WO2012066696A1 - Level shift circuit having delay function, digital-analog hybrid semiconductor integrated circuit, and delay circuit - Google Patents

Level shift circuit having delay function, digital-analog hybrid semiconductor integrated circuit, and delay circuit Download PDF

Info

Publication number
WO2012066696A1
WO2012066696A1 PCT/JP2011/002870 JP2011002870W WO2012066696A1 WO 2012066696 A1 WO2012066696 A1 WO 2012066696A1 JP 2011002870 W JP2011002870 W JP 2011002870W WO 2012066696 A1 WO2012066696 A1 WO 2012066696A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
clock signal
nmos transistor
level shift
analog
Prior art date
Application number
PCT/JP2011/002870
Other languages
French (fr)
Japanese (ja)
Inventor
後藤 陽介
進一 荻田
文人 犬飼
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2012066696A1 publication Critical patent/WO2012066696A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/353Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of field-effect transistors with internal or external positive feedback
    • H03K3/356Bistable circuits
    • H03K3/356104Bistable circuits using complementary field-effect transistors

Definitions

  • the present invention relates to a level shift circuit with a delay function, a digital-analog mixed semiconductor integrated circuit, and a delay circuit, and more particularly to prevention of interference of clock signals in an analog-digital converter and a digital-analog converter. is there.
  • AD converter analog-digital converter
  • DA converter digital-analog converter
  • a level shift circuit is used.
  • the level shift circuit is configured, for example, as shown in Patent Documents 1 and 2, and is used to switch the amplitude of a digital signal between two different power sources.
  • a level shift circuit 700 illustrated in FIG. 17 corresponds to the configuration illustrated in FIG. 1 of Patent Document 1, and the like, and is driven by the input-side power supply voltage [VDDI ⁇ VSSI] and based on a signal input to the input terminal IN.
  • a level shift circuit 800 shown in FIG. 18 corresponds to the configuration shown in FIG. 1 of Patent Document 2, and the like.
  • the level shift circuit 800 is driven by the input-side power supply voltage [VDDL ⁇ VSSL] and is based on a signal input to the input terminal IN.
  • the source is connected to the drains of the NMOS transistors N1 and N2, a pair of NMOS transistors N5 and N6 operating as a protection circuit, the source is connected to the output side power supply potential VDDH, and the drain is connected to the drains of the NMOS transistors N5 and N6.
  • the gate is connected to the output terminals of the inverter circuits 9 and 10, and the power supply circuit A pair of PMOS transistors P1 and P2, the resistor R1 provided between the drains of the PMOS transistors P1 and P2, the drain connected to the sources of the NMOS transistors N1 and N2, and the source to the input-side power supply potential VSSL Connected, the gate is connected to the output terminals of the inverter circuits 9 and 10, driven by a pair of NMOS transistors N3 and N4 operating as an intermittent circuit, and the output side power supply voltage [VDDH-VSSH], and the input terminal is NMOS transistor N5 , N6, and NAND circuits 7 and 8 whose output terminals are connected to the output terminal OUT, and inverter circuits which are driven by the output side power supply voltage [VDDH-VSSH] and whose input terminals are connected to the output terminal OUT 9 and 10.
  • a level shift circuit as shown in FIGS. 17 and 18 and a measure for making the power supply wiring independent between the digital circuit and the analog circuit can completely suppress the digital noise from spreading to the analog circuit.
  • digital circuits have been increased in speed (higher frequency), and digital noise can easily spread to analog circuits through parasitic capacitance or the like that exists between the substrate and the wiring or between the wiring and the wiring. .
  • measures such as providing a separation layer between the blocks are taken, but it is still difficult to completely block the path of the wraparound of digital noise.
  • Patent Documents 3 and 4 disclose that the influence of digital noise on an analog circuit is suppressed by shifting the phase between a digital clock signal and an analog clock signal. Specifically, as shown in FIG. 19, the digital clock signal output from the digital circuit 201 is converted into an analog clock signal having a different frequency in the analog clock signal generation circuit 202, and then analogized via the level shift circuit 203. Propagated to circuit 205.
  • a delay circuit 204 is provided on the input side or output side of the level shift circuit 203. The delay circuit 204 is configured, for example, as shown in FIGS.
  • JP-A-11-195975 JP 2006-140884 A JP-A-6-162224 JP-A-9-153801
  • the delay circuit in FIG. 20 is configured to obtain a desired gate delay by connecting a plurality of inverter circuits INV0, INV1,... INVN in multiple stages.
  • the area occupied by the IC increases in order to provide the necessary gate delay, and the inverter circuits INV0 to INVN are driven by a high-speed clock signal, which causes a problem that the transient current increases.
  • the delay circuit of FIG. 21 forms a low-pass filter formed by a resistor R and a capacitor C, blunts the waveform, and then shapes the waveform by a buffer circuit BF provided at the subsequent stage of the low-pass filter. It is configured to obtain a delay. However, in this configuration, a shift occurs between the delay at the rising edge of the waveform and the delay at the falling edge, and a clock signal whose duty ratio is lost with respect to the input waveform is output. Therefore, the delay circuit (buffer circuit BF) There is concern about the deterioration of the characteristics of the analog circuit in the latter stage.
  • the present invention has been made in order to solve the above-described conventional problems.
  • the level shift with a delay function that delays an analog clock signal while maintaining a duty ratio while suppressing an increase in circuit area and current consumption.
  • An object is to provide a circuit, a digital-analog mixed semiconductor integrated circuit, and a delay circuit.
  • a level shift circuit with a delay function has a first power supply voltage amplitude and generates a pair of complementary differential clock signals.
  • a differential output terminal of one of the differential clock signal generation circuits is connected to a gate of the first NMOS transistor, and the differential clock signal generation circuit includes: a first NMOS transistor;
  • a differential clock signal input circuit configured such that the other differential output terminal is connected to the gate of the second NMOS transistor, and on the drain side of the first NMOS transistor and the second NMOS transistor.
  • Latching each potential, at least one of the drains of the first NMOS transistor and the second NMOS transistor A latch circuit configured to output an analog clock signal having an amplitude of a second power supply voltage different from the first power supply voltage, and gates of the first NMOS transistor and the second NMOS transistor And a capacitor that forms a low-pass filter together with an output impedance of the differential clock signal generation circuit, and the analog clock signal delays the differential clock signal through the low-pass filter. It is made up of.
  • a low-pass filter is formed by the output impedance of the differential clock signal generation circuit and the capacitor, and the delay is reduced by blunting the waveform of the differential clock signal output from the differential clock signal generation circuit.
  • the capacitor connected between the gates of the first and second NMOS transistors is a virtual ground. In contrast, the same effect is obtained as when a double capacity is connected to each gate.
  • the latch circuit includes a first PMOS transistor and a second PMOS transistor, and the drain of the first NMOS transistor and the drain of the first PMOS transistor are connected. And the drain of the second NMOS transistor and the drain of the second PMOS transistor are connected, the gate of the first PMOS transistor is connected to the drain of the second PMOS transistor, and The gates of two PMOS transistors are connected to the drain of the first PMOS transistor, and the analog clock signal is output from at least one drain of the first PMOS transistor and the second PMOS transistor. There may be.
  • the configuration of the latch circuit of the level shift circuit with a delay function can be simplified.
  • the level shift circuit with a delay function includes a first PMOS transistor and a second PMOS transistor, and a source of the first PMOS transistor and the second PMOS transistor that defines the second power supply voltage. And the drains of the first PMOS transistor and the second PMOS transistor are connected to the first and second nodes, which are the latch locations of the latch circuit, and the first node and the second node A power supply circuit configured to supply the power to one of the transistors and to block the supply of the power to the other node, and from the sources of the first NMOS transistor and the second NMOS transistor to the first A third NMOS transistor and a fourth NMOS transistor between two paths to the ground defining the power supply voltage of An interrupting circuit comprising an NMOS transistor configured to connect one of the two paths and disconnect the other by turning on and off the third NMOS transistor and the fourth NMOS transistor; and the first node And a fifth NMOS transistor and a sixth NMOS transistor between the second node and the drains of the first NMOS transistor and the second
  • the high voltage source when the level of a signal using the low voltage source as a power source is shifted to the voltage level of the high voltage source, the high voltage source The level shift operation can be performed reliably without the transistor being destroyed due to the voltage of.
  • the differential clock signal generation circuit includes first and second inverter circuits, and a single-phase clock signal from the outside is input to an input terminal of the first inverter circuit.
  • the output terminal of the first inverter circuit and the input terminal of the second inverter circuit are connected, and the differential clock signal is output from the output terminals of the first and second inverter circuits. It may be configured.
  • the configuration of the differential clock signal generation circuit of the level shift circuit with a delay function can be simplified.
  • the differential clock signal generation circuit includes first and second flip-flops, and an external single-phase clock signal is input to a clock input terminal of the first flip-flop.
  • a signal obtained by inverting the single-phase clock signal is input to the clock input terminal of the second flip-flop, and the positive logic output terminal of the first flip-flop and the input terminal of the second flip-flop are connected.
  • the negative logic output terminal of the second flip-flop and the input terminal of the first flip-flop are connected, and from the positive logic output terminal and the negative logic output terminal of the first flip-flop or the second flip-flop.
  • the differential clock signal may be output.
  • the configuration of the differential clock signal generation circuit of the level shift circuit with a delay function can be simplified.
  • the differential clock signal generation circuit may be configured as a phase synchronization circuit.
  • the configuration of the differential clock signal generation circuit of the level shift circuit with a delay function can be simplified.
  • the differential clock signal generation circuit may be configured to change an output impedance depending on an amount of current supplied from a current source.
  • the delay time of the analog clock signal can be adjusted.
  • the capacitor may be formed on the same chip as other elements constituting the level shift circuit with a delay function.
  • the capacitor has two or more MOS capacitors, and the first and second NMOS transistors are arranged between the gates of the first NMOS transistor and the second NMOS transistor.
  • the capacitance values seen from the gates of the transistors may be arranged in parallel so as to be equal.
  • the capacitor may be composed of a varactor whose capacitance value is changed by an external control voltage.
  • the delay time of the analog clock signal can be adjusted.
  • the capacitor is one of a plurality of capacitors, and the plurality of capacitors are connected in parallel between the gates of the first NMOS transistor and the second NMOS transistor.
  • the combined capacitance value of the plurality of capacitors may be changed by a switching element that is disposed in each of the plurality of capacitors and is connected to each of the plurality of capacitors.
  • the delay time of the analog clock signal can be adjusted.
  • another digital-analog mixed semiconductor integrated circuit uses at least a digital circuit for generating a clock signal having the amplitude of the first power supply voltage and the clock signal. And an analog circuit that is provided between the digital circuit and the analog circuit, the clock signal from the digital circuit is input, and the amplitude of the clock signal is changed from the first power supply voltage to the second power supply voltage. And a level shift circuit with a delay adjustment function for outputting the analog clock signal obtained by delaying through the low-pass filter.
  • the analog circuit is one of a plurality of analog circuits, and the analog clock signals having different delay times by the level shift circuit with a delay function are the plurality of analog circuits.
  • the analog circuits may be supplied respectively.
  • another delay circuit includes a differential clock signal generation circuit that generates a pair of complementary differential clock signals, a first NMOS transistor, and a second NMOS transistor.
  • One differential output terminal of the differential clock signal generation circuit is connected to a gate of the first NMOS transistor, and the other differential output terminal of the differential clock signal generation circuit is the second NMOS transistor.
  • a differential clock signal input circuit configured to be connected to the gates of the first and second NMOS transistors, and latch the potentials on the drain sides of the first NMOS transistor and the second NMOS transistor, respectively.
  • An analog clock signal is output from at least one of the drains of the second NMOS transistor.
  • the analog clock signal is obtained by delaying the differential clock signal through the low-pass filter.
  • a level shift circuit with a delay function a digital-analog mixed type semiconductor integrated circuit, and a delay circuit that delay an analog clock signal while maintaining a duty ratio while suppressing an increase in circuit area and current consumption. can do.
  • FIG. 1 is a circuit diagram showing a configuration of a level shift circuit with a delay function according to the first embodiment of the present invention.
  • FIG. 2 is a circuit diagram showing a configuration example of the differential clock signal generation circuit of FIG.
  • FIG. 3 is an input / output waveform diagram of the differential clock signal generation circuit of FIG.
  • FIG. 4 is a circuit diagram showing another configuration example of the differential clock signal generation circuit of FIG.
  • FIG. 5 is an input / output waveform diagram of the differential clock signal generation circuit of FIG.
  • FIG. 6 is a circuit diagram showing a modification of the level shift circuit with a delay function according to the first embodiment of the present invention.
  • FIG. 7 is a waveform diagram for explaining the principle of delay generation in the level shift circuit with a delay function of FIG. FIG.
  • FIG. 8 is a waveform diagram and a transistor state transition diagram for explaining the principle of delay generation in the level shift circuit with a delay function of FIG.
  • FIG. 9 is a circuit diagram showing a configuration of a level shift circuit with a delay function according to the third embodiment of the present invention.
  • FIG. 10 is a circuit diagram showing a configuration of a level shift circuit with a delay function according to the fourth embodiment of the present invention.
  • FIG. 11 is a circuit diagram showing a configuration of a level shift circuit with a delay function according to the fifth embodiment of the present invention.
  • FIG. 12 is a circuit diagram showing a configuration of a level shift circuit with a delay function according to the sixth embodiment of the present invention.
  • FIG. 13 is a circuit diagram showing a configuration of a level shift circuit according to the fifth embodiment of the present invention.
  • FIG. 14 is a block diagram and waveform diagram for explaining the overall configuration of a digital-analog mixed semiconductor integrated circuit according to the sixth embodiment of the present invention.
  • FIG. 15 is a block diagram showing a configuration example of a digital-analog mixed semiconductor integrated circuit according to the sixth embodiment of the present invention.
  • FIG. 16 is a waveform diagram of clock signals for driving the digital circuit, AD converter, and DA converter shown in FIG.
  • FIG. 17 is a circuit diagram showing a configuration of a conventional level shift circuit.
  • FIG. 18 is a circuit diagram showing the configuration of another conventional level shift circuit.
  • FIG. 19 is a block diagram and a waveform diagram for explaining the overall configuration of a conventional digital-analog mixed semiconductor integrated circuit.
  • FIG. 20 is a circuit diagram showing a configuration example of a conventional delay circuit.
  • FIG. 21 is a circuit diagram showing a configuration example of a conventional delay circuit.
  • FIG. 1 is a circuit diagram showing a configuration of a level shift circuit with a delay function according to the first embodiment of the present invention.
  • the level shift circuit 100 with a delay function in FIG. 1 includes an input side power supply terminal VDDI, an input side ground terminal VSSI, an input terminal IN, an output side power supply terminal VDDO, an output side ground terminal VSSO, and an output terminal OUT.
  • the level shift circuit 100 with a delay function in FIG. 1 adds a capacitor C1 to the configuration of the level shift circuit 700 with a delay function in FIG. 17, and inputs an analog clock signal output from the output terminal OUT to the input terminal IN.
  • the single phase clock signal is delayed in accordance with the capacitance value of the capacitor C1.
  • the level shift circuit 100 with a delay function includes a differential clock signal generation circuit 1, a differential clock signal input circuit 3, a latch circuit 4, an inverter circuit 2, and a capacitor C1. .
  • the differential clock signal generation circuit 1 is driven by the input-side power supply voltage [VDDI ⁇ VSSI] and has an amplitude of the input-side power supply voltage [VDDI ⁇ VSSI] based on the single-phase clock signal input to the input terminal IN. And a pair of complementary differential clock signals INO and INOB are generated.
  • the differential clock signal input circuit 3 includes an NMOS transistor N1 and an NMOS transistor N2, and one of the two differential output terminals of the differential clock signal generation circuit 1 is connected to the gate of the NMOS transistor N1.
  • the other differential output terminal is configured to be connected to the gate of the NMOS transistor N2.
  • the differential clock signal input circuit 3 has one differential clock signal INO input to the gate, the NMOS transistor N1 whose source is connected to the input side ground terminal VSSI, and the other differential clock signal to the gate.
  • the latch circuit 4 latches the drain-side potentials (nodes W1 and W2) of the NMOS transistors N1 and N2, and the amplitude of the output-side power supply voltage [VDDO ⁇ VSSI] from at least one of the drains of the NMOS transistors N1 and N2. Is configured to output an analog clock signal.
  • the latch circuit 4 includes a PMOS transistor P1 having a source connected to the output side power supply terminal VDDO, a drain connected to the drain of the NMOS transistor N1, and a gate connected to the drain of the NMOS transistor N2.
  • the drain is connected to the drain of the NMOS transistor N2, and the gate is connected to the drain of the NMOS transistor N1, and the drain of the PMOS transistor P2 and the NMOS transistor N2
  • An analog clock signal is output from a node W2 that connects the drains to each other.
  • the gates and drains of the PMOS transistors P1 and P2 are so-called cross-coupled, and latch the potential state on the drain side of the NMOS transistors N1 and N2.
  • the drain voltage of the NMOS transistor N1 becomes a low level (input-side ground potential VSSI), and the PMOS transistor P2 is turned on and the PMOS transistor P1 is turned off until the NMOS transistor N2 is turned on next time. Hold.
  • the drain voltage of the NMOS transistor N2 becomes low level (input-side ground potential VSSI), and the PMOS transistor P1 is turned on and the PMOS transistor P2 is turned off until the NMOS transistor N1 is turned on next time. Hold the state to do.
  • the above operation is defined as a latch.
  • the inverter circuit 2 shapes the analog clock signal output from the latch circuit 4 and outputs it.
  • the inverter circuit 2 is driven by the output side power supply voltage [VDDO-VSSO], the input terminal is connected to the drain of the NMOS transistor N2, and the output terminal is connected to the output terminal OUT. ing.
  • the capacitor C1 has both terminals connected between the gates of the NMOS transistors N1 and N2, and is configured to form an RC low-pass filter together with the output impedance of the differential clock signal generation circuit 1.
  • the capacitor C1 is formed on the same chip as the other elements constituting the level shift circuit 100 with a delay function.
  • FIG. 2 is a circuit diagram showing a configuration example of the differential clock signal generation circuit of FIG. 1
  • FIG. 3 is an input / output waveform diagram of the differential clock signal generation circuit of FIG.
  • the differential clock signal generation circuit 1 includes inverter circuits 11 and 12 of the same size, and a single-phase clock signal from the outside is input to the input terminal of the inverter circuit 11.
  • the output terminal and the input terminal of the inverter circuit 12 are connected, and the differential clock signals INO and INOB are output from the output terminals of the inverter circuits 11 and 12.
  • the differential clock signal generation circuit 1 is configured such that the output impedances of the output terminals of the inverter circuits 11 and 12 are substantially equal. According to this configuration, as shown in FIG. 3, it can be seen that differential clock signals INO and INOB having the same frequency as the clock signal input to the inverter circuit 11 in the previous stage are generated.
  • FIG. 4 is a circuit diagram showing another configuration example of the differential clock signal generation circuit 1 of FIG. 1
  • FIG. 5 is an input / output waveform diagram of the differential clock signal generation circuit of FIG.
  • the differential clock signal generation circuit 1 includes edge-triggered flip-flops 13 and 14 having the same size, and an external single-phase clock signal is applied to the clock input terminal of the edge-triggered flip-flop 13.
  • a signal obtained by logically inverting the single-phase clock signal by the inverter circuit 15 is input to the clock input terminal (C) of the edge trigger flip-flop 14, and the positive logic output terminal (Q 1) of the edge trigger flip-flop 13 is input.
  • the input end (D2) of the edge trigger flip-flop 14 is connected, the negative logic output end (Q2B) of the edge trigger flip-flop 14 and the input end (D1) of the edge trigger flip-flop 13 are connected, and the edge trigger type Positive logic output terminal (Q of the flip-flop 13 or the edge trigger type flip-flop 14) ) And negative logic output (Q2B) from the differential clock signals INO, is configured to INOB is output.
  • the edge trigger type flip-flops 13 and 14 are configured so that the output impedances of the positive logic output and the negative logic output are substantially equal. According to this configuration, as shown in FIG. 5, it can be seen that differential clock signals INO and INOB are generated by dividing the clock signal input to the preceding edge trigger type flip-flop 13 by two.
  • the differential clock signal generation circuit 1 is configured to output differential clock signals INO and INOB from two output terminals having substantially equal output impedances, as shown in FIG.
  • the phase synchronization circuit may be implemented.
  • the differential clock signal generation circuit 1 may be realized by an arbitrary circuit that has a positive logic output end and a negative logic output end and is configured so that the output impedances of both are substantially equal.
  • the differential clock signals INO and INOB have the amplitude of the input-side power supply voltage [VDDI ⁇ VSSI] and have a relationship in which the phases are inverted. Accordingly, the NMOS transistors N1 and N2 are turned on and off in a complementary manner.
  • the NMOS transistor N1 is turned on and the NMOS transistor N2 is turned off.
  • the gate voltage of the PMOS transistor P2 becomes higher than the input-side ground potential VSSI by the on-voltage (drain-source voltage) of the NMOS transistor N1, and the PMOS transistor P2 is turned on.
  • the gate voltage of the PMOS transistor P1 becomes lower than the high-voltage power supply potential VDDO by the on-voltage (drain-source voltage) of the PMOS transistor P2, and the PMOS transistor P1 is turned off.
  • the drain voltage of the NMOS transistor N2 is also applied to the input terminal of the inverter circuit 2, and the output of the inverter circuit 2 becomes a low level voltage near the output-side ground potential VSSO.
  • the NMOS transistors N1 and N2 are both turned off, so that the on / off states of the PMOS transistors P1 and P2 are maintained. That is, the PMOS transistors P1 and P2 whose gates and drains are cross-coupled operate as the latch circuit 4.
  • the NMOS transistor N2 is turned on and the NMOS transistor N1 is turned off.
  • the operation is the same as described above, and the PMOS transistor P1 is turned on and the PMOS transistor P2 is turned off. Further, the output of the inverter circuit 2 becomes a high level voltage in the vicinity of the output side power supply potential VDDO.
  • FIG. 7 is a waveform diagram for explaining the principle of delay generation in the level shift circuit 100 with a delay function in FIG.
  • FIG. 7A and 7D are ideal waveform diagrams of the differential clock signals INO and INOB output from the differential clock signal generation circuit 1.
  • FIG. 7A and 7D are ideal waveform diagrams of the differential clock signals INO and INOB output from the differential clock signal generation circuit 1.
  • the waveforms of the differential clock signals INO and INOB are not actually rectangular waves as shown in FIGS. 7A and 7D, but the output impedance of the differential clock signal generation circuit 1 and the capacitor C1. Are blunted so that the rise and fall are gentle as shown in FIGS. 7B and 7E. Note that the time constant of the rising edge of the waveform is usually longer than the time constant of the falling edge of the waveform.
  • the waveforms of the differential clock signals INO and INOB are delayed by the threshold voltages Vth (gate voltages at which N1 and N2 are turned on) of the NMOS transistors N1 and N2, and are shaped as rectangular wave drain voltages.
  • the threshold voltage Vth is generally a value lower than half of the input-side power supply potential VDDL, and a deviation occurs between the rising delay time TR and the falling delay time TF.
  • the NMOS transistors N1 and N2 are ideally turned on and off in a complementary manner. For example, there is a difference between the time when the NMOS transistor N1 is switched from off to on and the time when the NMOS transistor N2 is switched from on to off. Arise.
  • FIG. 8 shows the state transition of the NMOS transistors N1, N2 and the PMOS transistors P1, P2 at this time.
  • the drain voltage of the NMOS transistors N1 and N2 does not have a complementary relationship due to the difference between the rising delay time TR and the falling delay time TF, and the NMOS transistors N1 and N2 The on / off timing is not synchronized.
  • the drain voltages of the NMOS transistors N1 and N2 are applied to the gates of the PMOS transistors P1 and P2 operating as the latch circuit 4, it can be seen that the on / off timings of the PMOS transistors P1 and P2 are synchronized.
  • the low-pass filter is formed by the output impedance of the differential clock signal generation circuit 1 and the capacitor C1, and the waveforms of the differential clock signals INO and INOB are obtained. I am trying to get a delay by slowing down.
  • complementary differential clock signals INO and INOB are input to the gates of the NMOS transistors N1 and N2, respectively.
  • the capacitor C1 connected between the gates of the NMOS transistors N1 and N2 brings about the same effect as when the double capacitance is connected to each gate with respect to the virtual ground.
  • the low-pass filter in the present embodiment is assumed that the resistance value of the resistor R in FIG. 21 is equal to the output impedance of the differential clock signal generation circuit 1 as compared with the low-pass filter included in the delay circuit in FIG. In this case, the same delay can be realized by the capacitance value of one half of the capacitor C in FIG. Further, if the output impedances of the two differential output terminals of the differential clock signal generation circuit 1 are equalized, the differential clock signals INO and INOB are distorted in the same manner, so that the PMOS transistors P1 and P1 that operate as a latch circuit In P2, the difference between the delay at the rise and the delay at the fall can be canceled out.
  • FIG. 9 is a circuit diagram showing a configuration of a level shift circuit with a delay function according to the third embodiment of the present invention.
  • the MOS capacitors C2 and C3 are replaced with the NMOS transistors N1 and N2 in place of the capacitor C1 that generates a delay. This is the point that the capacitance values seen from the gate are equal.
  • the MOS capacitor generally has polarity and parasitic capacitance, and the capacitance value seen from both terminals changes. Therefore, in the present embodiment, the MOS capacitors C2 and C3 are connected in the reverse direction and in parallel so that the capacitance values seen from the gates of the NMOS transistors N1 and N2 are equal. This makes it easier to maintain the duty ratio when delaying the analog clock signal.
  • FIG. 10 is a circuit diagram showing a configuration of a level shift circuit with a delay function according to the fourth embodiment of the present invention.
  • the level shift circuit 100 with a delay function in FIG. 10 is different from the level shift circuit 100 with a delay function in FIG. 1 in that a capacitor C1 that generates a delay has a varactor VC1, a capacitance value of which varies according to an external control voltage VCTRL. This is a point constituted by VC2. Even in this embodiment, the analog clock signal can be delayed while maintaining the duty ratio while suppressing an increase in circuit area and current consumption. Furthermore, the delay time of the analog clock signal can be adjusted by changing the capacitance values of the varactors VC1 and VC2 by the external control voltage VCTRL.
  • FIG. 11 is a circuit diagram showing a configuration of a level shift circuit with a delay function according to the fifth embodiment of the present invention.
  • the level shift circuit 100 with a delay function in FIG. 11 is different from the level shift circuit 100 with a delay function in FIG. 1 in that a plurality of capacitors C1 to CN are arranged in parallel between the gates of the NMOS transistors N1 and N2.
  • the switching elements SW1 to SWN are connected in series to the capacitors C1 to CN. Note that on / off of the switching elements SW1 to SWN is controlled by an external digital control signal DCTRL. Even in this embodiment, the analog clock signal can be delayed while maintaining the duty ratio while suppressing an increase in circuit area and current consumption.
  • FIG. 12 is a circuit diagram showing a configuration of a level shift circuit with a delay function according to the sixth embodiment of the present invention.
  • the level shift circuit 100 with a delay function in FIG. 12 is different from the level shift circuit 100 with a delay function in FIG. 1 in that a current source I1 is provided on the input side power supply potential VDDI side of the differential clock signal generation circuit 1, and The current source I2 is provided on the input side ground potential VSSI side. Even in this embodiment, the analog clock signal can be delayed while maintaining the duty ratio while suppressing an increase in circuit area and current consumption. Further, by adjusting the current amounts of the current sources I1 and I2, the output impedance can be changed for each of the two differential outputs of the differential clock signal generation circuit 1, and the delay time of the analog clock signal can be adjusted. . (Seventh embodiment) [Configuration of level shift circuit with delay function]
  • FIG. 13 is a circuit diagram showing a configuration of a level shift circuit with a delay function according to the seventh embodiment of the present invention.
  • the level shift circuit 200 with a delay function in FIG. 13 includes an input side power supply terminal VDDL, an input side ground terminal VSSL, an input terminal IN, an output side power supply terminal VDDH, an output side ground terminal VSSH, and an output terminal OUT. Have. Note that the power supply potential VDDH of the output side power supply terminal VDDH is higher than the power supply potential VDDL of the input side power supply terminal VDDL.
  • the level shift circuit 200 with a delay function includes a differential clock signal generation circuit 1, a differential clock signal input circuit 3, a power supply circuit 20, an intermittent circuit 5, a protection circuit 6, a resistor R1, and a NAND.
  • An RS latch circuit composed of circuits 7 and 8 and a power supply and intermittent control circuit composed of inverter circuits 9 and 10 are provided.
  • the differential clock signal generation circuit 1 is driven by the input side power supply voltage [VDDL ⁇ VSSL], and has an amplitude of the input side power supply voltage [VDDL ⁇ VSSL] based on the single-phase clock signal input to the input terminal IN. And a pair of complementary differential clock signals XINO and XINOB are generated.
  • the differential clock signal input circuit 3 includes an NMOS transistor N1 and an NMOS transistor N2, and one of the two differential output terminals of the differential clock signal generation circuit 1 is connected to the gate of the NMOS transistor N1.
  • the other differential output terminal is configured to be connected to the gate of the NMOS transistor N2.
  • the differential clock signal input circuit 3 has one differential clock signal INO input to the gate and the source connected to the output side ground terminal VSSL via the NMOS transistor N3 described later.
  • an NMOS transistor N2 whose gate is supplied with the other differential clock signal INOB and whose source is connected to an output-side ground terminal VSSL via an NMOS transistor N4 described later.
  • the power supply circuit 20 includes a PMOS transistor P3 and a PMOS transistor P4, and the sources of the PMOS transistor P3 and the PMOS transistor O4 are connected to the output-side power supply terminal VDDH on the high potential side of the first output-side power supply voltage [VDDH ⁇ VSSL].
  • the drains of the PMOS transistor P3 and the PMOS transistor P4 are connected to nodes W1 and W2 which are latched portions of the latch circuit composed of the NAND circuits 7 and 8, and one of the nodes W1 and W2 is connected to the output side power supply. While supplying the voltage from the terminal VDDH, the supply of the voltage from the output side power supply terminal VDDH to the other node is cut off.
  • the intermittent circuit 5 includes NMOS transistors N3 and N4 between two paths from the sources of the NMOS transistors N1 and N2 to the output-side ground terminal VSSL on the low potential side of the first output-side power supply voltage [VDDH ⁇ VSSL]. One of the two paths is connected and the other is disconnected by turning on and off the NMOS transistors N3 and N4.
  • the protection circuit 6 includes NMOS transistors N5 and N6 between the nodes W1 and W2 and the drains of the NMOS transistors N1 and N2, and is configured to limit the drain voltage of the NMOS transistors N1 and N2 to a withstand voltage or less.
  • the resistor R1 is connected between the nodes W1 and W2.
  • the NAND circuits 7 and 8 are driven by the second output side power supply voltage [VDDH ⁇ VSSH], input terminals are connected to the nodes W1 and W2, and are connected to the output terminal OUT, thereby forming an RS latch circuit. Yes.
  • the inverter circuits 9 and 10 are driven by the output side power supply voltage [VDDH ⁇ VSSH], and their input terminals are connected to the output terminal OUT.
  • the power supply circuit 20 and the intermittent circuit 5 are controlled based on the outputs of the inverter circuits 9 and 10.
  • the NMOS transistor N1 when the potential of the differential clock signal INO changes from the low level (input side ground potential VSSL) to the high level (input side power supply potential VDDL), the NMOS transistor N1 is turned on, and the high level potential of the node W1 in the figure. (Output-side power supply potential VDDH) decreases. At this time, a high level voltage (output-side power supply potential VDDH) of the differential clock signal INO is applied to the gate of the NMOS transistor N5. The NMOS transistor N5 limits the drain potential of the NMOS transistor N1 to the output side power supply potential VDDH or less (below the withstand voltage of the NMOS transistor N1), so that the NMOS transistor N1 is not destroyed.
  • the NMOS transistor N2 is turned off, but a low level (input-side ground potential VSSL) voltage is applied to the gate of the NMOS transistor N6. Therefore, even if the potential of the node W2 is at a high level (output-side power supply potential VDDH), the drain potential of the NMOS transistor N2 is limited to be equal to or lower than the output-side power supply potential VDDH.
  • the level shift circuit 200 with a delay function in FIG. 13 is provided with a capacitor C1 between the gates of the NMOS transistors N1 and N2 based on the same principle as the above embodiment, while suppressing an increase in circuit area and current consumption.
  • the analog clock signal can be delayed while maintaining the duty ratio.
  • a delay can be similarly generated by inserting a capacitor between the analog clock signal inputs. it can.
  • the level shift circuit 200 with a delay function can be used as a simple delay circuit by making the input-side power supply and the output-side power supply the same.
  • FIG. 14 is a block diagram and a waveform diagram for explaining the overall configuration of the digital-analog mixed semiconductor integrated circuit according to the eighth embodiment of the present invention.
  • 14 includes a digital circuit 201, an analog clock signal generation circuit 202, level shift circuits 100 and 200 with a delay function, and an analog circuit 205.
  • the digital clock signal output from the digital circuit 201 is converted into an analog clock signal having a different frequency in the analog clock signal generation circuit 202.
  • the analog clock signal is level-shifted from the digital circuit power supply voltage DVDD to the analog circuit power supply voltage AVDD by the level shift circuits 100 and 200 with a delay function, and delayed according to the capacitor C1, and then the analog circuit. Propagated to 205.
  • FIG. 15 is a block diagram showing a configuration example of a digital / analog mixed semiconductor integrated circuit according to the eighth embodiment of the present invention.
  • the digital-analog mixed type semiconductor integrated circuit 600 of FIG. 15 includes a digital power pad DVDD, a digital ground pad DVSS, an analog power pad AVDD, an analog ground pad AVSS, and an AD converter input signal pad ADIN. And a DA converter output signal pad DAOUT.
  • the digital-analog mixed semiconductor integrated circuit 600 includes a digital circuit 601, an AD converter 602, a DA converter 603, AD converter level shift circuits 604 and 605, and DA converter level shift circuits 606 and 607. And.
  • the digital circuit 601 is driven by a digital power supply voltage [DVDD-DVSS], receives AD conversion data ADDATAD, and outputs an AD converter clock signal ADCLKD, a DA converter clock signal DACLKD, and a DA converter data signal DADATAD. Is done.
  • the DA converter 603 converts the amplitude of the AD converter clock signal ADCLKD generated by the digital circuit 601 from the digital power supply voltage [DVDD-DVSS] to the analog power supply voltage [AVDD-AVSS], and the analog power supply voltage [AVDD] -AVSS] AD converter clock signal ADCLK.
  • the AD converter level shift circuit 605 converts the amplitude of the AD conversion data ADDATA generated by the AD converter 602 from the analog power supply voltage [AVDD-AVSS] to the digital power supply voltage [DVDD-DVSS]. DVDD-DVSS] AD conversion data ADDATAD is obtained.
  • the DA converter level shift circuits 606 and 607 convert the amplitude of the DA converter clock signal DACLKD and DA converter data DADATAD generated by the digital circuit 601 from the digital power supply voltage [DVDD-DVSS] to the analog power supply voltage [AVDD-AVSS]. To obtain the DA converter clock signal DACLK and DA converter data DATA of the analog power supply voltage [AVDD ⁇ AVSS].
  • the AD converter 602 outputs AD conversion data ADDATA obtained by AD converting the AD converter input signal ADIN based on the AD converter clock signal ADCLK.
  • the DA converter 603 outputs a DA conversion output signal DAOUT obtained by DA converting the DA converter input data DATA based on the DA converter clock signal DACLK.
  • the AD converter level shift circuit 604 is configured by the delay function level shift circuits 100 and 200 according to the above-described embodiment, and performs a level shift with a delay time Td1.
  • the DA converter level shift circuit 606 includes the delay function-equipped level shift circuits 100 and 200 according to the above-described embodiment, and performs a level shift with a delay time Td2.
  • the delay time Td1 is a delay time having such a length that the edge does not overlap with the clock signal DIGICLK used in the digital circuit 601.
  • the delay time Td2 is a delay time having a length that does not overlap edges of the clock signal DIGICLK used in the digital circuit 601 and the clock signal ADCLK used in the AD converter 602. .
  • the relationship between the delay time Td1 and the delay time Td2 may be “Td1 ⁇ Td2” or “Td1> Td2”.
  • the analog power supply line and the analog ground line are supplied from separate pads, and are connected to the AD converter 602 and the DA converter 603, respectively. Is designed to branch near the pad to reduce the common impedance. Furthermore, the interference from the digital circuit 601 to the AD converter 602 and the DA converter 603 and the mutual interference between the AD converter 602 and the DA converter 603 are designed to be small.
  • the AD converter level shift circuit 604 and the DA converter level shift circuit 606 add a delay, and the delay time Td1 of the AD converter clock signal ADCLK and the delay time Td2 of the DA converter clock signal DACLK have different lengths. By setting to, interference between the digital circuit 601, the AD converter 602, and the DA converter 603 due to an unexpected path can be prevented.
  • the delay time can be adjusted by changing the capacitance value of the capacitor C1 or the like as the level shift circuit with a delay function of the present embodiment, it is necessary to rise and fall the clock signal by changing the power supply voltage or the like. Even if edges overlap due to changing the time, it is possible to adjust the delay time so that the edges do not overlap again by changing the capacitance value from the outside, and interference between analog circuits can be prevented.
  • the digital-analog mixed semiconductor integrated circuit 600 on which the AD converter 602 and the DA converter 603 are mounted is illustrated, but the present invention is applied to other digital-analog mixed semiconductor integrated circuits. can do.
  • the present invention relates to a level shift circuit with a delay function between two different power supplies and a digital-analog mixed type semiconductor integrated circuit using the same, and in particular, analog-to-digital conversion that requires improvement in noise characteristics and distortion characteristics. This is useful for a digital-analog mixed type semiconductor integrated circuit equipped with an analog circuit and a digital-analog converter.

