A 2002-296778, JP-A 2004-101728, and JP-A 2008-181095. it can.
  • the binder resin can be used alone or in combination of two or more.
  • the crosslinking agent used for the coloring composition is not particularly limited as long as it is a compound having two or more polymerizable groups.
  • the polymerizable group include an ethylenically unsaturated group, an oxiranyl group, an oxetanyl group, and an N-alkoxymethylamino group.
  • crosslinking agent a compound having two or more (meth) acryloyl groups or a compound having two or more N-alkoxymethylamino groups is preferably used.
  • crosslinking agents include, for example, trimethylolpropane triacrylate, pentaerythritol triacrylate, dipentaerythritol pentaacrylate, dipentaerythritol hexaacrylate, a compound obtained by reacting pentaerythritol triacrylate with succinic anhydride, dipenta A compound obtained by reacting erythritol pentaacrylate with succinic anhydride, a caprolactone-modified polyfunctional (meth) acrylate described in paragraphs [0015] to [0018] of JP-A No.
  • N, N, N ′, N ′, N ′′, N ′′ -hexa (alkoxymethyl) melamine or N, N, N ′, N′-tetra (alkoxymethyl) benzoguanamine can be mentioned.
  • the crosslinking agents can be used alone or in combination of two or more.
  • the photopolymerization initiator used in the coloring composition generates an active species capable of initiating the curing reaction of the above-mentioned crosslinking agent upon exposure to radiation such as visible light, ultraviolet light, far ultraviolet light, electron beam or X-ray. It is a compound that can be
  • Preferred photopolymerization initiators include, for example, thioxanthone compounds, acetophenone compounds, biimidazole compounds, triazine compounds, O-acyloxime compounds, onium salt compounds, benzoin compounds, benzophenone compounds, ⁇ -diketones. Compounds, polynuclear quinone compounds, diazo compounds, imide sulfonate compounds, and the like.
  • the photopolymerization initiator can be used in combination with a known sensitizer or a hydrogen donor. Moreover, a photoinitiator can be used individually or in mixture of 2 or more types.
  • the solvent used in the colored composition is preferably a solvent that disperses or dissolves each component constituting the colored composition and does not react with these components and has appropriate volatility.
  • preferable solvents include, for example, propylene glycol monomethyl ether, ethylene glycol monomethyl ether acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, 3-methoxybutyl acetate, diethylene glycol dimethyl ether, diethylene glycol methyl ethyl ether.
  • the solvents can be used alone or in combination of two or more.
  • the colored composition of the present embodiment can further contain other components as necessary.
  • a pigment dispersant such as an acrylic copolymer, polyurethane, polyester, polyethyleneimine and polyallylamine
  • a surfactant such as a fluorosurfactant and a silicon surfactant
  • vinyltrimethoxysilane vinyltriethoxysilane, vinyltris (2-methoxyethoxy) silane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-methacryloyloxypropyltrimethoxysilane and 3-mercaptopropyltrimethoxy
  • adhesion promoters such as silane.
  • Step of forming irregularities on the surface of the colored pattern is not particularly limited.
  • etching, nanoimprinting, or cerium oxide particles A polishing method using the above can be used.
  • dry etching is a method of etching a material with a reactive gas (etching gas), ions, or radicals.
  • wet etching is a method of etching a material with a liquid.
  • wet etching with acid or alkali is preferable.
  • dry etching suitable for fine processing is preferable.
  • Dry etching includes a method in which a material is exposed to a reactive gas (reactive gas etching) and a reactive ion etching in which gas is ionized and radicalized by plasma to perform etching.
  • reactive gas etching reactive gas etching
  • reactive ion etching reactive ion etching in which gas is ionized and radicalized by plasma to perform etching.
  • the apparatus configuration is substantially the same. That is, in a chamber maintained at a required vacuum pressure, an electromagnetic wave or the like is applied to the etching gas to turn the gas into plasma. At the same time, a high frequency voltage is applied to the cathode on which the sample substrate is placed in the chamber. Thereby, ion species and radical species in the plasma are accelerated and collided in the direction of the sample, and sputtering by ions and chemical reaction of the etching gas are caused simultaneously to perform microfabrication of the sample.
  • the colored pattern is formed by the above-described steps, it is possible to directly perform the etching process on the colored pattern as it is. Further, after forming a resist pattern serving as a mask on the colored pattern using photolithography technology, the colored pattern portion exposed from the resist pattern may be etched. According to this method, it is possible to select a colored pattern of a desired color from among a plurality of colored patterns, and to provide unevenness, and to provide a desired degree of unevenness at a desired location. is there.
  • a master on which a concavo-convex pattern of several tens to several hundreds of nanometers is formed in advance by electron beam lithography or the like is pressed against a substrate on which a colored pattern is formed, and the concavo-convex of the master is transferred to the colored pattern.
  • US Pat. No. 5,772,905, S.A. Y. Chou et al, Appl. Phys. Lett. 76, 3114 (1995) or the like Even by the nanoimprint method, it is possible to select a colored pattern of a desired color from among a plurality of colored patterns, and to provide unevenness, and to provide a desired degree of unevenness at a desired location. .
  • the colored pattern formed using the colored composition by forming irregularities on the surface of the colored pattern formed using the colored composition, it is possible to increase the light extraction efficiency that passes through the colored pattern. Such an effect is particularly remarkable in a red coloring pattern and a green coloring pattern. Therefore, at least one of the red and green coloring patterns may be selected to provide unevenness on the surface.
  • the size of the unevenness formed on the surface of the colored pattern can be adjusted to a desired value, but preferably the height of the convex part is 10 nm or more and the width of the base of the convex part is 10 nm or more.
  • the height of the convex portion is more preferably 50 nm or more, further preferably in the range of 50 nm to 200 nm, and particularly preferably in the range of 80 nm to 200 nm.
  • the width of the convex portion is preferably 20 nm or more, and more preferably in the range of 20 nm to 200 nm.
  • the size of the unevenness formed on the surface of the colored pattern is measured by image analysis of the SEM photograph.
  • corrugation is formed in the surface of 30% or more of the total pixel area of the coloring pattern which is going to form an unevenness
  • the region in which the unevenness is formed is configured to be uniformly distributed over the entire color filter and within any one pixel without being partially biased.
  • the display characteristics of the display element can be enhanced by further providing a protective film on the colored pattern having the irregularities formed in this manner.
  • the protective film include organic films or organic-inorganic hybrid films formed from curable compositions, or inorganic films such as SiNx films and SiOx films. In this Embodiment, it is preferable to form a protective film using a curable composition.
  • a method for forming a protective film using a curable resin composition for example, a method disclosed in Japanese Patent Application Laid-Open No. 4-53879 or Japanese Patent Application Laid-Open No. 6-192389 can be employed. According to this method, first, the curable resin composition is applied to the substrate surface on which the colored pattern is formed, and the solvent is removed by pre-baking to obtain a coating film. The coating film is exposed and developed as necessary to obtain a desired pattern, and then post-baked to form a protective film.
  • the radiation light source used when forming the protective film, and the pre-baking and post-baking methods and conditions are as described in (1) Coloring pattern in the step of forming a coloring pattern on the substrate using the coloring composition It is the same as the method of forming.
  • the thickness of the protective film thus formed is usually 0.1 ⁇ m to 8.0 ⁇ m, preferably 0.1 ⁇ m to 6.0 ⁇ m.
  • Examples of the curable resin composition used for forming the protective film include thermosetting resin compositions disclosed in JP-A-3-188153 and JP-A-4-53879, and JP-A-6-192389.
  • the radiation-sensitive resin composition disclosed in Japanese Patent Laid-Open No. 8-183819 and the like, and the polyorganosiloxane disclosed in Japanese Patent Laid-Open No. 2006-195420 or 2008-208342 are included.
  • a curable composition etc. can be mentioned.
  • a color filter having a high brightness stimulus value (Y) in the CIE color system can be obtained. Therefore, a display element with high luminance can be obtained by using the color filter of this embodiment mode.
  • the color filter of this embodiment includes, for example, various color filters including a color filter for a color liquid crystal display element, a color filter for color separation of a solid-state image sensor, a color filter for an organic EL display element, and a color filter for electronic paper. It is suitable as.
  • the color filter of the present embodiment is a color filter manufactured by the above-described color filter manufacturing method of the present embodiment.
  • the color filter of this embodiment has a pixel array in which coloring patterns of the three primary colors of red, green, and blue including the above-described pigments and dyes are arranged in a predetermined arrangement, and this pixel array Are arranged on the substrate.
  • the color pattern constituting the color filter may be a color pattern having three primary colors of yellow, magenta, and cyan.
  • the fourth pixel (yellow pixel) and the fifth pixel (cyan pixel) for expanding the color specification range are arranged.
  • the fourth and fifth colored patterns can also be formed.
  • the color filter of the present embodiment preferably has a light shielding layer (black matrix) so as to partition a portion where a pixel is formed on the substrate. It is also possible to have no light shielding layer.
  • the size of the projections and depressions can be adjusted to a desired value, but it is preferable that the height of the projection is 10 nm or more and the width of the bottom of the projection is 10 nm or more.
  • the height of the convex portion is preferably 50 nm or more, more preferably in the range of 50 nm to 200 nm, and particularly preferably in the range of 80 nm to 200 nm.
  • the width of the convex portion is preferably 20 nm or more, and more preferably in the range of 20 nm to 200 nm.
  • unevenness is formed on the surface of 30% or more of the total pixel area of the colored pattern to be unevenly formed.
  • the region in which the unevenness is formed on the surface of the colored pattern is uniformly distributed throughout the color filter and even in any one pixel without being biased to a part of the region. It is preferable that it is comprised.
  • the color filter of the present embodiment preferably has a protective film on the colored pattern on which irregularities are formed.
  • the protective film By having the protective film, the process resistance of the color filter in the manufacturing process of the display element can be improved.
  • the protective film include an organic film or an organic-inorganic hybrid film formed from a curable composition, or an inorganic film such as a SiNx film and a SiOx film, as described above. In this Embodiment, it is preferable to form a protective film using a curable composition.
  • this color filter is useful as various color filters including, for example, color filters for color liquid crystal display elements, color filters for color separation of solid-state imaging elements, color filters for organic EL display elements, and color filters for electronic paper. It is.
  • the display element of this embodiment has the color filter of this embodiment described above.
  • Specific examples of the display element include a color liquid crystal display element, an organic EL display element, and electronic paper.
  • the color liquid crystal display element of this embodiment can have the following structure.
  • the color liquid crystal display element has, for example, a structure in which a driving substrate on which a thin film transistor (TFT) is disposed and another substrate on which the color filter of this embodiment is provided face each other through a liquid crystal layer. It can be.
  • the color liquid crystal display element includes a substrate in which the color filter of this embodiment is formed on the surface of a driving substrate on which a thin film transistor (TFT) is disposed, and an ITO (Indium Tin Oxide) electrode. It is also possible to adopt a structure in which the substrate on which the film is formed faces the liquid crystal layer.
  • the latter structure has the advantage that the aperture ratio can be remarkably improved, and a bright and high-definition liquid crystal display element can be obtained.
  • FIG. 1 is a schematic cross-sectional view of a color liquid crystal display element having a color filter of the present embodiment.
  • a liquid crystal display element 1 shown in FIG. 1 is an example of the color liquid crystal display element of the present embodiment, and is a TN (Twisted Nematic) type liquid crystal mode display element driven by a TFT.
  • This color liquid crystal display element has a structure in which the driving substrate and the substrate on which the color filter is formed face each other with a TN liquid crystal layer interposed therebetween. That is, as shown in FIG. 1, TFTs (not shown) and transparent pixel electrodes 3 are arranged in a lattice pattern on the side of the transparent substrate 2 in contact with the liquid crystal 13 to constitute a driving substrate. .
  • the red, green, and blue coloring patterns 6, the black matrix 7, and the protection provided on the coloring patterns 6 are positioned opposite to the pixel electrodes 3.
  • a color filter 10 having a film 8 is arranged.
  • the fine irregularities described above are provided on the surface of the colored pattern 6.
  • a transparent common electrode 11 is provided on the color filter 10.
  • An alignment film 12 is provided on each of the substrate 2 and the substrate 5. By rubbing the alignment film 12, uniform alignment of the liquid crystal 13 sandwiched between the substrates 2 and 5 can be realized.
  • polarizing plates 14 are respectively arranged on the side opposite to the side in contact with the liquid crystal 13.
  • the distance between the substrate 2 and the substrate 5 is usually 2 ⁇ m to 10 ⁇ m, and these are fixed to each other by a sealing material 16 provided in the peripheral portion.
  • reference numeral 17 denotes backlight light emitted toward the liquid crystal 13 from a backlight unit (not shown).
  • a backlight unit for example, a backlight unit having a structure in which a fluorescent tube such as a cold cathode fluorescent tube (CCFL: Cold Cathode Fluorescent Lamp) and a scattering plate are combined can be used.
  • a backlight unit using a white LED as a light source can also be used.
  • the white LED for example, a white LED that obtains white light by mixing a red LED, a green LED, and a blue LED, and a white light by mixing the blue LED, a red LED, and a green phosphor to emit white light.
  • a white LED that obtains white light by mixing white LEDs, a blue LED, a red light emitting phosphor, and a green light emitting phosphor to obtain white light by mixing colors a white LED that obtains white light by mixing colors with a YAG phosphor, A combination of a blue LED, an orange light emitting phosphor, and a green light emitting phosphor to obtain white light by mixing colors, a white LED, an ultraviolet LED, a red light emitting phosphor, a green light emitting phosphor, and a blue light emitting phosphor And white LEDs that obtain white light by color mixing.
  • the color liquid crystal display element of the present embodiment includes an STN (Super Twisted Nematic) type, an IPS (In-Planes Switching) type, a VA (Vertical Aligned Birefringent) type, an OCB (Optically Compensated Birefring type) and the like.
  • STN Super Twisted Nematic
  • IPS In-Planes Switching
  • VA Very Aligned Birefringent
  • OCB Optically Compensated Birefring type
  • the organic EL display element having the color filter of the present embodiment can adopt an appropriate structure, and examples thereof include a structure disclosed in Japanese Patent Application Laid-Open No. 11-307242.
  • the electronic paper having the color filter of the present embodiment can adopt an appropriate structure, and examples thereof include a structure disclosed in Japanese Patent Application Laid-Open No. 2007-41169.
  • M-2 pigment dispersion
  • M-3 pigment dispersion
  • Synthesis of binder resin Synthesis example 1 A flask equipped with a condenser and a stirrer was charged with 2 parts by mass of 2,2′-azobisisobutyronitrile and 200 parts by mass of propylene glycol monomethyl ether acetate, followed by 15 parts by mass of methacrylic acid and 20 parts by mass of N-phenylmaleimide. , 55 parts by mass of benzyl methacrylate, 10 parts by mass of styrene, and 3 parts by mass of 2,4-diphenyl-4-methyl-1-pentene (trade name: NOFMER (registered trademark) MSD, manufactured by NOF Corporation) as a molecular weight regulator. Charged and purged with nitrogen.
  • NOFMER registered trademark
  • MSD manufactured by NOF Corporation
  • Preparation Example 5 A green radiation-sensitive composition (CR-2) was prepared in the same manner as in Preparation Example 4, except that the pigment dispersion (M-2) was used instead of the pigment dispersion (M-1) in Preparation Example 4. did.
  • Preparation Example 6 A blue radiation-sensitive composition (CR-3) was prepared in the same manner as in Preparation Example 4, except that the pigment dispersion (M-3) was used instead of the pigment dispersion (M-1) in Preparation Example 4. did.
  • the colored pattern is referred to as a colored cured film.
  • Example 1 ⁇ Formation of red cured film and unevenness>
  • the red radiation-sensitive composition (CR-1) was applied on a soda glass substrate using a spin coater, and then pre-baked in a clean oven at 80 ° C. for 10 minutes to form a coating film.
  • an exposure dose of 400 J / m 2 of radiation containing 365 nm, 405 nm, and 436 nm wavelengths was applied to the coating film through a photomask using a high-pressure mercury lamp. And exposed. Thereafter, a developer consisting of a 0.04 mass% potassium hydroxide aqueous solution at 23 ° C. is discharged onto these substrates at a development pressure of 1 kgf / cm 2 (nozzle diameter of 1 mm) for 1 minute shower development. went. Thereafter, these substrates were washed with ultrapure water, air-dried, and then post-baked in a clean oven at 230 ° C. for 30 minutes to form a red cured film on the substrates.
  • the obtained cured film was subjected to a dry etching process using a plasma etching apparatus EXAM manufactured by Shinko Seiki Co., Ltd. to form irregularities on the entire surface of the cured film.
  • the RF power was 400 W.
  • Table 1 shows dry etching conditions.
  • Example 2 and Example 3 ⁇ Formation of red cured film and unevenness> A red cured film was formed in the same manner as in Example 1, and unevenness was formed in the same manner as in Example 1 except that the dry etching treatment time was set to the time shown in Table 1.
  • Comparative Example 1 ⁇ Formation of red cured film> In the same manner as in Example 1, a red cured film was formed. However, the formation of irregularities by the dry etching process performed in Example 1 was not performed.
  • Example 4 ⁇ Formation of green cured film and formation of irregularities>
  • the green radiation sensitive composition (CR-2) was applied onto a soda glass substrate using a spin coater, and then pre-baked in a clean oven at 80 ° C. for 10 minutes to form a coating film.
  • an exposure dose of 400 J / m 2 of radiation containing 365 nm, 405 nm, and 436 nm wavelengths was applied to the coating film through a photomask using a high-pressure mercury lamp. And exposed. Thereafter, a developer consisting of a 0.04 mass% potassium hydroxide aqueous solution at 23 ° C. is discharged onto these substrates at a development pressure of 1 kgf / cm 2 (nozzle diameter of 1 mm) for 1 minute shower development. went. Thereafter, these substrates were washed with ultrapure water, air-dried, and further post-baked in a clean oven at 230 ° C. for 30 minutes to form a green cured film on the substrates.
  • the obtained cured film was subjected to a dry etching process using a plasma etching apparatus EXAM manufactured by Shinko Seiki Co., Ltd. to form irregularities on the entire surface of the cured film.
  • the RF power was 400 W.
  • Table 1 shows dry etching conditions.
  • Example 5 and Example 6 ⁇ Formation of green cured film and formation of irregularities> A green cured film was formed in the same manner as in Example 4, and the irregularities were formed in the same manner as in Example 4 except that the dry etching treatment time was changed to the time shown in Table 1.
  • Comparative Example 2 ⁇ Formation of green cured film> A green cured film was formed in the same manner as in Example 4. However, the unevenness formation by the dry etching process performed in Example 4 was not performed.
  • Example 7 ⁇ Formation of blue cured film and formation of irregularities>
  • the blue radiation sensitive composition (CR-3) was applied onto a soda glass substrate using a spin coater, and then pre-baked in a clean oven at 80 ° C. for 10 minutes to form a coating film.
  • an exposure dose of 400 J / m 2 of radiation containing 365 nm, 405 nm, and 436 nm wavelengths was applied to the coating film through a photomask using a high-pressure mercury lamp. And exposed. Thereafter, a developing solution composed of a 0.04 mass% potassium hydroxide aqueous solution at 23 ° C. is discharged to these substrates at a developing pressure of 1 kgf / cm 2 (nozzle diameter 1 mm) to perform shower development for 1 minute. It was. Thereafter, these substrates were washed with ultrapure water, air-dried, and further post-baked in a clean oven at 230 ° C. for 30 minutes to form a blue cured film on the substrates.
  • the obtained cured film was subjected to a dry etching process using a plasma etching apparatus EXAM manufactured by Shinko Seiki Co., Ltd. to form irregularities on the entire surface of the cured film.
  • the RF power was 400 W.
  • Table 1 shows dry etching conditions.
  • Example 8 ⁇ Formation of blue cured film and formation of irregularities> A blue cured film was formed in the same manner as in Example 7, and unevenness was formed in the same manner as in Example 7 except that the dry etching treatment time was changed to the time shown in Table 1.
  • Comparative Example 3 ⁇ Formation of blue cured film> A blue cured film was formed in the same manner as in Example 7. However, the unevenness formation by the dry etching process performed in Example 7 was not performed.
  • Table 1 shows the dry etching treatment conditions in each of the above examples and comparative examples.
  • Example 9 SEM image evaluation> For each color cured film with irregularities formed in Examples 1 to 8 and Comparative Examples 1 to 3, SEM photographs were taken at a magnification of 40000 times and formed on the surface of each cured film. The state of the unevenness was evaluated.
  • FIG. 2 is a surface SEM photograph of the red cured film obtained in Examples 1 to 3 and Comparative Example 1.
  • FIG. 3 is a cross-sectional SEM photograph of the red cured film obtained in Examples 1 to 3 and Comparative Example 1.
  • FIG. 4 is a surface SEM photograph of the green cured film obtained in Examples 4 to 6 and Comparative Example 2.
  • FIG. 5 is a cross-sectional SEM photograph of the green cured film obtained in Examples 4 to 6 and Comparative Example 2.
  • FIG. 6 is a surface SEM photograph of the blue cured film obtained in Example 7, Example 8, and Comparative Example 3.
  • FIG. 7 is a cross-sectional SEM photograph of the blue cured film obtained in Example 7, Example 8, and Comparative Example 3.
  • the size of the unevenness formed on the surface of each color cured film is in the range of 80 nm to 200 nm in height and 20 nm to 200 nm in width. I understood that. It has also been found that the longer the dry etching processing time, the larger the size of the unevenness formed on each color cured film.
  • Example 10 Evaluation of chromaticity characteristics> For each color cured film formed with unevenness obtained in Examples 1 to 8 and Comparative Examples 1 to 3, a color analyzer (MCPD (registered trademark) 2000 manufactured by Otsuka Electronics Co., Ltd.) was used. Chromaticity coordinate values (x, y) and stimulus values (Y) in the CIE color system were measured with a light source and a 2-degree visual field. The evaluation results are shown in Table 2.
  • MCPD registered trademark 2000 manufactured by Otsuka Electronics Co., Ltd.
  • Each of the color cured films with irregularities formed in Examples 1 to 8 showed a higher Y value than the cured films obtained in the corresponding comparative examples. In particular, the effect was great in the red cured film and the green cured film in which irregularities were formed, obtained in Examples 1 to 6.
  • Example 11 Manufacture and evaluation of color filters>
  • the red radiation sensitive composition (CR-1) was applied on a glass substrate on which a black matrix was formed using a slit and spin coater, and then pre-baked for 3 minutes on a 90 ° C. hot plate to form a coating film. Formed.
  • Example 7 a chromaticity coordinate value (x, y) equivalent to that in Example 7 is shown next to the green striped colored pattern by the same method.
  • a blue stripe coloring pattern a color filter composed of red, green and blue stripe coloring patterns was produced.
  • the stimulation value (Y) in white display when a cold cathode fluorescent tube was used as a backlight light source was measured.
  • the stimulation value (Y) in white display was improved by 0.6 points compared to Comparative Example 4 described later.
  • Comparative Example 4 Manufacture and evaluation of color filters>
  • a color filter composed of red, green, and blue stripe colored patterns was produced.
  • the unevenness formation by the dry etching process performed in Example 10 was not performed.
  • the stimulation value (Y) in white display was measured and compared with the Y value of the color filter obtained in Example 10.
  • Example 12 ⁇ Application of color filters to liquid crystal display elements> Using the color filter comprising the red, green and blue stripe colored patterns obtained in Example 11, and applying the thermosetting resin composition comprising the composition described later on the colored pattern using a slit and spin coater. did. A coating film was formed by pre-baking for 2 minutes on a hot plate at 80 ° C., and further post-baking for 60 minutes in a clean oven at 230 ° C. to form a protective film having a thickness of 1.5 ⁇ m.
  • the liquid crystal display element has the same structure as the color liquid crystal display element shown in FIG.
  • the obtained color liquid crystal display element exhibited excellent electrical characteristics and display characteristics.
  • thermosetting resin composition used as a protective film for the color filter will be described.