Landscapes

  • Pulse Circuits (AREA)
  • Logic Circuits (AREA)

Abstract

A level shift circuit of the present invention, said level shift circuit having a delay function, is provided with: a differential clock signal input circuit (3), which is provided with NMOS transistors (N1, N2), and is configured such that one differential output terminal of a differential clock signal generating circuit (1) is connected to the gate of an NMOS transistor (N1), and the other differential output terminal is connected to the gate of an NMOS transistor (N2); a latch circuit (4), which is configured such that the latch circuit latches the drain-side potentials of the NMOS transistors (N1, N2), and that analog clock signals are outputted from at least one of the drains of the NMOS transistors (N1, N2); and a capacitor (C1), which has both the terminals connected to between the gates of the NMOS transistors (N1, N2), and which forms a low-pass filter with the output impedance of the differential clock signal generating circuit (1).

Description

遅延機能付きレベルシフト回路、デジタル-アナログ混載型半導体集積回路、及び遅延回路Level shift circuit with delay function, digital-analog mixed semiconductor integrated circuit, and delay circuit
 本発明は、遅延機能付きレベルシフト回路、デジタル-アナログ混載型半導体集積回路、及び遅延回路に関するものであり、特にアナログ-デジタル変換器及びデジタル-アナログ変換器におけるクロック信号の干渉の防止に関するものである。 The present invention relates to a level shift circuit with a delay function, a digital-analog mixed semiconductor integrated circuit, and a delay circuit, and more particularly to prevention of interference of clock signals in an analog-digital converter and a digital-analog converter. is there.
 近年、半導体製造プロセスの微細化の進展や電子機器の低価格化に伴い、デジタル回路とアナログ回路とを1つの半導体チップで実現したデジタル-アナログ混載型半導体集積回路が数多く設計されている。その代表例として、音声処理やセンサに用いられるアナログ-デジタル変換器(以下、AD変換器)やデジタル-アナログ変換器(以下、DA変換器)が搭載されたICが挙げられる。 In recent years, with the progress of miniaturization of the semiconductor manufacturing process and the price reduction of electronic devices, many digital-analog mixed type semiconductor integrated circuits in which a digital circuit and an analog circuit are realized by one semiconductor chip have been designed. A typical example is an IC in which an analog-digital converter (hereinafter referred to as AD converter) or a digital-analog converter (hereinafter referred to as DA converter) used for voice processing or sensors is mounted.
 ところで、デジタル回路とアナログ回路との1チップ化に伴って、電源配線の共通インピーダンス等を通じてデジタルノイズがアナログ回路に波及し、該アナログ回路の特性の劣化を引き起こす場合がある。このため、一般的に、デジタル回路とアナログ回路との間で電源配線を独立させる対策がとられており、互いに異なる電源が使用されるデジタル回路とアナログ回路との間の電気的な接続のためにレベルシフト回路が用いられている。なお、レベルシフト回路は、例えば、特許文献1、2に示されるように構成されており、2つの異なる電源間でデジタル信号の振幅を切り替えるために使用されている。 By the way, with the integration of the digital circuit and the analog circuit into one chip, digital noise may spread to the analog circuit through the common impedance of the power supply wiring and the like, and the characteristics of the analog circuit may be deteriorated. For this reason, generally, measures are taken to make the power supply wiring independent between the digital circuit and the analog circuit, and for electrical connection between the digital circuit and the analog circuit where different power supplies are used. A level shift circuit is used. The level shift circuit is configured, for example, as shown in Patent Documents 1 and 2, and is used to switch the amplitude of a digital signal between two different power sources.
 図17に示すレベルシフト回路700は、特許文献1の図1等の構成に相当しており、入力側電源電圧[VDDI―VSSI]で駆動され、かつ入力端子INに入力される信号に基づいて差動クロック信号INO,INOBを生成する差動クロック信号生成回路1と、ゲートに一方の差動クロック信号INOが入力され、ソースが入力側グランド端子VSSIに接続されたNMOSトランジスタN1と、ゲートに他方の差動クロック信号INOBが入力され、ソースが入力側グランド端子VSSIに接続されたNMOSトランジスタN2と、ソースが出力側電源端子VDDOに接続され、ドレインがNMOSトランジスタN1のドレインに接続され、ゲートがNMOSトランジスタN2のドレインに接続されたPMOSトランジスタP1と、ソースが出力側電源端子VDDOに接続され、ドレインがNMOSトランジスタN2のドレインに接続され、ゲートがNMOSトランジスタN1のドレインに接続されたPMOSトランジスタP2と、出力側電源電圧[VDDO-VSSO]で駆動され、入力端がNMOSトランジスタN2のドレインに接続され、出力端が出力端子OUTに接続されたインバータ回路2と、を備えている。 A level shift circuit 700 illustrated in FIG. 17 corresponds to the configuration illustrated in FIG. 1 of Patent Document 1, and the like, and is driven by the input-side power supply voltage [VDDI−VSSI] and based on a signal input to the input terminal IN. The differential clock signal generation circuit 1 for generating the differential clock signals INO and INOB, one differential clock signal INO is input to the gate, the source is connected to the input side ground terminal VSSI, and the gate is The other differential clock signal INOB is inputted, the source is connected to the input side ground terminal VSSI, the NMOS transistor N2, the source is connected to the output side power supply terminal VDDO, the drain is connected to the drain of the NMOS transistor N1, and the gate A PMOS transistor P1 connected to the drain of the NMOS transistor N2, The source is connected to the output side power supply terminal VDDO, the drain is connected to the drain of the NMOS transistor N2, the gate is connected to the drain of the NMOS transistor N1, and the output side power supply voltage [VDDO-VSSO] is driven. And an inverter circuit 2 having an input terminal connected to the drain of the NMOS transistor N2 and an output terminal connected to the output terminal OUT.
 図18に示すレベルシフト回路800は、特許文献2の図1等の構成に相当しており、入力側電源電圧[VDDL-VSSL]で駆動され、入力端子INに入力される信号に基づいて差動クロック信号XINO,XINOBを生成する差動クロック信号生成回路1と、ゲートに差動クロック信号XINO,XINOBが入力される一対のNMOSトランジスタN1,N2と、ゲートが出力側電源端子VDDHに接続され、ソースがNMOSトランジスタN1,N2のドレインと接続され、保護回路として作動する一対のNMOSトランジスタN5,N6と、ソースが出力側電源電位VDDHに接続され、ドレインがNMOSトランジスタN5,N6のドレインと接続され、ゲートがインバータ回路9,10の出力端と接続され、電源供給回路として作動する一対のPMOSトランジスタP1,P2と、PMOSトランジスタP1,P2のドレイン間に設けられた抵抗R1と、ドレインがNMOSトランジスタN1,N2のソースと接続され、ソースが入力側電源電位VSSLに接続され、ゲートがインバータ回路9,10の出力端と接続され、断続回路として作動する一対のNMOSトランジスタN3,N4と、出力側電源電圧[VDDH-VSSH]で駆動され、入力端がNMOSトランジスタN5,N6のドレインと接続され、出力端が出力端子OUTと接続されたNAND回路7,8と、出力側電源電圧[VDDH-VSSH]で駆動され、入力端が出力端子OUTと接続されたインバータ回路9,10と、を備えている。 A level shift circuit 800 shown in FIG. 18 corresponds to the configuration shown in FIG. 1 of Patent Document 2, and the like. The level shift circuit 800 is driven by the input-side power supply voltage [VDDL−VSSL] and is based on a signal input to the input terminal IN. A differential clock signal generation circuit 1 for generating dynamic clock signals XINO and XINOB, a pair of NMOS transistors N1 and N2 whose differential clock signals XINO and XINOB are input to their gates, and their gates connected to the output side power supply terminal VDDH The source is connected to the drains of the NMOS transistors N1 and N2, a pair of NMOS transistors N5 and N6 operating as a protection circuit, the source is connected to the output side power supply potential VDDH, and the drain is connected to the drains of the NMOS transistors N5 and N6. The gate is connected to the output terminals of the inverter circuits 9 and 10, and the power supply circuit A pair of PMOS transistors P1 and P2, the resistor R1 provided between the drains of the PMOS transistors P1 and P2, the drain connected to the sources of the NMOS transistors N1 and N2, and the source to the input-side power supply potential VSSL Connected, the gate is connected to the output terminals of the inverter circuits 9 and 10, driven by a pair of NMOS transistors N3 and N4 operating as an intermittent circuit, and the output side power supply voltage [VDDH-VSSH], and the input terminal is NMOS transistor N5 , N6, and NAND circuits 7 and 8 whose output terminals are connected to the output terminal OUT, and inverter circuits which are driven by the output side power supply voltage [VDDH-VSSH] and whose input terminals are connected to the output terminal OUT 9 and 10.
 しかし、図17、図18に示されるようなレベルシフト回路を設け、かつデジタル回路とアナログ回路との間で電源配線を独立させる対策だけでは、デジタルノイズがアナログ回路に波及することを完全に抑制できない。特に、近年、デジタル回路の高速化(高周波化)が進行しており、基板と配線との間や配線と配線との間に存在する寄生容量等を通じて、デジタルノイズがアナログ回路に波及し易くなる。そこで、ブロック間に分離層を設ける等の対策がとられているが、それでもデジタルノイズの回り込みの経路を完全に遮断することは困難である。 However, a level shift circuit as shown in FIGS. 17 and 18 and a measure for making the power supply wiring independent between the digital circuit and the analog circuit can completely suppress the digital noise from spreading to the analog circuit. Can not. In particular, in recent years, digital circuits have been increased in speed (higher frequency), and digital noise can easily spread to analog circuits through parasitic capacitance or the like that exists between the substrate and the wiring or between the wiring and the wiring. . Thus, measures such as providing a separation layer between the blocks are taken, but it is still difficult to completely block the path of the wraparound of digital noise.
 そこで、パターンレイアウト上の対策とは別の観点として、デジタルノイズのうち最も高速なノイズはデジタルクロック信号に起因しており、かつデジタルノイズで最も大きく影響を受ける対象はアナログクロック信号の立ち上がり又は立ち下がりのタイミングである、ことに着目した対策が考えられている。例えば、特許文献3、4には、デジタルクロック信号とアナログクロック信号との間で位相をずらすことで、デジタルノイズがアナログ回路に与える影響を抑制することが開示されている。詳述すると、図19に示すように、デジタル回路201から出力されるデジタルクロック信号は、アナログクロック信号生成回路202において周波数の異なるアナログクロック信号に変換された後、レベルシフト回路203を介してアナログ回路205に伝播される。ここで、デジタルノイズの波及を抑えるため、レベルシフト回路203の入力側又は出力側に遅延回路204が設けられる。遅延回路204は、例えば、図20、図21に示すように構成されている。 Therefore, as a different viewpoint from countermeasures on the pattern layout, the fastest digital noise is caused by the digital clock signal, and the object that is most affected by the digital noise is the rise or fall of the analog clock signal. Measures that focus on the timing of falling are considered. For example, Patent Documents 3 and 4 disclose that the influence of digital noise on an analog circuit is suppressed by shifting the phase between a digital clock signal and an analog clock signal. Specifically, as shown in FIG. 19, the digital clock signal output from the digital circuit 201 is converted into an analog clock signal having a different frequency in the analog clock signal generation circuit 202, and then analogized via the level shift circuit 203. Propagated to circuit 205. Here, in order to suppress the spread of digital noise, a delay circuit 204 is provided on the input side or output side of the level shift circuit 203. The delay circuit 204 is configured, for example, as shown in FIGS.
特開平11-195975号公報JP-A-11-195975 特開2006-140884号公報JP 2006-140884 A 特開平6-162224号公報JP-A-6-162224 特開平9-153801号公報JP-A-9-153801
 図20の遅延回路は、複数のインバータ回路INV0、INV1、・・・INVNを多段接続して所望のゲート遅延が得られるように構成されている。しかし、この構成では、必要なゲート遅延を持たせるためにICの占有面積が増加し、また高速なクロック信号によってインバータ回路INV0~INVNが駆動されるので過渡電流が大きくなる問題が生じる。 The delay circuit in FIG. 20 is configured to obtain a desired gate delay by connecting a plurality of inverter circuits INV0, INV1,... INVN in multiple stages. However, in this configuration, the area occupied by the IC increases in order to provide the necessary gate delay, and the inverter circuits INV0 to INVN are driven by a high-speed clock signal, which causes a problem that the transient current increases.
 図21の遅延回路は、抵抗RとキャパシタCとによって形成されたローパスフィルタを構成して波形を鈍らせた後に、該ローパスフィルタの後段に設けられたバッファ回路BFにより波形整形することで所望の遅延を得るように構成されている。しかし、この構成では、波形の立ち上がりにおける遅延と立ち下がりにおける遅延との間でずれが生じ、入力波形に対してデューティ比が崩れたクロック信号が出力されるため、遅延回路(バッファ回路BF)の後段のアナログ回路の特性悪化が懸念される。 The delay circuit of FIG. 21 forms a low-pass filter formed by a resistor R and a capacitor C, blunts the waveform, and then shapes the waveform by a buffer circuit BF provided at the subsequent stage of the low-pass filter. It is configured to obtain a delay. However, in this configuration, a shift occurs between the delay at the rising edge of the waveform and the delay at the falling edge, and a clock signal whose duty ratio is lost with respect to the input waveform is output. Therefore, the delay circuit (buffer circuit BF) There is concern about the deterioration of the characteristics of the analog circuit in the latter stage.
 本発明は、以上のような従来の課題を解決するためになされたものであり、回路面積及び消費電流の増加を抑えつつ、デューティ比を保ったままでアナログクロック信号を遅延させる遅延機能付きレベルシフト回路、デジタル-アナログ混載型半導体集積回路、及び遅延回路を提供することを目的とする。 The present invention has been made in order to solve the above-described conventional problems. The level shift with a delay function that delays an analog clock signal while maintaining a duty ratio while suppressing an increase in circuit area and current consumption. An object is to provide a circuit, a digital-analog mixed semiconductor integrated circuit, and a delay circuit.
 上記目的を達成するために、本発明に係る遅延機能付きレベルシフト回路は、第1の電源電圧の振幅を有し、かつ相補的な一対の差動クロック信号を生成する差動クロック信号生成回路と、第1のNMOSトランジスタ及び第2のNMOSトランジスタを備え、前記差動クロック信号生成回路の一方の差動出力端が前記第1のNMOSトランジスタのゲートに接続され、前記差動クロック信号生成回路の他方の差動出力端が前記第2のNMOSトランジスタのゲートに接続されるように構成された差動クロック信号入力回路と、 前記第1のNMOSトランジスタ及び前記第2のNMOSトランジスタのドレイン側の電位を夫々ラッチし、前記第1のNMOSトランジスタ及び前記第2のNMOSトランジスタのドレインの少なくとも一方から前記第1の電源電圧とは異なる第2の電源電圧の振幅を有したアナログクロック信号を出力するように構成されたラッチ回路と、前記第1のNMOSトランジスタ及び前記第2のNMOSトランジスタのゲート間に両端子が接続され、前記差動クロック信号生成回路の出力インピーダンスとともにローパスフィルタを形成するキャパシタと、を備え、前記アナログクロック信号は、前記差動クロック信号を前記ローパスフィルタを介して遅延させて成るものである。 To achieve the above object, a level shift circuit with a delay function according to the present invention has a first power supply voltage amplitude and generates a pair of complementary differential clock signals. A differential output terminal of one of the differential clock signal generation circuits is connected to a gate of the first NMOS transistor, and the differential clock signal generation circuit includes: a first NMOS transistor; A differential clock signal input circuit configured such that the other differential output terminal is connected to the gate of the second NMOS transistor, and on the drain side of the first NMOS transistor and the second NMOS transistor. Latching each potential, at least one of the drains of the first NMOS transistor and the second NMOS transistor A latch circuit configured to output an analog clock signal having an amplitude of a second power supply voltage different from the first power supply voltage, and gates of the first NMOS transistor and the second NMOS transistor And a capacitor that forms a low-pass filter together with an output impedance of the differential clock signal generation circuit, and the analog clock signal delays the differential clock signal through the low-pass filter. It is made up of.
 上記の構成によれば、差動クロック信号生成回路の出力インピーダンスとキャパシタとによってローパスフィルタを形成して、差動クロック信号生成回路から出力される差動クロック信号の波形を鈍らせることにより遅延を得ることになる。ここで、第1及び第2のNMOSトランジスタの各ゲートには相補的な差動クロック信号が入力されるため、第1及び第2のNMOSトランジスタの各ゲート間に接続されたキャパシタは、仮想接地に対して各ゲートに2倍の容量が接続されているのと同様の効果をもたらす。すなわち、一般的なRCローパスフィルタと比較すると、差動クロック生成回路の出力インピーダンスが該RCローパスフィルタの抵抗値と等しいと仮定した場合、該RCローパスフィルタの半分の容量値にて同等の遅延を実現できる。また、差動クロック生成回路の2つの差動出力端における出力インピーダンスが等しければ、一対の差動クロック信号は同じ歪み方をするため、ラッチ回路において立ち上がりと立ち下がりの遅延の差を相殺できる。以上をまとめると、回路面積及び消費電流の増加を抑えつつ、デューティ比を保ったままでアナログクロック信号を遅延させる遅延機能付きレベルシフト回路を提供することが可能となる。 According to the above configuration, a low-pass filter is formed by the output impedance of the differential clock signal generation circuit and the capacitor, and the delay is reduced by blunting the waveform of the differential clock signal output from the differential clock signal generation circuit. Will get. Here, since complementary differential clock signals are input to the gates of the first and second NMOS transistors, the capacitor connected between the gates of the first and second NMOS transistors is a virtual ground. In contrast, the same effect is obtained as when a double capacity is connected to each gate. That is, when compared with a general RC low-pass filter, assuming that the output impedance of the differential clock generation circuit is equal to the resistance value of the RC low-pass filter, an equivalent delay is obtained with a capacitance value half that of the RC low-pass filter. realizable. Further, if the output impedances at the two differential output terminals of the differential clock generation circuit are equal, the pair of differential clock signals are distorted in the same way, so that the difference between the rise and fall delays can be canceled in the latch circuit. In summary, it is possible to provide a level shift circuit with a delay function that delays an analog clock signal while maintaining a duty ratio while suppressing an increase in circuit area and current consumption.
 上記の遅延機能付きレベルシフト回路において、前記ラッチ回路は、第1のPMOSトランジスタ及び第2のPMOSトランジスタを備え、前記第1のNMOSトランジスタのドレインと前記第1のPMOSトランジスタのドレインとが接続されるとともに、前記第2のNMOSトランジスタのドレインと前記第2のPMOSトランジスタのドレインとが接続され、前記第1のPMOSトランジスタのゲートが前記第2のPMOSトランジスタのドレインに接続されるとともに、前記第2のPMOSトランジスタのゲートが前記第1のPMOSトランジスタのドレインに接続され、前記第1のPMOSトランジスタ及び前記第2のPMOSトランジスタの少なくとも一方のドレインから前記アナログクロック信号を出力するように構成されている、としてもよい。 In the level shift circuit with a delay function, the latch circuit includes a first PMOS transistor and a second PMOS transistor, and the drain of the first NMOS transistor and the drain of the first PMOS transistor are connected. And the drain of the second NMOS transistor and the drain of the second PMOS transistor are connected, the gate of the first PMOS transistor is connected to the drain of the second PMOS transistor, and The gates of two PMOS transistors are connected to the drain of the first PMOS transistor, and the analog clock signal is output from at least one drain of the first PMOS transistor and the second PMOS transistor. There may be.
 上記の構成により、上記の効果に加えて、遅延機能付きレベルシフト回路のラッチ回路の構成を簡素化できる。 With the above configuration, in addition to the above effects, the configuration of the latch circuit of the level shift circuit with a delay function can be simplified.
 上記の遅延機能付きレベルシフト回路において、第1のPMOSトランジスタ及び第2のPMOSトランジスタを備え、該第1のPMOSトランジスタ及び該第2のPMOSトランジスタのソースが前記第2の電源電圧を規定する電源に接続され、該第1のPMOSトランジスタ及び該第2のPMOSトランジスタのドレインが前記ラッチ回路のラッチ箇所である第1及び第2のノードに接続され、該第1のノード及び該第2のノードの一方に前記電源を供給するとともに、他方のノードへの前記電源の供給を遮断するように構成された電源供給回路と、前記第1のNMOSトランジスタ及び前記第2のNMOSトランジスタのソースから前記第2の電源電圧を規定するグランドに至る2つの経路間に第3のNMOSトランジスタ及び第4のNMOSトランジスタを備え、該第3のNMOSトランジスタ及び該第4のNMOSトランジスタのオンオフにより該2つの経路のうち一方を接続し且つ他方を切断するように構成された断続回路と、前記第1のノード及び前記第2のノードと前記第1のNMOSトランジスタ及び前記第2のNMOSトランジスタのドレインとの間に第5のNMOSトランジスタ及び第6のNMOSトランジスタを備え、前記第1のNMOSトランジスタ及び前記第2のNMOSトランジスタのドレイン電圧を耐圧以下に制限するように構成された保護回路と、前記第1のノード及び前記第2のノードとの間に接続された抵抗と、を備えてもよい。 The level shift circuit with a delay function includes a first PMOS transistor and a second PMOS transistor, and a source of the first PMOS transistor and the second PMOS transistor that defines the second power supply voltage. And the drains of the first PMOS transistor and the second PMOS transistor are connected to the first and second nodes, which are the latch locations of the latch circuit, and the first node and the second node A power supply circuit configured to supply the power to one of the transistors and to block the supply of the power to the other node, and from the sources of the first NMOS transistor and the second NMOS transistor to the first A third NMOS transistor and a fourth NMOS transistor between two paths to the ground defining the power supply voltage of An interrupting circuit comprising an NMOS transistor configured to connect one of the two paths and disconnect the other by turning on and off the third NMOS transistor and the fourth NMOS transistor; and the first node And a fifth NMOS transistor and a sixth NMOS transistor between the second node and the drains of the first NMOS transistor and the second NMOS transistor, and the first NMOS transistor and the second NMOS transistor. And a protection circuit configured to limit a drain voltage of the NMOS transistor to a withstand voltage or less, and a resistor connected between the first node and the second node.
 上記の構成により、上記の効果に加えて、低電圧源を電源とする信号のレベルを高電圧源の電圧レベルにシフトする場合に、低電圧源を低電圧化した場合にも、高電圧源の電圧に起因してトランジスタが破壊することなく、レベルシフト動作を確実に行うことが可能となる。 With the above configuration, in addition to the above-described effect, when the level of a signal using the low voltage source as a power source is shifted to the voltage level of the high voltage source, the high voltage source The level shift operation can be performed reliably without the transistor being destroyed due to the voltage of.
 上記の遅延機能付きレベルシフト回路において、前記差動クロック信号生成回路は、第1及び第2のインバータ回路を備え、外部からの単相クロック信号が前記第1のインバータ回路の入力端に入力され、前記第1のインバータ回路の出力端と前記第2のインバータ回路の入力端とが接続され、前記第1及び第2のインバータ回路の各出力端から前記差動クロック信号が出力されるように構成された、としてもよい。 In the level shift circuit with a delay function, the differential clock signal generation circuit includes first and second inverter circuits, and a single-phase clock signal from the outside is input to an input terminal of the first inverter circuit. The output terminal of the first inverter circuit and the input terminal of the second inverter circuit are connected, and the differential clock signal is output from the output terminals of the first and second inverter circuits. It may be configured.
 上記の構成により、上記の効果に加えて、遅延機能付きレベルシフト回路の差動クロック信号生成回路の構成を簡素化できる。 With the above configuration, in addition to the above effects, the configuration of the differential clock signal generation circuit of the level shift circuit with a delay function can be simplified.
 上記の遅延機能付きレベルシフト回路において、前記差動クロック信号生成回路は、第1及び第2のフリップフロップを備え、外部からの単相クロック信号が前記第1のフリップフロップのクロック入力端に入力され、該単相クロック信号を反転した信号が前記第2のフリップフロップのクロック入力端に入力され、前記第1のフリップフロップの正論理出力端と前記第2のフリップフロップの入力端が接続され、前記第2のフリップフロップの負論理出力端と前記第1のフリップフロップの入力端が接続され、前記第1のフリップフロップ又は前記第2のフリップフロップの正論理出力端及び負論理出力端から前記差動クロック信号が出力されるように構成されている、としてもよい。 In the level shift circuit with a delay function, the differential clock signal generation circuit includes first and second flip-flops, and an external single-phase clock signal is input to a clock input terminal of the first flip-flop. A signal obtained by inverting the single-phase clock signal is input to the clock input terminal of the second flip-flop, and the positive logic output terminal of the first flip-flop and the input terminal of the second flip-flop are connected. The negative logic output terminal of the second flip-flop and the input terminal of the first flip-flop are connected, and from the positive logic output terminal and the negative logic output terminal of the first flip-flop or the second flip-flop. The differential clock signal may be output.
 上記の構成により、上記の効果に加えて、遅延機能付きレベルシフト回路の差動クロック信号生成回路の構成を簡素化できる。 With the above configuration, in addition to the above effects, the configuration of the differential clock signal generation circuit of the level shift circuit with a delay function can be simplified.
 上記の遅延機能付きレベルシフト回路において、前記差動クロック信号生成回路は、位相同期回路として構成されている、としてもよい。 In the level shift circuit with a delay function, the differential clock signal generation circuit may be configured as a phase synchronization circuit.
 上記の構成により、上記の効果に加えて、遅延機能付きレベルシフト回路の差動クロック信号生成回路の構成を簡素化できる。 With the above configuration, in addition to the above effects, the configuration of the differential clock signal generation circuit of the level shift circuit with a delay function can be simplified.
 上記の遅延機能付きレベルシフト回路において、前記差動クロック信号生成回路は、電流源から供給された電流量によって出力インピーダンスを変化させるように構成されている、としてもよい。 In the level shift circuit with a delay function, the differential clock signal generation circuit may be configured to change an output impedance depending on an amount of current supplied from a current source.
 上記の構成により、上記の効果に加えて、アナログクロック信号の遅延時間を調整できるようになる。 With the above configuration, in addition to the above effects, the delay time of the analog clock signal can be adjusted.
 上記の遅延機能付きレベルシフト回路において、前記キャパシタは、前記遅延機能付きレベルシフト回路を構成する他の素子と同一チップ上に形成されている、としてもよい。 In the level shift circuit with a delay function, the capacitor may be formed on the same chip as other elements constituting the level shift circuit with a delay function.
 上記の構成により、上記の効果に加えて、遅延機能付きレベルシフト回路の面積の増加をさらに抑えられる。 With the above configuration, in addition to the above effects, an increase in the area of the level shift circuit with a delay function can be further suppressed.
 上記の遅延機能付きレベルシフト回路において、前記キャパシタは、2以上のMOS容量であり、前記第1のNMOSトランジスタ及び前記第2のNMOSトランジスタの各ゲート間に、前記第1及び前記第2のNMOSトランジスタの各ゲートから見た容量値が等しくなるように並列に配置されている、としてもよい。 In the level shift circuit with a delay function, the capacitor has two or more MOS capacitors, and the first and second NMOS transistors are arranged between the gates of the first NMOS transistor and the second NMOS transistor. The capacitance values seen from the gates of the transistors may be arranged in parallel so as to be equal.
 上記の構成により、上記の効果に加えて、アナログクロック信号を遅延させる際にデューティ比をさらに保ちやすくなる。 The above configuration makes it easier to maintain the duty ratio when the analog clock signal is delayed in addition to the above effect.
 上記の遅延機能付きレベルシフト回路において、前記キャパシタは、外部からの制御電圧によって容量値が変化するバラクタにより構成されている、としてもよい。 In the above-described level shift circuit with a delay function, the capacitor may be composed of a varactor whose capacitance value is changed by an external control voltage.
 上記の構成により、上記の効果に加えて、アナログクロック信号の遅延時間を調整できるようになる。 With the above configuration, in addition to the above effects, the delay time of the analog clock signal can be adjusted.
 上記の遅延機能付きレベルシフト回路において、前記キャパシタは、複数のキャパシタのうちの一つであり、前記前記第1のNMOSトランジスタ及び前記第2のNMOSトランジスタの各ゲート間に前記複数のキャパシタが並列に配置され、前記複数のキャパシタ夫々に接続されたスイッチング素子によって前記複数のキャパシタの合成容量値が変化するように構成されている、としてもよい。 In the level shift circuit with a delay function, the capacitor is one of a plurality of capacitors, and the plurality of capacitors are connected in parallel between the gates of the first NMOS transistor and the second NMOS transistor. The combined capacitance value of the plurality of capacitors may be changed by a switching element that is disposed in each of the plurality of capacitors and is connected to each of the plurality of capacitors.
 上記の構成により、上記の効果に加えて、アナログクロック信号の遅延時間を調整できるようになる。 With the above configuration, in addition to the above effects, the delay time of the analog clock signal can be adjusted.
 上記目的を達成するために、その他の本発明に係るデジタル-アナログ混載型半導体集積回路は、前記第1の電源電圧の振幅を有したクロック信号を少なくとも生成するデジタル回路と、前記クロック信号を使用するアナログ回路と、前記デジタル回路と前記アナログ回路との間に設けられ、前記デジタル回路からの前記クロック信号が入力され、前記クロック信号の振幅を前記第1の電源電圧から前記第2の電源電圧にレベルシフトし、かつ前記ローパスフィルタを介して遅延させて得られる前記アナログクロック信号を出力する前記遅延調整機能付きレベルシフト回路と、を備えるものである。 To achieve the above object, another digital-analog mixed semiconductor integrated circuit according to the present invention uses at least a digital circuit for generating a clock signal having the amplitude of the first power supply voltage and the clock signal. And an analog circuit that is provided between the digital circuit and the analog circuit, the clock signal from the digital circuit is input, and the amplitude of the clock signal is changed from the first power supply voltage to the second power supply voltage. And a level shift circuit with a delay adjustment function for outputting the analog clock signal obtained by delaying through the low-pass filter.
 上記の構成により、デジタル-アナログ混載型半導体集積回路におけるデジタルノイズのアナログ回路への干渉を防止できる。 With the above configuration, it is possible to prevent interference of digital noise in an analog circuit in a digital-analog mixed semiconductor integrated circuit.
 上記のデジタル-アナログ混載型半導体集積回路において、前記アナログ回路は複数のアナログ回路のうちの一つであり、前記遅延機能付きレベルシフト回路により互いに異なる遅延時間を持った前記アナログクロック信号が前記複数のアナログ回路に夫々供給される、としてもよい。 In the digital-analog mixed semiconductor integrated circuit, the analog circuit is one of a plurality of analog circuits, and the analog clock signals having different delay times by the level shift circuit with a delay function are the plurality of analog circuits. The analog circuits may be supplied respectively.
 上記の構成により、デジタル-アナログ混載型半導体集積回路におけるデジタルノイズに伴うアナログ回路間の干渉を防止できる。 With the above configuration, it is possible to prevent interference between analog circuits due to digital noise in a digital-analog mixed semiconductor integrated circuit.
 上記目的を達成するために、その他の本発明に係る遅延回路は、相補的な一対の差動クロック信号を生成する差動クロック信号生成回路と、第1のNMOSトランジスタ及び第2のNMOSトランジスタを備え、前記差動クロック信号生成回路の一方の差動出力端が前記第1のNMOSトランジスタのゲートに接続され、前記差動クロック信号生成回路の他方の差動出力端が前記第2のNMOSトランジスタのゲートに接続されるように構成された差動クロック信号入力回路と、前記第1のNMOSトランジスタ及び前記第2のNMOSトランジスタのドレイン側の電位を夫々ラッチし、前記第1のNMOSトランジスタ及び前記第2のNMOSトランジスタのドレインの少なくとも一方からアナログクロック信号を出力するように構成されたラッチ回路と、前記第1のNMOSトランジスタ及び前記第2のNMOSトランジスタのゲート間に両端子が接続され、前記差動クロック信号生成回路の出力インピーダンスとともにローパスフィルタを形成するキャパシタと、を備え、前記アナログクロック信号は、前記差動クロック信号を前記ローパスフィルタを介して遅延させて成るものである。 In order to achieve the above object, another delay circuit according to the present invention includes a differential clock signal generation circuit that generates a pair of complementary differential clock signals, a first NMOS transistor, and a second NMOS transistor. One differential output terminal of the differential clock signal generation circuit is connected to a gate of the first NMOS transistor, and the other differential output terminal of the differential clock signal generation circuit is the second NMOS transistor. A differential clock signal input circuit configured to be connected to the gates of the first and second NMOS transistors, and latch the potentials on the drain sides of the first NMOS transistor and the second NMOS transistor, respectively. An analog clock signal is output from at least one of the drains of the second NMOS transistor. A latch circuit, and a capacitor having both terminals connected between the gates of the first NMOS transistor and the second NMOS transistor and forming a low-pass filter together with an output impedance of the differential clock signal generation circuit, The analog clock signal is obtained by delaying the differential clock signal through the low-pass filter.
 本発明によれば、回路面積及び消費電流の増加を抑えつつ、デューティ比を保ったままでアナログクロック信号を遅延させる遅延機能付きレベルシフト回路、デジタル-アナログ混載型半導体集積回路、及び遅延回路を提供することができる。 According to the present invention, there are provided a level shift circuit with a delay function, a digital-analog mixed type semiconductor integrated circuit, and a delay circuit that delay an analog clock signal while maintaining a duty ratio while suppressing an increase in circuit area and current consumption. can do.
図1は本発明の第1の実施の形態に係る遅延機能付きレベルシフト回路の構成を示す回路図である。FIG. 1 is a circuit diagram showing a configuration of a level shift circuit with a delay function according to the first embodiment of the present invention. 図2は図1の差動クロック信号生成回路の構成例を示す回路図である。FIG. 2 is a circuit diagram showing a configuration example of the differential clock signal generation circuit of FIG. 図3は図2の差動クロック信号生成回路の入出力波形図である。FIG. 3 is an input / output waveform diagram of the differential clock signal generation circuit of FIG. 図4は図1の差動クロック信号生成回路のその他の構成例を示す回路図である。FIG. 4 is a circuit diagram showing another configuration example of the differential clock signal generation circuit of FIG. 図5は図4の差動クロック信号生成回路の入出力波形図である。FIG. 5 is an input / output waveform diagram of the differential clock signal generation circuit of FIG. 図6は本発明の第1の実施の形態に係る遅延機能付きレベルシフト回路の変形例を示した回路図である。FIG. 6 is a circuit diagram showing a modification of the level shift circuit with a delay function according to the first embodiment of the present invention. 図7は図1の遅延機能付きレベルシフト回路における遅延発生の原理を説明するための波形図である。FIG. 7 is a waveform diagram for explaining the principle of delay generation in the level shift circuit with a delay function of FIG. 図8は図1の遅延機能付きレベルシフト回路における遅延発生の原理を説明するための波形図及びトランジスタの状態遷移図である。FIG. 8 is a waveform diagram and a transistor state transition diagram for explaining the principle of delay generation in the level shift circuit with a delay function of FIG. 図9は本発明の第3の実施の形態に係る遅延機能付きレベルシフト回路の構成を示す回路図である。FIG. 9 is a circuit diagram showing a configuration of a level shift circuit with a delay function according to the third embodiment of the present invention. 図10は本発明の第4の実施の形態に係る遅延機能付きレベルシフト回路の構成を示す回路図である。FIG. 10 is a circuit diagram showing a configuration of a level shift circuit with a delay function according to the fourth embodiment of the present invention. 図11は本発明の第5の実施の形態に係る遅延機能付きレベルシフト回路の構成を示す回路図である。FIG. 11 is a circuit diagram showing a configuration of a level shift circuit with a delay function according to the fifth embodiment of the present invention. 図12は本発明の第6の実施の形態に係る遅延機能付きレベルシフト回路の構成を示す回路図である。FIG. 12 is a circuit diagram showing a configuration of a level shift circuit with a delay function according to the sixth embodiment of the present invention. 図13は本発明の第5の実施の形態に係るレベルシフト回路の構成を示す回路図である。FIG. 13 is a circuit diagram showing a configuration of a level shift circuit according to the fifth embodiment of the present invention. 図14は本発明の第6の実施の形態に係るデジタル-アナログ混載型半導体集積回路の全体構成を説明するためのブロック図及び波形図である。FIG. 14 is a block diagram and waveform diagram for explaining the overall configuration of a digital-analog mixed semiconductor integrated circuit according to the sixth embodiment of the present invention. 図15は本発明の第6の実施の形態に係るデジタル-アナログ混載型半導体集積回路の構成例を示すブロック図である。FIG. 15 is a block diagram showing a configuration example of a digital-analog mixed semiconductor integrated circuit according to the sixth embodiment of the present invention. 図16は図15に示すデジタル回路、AD変換器、及びDA変換器を夫々駆動するクロック信号の波形図である。FIG. 16 is a waveform diagram of clock signals for driving the digital circuit, AD converter, and DA converter shown in FIG. 図17は従来のレベルシフト回路の構成を示す回路図である。FIG. 17 is a circuit diagram showing a configuration of a conventional level shift circuit. 図18は従来のその他のレベルシフト回路の構成を示す回路図である。FIG. 18 is a circuit diagram showing the configuration of another conventional level shift circuit. 図19は従来のデジタル-アナログ混載型半導体集積回路の全体構成を説明するためのブロック図及び波形図である。FIG. 19 is a block diagram and a waveform diagram for explaining the overall configuration of a conventional digital-analog mixed semiconductor integrated circuit. 図20は従来の遅延回路の構成例を示す回路図である。FIG. 20 is a circuit diagram showing a configuration example of a conventional delay circuit. 図21は従来の遅延回路の構成例を示す回路図である。FIG. 21 is a circuit diagram showing a configuration example of a conventional delay circuit.