Abstract

Provided are: a method for producing a color filter that is useful in increasing brightness; a display element having superior display properties; and the color filter that is useful in increasing brightness. The method for producing a color filter (10) has: a step for forming a colored pattern (6) using a colored composition on a substrate (5); and a step for forming irregularities at the surface of the colored pattern (6). The irregularities preferably are formed by an etching method, a nanoimprinting method, or a grinding method. Preferably, the method further has a step for forming a protective film (8) on the colored pattern (6) to which the irregularities have been formed.

Description

カラーフィルタの製造方法、表示素子およびカラーフィルタColor filter manufacturing method, display element, and color filter
 本発明は、カラーフィルタの製造方法、表示素子およびカラーフィルタに関する。 The present invention relates to a method for manufacturing a color filter, a display element, and a color filter.
 カラーフィルタは、可視光の内の特定の波長域の光を透過させて、着色した透過光を生成する。液晶を用いた液晶表示素子は、それ自身で発色することはできないが、カラーフィルタを使用することで、カラー液晶表示素子として機能することができる。また、カラーフィルタは、白色発光層を用いた有機EL(Electro Luminescence)素子や、電子ペーパーなどのカラー表示にも利用される。さらに、カラーフィルタを利用すれば、CCDイメージセンサ、CMOSイメージセンサなどの固体撮像素子のカラー撮影が可能となる。 The color filter transmits light in a specific wavelength region of visible light, and generates colored transmitted light. A liquid crystal display element using liquid crystal cannot develop color by itself, but can function as a color liquid crystal display element by using a color filter. The color filter is also used for color display of an organic EL (Electro Luminescence) element using a white light emitting layer, electronic paper, and the like. Furthermore, if a color filter is used, color imaging of a solid-state imaging device such as a CCD image sensor or a CMOS image sensor becomes possible.
 一般に、カラーフィルタは、ガラスなどの透明基板と、赤、緑および青の顔料または染料を含む微小な着色パターンとによって構成される。着色パターンは、透明基板の上に設けられ、格子状などの規則的な形状をとって配列する。 Generally, a color filter is composed of a transparent substrate such as glass and a minute coloring pattern containing red, green and blue pigments or dyes. The coloring pattern is provided on the transparent substrate and arranged in a regular shape such as a lattice shape.
 カラーフィルタの製造方法としては、次のようなものが知られている。例えば、透明基板上または所望のパターンの遮光層が形成された透明基板上に、適当な照射線に感応する着色組成物として、着色感放射線性組成物を塗布する。次いで、塗膜を乾燥した後、マスクを介して乾燥塗膜に放射線を照射(以下、「露光」と称す。)し、現像処理を施す。これによって、着色パターンを得る方法である(例えば、特許文献1または2参照。)。また、着色熱硬化性樹脂組成物を用いて、インクジェット方式により、各色のパターンを得る方法なども知られている(例えば、特許文献3参照。)。 The following are known as color filter manufacturing methods. For example, a colored radiation-sensitive composition is applied on a transparent substrate or a transparent substrate on which a light-shielding layer having a desired pattern is formed, as a colored composition that is sensitive to appropriate irradiation rays. Next, after the coating film is dried, the dried coating film is irradiated with radiation (hereinafter referred to as “exposure”) through a mask and subjected to a development treatment. This is a method for obtaining a colored pattern (see, for example, Patent Document 1 or 2). Moreover, the method etc. which obtain the pattern of each color by the inkjet system using a coloring thermosetting resin composition are also known (for example, refer patent document 3).
 近年、表示素子に対する高画質化および高輝度化の要求は益々高まっている。このため、カラーフィルタに対してもこうした性能の向上を可能とするような特性が求められている。具体的には、CIE表色系における明るさの刺激値(Y)が高いカラーフィルタが要求されている。 In recent years, demands for higher image quality and higher brightness for display elements have been increasing. For this reason, the color filter is required to have such characteristics that can improve the performance. Specifically, a color filter having a high brightness stimulus value (Y) in the CIE color system is required.
 こうした要求に対して、例えば、着色剤として、ポリハロゲン化亜鉛フタロシアニンのような新たな顔料を使用すること(特許文献4参照)や、染料を使用すること(特許文献5参照)などが提案されている。 In response to such demands, for example, use of a new pigment such as polyhalogenated zinc phthalocyanine (see Patent Document 4) or use of a dye (see Patent Document 5) as a colorant has been proposed. ing.
特開平2-144502号公報JP-A-2-144502 特開平3-53201号公報JP-A-3-53201 特開2000-310706号公報JP 2000-310706 A 特開2007-284589号公報JP 2007-284589 A 特開2010-32999号公報JP 2010-32999 A
 しかしながら、顔料分散型の着色組成物の場合、顔料や組成の改善によって、カラーフィルタのY値を向上させて輝度を高める方法には、技術的な限界が来ているとされる。 However, in the case of a pigment dispersion type colored composition, it is said that there is a technical limit to the method of increasing the luminance by increasing the Y value of the color filter by improving the pigment and composition.
 一方、染料を含む着色組成物を用いて形成された着色パターンには、顔料を含む着色組成物を用いて形成された着色パターンに比べて、耐熱性や耐溶剤性が著しく劣るという問題がある。したがって、染料を含む着色組成物を用いてカラーフィルタを量産するにあたっては、輝度の向上に加えて、耐熱性および耐溶剤性の向上といったさらなる性能の向上が必要とされる。 On the other hand, a coloring pattern formed using a coloring composition containing a dye has a problem that heat resistance and solvent resistance are remarkably inferior compared with a coloring pattern formed using a coloring composition containing a pigment. . Therefore, when mass-producing a color filter using a coloring composition containing a dye, it is necessary to improve performance such as improvement of heat resistance and solvent resistance in addition to improvement of luminance.
 本発明は、以上のような問題に鑑みてなされたものである。すなわち、本発明の目的は、高輝度化に有用なカラーフィルタの製造方法と、表示特性に優れた表示素子と、高輝度化に有用なカラーフィルタを提供することにある。 The present invention has been made in view of the above problems. That is, an object of the present invention is to provide a method for producing a color filter useful for increasing the brightness, a display element having excellent display characteristics, and a color filter useful for increasing the brightness.
 本発明の第1の態様は、基板上に着色パターンを形成する工程と、
 着色パターンの表面に凹凸を形成する工程とを有することを特徴とするカラーフィルタの製造方法に関する。
A first aspect of the present invention includes a step of forming a colored pattern on a substrate;
And a step of forming irregularities on the surface of the colored pattern.
 本発明の第1の態様において、凹凸は、エッチング法、ナノインプリント法または研磨法によって形成されることが好ましい。 In the first aspect of the present invention, the unevenness is preferably formed by an etching method, a nanoimprint method or a polishing method.
 本発明の第1の態様において、着色パターンの表面に凹凸を形成する工程は、着色パターンの上にレジストパターンを形成し、レジストパターンから露出する着色パターンにエッチング処理を施して凹凸を形成する工程とすることができる。 1st aspect of this invention WHEREIN: The process of forming an unevenness | corrugation on the surface of a coloring pattern forms a resist pattern on a coloring pattern, and performs the etching process to the coloring pattern exposed from a resist pattern, and forms an unevenness | corrugation It can be.
 本発明の第1の態様において、凹凸は、凸部の高さが10nm以上、凸部の底辺の幅が10nm以上とすることが好ましい。 In the first aspect of the present invention, it is preferable that the height of the projection is 10 nm or more and the width of the bottom of the projection is 10 nm or more.
 本発明の第1の態様において、着色パターンは、赤色の着色パターンおよび緑色の着色パターンの内の少なくとも一方を含み、赤色の着色パターンおよび緑色の着色パターンの内の少なくとも一方の表面に凹凸を形成することができる。 In the first aspect of the present invention, the coloring pattern includes at least one of a red coloring pattern and a green coloring pattern, and forms an unevenness on the surface of at least one of the red coloring pattern and the green coloring pattern. can do.
 本発明の第1の態様は、凹凸が形成された着色パターンの上に保護膜を形成する工程をさらに有することが好ましい。 It is preferable that the first aspect of the present invention further includes a step of forming a protective film on the colored pattern on which the unevenness is formed.
 本発明の第2の態様は、本発明の第1の態様により製造されたカラーフィルタを有することを特徴とする表示素子に関する。 The second aspect of the present invention relates to a display element having the color filter manufactured according to the first aspect of the present invention.
 本発明の第3の態様は、基板上に複数色の着色パターンを有するカラーフィルタであって、
 複数色の着色パターンの内の少なくとも1色の着色パターンの表面に凹凸が形成されており、その凹凸の凸部の高さが10nm以上、凸部の底辺の幅が10nm以上であることを特徴とするものである。
A third aspect of the present invention is a color filter having a plurality of colored patterns on a substrate,
Concavities and convexities are formed on the surface of the colored pattern of at least one of the colored patterns, and the height of the convex portions of the concave and convex portions is 10 nm or more, and the width of the base of the convex portions is 10 nm or more. It is what.
 本発明の第1の態様によれば、高輝度化に有用なカラーフィルタの製造方法が提供される。
 本発明の第2の態様によれば、表示特性に優れた表示素子が提供される。
 本発明の第3の態様によれば、高輝度化に有用なカラーフィルタが提供される。
According to the first aspect of the present invention, a method of manufacturing a color filter useful for increasing the brightness is provided.
According to the 2nd aspect of this invention, the display element excellent in the display characteristic is provided.
According to the third aspect of the present invention, a color filter useful for increasing the brightness is provided.
本実施の形態のカラーフィルタを備えたカラー液晶表示素子の模式的な断面図である。It is typical sectional drawing of the color liquid crystal display element provided with the color filter of this Embodiment. 実施例1~実施例3および比較例1で得られた赤色硬化膜の表面SEM写真である。3 is a surface SEM photograph of the red cured film obtained in Examples 1 to 3 and Comparative Example 1. 実施例1~実施例3および比較例1で得られた赤色硬化膜の断面SEM写真である。2 is a cross-sectional SEM photograph of a red cured film obtained in Examples 1 to 3 and Comparative Example 1. 実施例4~実施例6および比較例2で得られた緑色硬化膜の表面SEM写真である。3 is a surface SEM photograph of the green cured film obtained in Examples 4 to 6 and Comparative Example 2. 実施例4~実施例6および比較例2で得られた緑色硬化膜の断面SEM写真である。4 is a cross-sectional SEM photograph of a green cured film obtained in Examples 4 to 6 and Comparative Example 2. 実施例7、実施例8および比較例3で得られた青色硬化膜の表面SEM写真である。It is a surface SEM photograph of the blue cured film obtained in Example 7, Example 8, and Comparative Example 3. 実施例7、実施例8および比較例3で得られた青色硬化膜の断面SEM写真である。4 is a cross-sectional SEM photograph of a blue cured film obtained in Example 7, Example 8, and Comparative Example 3.
 本発明者は、鋭意検討した結果、カラーフィルタを構成する各色の着色パターンの表面に凹凸を形成することにより、上記した課題を解決できることを見出し、本発明を完成するに至った。
 以下、本実施の形態について詳細に説明する。
As a result of intensive studies, the present inventors have found that the above-described problems can be solved by forming irregularities on the surface of the colored pattern of each color constituting the color filter, and have completed the present invention.
Hereinafter, this embodiment will be described in detail.
 <カラーフィルタの製造方法>
 本発明者は、着色パターンの表面に凹凸を形成することで、着色パターンを透過する光の取り出し効率を高められることを見出した。このため、本実施の形態のカラーフィルタの製造方法は、少なくとも下記(1)および(2)の工程を含むことを特徴とする。
(1)基板上に着色パターンを形成する工程
(2)着色パターンの表面に凹凸を形成する工程
<Color filter manufacturing method>
The inventor has found that the extraction efficiency of light transmitted through the colored pattern can be increased by forming irregularities on the surface of the colored pattern. For this reason, the manufacturing method of the color filter of this Embodiment is characterized by including the process of following (1) and (2) at least.
(1) Step of forming a colored pattern on the substrate (2) Step of forming irregularities on the surface of the colored pattern
 以下では、(1)および(2)の各工程について、具体例を挙げて詳細に説明する。 Hereinafter, the steps (1) and (2) will be described in detail with specific examples.
(1)基板上に着色パターンを形成する工程
 まず、基板を準備する。基板としては、例えば、ホウ珪酸ガラス、アルミノホウ珪酸ガラス、無アルカリガラス、石英ガラス、合成石英ガラス、ソーダライムガラス、ホワイトサファイアなどの透明なガラス基板を用いることができる。また、ポリメチルメタクリレート等のアクリル、ポリアミド、ポリアセタール、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリエチレンナフタレート、トリアセチルセルロース、シンジオタクティック・ポリスチレン、ポリフェニレンサルファイド、ポリエーテルケトン、ポリエーテルエーテルケトン、フッ素樹脂、ポリエーテルニトリル、ポリカーボネート、変性ポリフェニレンエーテル、ポリシクロヘキセン、ポリノルボルネン系樹脂、ポリサルホン、ポリエーテルサルホン、ポリアリレート、ポリアミドイミド、ポリエーテルイミドまたは熱可塑性ポリイミドなどの透明樹脂フィルムを用いることもできる。特に、無アルカリガラスは、熱膨脹率の小さい素材であり、寸法安定性および高温加熱処理における特性に優れている点から好ましく用いられる。
(1) Step of forming a colored pattern on a substrate First, a substrate is prepared. As the substrate, for example, a transparent glass substrate such as borosilicate glass, aluminoborosilicate glass, alkali-free glass, quartz glass, synthetic quartz glass, soda lime glass, and white sapphire can be used. Also, acrylic such as polymethyl methacrylate, polyamide, polyacetal, polybutylene terephthalate, polyethylene terephthalate, polyethylene naphthalate, triacetyl cellulose, syndiotactic polystyrene, polyphenylene sulfide, polyether ketone, polyether ether ketone, fluororesin, poly A transparent resin film such as ether nitrile, polycarbonate, modified polyphenylene ether, polycyclohexene, polynorbornene resin, polysulfone, polyethersulfone, polyarylate, polyamideimide, polyetherimide, or thermoplastic polyimide can also be used. In particular, alkali-free glass is a material having a small coefficient of thermal expansion, and is preferably used from the viewpoint of excellent dimensional stability and characteristics in high-temperature heat treatment.
 また、これらの基板には、所望により、シランカップリング剤などによる薬品処理やプラズマ処理の他、イオンプレーティング法、スパッタリング法、気相反応法または真空蒸着法などによる二酸化ケイ素膜の成膜などの適当な前処理を施しておくこともできる。 Moreover, on these substrates, if desired, in addition to chemical treatment and plasma treatment with a silane coupling agent, etc., a silicon dioxide film is formed by ion plating, sputtering, gas phase reaction or vacuum deposition, etc. Appropriate pretreatment can be applied.
 次に、基板上に、画素を形成する部分を区画するように遮光層(ブラックマトリクス)を形成する。例えば、スパッタや蒸着により成膜したクロムなどの金属薄膜を、フォトリソグラフィ法を利用して所望のパターンに加工する。あるいは、黒色の着色剤を含有する着色組成物を基板上に塗布し、フォトリソグラフィ法によって所望のパターンに加工してもよい。金属薄膜からなる遮光層の膜厚は、通常0.1μm~0.2μmとすることが好ましい。一方、黒色の着色組成物を用いて形成された遮光膜の膜厚は、1μm前後とすることが好ましい。
 尚、遮光層は不要とされる場合もあり、その場合は遮光層形成の工程は省略できる。
Next, a light-shielding layer (black matrix) is formed on the substrate so as to partition a portion where a pixel is to be formed. For example, a metal thin film such as chromium formed by sputtering or vapor deposition is processed into a desired pattern by using a photolithography method. Alternatively, a coloring composition containing a black colorant may be applied on a substrate and processed into a desired pattern by a photolithography method. The thickness of the light shielding layer made of a metal thin film is usually preferably 0.1 μm to 0.2 μm. On the other hand, the thickness of the light shielding film formed using the black coloring composition is preferably about 1 μm.
In some cases, the light shielding layer is unnecessary, and in this case, the process of forming the light shielding layer can be omitted.
 次に、上記の基板上に、例えば、赤色の着色剤を含有する、ネガ型の感放射線性の着色感放射線性組成物を塗布する。次いで、プレベークを行って溶剤を蒸発させて、塗膜を形成する。その後、フォトマスクを介して塗膜を露光した後、アルカリ現像液で現像して、塗膜の未露光部を溶解除去する。その後、好ましくはポストベークをして、赤色の着色パターンが所定の配列で配置された画素アレイを形成する。 Next, for example, a negative radiation-sensitive colored radiation-sensitive composition containing a red colorant is applied onto the substrate. Next, pre-baking is performed to evaporate the solvent, thereby forming a coating film. Then, after exposing a coating film through a photomask, it develops with an alkali developing solution, and the unexposed part of a coating film is dissolved and removed. Thereafter, preferably, post-baking is performed to form a pixel array in which red coloring patterns are arranged in a predetermined arrangement.
 次に、赤色の着色パターンが形成された基板上に、緑色の着色剤を含有する、ネガ型の感放射線性の着色感放射線性組成物を塗布し、上記と同様にして、緑色の着色パターンが所定の配列で配置された画素アレイを形成する。 Next, a negative radiation-sensitive colored radiation-sensitive composition containing a green colorant is applied onto the substrate on which the red coloring pattern is formed, and the green coloring pattern is formed in the same manner as described above. Form a pixel array arranged in a predetermined arrangement.
 さらに、赤色と緑色の各着色パターンが形成された基板上に、青色の着色剤を含有する、ネガ型の感放射線性の着色感放射線性組成物を塗布し、上記と同様にして、青色の着色パターンが所定の配列で配置された画素アレイを形成する。 Further, a negative radiation-sensitive colored radiation-sensitive composition containing a blue colorant is applied onto the substrate on which each of the red and green coloring patterns is formed. A pixel array in which coloring patterns are arranged in a predetermined arrangement is formed.
 以上のようにして、赤色、緑色および青色の三原色の画素アレイが基板上に配置されたカラーフィルタが得られる。但し、本実施の形態においては、各色の着色パターンを基板上に形成する順序は、上述の例に限定されない。各色の形成順序は適宜変更することが可能である。 As described above, a color filter in which a pixel array of the three primary colors of red, green and blue is arranged on the substrate is obtained. However, in the present embodiment, the order in which the colored patterns of the respective colors are formed on the substrate is not limited to the above example. The order of forming each color can be changed as appropriate.