 以下、本発明の好ましい実施の形態を、図面を参照しながら説明する。なお、以下では全ての図を通じて同一又は相当する要素には同一の参照符号を付して、その重複する説明を省略する。
(第1の実施の形態)
 [遅延機能付きレベルシフト回路の全体構成]
 図1は本発明の第1の実施の形態に係る遅延機能付きレベルシフト回路の構成を示す回路図である。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In the following description, the same or corresponding elements are denoted by the same reference symbols throughout the drawings, and redundant description thereof is omitted.
(First embodiment)
[Overall configuration of level shift circuit with delay function]
FIG. 1 is a circuit diagram showing a configuration of a level shift circuit with a delay function according to the first embodiment of the present invention.
 図1の遅延機能付きレベルシフト回路100は、入力側電源端子VDDIと、入力側グランド端子VSSIと、入力端子INと、出力側電源端子VDDOと、出力側グランド端子VSSOと、出力端子OUTとを有する。また、図1の遅延機能付きレベルシフト回路100は、図17の遅延機能付きレベルシフト回路700の構成にキャパシタC1を付加し、出力端子OUTから出力されたアナログクロック信号を、入力端子INに入力された単相クロック信号に対してキャパシタC1の容量値に応じて遅延させるように構成されている。これにより、アナログ回路へのデジタルノイズの波及を最大限に抑え、回路面積及び消費電流の増加を抑えつつ、デューティ比を保ったままでアナログクロック信号を遅延させることができる。 The level shift circuit 100 with a delay function in FIG. 1 includes an input side power supply terminal VDDI, an input side ground terminal VSSI, an input terminal IN, an output side power supply terminal VDDO, an output side ground terminal VSSO, and an output terminal OUT. Have. The level shift circuit 100 with a delay function in FIG. 1 adds a capacitor C1 to the configuration of the level shift circuit 700 with a delay function in FIG. 17, and inputs an analog clock signal output from the output terminal OUT to the input terminal IN. The single phase clock signal is delayed in accordance with the capacitance value of the capacitor C1. As a result, it is possible to delay the analog clock signal while maintaining the duty ratio while minimizing the spread of digital noise to the analog circuit and suppressing an increase in circuit area and current consumption.
 具体的には、遅延機能付きレベルシフト回路100は、差動クロック信号生成回路1と、差動クロック信号入力回路3と、ラッチ回路4と、インバータ回路2と、キャパシタC1と、を備えている。 Specifically, the level shift circuit 100 with a delay function includes a differential clock signal generation circuit 1, a differential clock signal input circuit 3, a latch circuit 4, an inverter circuit 2, and a capacitor C1. .
 差動クロック信号生成回路1は、入力側電源電圧[VDDI―VSSI]で駆動され、入力端子INに入力される単相クロック信号に基づいて、入力側電源電圧[VDDI―VSSI]の振幅を有し、かつ相補的な一対の差動クロック信号INO,INOBを生成する。 The differential clock signal generation circuit 1 is driven by the input-side power supply voltage [VDDI−VSSI] and has an amplitude of the input-side power supply voltage [VDDI−VSSI] based on the single-phase clock signal input to the input terminal IN. And a pair of complementary differential clock signals INO and INOB are generated.
 差動クロック信号入力回路3は、NMOSトランジスタN1及びNMOSトランジスタN2を備え、差動クロック信号生成回路1の2つの差動出力端のうち、一方の差動出力端がNMOSトランジスタN1のゲートに接続され、他方の差動出力端がNMOSトランジスタN2のゲートに接続されるように構成される。本実施の形態では、差動クロック信号入力回路3は、ゲートに一方の差動クロック信号INOが入力され、ソースが入力側グランド端子VSSIに接続されたNMOSトランジスタN1と、ゲートに他方の差動クロック信号INOBが入力され、ソースが入力側グランド端子VSSIに接続されたNMOSトランジスタN2と、を備えている。 The differential clock signal input circuit 3 includes an NMOS transistor N1 and an NMOS transistor N2, and one of the two differential output terminals of the differential clock signal generation circuit 1 is connected to the gate of the NMOS transistor N1. The other differential output terminal is configured to be connected to the gate of the NMOS transistor N2. In the present embodiment, the differential clock signal input circuit 3 has one differential clock signal INO input to the gate, the NMOS transistor N1 whose source is connected to the input side ground terminal VSSI, and the other differential clock signal to the gate. An NMOS transistor N2 to which the clock signal INOB is input and whose source is connected to the input side ground terminal VSSI.
 ラッチ回路4は、NMOSトランジスタN1,N2のドレイン側の電位(ノードW1,W2の電位)を夫々ラッチし、NMOSトランジスタN1,N2のドレインの少なくとも一方から出力側電源電圧[VDDO-VSSI]の振幅を有したアナログクロック信号を出力するように構成される。本実施の形態では、ラッチ回路4は、ソースが出力側電源端子VDDOに接続され、ドレインがNMOSトランジスタN1のドレインに接続され、ゲートがNMOSトランジスタN2のドレインに接続されたPMOSトランジスタP1と、ソースが出力側電源端子VDDOに接続され、ドレインがNMOSトランジスタN2のドレインに接続され、ゲートがNMOSトランジスタN1のドレインに接続されたPMOSトランジスタP2と、を備え、PMOSトランジスタP2のドレインとNMOSトランジスタN2のドレインとを互いに接続するノードW2からアナログクロック信号が出力されるように構成されている。 The latch circuit 4 latches the drain-side potentials (nodes W1 and W2) of the NMOS transistors N1 and N2, and the amplitude of the output-side power supply voltage [VDDO−VSSI] from at least one of the drains of the NMOS transistors N1 and N2. Is configured to output an analog clock signal. In this embodiment, the latch circuit 4 includes a PMOS transistor P1 having a source connected to the output side power supply terminal VDDO, a drain connected to the drain of the NMOS transistor N1, and a gate connected to the drain of the NMOS transistor N2. Is connected to the output side power supply terminal VDDO, the drain is connected to the drain of the NMOS transistor N2, and the gate is connected to the drain of the NMOS transistor N1, and the drain of the PMOS transistor P2 and the NMOS transistor N2 An analog clock signal is output from a node W2 that connects the drains to each other.
 つまり、PMOSトランジスタP1,P2は、互いのゲート及びドレインが所謂クロスカップル接続されており、NMOSトランジスタN1,N2のドレイン側の電位状態をラッチする。NMOSトランジスタN1がオンする場合、NMOSトランジスタN1のドレイン電圧はLowレベル(入力側グランド電位VSSI)となり、次にNMOSトランジスタN2がオンするまで、PMOSトランジスタP2がオンするとともにPMOSトランジスタP1がオフする状態を保持する。一方、NMOSトランジスタN2がオンする場合、NMOSトランジスタN2のドレイン電圧はLowレベル(入力側グランド電位VSSI)となり、次にNMOSトランジスタN1がオンするまで、PMOSトランジスタP1がオンするとともにPMOSトランジスタP2がオフする状態を保持する。以上の動作をラッチと定義する。 That is, the gates and drains of the PMOS transistors P1 and P2 are so-called cross-coupled, and latch the potential state on the drain side of the NMOS transistors N1 and N2. When the NMOS transistor N1 is turned on, the drain voltage of the NMOS transistor N1 becomes a low level (input-side ground potential VSSI), and the PMOS transistor P2 is turned on and the PMOS transistor P1 is turned off until the NMOS transistor N2 is turned on next time. Hold. On the other hand, when the NMOS transistor N2 is turned on, the drain voltage of the NMOS transistor N2 becomes low level (input-side ground potential VSSI), and the PMOS transistor P1 is turned on and the PMOS transistor P2 is turned off until the NMOS transistor N1 is turned on next time. Hold the state to do. The above operation is defined as a latch.
 インバータ回路2は、ラッチ回路4から出力されたアナログクロック信号を波形整形して出力する。本実施の形態では、インバータ回路2は、出力側電源電圧[VDDO-VSSO]で駆動され、入力端がNMOSトランジスタN2のドレインに接続され、出力端が出力端子OUTに接続されるように構成されている。 The inverter circuit 2 shapes the analog clock signal output from the latch circuit 4 and outputs it. In the present embodiment, the inverter circuit 2 is driven by the output side power supply voltage [VDDO-VSSO], the input terminal is connected to the drain of the NMOS transistor N2, and the output terminal is connected to the output terminal OUT. ing.
 キャパシタC1は、NMOSトランジスタN1,N2の各ゲート間に両端子が接続され、差動クロック信号生成回路1の出力インピーダンスとともにRCローパスフィルタを形成するように構成されている。キャパシタC1は、遅延機能付きレベルシフト回路100を構成する他の素子と同一チップ上に形成されている。 The capacitor C1 has both terminals connected between the gates of the NMOS transistors N1 and N2, and is configured to form an RC low-pass filter together with the output impedance of the differential clock signal generation circuit 1. The capacitor C1 is formed on the same chip as the other elements constituting the level shift circuit 100 with a delay function.
 図2は、図1の差動クロック信号生成回路の構成例を示す回路図であり、図3は、図2の差動クロック信号生成回路の入出力波形図である。 FIG. 2 is a circuit diagram showing a configuration example of the differential clock signal generation circuit of FIG. 1, and FIG. 3 is an input / output waveform diagram of the differential clock signal generation circuit of FIG.
 図2に示されるように、差動クロック信号生成回路1は、同一サイズのインバータ回路11,12を備え、外部からの単相クロック信号がインバータ回路11の入力端に入力され、インバータ回路11の出力端とインバータ回路12の入力端とが接続され、インバータ回路11,12の各出力端から差動クロック信号INO,INOBが出力されるように構成されている。さらに、差動クロック信号生成回路1は、インバータ回路11,12の出力端の出力インピーダンスが略等しくなるように構成されている。この構成によれば、図3に示されるように、前段のインバータ回路11に入力されたクロック信号と同一周波数の差動クロック信号INO,INOBが生成されることが分かる。 As shown in FIG. 2, the differential clock signal generation circuit 1 includes inverter circuits 11 and 12 of the same size, and a single-phase clock signal from the outside is input to the input terminal of the inverter circuit 11. The output terminal and the input terminal of the inverter circuit 12 are connected, and the differential clock signals INO and INOB are output from the output terminals of the inverter circuits 11 and 12. Further, the differential clock signal generation circuit 1 is configured such that the output impedances of the output terminals of the inverter circuits 11 and 12 are substantially equal. According to this configuration, as shown in FIG. 3, it can be seen that differential clock signals INO and INOB having the same frequency as the clock signal input to the inverter circuit 11 in the previous stage are generated.
 図4は、図1の差動クロック信号生成回路1のその他の構成例を示す回路図であり、図5は、図4の差動クロック信号生成回路の入出力波形図である。図5に示されるように、差動クロック信号生成回路1は、同一サイズのエッジトリガ型フリップフロップ13,14を備え、外部からの単相クロック信号がエッジトリガ型フリップフロップ13のクロック入力端に入力され、該単相クロック信号をインバータ回路15によって論理反転した信号がエッジトリガ型フリップフロップ14のクロック入力端(C)に入力され、エッジトリガ型フリップフロップ13の正論理出力端(Q1)とエッジトリガ型フリップフロップ14の入力端(D2)が接続され、エッジトリガ型フリップフロップ14の負論理出力端(Q2B)とエッジトリガ型フリップフロップ13の入力端(D1)が接続され、エッジトリガ型フリップフロップ13又はエッジトリガ型フリップフロップ14の正論理出力端(Q1)及び負論理出力端(Q2B)から差動クロック信号INO,INOBが出力されるように構成されている。さらに、エッジトリガ型フリップフロップ13,14は、正論理出力及び負論理出力の各出力インピーダンスが略等しくなるように構成されている。この構成によれば、図5に示されるように、前段のエッジトリガ型フリップフロップ13に入力されたクロック信号を二分周した差動クロック信号INO,INOBが生成されることが分かる。 FIG. 4 is a circuit diagram showing another configuration example of the differential clock signal generation circuit 1 of FIG. 1, and FIG. 5 is an input / output waveform diagram of the differential clock signal generation circuit of FIG. As shown in FIG. 5, the differential clock signal generation circuit 1 includes edge-triggered flip- flops 13 and 14 having the same size, and an external single-phase clock signal is applied to the clock input terminal of the edge-triggered flip-flop 13. A signal obtained by logically inverting the single-phase clock signal by the inverter circuit 15 is input to the clock input terminal (C) of the edge trigger flip-flop 14, and the positive logic output terminal (Q 1) of the edge trigger flip-flop 13 is input. The input end (D2) of the edge trigger flip-flop 14 is connected, the negative logic output end (Q2B) of the edge trigger flip-flop 14 and the input end (D1) of the edge trigger flip-flop 13 are connected, and the edge trigger type Positive logic output terminal (Q of the flip-flop 13 or the edge trigger type flip-flop 14) ) And negative logic output (Q2B) from the differential clock signals INO, is configured to INOB is output. Further, the edge trigger type flip- flops 13 and 14 are configured so that the output impedances of the positive logic output and the negative logic output are substantially equal. According to this configuration, as shown in FIG. 5, it can be seen that differential clock signals INO and INOB are generated by dividing the clock signal input to the preceding edge trigger type flip-flop 13 by two.
 上記の構成例の他に、差動クロック信号生成回路1は、図6に示されるように、略等しい出力インピーダンスを有した2つの出力端から差動クロック信号INO,INOBを出力するように構成された位相同期回路(PLL回路)で実現されてもよい。若しくは、差動クロック信号生成回路1は、正論理出力端と負論理出力端とがあり、かつ双方の出力インピーダンスが略等しくなるように構成された任意の回路で実現されてもよい。 In addition to the above configuration example, the differential clock signal generation circuit 1 is configured to output differential clock signals INO and INOB from two output terminals having substantially equal output impedances, as shown in FIG. The phase synchronization circuit (PLL circuit) may be implemented. Alternatively, the differential clock signal generation circuit 1 may be realized by an arbitrary circuit that has a positive logic output end and a negative logic output end and is configured so that the output impedances of both are substantially equal.
 [遅延機能付きレベルシフト回路の動作]
 以下、図1の遅延機能付きレベルシフト回路100の動作の概要を説明する。
差動クロック信号INO,INOBは、入力側電源電圧[VDDI-VSSI]の振幅を有しており、互いに位相が反転した関係にある。従って、NMOSトランジスタN1,N2は相補的にオンオフする。
[Operation of level shift circuit with delay function]
The outline of the operation of the level shift circuit 100 with a delay function in FIG.
The differential clock signals INO and INOB have the amplitude of the input-side power supply voltage [VDDI−VSSI] and have a relationship in which the phases are inverted. Accordingly, the NMOS transistors N1 and N2 are turned on and off in a complementary manner.
 例えば、差動クロック信号INO,INOBの電位が夫々Lowレベル(入力側グランド電位VSSI)、Highレベル(入力側電源電位VDDI)の場合、NMOSトランジスタN1がオンするとともに、NMOSトランジスタN2がオフする。このとき、PMOSトランジスタP2のゲート電圧は、入力側グランド電位VSSIよりもNMOSトランジスタN1のオン電圧(ドレイン-ソース間電圧)分高い電圧となり、PMOSトランジスタP2はオンする。すると、PMOSトランジスタP1のゲート電圧は、高電圧側電源電位VDDOからPMOSトランジスタP2のオン電圧(ドレイン-ソース間電圧)分低い電圧となり、PMOSトランジスタP1はオフする。また、NMOSトランジスタN2のドレイン電圧は、インバータ回路2の入力端にも印加され、インバータ回路2の出力は出力側グランド電位VSSO付近のLowレベルの電圧となる。 For example, when the potentials of the differential clock signals INO and INOB are Low level (input-side ground potential VSSI) and High level (input-side power supply potential VDDI), the NMOS transistor N1 is turned on and the NMOS transistor N2 is turned off. At this time, the gate voltage of the PMOS transistor P2 becomes higher than the input-side ground potential VSSI by the on-voltage (drain-source voltage) of the NMOS transistor N1, and the PMOS transistor P2 is turned on. Then, the gate voltage of the PMOS transistor P1 becomes lower than the high-voltage power supply potential VDDO by the on-voltage (drain-source voltage) of the PMOS transistor P2, and the PMOS transistor P1 is turned off. The drain voltage of the NMOS transistor N2 is also applied to the input terminal of the inverter circuit 2, and the output of the inverter circuit 2 becomes a low level voltage near the output-side ground potential VSSO.
 ここで、仮に差動クロック信号INOBの電位のみがLowレベルに変化した場合、NMOSトランジスタN1,N2が双方オフとなるので、PMOSトランジスタP1,P2のオンオフ状態が保持されることになる。つまり、ゲートとドレインとがクロスカップル接続されたPMOSトランジスタP1,P2はラッチ回路4として作動する。 Here, if only the potential of the differential clock signal INOB changes to the Low level, the NMOS transistors N1 and N2 are both turned off, so that the on / off states of the PMOS transistors P1 and P2 are maintained. That is, the PMOS transistors P1 and P2 whose gates and drains are cross-coupled operate as the latch circuit 4.
 一方、差動クロック信号INO,INOBの電位が夫々Highレベル(入力側電源電位VDDI)、Lowレベル(入力側グランド電位VSSI)の場合、NMOSトランジスタN2がオンするとともに、NMOSトランジスタN1がオフする。この場合、上記と同様の動作となり、PMOSトランジスタP1がオンするとともに、PMOSトランジスタP2がオフする。また、インバータ回路2の出力は出力側電源電位VDDO付近のHighレベルの電圧となる。 On the other hand, when the potentials of the differential clock signals INO and INOB are High level (input-side power supply potential VDDI) and Low level (input-side ground potential VSSI), the NMOS transistor N2 is turned on and the NMOS transistor N1 is turned off. In this case, the operation is the same as described above, and the PMOS transistor P1 is turned on and the PMOS transistor P2 is turned off. Further, the output of the inverter circuit 2 becomes a high level voltage in the vicinity of the output side power supply potential VDDO.
 [遅延の発生原理]
 図7は、図1の遅延機能付きレベルシフト回路100における遅延発生の原理を説明するための波形図である。
[Principle of delay generation]
FIG. 7 is a waveform diagram for explaining the principle of delay generation in the level shift circuit 100 with a delay function in FIG.
 図7(A),(D)は、差動クロック信号生成回路1から出力される差動クロック信号INO,INOBの理想的な波形図である。 7A and 7D are ideal waveform diagrams of the differential clock signals INO and INOB output from the differential clock signal generation circuit 1. FIG.
 しかし、差動クロック信号INO,INOBの波形は、現実的には、図7(A),(D)のような矩形波とはならず、差動クロック信号生成回路1の出力インピーダンスとキャパシタC1とによって構成されたローパスフィルタによって、図7(B),(E)のように立上り及び立下りが緩やかになるように鈍らせている。なお、波形の立上り区間の時定数は、通常、波形の立下り区間の時定数よりも長くなっている。 However, the waveforms of the differential clock signals INO and INOB are not actually rectangular waves as shown in FIGS. 7A and 7D, but the output impedance of the differential clock signal generation circuit 1 and the capacitor C1. Are blunted so that the rise and fall are gentle as shown in FIGS. 7B and 7E. Note that the time constant of the rising edge of the waveform is usually longer than the time constant of the falling edge of the waveform.
 さらに、差動クロック信号INO,INOBの波形は、NMOSトランジスタN1、N2の閾値電圧Vth(N1,N2がオン状態となるゲート電圧)によって遅延され、かつ矩形波のドレイン電圧として波形整形される。なお、閾値電圧Vthは、一般的に、入力側電源電位VDDLの2分の1よりも低い値であり、立ち上がりの遅延時間TRと立ち下がりの遅延時間TFとの間にずれが生じてくる。このため、NMOSトランジスタN1,N2は理想的には相補的にオンオフするが、例えば、NMOSトランジスタN1がオフからオンに切り替わる時間と、NMOSトランジスタN2がオンからオフに切り替わる時間との間にはずれが生じる。 Furthermore, the waveforms of the differential clock signals INO and INOB are delayed by the threshold voltages Vth (gate voltages at which N1 and N2 are turned on) of the NMOS transistors N1 and N2, and are shaped as rectangular wave drain voltages. The threshold voltage Vth is generally a value lower than half of the input-side power supply potential VDDL, and a deviation occurs between the rising delay time TR and the falling delay time TF. For this reason, the NMOS transistors N1 and N2 are ideally turned on and off in a complementary manner. For example, there is a difference between the time when the NMOS transistor N1 is switched from off to on and the time when the NMOS transistor N2 is switched from on to off. Arise.
 しかし、NMOSトランジスタN1、N2のうち、一方で立ち上がり時の波形整形が行われたときに、他方で立ち下がり時の波形整形が行われ、これらの波形整形後の電圧(N1,N2のドレイン電圧)がラッチ回路4として作動するPMOSトランジスタP1、P2のゲートに印加される。これにより、立ち上がり時の遅延と立ち下がり時の遅延との差が相殺され、差動クロック信号生成回路1の理想的な出力のデューティ比が再現される。そして、最終段のインバータ回路2によって再び波形整形され、出力端子OUTからは図7(C),(D)に示されるようなアナログクロック信号が出力されることになる。 However, when one of the NMOS transistors N1 and N2 is subjected to waveform shaping at the time of rising, the other is subjected to waveform shaping at the time of falling, and these waveform-shaped voltages (drain voltages of N1 and N2) ) Is applied to the gates of the PMOS transistors P1 and P2 operating as the latch circuit 4. Thereby, the difference between the delay at the rise and the delay at the fall is canceled, and the ideal output duty ratio of the differential clock signal generation circuit 1 is reproduced. Then, the waveform is again shaped by the inverter circuit 2 at the final stage, and an analog clock signal as shown in FIGS. 7C and 7D is output from the output terminal OUT.
 なお、このときのNMOSトランジスタN1,N2及びPMOSトランジスタP1,P2の状態遷移を表したのが図8である。図8に示すように、立ち上がりの遅延時間TRと立ち下がりの遅延時間TFとの間のずれにより、NMOSトランジスタN1,N2のドレイン電圧は、相補的な関係とはならず、NMOSトランジスタN1,N2のオンオフのタイミングが同期していない。しかし、NMOSトランジスタN1,N2のドレイン電圧がラッチ回路4として作動するPMOSトランジスタP1,P2のゲートに印加されることで、PMOSトランジスタP1,P2のオンオフのタイミングは同期していることが分かる。 FIG. 8 shows the state transition of the NMOS transistors N1, N2 and the PMOS transistors P1, P2 at this time. As shown in FIG. 8, the drain voltage of the NMOS transistors N1 and N2 does not have a complementary relationship due to the difference between the rising delay time TR and the falling delay time TF, and the NMOS transistors N1 and N2 The on / off timing is not synchronized. However, when the drain voltages of the NMOS transistors N1 and N2 are applied to the gates of the PMOS transistors P1 and P2 operating as the latch circuit 4, it can be seen that the on / off timings of the PMOS transistors P1 and P2 are synchronized.
 以上、本実施の形態に係る遅延機能付きレベルシフト回路100によれば、差動クロック信号生成回路1の出力インピーダンスとキャパシタC1とによってローパスフィルタを形成して差動クロック信号INO,INOBの波形を鈍らせて遅延を得るようにしている。ここで、NMOSトランジスタN1,N2の各ゲートには相補的な差動クロック信号INO,INOBが入力される。このため、NMOSトランジスタN1,N2のゲート間に接続されたキャパシタC1は、仮想接地に対して各ゲートに2倍の容量が接続されているのと同様の効果をもたらす。 As described above, according to the level shift circuit 100 with a delay function according to the present embodiment, the low-pass filter is formed by the output impedance of the differential clock signal generation circuit 1 and the capacitor C1, and the waveforms of the differential clock signals INO and INOB are obtained. I am trying to get a delay by slowing down. Here, complementary differential clock signals INO and INOB are input to the gates of the NMOS transistors N1 and N2, respectively. For this reason, the capacitor C1 connected between the gates of the NMOS transistors N1 and N2 brings about the same effect as when the double capacitance is connected to each gate with respect to the virtual ground.
 すると、本実施の形態におけるローパスフィルタは、図21の遅延回路に含まれるローパスフィルタと比較して、図21の抵抗Rの抵抗値が差動クロック信号生成回路1の出力インピーダンスと等しいと仮定した場合、図21のキャパシタCの2分の1の容量値によって同程度の遅延を実現できる。また、差動クロック信号生成回路1の2つの差動出力端双方の出力インピーダンスを等しくすれば、差動クロック信号INO,INOBは同様の歪み方をするので、ラッチ回路として作動するPMOSトランジスタP1,P2において立ち上がり時の遅延と立ち下がり時の遅延との間の差を相殺することができる。 Then, the low-pass filter in the present embodiment is assumed that the resistance value of the resistor R in FIG. 21 is equal to the output impedance of the differential clock signal generation circuit 1 as compared with the low-pass filter included in the delay circuit in FIG. In this case, the same delay can be realized by the capacitance value of one half of the capacitor C in FIG. Further, if the output impedances of the two differential output terminals of the differential clock signal generation circuit 1 are equalized, the differential clock signals INO and INOB are distorted in the same manner, so that the PMOS transistors P1 and P1 that operate as a latch circuit In P2, the difference between the delay at the rise and the delay at the fall can be canceled out.
 (第3の実施の形態)
 図9は本発明の第3の実施の形態に係る遅延機能付きレベルシフト回路の構成を示す回路図である。
(Third embodiment)
FIG. 9 is a circuit diagram showing a configuration of a level shift circuit with a delay function according to the third embodiment of the present invention.
 図9の遅延機能付きレベルシフト回路100が図1の遅延機能付きレベルシフト回路100と相違する点は、遅延を発生させるキャパシタC1の代わりに、MOS容量C2,C3がNMOSトランジスタN1,N2の各ゲートから見た容量値が等しくなるように設置されている点である。MOS容量は、一般的に、極性や寄生容量を有し、かつ両端子双方から見た容量値が変化する。そこで、本実施の形態では、NMOSトランジスタN1,N2の各ゲートから見える容量値が等しくなるように、MOS容量C2,C3を逆方向かつ並列に接続している。これにより、アナログクロック信号を遅延する際にデューティ比が保ち易くなる。 9 differs from the level shift circuit 100 with a delay function in FIG. 1 in that the MOS capacitors C2 and C3 are replaced with the NMOS transistors N1 and N2 in place of the capacitor C1 that generates a delay. This is the point that the capacitance values seen from the gate are equal. The MOS capacitor generally has polarity and parasitic capacitance, and the capacitance value seen from both terminals changes. Therefore, in the present embodiment, the MOS capacitors C2 and C3 are connected in the reverse direction and in parallel so that the capacitance values seen from the gates of the NMOS transistors N1 and N2 are equal. This makes it easier to maintain the duty ratio when delaying the analog clock signal.
 (第4の実施の形態)
 図10は本発明の第4の実施の形態に係る遅延機能付きレベルシフト回路の構成を示す回路図である。
(Fourth embodiment)
FIG. 10 is a circuit diagram showing a configuration of a level shift circuit with a delay function according to the fourth embodiment of the present invention.
 図10の遅延機能付きレベルシフト回路100が図1の遅延機能付きレベルシフト回路100と相違する点は、遅延を発生させるキャパシタC1が、外部からの制御電圧VCTRLによって容量値が変化するバラクタVC1,VC2によって構成される点である。本実施の形態であっても、回路面積及び消費電流の増加を抑えつつ、デューティ比を保ったままでアナログクロック信号を遅延させることができる。さらに、外部からの制御電圧VCTRLによってバラクタVC1,VC2の容量値を変化させることで、アナログクロック信号の遅延時間を調整することもできる。 The level shift circuit 100 with a delay function in FIG. 10 is different from the level shift circuit 100 with a delay function in FIG. 1 in that a capacitor C1 that generates a delay has a varactor VC1, a capacitance value of which varies according to an external control voltage VCTRL. This is a point constituted by VC2. Even in this embodiment, the analog clock signal can be delayed while maintaining the duty ratio while suppressing an increase in circuit area and current consumption. Furthermore, the delay time of the analog clock signal can be adjusted by changing the capacitance values of the varactors VC1 and VC2 by the external control voltage VCTRL.
 (第5の実施の形態)
 図11は本発明の第5の実施の形態に係る遅延機能付きレベルシフト回路の構成を示す回路図である。
(Fifth embodiment)
FIG. 11 is a circuit diagram showing a configuration of a level shift circuit with a delay function according to the fifth embodiment of the present invention.
 図11の遅延機能付きレベルシフト回路100が図1の遅延機能付きレベルシフト回路100と相違する点は、NMOSトランジスタN1,N2の各ゲート間に複数のキャパシタC1~CNが並列に配置され、かつ各々のキャパシタC1~CNに対してスイッチング素子SW1~SWNが直列に接続されている点である。なお、スイッチング素子SW1~SWNのオンオフは、外部からのデジタル制御信号DCTRLによって制御されている。本実施の形態であっても、回路面積及び消費電流の増加を抑えつつ、デューティ比を保ったままでアナログクロック信号を遅延させることができる。さらに、スイッチング素子SW1~SWN夫々のオンオフを制御して、NMOSトランジスタN1,N2の各ゲート間に接続されている容量値、即ち複数のキャパシタC1~CNの合成容量値を変化させることで、アナログクロック信号の遅延時間を調整することもできる。
(第6の実施の形態)
 図12は本発明の第6の実施の形態に係る遅延機能付きレベルシフト回路の構成を示す回路図である。
The level shift circuit 100 with a delay function in FIG. 11 is different from the level shift circuit 100 with a delay function in FIG. 1 in that a plurality of capacitors C1 to CN are arranged in parallel between the gates of the NMOS transistors N1 and N2. The switching elements SW1 to SWN are connected in series to the capacitors C1 to CN. Note that on / off of the switching elements SW1 to SWN is controlled by an external digital control signal DCTRL. Even in this embodiment, the analog clock signal can be delayed while maintaining the duty ratio while suppressing an increase in circuit area and current consumption. Further, by controlling on / off of each of the switching elements SW1 to SWN, the capacitance value connected between the gates of the NMOS transistors N1 and N2, that is, the combined capacitance value of the plurality of capacitors C1 to CN is changed, thereby changing the analog value. The delay time of the clock signal can also be adjusted.
(Sixth embodiment)
FIG. 12 is a circuit diagram showing a configuration of a level shift circuit with a delay function according to the sixth embodiment of the present invention.
 図12の遅延機能付きレベルシフト回路100が図1の遅延機能付きレベルシフト回路100と相違する点は、差動クロック信号生成回路1の入力側電源電位VDDI側に電流源I1が備えられ、かつ入力側グランド電位VSSI側に電流源I2が備えられている点である。本実施の形態であっても、回路面積及び消費電流の増加を抑えつつ、デューティ比を保ったままでアナログクロック信号を遅延させることができる。さらに、電流源I1、I2の電流量を夫々調整することによって、差動クロック信号生成回路1の2つの差動出力毎に出力インピーダンスを変化させ、アナログクロック信号の遅延時間を調整することもできる。
(第7の実施の形態)
 [遅延機能付きレベルシフト回路の構成]
 図13は、本発明の第7の実施の形態に係る遅延機能付きレベルシフト回路の構成を示す回路図である。
The level shift circuit 100 with a delay function in FIG. 12 is different from the level shift circuit 100 with a delay function in FIG. 1 in that a current source I1 is provided on the input side power supply potential VDDI side of the differential clock signal generation circuit 1, and The current source I2 is provided on the input side ground potential VSSI side. Even in this embodiment, the analog clock signal can be delayed while maintaining the duty ratio while suppressing an increase in circuit area and current consumption. Further, by adjusting the current amounts of the current sources I1 and I2, the output impedance can be changed for each of the two differential outputs of the differential clock signal generation circuit 1, and the delay time of the analog clock signal can be adjusted. .
(Seventh embodiment)
[Configuration of level shift circuit with delay function]
FIG. 13 is a circuit diagram showing a configuration of a level shift circuit with a delay function according to the seventh embodiment of the present invention.
 図13の遅延機能付きレベルシフト回路200は、入力側電源端子VDDLと、入力側グランド端子VSSLと、入力端子INと、出力側電源端子VDDHと、出力側グランド端子VSSHと、出力端子OUTとを有する。なお、出力側電源端子VDDHの電源電位VDDHは、入力側電源端子VDDLの電源電位VDDLよりも高電位とする。 The level shift circuit 200 with a delay function in FIG. 13 includes an input side power supply terminal VDDL, an input side ground terminal VSSL, an input terminal IN, an output side power supply terminal VDDH, an output side ground terminal VSSH, and an output terminal OUT. Have. Note that the power supply potential VDDH of the output side power supply terminal VDDH is higher than the power supply potential VDDL of the input side power supply terminal VDDL.
 また、遅延機能付きレベルシフト回路200は、差動クロック信号生成回路1と、差動クロック信号入力回路3と、電源供給回路20と、断続回路5と、保護回路6と、抵抗R1と、NAND回路7,8で構成されるRSラッチ回路と、インバータ回路9,10で構成される電源供給及び断続制御回路と、を備える。 Further, the level shift circuit 200 with a delay function includes a differential clock signal generation circuit 1, a differential clock signal input circuit 3, a power supply circuit 20, an intermittent circuit 5, a protection circuit 6, a resistor R1, and a NAND. An RS latch circuit composed of circuits 7 and 8 and a power supply and intermittent control circuit composed of inverter circuits 9 and 10 are provided.
 差動クロック信号生成回路1は、入力側電源電圧[VDDL-VSSL]で駆動され、入力端子INに入力される単相クロック信号に基づいて、入力側電源電圧[VDDL-VSSL]の振幅を有し、かつ相補的な一対の差動クロック信号XINO,XINOBを生成する。 The differential clock signal generation circuit 1 is driven by the input side power supply voltage [VDDL−VSSL], and has an amplitude of the input side power supply voltage [VDDL−VSSL] based on the single-phase clock signal input to the input terminal IN. And a pair of complementary differential clock signals XINO and XINOB are generated.
 差動クロック信号入力回路3は、NMOSトランジスタN1及びNMOSトランジスタN2を備え、差動クロック信号生成回路1の2つの差動出力端のうち、一方の差動出力端がNMOSトランジスタN1のゲートに接続され、他方の差動出力端がNMOSトランジスタN2のゲートに接続されるように構成される。本実施の形態では、差動クロック信号入力回路3は、ゲートに一方の差動クロック信号INOが入力され、ソースが後述のNMOSトランジスタN3を介して出力側グランド端子VSSLに接続されたNMOSトランジスタN1と、ゲートに他方の差動クロック信号INOBが入力され、ソースが後述のNMOSトランジスタN4を介して出力側グランド端子VSSLに接続されたNMOSトランジスタN2と、を備えている。 The differential clock signal input circuit 3 includes an NMOS transistor N1 and an NMOS transistor N2, and one of the two differential output terminals of the differential clock signal generation circuit 1 is connected to the gate of the NMOS transistor N1. The other differential output terminal is configured to be connected to the gate of the NMOS transistor N2. In this embodiment, the differential clock signal input circuit 3 has one differential clock signal INO input to the gate and the source connected to the output side ground terminal VSSL via the NMOS transistor N3 described later. And an NMOS transistor N2 whose gate is supplied with the other differential clock signal INOB and whose source is connected to an output-side ground terminal VSSL via an NMOS transistor N4 described later.
 電源供給回路20は、PMOSトランジスタP3及びPMOSトランジスタP4を備え、PMOSトランジスタP3及びPMOSトランジスタO4のソースが第1の出力側電源電圧[VDDH-VSSL]の高電位側の出力側電源端子VDDHに接続され、PMOSトランジスタP3及びPMOSトランジスタP4のドレインがNAND回路7,8で構成されるラッチ回路のラッチ箇所であるノードW1,W2に接続され、ノードW1,W2のうち、一方のノードに出力側電源端子VDDHからの電圧を供給するとともに、他方のノードへの出力側電源端子VDDHからの電圧の供給を遮断するように構成されている。 The power supply circuit 20 includes a PMOS transistor P3 and a PMOS transistor P4, and the sources of the PMOS transistor P3 and the PMOS transistor O4 are connected to the output-side power supply terminal VDDH on the high potential side of the first output-side power supply voltage [VDDH−VSSL]. The drains of the PMOS transistor P3 and the PMOS transistor P4 are connected to nodes W1 and W2 which are latched portions of the latch circuit composed of the NAND circuits 7 and 8, and one of the nodes W1 and W2 is connected to the output side power supply. While supplying the voltage from the terminal VDDH, the supply of the voltage from the output side power supply terminal VDDH to the other node is cut off.
 断続回路5は、NMOSトランジスタN1,N2のソースから第1の出力側電源電圧[VDDH-VSSL]の低電位側の出力側グランド端子VSSLに至る2つの経路間にNMOSトランジスタN3,N4を備え、NMOSトランジスタN3,N4のオンオフにより該2つの経路のうち一方を接続し且つ他方を切断するように構成されている。 The intermittent circuit 5 includes NMOS transistors N3 and N4 between two paths from the sources of the NMOS transistors N1 and N2 to the output-side ground terminal VSSL on the low potential side of the first output-side power supply voltage [VDDH−VSSL]. One of the two paths is connected and the other is disconnected by turning on and off the NMOS transistors N3 and N4.
 保護回路6は、ノードW1,W2とNMOSトランジスタN1,N2のドレインとの間にNMOSトランジスタN5,N6を備え、NMOSトランジスタN1,N2のドレイン電圧を耐圧以下に制限するように構成されている。 The protection circuit 6 includes NMOS transistors N5 and N6 between the nodes W1 and W2 and the drains of the NMOS transistors N1 and N2, and is configured to limit the drain voltage of the NMOS transistors N1 and N2 to a withstand voltage or less.