 着色感放射線性組成物を基板に塗布する際には、スプレー法、ロールコート法、回転塗布法(スピンコート法)、スリットダイ塗布法またはバーコート法などを適宜選択することができる。均一な膜厚の塗膜が得られる点からは、スピンコート法またはスリットダイ塗布法を採用することが好ましい。 When applying the colored radiation-sensitive composition to the substrate, a spray method, a roll coating method, a spin coating method (spin coating method), a slit die coating method, a bar coating method, or the like can be appropriately selected. In view of obtaining a coating film having a uniform film thickness, it is preferable to employ a spin coating method or a slit die coating method.
 プレベークは、通常、減圧乾燥と加熱乾燥とを組み合わせて行われる。減圧乾燥は、通常、50Pa~200Paに到達するまで行う。また、加熱乾燥の条件は、通常、ホットプレートを用いて、70℃~110℃の温度の下で1分間~10分間程度である。また、塗布される塗膜の厚さは、乾燥後の膜厚として、通常、0.6μm~8.0μm、好ましくは1.2μm~5.0μmである。 The pre-bake is usually performed by combining vacuum drying and heat drying. The drying under reduced pressure is usually performed until the pressure reaches 50 Pa to 200 Pa. The conditions for heat drying are usually about 1 to 10 minutes at a temperature of 70 to 110 ° C. using a hot plate. The thickness of the applied coating is usually 0.6 μm to 8.0 μm, preferably 1.2 μm to 5.0 μm, as the film thickness after drying.
 露光に使用される放射線の光源としては、例えば、キセノンランプ、ハロゲンランプ、タングステンランプ、高圧水銀灯、超高圧水銀灯、メタルハライドランプ、中圧水銀灯、低圧水銀灯などのランプ光源や、アルゴンイオンレーザ、YAGレーザ、XeClエキシマーレーザ、窒素レーザなどのレーザ光源などを挙げることができる。一般に、放射される波長が190nm~450nmの範囲にあることが好ましい。また、放射線の露光量は、一般的には10J/m~10,000J/mが好ましい。 Examples of radiation light sources used for exposure include lamp light sources such as xenon lamps, halogen lamps, tungsten lamps, high-pressure mercury lamps, ultrahigh-pressure mercury lamps, metal halide lamps, medium-pressure mercury lamps, and low-pressure mercury lamps, argon ion lasers, and YAG lasers. And laser light sources such as a XeCl excimer laser and a nitrogen laser. In general, the emitted wavelength is preferably in the range of 190 nm to 450 nm. The exposure dose of radiation is generally preferably 10 J / m 2 to 10,000 J / m 2 .
 アルカリ現像液としては、例えば、炭酸ナトリウム、水酸化ナトリウム、水酸化カリウム、テトラメチルアンモニウムハイドロオキサイド、コリン、1,8-ジアザビシクロ-[5.4.0]-7-ウンデセン、1,5-ジアザビシクロ-[4.3.0]-5-ノネンなどの水溶液が好ましく用いられる。アルカリ現像液には、例えば、メタノール、エタノールなどの水溶性有機溶剤や、界面活性剤などを適量添加することもできる。尚、アルカリ現像処理の後は、通常、水洗を行う。 Examples of the alkali developer include sodium carbonate, sodium hydroxide, potassium hydroxide, tetramethylammonium hydroxide, choline, 1,8-diazabicyclo- [5.4.0] -7-undecene, 1,5-diazabicyclo An aqueous solution such as-[4.3.0] -5-nonene is preferably used. An appropriate amount of a water-soluble organic solvent such as methanol or ethanol, a surfactant, or the like can be added to the alkaline developer. Incidentally, after the alkali development treatment, washing with water is usually performed.
 現像処理法としては、例えば、シャワー現像法、スプレー現像法、ディップ(浸漬)現像法またはパドル(液盛り)現像法などを適用することができる。現像条件は、例えば、常温で5秒間~300秒間とすることができる。 As the development processing method, for example, a shower development method, a spray development method, a dip (immersion) development method, or a paddle (liquid accumulation) development method can be applied. The development conditions can be, for example, 5 seconds to 300 seconds at room temperature.
 ポストベークの条件は、温風加熱炉を用いた場合、例えば、180℃~280℃で20分間~40分間程度とすることができる。 The post-baking conditions can be set at, for example, 180 ° C. to 280 ° C. for about 20 minutes to 40 minutes when a hot air heating furnace is used.
 以上のようにして形成された着色パターンの膜厚は、通常0.5μm~5.0μm、好ましくは1.0μm~3.0μmである。 The film thickness of the colored pattern formed as described above is usually 0.5 μm to 5.0 μm, preferably 1.0 μm to 3.0 μm.
 また、基板上に着色パターンを形成する他の例として、特開平7-318723号公報および特開2000-310706号公報などに開示されている、インクジェット方式により各色の画素を得る方法も挙げられる。 As another example of forming a colored pattern on a substrate, there is a method for obtaining pixels of each color by an ink jet method disclosed in Japanese Patent Application Laid-Open Nos. 7-318723 and 2000-310706.
 この方法においては、まず、基板の表面上に、遮光機能も兼ねた隔壁を形成する。次いで、この隔壁内に、例えば、赤色の着色剤を含有する着色熱硬化性組成物を、インクジェット装置により吐出する。その後、プレベークを行って溶媒を蒸発させる。次いで、この塗膜を必要に応じて露光した後、ポストベークすることにより硬化させて、赤色の画素パターンを形成する。 In this method, first, a partition having a light shielding function is formed on the surface of the substrate. Next, for example, a colored thermosetting composition containing a red colorant is discharged into the partition wall by an ink jet apparatus. Thereafter, pre-baking is performed to evaporate the solvent. Next, the coating film is exposed as necessary, and then cured by post-baking to form a red pixel pattern.
 次に、赤色の着色パターンが形成された基板上に、緑色の着色剤を含有する着色熱硬化性組成物をインクジェット装置により吐出し、上記と同様にして緑色の画素パターンを形成する。 Next, a colored thermosetting composition containing a green colorant is discharged onto the substrate on which the red colored pattern is formed by an ink jet apparatus to form a green pixel pattern in the same manner as described above.
 さらに、赤色と緑色の各着色パターンが形成された基板上に、青色の着色剤を含有する着色熱硬化性組成物をインクジェット装置により吐出し、上記と同様にして青色の画素パターンを形成する。 Furthermore, a colored thermosetting composition containing a blue colorant is ejected onto the substrate on which each of the red and green colored patterns is formed by an ink jet apparatus to form a blue pixel pattern in the same manner as described above.
 以上のようにして、赤色、緑色および青色の三原色の着色パターンが基板上に配置されたカラーフィルタが得られる。但し、本実施の形態においては、各色の着色パターンを形成する順序は、上記の例に限定されない。各色の形成順序は適宜変更することが可能である。 As described above, a color filter in which coloring patterns of the three primary colors of red, green, and blue are arranged on the substrate is obtained. However, in the present embodiment, the order of forming the coloring patterns of the respective colors is not limited to the above example. The order of forming each color can be changed as appropriate.
 尚、上述の隔壁は、遮光機能のみならず、区画内に吐出された各色の着色組成物が混色しないための機能も果たしている。そのため、上記した第一の例で使用される遮光層(ブラックマトリクス)に比べて膜厚が厚い。隔壁は、通常、黒色の組成物を用いて形成される。 In addition, the above-mentioned partition fulfill | performs not only the light-shielding function but the function for the coloring composition of each color discharged in the division not to mix colors. Therefore, the film thickness is thicker than the light shielding layer (black matrix) used in the first example. A partition is normally formed using a black composition.
 カラーフィルタを形成する際に使用される基板や放射線の光源、また、プレベークやポストベークの方法や条件は、上記した第一の例と同様である。インクジェット方式により形成された着色パターンの膜厚は、隔壁の高さと同程度である。 The substrate used for forming the color filter, the light source of radiation, and the pre-baking and post-baking methods and conditions are the same as in the first example. The film thickness of the colored pattern formed by the inkjet method is about the same as the height of the partition wall.
 尚、本実施の形態において、カラーフィルタを構成する着色パターンは、赤色、緑色および青色に限られるものではなく、黄色、マゼンダ色およびシアン色を三原色とする着色パターンであってもよい。また、三原色の画素に対応する着色パターンに加えて、第4や第5の着色パターンを形成することもできる。例えば、特表2005-523465号公報などに開示されているように、赤色、緑色および青色の三原色の画素に対応する着色パターンに加え、表色範囲を広げるための第4の画素(黄色画素)や第5の画素(シアン画素)を配置することができる。 In the present embodiment, the color pattern constituting the color filter is not limited to red, green, and blue, but may be a color pattern having three primary colors of yellow, magenta, and cyan. In addition to the coloring patterns corresponding to the pixels of the three primary colors, the fourth and fifth coloring patterns can also be formed. For example, as disclosed in JP-T-2005-523465, etc., a fourth pixel (yellow pixel) for expanding the color specification range in addition to the coloring patterns corresponding to the three primary color pixels of red, green and blue And a fifth pixel (cyan pixel) can be arranged.
 着色パターンは、通常、感放射線性または熱硬化性の着色組成物を用いて形成される。着色パターンを形成する工程で用いられる着色組成物は、少なくとも、着色剤、バインダー樹脂および架橋剤を含有する。また、必要に応じて、着色組成物に感放射線性を付与することを目的として光重合開始剤を含有することもできる。着色組成物は、通常、溶媒を配合して液状組成物として使用される。以下、各成分について説明する。 The coloring pattern is usually formed using a radiation-sensitive or thermosetting coloring composition. The coloring composition used in the step of forming the coloring pattern contains at least a coloring agent, a binder resin, and a crosslinking agent. Moreover, a photoinitiator can be contained as needed for the purpose of imparting radiation sensitivity to the colored composition. The colored composition is usually used as a liquid composition by blending a solvent. Hereinafter, each component will be described.
 着色剤は、着色性を有すれば特に限定されるものではなく、カラーフィルタの用途に応じて色彩や材質を適宜選択することができる。具体的には、顔料、染料および天然色素の何れをも着色剤として使用することができる。カラーフィルタには、高い色純度、輝度およびコントラストなどが求められることから、顔料、染料またはそれらの混合物が好ましく使用される。 The colorant is not particularly limited as long as it has colorability, and the color and material can be appropriately selected according to the use of the color filter. Specifically, any of pigments, dyes, and natural pigments can be used as the colorant. Since the color filter is required to have high color purity, brightness, contrast and the like, a pigment, a dye or a mixture thereof is preferably used.
 顔料は、有機顔料および無機顔料のいずれの使用も可能である。 As the pigment, either an organic pigment or an inorganic pigment can be used.
 有機顔料としては、例えば、カラーインデックス(C.I.;The Society of Dyers and Colourists 社発行)において、ピグメントに分類されている化合物が挙げられる。好ましくは、下記のようなカラーインデックス(C.I.)名が付されているものを挙げることができる。 Examples of the organic pigment include compounds classified as pigments in the color index (CI; issued by The Society of Dyer's and Colorists). Preferably, the following color index (CI) names are given.
 C.I.ピグメントイエロー83、C.I.ピグメントイエロー138、C.I.ピグメントイエロー139、C.I.ピグメントイエロー150、C.I.ピグメントイエロー180、C.I.ピグメントイエロー211;
 C.I.ピグメントオレンジ38;
C. I. Pigment yellow 83, C.I. I. Pigment yellow 138, C.I. I. Pigment yellow 139, C.I. I. Pigment yellow 150, C.I. I. Pigment yellow 180, C.I. I. Pigment yellow 211;
C. I. Pigment orange 38;
 C.I.ピグメントレッド166、C.I.ピグメントレッド177、C.I.ピグメントレッド224、C.I.ピグメントレッド242、C.I.ピグメントレッド254;
 C.I.ピグメントバイオレット23;
C. I. Pigment red 166, C.I. I. Pigment red 177, C.I. I. Pigment red 224, C.I. I. Pigment red 242, C.I. I. Pigment red 254;
C. I. Pigment violet 23;
 C.I.ピグメントブルー1、C.I.ピグメントブルー15:6、C.I.ピグメントブルー80;
 C.I.ピグメントグリーン7、C.I.ピグメントグリーン36、C.I.ピグメントグリーン58;
 C.I.ピグメントブラウン23、C.I.ピグメントブラウン25;
 C.I.ピグメントブラック1、C.I.ピグメントブラック7。
C. I. Pigment blue 1, C.I. I. Pigment blue 15: 6, C.I. I. Pigment blue 80;
C. I. Pigment green 7, C.I. I. Pigment green 36, C.I. I. Pigment green 58;
C. I. Pigment brown 23, C.I. I. Pigment brown 25;
C. I. Pigment black 1, C.I. I. Pigment Black 7.
 無機顔料としては、例えば、酸化チタン、硫酸バリウム、炭酸カルシウム、亜鉛華、硫酸鉛、黄色鉛、亜鉛黄、べんがら(赤色酸化鉄(III))、カドミウム赤、群青、紺青、酸化クロム緑、コバルト緑、アンバー、チタンブラック、合成鉄黒またはカーボンブラックなどを挙げることができる。 Examples of inorganic pigments include titanium oxide, barium sulfate, calcium carbonate, zinc white, lead sulfate, yellow lead, zinc yellow, red bean (red iron oxide (III)), cadmium red, ultramarine blue, bitumen, chromium oxide green, and cobalt. Examples include green, amber, titanium black, synthetic iron black, and carbon black.
 本実施の形態において、有機顔料は、いわゆるソルトミリングにより、一次粒子を微細化して使用することが好ましい。ソルトミリングの方法としては、例えば、特開平8-179111号公報に開示されている方法を採用することができる。 In the present embodiment, it is preferable to use the organic pigment by refining primary particles by so-called salt milling. As a salt milling method, for example, a method disclosed in Japanese Patent Laid-Open No. 8-179111 can be employed.
 染料は、各種の油溶性染料、直接染料、酸性染料および金属錯体染料などの中から適宜選択して使用することができる。例えば、下記のようなカラーインデックス(C.I.)名が付されているものを挙げることができる。 The dye can be appropriately selected from various oil-soluble dyes, direct dyes, acid dyes and metal complex dyes. For example, the following color index (CI) names are given.
 C.I.ソルベントイエロー4、C.I.ソルベントイエロー14、C.I.ソルベントイエロー15、C.I.ソルベントイエロー24、C.I.ソルベントイエロー82、C.I.ソルベントイエロー88、C.I.ソルベントイエロー94、C.I.ソルベントイエロー98、C.I.ソルベントイエロー162、C.I.ソルベントイエロー179;
 C.I.ソルベントレッド45、C.I.ソルベントレッド49;
 C.I.ソルベントオレンジ2、C.I.ソルベントオレンジ7、C.I.ソルベントオレンジ11、C.I.ソルベントオレンジ15、C.I.ソルベントオレンジ26、C.I.ソルベントオレンジ56;
 C.I.ソルベントブルー35、C.I.ソルベントブルー37、C.I.ソルベントブルー59、C.I.ソルベントブルー67;
C. I. Solvent Yellow 4, C.I. I. Solvent Yellow 14, C.I. I. Solvent Yellow 15, C.I. I. Solvent Yellow 24, C.I. I. Solvent Yellow 82, C.I. I. Solvent Yellow 88, C.I. I. Solvent Yellow 94, C.I. I. Solvent Yellow 98, C.I. I. Solvent Yellow 162, C.I. I. Solvent yellow 179;
C. I. Solvent Red 45, C.I. I. Solvent red 49;
C. I. Solvent Orange 2, C.I. I. Solvent Orange 7, C.I. I. Solvent Orange 11, C.I. I. Solvent Orange 15, C.I. I. Solvent Orange 26, C.I. I. Solvent orange 56;
C. I. Solvent Blue 35, C.I. I. Solvent Blue 37, C.I. I. Solvent Blue 59, C.I. I. Solvent blue 67;
 C.I.アシッドイエロー17、C.I.アシッドイエロー29、C.I.アシッドイエロー40、C.I.アシッドイエロー76;
 C.I.アシッドレッド91、C.I.アシッドレッド92、C.I.アシッドレッド97、C.I.アシッドレッド114、C.I.アシッドレッド138、C.I.アシッドレッド151;
 C.I.アシッドオレンジ51、C.I.アシッドオレンジ63;
 C.I.アシッドブルー80、C.I.アシッドブルー83、C.I.アシッドブルー90;
 C.I.アシッドグリーン9、C.I.アシッドグリーン16、C.I.アシッドグリーン25、C.I.アシッドグリーン27。
C. I. Acid Yellow 17, C.I. I. Acid Yellow 29, C.I. I. Acid Yellow 40, C.I. I. Acid Yellow 76;
C. I. Acid Red 91, C.I. I. Acid Red 92, C.I. I. Acid Red 97, C.I. I. Acid Red 114, C.I. I. Acid Red 138, C.I. I. Acid Red 151;
C. I. Acid Orange 51, C.I. I. Acid Orange 63;
C. I. Acid Blue 80, C.I. I. Acid Blue 83, C.I. I. Acid Blue 90;
C. I. Acid Green 9, C.I. I. Acid Green 16, C.I. I. Acid Green 25, C.I. I. Acid Green 27.
 本実施の形態において、着色剤は、単独または2種以上を混合して使用することができる。 In the present embodiment, the colorants can be used alone or in admixture of two or more.
 着色組成物に使用されるバインダー樹脂は、特に限定されるものではないが、酸性官能基を有する重合体を含有することが好ましい。酸性官能基としては、例えば、カルボキシル基、フェノール性水酸基、イミド酸基、スルホ基、スルフィノ基またはスルフェノ基などを挙げることができる。これらの内、カルボキシル基が好ましく用いられる。 The binder resin used in the coloring composition is not particularly limited, but preferably contains a polymer having an acidic functional group. Examples of the acidic functional group include a carboxyl group, a phenolic hydroxyl group, an imido acid group, a sulfo group, a sulfino group, and a sulfeno group. Of these, a carboxyl group is preferably used.
 カルボキシル基を有する重合体としては、例えば、特開平5-19467号公報、特開平6-230212号公報、特開平7-140654号公報、特開平7-207211号公報、特開平8-259876号公報、特開平9-325494号公報、特開平10-31308号公報、特開平10-300922号公報、特開平11-140144号公報、特開平11-174224号公報、特開平11-231523号公報、特開平11-258415号公報、特開2000-56118号公報、特開2002-296778号公報、特開2004-101728号公報および特開2008-181095号公報などに開示されている重合体を挙げることができる。 Examples of the polymer having a carboxyl group include, for example, JP-A-5-19467, JP-A-6-230212, JP-A-7-140654, JP-A-7-207211, and JP-A-8-259876. JP-A-9-325494, JP-A-10-31308, JP-A-10-300902, JP-A-11-140144, JP-A-11-174224, JP-A-11-231523, Examples include polymers disclosed in Kaihei 11-258415, JP-A 2000-56118, JP-A 2002-296778, JP-A 2004-101728, and JP-A 2008-181095. it can.
 本実施の形態において、バインダー樹脂は、単独または2種以上を混合して使用することができる。 In this embodiment, the binder resin can be used alone or in combination of two or more.
 着色組成物に使用される架橋剤は、2個以上の重合可能な基を有する化合物であれば、特に限定されるものではない。重合可能な基としては、例えば、エチレン性不飽和基、オキシラニル基、オキセタニル基またはN-アルコキシメチルアミノ基などを挙げることができる。 The crosslinking agent used for the coloring composition is not particularly limited as long as it is a compound having two or more polymerizable groups. Examples of the polymerizable group include an ethylenically unsaturated group, an oxiranyl group, an oxetanyl group, and an N-alkoxymethylamino group.
 本実施の形態において、架橋剤としては、2個以上の(メタ)アクリロイル基を有する化合物、または、2個以上のN-アルコキシメチルアミノ基を有する化合物が好ましく用いられる。 In this embodiment, as the crosslinking agent, a compound having two or more (meth) acryloyl groups or a compound having two or more N-alkoxymethylamino groups is preferably used.
 特に好ましい架橋剤としては、例えば、トリメチロールプロパントリアクリレート、ペンタエリスリトールトリアクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレート、ペンタエリスリトールトリアクリレートと無水こはく酸を反応させて得られる化合物、ジペンタエリスリトールペンタアクリレートと無水こはく酸を反応させて得られる化合物、特開平11-44955号公報の段落〔0015〕~段落〔0018〕に記載されているカプロラクトン変性された多官能(メタ)アクリレート、N,N,N’,N’,N’’,N’’-ヘキサ(アルコキシメチル)メラミンまたはN,N,N’,N’-テトラ(アルコキシメチル)ベンゾグアナミンなどを挙げることができる。 Particularly preferred crosslinking agents include, for example, trimethylolpropane triacrylate, pentaerythritol triacrylate, dipentaerythritol pentaacrylate, dipentaerythritol hexaacrylate, a compound obtained by reacting pentaerythritol triacrylate with succinic anhydride, dipenta A compound obtained by reacting erythritol pentaacrylate with succinic anhydride, a caprolactone-modified polyfunctional (meth) acrylate described in paragraphs [0015] to [0018] of JP-A No. 11-44955, N, N, N ′, N ′, N ″, N ″ -hexa (alkoxymethyl) melamine or N, N, N ′, N′-tetra (alkoxymethyl) benzoguanamine can be mentioned.
 本実施の形態において、架橋剤は、単独または2種以上を混合して使用することができる。 In the present embodiment, the crosslinking agents can be used alone or in combination of two or more.