 抵抗R1は、ノードW1,W2との間に接続されている。 The resistor R1 is connected between the nodes W1 and W2.
 NAND回路7,8は、第2の出力側電源電圧[VDDH-VSSH]で駆動され、入力端がノードW1,W2と接続され、出力端子OUTと接続されており、RSラッチ回路を構成している。 The NAND circuits 7 and 8 are driven by the second output side power supply voltage [VDDH−VSSH], input terminals are connected to the nodes W1 and W2, and are connected to the output terminal OUT, thereby forming an RS latch circuit. Yes.
 インバータ回路9,10は、出力側電源電圧[VDDH-VSSH]で駆動され、入力端が出力端子OUTと接続される。なお、インバータ回路9,10の出力に基づいて、電源供給回路20及び断続回路5が制御される。 The inverter circuits 9 and 10 are driven by the output side power supply voltage [VDDH−VSSH], and their input terminals are connected to the output terminal OUT. The power supply circuit 20 and the intermittent circuit 5 are controlled based on the outputs of the inverter circuits 9 and 10.
 [遅延機能付きレベルシフト回路の動作]
 以下、図13の遅延機能付きレベルシフト回路200の動作の概要を説明する。
[Operation of level shift circuit with delay function]
Hereinafter, an outline of the operation of the level shift circuit 200 with a delay function in FIG.
 例えば差動クロック信号INOの電位がLowレベル(入力側グランド電位VSSL)からHighレベル(入力側電源電位VDDL)に変化した場合、NMOSトランジスタN1がオンし、図中のノードW1のHighレベルの電位(出力側電源電位VDDH)が低下する。この際、NMOSトランジスタN5のゲートには差動クロック信号INOのHighレベル(出力側電源電位VDDH)の電圧が印加される。そして、NMOSトランジスタN5によって、NMOSトランジスタN1のドレイン電位を出力側電源電位VDDH以下(NMOSトランジスタN1の耐圧以下)に制限されるので、NMOSトランジスタN1の破壊を招くことはない。また、NMOSトランジスタN2はオフするが、NMOSトランジスタN6のゲートにはLowレベル(入力側グランド電位VSSL)の電圧が印加される。このため、ノードW2の電位がHighレベル(出力側電源電位VDDH)であっても、NMOSトランジスタN2のドレイン電位は出力側電源電位VDDH以下に制限される。  For example, when the potential of the differential clock signal INO changes from the low level (input side ground potential VSSL) to the high level (input side power supply potential VDDL), the NMOS transistor N1 is turned on, and the high level potential of the node W1 in the figure. (Output-side power supply potential VDDH) decreases. At this time, a high level voltage (output-side power supply potential VDDH) of the differential clock signal INO is applied to the gate of the NMOS transistor N5. The NMOS transistor N5 limits the drain potential of the NMOS transistor N1 to the output side power supply potential VDDH or less (below the withstand voltage of the NMOS transistor N1), so that the NMOS transistor N1 is not destroyed. Further, the NMOS transistor N2 is turned off, but a low level (input-side ground potential VSSL) voltage is applied to the gate of the NMOS transistor N6. Therefore, even if the potential of the node W2 is at a high level (output-side power supply potential VDDH), the drain potential of the NMOS transistor N2 is limited to be equal to or lower than the output-side power supply potential VDDH. *
 差動クロック信号INOがHighレベル(入力側電源電位VDDH)からLowレベル(入力側グランド電位VSSL)に変化した場合も、上記と同様の動作となる。 Also when the differential clock signal INO changes from the high level (input-side power supply potential VDDH) to the low level (input-side ground potential VSSL), the same operation as described above is performed.
 [遅延の発生原理]
 図13の遅延機能付きレベルシフト回路200は、上記の実施の形態と同様の原理により、NMOSトランジスタN1,N2の各ゲート間にキャパシタC1を設けることで、回路面積及び消費電流の増加を抑えつつ、デューティ比を保ったままでアナログクロック信号を遅延させることができる。なお、相補的なアナログクロック信号が入力され、ラッチ回路で処理される遅延機能付きレベルシフト回路において、そのアナログクロック信号の入力間にキャパシタが挿入されることで、同様に遅延を発生させることができる。さらに、遅延機能付きレベルシフト回路200は、入力側電源と出力側電源とを同一にすることで、単なる遅延回路として用いることもできる。
[Principle of delay generation]
The level shift circuit 200 with a delay function in FIG. 13 is provided with a capacitor C1 between the gates of the NMOS transistors N1 and N2 based on the same principle as the above embodiment, while suppressing an increase in circuit area and current consumption. The analog clock signal can be delayed while maintaining the duty ratio. Note that in a level shift circuit with a delay function that receives a complementary analog clock signal and is processed by a latch circuit, a delay can be similarly generated by inserting a capacitor between the analog clock signal inputs. it can. Furthermore, the level shift circuit 200 with a delay function can be used as a simple delay circuit by making the input-side power supply and the output-side power supply the same.
 (第8の実施の形態)
 [デジタル-アナログ混載型半導体集積回路の全体構成]
 図14は本発明の第8の実施の形態に係るデジタル-アナログ混載型半導体集積回路の全体構成を説明するためのブロック図及び波形図である。
(Eighth embodiment)
[Overall configuration of digital-analog mixed semiconductor integrated circuit]
FIG. 14 is a block diagram and a waveform diagram for explaining the overall configuration of the digital-analog mixed semiconductor integrated circuit according to the eighth embodiment of the present invention.
 図14のデジタル-アナログ混載型半導体集積回路は、デジタル回路201と、アナログクロック信号生成回路202と、遅延機能付きレベルシフト回路100,200と、アナログ回路205とによって構成されている。 14 includes a digital circuit 201, an analog clock signal generation circuit 202, level shift circuits 100 and 200 with a delay function, and an analog circuit 205.
 図14の波形図に示されるように、デジタル回路201から出力されるデジタルクロック信号が、アナログクロック信号生成回路202において周波数の異なるアナログクロック信号に変換される。つぎに、このアナログクロック信号は、遅延機能付きレベルシフト回路100,200によりデジタル回路用電源電圧DVDDからアナログ回路用電源電圧AVDDにレベルシフトされ、かつキャパシタC1に応じて遅延させた後、アナログ回路205に伝播される。 As shown in the waveform diagram of FIG. 14, the digital clock signal output from the digital circuit 201 is converted into an analog clock signal having a different frequency in the analog clock signal generation circuit 202. Next, the analog clock signal is level-shifted from the digital circuit power supply voltage DVDD to the analog circuit power supply voltage AVDD by the level shift circuits 100 and 200 with a delay function, and delayed according to the capacitor C1, and then the analog circuit. Propagated to 205.
 [デジタル-アナログ混載型半導体集積回路の構成例]
 図15は、本発明の第8の実施の形態におけるデジタル-アナログ混載型半導体集積回路の構成例を示すブロック図である。
[Configuration example of digital-analog mixed semiconductor integrated circuit]
FIG. 15 is a block diagram showing a configuration example of a digital / analog mixed semiconductor integrated circuit according to the eighth embodiment of the present invention.
 図15のデジタル-アナログ混載型半導体集積回路600は、デジタル電源用パッドDVDDと、デジタルグランド用パッドDVSSと、アナログ電源用パッドAVDDと、アナロググランド用パッドAVSSと、AD変換器入力信号用パッドADINと、DA変換器出力信号用パッドDAOUTと、を備えている。また、デジタル-アナログ混載型半導体集積回路600は、デジタル回路601と、AD変換器602と、DA変換器603と、AD変換器用レベルシフト回路604,605と、DA変換器用レベルシフト回路606,607とを備えている。 The digital-analog mixed type semiconductor integrated circuit 600 of FIG. 15 includes a digital power pad DVDD, a digital ground pad DVSS, an analog power pad AVDD, an analog ground pad AVSS, and an AD converter input signal pad ADIN. And a DA converter output signal pad DAOUT. The digital-analog mixed semiconductor integrated circuit 600 includes a digital circuit 601, an AD converter 602, a DA converter 603, AD converter level shift circuits 604 and 605, and DA converter level shift circuits 606 and 607. And.
 デジタル回路601は、デジタル電源電圧[DVDD-DVSS]によって駆動され、AD変換データADDATADが入力され、AD変換器用クロック信号ADCLKDと、DA変換器用クロック信号DACLKDと、DA変換器用データ信号DADATADとが出力される。 The digital circuit 601 is driven by a digital power supply voltage [DVDD-DVSS], receives AD conversion data ADDATAD, and outputs an AD converter clock signal ADCLKD, a DA converter clock signal DACLKD, and a DA converter data signal DADATAD. Is done.
 DA変換器603は、デジタル回路601によって生成されたAD変換器用クロック信号ADCLKDの振幅を、デジタル電源電圧[DVDD-DVSS]からアナログ電源電圧[AVDD-AVSS]に変換して、アナログ電源電圧[AVDD-AVSS]のAD変換器用クロック信号ADCLKを得る。 The DA converter 603 converts the amplitude of the AD converter clock signal ADCLKD generated by the digital circuit 601 from the digital power supply voltage [DVDD-DVSS] to the analog power supply voltage [AVDD-AVSS], and the analog power supply voltage [AVDD] -AVSS] AD converter clock signal ADCLK.
 AD変換器用レベルシフト回路605は、AD変換器602によって生成されたAD変換データADDATAの振幅を、アナログ電源電圧[AVDD-AVSS]からデジタル電源電圧[DVDD-DVSS]に変換し、デジタル電源電圧[DVDD-DVSS]のAD変換データADDATADを得る。 The AD converter level shift circuit 605 converts the amplitude of the AD conversion data ADDATA generated by the AD converter 602 from the analog power supply voltage [AVDD-AVSS] to the digital power supply voltage [DVDD-DVSS]. DVDD-DVSS] AD conversion data ADDATAD is obtained.
 DA変換器用レベルシフト回路606,607は、デジタル回路601によって生成されたDA変換器用クロック信号DACLKD,DA変換器用データDADATADの振幅を、デジタル電源電圧[DVDD-DVSS]からアナログ電源電圧[AVDD-AVSS]に変換し、アナログ電源電圧[AVDD-AVSS]のDA変換器用クロック信号DACLK、DA変換器用データDADATAを得る。 The DA converter level shift circuits 606 and 607 convert the amplitude of the DA converter clock signal DACLKD and DA converter data DADATAD generated by the digital circuit 601 from the digital power supply voltage [DVDD-DVSS] to the analog power supply voltage [AVDD-AVSS]. To obtain the DA converter clock signal DACLK and DA converter data DATA of the analog power supply voltage [AVDD−AVSS].
 AD変換器602は、AD変換器用クロック信号ADCLKに基づいて、AD変換器用入力信号ADINをAD変換して得られるAD変換データADDATAを出力する。 The AD converter 602 outputs AD conversion data ADDATA obtained by AD converting the AD converter input signal ADIN based on the AD converter clock signal ADCLK.
 DA変換器603は、DA変換器用クロック信号DACLKに基づいて、DA変換器用入力データDADATAをDA変換して得られるDA変換出力信号DAOUTを出力する。 The DA converter 603 outputs a DA conversion output signal DAOUT obtained by DA converting the DA converter input data DATA based on the DA converter clock signal DACLK.
 ここで、AD変換器用レベルシフト回路604は、上記の実施の形態に係る遅延機能付きレベルシフト回路100,200により構成して、遅延時間Td1を持たせた上でレベルシフトを行うものであり、DA変換器用レベルシフト回路606は、上記の実施の形態に係る遅延機能付きレベルシフト回路100、200により構成して、遅延時間Td2を持たせた上でレベルシフトを行うものである。 Here, the AD converter level shift circuit 604 is configured by the delay function level shift circuits 100 and 200 according to the above-described embodiment, and performs a level shift with a delay time Td1. The DA converter level shift circuit 606 includes the delay function-equipped level shift circuits 100 and 200 according to the above-described embodiment, and performs a level shift with a delay time Td2.
 図16に示すように、遅延時間Td1は、デジタル回路601内で用いられているクロック信号DIGICLKとエッジが重ならなくなる程度の長さを持つ遅延時間である。また、遅延時間Td2は、デジタル回路601内で用いられているクロック信号DIGICLK、及びAD変換器602で用いられているクロック信号ADCLKの双方のエッジが重ならない程度の長さを持つ遅延時間である。なお、遅延時間Td1と遅延時間Td2との関係は、「Td1<Td2」でもよいし、「Td1>Td2」でもよい。 As shown in FIG. 16, the delay time Td1 is a delay time having such a length that the edge does not overlap with the clock signal DIGICLK used in the digital circuit 601. The delay time Td2 is a delay time having a length that does not overlap edges of the clock signal DIGICLK used in the digital circuit 601 and the clock signal ADCLK used in the AD converter 602. . The relationship between the delay time Td1 and the delay time Td2 may be “Td1 <Td2” or “Td1> Td2”.
 また、図15に示すように、アナログ電源、アナロググランド、デジタル電源、及びデジタルグランドは夫々別々のパッドから与えられ、AD変換器602及びDA変換器603に接続されるアナログ電源ライン及びアナロググランドラインはパッド付近で分岐して、共通インピーダンスが低くなるように設計されている。さらに、デジタル回路601からAD変換器602及びDA変換器603への干渉や、AD変換器602とDA変換器603との間の相互干渉が小さくなるように設計されている。 Further, as shown in FIG. 15, the analog power supply line and the analog ground line are supplied from separate pads, and are connected to the AD converter 602 and the DA converter 603, respectively. Is designed to branch near the pad to reduce the common impedance. Furthermore, the interference from the digital circuit 601 to the AD converter 602 and the DA converter 603 and the mutual interference between the AD converter 602 and the DA converter 603 are designed to be small.
 さらに、AD変換器用レベルシフト回路604,DA変換器用レベルシフト回路606によって遅延を持たせ、かつAD変換器用クロック信号ADCLKの遅延時間Td1とDA変換器用クロック信号DACLKの遅延時間Td2をそれぞれ異なる長さに設定することで、予期せぬ経路によってデジタル回路601、AD変換器602、及びDA変換器603の相互間で干渉が発生することを防止できる。 Further, the AD converter level shift circuit 604 and the DA converter level shift circuit 606 add a delay, and the delay time Td1 of the AD converter clock signal ADCLK and the delay time Td2 of the DA converter clock signal DACLK have different lengths. By setting to, interference between the digital circuit 601, the AD converter 602, and the DA converter 603 due to an unexpected path can be prevented.
 また、本実施の形態の遅延機能付きレベルシフト回路として、キャパシタC1の容量値変化等により遅延時間の調整が可能であれば、仮に電源電圧を変更する等によってクロック信号の立ち上がり及び立ち下がりに要する時間を変えることでエッジの重なりが生じたとしても、外部から容量値を変化させることで再度エッジが重ならない遅延時間に調整可能となり、各アナログ回路間の干渉を防止できる。 Further, if the delay time can be adjusted by changing the capacitance value of the capacitor C1 or the like as the level shift circuit with a delay function of the present embodiment, it is necessary to rise and fall the clock signal by changing the power supply voltage or the like. Even if edges overlap due to changing the time, it is possible to adjust the delay time so that the edges do not overlap again by changing the capacitance value from the outside, and interference between analog circuits can be prevented.
 なお、本実施の形態では、AD変換器602及びDA変換器603を搭載したデジタル-アナログ混載型半導体集積回路600について例示したが、その他のデジタル-アナログ混載型半導体集積回路においても本発明を適用することができる。 In this embodiment, the digital-analog mixed semiconductor integrated circuit 600 on which the AD converter 602 and the DA converter 603 are mounted is illustrated, but the present invention is applied to other digital-analog mixed semiconductor integrated circuits. can do.
 上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らかである。従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を逸脱することなく、その構造及び/又は機能の詳細を実質的に変化できる。 From the above description, many modifications and other embodiments of the present invention are apparent to persons skilled in the art. Accordingly, the foregoing description should be construed as illustrative only and is provided for the purpose of teaching those skilled in the art the best mode of carrying out the invention. The details of the structure and / or function may be varied substantially without departing from the spirit of the invention.
 本発明は、異なる2つの電源間での遅延機能付きレベルシフト回路及びそれを用いたデジタル-アナログ混載型半導体集積回路に関するものであり、特にノイズ特性や歪み特性の向上が求められるアナログ-デジタル変換器及びデジタル-アナログ変換器が搭載されたデジタル-アナログ混載型半導体集積回路にとって有用である。 The present invention relates to a level shift circuit with a delay function between two different power supplies and a digital-analog mixed type semiconductor integrated circuit using the same, and in particular, analog-to-digital conversion that requires improvement in noise characteristics and distortion characteristics. This is useful for a digital-analog mixed type semiconductor integrated circuit equipped with an analog circuit and a digital-analog converter.
100、200…レベルシフト回路
1…差動クロック信号生成回路
11…インバータ回路(第1のインバータ回路)
12…インバータ回路(第2のインバータ回路)
13…エッジトリガ型フリップフロップ(第1のフリップフロップ)
14…エッジトリガ型フリップフロップ(第2のフリップフロップ)
15…インバータ回路
I1,I2…電流源
3…差動クロック信号入力回路
N1…NMOSトランジスタ(第1のNMOSトランジスタ)
N2…NMOSトランジスタ(第2のNMOSトランジスタ)
4…ラッチ回路
P1…PMOSトランジスタ(第1のPMOSトランジスタ)
P2…PMOSトランジスタ(第2のPMOSトランジスタ)
W1…ノード(第1のノード)
W2…ノード(第2のノード)
2…インバータ回路
C1…キャパシタ
C2,C3…MOS容量
SW1~SWN…スイッチング素子
VC1,VC2…バラクタ
20…電源供給回路
P3…PMOSトランジスタ(第1のPMOSトランジスタ)
P4…PMOSトランジスタ(第2のPMOSトランジスタ)
5…断続回路
N3…NMOSトランジスタ(第3のNMOSトランジスタ)
N4…NMOSトランジスタ(第4のNMOSトランジスタ)
7,8…NAND回路(ラッチ回路)
9,10…インバータ回路
R1…抵抗
6…保護回路
N5…NMOSトランジスタ(第5のNMOSトランジスタ)
N6…NMOSトランジスタ(第6のNMOSトランジスタ)
600…デジタル-アナログ混載型半導体集積回路
601…デジタル回路
602…AD変換器
603…DA変換器
604,605…AD変換器用レベルシフト回路
606,607…DA変換器用レベルシフト回路
DESCRIPTION OF SYMBOLS 100, 200 ... Level shift circuit 1 ... Differential clock signal generation circuit 11 ... Inverter circuit (1st inverter circuit)
12 ... Inverter circuit (second inverter circuit)
13. Edge trigger type flip-flop (first flip-flop)
14 Edge-triggered flip-flop (second flip-flop)
15 ... Inverter circuits I1, I2 ... Current source 3 ... Differential clock signal input circuit N1 ... NMOS transistor (first NMOS transistor)
N2 ... NMOS transistor (second NMOS transistor)
4 ... Latch circuit P1 ... PMOS transistor (first PMOS transistor)
P2 ... PMOS transistor (second PMOS transistor)
W1 ... Node (first node)
W2 ... Node (second node)
2 ... Inverter circuit C1 ... Capacitors C2, C3 ... MOS capacitors SW1 to SWN ... Switching elements VC1, VC2 ... Varactor 20 ... Power supply circuit P3 ... PMOS transistor (first PMOS transistor)
P4: PMOS transistor (second PMOS transistor)
5 ... Intermittent circuit N3 ... NMOS transistor (third NMOS transistor)
N4 ... NMOS transistor (fourth NMOS transistor)
7, 8 ... NAND circuit (latch circuit)
9, 10... Inverter circuit R1... Resistor 6... Protection circuit N5... NMOS transistor (fifth NMOS transistor)
N6: NMOS transistor (sixth NMOS transistor)
600 ... Digital-analog mixed type semiconductor integrated circuit 601 ... Digital circuit 602 ... AD converter 603 ... DA converter 604,605 ... AD converter level shift circuit 606,607 ... DA converter level shift circuit

Claims (14)

  1.  第1の電源電圧の振幅を有し、かつ相補的な一対の差動クロック信号を生成する差動クロック信号生成回路と、
     第1のNMOSトランジスタ及び第2のNMOSトランジスタを備え、前記差動クロック信号生成回路の一方の差動出力端が前記第1のNMOSトランジスタのゲートに接続され、前記差動クロック信号生成回路の他方の差動出力端が前記第2のNMOSトランジスタのゲートに接続されるように構成された差動クロック信号入力回路と、
     前記第1のNMOSトランジスタ及び前記第2のNMOSトランジスタのドレイン側の電位を夫々ラッチし、前記第1のNMOSトランジスタ及び前記第2のNMOSトランジスタのドレインの少なくとも一方から前記第1の電源電圧とは異なる第2の電源電圧の振幅を有したアナログクロック信号を出力するように構成されたラッチ回路と、
     前記第1のNMOSトランジスタ及び前記第2のNMOSトランジスタのゲート間に両端子が接続され、前記差動クロック信号生成回路の出力インピーダンスとともにローパスフィルタを形成するキャパシタと、
     を備え、前記アナログクロック信号は、前記差動クロック信号を前記ローパスフィルタを介して遅延させて成る遅延機能付きレベルシフト回路。
    A differential clock signal generation circuit having a first power supply voltage amplitude and generating a pair of complementary differential clock signals;
    A first NMOS transistor and a second NMOS transistor, wherein one differential output terminal of the differential clock signal generation circuit is connected to a gate of the first NMOS transistor, and the other of the differential clock signal generation circuit A differential clock signal input circuit configured to be connected to the gate of the second NMOS transistor;
    The potential on the drain side of the first NMOS transistor and the second NMOS transistor is latched, respectively, and the first power supply voltage from at least one of the drains of the first NMOS transistor and the second NMOS transistor A latch circuit configured to output an analog clock signal having a different amplitude of the second power supply voltage;
    A capacitor having both terminals connected between the gates of the first NMOS transistor and the second NMOS transistor and forming a low-pass filter together with an output impedance of the differential clock signal generation circuit;
    The analog clock signal is a level shift circuit with a delay function obtained by delaying the differential clock signal through the low-pass filter.
  2.  前記ラッチ回路は、
     第1のPMOSトランジスタ及び第2のPMOSトランジスタを備え、
     前記第1のNMOSトランジスタのドレインと前記第1のPMOSトランジスタのドレインとが接続されるとともに、前記第2のNMOSトランジスタのドレインと前記第2のPMOSトランジスタのドレインとが接続され、
     前記第1のPMOSトランジスタのゲートが前記第2のPMOSトランジスタのドレインに接続されるとともに、前記第2のPMOSトランジスタのゲートが前記第1のPMOSトランジスタのドレインに接続され、
     前記第1のPMOSトランジスタ及び前記第2のPMOSトランジスタの少なくとも一方のドレインから前記アナログクロック信号を出力するように構成されている、請求項1に記載の遅延機能付きレベルシフト回路。
    The latch circuit is
    A first PMOS transistor and a second PMOS transistor;
    The drain of the first NMOS transistor and the drain of the first PMOS transistor are connected, and the drain of the second NMOS transistor and the drain of the second PMOS transistor are connected,
    The gate of the first PMOS transistor is connected to the drain of the second PMOS transistor, and the gate of the second PMOS transistor is connected to the drain of the first PMOS transistor;
    2. The level shift circuit with a delay function according to claim 1, configured to output the analog clock signal from at least one drain of the first PMOS transistor and the second PMOS transistor. 3.
  3.  第1のPMOSトランジスタ及び第2のPMOSトランジスタを備え、該第1のPMOSトランジスタ及び該第2のPMOSトランジスタのソースが前記第2の電源電圧を規定する電源に接続され、該第1のPMOSトランジスタ及び該第2のPMOSトランジスタのドレインが前記ラッチ回路のラッチ箇所である第1及び第2のノードに接続され、該第1のノード及び該第2のノードの一方に前記電源を供給するとともに、他方のノードへの前記電源の供給を遮断するように構成された電源供給回路と、
     前記第1のNMOSトランジスタ及び前記第2のNMOSトランジスタのソースから前記第2の電源電圧を規定するグランドに至る2つの経路間に第3のNMOSトランジスタ及び第4のNMOSトランジスタを備え、該第3のNMOSトランジスタ及び該第4のNMOSトランジスタのオンオフにより該2つの経路のうち一方を接続し且つ他方を切断するように構成された断続回路と、
     前記第1のノード及び前記第2のノードと前記第1のNMOSトランジスタ及び前記第2のNMOSトランジスタのドレインとの間に第5のNMOSトランジスタ及び第6のNMOSトランジスタを備え、前記第1のNMOSトランジスタ及び前記第2のNMOSトランジスタのドレイン電圧を耐圧以下に制限するように構成された保護回路と、
     前記第1のノード及び前記第2のノードとの間に接続された抵抗と、
     を備える請求項1に記載の遅延機能付きレベルシフト回路。
    A first PMOS transistor and a second PMOS transistor, and the sources of the first PMOS transistor and the second PMOS transistor are connected to a power supply defining the second power supply voltage, and the first PMOS transistor And the drain of the second PMOS transistor is connected to the first and second nodes, which are the latch locations of the latch circuit, and supplies the power to one of the first node and the second node; A power supply circuit configured to cut off the supply of the power to the other node;
    A third NMOS transistor and a fourth NMOS transistor are provided between two paths from the sources of the first NMOS transistor and the second NMOS transistor to the ground defining the second power supply voltage, An interrupt circuit configured to connect one of the two paths and disconnect the other by turning on and off the NMOS transistor and the fourth NMOS transistor;
    A fifth NMOS transistor and a sixth NMOS transistor are provided between the first node and the second node and the drains of the first NMOS transistor and the second NMOS transistor, and the first NMOS transistor A protection circuit configured to limit a drain voltage of the transistor and the second NMOS transistor to a withstand voltage or less;
    A resistor connected between the first node and the second node;
    A level shift circuit with a delay function according to claim 1.
  4.  前記差動クロック信号生成回路は、
     第1及び第2のインバータ回路を備え、外部からの単相クロック信号が前記第1のインバータ回路の入力端に入力され、前記第1のインバータ回路の出力端と前記第2のインバータ回路の入力端とが接続され、前記第1及び第2のインバータ回路の各出力端から前記差動クロック信号が出力されるように構成された、請求項1乃至3のいずれか1項に記載の遅延機能付きレベルシフト回路。
    The differential clock signal generation circuit includes:
    A first and second inverter circuits are provided, and an external single-phase clock signal is input to the input terminal of the first inverter circuit, and the output terminal of the first inverter circuit and the input of the second inverter circuit 4. The delay function according to claim 1, wherein the differential clock signal is output from each output terminal of the first and second inverter circuits. Level shift circuit with.
  5.  前記差動クロック信号生成回路は、
     第1及び第2のフリップフロップを備え、外部からの単相クロック信号が前記第1のフリップフロップのクロック入力端に入力され、該単相クロック信号を反転した信号が前記第2のフリップフロップのクロック入力端に入力され、前記第1のフリップフロップの正論理出力端と前記第2のフリップフロップの入力端が接続され、前記第2のフリップフロップの負論理出力端と前記第1のフリップフロップの入力端が接続され、前記第1のフリップフロップ又は前記第2のフリップフロップの正論理出力端及び負論理出力端から前記差動クロック信号が出力されるように構成されている、請求項1乃至3のいずれか1項に記載の遅延機能付きレベルシフト回路。
    The differential clock signal generation circuit includes:
    A first and second flip-flop, an external single-phase clock signal is input to the clock input terminal of the first flip-flop, and a signal obtained by inverting the single-phase clock signal is input to the second flip-flop; Input to a clock input terminal, a positive logic output terminal of the first flip-flop and an input terminal of the second flip-flop are connected, and a negative logic output terminal of the second flip-flop and the first flip-flop And the differential clock signal is output from a positive logic output terminal and a negative logic output terminal of the first flip-flop or the second flip-flop. 4. The level shift circuit with a delay function according to any one of items 1 to 3.
  6.  前記差動クロック信号生成回路は、位相同期回路として構成されている、請求項1乃至3のいずれか1項記載の遅延機能付きレベルシフト回路。 The level shift circuit with a delay function according to any one of claims 1 to 3, wherein the differential clock signal generation circuit is configured as a phase synchronization circuit.
  7.  前記差動クロック信号生成回路は、電流源から供給された電流量によって出力インピーダンスを変化させるように構成されている、請求項1に記載の遅延機能付きレベルシフト回路。 The level shift circuit with a delay function according to claim 1, wherein the differential clock signal generation circuit is configured to change an output impedance according to an amount of current supplied from a current source.
  8.  前記キャパシタは、前記遅延機能付きレベルシフト回路を構成する他の素子と同一チップ上に形成されている、請求項1に記載の遅延機能付きレベルシフト回路。 The level shift circuit with a delay function according to claim 1, wherein the capacitor is formed on the same chip as other elements constituting the level shift circuit with a delay function.
  9.  前記キャパシタは、2以上のMOS容量であり、前記第1のNMOSトランジスタ及び前記第2のNMOSトランジスタの各ゲート間に、前記第1及び前記第2のNMOSトランジスタの各ゲートから見た容量値が等しくなるように並列に配置されている、
    請求項1に記載の遅延機能付きレベルシフト回路。
    The capacitor has two or more MOS capacitors, and a capacitance value seen from each gate of the first and second NMOS transistors is between each gate of the first NMOS transistor and the second NMOS transistor. Arranged in parallel to be equal,
    The level shift circuit with a delay function according to claim 1.
  10.  前記キャパシタは、外部からの制御電圧によって容量値が変化するバラクタにより構成されている、請求項1に記載の遅延機能付きレベルシフト回路。 2. The level shift circuit with a delay function according to claim 1, wherein the capacitor is constituted by a varactor whose capacitance value is changed by an external control voltage.
  11.  前記キャパシタは、複数のキャパシタのうちの一つであり、
     前記前記第1のNMOSトランジスタ及び前記第2のNMOSトランジスタの各ゲート間に前記複数のキャパシタが並列に配置され、前記複数のキャパシタ夫々に接続されたスイッチング素子によって前記複数のキャパシタの合成容量値が変化するように構成されている、請求項1に記載の遅延機能付きレベルシフト回路。
    The capacitor is one of a plurality of capacitors;
    The plurality of capacitors are arranged in parallel between the gates of the first NMOS transistor and the second NMOS transistor, and a combined capacitance value of the plurality of capacitors is obtained by a switching element connected to each of the plurality of capacitors. The level shift circuit with a delay function according to claim 1, wherein the level shift circuit is configured to change.
  12.  前記第1の電源電圧の振幅を有したクロック信号を少なくとも生成するデジタル回路と、
     前記クロック信号を使用するアナログ回路と、
     前記デジタル回路と前記アナログ回路との間に設けられ、前記デジタル回路からの前記クロック信号が入力され、前記クロック信号の振幅を前記第1の電源電圧から前記第2の電源電圧にレベルシフトし、かつ前記ローパスフィルタを介して遅延させて得られる前記アナログクロック信号を出力する請求項1に記載の遅延機能付きレベルシフト回路と、
     を備えるデジタル-アナログ混載型半導体集積回路。
    A digital circuit for generating at least a clock signal having an amplitude of the first power supply voltage;
    An analog circuit using the clock signal;
    Provided between the digital circuit and the analog circuit, the clock signal from the digital circuit is input, and the level of the amplitude of the clock signal is shifted from the first power supply voltage to the second power supply voltage; And the level shift circuit with a delay function according to claim 1, which outputs the analog clock signal obtained by delaying through the low-pass filter,
    A digital-analog mixed semiconductor integrated circuit comprising:
  13.  前記アナログ回路は複数のアナログ回路のうちの一つであり、前記遅延機能付きレベルシフト回路により互いに異なる遅延時間を持った前記アナログクロック信号が前記複数のアナログ回路に夫々供給される、請求項12記載のデジタル-アナログ混載型半導体集積回路。 13. The analog circuit is one of a plurality of analog circuits, and the analog clock signals having different delay times are supplied to the plurality of analog circuits by the level shift circuit with a delay function, respectively. The digital-analog mixed semiconductor integrated circuit described.
  14.  相補的な一対の差動クロック信号を生成する差動クロック信号生成回路と、
     第1のNMOSトランジスタ及び第2のNMOSトランジスタを備え、前記差動クロック信号生成回路の一方の差動出力端が前記第1のNMOSトランジスタのゲートに接続され、前記差動クロック信号生成回路の他方の差動出力端が前記第2のNMOSトランジスタのゲートに接続されるように構成された差動クロック信号入力回路と、
     前記第1のNMOSトランジスタ及び前記第2のNMOSトランジスタのドレイン側の電位を夫々ラッチし、前記第1のNMOSトランジスタ及び前記第2のNMOSトランジスタのドレインの少なくとも一方からアナログクロック信号を出力するように構成されたラッチ回路と、
     前記第1のNMOSトランジスタ及び前記第2のNMOSトランジスタのゲート間に両端子が接続され、前記差動クロック信号生成回路の出力インピーダンスとともにローパスフィルタを形成するキャパシタと、
     を備え、前記アナログクロック信号は、前記差動クロック信号を前記ローパスフィルタを介して遅延させて成る遅延回路。
     