 着色組成物に使用される光重合開始剤は、可視光線、紫外線、遠紫外線、電子線またはX線などの放射線の露光により、上述の架橋剤の硬化反応を開始し得る活性種を発生することのできる化合物である。 The photopolymerization initiator used in the coloring composition generates an active species capable of initiating the curing reaction of the above-mentioned crosslinking agent upon exposure to radiation such as visible light, ultraviolet light, far ultraviolet light, electron beam or X-ray. It is a compound that can be
 好ましい光重合開始剤としては、例えば、チオキサントン系化合物、アセトフェノン系化合物、ビイミダゾール系化合物、トリアジン系化合物、O-アシルオキシム系化合物、オニウム塩系化合物、ベンゾイン系化合物、ベンゾフェノン系化合物、α-ジケトン系化合物、多核キノン系化合物、ジアゾ系化合物またはイミドスルホナート系化合物などを挙げることができる。 Preferred photopolymerization initiators include, for example, thioxanthone compounds, acetophenone compounds, biimidazole compounds, triazine compounds, O-acyloxime compounds, onium salt compounds, benzoin compounds, benzophenone compounds, α-diketones. Compounds, polynuclear quinone compounds, diazo compounds, imide sulfonate compounds, and the like.
 本実施の形態において、光重合開始剤は、公知の増感剤や水素供与体と併用することができる。また、光重合開始剤は、単独または2種以上を混合して使用することができる。 In this embodiment, the photopolymerization initiator can be used in combination with a known sensitizer or a hydrogen donor. Moreover, a photoinitiator can be used individually or in mixture of 2 or more types.
 着色組成物に使用される溶媒は、着色組成物を構成する各成分を分散または溶解し、且つ、これらの成分と反応せず、適度の揮発性を有するものであることが好ましい。 The solvent used in the colored composition is preferably a solvent that disperses or dissolves each component constituting the colored composition and does not react with these components and has appropriate volatility.
 本実施の形態において、好ましい溶媒としては、例えば、プロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、3-メトキシブチルアセテート、ジエチレングリコールジメチルエーテル、ジエチレングリコールメチルエチルエーテル、シクロヘキサノン、2-ヘプタノン、3-ヘプタノン、1,3-ブチレングリコールジアセテート、1,6-ヘキサンジオールジアセテート、乳酸エチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、3-メチル-3-メトキシブチルプロピオネート、酢酸n-ブチル、酢酸i-ブチル、ぎ酸n-アミル、酢酸i-アミル、プロピオン酸n-ブチル、酪酸エチル、酪酸i-プロピル、酪酸n-ブチルまたはピルビン酸エチルなどを挙げることができる。 In the present embodiment, preferable solvents include, for example, propylene glycol monomethyl ether, ethylene glycol monomethyl ether acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, 3-methoxybutyl acetate, diethylene glycol dimethyl ether, diethylene glycol methyl ethyl ether. , Cyclohexanone, 2-heptanone, 3-heptanone, 1,3-butylene glycol diacetate, 1,6-hexanediol diacetate, ethyl lactate, ethyl 3-methoxypropionate, methyl 3-ethoxypropionate, 3-ethoxypropion Ethyl acetate, 3-methyl-3-methoxybutylpropionate, n-butyl acetate, i-butyl acetate, Acid n- amyl acetate, i- amyl, n- butyl propionate, ethyl butyrate, i- propyl, and butyric acid n- butyl or ethyl pyruvate.
 本実施の形態において、溶媒は、単独または2種以上を混合して使用することができる。 In the present embodiment, the solvents can be used alone or in combination of two or more.
 本実施の形態の着色組成物は、必要に応じて、その他の成分をさらに含有することもできる。例えば、その他の成分として、アクリル系共重合体、ポリウレタン、ポリエステル、ポリエチレンイミンおよびポリアリルアミンなどの顔料分散剤;フッ素系界面活性剤およびシリコン系界面活性剤などの界面活性剤;ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(2-メトキシエトキシ)シラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-メタクリロイロキシプロピルトリメトキシシランおよび3-メルカプトプロピルトリメトキシシランなどの密着促進剤等を挙げることができる。 The colored composition of the present embodiment can further contain other components as necessary. For example, as other components, a pigment dispersant such as an acrylic copolymer, polyurethane, polyester, polyethyleneimine and polyallylamine; a surfactant such as a fluorosurfactant and a silicon surfactant; vinyltrimethoxysilane; Vinyltriethoxysilane, vinyltris (2-methoxyethoxy) silane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-methacryloyloxypropyltrimethoxysilane and 3-mercaptopropyltrimethoxy Examples thereof include adhesion promoters such as silane.
(2)着色パターンの表面に凹凸を形成する工程
 上記工程により形成された着色パターンの表面に凹凸を形成する方法は、特に限定されるものではなく、例えば、エッチング法、ナノインプリント法または酸化セリウム粒子などを用いた研磨法などを挙げることができる。
(2) Step of forming irregularities on the surface of the colored pattern The method of forming irregularities on the surface of the colored pattern formed by the above steps is not particularly limited. For example, etching, nanoimprinting, or cerium oxide particles A polishing method using the above can be used.
 エッチング法としては、ドライエッチングおよびウエットエッチングのいずれの方法の適用も可能である。ドライエッチングは、反応性の気体(エッチングガス)やイオン、ラジカルによって材料をエッチングする方法である。これに対して、ウエットエッチングは、液体によって材料のエッチングを行う方法である。 As the etching method, either dry etching or wet etching can be applied. Dry etching is a method of etching a material with a reactive gas (etching gas), ions, or radicals. On the other hand, wet etching is a method of etching a material with a liquid.
 製造コストを考慮した場合、酸またはアルカリによるウエットエッチングが好ましい。一方、凹凸形成の再現性を考慮した場合には、微細加工に適したドライエッチングが好ましい。 In consideration of manufacturing cost, wet etching with acid or alkali is preferable. On the other hand, when the reproducibility of the uneven formation is taken into consideration, dry etching suitable for fine processing is preferable.
 ドライエッチングには、反応ガス中に材料を曝す方法(反応性ガスエッチング)や、プラズマによりガスをイオン化・ラジカル化してエッチングする反応性イオンエッチングなどがある。 Dry etching includes a method in which a material is exposed to a reactive gas (reactive gas etching) and a reactive ion etching in which gas is ionized and radicalized by plasma to perform etching.
 反応性イオンエッチングによるドライエッチング装置としては、種々の方式のものが挙げられる。いずれの方式においても、装置構成は概ね同様である。すなわち、所要の真空圧に保持したチャンバ内で、エッチングガスに電磁波などを与えて、ガスをプラズマ化する。また、同時に、チャンバ内で試料基板が載置される陰極に高周波電圧を印加する。これにより、プラズマ中のイオン種やラジカル種を試料方向に加速させて衝突させ、イオンによるスパッタリングと、エッチングガスの化学反応とを同時に起こして、試料の微細加工を行う。 There are various types of dry etching apparatuses using reactive ion etching. In either method, the apparatus configuration is substantially the same. That is, in a chamber maintained at a required vacuum pressure, an electromagnetic wave or the like is applied to the etching gas to turn the gas into plasma. At the same time, a high frequency voltage is applied to the cathode on which the sample substrate is placed in the chamber. Thereby, ion species and radical species in the plasma are accelerated and collided in the direction of the sample, and sputtering by ions and chemical reaction of the etching gas are caused simultaneously to perform microfabrication of the sample.
 本実施の形態においては、上述した工程により着色パターンを形成した後、着色パターンに対して、そのまま直接にエッチング処理を行うことが可能である。また、フォトリソグラフィ技術を利用し、着色パターン上にマスクとなるレジストパターンを形成した後、そこから露出する着色パターン部分にエッチング処理を施してもよい。この方法によれば、複数色ある着色パターンの中から、所望の色の着色パターンを選択して凹凸を設けることが可能であり、さらに所望の個所に所望の程度の凹凸を設けることが可能である。 In the present embodiment, after the colored pattern is formed by the above-described steps, it is possible to directly perform the etching process on the colored pattern as it is. Further, after forming a resist pattern serving as a mask on the colored pattern using photolithography technology, the colored pattern portion exposed from the resist pattern may be etched. According to this method, it is possible to select a colored pattern of a desired color from among a plurality of colored patterns, and to provide unevenness, and to provide a desired degree of unevenness at a desired location. is there.
 また、ナノインプリント法では、予め電子線リソグラフィー等により数十~数百nmの凹凸パターンを形成した原盤を、着色パターンが形成された基板に押し付け、原盤の凹凸を着色パターンに転写する。より具体的には、米国特許5772905号明細書、S.Y.Chou et al,Appl.Phys.Lett.76,3114(1995)等を参考にすることができる。ナノインプリント法によっても、複数色ある着色パターンの中から、所望の色の着色パターンを選択して凹凸を設けることが可能であり、さらに所望の個所に所望の程度の凹凸を設けることが可能である。 Also, in the nanoimprint method, a master on which a concavo-convex pattern of several tens to several hundreds of nanometers is formed in advance by electron beam lithography or the like is pressed against a substrate on which a colored pattern is formed, and the concavo-convex of the master is transferred to the colored pattern. More specifically, US Pat. No. 5,772,905, S.A. Y. Chou et al, Appl. Phys. Lett. 76, 3114 (1995) or the like. Even by the nanoimprint method, it is possible to select a colored pattern of a desired color from among a plurality of colored patterns, and to provide unevenness, and to provide a desired degree of unevenness at a desired location. .
 上記の通り、着色組成物を用いて形成された着色パターンの表面に凹凸を形成することで、着色パターンを透過する光の取り出し効率を高めることができる。かかる効果は、特に、赤色の着色パターンと緑色の着色パターンで顕著である。したがって、赤色および緑色の着色パターンの内の少なくとも一方を選択して、その表面に凹凸を付与してもよい。 As described above, by forming irregularities on the surface of the colored pattern formed using the colored composition, it is possible to increase the light extraction efficiency that passes through the colored pattern. Such an effect is particularly remarkable in a red coloring pattern and a green coloring pattern. Therefore, at least one of the red and green coloring patterns may be selected to provide unevenness on the surface.
 着色パターンの表面に形成される凹凸のサイズについては、所望の値に調整することが可能であるが、好ましくは凸部の高さは10nm以上、凸部の底辺の幅は10nm以上である。本実施の形態においては、凸部の高さは50nm以上であることがより好ましく、50nm~200nmの範囲であることがさらに好ましく、80nm~200nmの範囲であることが特に好ましい。一方、凸部の幅は20nm以上であることが好ましく、20nm~200nmの範囲であることがより好ましい。尚、着色パターンの表面に形成される凹凸のサイズは、SEM写真を画像解析することにより測定したものである。また、カラーフィルタのY値を向上させることを目的とする場合、凹凸を形成しようとする着色パターンの総画素面積の内の30%以上の表面に凹凸が形成されていることが好ましい。その場合、凹凸が形成された領域が、カラーフィルタ全体においても、そして任意の一画素内においても、一部分に偏ることなく、全体に均一に分散されるよう構成されることが好ましい。 The size of the unevenness formed on the surface of the colored pattern can be adjusted to a desired value, but preferably the height of the convex part is 10 nm or more and the width of the base of the convex part is 10 nm or more. In the present embodiment, the height of the convex portion is more preferably 50 nm or more, further preferably in the range of 50 nm to 200 nm, and particularly preferably in the range of 80 nm to 200 nm. On the other hand, the width of the convex portion is preferably 20 nm or more, and more preferably in the range of 20 nm to 200 nm. In addition, the size of the unevenness formed on the surface of the colored pattern is measured by image analysis of the SEM photograph. Moreover, when it aims at improving the Y value of a color filter, it is preferable that the unevenness | corrugation is formed in the surface of 30% or more of the total pixel area of the coloring pattern which is going to form an unevenness | corrugation. In that case, it is preferable that the region in which the unevenness is formed is configured to be uniformly distributed over the entire color filter and within any one pixel without being partially biased.
 このようにして凹凸が形成された着色パターン上に、さらに保護膜を設けることで、表示素子の表示特性を高めることができる。保護膜としては、硬化性組成物から形成される有機膜若しくは有機無機ハイブリッド膜、またはSiNx膜およびSiOx膜などの無機膜を挙げることができる。本実施の形態においては、硬化性組成物を用いて保護膜を形成することが好ましい。 The display characteristics of the display element can be enhanced by further providing a protective film on the colored pattern having the irregularities formed in this manner. Examples of the protective film include organic films or organic-inorganic hybrid films formed from curable compositions, or inorganic films such as SiNx films and SiOx films. In this Embodiment, it is preferable to form a protective film using a curable composition.
 硬化性樹脂組成物を用いて保護膜を形成する方法としては、例えば、特開平4-53879号公報または特開平6-192389号公報などに開示されている方法を採用することができる。この方法によれば、まず、硬化性樹脂組成物を、着色パターンが形成された基板表面に塗布し、プレベークにより溶媒を除去して塗膜とする。この塗膜を、必要に応じて露光・現像することにより所望のパターンとした後、ポストベークすることにより保護膜を形成する。 As a method for forming a protective film using a curable resin composition, for example, a method disclosed in Japanese Patent Application Laid-Open No. 4-53879 or Japanese Patent Application Laid-Open No. 6-192389 can be employed. According to this method, first, the curable resin composition is applied to the substrate surface on which the colored pattern is formed, and the solvent is removed by pre-baking to obtain a coating film. The coating film is exposed and developed as necessary to obtain a desired pattern, and then post-baked to form a protective film.
 保護膜を形成する際に使用される放射線の光源、また、プレベークやポストベークの方法や条件は、上述した(1)基板上に着色組成物を用いて着色パターンを形成する工程での着色パターンを形成する方法と同様である。このようにして、形成された保護膜の膜厚は、通常0.1μm~8.0μm、好ましくは0.1μm~6.0μmである。 The radiation light source used when forming the protective film, and the pre-baking and post-baking methods and conditions are as described in (1) Coloring pattern in the step of forming a coloring pattern on the substrate using the coloring composition It is the same as the method of forming. The thickness of the protective film thus formed is usually 0.1 μm to 8.0 μm, preferably 0.1 μm to 6.0 μm.
 保護膜の形成に用いられる硬化性樹脂組成物としては、例えば、特開平3-188153号公報または特開平4-53879号公報などに開示されている熱硬化性樹脂組成物、特開平6-192389号公報または特開平8-183819号公報などに開示されている感放射線性樹脂組成物、特開2006-195420号公報または特開2008-208342号公報などに開示されているポリオルガノシロキサンを含有する硬化性組成物などを挙げることができる。 Examples of the curable resin composition used for forming the protective film include thermosetting resin compositions disclosed in JP-A-3-188153 and JP-A-4-53879, and JP-A-6-192389. The radiation-sensitive resin composition disclosed in Japanese Patent Laid-Open No. 8-183819 and the like, and the polyorganosiloxane disclosed in Japanese Patent Laid-Open No. 2006-195420 or 2008-208342 are included. A curable composition etc. can be mentioned.
 本実施の形態のカラーフィルタの製造方法によれば、CIE表色系における明るさの刺激値(Y)の高いカラーフィルタが得られる。したがって、本実施の形態のカラーフィルタを用いることにより、輝度の高い表示素子とすることが可能である。本実施の形態のカラーフィルタは、例えば、カラー液晶表示素子用カラーフィルタ、固体撮像素子の色分解用カラーフィルタ、有機EL表示素子用カラーフィルタ、電子ペーパー用カラーフィルタを始めとする各種のカラーフィルタとして好適である。 According to the color filter manufacturing method of the present embodiment, a color filter having a high brightness stimulus value (Y) in the CIE color system can be obtained. Therefore, a display element with high luminance can be obtained by using the color filter of this embodiment mode. The color filter of this embodiment includes, for example, various color filters including a color filter for a color liquid crystal display element, a color filter for color separation of a solid-state image sensor, a color filter for an organic EL display element, and a color filter for electronic paper. It is suitable as.
 <カラーフィルタ>
 本実施の形態のカラーフィルタは、上述した本実施の形態のカラーフィルタの製造方法により製造されたカラーフィルタである。
<Color filter>
The color filter of the present embodiment is a color filter manufactured by the above-described color filter manufacturing method of the present embodiment.
 具体的には、本実施の形態のカラーフィルタでは、上述した顔料や染料等を含む、赤色、緑色および青色の三原色の着色パターンが所定の配列で配置されて画素アレイを有し、この画素アレイが基板上に配置されて構成される。尚、カラーフィルタを構成する着色パターンは、黄色、マゼンダ色およびシアン色を三原色とする着色パターンであってもよい。また、上述のように、赤色、緑色および青色の三原色の画素に対応する着色パターンに加え、表色範囲を広げるための第4の画素(黄色画素)や第5の画素(シアン画素)を配置するよう、第4および第5の着色パターンを形成することもできる。 Specifically, the color filter of this embodiment has a pixel array in which coloring patterns of the three primary colors of red, green, and blue including the above-described pigments and dyes are arranged in a predetermined arrangement, and this pixel array Are arranged on the substrate. The color pattern constituting the color filter may be a color pattern having three primary colors of yellow, magenta, and cyan. Further, as described above, in addition to the coloring patterns corresponding to the three primary color pixels of red, green and blue, the fourth pixel (yellow pixel) and the fifth pixel (cyan pixel) for expanding the color specification range are arranged. As such, the fourth and fifth colored patterns can also be formed.
 また、本実施の形態のカラーフィルタでは、基板上、画素を形成する部分を区画するように遮光層(ブラックマトリクス)を有することが好ましい。尚、遮光層を有しないことも可能である。 In addition, the color filter of the present embodiment preferably has a light shielding layer (black matrix) so as to partition a portion where a pixel is formed on the substrate. It is also possible to have no light shielding layer.
 本実施の形態のカラーフィルタでは、着色パターンの表面に、上述のエッチング法、ナノインプリント法または研磨法などによって形成された微細な凹凸が設けられる。凹凸のサイズは、所望の値に調整することが可能であるが、凸部の高さを10nm以上、凸部の底辺の幅を10nm以上とすることが好ましい。さらに、凸部の高さは、50nm以上であることが好ましく、50nm~200nmの範囲であることがより好ましく、80nm~200nmの範囲であることが特に好ましい。一方、凸部の幅は、20nm以上であることが好ましく、20nm~200nmの範囲であることがより好ましい。 In the color filter of the present embodiment, fine irregularities formed by the above-described etching method, nanoimprint method or polishing method are provided on the surface of the colored pattern. The size of the projections and depressions can be adjusted to a desired value, but it is preferable that the height of the projection is 10 nm or more and the width of the bottom of the projection is 10 nm or more. Further, the height of the convex portion is preferably 50 nm or more, more preferably in the range of 50 nm to 200 nm, and particularly preferably in the range of 80 nm to 200 nm. On the other hand, the width of the convex portion is preferably 20 nm or more, and more preferably in the range of 20 nm to 200 nm.
 また、カラーフィルタのY値を向上させることを目的とする場合、凹凸を形成しようとする着色パターンの総画素面積の内、30%以上の表面に、凹凸が形成されていることが好ましい。その場合、上述したように、着色パターンの表面に凹凸が形成された領域が、カラーフィルタ全体においても、そして任意の一画素内においても、一部領域に偏ることなく、全体に均一に分散されるよう構成されることが好ましい。 In addition, when the purpose is to improve the Y value of the color filter, it is preferable that unevenness is formed on the surface of 30% or more of the total pixel area of the colored pattern to be unevenly formed. In that case, as described above, the region in which the unevenness is formed on the surface of the colored pattern is uniformly distributed throughout the color filter and even in any one pixel without being biased to a part of the region. It is preferable that it is comprised.
 本実施の形態のカラーフィルタは、凹凸が形成された着色パターン上に保護膜を有することが好ましい。保護膜を有することで、表示素子の製造工程におけるカラーフィルタの耐プロセス性を高めることができる。保護膜としては、上述のように、硬化性組成物から形成される有機膜若しくは有機無機ハイブリッド膜、またはSiNx膜およびSiOx膜などの無機膜を挙げることができる。本実施の形態においては、硬化性組成物を用いて保護膜を形成することが好ましい。 The color filter of the present embodiment preferably has a protective film on the colored pattern on which irregularities are formed. By having the protective film, the process resistance of the color filter in the manufacturing process of the display element can be improved. Examples of the protective film include an organic film or an organic-inorganic hybrid film formed from a curable composition, or an inorganic film such as a SiNx film and a SiOx film, as described above. In this Embodiment, it is preferable to form a protective film using a curable composition.
 本実施の形態のカラーフィルタは、上記構成を有することにより、CIE表色系における明るさの刺激値(Y)が高いものとなる。したがって、このカラーフィルタは、例えば、カラー液晶表示素子用カラーフィルタ、固体撮像素子の色分解用カラーフィルタ、有機EL表示素子用カラーフィルタおよび電子ペーパー用カラーフィルタを始めとする各種のカラーフィルタとして有用である。 Since the color filter of the present embodiment has the above-described configuration, the brightness stimulation value (Y) in the CIE color system is high. Therefore, this color filter is useful as various color filters including, for example, color filters for color liquid crystal display elements, color filters for color separation of solid-state imaging elements, color filters for organic EL display elements, and color filters for electronic paper. It is.
 <表示素子>
 本実施の形態の表示素子は、上述した本実施の形態のカラーフィルタを有するものである。表示素子の具体例としては、カラー液晶表示素子、有機EL表示素子または電子ペーパーなどを挙げることができる。
<Display element>
The display element of this embodiment has the color filter of this embodiment described above. Specific examples of the display element include a color liquid crystal display element, an organic EL display element, and electronic paper.
 本実施の形態のカラー液晶表示素子は、以下の構造とすることができる。 The color liquid crystal display element of this embodiment can have the following structure.
 カラー液晶表示素子は、例えば、薄膜トランジスタ(Thin Film Transistor:TFT)が配置された駆動用基板と、本実施の形態のカラーフィルタが設けられた別の基板とが、液晶層を介して対向する構造とすることができる。あるいは、カラー液晶表示素子は、薄膜トランジスタ(TFT)が配置された駆動用基板の表面上に本実施の形態のカラーフィルタを形成した基板と、ITO(Indium Tin Oxide:錫をドープした酸化インジュウム)電極を形成した基板とが、液晶層を介して対向した構造とすることもできる。後者の構造は、開口率を格段に向上させることができ、明るく高精細な液晶表示素子が得られるという利点を有する。 The color liquid crystal display element has, for example, a structure in which a driving substrate on which a thin film transistor (TFT) is disposed and another substrate on which the color filter of this embodiment is provided face each other through a liquid crystal layer. It can be. Alternatively, the color liquid crystal display element includes a substrate in which the color filter of this embodiment is formed on the surface of a driving substrate on which a thin film transistor (TFT) is disposed, and an ITO (Indium Tin Oxide) electrode. It is also possible to adopt a structure in which the substrate on which the film is formed faces the liquid crystal layer. The latter structure has the advantage that the aperture ratio can be remarkably improved, and a bright and high-definition liquid crystal display element can be obtained.
 図1は、本実施の形態のカラーフィルタを有するカラー液晶表示素子の模式的な断面図である。 FIG. 1 is a schematic cross-sectional view of a color liquid crystal display element having a color filter of the present embodiment.
 図1に示す液晶表示素子1は、本実施の形態のカラー液晶表示素子の一例であり、TFT駆動によるTN(Twisted Nematic)型の液晶モードの表示素子である。このカラー液晶表示素子は、上記した駆動用基板とカラーフィルタを形成した基板とが、TN液晶の層を介して対向した構造を有する。すなわち、図1に示すように、透明な基板2の液晶13に接する側には、TFT(図示されない)と透明な画素電極3とが格子状に配設され、駆動用基板を構成している。また、透明な基板5の液晶13に接する側には、画素電極3に対向する位置に、赤色、緑色および青色の着色パターン6と、ブラックマトリクス7と、着色パターン6の上に設けられた保護膜8とを有するカラーフィルタ10が配置されている。ここで、着色パターン6の表面には、上述した微細な凹凸が設けられている。さらに、カラーフィルタ10の上には、透明な共通電極11が設けられている。 A liquid crystal display element 1 shown in FIG. 1 is an example of the color liquid crystal display element of the present embodiment, and is a TN (Twisted Nematic) type liquid crystal mode display element driven by a TFT. This color liquid crystal display element has a structure in which the driving substrate and the substrate on which the color filter is formed face each other with a TN liquid crystal layer interposed therebetween. That is, as shown in FIG. 1, TFTs (not shown) and transparent pixel electrodes 3 are arranged in a lattice pattern on the side of the transparent substrate 2 in contact with the liquid crystal 13 to constitute a driving substrate. . Further, on the side of the transparent substrate 5 that is in contact with the liquid crystal 13, the red, green, and blue coloring patterns 6, the black matrix 7, and the protection provided on the coloring patterns 6 are positioned opposite to the pixel electrodes 3. A color filter 10 having a film 8 is arranged. Here, the fine irregularities described above are provided on the surface of the colored pattern 6. Further, a transparent common electrode 11 is provided on the color filter 10.
 基板2と基板5には、それぞれ、配向膜12が設けられている。配向膜12をラビング処理することにより、両基板2、5の間に挟持された液晶13の均一な配向を実現できる。 An alignment film 12 is provided on each of the substrate 2 and the substrate 5. By rubbing the alignment film 12, uniform alignment of the liquid crystal 13 sandwiched between the substrates 2 and 5 can be realized.
 基板2と基板5において、液晶13に接する側と反対の側には、それぞれ偏光板14が配置されている。基板2と基板5の間隔は、通常、2μm~10μmであり、これらは、周辺部に設けられたシール材16によって互いに固定されている。 In the substrate 2 and the substrate 5, polarizing plates 14 are respectively arranged on the side opposite to the side in contact with the liquid crystal 13. The distance between the substrate 2 and the substrate 5 is usually 2 μm to 10 μm, and these are fixed to each other by a sealing material 16 provided in the peripheral portion.
 図1において、符号17は、バックライトユニット(図示されない)から液晶13に向けて照射されたバックライト光である。バックライトユニットとしては、例えば、冷陰極蛍光管(CCFL:Cold Cathode Fluorescent Lamp)などの蛍光管と、散乱板とが組み合わされた構造のものを用いることができる。また、白色LEDを光源とするバックライトユニットを用いることもできる。白色LEDとしては、例えば、赤色LEDと、緑色LEDと、青色LEDとを組み合わせて混色により白色光を得る白色LED、青色LEDと、赤色LEDと、緑色蛍光体とを組み合わせて混色により白色光を得る白色LED、青色LEDと、赤色発光蛍光体と、緑色発光蛍光体とを組み合わせて混色により白色光を得る白色LED、青色LEDと、YAG系蛍光体との混色により白色光を得る白色LED、青色LEDと、橙色発光蛍光体と、緑色発光蛍光体とを組み合わせて混色により白色光を得る白色LED、紫外線LEDと、赤色発光蛍光体と、緑色発光蛍光体と、青色発光蛍光体とを組み合わせて混色により白色光を得る白色LEDなどを挙げることができる。 In FIG. 1, reference numeral 17 denotes backlight light emitted toward the liquid crystal 13 from a backlight unit (not shown). As the backlight unit, for example, a backlight unit having a structure in which a fluorescent tube such as a cold cathode fluorescent tube (CCFL: Cold Cathode Fluorescent Lamp) and a scattering plate are combined can be used. A backlight unit using a white LED as a light source can also be used. As the white LED, for example, a white LED that obtains white light by mixing a red LED, a green LED, and a blue LED, and a white light by mixing the blue LED, a red LED, and a green phosphor to emit white light. A white LED that obtains white light by mixing white LEDs, a blue LED, a red light emitting phosphor, and a green light emitting phosphor to obtain white light by mixing colors, a white LED that obtains white light by mixing colors with a YAG phosphor, A combination of a blue LED, an orange light emitting phosphor, and a green light emitting phosphor to obtain white light by mixing colors, a white LED, an ultraviolet LED, a red light emitting phosphor, a green light emitting phosphor, and a blue light emitting phosphor And white LEDs that obtain white light by color mixing.
 本実施形態のカラー液晶表示素子には、上述のTN型の他、STN(Super Twisted Nematic)型、IPS(In-Planes Switching)型、VA(Vertical Alignment)型またはOCB(Optically Compensated Birefringence)型などの液晶モードとすることもできる。 In addition to the TN type described above, the color liquid crystal display element of the present embodiment includes an STN (Super Twisted Nematic) type, an IPS (In-Planes Switching) type, a VA (Vertical Aligned Birefringent) type, an OCB (Optically Compensated Birefring type) and the like. The liquid crystal mode can also be selected.
 本実施の形態のカラーフィルタを有する有機EL表示素子は、適宜の構造を採ることが可能であり、例えば、特開平11-307242号公報に開示されている構造を挙げることができる。 The organic EL display element having the color filter of the present embodiment can adopt an appropriate structure, and examples thereof include a structure disclosed in Japanese Patent Application Laid-Open No. 11-307242.
 本実施の形態のカラーフィルタを有する電子ペーパーは、適宜の構造を採ることが可能であり、例えば、特開2007-41169号公報に開示されている構造を挙げることができる。 The electronic paper having the color filter of the present embodiment can adopt an appropriate structure, and examples thereof include a structure disclosed in Japanese Patent Application Laid-Open No. 2007-41169.
 以上、本実施の形態について説明したが、本発明は上記実施の形態に限定されるものではなく、要旨を逸脱しない範囲で種々変形して実施することができる。 Although the present embodiment has been described above, the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the invention.
 以下、実施例を挙げて、本発明をさらに具体的に説明する。但し、本発明は、下記実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples.
 〔着色剤分散液の調製〕
 調製例1
 着色剤として、C.I.ピグメントレッド254を2.3質量部、C.I.ピグメントレッド177を11.4質量部、C.I.ピグメントイエロー150を1.3質量部、分散剤としてBYK(登録商標)-21324(ビックケミー(BYK)社製)を8質量部(固形分濃度=40質量%)、溶媒としてプロピレングリコールモノメチルエーテルアセテート/プロピレングリコールモノエチルエーテル=90/10(質量比)混合溶媒を固形分濃度が20%となるよう用いて、ビーズミルにより12時間混合・分散して、顔料分散液(M-1)を調製した。
(Preparation of colorant dispersion)
Preparation Example 1
As a colorant, C.I. I. Pigment Red 254 in 2.3 parts by mass, C.I. I. Pigment Red 177 in 11.4 parts by mass, C.I. I. 1.3 parts by weight of Pigment Yellow 150, 8 parts by weight of BYK (registered trademark) -21324 (manufactured by BYK) (solid content concentration = 40% by weight) as a dispersant, and propylene glycol monomethyl ether acetate / Using a mixed solvent of propylene glycol monoethyl ether = 90/10 (mass ratio) so as to have a solid content concentration of 20%, the mixture was mixed and dispersed by a bead mill for 12 hours to prepare a pigment dispersion (M-1).
 調製例2
 着色剤として、C.I.ピグメントグリーン58を9.7質量部、C.I.ピグメントイエロー150を5.3質量部、分散剤としてBYK(登録商標)-21324(ビックケミー(BYK)社製)を8質量部(固形分濃度=40質量%)、溶媒としてプロピレングリコールモノメチルエーテルアセテート/プロピレングリコールモノエチルエーテル=90/10(質量比)混合溶媒を固形分濃度が20%となるよう用いて、ビーズミルにより12時間混合・分散して、顔料分散液(M-2)を調製した。
Preparation Example 2
As a colorant, C.I. I. 9.7 parts by mass of CI Pigment Green 58, C.I. I. Pigment Yellow 150 (5.3 parts by mass), BYK (registered trademark) -21324 (manufactured by BYK) as a dispersant (8 parts by mass (solid content concentration = 40% by mass)), and propylene glycol monomethyl ether acetate / Using a mixed solvent of propylene glycol monoethyl ether = 90/10 (mass ratio) so as to have a solid content concentration of 20%, the mixture was mixed and dispersed by a bead mill for 12 hours to prepare a pigment dispersion (M-2).
 調製例3
 着色剤として、C.I.ピグメントブルー15:6を9.3質量部、C.I.ピグメントバイオレットを5.7質量部、分散剤としてBYK(登録商標)-21324(ビックケミー(BYK)社製)を8質量部(固形分濃度=40質量%)、溶媒としてプロピレングリコールモノメチルエーテルアセテート/プロピレングリコールモノエチルエーテル=90/10(質量比)混合溶媒を固形分濃度が20%となるよう用いて、ビーズミルにより12時間混合・分散して、顔料分散液(M-3)を調製した。
Preparation Example 3
As a colorant, C.I. I. 9.3 parts by mass of CI Pigment Blue 15: 6, C.I. I. 5.7 parts by weight of Pigment Violet, 8 parts by weight of BYK (registered trademark) -21324 (manufactured by BYK) as a dispersant (solid content concentration = 40% by weight), and propylene glycol monomethyl ether acetate / propylene as a solvent Using a mixed solvent of glycol monoethyl ether = 90/10 (mass ratio) so as to have a solid concentration of 20%, the mixture was mixed and dispersed by a bead mill for 12 hours to prepare a pigment dispersion (M-3).
 〔バインダー樹脂の合成〕
 合成例1
 冷却管、攪拌機を備えたフラスコに、2,2’-アゾビスイソブチロニトリル2質量部およびプロピレングリコールモノメチルエーテルアセテート200質量部を仕込み、引き続きメタクリル酸15質量部、N-フェニルマレイミド20質量部、ベンジルメタクリレート55質量部、スチレン10質量部および分子量調節剤として2,4-ジフェニル-4-メチル-1-ペンテン(日油(株)製 商品名:ノフマー(登録商標)MSD)3質量部を仕込んで、窒素置換した。その後ゆるやかに撹拌して、反応溶液の温度を80℃に上昇させ、この温度を5時間保持して重合することにより、樹脂溶液(固形分濃度=33質量%)を得た。得られた樹脂は、Mw=16,000、Mn=7,000であった。この樹脂溶液を「バインダー樹脂溶液(P1)」とする。
[Synthesis of binder resin]
Synthesis example 1
A flask equipped with a condenser and a stirrer was charged with 2 parts by mass of 2,2′-azobisisobutyronitrile and 200 parts by mass of propylene glycol monomethyl ether acetate, followed by 15 parts by mass of methacrylic acid and 20 parts by mass of N-phenylmaleimide. , 55 parts by mass of benzyl methacrylate, 10 parts by mass of styrene, and 3 parts by mass of 2,4-diphenyl-4-methyl-1-pentene (trade name: NOFMER (registered trademark) MSD, manufactured by NOF Corporation) as a molecular weight regulator. Charged and purged with nitrogen. Thereafter, the mixture was gently stirred to raise the temperature of the reaction solution to 80 ° C., and this temperature was maintained for 5 hours for polymerization to obtain a resin solution (solid content concentration = 33% by mass). The obtained resin was Mw = 16,000 and Mn = 7,000. This resin solution is referred to as “binder resin solution (P1)”.
 〔着色感放射線性組成物の調製〕
 調製例4
顔料分散液(M-1)100質量部、バインダー樹脂としてバインダー樹脂溶液(P1)30質量部(固形分濃度=33質量%)、架橋剤としてジペンタエリスリトールヘキサアクリレート15質量部、光重合開始剤として2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)ブタン-1-オン4質量部と4,4’-ビス(ジエチルアミノ)ベンゾフェノン1質量部、フッ素系界面活性剤としてDIC株式会社製メガファック(登録商標)F-554を0.1質量部および溶剤としてプロピレングリコールモノメチルエーテルアセテートを混合して、固形分濃度22%の赤色感放射線性組成物(CR-1)を調製した。
(Preparation of colored radiation-sensitive composition)
Preparation Example 4
100 parts by mass of the pigment dispersion (M-1), 30 parts by mass of the binder resin solution (P1) as the binder resin (solid content concentration = 33% by mass), 15 parts by mass of dipentaerythritol hexaacrylate as the crosslinking agent, a photopolymerization initiator 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) butan-1-one and 1 part by mass of 4,4′-bis (diethylamino) benzophenone, DIC stock as a fluorosurfactant A red radiation sensitive composition (CR-1) having a solid content of 22% was prepared by mixing 0.1 part by mass of Megafac (registered trademark) F-554 manufactured by the company and propylene glycol monomethyl ether acetate as a solvent. .
 調製例5
 調製例4において、顔料分散液(M-1)の代わりに顔料分散液(M-2)を用いた以外は、調製例4と同様にして緑色感放射線性組成物(CR-2)を調製した。
Preparation Example 5
A green radiation-sensitive composition (CR-2) was prepared in the same manner as in Preparation Example 4, except that the pigment dispersion (M-2) was used instead of the pigment dispersion (M-1) in Preparation Example 4. did.
 調製例6
 調製例4において、顔料分散液(M-1)の代わりに顔料分散液(M-3)を用いた以外は、調製例4と同様にして青色感放射線性組成物(CR-3)を調製した。
Preparation Example 6
A blue radiation-sensitive composition (CR-3) was prepared in the same manner as in Preparation Example 4, except that the pigment dispersion (M-3) was used instead of the pigment dispersion (M-1) in Preparation Example 4. did.
 以下、本実施例の赤色感放射線性組成物(CR-1)、緑色感放射線性組成物(CR-2)および青色感放射線性組成物(CR-3)を用いた着色パターンの形成と、その着色パターンへの凹凸形成の実施例を述べる。尚、以下では、着色パターンを着色硬化膜と称する。 Hereinafter, formation of a colored pattern using the red radiation-sensitive composition (CR-1), the green radiation-sensitive composition (CR-2) and the blue radiation-sensitive composition (CR-3) of this example, An example of forming irregularities on the colored pattern will be described. Hereinafter, the colored pattern is referred to as a colored cured film.
実施例1
<赤色硬化膜の形成および凹凸の形成>
 赤色感放射線性組成物(CR-1)をソーダガラス基板上に、スピンコータを用いて塗布した後、80℃のクリーンオーブン内で10分間プレベークを行って、塗膜を形成した。
Example 1
<Formation of red cured film and unevenness>
The red radiation-sensitive composition (CR-1) was applied on a soda glass substrate using a spin coater, and then pre-baked in a clean oven at 80 ° C. for 10 minutes to form a coating film.
 次いで、塗膜が形成された基板を室温に冷却した後、高圧水銀ランプを用い、フォトマスクを介して、塗膜に365nm、405nmおよび436nmの各波長を含む放射線を400J/m2の露光量で露光した。その後、これらの基板に対して、23℃の0.04質量%水酸化カリウム水溶液からなる現像液を、現像圧1kgf/cm2(ノズル径1mm)で吐出することにより、1分間のシャワー現像を行った。その後、これらの基板を超純水で洗浄し、風乾した後、さらに230℃のクリーンオーブン内で30分間ポストベークを行うことにより、基板上に赤色の硬化膜を形成した。 Next, after the substrate on which the coating film was formed was cooled to room temperature, an exposure dose of 400 J / m 2 of radiation containing 365 nm, 405 nm, and 436 nm wavelengths was applied to the coating film through a photomask using a high-pressure mercury lamp. And exposed. Thereafter, a developer consisting of a 0.04 mass% potassium hydroxide aqueous solution at 23 ° C. is discharged onto these substrates at a development pressure of 1 kgf / cm 2 (nozzle diameter of 1 mm) for 1 minute shower development. went. Thereafter, these substrates were washed with ultrapure water, air-dried, and then post-baked in a clean oven at 230 ° C. for 30 minutes to form a red cured film on the substrates.
 得られた硬化膜に対して、神港精機社製プラズマエッチング装置EXAMを用いて、ドライエッチング処理を行い、硬化膜の表面全体に凹凸を形成した。この時、RFパワーは400Wであった。表1にドライエッチング処理条件を示す。 The obtained cured film was subjected to a dry etching process using a plasma etching apparatus EXAM manufactured by Shinko Seiki Co., Ltd. to form irregularities on the entire surface of the cured film. At this time, the RF power was 400 W. Table 1 shows dry etching conditions.
実施例2および実施例3
<赤色硬化膜の形成および凹凸の形成>
 実施例1と同様にして赤色硬化膜を形成するとともに、ドライエッチング処理時間を表1に示す時間としたこと以外は、実施例1と同様にして凹凸の形成を行った。
Example 2 and Example 3
<Formation of red cured film and unevenness>
A red cured film was formed in the same manner as in Example 1, and unevenness was formed in the same manner as in Example 1 except that the dry etching treatment time was set to the time shown in Table 1.
比較例1
<赤色硬化膜の形成>
 実施例1と同様にして、赤色硬化膜を形成した。しかし、実施例1で行ったドライエッチング処理による凹凸の形成は行わなかった。
Comparative Example 1
<Formation of red cured film>
In the same manner as in Example 1, a red cured film was formed. However, the formation of irregularities by the dry etching process performed in Example 1 was not performed.
実施例4
<緑色硬化膜の形成および凹凸の形成>
 緑色感放射線性組成物(CR-2)をソーダガラス基板上に、スピンコータを用いて塗布した後、80℃のクリーンオーブン内で10分間プレベークを行って、塗膜を形成した。
Example 4
<Formation of green cured film and formation of irregularities>
The green radiation sensitive composition (CR-2) was applied onto a soda glass substrate using a spin coater, and then pre-baked in a clean oven at 80 ° C. for 10 minutes to form a coating film.
 次いで、塗膜が形成された基板を室温に冷却した後、高圧水銀ランプを用い、フォトマスクを介して、塗膜に365nm、405nmおよび436nmの各波長を含む放射線を400J/m2の露光量で露光した。その後、これらの基板に対して、23℃の0.04質量%水酸化カリウム水溶液からなる現像液を、現像圧1kgf/cm2(ノズル径1mm)で吐出することにより、1分間のシャワー現像を行った。その後、これらの基板を超純水で洗浄し、風乾した後、さらに230℃のクリーンオーブン内で30分間ポストベークを行うことにより、基板上に緑色の硬化膜を形成した。 Next, after the substrate on which the coating film was formed was cooled to room temperature, an exposure dose of 400 J / m 2 of radiation containing 365 nm, 405 nm, and 436 nm wavelengths was applied to the coating film through a photomask using a high-pressure mercury lamp. And exposed. Thereafter, a developer consisting of a 0.04 mass% potassium hydroxide aqueous solution at 23 ° C. is discharged onto these substrates at a development pressure of 1 kgf / cm 2 (nozzle diameter of 1 mm) for 1 minute shower development. went. Thereafter, these substrates were washed with ultrapure water, air-dried, and further post-baked in a clean oven at 230 ° C. for 30 minutes to form a green cured film on the substrates.
 得られた硬化膜に対して、神港精機社製プラズマエッチング装置EXAMを用いて、ドライエッチング処理を行い、硬化膜の表面全体に凹凸を形成した。この時、RFパワーは400Wであった。表1にドライエッチング処理条件を示す。 The obtained cured film was subjected to a dry etching process using a plasma etching apparatus EXAM manufactured by Shinko Seiki Co., Ltd. to form irregularities on the entire surface of the cured film. At this time, the RF power was 400 W. Table 1 shows dry etching conditions.
実施例5および実施例6
<緑色硬化膜の形成および凹凸の形成>
 実施例4と同様にして緑色硬化膜を形成するとともに、ドライエッチング処理時間を表1に示す時間としたこと以外は、実施例4と同様にして凹凸の形成を行った。
Example 5 and Example 6
<Formation of green cured film and formation of irregularities>
A green cured film was formed in the same manner as in Example 4, and the irregularities were formed in the same manner as in Example 4 except that the dry etching treatment time was changed to the time shown in Table 1.
比較例2
<緑色硬化膜の形成>
 実施例4と同様にして緑色硬化膜を形成した。しかし、実施例4で行ったドライエッチング処理による凹凸の形成は行わなかった。
Comparative Example 2
<Formation of green cured film>
A green cured film was formed in the same manner as in Example 4. However, the unevenness formation by the dry etching process performed in Example 4 was not performed.
実施例7
<青色硬化膜の形成および凹凸の形成>
 青色感放射線性組成物(CR-3)をソーダガラス基板上に、スピンコータを用いて塗布した後、80℃のクリーンオーブン内で10分間プレベークを行って、塗膜を形成した。
Example 7
<Formation of blue cured film and formation of irregularities>
The blue radiation sensitive composition (CR-3) was applied onto a soda glass substrate using a spin coater, and then pre-baked in a clean oven at 80 ° C. for 10 minutes to form a coating film.
 次いで、塗膜が形成された基板を室温に冷却した後、高圧水銀ランプを用い、フォトマスクを介して、塗膜に365nm、405nmおよび436nmの各波長を含む放射線を400J/m2の露光量で露光した。その後、これらの基板に対して、23℃の0.04質量%水酸化カリウム水溶液からなる現像液を、現像圧1kgf/cm2(ノズル径1mm)で吐出することにより、1分間シャワー現像を行った。その後、これらの基板を超純水で洗浄し、風乾した後、さらに230℃のクリーンオーブン内で30分間ポストベークを行うことにより、基板上に青色の硬化膜を形成した。 Next, after the substrate on which the coating film was formed was cooled to room temperature, an exposure dose of 400 J / m 2 of radiation containing 365 nm, 405 nm, and 436 nm wavelengths was applied to the coating film through a photomask using a high-pressure mercury lamp. And exposed. Thereafter, a developing solution composed of a 0.04 mass% potassium hydroxide aqueous solution at 23 ° C. is discharged to these substrates at a developing pressure of 1 kgf / cm 2 (nozzle diameter 1 mm) to perform shower development for 1 minute. It was. Thereafter, these substrates were washed with ultrapure water, air-dried, and further post-baked in a clean oven at 230 ° C. for 30 minutes to form a blue cured film on the substrates.
 得られた硬化膜に対して、神港精機社製プラズマエッチング装置EXAMを用いて、ドライエッチング処理を行い、硬化膜の表面全体に凹凸を形成した。この時、RFパワーは400Wであった。表1にドライエッチング処理条件を示す。 The obtained cured film was subjected to a dry etching process using a plasma etching apparatus EXAM manufactured by Shinko Seiki Co., Ltd. to form irregularities on the entire surface of the cured film. At this time, the RF power was 400 W. Table 1 shows dry etching conditions.
実施例8
<青色硬化膜の形成および凹凸の形成>
 実施例7と同様にして青色硬化膜を形成するとともに、ドライエッチング処理時間を表1に示す時間としたこと以外は、実施例7と同様にして凹凸の形成を行った。
Example 8
<Formation of blue cured film and formation of irregularities>
A blue cured film was formed in the same manner as in Example 7, and unevenness was formed in the same manner as in Example 7 except that the dry etching treatment time was changed to the time shown in Table 1.
比較例3
<青色硬化膜の形成>
 実施例7と同様にして青色硬化膜を形成した。しかし、実施例7で行ったドライエッチング処理による凹凸の形成は行わなかった。
Comparative Example 3
<Formation of blue cured film>
A blue cured film was formed in the same manner as in Example 7. However, the unevenness formation by the dry etching process performed in Example 7 was not performed.
 上記した各実施例および各比較例におけるドライエッチング処理条件を表1に示す。 Table 1 shows the dry etching treatment conditions in each of the above examples and comparative examples.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
実施例9
<SEM像評価>
 実施例1~実施例8および比較例1~比較例3において得られた、凹凸が形成された各色硬化膜について、それぞれ40000倍の倍率にてSEM写真を撮影し、各硬化膜の表面に形成された凹凸の状態を評価した。
Example 9
<SEM image evaluation>
For each color cured film with irregularities formed in Examples 1 to 8 and Comparative Examples 1 to 3, SEM photographs were taken at a magnification of 40000 times and formed on the surface of each cured film. The state of the unevenness was evaluated.
 図2は、実施例1~実施例3および比較例1で得られた赤色硬化膜の表面SEM写真である。 FIG. 2 is a surface SEM photograph of the red cured film obtained in Examples 1 to 3 and Comparative Example 1.
 図3は、実施例1~実施例3および比較例1で得られた赤色硬化膜の断面SEM写真である。 FIG. 3 is a cross-sectional SEM photograph of the red cured film obtained in Examples 1 to 3 and Comparative Example 1.
 図4は、実施例4~実施例6および比較例2で得られた緑色硬化膜の表面SEM写真である。 FIG. 4 is a surface SEM photograph of the green cured film obtained in Examples 4 to 6 and Comparative Example 2.
 図5は、実施例4~実施例6および比較例2で得られた緑色硬化膜の断面SEM写真である。 FIG. 5 is a cross-sectional SEM photograph of the green cured film obtained in Examples 4 to 6 and Comparative Example 2.
 図6は、実施例7、実施例8および比較例3で得られた青色硬化膜の表面SEM写真である。 FIG. 6 is a surface SEM photograph of the blue cured film obtained in Example 7, Example 8, and Comparative Example 3.
 図7は、実施例7、実施例8および比較例3で得られた青色硬化膜の断面SEM写真である。 FIG. 7 is a cross-sectional SEM photograph of the blue cured film obtained in Example 7, Example 8, and Comparative Example 3.
 図2~図7に示す各色硬化膜についてのSEM写真評価の結果から、各色硬化膜の表面に形成される凹凸のサイズについては、高さが80nm~200nm、幅が20nm~200nmの範囲であることが分かった。そして、ドライエッチング処理時間を長くするほど、各色硬化膜に形成される凹凸のサイズは大きくなる傾向があることも分かった。 From the results of SEM photograph evaluation for each color cured film shown in FIGS. 2 to 7, the size of the unevenness formed on the surface of each color cured film is in the range of 80 nm to 200 nm in height and 20 nm to 200 nm in width. I understood that. It has also been found that the longer the dry etching processing time, the larger the size of the unevenness formed on each color cured film.
実施例10
<色度特性の評価>
 実施例1~実施例8および比較例1~比較例3において得られた、凹凸が形成された各色硬化膜について、カラーアナライザ(大塚電子(株)製MCPD(登録商標)2000)を用い、C光源、2度視野にて、CIE表色系における色度座標値(x,y)および刺激値(Y)を測定した。評価結果を表2に示す。
Example 10
<Evaluation of chromaticity characteristics>
For each color cured film formed with unevenness obtained in Examples 1 to 8 and Comparative Examples 1 to 3, a color analyzer (MCPD (registered trademark) 2000 manufactured by Otsuka Electronics Co., Ltd.) was used. Chromaticity coordinate values (x, y) and stimulus values (Y) in the CIE color system were measured with a light source and a 2-degree visual field. The evaluation results are shown in Table 2.
 実施例1~実施例8において得られた、凹凸が形成された各色硬化膜は、対応する比較例で得られた硬化膜に対し、いずれも高いY値を示した。特に、実施例1~実施例6において得られた、凹凸が形成された赤色硬化膜および緑色硬化膜において、その効果が大きかった。 Each of the color cured films with irregularities formed in Examples 1 to 8 showed a higher Y value than the cured films obtained in the corresponding comparative examples. In particular, the effect was great in the red cured film and the green cured film in which irregularities were formed, obtained in Examples 1 to 6.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
実施例11
<カラーフィルタの製造と評価>
 赤色感放射線性組成物(CR-1)を、ブラックマトリクスが形成されたガラス基板上に、スリットアンドスピンコータを用いて塗布した後、90℃のホットプレートで3分間プレベークを行って、塗膜を形成した。
Example 11
<Manufacture and evaluation of color filters>
The red radiation sensitive composition (CR-1) was applied on a glass substrate on which a black matrix was formed using a slit and spin coater, and then pre-baked for 3 minutes on a 90 ° C. hot plate to form a coating film. Formed.
 次いで、塗膜が形成された基板を室温に冷却した後、高圧水銀ランプを用い、ストライプ状フォトマスクを介して、塗膜に365nm、405nmおよび436nmの各波長を含む放射線を、1,000J/m2の露光量で露光した。その後、得られた基板に対して、23℃の0.04質量%水酸化カリウム水溶液からなる現像液を、現像圧1kgf/cm2(ノズル径1mm)で吐出してシャワー現像を行った後、超純水で洗浄し、さらに230℃のクリーンオーブン内で20分間ポストベークを行った。これにより、基板上に、上記実施例1と同等の色度座標値(x,y)を示す赤色のストライプ状着色パターンを形成した。 Next, after the substrate on which the coating film was formed was cooled to room temperature, radiation containing 365 nm, 405 nm, and 436 nm was applied to the coating film through a striped photomask using a high-pressure mercury lamp. It exposed with an exposure amount of m 2. After that, after developing a developing solution composed of a 0.04 mass% potassium hydroxide aqueous solution at 23 ° C. with a developing pressure of 1 kgf / cm 2 (nozzle diameter 1 mm) on the obtained substrate, It was washed with ultrapure water and further post-baked in a clean oven at 230 ° C. for 20 minutes. As a result, a red stripe-shaped colored pattern having a chromaticity coordinate value (x, y) equivalent to that in Example 1 was formed on the substrate.
 次いで、同様の方法により、緑色感放射線性組成物(CR-2)を用いて、赤色のストライプ状着色パターンの隣に、上記実施例4と同等の色度座標値(x,y)を示す緑色のストライプ状着色パターンを形成した。 Next, using the green radiation-sensitive composition (CR-2), a chromaticity coordinate value (x, y) equivalent to that in Example 4 is shown next to the red stripe-like colored pattern by the same method. A green striped colored pattern was formed.
 次いで、同様の方法により、青色感放射線性組成物(CR-3)を用いて、緑色のストライプ状着色パターンの隣に、上記実施例7と同等の色度座標値(x,y)を示す青色のストライプ状着色パターンを形成することにより、赤色、緑色および青色のストライプ状着色パターンからなるカラーフィルタを作製した。 Next, using the blue radiation-sensitive composition (CR-3), a chromaticity coordinate value (x, y) equivalent to that in Example 7 is shown next to the green striped colored pattern by the same method. By forming a blue stripe coloring pattern, a color filter composed of red, green and blue stripe coloring patterns was produced.
 各色着色パターン形成の後、神港精機社製プラズマエッチング装置EXAM(RFパワー:400W/ガス種(流量):酸素(20ml/分)+アルゴン(5ml/分))を用いて、40秒間ドライエッチング処理を行った。 After each color coloring pattern is formed, dry etching is performed for 40 seconds using plasma etching apparatus EXAM (RF power: 400 W / gas type (flow rate): oxygen (20 ml / min) + argon (5 ml / min)) manufactured by Shinko Seiki Co., Ltd. Processed.
 得られたカラーフィルタについて、冷陰極蛍光管をバックライト光源としたときの、白表示での刺激値(Y)を測定した。その結果、白表示での刺激値(Y)は、後述する比較例4に比べて、0.6ポイント向上した。 For the obtained color filter, the stimulation value (Y) in white display when a cold cathode fluorescent tube was used as a backlight light source was measured. As a result, the stimulation value (Y) in white display was improved by 0.6 points compared to Comparative Example 4 described later.
比較例4
<カラーフィルタの製造と評価>
 実施例10と同様にして、赤色、緑色および青色のストライプ状着色パターンからなるカラーフィルタを作製した。しかし、実施例10で行ったドライエッチング処理による凹凸の形成は行わなかった。得られたカラーフィルタについて、冷陰極蛍光管をバックライト光源としたときの、白表示での刺激値(Y)を測定し、実施例10で得られたカラーフィルタのY値と比較した。
Comparative Example 4
<Manufacture and evaluation of color filters>
In the same manner as in Example 10, a color filter composed of red, green, and blue stripe colored patterns was produced. However, the unevenness formation by the dry etching process performed in Example 10 was not performed. About the obtained color filter, when the cold cathode fluorescent tube was used as a backlight light source, the stimulation value (Y) in white display was measured and compared with the Y value of the color filter obtained in Example 10.
実施例12
<カラーフィルタの液晶表示素子への適用>
 実施例11で得られた、赤色、緑色および青色のストライプ状着色パターンからなるカラーフィルタを用い、着色パターンの上に後述する組成からなる熱硬化性樹脂組成物を、スリットアンドスピンコータを用いて塗布した。80℃のホットプレートで2分間プレベークを行って塗膜を形成し、さらに230℃のクリーンオーブン内で60分間ポストベークを行うことにより、膜厚1.5μmの保護膜を形成した。
Example 12
<Application of color filters to liquid crystal display elements>
Using the color filter comprising the red, green and blue stripe colored patterns obtained in Example 11, and applying the thermosetting resin composition comprising the composition described later on the colored pattern using a slit and spin coater. did. A coating film was formed by pre-baking for 2 minutes on a hot plate at 80 ° C., and further post-baking for 60 minutes in a clean oven at 230 ° C. to form a protective film having a thickness of 1.5 μm.
 次いで、このカラーフィルタを用いて液晶表示素子を製造した。液晶表示素子は、上述した図1に示すカラー液晶表示素子と同様の構造を有する。得られたカラー液晶表示素子は、優れた電気特性と表示特性を示した。 Next, a liquid crystal display element was manufactured using this color filter. The liquid crystal display element has the same structure as the color liquid crystal display element shown in FIG. The obtained color liquid crystal display element exhibited excellent electrical characteristics and display characteristics.
 次に、カラーフィルタの保護膜として用いた熱硬化性樹脂組成物について説明する。 Next, the thermosetting resin composition used as a protective film for the color filter will be described.
 熱硬化性樹脂組成物は、メタクリル酸グリシジル/スチレン/メタクリル酸t-ブチル/メタクリル酸ジシクロペンタニル=40/10/30/20(質量比)共重合体(数平均分子量Mn=6,000、分子量分布(Mw/Mn)=2.0)を100質量部、ノボラック型エポキシ樹脂(ジャパンエポキシレジン(株)製、商品名「エピコート152」)を40質量部、γ-グリシドキシプロピルトリメトキシシランを20質量部、界面活性剤FTX-218((株)ネオス製)を0.2質量部含有する。溶剤としては、ジエチレングリコールメチルエチルエーテルを用いた。熱硬化性樹脂組成物の固形分濃度は、15質量%であった。 The thermosetting resin composition is a glycidyl methacrylate / styrene / t-butyl methacrylate / dicyclopentanyl methacrylate = 40/10/30/20 (mass ratio) copolymer (number average molecular weight Mn = 6,000). , Molecular weight distribution (Mw / Mn) = 2.0), 100 parts by mass of novolac type epoxy resin (manufactured by Japan Epoxy Resin Co., Ltd., trade name “Epicoat 152”), γ-glycidoxypropyltri 20 parts by mass of methoxysilane and 0.2 parts by mass of surfactant FTX-218 (manufactured by Neos). Diethylene glycol methyl ethyl ether was used as the solvent. The solid content concentration of the thermosetting resin composition was 15% by mass.
 1  液晶表示素子
 2、5  基板
 3  画素電極
 6  着色パターン
 7  ブラックマトリクス
 8  保護膜
 10  カラーフィルタ
 11  共通電極
 12  配向膜
 13  液晶
 14  偏光板
 16  シール材
 17  バックライト光
DESCRIPTION OF SYMBOLS 1 Liquid crystal display element 2, 5 Substrate 3 Pixel electrode 6 Colored pattern 7 Black matrix 8 Protective film 10 Color filter 11 Common electrode 12 Alignment film 13 Liquid crystal 14 Polarizing plate 16 Sealing material 17 Backlight

Claims (8)

  1.  基板上に着色パターンを形成する工程と、
     前記着色パターンの表面に凹凸を形成する工程とを有することを特徴とするカラーフィルタの製造方法。
    Forming a colored pattern on the substrate;
    And a step of forming irregularities on the surface of the colored pattern.
  2.  前記凹凸は、エッチング法、ナノインプリント法または研磨法によって形成されることを特徴とする請求項1に記載のカラーフィルタの製造方法。 The method for producing a color filter according to claim 1, wherein the unevenness is formed by an etching method, a nanoimprint method, or a polishing method.
  3.  前記着色パターンの表面に凹凸を形成する工程は、前記着色パターンの上にレジストパターンを形成し、前記レジストパターンから露出する前記着色パターンにエッチング処理を施して、前記凹凸を形成する工程であることを特徴とする請求項1に記載のカラーフィルタの製造方法。 The step of forming irregularities on the surface of the colored pattern is a step of forming the irregularities by forming a resist pattern on the colored pattern and performing an etching process on the colored pattern exposed from the resist pattern. The method for producing a color filter according to claim 1.
  4.  前記凹凸は、凸部の高さが10nm以上、凸部の底辺の幅が10nm以上であることを特徴とする請求項1~3のいずれか1項に記載のカラーフィルタの製造方法。 The method for producing a color filter according to any one of claims 1 to 3, wherein the unevenness has a height of a convex portion of 10 nm or more and a base width of the convex portion of 10 nm or more.
  5.  前記着色パターンは、赤色の着色パターンおよび緑色の着色パターンの内の少なくとも一方を含み、前記赤色の着色パターンおよび前記緑色の着色パターンの内の少なくとも一方の表面に前記凹凸を形成することを特徴とする請求項1~4のいずれか1項に記載のカラーフィルタの製造方法。 The colored pattern includes at least one of a red colored pattern and a green colored pattern, and the unevenness is formed on at least one surface of the red colored pattern and the green colored pattern. The method for producing a color filter according to any one of claims 1 to 4.
  6.  前記凹凸が形成された前記着色パターンの上に保護膜を形成する工程をさらに有することを特徴とする請求項1~5のいずれか1項に記載のカラーフィルタの製造方法。 6. The method for producing a color filter according to claim 1, further comprising a step of forming a protective film on the colored pattern on which the unevenness is formed.
  7.  請求項1~6のいずれか1項に記載の方法により製造されたカラーフィルタを有することを特徴とする表示素子。 A display element comprising a color filter manufactured by the method according to any one of claims 1 to 6.
  8.  基板上に複数色の着色パターンを有するカラーフィルタであって、
     前記複数色の着色パターンの内の少なくとも1色の前記着色パターンの表面に凹凸が形成されており、前記凹凸の凸部の高さが10nm以上、凸部の底辺の幅が10nm以上であることを特徴とするカラーフィルタ。
    A color filter having a plurality of colored patterns on a substrate,
    Concavities and convexities are formed on the surface of the colored pattern of at least one of the plurality of colored patterns, the height of the convex portions of the concave and convex portions is 10 nm or more, and the width of the bottom of the convex portions is 10 nm or more. A color filter characterized by
PCT/JP2011/076040 2010-11-19 2011-11-11 Method for producing color filter, display element, and color filter WO2012067026A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020137012751A KR101900518B1 (en) 2010-11-19 2011-11-11 Method for producing color filter, display element, and color filter
JP2012544214A JP5895844B2 (en) 2010-11-19 2011-11-11 Color filter manufacturing method, display element, and color filter
CN201180055502.9A CN103221849B (en) 2010-11-19 2011-11-11 The manufacture method of color filter, display element and color filter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010259582 2010-11-19
JP2010-259582 2010-11-19

Publications (1)

Publication Number Publication Date
WO2012067026A1 true WO2012067026A1 (en) 2012-05-24

Family

ID=46083958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/076040 WO2012067026A1 (en) 2010-11-19 2011-11-11 Method for producing color filter, display element, and color filter

Country Status (5)

Country Link
JP (1) JP5895844B2 (en)
KR (1) KR101900518B1 (en)
CN (1) CN103221849B (en)
TW (1) TWI546573B (en)
WO (1) WO2012067026A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2733529B1 (en) 2012-10-03 2016-09-21 DIC Corporation Liquid crystal display device
TWI468498B (en) * 2012-10-19 2015-01-11 Dainippon Ink & Chemicals Liquid crystal display device
CN104981729B (en) 2013-09-24 2017-03-01 Dic株式会社 Liquid crystal indicator
KR101872995B1 (en) 2016-12-06 2018-07-02 (주)옵토레인 Wide-angle emission filter, optical sensor assembly having the same, pcr system having the same, and method of manufactring the same
US10879431B2 (en) * 2017-12-22 2020-12-29 Lumileds Llc Wavelength converting layer patterning for LED arrays
CN109686869B (en) * 2019-02-28 2020-04-28 武汉华星光电半导体显示技术有限公司 OLED display panel and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06186415A (en) * 1992-12-22 1994-07-08 Fujitsu Ltd Color filter
JPH1010528A (en) * 1995-11-10 1998-01-16 Seiko Epson Corp Reflection type liquid crystal display device
JP2004212676A (en) * 2002-12-27 2004-07-29 Dainippon Printing Co Ltd Color filter for translucent color liquid crystal display
JP2005241728A (en) * 2004-02-24 2005-09-08 Dainippon Printing Co Ltd Color filter for transflective color liquid crystal display device and transflective color liquid crystal display device using the same
JP2011191638A (en) * 2010-03-16 2011-09-29 Dainippon Printing Co Ltd Color filter

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5772905A (en) * 1995-11-15 1998-06-30 Regents Of The University Of Minnesota Nanoimprint lithography
JP3812444B2 (en) * 2002-01-16 2006-08-23 セイコーエプソン株式会社 Method for manufacturing color filter substrate and method for manufacturing liquid crystal display panel
JP3953053B2 (en) * 2003-08-28 2007-08-01 セイコーエプソン株式会社 Discharge method, color filter substrate manufacturing method, liquid crystal display device manufacturing method, and electronic device manufacturing method
CN100373187C (en) * 2004-12-14 2008-03-05 中华映管股份有限公司 Color filter substrate and manufacturing method thereof
JP2007139904A (en) 2005-11-15 2007-06-07 Nec Corp Display element and display device equipped therewith
CN101706086B (en) * 2009-11-27 2011-03-30 丹阳博昱科技有限公司 Optical film production method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06186415A (en) * 1992-12-22 1994-07-08 Fujitsu Ltd Color filter
JPH1010528A (en) * 1995-11-10 1998-01-16 Seiko Epson Corp Reflection type liquid crystal display device
JP2004212676A (en) * 2002-12-27 2004-07-29 Dainippon Printing Co Ltd Color filter for translucent color liquid crystal display
JP2005241728A (en) * 2004-02-24 2005-09-08 Dainippon Printing Co Ltd Color filter for transflective color liquid crystal display device and transflective color liquid crystal display device using the same
JP2011191638A (en) * 2010-03-16 2011-09-29 Dainippon Printing Co Ltd Color filter

Also Published As

Publication number Publication date
JP5895844B2 (en) 2016-03-30
KR101900518B1 (en) 2018-09-19
KR20130131337A (en) 2013-12-03
TWI546573B (en) 2016-08-21
CN103221849A (en) 2013-07-24
TW201229574A (en) 2012-07-16
JPWO2012067026A1 (en) 2014-05-12
CN103221849B (en) 2016-07-06

Similar Documents

Publication Publication Date Title
JP5835014B2 (en) Pixel pattern forming method and color filter manufacturing method
JP5957905B2 (en) Pixel pattern forming method, color filter, display element, and colored radiation-sensitive composition
JP5526821B2 (en) Coloring composition, color filter and color liquid crystal display element
JP5895844B2 (en) Color filter manufacturing method, display element, and color filter
TWI688611B (en) Colorant dispersion liquid and manufacturing method thereof, coloring composition and manufacturing method thereof, coloring cured film, display element and solid-state imaging element
TWI651371B (en) Coloring composition, coloring cured film, and display element and solid-state imaging element
KR102164864B1 (en) Coloring composition, coloring cured film, display device and solid state imaging device
KR102288373B1 (en) Coloring composition, colored cured film and display device
TWI640578B (en) Colored composition, colored cured film and display element
JP5742407B2 (en) Coloring composition, color filter and display element
WO2012005203A1 (en) Triarylmethane-based colorant, coloring composition, color filter, and display element
TWI521241B (en) Color filter and color liquid crystal display element
JP3572731B2 (en) Color filter
JP2004258514A (en) Color liquid crystal display
JP2004133208A (en) Combination structure of dimmer film and color filter, and liquid crystal display device
KR102431131B1 (en) Coloring composition, colored cured film, and color filter, display device and light receiving device
JP2012201875A (en) Blue pigment dispersion, blue negative resist composition for color filter, color filter, liquid crystal display device, and organic light emitting display device
JP2010262213A (en) Color filter, and liquid crystal display using the same
JP2010262211A (en) Color filter and organic el display apparatus obtained by using the same
KR20200114465A (en) A colored photo sensitive resin composition, a color filter comprising the same, and an image display devide comprising the color filter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11841363

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012544214

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20137012751

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11841363

Country of ref document: EP

Kind code of ref document: A1