     
     
    A differential clock signal generation circuit for generating a pair of complementary differential clock signals;
    A first NMOS transistor and a second NMOS transistor, wherein one differential output terminal of the differential clock signal generation circuit is connected to a gate of the first NMOS transistor, and the other of the differential clock signal generation circuit A differential clock signal input circuit configured to be connected to the gate of the second NMOS transistor;
    The drain side potentials of the first NMOS transistor and the second NMOS transistor are latched, and an analog clock signal is output from at least one of the drains of the first NMOS transistor and the second NMOS transistor. A configured latch circuit; and
    A capacitor having both terminals connected between the gates of the first NMOS transistor and the second NMOS transistor and forming a low-pass filter together with an output impedance of the differential clock signal generation circuit;
    And the analog clock signal is obtained by delaying the differential clock signal through the low-pass filter.


PCT/JP2011/002870 2010-11-19 2011-05-24 Level shift circuit having delay function, digital-analog hybrid semiconductor integrated circuit, and delay circuit WO2012066696A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010258754 2010-11-19
JP2010-258754 2010-11-19

Publications (1)

Publication Number Publication Date
WO2012066696A1 true WO2012066696A1 (en) 2012-05-24

Family

ID=46083653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/002870 WO2012066696A1 (en) 2010-11-19 2011-05-24 Level shift circuit having delay function, digital-analog hybrid semiconductor integrated circuit, and delay circuit

Country Status (1)

Country Link
WO (1) WO2012066696A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108597473A (en) * 2018-07-27 2018-09-28 上海芯北电子科技有限公司 A kind of voltage commutation circuit and method for lattice lcd driving chip
CN110048711A (en) * 2019-05-15 2019-07-23 苏州锴威特半导体有限公司 A kind of digital signal processing circuit for resisting ground and power bounce noise
CN110048722A (en) * 2018-01-16 2019-07-23 瑞昱半导体股份有限公司 Digit time converter and its method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11505987A (en) * 1995-05-26 1999-05-25 ランバス・インコーポレーテッド Phase shifter used in quadrature clock generator
JP2009543464A (en) * 2006-06-28 2009-12-03 クゥアルコム・インコーポレイテッド Versatile and compact DC coupled CML buffer
JP2010130293A (en) * 2008-11-27 2010-06-10 Fujitsu Ltd Duty correction circuit and duty correction method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11505987A (en) * 1995-05-26 1999-05-25 ランバス・インコーポレーテッド Phase shifter used in quadrature clock generator
JP2009543464A (en) * 2006-06-28 2009-12-03 クゥアルコム・インコーポレイテッド Versatile and compact DC coupled CML buffer
JP2010130293A (en) * 2008-11-27 2010-06-10 Fujitsu Ltd Duty correction circuit and duty correction method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110048722A (en) * 2018-01-16 2019-07-23 瑞昱半导体股份有限公司 Digit time converter and its method
CN108597473A (en) * 2018-07-27 2018-09-28 上海芯北电子科技有限公司 A kind of voltage commutation circuit and method for lattice lcd driving chip
CN108597473B (en) * 2018-07-27 2023-08-18 上海芯北电子科技有限公司 Voltage switching circuit and method for dot matrix liquid crystal driving chip
CN110048711A (en) * 2019-05-15 2019-07-23 苏州锴威特半导体有限公司 A kind of digital signal processing circuit for resisting ground and power bounce noise
CN110048711B (en) * 2019-05-15 2023-11-21 苏州锴威特半导体股份有限公司 Digital signal processing circuit for resisting ground and power supply rebound noise

Similar Documents

Publication Publication Date Title
JP4756965B2 (en) Output buffer circuit
US7173453B2 (en) Method and circuit for translating a differential signal to complementary CMOS levels
US7839192B1 (en) Duty cycle correction methods and circuits
US7355446B2 (en) Voltage conversion circuit with stable transition delay characteristic
US8749269B2 (en) CML to CMOS conversion circuit
CN113691249B (en) Work cycle correction circuit and method thereof
CN110932715A (en) Level shifter circuit and method of operating level shifter
EP1251640A2 (en) A low voltage differential to single-ended converter
US8497726B2 (en) Level shifter
US7489174B2 (en) Dynamic flip-flop circuit
US7932766B2 (en) Digitally controlled oscillator with the wide operation range
JP3563370B2 (en) Signal generation circuit
WO2012066696A1 (en) Level shift circuit having delay function, digital-analog hybrid semiconductor integrated circuit, and delay circuit
US20070063738A1 (en) CMOS logic circuitry
US6781420B2 (en) Symmetric differential logic circuits
JP5618275B2 (en) Multiplexer, demultiplexer, look-up table and integrated circuit using CMOS inverter
WO2012165599A1 (en) Level shift circuit
CN112532230A (en) Level conversion circuit
JP7082295B2 (en) Output circuit
US7786750B2 (en) Methods and apparatus for compensating for skew in a differential signal using non-complementary inverters
Scaletti et al. Skew and Jitter Performance in CMOS Clock Phase Splitter Circuits
JP6690950B2 (en) CMOS output buffer circuit
KR100625182B1 (en) circuit for inverting phase of input signal
JP2024086284A (en) Analog Switch Circuit
JP4238931B2 (en) Oscillator circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11841629

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11841629

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP