WO2012066590A1 - Method and device for time-division control of drying device - Google Patents

Method and device for time-division control of drying device Download PDF

Info

Publication number
WO2012066590A1
WO2012066590A1 PCT/JP2010/006699 JP2010006699W WO2012066590A1 WO 2012066590 A1 WO2012066590 A1 WO 2012066590A1 JP 2010006699 W JP2010006699 W JP 2010006699W WO 2012066590 A1 WO2012066590 A1 WO 2012066590A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
temperature
time
hot plate
hot plates
Prior art date
Application number
PCT/JP2010/006699
Other languages
French (fr)
Japanese (ja)
Inventor
中村 義則
Original Assignee
ナカンテクノ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナカンテクノ株式会社 filed Critical ナカンテクノ株式会社
Priority to PCT/JP2010/006699 priority Critical patent/WO2012066590A1/en
Priority to JP2012539124A priority patent/JP5130415B2/en
Priority to KR1020127029206A priority patent/KR20130098858A/en
Priority to CN201080066423.3A priority patent/CN102869937B/en
Publication of WO2012066590A1 publication Critical patent/WO2012066590A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B23/00Heating arrangements
    • F26B23/04Heating arrangements using electric heating
    • F26B23/06Heating arrangements using electric heating resistance heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B1/00Details of electric heating devices
    • H05B1/02Automatic switching arrangements specially adapted to apparatus ; Control of heating devices
    • H05B1/0227Applications
    • H05B1/023Industrial applications
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • F26B3/18Drying solid materials or objects by processes involving the application of heat by conduction, i.e. the heat is conveyed from the heat source, e.g. gas flame, to the materials or objects to be dried by direct contact
    • F26B3/20Drying solid materials or objects by processes involving the application of heat by conduction, i.e. the heat is conveyed from the heat source, e.g. gas flame, to the materials or objects to be dried by direct contact the heat source being a heated surface, e.g. a moving belt or conveyor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V30/00Character recognition; Recognising digital ink; Document-oriented image-based pattern recognition
    • G06V30/10Character recognition

Definitions

  • the present invention makes it possible to eliminate the need to increase the power receiving equipment of the factory in connection with the expansion of the drying equipment, or to reduce the maximum current value of the existing drying equipment even when the drying equipment is not expanded.
  • the present invention relates to a control system, and more particularly to a time-sharing control system and apparatus for a dryer for manufacturing a flat panel display.
  • this dryer is equipped with a plurality of hot plates, or a plurality of dryers equipped with one or more hot plates.
  • all the heaters of all the hot plates must be heated at the same time in order to simultaneously dry the workpieces.
  • at least the rated current consumption of the heater ⁇ the number of heaters is required.
  • the electric power for the newly installed number will be further required, and the capacity of the power receiving equipment in the existing factory will have to be raised in accordance with the introduction of equipment. Therefore, the cost increase for that purpose and the time for equipment enhancement were needed, and the problem that it was not able to respond to the rapidly increasing demand arose.
  • the switching at the zero cross point is not performed completely at the zero cross point due to the performance of the switching device, but is performed at or near the zero cross point.
  • the number of heaters that can be controlled is limited to three because a heater is connected to each phase of the three-phase alternating current, and there is also a problem that the power supply power to the heater is weaker than that in the case of supplying power in three phases. .
  • the present invention relates to an improvement of a conventional power supply method and apparatus for such a drying facility, and the object thereof is to increase the number of dryers without increasing the factory power receiving facility, In a plurality of hot plates, even when all or a plurality of selected hot plates are heated in parallel (not simultaneously), the energizing current value is reduced to the minimum current value for one surface of the hot plate by intermittent energization. It is possible to provide a time-sharing control system and its apparatus that are less than the capacity of existing power receiving equipment.
  • the invention according to claim 1 “Multiple hot plates (HP1) that are connected to the AC mains power supply (1) in parallel and heat-dry each of the workpieces (2) coated with the coating liquid (3) at a predetermined temperature.
  • An existing AC main power supply (1) for supplying an AC current to each of the plurality of heaters (H1) to (Hn); Parallel connection lines (n1) to (nn) and heaters (H1) to (Hn) branched from the main power supply line (L) of the AC main power supply (1) to supply power to the heaters (H1) to (Hn), respectively.
  • hot plate (HP1)-(HPn) temperature measuring instruments TSS1)-(THSn)
  • the heaters (H1) to (Hn) are heated by the temperature signals (o1) to (on) from the temperature measuring devices (THS1) to (THSn).
  • the zero cross point of AC current to the When adding hotplates the number of existing hotplates should be less than If you do not add a hot plate, the number is less than the number of existing hot plates, And a power supply control circuit (K) for switching power supply to the next heater selected after a half cycle or an integral multiple of a pause period has elapsed from the power supply switching point.
  • K power supply control circuit
  • Claim 2 is the apparatus (A) of claim 1, ⁇
  • the power supply control circuit (K) In response to temperature signals (o1) to (on) from temperature measuring devices (THS1) to (THSn), the temperature of each hot plate (HP1) to (HPn) is detected and the temperature measuring devices (THS1) to (THSn) are detected.
  • the time division control signals (s1) to (sn) are connected to the main switching elements (SSR10) to (SSRn0) and receive the time division control signals (s1) to (sn) output from the control unit (4).
  • the auxiliary switching elements (SSR11) to (SSR1n) for turning on the main switching elements (SSR10) to (SSRn0) according to the above.
  • Claim 3 relates to the energization time to each heater (H1) to (Hn) in the apparatus (A) of claim 1 or 2, “The energization time to each of the heaters (H1) to (Hn) is one cycle of the supplied alternating current or an integral multiple thereof”.
  • the method of the present invention according to claim 4 “Multiple hot plates (HP1) that are connected to the AC mains power supply (1) in parallel and heat-dry each of the workpieces (2) coated with the coating liquid (3) at a predetermined temperature.
  • a time-division power supply control method for a dryer (41) that sequentially supplies power to the heaters (H1) to (Hn) for (HPn), When the temperatures of the hot plates (HP1) to (HPn) are detected by detecting the temperatures of the hot plates (HP1) to (HPn), respectively, the hot plates (HP1) to (HPn) Until the set temperature is reached, the zero crossing point of the feeding AC current to each heater (H1) to (Hn) is used as the feeding switching point.
  • the number of existing hotplates should be less than If you do not add a hot plate, the number is less than the number of existing hot plates, The power supply is switched from the power supply switching point to the next heater selected after the lapse of a half cycle or an integral multiple of the rest period ”.
  • the present invention sequentially switches power supply to the heaters of 1 to n selected hot plates among the m + n hot plates, and at least half a cycle from the zero cross point.
  • Power is supplied with a period of downtime (time-sharing control), so the time required to raise the temperature to the specified temperature of the hot plate is longer without noise, but the maximum number of hot plates can be increased within the range of the existing power receiving facilities. Can be warmed. In other words, power can be supplied in a range that does not exceed the capacity of the existing AC main power source (1).
  • the number of existing hot plates is not increased, the number of existing hot plates (n units) will be less than the number of existing hot plates (n units) and less (n-1 units). Since switching is performed sequentially and power is supplied by providing at least a half-cycle rest period from the zero cross point (time-sharing control), as described above, the temperature rise time to the predetermined temperature of the hot plate becomes longer without noise, but in this case the hot plate
  • the maximum amount of power supplied to the power supply is (n-1) units, which can contribute to a reduction in the amount of electricity during heating.
  • the heater energization switching is performed at the zero cross point as described above, no noise is generated during energization switching, and the energization to the heater is switched sequentially rather than continuously, so that rapid temperature rise is suppressed.
  • Heating rate of the heater is not excessive, and it can be a moderate heating rate, so that full power feeding that matches the rated current of the hot plate heater can be executed just before the set temperature.
  • the temperature rise time to the set temperature is expected to increase up to m + n or n times, but for example 0.7 to 0.8 ⁇ ( The temperature raising time can be significantly shortened from the expected time such as m + n or n) times.
  • the time can be further shortened.
  • the switching devices such as the main switching elements (SSR10) to (SSRn0) and the auxiliary switching elements (SSR11) to (SSR1n) are conventionally used for each heater. This eliminates the need for switches and breakers that were installed in the machine, and can greatly reduce the number of parts.
  • Circuit diagram of an embodiment of the present invention The graph explaining the implementation state of the method of the present invention Temperature increase graph of one hot plate in the implementation status of the method of the present invention Temperature increase graph of hot plate of conventional example
  • FIG. 1 shows that a coating liquid (3) such as an alignment film forming liquid is applied to a substrate (2) such as glass placed on a coating stage (81) in the control apparatus (A).
  • a coating liquid (3) such as an alignment film forming liquid
  • a substrate (2) such as glass placed on a coating stage (81) in the control apparatus (A).
  • the drying step an example is shown in the case of applying to the dryer (41) in the case where the object (2) to be treated is heated to dry the coating liquid (3).
  • the capacity of the dryer (41) when the power supply capacity of the AC main power supply (1) is not increased, the capacity of the dryer (41) can be increased, and when the capacity is not increased, the power supply is reduced by at least one hot plate.
  • the dryer (41) one equipped with one or many hot plates (HP1) to (HPn) is applied, but the one equipped with only one hot plate is naturally omitted when the equipment is not enhanced.
  • the description will focus on a dryer equipped with a plurality of hot plates.
  • the AC main power supply (1) used is a three-phase or single-phase AC, and the waveform on the “input side of the output contact of (SSR10 to SSRn0)” in FIG. In the case of, one phase was shown in order to avoid the complexity of the figure.
  • heaters (H1) to (Hn) that generate heat when electric current is supplied are embedded in the hot plates (HP1) to (HPn) of the dryer (41), respectively.
  • Examples of the heaters (H1) to (Hn) include a planar heating element having a thin heating element layer and a sheathed heater. Of course, there are those having only one hot plate. In this case, a plurality of dryers are provided.
  • Heaters (H1) to (Hn) (In this case, only existing heaters are included, including both existing and additional installations.) Each is a parallel connection line branched from the main power supply line (L) of the AC main power supply (1) Connected in parallel at (n1) to (nn).
  • the parallel connection lines (n1) to (nn) have main switch elements (SSR10) to (SSRn0) for opening and closing the ammeters (61) to (6n) and the parallel connection lines (n1) to (nn).
  • a semiconductor relay is connected in series, and each of the main switch elements (SSR10) to (SSRn0) has a DC auxiliary switch element (SSR10) for controlling the AC main switch elements (SSR10) to (SSRn0).
  • SSR11) to (SSR1n) semiconductor relays in this embodiment
  • the latter DC auxiliary switching elements (SSR11) to (SSR1n) are provided with a temperature controller (4a) of a control unit (4), which will be described later, and Control signals from the I / O unit (4b) (temperature control signals (t1) to (tn) from the temperature controller (4a) and time-division control signals (s1) to (sn) from the I / O unit (4b) ) Is getting output).
  • the temperature signals (o1) to (on) from the temperature measuring devices (THS1) to (THSn) are sent to the temperature controller (4a) as needed, and the temperature controller (4a) has a heater temperature below the set value.
  • temperature control signals (tl) to (tn) are output to the input side of the output contacts of the auxiliary switching elements (SSR11) to (SSR1n).
  • the I / O unit (4b) outputs time division control signals (S1) to (Sn) to the input circuits of the auxiliary switching elements (SSR11) to (SSR1n).
  • Auxiliary switch elements (SSR11) to (SSR1n) are output contact points under the AND condition of the time division control signals (S1) to (Sn) of the input circuit and the temperature control signals (tl) to (tn) on the input side of the output contacts.
  • a signal is output to the output side.
  • the output side of the output contacts of the auxiliary switching elements (SSR11) to (SSR1n) outputs signals to the input circuits of the main switching elements (SSR10) to (SSRnO). That is, this signal is a signal when the time-division control signal is ON for a heater that does not reach the set temperature.
  • An AC main power supply (1) is supplied as needed to the input side of the output contacts of the main switching elements (SSR10) to (SSRnO).
  • the main switching elements (SSR10) to (SSRnO) have an AND condition between the input circuit signal and the AC main power supply (1) on the input side of the output contact. To be applied. When the AND condition disappears, the AC power is turned off at the next zero cross point.
  • the main switching elements (SSR10) to (SSRn0) switch their power supply by turning them on and off at the zero cross point for each phase in the case of three-phase alternating current in the case of single-phase alternating current.
  • the hot plates (HP1) to (HPn) of the dryer (41) are equipped with temperature measuring devices (THS1) to (THSn) such as thermocouples, respectively, and the hot plates (HP1) to (HPn) ) Is continuously measured and sent as a temperature signal (o1) to (on) to the temperature controller (4a) of the control unit (4) described later, and the rise of each hot plate (HP1) to (HPn) The operating temperature state is continuously monitored including the temperature state.
  • TSS1 to (THSn) temperature measuring devices
  • thermocouples thermocouples
  • Hot plate (HP1), (HP2)-(HPn) auxiliary switching element (SSR11), (SSR12)-(SSRn1) output contact input side of the application state, of which hot plate to be energized from now on ( Time sharing control signals (s1) to (sn) from the I / O unit (4b) to the input circuits of the auxiliary switching elements (SSR11) and (SSR12) to (SSRn1) of HP1), (HP2) to (HPn)
  • the temperature controller (4a) provided in the control unit (4) receives the temperature signals (o1) to (on) of the temperature measuring devices (THS1) to (THSn), When the temperature of each hot plate (HP1) to (HPn) is lower than the set temperature, the I / O unit (4b) provided in the control unit (4) for the input circuit of the auxiliary switching elements (SSR11) to (SSRn1) ) After a certain period of pause (here, 1 or an integral multiple of a half cycle), the next hot plate (HP1), (HP
  • the number of hot plates to be selected and heated next may be one, or when multiple workpieces must be simultaneously dried, the number of workpieces is selected by the number of workpieces.
  • the number of units that are energized at the same time is limited to the same or less than the number of existing hot plates when they are added, and if not added, the number is one less than the number of existing hot plates at the maximum. The hot plates are simultaneously heated.
  • the length of the rest period is the opposite, short when the temperature rising curve extends in a straight line, gradually longer when the temperature rising curve reaches the curve, and when the set temperature is reached, the energization time is such as heat dissipation. Since it is sufficient to replenish the heat loss, it is set for the longest time.
  • the energization time and the length of the rest period are not limited to this, and can be freely set according to the situation.
  • the usable capacity of the main power supply equipment of the factory where the dryer (41) is installed differs from factory to factory and is not constant, but here, as described above, when the dryer (41) is added or not, This will be described separately for the case where the input current amount of the dryer (41) is reduced.
  • the case of expansion will be described, and then the case of non-expansion will be described. In either case, there are a case where one hot plate is heated and a case where there are a plurality of hot plates.
  • the number of hot plates that are overlapped and fed at the time of expansion is the same as that at the time of existing installation, but at the time of non-expansion, the maximum number is one less than that at the time of installation. It should be noted that in the latter explanation that is not added, the description overlapping the former explanation that is added is omitted, and the former explanation is used. Since the existing AC mains power supply (1) will be used as it is, the new dryer (41) will increase the hot plates (HP1), (HP2) to (HPn) from the existing capacity, The capacity of the power supply facility is insufficient.
  • the hot plates (HP1), (HP2) to (HPn) reach a predetermined temperature
  • the object (2) to which the coating liquid (3) is applied is transferred to the hot plates (HP1), (HP2 ) To (HPn) to dry.
  • the hot plates (HP1), (HP2) to (HPn) are first heated to a predetermined temperature in an empty state. Since the method of the present invention uses the time-sharing power supply method, when there is only one hot plate, first, the time-sharing control signal (s1) is supplied to the auxiliary switching element (SSR11) of the heater (H1) of the first hot plate (HP1).
  • the main switching element (SSR10) to which the auxiliary switching element (SSR11) is connected detects the zero cross point.
  • the main switching element (SSR10) operates to energize the heater (H1) of the first hot plate (HP1) and raise the temperature.
  • the time division control signal (s1) can be lengthened as necessary in one cycle or an integral multiple thereof (the shortest is the time during which one cycle can be energized), and the time division control signal (s1) is cut off.
  • the first hot plate (HP1) is turned off when the zero cross point is detected for the first time.
  • the same operation as described above is repeated to energize the second hot plate (HP2) from the I / O unit (4b) and raise the temperature.
  • the energization is switched to the energization of the first hot plate (HP1) and repeated until the hot plate reaches a predetermined temperature.
  • the energization time is shortened and the temperature rising curve gradually goes to sleep.
  • the rest period is set as necessary.
  • no time division control signal is output from the I / O unit (4b) to the auxiliary opening / closing element of the hot plate, and the input circuit of the auxiliary opening / closing element is not turned on.
  • the main switching element connected to the auxiliary switching element is not turned on and the heater is not energized.
  • the time-sharing power supply method since the temperature rise is repeated for each hot plate for a short time, the time required for raising the temperature to a predetermined temperature is longer than the case where all the heaters are raised simultaneously. However, since the rate of temperature rise is slow, there is no overshoot that greatly exceeds the set temperature, and the set temperature is reached smoothly.
  • the heating rate of the hot plate is almost the same, but when the hot plate after the previous hot plate reaches the set temperature first, the temperature signal from the temperature detector of the subsequent hot plate will Since the time-division control signal from the I / O unit (4b) to the auxiliary switch of the hot plate is not output, the zero cross point detection signal of the main switch of the subsequent hot plate cannot be ANDed. Energization of the heater of the hot plate is passed, and after a predetermined time elapses, the temperature is switched to the next hot plate. If the next hot plate does not reach the set temperature, energization is started.
  • the hot plate is heated by energization by the temperature signal from the temperature detector.
  • the input current amount is equivalent to one hot plate.
  • the hot plate heaters of the selected number are energized for a predetermined time, followed by a rest period, and then to the same number of selected hot plates. Energization is performed for a predetermined time. As a result, the order of energization is accelerated and the temperature rise time of the hot plate is shortened accordingly.
  • the heating for each hot plate is the same as the heating for each hot plate at the time of the above-mentioned expansion. Warm time is short.
  • the selected number of hot plates (up to one less than the number of existing hot plates) is energized and heated, and when energization is completed, the system stops. After the period, the next selected hot plate is energized and heated.
  • the number of hot plates to be heated at the same time is more than half of the number of existing hot plates, some hot plates are continuously heated by energization after the suspension period. In this case as well, the order of energization is accelerated and the temperature rise time of the hot plate is shortened accordingly.
  • FIG. 3 shows the temperature rising state of one of the four hot plates according to the time-division control method of the present invention.
  • FIG. 4 shows the temperature rising state of the conventional method.
  • the vertical axis represents temperature (° C.) and the horizontal axis represents time (seconds).
  • the experimental conditions are as follows.
  • AC main power supply 50 cycles of 3-phase AC (applicable to either single phase or 60 cycles) Hot plate heater specification; 200V at 1mm diameter, rated power consumption 10kW Ambient temperature at the start of energization; 23 ° C Set temperature: 80 ° C
  • Current-carrying condition Always on in the conventional system, and in the system of the present invention, it is energized for 10 seconds (500 cycles) and has a rest time of 0.3 seconds (15 cycles). Temperature sampling; Temperature measurement points every second; 8 points per hot plate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Control Of Resistance Heating (AREA)
  • Drying Of Solid Materials (AREA)

Abstract

Provided is a time-division control device for which the amount of electricity supplied for at least one hot plate is sufficient and an increase in the factory power-receiving equipment is not required, even if the number of drying devices increases; or, which is capable of reducing the maximum flowing current value to the current value for one heater for an existing drying device equipped with multiple heaters when said multiple heaters are heated in parallel. This time-division control device (A) supplies power by sequentially switching the supply of power to the heaters (H1)-(Hn) for multiple hot plates (HP1)-(HPn), which are connected in parallel to an alternating current main power supply (1) and which respectively heat and dry, at a prescribed temperature, multiple processing bodies (2) on which an application liquid has been applied. The time-division control device is characterized in that it comprises: the existing alternating current main power supply (1), which supplies alternating current to each of the aforementioned multiple heaters (H1)-(Hn); parallel connection lines (n1) - (nn), which branch from the alternating current main power supply (1) and respectively supply power to the heaters (H1)-(Hn), and temperature measurement instruments (THS1) - (THSn) for the heaters (H1) - (Hn) and the hot plates (HP1) - (HPn); and a power supply control circuit (K), which, with the zero cross point of the alternating current to each of the heaters (H1) - (Hn) as the power supply switching point, and until each of the hot plates (H1) - (Hn) reaches the set temperature, uses a temperature signal from the aforementioned temperature measurement instruments (THS1) - (THSn) to switch the supply of power to the next selected heater after a rest period of a half-cycle or an integer multiple thereof from said power supply switching point, with the number of hot plates being the same as or less than the number of existing hot plates when the number of hot plates is being increased and the number of hot plates being one less than the number of existing hot plates when the number of hot plates is not being increased.

Description

乾燥機の時分割制御方式とその装置Time-sharing control method and apparatus for dryer
 本発明は、乾燥設備拡張においてこれに伴う工場の受電設備の増強を不要とすることができる、或いは乾燥設備拡張を行わない場合でも既設の乾燥設備の最大電流値を低減させることが出来る時分割制御方式、特にフラットパネルディスプレー製造用乾燥機の時分割制御方式とその装置に関する。 The present invention makes it possible to eliminate the need to increase the power receiving equipment of the factory in connection with the expansion of the drying equipment, or to reduce the maximum current value of the existing drying equipment even when the drying equipment is not expanded. The present invention relates to a control system, and more particularly to a time-sharing control system and apparatus for a dryer for manufacturing a flat panel display.
 現在、フラットパネルディスプレー製造工場では、増産のために急速な製造設備の拡張が行われている。そのためには工場を新設しなければならないが将来の需要予測は非常に難しく、安易に工場新設に踏み切ることができない。そのために、既設工場の空き部分利用して必要台数の工場設備を設置することになる。 Currently, at the flat panel display manufacturing plant, production facilities are rapidly expanded to increase production. To that end, a new factory must be established, but future demand prediction is very difficult, and it is not possible to easily set up a new factory. For this purpose, the necessary number of factory facilities will be installed using the empty space of the existing factory.
 このような状況において、フラットパネルディスプレーの配向膜乾燥機を例に取ると、この乾燥機は複数のホットプレートを装備しているため、或いは1又は複数のホットプレートを装備した乾燥機が複数台設置されていて、フル操業時にはワークの同時乾燥を行う上で全ホットプレートの全ヒータを同時加熱しなければならず、そのために少なくともヒータの定格消費電流×ヒータ数の大電流を要する。そして、乾燥機を新設するとその新設台数分の電力が更に必要となり、既設工場の受電設備の能力を設備導入に合わせて引き上げなくてはならなくなる。従って、そのためのコスト増と設備増強のための時間が必要になり、急増する需要に対応し切れないという問題が生じた。 In this situation, taking an alignment film dryer for a flat panel display as an example, this dryer is equipped with a plurality of hot plates, or a plurality of dryers equipped with one or more hot plates. In the case of full operation, all the heaters of all the hot plates must be heated at the same time in order to simultaneously dry the workpieces. For this purpose, at least the rated current consumption of the heater × the number of heaters is required. And if a dryer is newly installed, the electric power for the newly installed number will be further required, and the capacity of the power receiving equipment in the existing factory will have to be raised in accordance with the introduction of equipment. Therefore, the cost increase for that purpose and the time for equipment enhancement were needed, and the problem that it was not able to respond to the rapidly increasing demand arose.
 加えて、最近では既設の乾燥機でも前記ユーザの要望と相俟ってその地域の消費電力のピークを出来る限り落として平準化したいという電力会社の事情及びこれを受けた国の省エネルギー政策から、操業時の最大電流値を出来るだけ小さくする必要もある。 In addition, due to the circumstances of electric power companies and the energy saving policies of the countries that have received this, the existing dryers recently want to level out the peak of power consumption in the area as much as possible in combination with the user's request. It is also necessary to make the maximum current value during operation as small as possible.
 このような問題点に対処する1つの方策として特許2688628号に記載の方法の適用が考えられる。この方法は3相交流の単相にそれぞれホットプレートの3つのヒータを接続し、各相のゼロクロスポイントで3つのヒータを切り替え、ヒータ切り替え時のノイズ発生を極力低減させるというものである。 As one measure for dealing with such problems, application of the method described in Japanese Patent No. 2688628 can be considered. In this method, three heaters of a hot plate are connected to a single phase of three-phase alternating current, and the three heaters are switched at the zero cross point of each phase, and noise generation at the time of heater switching is reduced as much as possible.
 これを乾燥機のホットプレートの切り替えに適用したとすると、ゼロクロスポイントでの切り替えは切替装置の性能上の関係から完全にゼロクロスポイントで行われるわけでなく、ゼロクロスポイント或いはその近傍で行われるため、場合によってはオン・オフ切り替え前後で予定数量以上のヒータが重複して通電される瞬間があり、これが既設の受電設備の容量を超えるような過大な負担を与えるという悪影響を生じる。また、3相交流の各相にヒータを接続するから制御できるヒータは3に限られるという問題もあるだけでなく、ヒータへの電力供給力も3相で給電する場合に比べて弱いという問題もある。 If this is applied to the switching of the hot plate of the dryer, the switching at the zero cross point is not performed completely at the zero cross point due to the performance of the switching device, but is performed at or near the zero cross point. In some cases, there are moments when more than a predetermined number of heaters are energized before and after switching on and off, and this has the adverse effect of placing an excessive burden that exceeds the capacity of the existing power receiving equipment. In addition, there is a problem that the number of heaters that can be controlled is limited to three because a heater is connected to each phase of the three-phase alternating current, and there is also a problem that the power supply power to the heater is weaker than that in the case of supplying power in three phases. .
特許2688628号Japanese Patent No. 2688628
 本発明はかかる乾燥設備に対する従来の電源印加方法及びその装置の改良に関するもので、その目的は乾燥機の台数が増えたとしても、工場受電設備を増大させる必要がなく、或いは既設の乾燥機の複数のホットプレートにおいて、全又は選択された複数の該ホットプレートの並行加熱(同時加熱ではない)時においても間欠的な通電によってその通電電流値が最小でホットプレート1面分の電流値まで低減でき、最大でも既設の受電設備の容量を下回る時分割制御方式とその装置を提供することにある。 The present invention relates to an improvement of a conventional power supply method and apparatus for such a drying facility, and the object thereof is to increase the number of dryers without increasing the factory power receiving facility, In a plurality of hot plates, even when all or a plurality of selected hot plates are heated in parallel (not simultaneously), the energizing current value is reduced to the minimum current value for one surface of the hot plate by intermittent energization. It is possible to provide a time-sharing control system and its apparatus that are less than the capacity of existing power receiving equipment.
 請求項1にかかる発明は、
「並列接続にて交流主電源(1)に接続され、塗布液(3)が塗着された複数の被処理体(2)を所定温度にてそれぞれ加熱乾燥する複数のホットプレート(HP1)~(HPn)用のヒータ(H1)~(Hn)への給電を順次切り替えて給電する乾燥機(41)の時分割制御装置(A)において、
 前記複数のヒータ(H1)~(Hn)に交流電流をそれぞれ給電する既設の交流主電源(1)と、
 交流主電源(1)の主給電ライン(L)から分岐されて該ヒータ(H1)~(Hn)にそれぞれ給電する並列接続ライン(n1)~(nn)及び該ヒータ(H1)~(Hn)並びにホットプレート(HP1)~(HPn)の温度測定器(THS1)~(THSn)と、
 ホットプレート(HP1)~(HPn)それぞれが設定温度に達するまで、前記温度測定器(THS1)~(THSn)からの温度信号(o1)~(on)により、各ヒータ(H1)~(Hn)への交流電流のゼロクロスポイントを給電切替点として、
 ホットプレートを増設する場合には、既設ホットプレートの台数以下で、
 ホットプレートを増設しない場合は、既設ホットプレートの台数より1台少ない台数以下で、
 該給電切替点から半サイクル又はその整数倍の休止期間の経過後に選択された次のヒータに給電を切り替える給電制御回路(K)とで構成された」ことを特徴とする。(なお、本明細書において使用される各符号の添え字「n」は、増設時、非増設時の最大数の両方の意味を有する。)
The invention according to claim 1
“Multiple hot plates (HP1) that are connected to the AC mains power supply (1) in parallel and heat-dry each of the workpieces (2) coated with the coating liquid (3) at a predetermined temperature. In the time-sharing control device (A) of the dryer (41) that sequentially switches the power supply to the heaters (H1) to (Hn) for (HPn) and supplies power,
An existing AC main power supply (1) for supplying an AC current to each of the plurality of heaters (H1) to (Hn);
Parallel connection lines (n1) to (nn) and heaters (H1) to (Hn) branched from the main power supply line (L) of the AC main power supply (1) to supply power to the heaters (H1) to (Hn), respectively. And hot plate (HP1)-(HPn) temperature measuring instruments (THS1)-(THSn),
Until each of the hot plates (HP1) to (HPn) reaches the set temperature, the heaters (H1) to (Hn) are heated by the temperature signals (o1) to (on) from the temperature measuring devices (THS1) to (THSn). The zero cross point of AC current to the
When adding hotplates, the number of existing hotplates should be less than
If you do not add a hot plate, the number is less than the number of existing hot plates,
And a power supply control circuit (K) for switching power supply to the next heater selected after a half cycle or an integral multiple of a pause period has elapsed from the power supply switching point. (Note that the subscript “n” of each symbol used in this specification has both the meanings of the maximum number at the time of expansion and at the time of non-expansion.)
 請求項2は請求項1の装置(A)において、
「給電制御回路(K)が、
 温度測定器(THS1)~(THSn)からの温度信号(o1)~(on)を受けて各ホットプレート(HP1)~(HPn)の温度を検出すると共に前記温度測定器(THS1)~(THSn)からの温度信号(o1)~(on)に係るホットプレート(HP1)~(HPn)の温度が設定温度以下である場合に各ヒータ(H1)~(Hn)への給電を順次実行するように指令する時分割制御信号(s1)~(sn)を出力する制御部(4)と、
 前記並列接続ライン(n1)~(nn)にそれぞれ設けられ、給電された交流電流のゼロクロスポイントを給電切替点としてヒータ(H1)~(Hn)と交流主電源(1)とを断接する主開閉素子(SSR10)~(SSRn0)と、
 主開閉素子(SSR10)~(SSRn0)にそれぞれ接続され、制御部(4)から出力された時分割制御信号(s1)~(sn)を受けて該時分割制御信号(s1)~(sn)に係る主開閉素子(SSR10)~(SSRn0)をオンにする補助開閉素子(SSR11)~(SSR1n)とで構成された」ことを特徴とする。
Claim 2 is the apparatus (A) of claim 1,
`` The power supply control circuit (K)
In response to temperature signals (o1) to (on) from temperature measuring devices (THS1) to (THSn), the temperature of each hot plate (HP1) to (HPn) is detected and the temperature measuring devices (THS1) to (THSn) are detected. ) When the temperature of the hot plates (HP1) to (HPn) related to the temperature signals (o1) to (on) from) is below the set temperature, power supply to each heater (H1) to (Hn) is executed sequentially A control unit (4) for outputting time-sharing control signals (s1) to (sn) commanded to
A main opening / closing circuit provided on each of the parallel connection lines (n1) to (nn) for connecting and disconnecting the heaters (H1) to (Hn) and the AC main power source (1) using the zero cross point of the supplied AC current as a power supply switching point. Elements (SSR10) to (SSRn0),
The time division control signals (s1) to (sn) are connected to the main switching elements (SSR10) to (SSRn0) and receive the time division control signals (s1) to (sn) output from the control unit (4). The auxiliary switching elements (SSR11) to (SSR1n) for turning on the main switching elements (SSR10) to (SSRn0) according to the above.
 請求項3は請求項1又は2の装置(A)における各ヒータ(H1)~(Hn)への通電時間に関し、
「各ヒータ(H1)~(Hn)への通電時間は給電される交流電流の1サイクル又はその整数倍である」ことを特徴とする。
Claim 3 relates to the energization time to each heater (H1) to (Hn) in the apparatus (A) of claim 1 or 2,
“The energization time to each of the heaters (H1) to (Hn) is one cycle of the supplied alternating current or an integral multiple thereof”.
 請求項4の本発明方法は、
「並列接続にて交流主電源(1)に接続され、塗布液(3)が塗着された複数の被処理体(2)を所定温度にてそれぞれ加熱乾燥する複数のホットプレート(HP1)~(HPn)用のヒータ(H1)~(Hn)への給電を順次切り替えて給電する乾燥機(41)の時分割給電制御方法であって、
 該ホットプレート(HP1)~(HPn)の温度をそれぞれ検出して順次給電されるホットプレート(HP1)~(HPn)の温度が設定温度以下の場合、ホットプレート(HP1)~(HPn)それぞれが設定温度に達するまで、各ヒータ(H1)~(Hn)への給電交流電流のゼロクロスポイントを給電切替点として、
 ホットプレートを増設する場合には、既設ホットプレートの台数以下で、
 ホットプレートを増設しない場合は、既設ホットプレートの台数より1台少ない台数以下で、
 該給電切替点から半サイクル又はその整数倍の休止期間の経過後に選択された次のヒータに給電を切り替えて行く」ことを特徴とする。
The method of the present invention according to claim 4
“Multiple hot plates (HP1) that are connected to the AC mains power supply (1) in parallel and heat-dry each of the workpieces (2) coated with the coating liquid (3) at a predetermined temperature. A time-division power supply control method for a dryer (41) that sequentially supplies power to the heaters (H1) to (Hn) for (HPn),
When the temperatures of the hot plates (HP1) to (HPn) are detected by detecting the temperatures of the hot plates (HP1) to (HPn), respectively, the hot plates (HP1) to (HPn) Until the set temperature is reached, the zero crossing point of the feeding AC current to each heater (H1) to (Hn) is used as the feeding switching point.
When adding hotplates, the number of existing hotplates should be less than
If you do not add a hot plate, the number is less than the number of existing hot plates,
The power supply is switched from the power supply switching point to the next heater selected after the lapse of a half cycle or an integral multiple of the rest period ”.
 乾燥機(41)を増設した場合、既設のホットプレートをn台とし、新設のホットプレートをm台とすると、従来の同時加熱方式では必要最大電流量はm+n台分となるが、給電設備の能力は増強しないため、交流主電源(1)の容量は既設分のn台分しかない。そのような給電設備の能力を増強しない状況において、本発明では、ホットプレートm+n台の内、選択された1乃至n台のホットプレートのヒータへの給電を順次切り替え、且つゼロクロスポイントから少なくとも半サイクルの休止期間を設けて給電する(時分割制御)ので、ノイズレスでホットプレートの所定温度までの昇温時間は長くなるものの、既存の受電設備の能力を範囲内で最大で全数のホットプレートを昇温させることができる。換言すれば、既設の交流主電源(1)の容量以上にならない範囲で給電することが出来る。 When the number of dryers (41) is increased, if the number of existing hot plates is n and the number of newly installed hot plates is m, the required maximum current amount is m + n in the conventional simultaneous heating method. Since the capacity is not increased, the capacity of the AC main power source (1) is only n units of the existing capacity. In a situation where the capacity of such a power supply facility is not enhanced, the present invention sequentially switches power supply to the heaters of 1 to n selected hot plates among the m + n hot plates, and at least half a cycle from the zero cross point. Power is supplied with a period of downtime (time-sharing control), so the time required to raise the temperature to the specified temperature of the hot plate is longer without noise, but the maximum number of hot plates can be increased within the range of the existing power receiving facilities. Can be warmed. In other words, power can be supplied in a range that does not exceed the capacity of the existing AC main power source (1).
 また、増設しない場合では、複数の既設ホットプレートの並行加熱において、最大で既設ホットプレートの台数(n台)より1台少ない台数以下(n-1台)で、ホットプレートのヒータへの給電を順次切り替え、且つ、ゼロクロスポイントから少なくとも半サイクルの休止期間を設け給電する(時分割制御)ので、前述同様、ノイズレスでホットプレートの所定温度までの昇温時間は長くなるものの、この場合はホットプレートへの給電量は最大で(n-1)台となり、加熱時の通電量の低減に資することができる。 If the number of existing hot plates is not increased, the number of existing hot plates (n units) will be less than the number of existing hot plates (n units) and less (n-1 units). Since switching is performed sequentially and power is supplied by providing at least a half-cycle rest period from the zero cross point (time-sharing control), as described above, the temperature rise time to the predetermined temperature of the hot plate becomes longer without noise, but in this case the hot plate The maximum amount of power supplied to the power supply is (n-1) units, which can contribute to a reduction in the amount of electricity during heating.
 なお、前述のようにゼロクロスポイントでヒータの通電切替を行うので、通電切替に際してノイズが発生しないし、ヒータへの通電を連続的でなく、順次切り替えていくので、急激な昇温が抑制されてヒータの昇温速度を過剰なものとせず、緩やかな昇温速度とすることができるものであって、これによってホットプレートのヒータの定格電流に合わせたフルパワー給電を設定温度直前まで実行できることになり、稼働台数が最大m+n又はn台であった場合には、設定温度までの昇温時間が最大でm+n又はn倍に延びることが予想されるものの、例えば0.7~0.8×(m+n又はn)倍というように予想時間よりも大幅に昇温時間を短縮することができる。非通電時の放熱ロスを抑制すれば更なる時間短縮が可能となる。加えて、ヒータへの通電を時分割にて順次切り替えて行くため、主開閉素子(SSR10)~(SSRn0)や補助開閉素子(SSR11)~(SSR1n)などの切替装置だけで従来では各ヒータ毎に設けていた開閉器やブレーカなどが不要となり、部品を大幅に削減することができる。 In addition, since the heater energization switching is performed at the zero cross point as described above, no noise is generated during energization switching, and the energization to the heater is switched sequentially rather than continuously, so that rapid temperature rise is suppressed. Heating rate of the heater is not excessive, and it can be a moderate heating rate, so that full power feeding that matches the rated current of the hot plate heater can be executed just before the set temperature. Thus, when the number of operating units is m + n or n at the maximum, the temperature rise time to the set temperature is expected to increase up to m + n or n times, but for example 0.7 to 0.8 × ( The temperature raising time can be significantly shortened from the expected time such as m + n or n) times. If the heat dissipation loss at the time of non-energization is suppressed, the time can be further shortened. In addition, since the power supply to the heaters is sequentially switched in a time-sharing manner, the switching devices such as the main switching elements (SSR10) to (SSRn0) and the auxiliary switching elements (SSR11) to (SSR1n) are conventionally used for each heater. This eliminates the need for switches and breakers that were installed in the machine, and can greatly reduce the number of parts.
本発明の実施例の回路図Circuit diagram of an embodiment of the present invention 本発明方法の実施状態を説明するグラフThe graph explaining the implementation state of the method of the present invention 本発明方法の実施状況における1のホットプレートの昇温グラフTemperature increase graph of one hot plate in the implementation status of the method of the present invention 従来例のホットプレートの昇温グラフTemperature increase graph of hot plate of conventional example
 以下、発明を図示実施例に従って詳述する。第1図は、本制御装置(A)における塗布ステージ(81)上に設置されたガラスのような被塗布基板(2)に配向膜形成液のような塗布液(3)を塗布しこれを乾燥する工程において、塗布後の被処理体(2)を加熱して該塗布液(3)を乾燥する場合の乾燥機(41)に適用した場合の一実施例を示すものである。 Hereinafter, the invention will be described in detail according to the illustrated embodiment. FIG. 1 shows that a coating liquid (3) such as an alignment film forming liquid is applied to a substrate (2) such as glass placed on a coating stage (81) in the control apparatus (A). In the drying step, an example is shown in the case of applying to the dryer (41) in the case where the object (2) to be treated is heated to dry the coating liquid (3).
 本発明では、交流主電源(1)の給電能力を増強することなく乾燥機(41)の設備増強に対応する場合と、設備の増強をしない場合には給電量を少なくともホットプレート1台分低減するものである。乾燥機(41)は1又は多面のホットプレート(HP1)~(HPn)を搭載したものが適用されるが、設備の増強をしない場合でホットプレートが1台しか装備しないものは当然省かれる。以下、複数のホットプレートを装備した乾燥機を中心に説明する。 In the present invention, when the power supply capacity of the AC main power supply (1) is not increased, the capacity of the dryer (41) can be increased, and when the capacity is not increased, the power supply is reduced by at least one hot plate. To do. As the dryer (41), one equipped with one or many hot plates (HP1) to (HPn) is applied, but the one equipped with only one hot plate is naturally omitted when the equipment is not enhanced. Hereinafter, the description will focus on a dryer equipped with a plurality of hot plates.
 使用される交流主電源(1)は3相又は単相交流で、図2の「(SSR10~SSRn0)の出力接点の入力側」の波形は単相の場合はそのまま適用できるが、3相交流の場合は図の煩雑さを避けるためその1相を示した。 The AC main power supply (1) used is a three-phase or single-phase AC, and the waveform on the “input side of the output contact of (SSR10 to SSRn0)” in FIG. In the case of, one phase was shown in order to avoid the complexity of the figure.
 図1に示すように、乾燥機(41)の複数のホットプレート(HP1)~(HPn)には電流が供給された際に熱を発するヒータ(H1)~(Hn)がそれぞれ埋設されている。ヒータ(H1)~(Hn)は薄膜状の発熱体層を有する面状発熱体のようなものやシーズヒータのようなものが挙げられる。勿論、ホットプレートが1台しかないものも存在し、この場合は乾燥機は複数台となる。 As shown in FIG. 1, heaters (H1) to (Hn) that generate heat when electric current is supplied are embedded in the hot plates (HP1) to (HPn) of the dryer (41), respectively. . Examples of the heaters (H1) to (Hn) include a planar heating element having a thin heating element layer and a sheathed heater. Of course, there are those having only one hot plate. In this case, a plurality of dryers are provided.
 ヒータ(H1)~(Hn)(この場合のヒータは既設だけ、既設プラス増設の場合の両方を含む。)それぞれは、交流主電源(1)の主給電ライン(L)から分岐した並列接続ライン(n1)~(nn)にて並列接続されている。この並列接続ライン(n1)~(nn)には電流計(61)~(6n)及び並列接続ライン(n1)~(nn)を開閉するための主開閉素子(SSR10)~(SSRn0)(本実施例では半導体リレー)が直列接続されており、さらに主開閉素子(SSR10)~(SSRn0)それぞれには交流用の主開閉素子(SSR10)~(SSRn0)を制御する直流用の補助開閉素子(SSR11)~(SSR1n)(本実施例では半導体リレー)が設けられ、後者である直流用の補助開閉素子(SSR11)~(SSR1n)は後述する制御部(4)の温度調節器(4a)及びI/Oユニット(4b)から制御信号(温度調節器(4a)からは温調信号(t1)~(tn)が、I/Oユニット(4b)からは時分割制御信号(s1)~(sn)が出力)を得るようになっている。即ち、温度測定器(THS1)~(THSn)からの温度信号(o1)~(on)は温調器(4a)に随時送られ、温調器(4a)はヒータの温度が設定値以下の時、補助開閉素子(SSR11)~(SSR1n)の出力接点の入力側に温調信号(tl)~(tn)を出力する。I/Oユニット(4b)は、時分割制御信号(S1)~(Sn)を補助開閉素子(SSR11)~(SSR1n)の入力回路に出力する。補助開閉素子(SSR11)~(SSR1n)は、入力回路の時分割制御信号(S1)~(Sn)と出力接点の入力側の温調信号(tl)~(tn)のAND条件で、出力接点の出力側に信号を出力する。補助開閉素子(SSR11)~(SSR1n)の出力接点の出力側は、主開閉素子(SSR10)~(SSRnO)の入力回路に信号を出力する。つまりこの信号は、設定温度に満たないヒータで時分割制御信号がONの時の信号となる。主開閉素子(SSR10)~(SSRnO)の出力接点の入力側には、交流主電源(1)が随時供給されている。主開閉素子(SSR10)~(SSRnO)は、入力回路の信号と出力接点の入力側の交流主電源(1) とのAND条件で、最初のゼロクロスポイントから出力接点の出力側から交流電源がヒータに印加される。そのAND条件が無くなると、次のゼロクロスポイントで交流電源が切れる。 Heaters (H1) to (Hn) (In this case, only existing heaters are included, including both existing and additional installations.) Each is a parallel connection line branched from the main power supply line (L) of the AC main power supply (1) Connected in parallel at (n1) to (nn). The parallel connection lines (n1) to (nn) have main switch elements (SSR10) to (SSRn0) for opening and closing the ammeters (61) to (6n) and the parallel connection lines (n1) to (nn). In the embodiment, a semiconductor relay is connected in series, and each of the main switch elements (SSR10) to (SSRn0) has a DC auxiliary switch element (SSR10) for controlling the AC main switch elements (SSR10) to (SSRn0). SSR11) to (SSR1n) (semiconductor relays in this embodiment) are provided, and the latter DC auxiliary switching elements (SSR11) to (SSR1n) are provided with a temperature controller (4a) of a control unit (4), which will be described later, and Control signals from the I / O unit (4b) (temperature control signals (t1) to (tn) from the temperature controller (4a) and time-division control signals (s1) to (sn) from the I / O unit (4b) ) Is getting output). That is, the temperature signals (o1) to (on) from the temperature measuring devices (THS1) to (THSn) are sent to the temperature controller (4a) as needed, and the temperature controller (4a) has a heater temperature below the set value. At this time, temperature control signals (tl) to (tn) are output to the input side of the output contacts of the auxiliary switching elements (SSR11) to (SSR1n). The I / O unit (4b) outputs time division control signals (S1) to (Sn) to the input circuits of the auxiliary switching elements (SSR11) to (SSR1n). Auxiliary switch elements (SSR11) to (SSR1n) are output contact points under the AND condition of the time division control signals (S1) to (Sn) of the input circuit and the temperature control signals (tl) to (tn) on the input side of the output contacts. A signal is output to the output side. The output side of the output contacts of the auxiliary switching elements (SSR11) to (SSR1n) outputs signals to the input circuits of the main switching elements (SSR10) to (SSRnO). That is, this signal is a signal when the time-division control signal is ON for a heater that does not reach the set temperature. An AC main power supply (1) is supplied as needed to the input side of the output contacts of the main switching elements (SSR10) to (SSRnO). The main switching elements (SSR10) to (SSRnO) have an AND condition between the input circuit signal and the AC main power supply (1) on the input side of the output contact. To be applied. When the AND condition disappears, the AC power is turned off at the next zero cross point.
 前記主開閉素子(SSR10)~(SSRn0)は単相交流対応ではそのゼロクロスポイントにて、3相交流対応の場合には、各相毎にゼロクロスポイントでオン・オフして給電を切り替えている。なお、交流主電源(1)の主給電ライン(L)の並列接続ライン(n1)~(nn)までには交流主電源(1)側から過電流緊急遮断用のサーキットブレーカ(20)、全ヒータ(H1)~(Hn)の電源開閉用の電磁接触器であるマグネットコンダクタ(21)が配置されている。従来のように全ヒータ(H1)~(Hn)を同時通電の場合には、これらサーキットブレーカ(20)やマグネットコンダクタ(21)が全ホットプレート(HP1)~(HPn)に個別に必要となる。 The main switching elements (SSR10) to (SSRn0) switch their power supply by turning them on and off at the zero cross point for each phase in the case of three-phase alternating current in the case of single-phase alternating current. The circuit breaker (20) for overcurrent emergency shutdown from the AC main power supply (1) side to the parallel connection lines (n1) to (nn) of the main power supply line (L) of the AC main power supply (1), all A magnet conductor (21) which is an electromagnetic contactor for switching the power supply of the heaters (H1) to (Hn) is disposed. When all heaters (H1) to (Hn) are energized simultaneously as before, these circuit breakers (20) and magnet conductors (21) are required individually for all hot plates (HP1) to (HPn). .
 また、乾燥機(41)のホットプレート(HP1)~(HPn)には、熱電対のような温度測定器(THS1)~(THSn)がそれぞれ配置されていて、ホットプレート(HP1)~(HPn)の温度を連続的に測定して温度信号(o1)~(on)として後述する制御部(4)の温度調節器(4a)に送信し、各ホットプレート(HP1)~(HPn)の昇温状態を始め稼働中の温度状態を連続的に監視している。 The hot plates (HP1) to (HPn) of the dryer (41) are equipped with temperature measuring devices (THS1) to (THSn) such as thermocouples, respectively, and the hot plates (HP1) to (HPn) ) Is continuously measured and sent as a temperature signal (o1) to (on) to the temperature controller (4a) of the control unit (4) described later, and the rise of each hot plate (HP1) to (HPn) The operating temperature state is continuously monitored including the temperature state.
 ホットプレート(HP1)、(HP2)~(HPn)の補助開閉素子(SSR11)、(SSR12)~(SSRn1)の出力接点の入力側は印加状態で、その内のこれから通電しようとするホットプレート(HP1)、(HP2)~(HPn)の補助開閉素子(SSR11)、(SSR12)~(SSRn1)の入力回路に対してI/Oユニット(4b)から時分割制御信号(s1)~(sn)が出力されるものであるが、制御部(4)に設けられた温度調節器(4a)は、前記温度測定器(THS1)~(THSn)の温度信号(o1)~(on)を受け取り、各ホットプレート(HP1)~(HPn)の温度が設定温度より低い場合は補助開閉素子(SSR11)~(SSRn1)の入力回路に対して制御部(4)に設けられたI/Oユニット(4b)から一定時間の休止期間(ここでは半サイクルの1又はその整数倍)を経た後に次のホットプレート(HP1)、(HP2)・・・(HPn)というように順次時分割制御信号(s1)~(sn)(オン信号)が出力されている。従って、測定温度が設定温度或いはオーバーシュートしたことを検知した場合(但し、本発明方法では仮にオーバーシュートがあったとしても極く僅かに抑えられる。)には該ホットプレート(HP1)、(HP2)・・・(HPn)には時分割制御信号(s1)~(sn)は出力されない。 Hot plate (HP1), (HP2)-(HPn) auxiliary switching element (SSR11), (SSR12)-(SSRn1) output contact input side of the application state, of which hot plate to be energized from now on ( Time sharing control signals (s1) to (sn) from the I / O unit (4b) to the input circuits of the auxiliary switching elements (SSR11) and (SSR12) to (SSRn1) of HP1), (HP2) to (HPn) The temperature controller (4a) provided in the control unit (4) receives the temperature signals (o1) to (on) of the temperature measuring devices (THS1) to (THSn), When the temperature of each hot plate (HP1) to (HPn) is lower than the set temperature, the I / O unit (4b) provided in the control unit (4) for the input circuit of the auxiliary switching elements (SSR11) to (SSRn1) ) After a certain period of pause (here, 1 or an integral multiple of a half cycle), the next hot plate (HP1), (HP2) ... (HPn) and so on in time division control signal (s1) ~ (Sn) (ON signal) is output . Therefore, when it is detected that the measured temperature is the set temperature or overshoot (however, even if there is an overshoot in the method of the present invention, the hot plate (HP1), (HP2 )... (HPn) does not output the time division control signals (s1) to (sn).
 ここで、次に選択されて加熱されるホットプレートは1台でも良いし、複数ワークの同時乾燥を行わねばならない場合には、ワーク枚数だけ台数が選択される。ただし、同時に通電される台数は、増設された場合には、ホットプレートの既設台数と同数かそれ以下に限定されるし、増設でない場合には、最大で既設ホットプレート台数より1台だけ少ない台数のホットプレートが同時加熱されることになる。 Here, the number of hot plates to be selected and heated next may be one, or when multiple workpieces must be simultaneously dried, the number of workpieces is selected by the number of workpieces. However, the number of units that are energized at the same time is limited to the same or less than the number of existing hot plates when they are added, and if not added, the number is one less than the number of existing hot plates at the maximum. The hot plates are simultaneously heated.
 補助開閉素子(SSR11)、(SSR12)~(SSRn1)への前記出力時間=通電時間は1サイクル又はその整数倍にてホットプレート(HP1)、(HP2)~(HPn)の検出温度に合わせて適宜選定することが出来る。即ち、設定温度直前までは昇温曲線が直線状に伸びるように長く、それ以後は、次第に短く、設定温度に達すると通電時間は放熱などの熱ロス分を補給するだけで足りるため、最も短く設定されることになる。一方、休止期間の長さはこれと反対で、昇温曲線が直線状に伸びている場合は短く、昇温曲線がカーブに差し掛かると次第に長く、設定温度に達すると通電時間は放熱などの熱ロス分を補給するだけで足りるため、最も長く設定されることになる。勿論、通電時間や休止期間の長さはこれに限られず、状況に応じて自由に設定できる。 The output time to the auxiliary switching elements (SSR11), (SSR12) to (SSRn1) = energization time is 1 cycle or an integral multiple of it to match the detected temperature of the hot plate (HP1), (HP2) to (HPn) It can be selected as appropriate. That is, the temperature rise curve is long so that it extends linearly until just before the set temperature, and then gradually decreases.After reaching the set temperature, the energization time only needs to replenish heat loss such as heat dissipation, so it is the shortest. Will be set. On the other hand, the length of the rest period is the opposite, short when the temperature rising curve extends in a straight line, gradually longer when the temperature rising curve reaches the curve, and when the set temperature is reached, the energization time is such as heat dissipation. Since it is sufficient to replenish the heat loss, it is set for the longest time. Of course, the energization time and the length of the rest period are not limited to this, and can be freely set according to the situation.
 次に、このような構成の制御装置(A)の動作を第1、2図従って説明する。乾燥機(41)が設置されている工場の主電源設備の使用可能容量は工場毎に異なり一定ではないが、ここでは前述のように乾燥機(41)を増設する場合と、非増設で既存乾燥機(41)の投入電流量を低減させる場合とに分けて説明する。まず、増設の場合について説明し、続いて非増設の場合について説明する。そして、いずれの場合でも加熱されるホットプレートが1台ずつの場合と、複数台の場合とがある。複数台の場合、増設時では重なって給電されるホットプレートの数は既設時と同じ台数が最大となるが、非増設時では最大で既設時より1台少ない台数が最大となる。なお、非増設である後者の説明では、増設である前者の説明と重複する部分は割愛し、前者の説明を援用するものとする。交流主電源(1)は既設のものをそのまま使うことになるため、増設時では、新設乾燥機(41)によりホットプレート(HP1)、(HP2)~(HPn)は既設分より増加し、その分だけ給電設備の能力は不足している。 Next, the operation of the control device (A) having such a configuration will be described with reference to FIGS. The usable capacity of the main power supply equipment of the factory where the dryer (41) is installed differs from factory to factory and is not constant, but here, as described above, when the dryer (41) is added or not, This will be described separately for the case where the input current amount of the dryer (41) is reduced. First, the case of expansion will be described, and then the case of non-expansion will be described. In either case, there are a case where one hot plate is heated and a case where there are a plurality of hot plates. In the case of a plurality of units, the number of hot plates that are overlapped and fed at the time of expansion is the same as that at the time of existing installation, but at the time of non-expansion, the maximum number is one less than that at the time of installation. It should be noted that in the latter explanation that is not added, the description overlapping the former explanation that is added is omitted, and the former explanation is used. Since the existing AC mains power supply (1) will be used as it is, the new dryer (41) will increase the hot plates (HP1), (HP2) to (HPn) from the existing capacity, The capacity of the power supply facility is insufficient.
 ワークの乾燥工程ではホットプレート(HP1)、(HP2)~(HPn)が所定温度に達したところで塗布液(3)が塗布された被処理体(2)を該ホットプレート(HP1)、(HP2)~(HPn)にセットして乾燥を行う。そのために空の状態でホットプレート(HP1)、(HP2)~(HPn)をまず所定温度まで昇温させることになる。本発明方法では時分割給電方式であるから、ホットプレート1台だけの場合は、まず、第1のホットプレート(HP1)のヒータ(H1)の補助開閉素子(SSR11)に時分割制御信号(s1)が入力され、該補助開閉素子(SSR11)の入力回路がオンになっている状態の時に、該補助開閉素子(SSR11)が接続されている主開閉素子(SSR10)がゼロクロスポイントを検出するとこの検出信号と前記時分割制御信号(s1)のAND条件で主開閉素子(SSR10)が作動し第1のホットプレート(HP1)のヒータ(H1)に通電がなされ昇温する。 In the workpiece drying process, when the hot plates (HP1), (HP2) to (HPn) reach a predetermined temperature, the object (2) to which the coating liquid (3) is applied is transferred to the hot plates (HP1), (HP2 ) To (HPn) to dry. For this purpose, the hot plates (HP1), (HP2) to (HPn) are first heated to a predetermined temperature in an empty state. Since the method of the present invention uses the time-sharing power supply method, when there is only one hot plate, first, the time-sharing control signal (s1) is supplied to the auxiliary switching element (SSR11) of the heater (H1) of the first hot plate (HP1). ) Is input and when the input circuit of the auxiliary switching element (SSR11) is turned on, the main switching element (SSR10) to which the auxiliary switching element (SSR11) is connected detects the zero cross point. Under the AND condition of the detection signal and the time-division control signal (s1), the main switching element (SSR10) operates to energize the heater (H1) of the first hot plate (HP1) and raise the temperature.
 前記時分割制御信号(s1)は1サイクル又はその整数倍にて必要に応じて長くすることが出来(最短は1サイクルの通電が可能となる時間)、時分割制御信号(s1)が遮断された後に最初にゼロクロスポイントが検出された時点で第1のホットプレート(HP1)の通電が終わる。 The time division control signal (s1) can be lengthened as necessary in one cycle or an integral multiple thereof (the shortest is the time during which one cycle can be energized), and the time division control signal (s1) is cut off. The first hot plate (HP1) is turned off when the zero cross point is detected for the first time.
 そして、最短で半サイクルの休止時間を設けて、前述と同様の動作を繰り返してI/Oユニット(4b)から第2のホットプレート(HP2)の通電がなされ昇温する。これを繰り返して最終のホットプレート(HPn)の通電が終了すると第1のホットプレート(HP1)の通電に切り替わり、ホットプレートが所定温度に達するまで繰り返す。 Then, with the shortest half-cycle down time, the same operation as described above is repeated to energize the second hot plate (HP2) from the I / O unit (4b) and raise the temperature. When this is repeated and the energization of the final hot plate (HPn) is completed, the energization is switched to the energization of the first hot plate (HP1) and repeated until the hot plate reaches a predetermined temperature.
 ホットプレートが所定温度の近傍に達すると、通電時間が短くなり昇温カーブは次第に寝るようになる。休止期間は必要に応じて設定される。ホットプレートが所定温度に達すると、該ホットプレートの補助開閉素子にはI/Oユニット(4b)から時分割制御信号が出力されず、該補助開閉素子の入力回路はオンとならず、従って該補助開閉素子に接続されている主開閉素子はオンとならずそのヒータには通電されない。 When the hot plate reaches the vicinity of the predetermined temperature, the energization time is shortened and the temperature rising curve gradually goes to sleep. The rest period is set as necessary. When the hot plate reaches a predetermined temperature, no time division control signal is output from the I / O unit (4b) to the auxiliary opening / closing element of the hot plate, and the input circuit of the auxiliary opening / closing element is not turned on. The main switching element connected to the auxiliary switching element is not turned on and the heater is not energized.
 このように時分割給電方式では1ホットプレート毎に短時間の昇温を繰り返して行くため、昇温時間は全ヒータを同時に昇温させる場合に比べて所定温度までの昇温に必要時間は長くなるが、昇温速度が緩やかであるから設定温度を大きく越えるようなオーバーシュートはなく、スムーズに設定温度に達する。なお、ホットプレートの昇温速度はほぼ同じであるが、前のホットプレートより後のホットプレートの方が先に設定温度に達した場合、後のホットプレートの温度検出器からの温度信号により後のホットプレートの補助開閉器へのI/Oユニット(4b)からの時分割制御信号が出力されないので、後のホットプレートの主開閉器のゼロクロスポイント検出信号とアンドを取ることが出来ず、後のホットプレートのヒータへの通電はパスされ、所定時間経過後、その次のホットプレートの昇温に切り替わる。その次のホットプレートが設定温度に達していなければ通電が開始され、逆に達しておればパスされる。 As described above, in the time-sharing power supply method, since the temperature rise is repeated for each hot plate for a short time, the time required for raising the temperature to a predetermined temperature is longer than the case where all the heaters are raised simultaneously. However, since the rate of temperature rise is slow, there is no overshoot that greatly exceeds the set temperature, and the set temperature is reached smoothly. The heating rate of the hot plate is almost the same, but when the hot plate after the previous hot plate reaches the set temperature first, the temperature signal from the temperature detector of the subsequent hot plate will Since the time-division control signal from the I / O unit (4b) to the auxiliary switch of the hot plate is not output, the zero cross point detection signal of the main switch of the subsequent hot plate cannot be ANDed. Energization of the heater of the hot plate is passed, and after a predetermined time elapses, the temperature is switched to the next hot plate. If the next hot plate does not reach the set temperature, energization is started.
 また、乾燥工程中にいずれかのホットプレートの温度が設定温度以下に下がればその温度検出器からの温度信号により該ホットプレートの通電加熱がなされる。この場合における投入電流量はホットプレート1台分となる。 In addition, if the temperature of any hot plate falls below the set temperature during the drying process, the hot plate is heated by energization by the temperature signal from the temperature detector. In this case, the input current amount is equivalent to one hot plate.
 前述の場合はホットプレートを1台づつ順次加熱する場合を示したが、全ホットプレートの昇温時間をより短くするために複数台のホットプレートを同時に加熱する場合がある。この場合選択された台数(ただし、既設のホットプレートの台数以下となる。)のホットプレートのヒータに所定時間だけ通電し、続いて休止期間を経たのち、次の選択された同数のホットプレートに所定時間だけ通電がなされる。これにより通電される順番が早くなりそれだけホットプレートの昇温時間が短くなる。 In the case described above, the case where the hot plates are sequentially heated one by one has been shown. However, in order to shorten the temperature rising time of all the hot plates, a plurality of hot plates may be heated simultaneously. In this case, the hot plate heaters of the selected number (however, less than the number of existing hot plates) are energized for a predetermined time, followed by a rest period, and then to the same number of selected hot plates. Energization is performed for a predetermined time. As a result, the order of energization is accelerated and the temperature rise time of the hot plate is shortened accordingly.
 次に非増設の場合であるが、ホットプレート1台ずつの加熱の場合は前述の増設の時のホットプレート1台ずつの加熱の場合と同じであるが、加熱する台数が少ないので全体の昇温時間は短い。また、非増設の場合で、ホットプレートを複数台同時に加熱する場合、選択された台数(最大で既設ホットプレートの台数よりも1台少ない台数)のホットプレートを通電加熱し、通電が終了すると休止期間の後、次の選択されたホットプレートの通電加熱が行われる。同時に加熱されるホットプレートの台数が既設のホットプレートの台数の半分より多い場合は、休止期間が終わった後、続けて通電加熱されるホットプレートもある。これの場合も通電される順番が早くなりそれだけホットプレートの昇温時間が短くなる。 Next, in the case of non-expansion, the heating for each hot plate is the same as the heating for each hot plate at the time of the above-mentioned expansion. Warm time is short. In addition, when heating more than one hot plate at the same time in the case of non-addition, the selected number of hot plates (up to one less than the number of existing hot plates) is energized and heated, and when energization is completed, the system stops. After the period, the next selected hot plate is energized and heated. When the number of hot plates to be heated at the same time is more than half of the number of existing hot plates, some hot plates are continuously heated by energization after the suspension period. In this case as well, the order of energization is accelerated and the temperature rise time of the hot plate is shortened accordingly.
 (実験条件)
 図3は本発明の時分割制御方式による4面のホットプレートの内の1面のホットプレートの昇温状態を示す。図4は従来方式の昇温状態を示す。いずれのグラフも縦軸は温度(℃)、横軸は時間(秒)である。実験条件は以下の通りである。
 交流主電源;50サイクルの3相交流(単相でも60サイクルでも適用可)
 ホットプレートのヒータ仕様;直径1mmで200V、定格消費電力が10kW
 通電開始時の周囲温度;23℃
 設定温度;80℃
 通電条件;従来方式では常時オン、本発明方式では10秒間通電(500サイクル)で0.3秒(15サイクル)の休止時間
 温度サンプリング;1秒毎
 温度測定ポイント;1ホットプレートに付き8箇所。
(Experimental conditions)
FIG. 3 shows the temperature rising state of one of the four hot plates according to the time-division control method of the present invention. FIG. 4 shows the temperature rising state of the conventional method. In each graph, the vertical axis represents temperature (° C.) and the horizontal axis represents time (seconds). The experimental conditions are as follows.
AC main power supply: 50 cycles of 3-phase AC (applicable to either single phase or 60 cycles)
Hot plate heater specification; 200V at 1mm diameter, rated power consumption 10kW
Ambient temperature at the start of energization; 23 ° C
Set temperature: 80 ° C
Current-carrying condition: Always on in the conventional system, and in the system of the present invention, it is energized for 10 seconds (500 cycles) and has a rest time of 0.3 seconds (15 cycles). Temperature sampling; Temperature measurement points every second; 8 points per hot plate.
 (実験結果)
 本発明方式では設定温度まで45分掛かっている。これに対して従来方式では14分である。実験には4面のホットプレートが使用されているので、これを順次通電加熱すれば従来例の4倍(14分×4)の56分が必要であると予想されるところ、実際は4面が45分で設定温度に到達し、予想より20%程度早期に設定温度に到達していることがわかる。これは設定温度に近づくにつれてヒータに供給する電力を漸減していく期間(B)が従来例の同期間(A)より格段に短いためである。換言すれば、前記期間(A)(B)に至るまでは昇温線が直線的に上昇している。これは期間(A)(B)に至るまではヒータの定格消費電力一杯までフルパワーの電力供給が行われていることを示す。フルパワー電力供給期間が従来例より長いため本発明の昇温時間は予想値よりも短くすることができた。
(Experimental result)
In the method of the present invention, it takes 45 minutes to reach the set temperature. In contrast, the conventional method takes 14 minutes. Since 4 hot plates are used in the experiment, it is expected that 56 minutes, which is 4 times (14 minutes x 4) of the conventional example, is required if this is sequentially energized and heated. It can be seen that the set temperature was reached in 45 minutes and reached the set temperature about 20% earlier than expected. This is because the period (B) in which the power supplied to the heater is gradually reduced as the temperature approaches the set temperature is much shorter than the period (A) in the conventional example. In other words, the temperature rise line rises linearly until the period (A) (B). This indicates that full power is supplied to the full rated power consumption of the heater until the periods (A) and (B) are reached. Since the full power supply period is longer than that of the conventional example, the heating time of the present invention can be made shorter than expected.
(A)・・・時分割給電制御装置
(1)・・・交流主電源
(3)・・・塗布液
(4)・・・制御部
(41) ・・乾燥機
(HP1)~(HPn)・・・ホットプレート
(H1)~(Hn)・・・ヒータ
(L)・・・主給電ライン
(n1)~(nn)・・・並列接続ライン
(THS1)~(THSn)・・・温度測定器
(K)・・・給電制御回路
(SSR10)~(SSRn0)・・・主開閉素子
(SSR11)~(SSR1n)・・・補助開閉素子
(A) Time-division power supply control device
(1) ・ ・ ・ AC main power supply
(3) ... Coating solution
(4) ... Control unit
(41) ..Dryers
(HP1) ~ (HPn) ・ ・ ・ Hot plate
(H1) ~ (Hn) ・ ・ ・ Heater
(L) ... Main feed line
(n1) to (nn): Parallel connection line
(THS1) ~ (THSn) ・ ・ ・ Temperature measuring instrument
(K) ... Power supply control circuit
(SSR10) to (SSRn0) ... Main switching element
(SSR11) to (SSR1n) ... Auxiliary switching elements

Claims (4)

  1.  並列接続にて交流主電源に接続され、塗布液が塗着された複数の被処理体を所定温度にてそれぞれ加熱乾燥する複数のホットプレート用のヒータへの給電を順次切り替えて給電する乾燥機の時分割制御装置において、
     前記複数のヒータに交流電流をそれぞれ給電する既設の交流主電源と、
     交流主電源の主給電ラインから分岐されて該ヒータにそれぞれ給電する並列接続ライン及び該ヒータ並びにホットプレートの温度測定器と、
     ホットプレートそれぞれが設定温度に達するまで、前記温度測定器からの温度信号により、各ヒータへの交流電流のゼロクロスポイントを給電切替点として、
     ホットプレートを増設する場合には、既設ホットプレートの台数以下で、
     ホットプレートを増設しない場合は、既設ホットプレートの台数より1台少ない台数以下で、
     該給電切替点から半サイクル又はその整数倍の休止期間の経過後に選択された次のヒータに給電を切り替える給電制御回路とで構成されたことを特徴とする乾燥機の時分割制御装置。
    A dryer that is connected to an AC main power supply in parallel, and that sequentially supplies power to a plurality of hot plate heaters that heat and dry a plurality of workpieces coated with a coating liquid at a predetermined temperature. In the time-sharing control device,
    An existing AC main power supply for supplying AC current to each of the plurality of heaters;
    A parallel connection line that branches off from the main power supply line of the AC main power supply and supplies power to the heater, and a temperature measuring device for the heater and hot plate;
    Until each hot plate reaches the set temperature, the zero cross point of the alternating current to each heater is set as a power supply switching point by the temperature signal from the temperature measuring device.
    When adding hotplates, the number of existing hotplates should be less than
    If you do not add a hot plate, the number is less than the number of existing hot plates,
    A time-division control device for a dryer, comprising: a power supply control circuit for switching power supply to a next heater selected after a half cycle or an integral multiple of a rest period from the power supply switching point.
  2.  請求項1に記載の乾燥機の時分割制御装置において、給電制御回路が、
     温度測定器からの温度信号を受けて各ホットプレートの温度を検出すると共に前記温度測定器からの温度信号に係るホットプレートの温度が設定温度以下である場合に各ヒータへの給電を順次実行するように指令する時分割制御信号を出力する制御部と、
     前記並列接続ラインにそれぞれ設けられ、給電された交流電流のゼロクロスポイントを給電切替点としてヒータと交流主電源とを断接する主開閉素子と、
     主開閉素子にそれぞれ接続され、制御部から出力された時分割制御信号を受けて該時分割制御信号に係る主開閉素子をオンにする補助開閉素子とで構成されたことを特徴とする乾燥機の時分割制御装置。
    The time-sharing control device for a dryer according to claim 1, wherein the power supply control circuit is:
    In response to a temperature signal from the temperature measuring device, the temperature of each hot plate is detected, and when the temperature of the hot plate related to the temperature signal from the temperature measuring device is equal to or lower than a set temperature, power is sequentially supplied to each heater. A control unit that outputs a time-sharing control signal to command
    A main switching element that is provided in each of the parallel connection lines, and connects and disconnects the heater and the AC main power source with a zero cross point of the supplied AC current as a power supply switching point;
    A dryer comprising: an auxiliary switching element that is connected to each of the main switching elements and receives a time-sharing control signal output from the control unit and turns on the main switching element according to the time-sharing control signal Time-sharing controller.
  3.  各ヒータへの通電時間は給電される交流電流の1サイクル又はその整数倍であることを特徴とする請求項1又は2に記載の乾燥機の時分割制御装置。 The time-sharing control device for a dryer according to claim 1 or 2, wherein the energization time to each heater is one cycle of an alternating current to be fed or an integral multiple thereof.
  4.  並列接続にて交流主電源に接続され、塗布液が塗着された複数の被処理体を所定温度にてそれぞれ加熱乾燥する複数のホットプレート用のヒータへの給電を順次切り替えて給電する乾燥機の時分割給電制御方法であって、
     該ホットプレートの温度をそれぞれ検出して順次給電されるホットプレートの温度が設定温度以下の場合、ホットプレートそれぞれが設定温度に達するまで、各ヒータへの給電交流電流のゼロクロスポイントを給電切替点として、
     ホットプレートを増設する場合には、既設ホットプレートの台数以下で、
     ホットプレートを増設しない場合は、既設ホットプレートの台数より1台少ない台数以下で、
     該給電切替点から半サイクル又はその整数倍の休止期間の経過後に選択された次のヒータに給電を切り替えて行くことを特徴とする乾燥機の時分割給電制御方法。
    A dryer that is connected to an AC main power supply in parallel, and that sequentially supplies power to a plurality of hot plate heaters that heat and dry a plurality of workpieces coated with a coating liquid at a predetermined temperature. A time-sharing power supply control method,
    When the temperature of the hot plate that is sequentially supplied by detecting the temperature of the hot plate is below the set temperature, the zero cross point of the AC current supplied to each heater is used as the power supply switching point until each hot plate reaches the set temperature. ,
    When adding hotplates, the number of existing hotplates should be less than
    If you do not add a hot plate, the number is less than the number of existing hot plates,
    A time-division power supply control method for a dryer, wherein the power supply is switched to the next heater selected after a half cycle or an integral multiple of a rest period from the power supply switching point.
PCT/JP2010/006699 2010-11-15 2010-11-15 Method and device for time-division control of drying device WO2012066590A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2010/006699 WO2012066590A1 (en) 2010-11-15 2010-11-15 Method and device for time-division control of drying device
JP2012539124A JP5130415B2 (en) 2010-11-15 2010-11-15 Time-sharing control method and apparatus for dryer
KR1020127029206A KR20130098858A (en) 2010-11-15 2010-11-15 Method and device for time-division control of drying device
CN201080066423.3A CN102869937B (en) 2010-11-15 2010-11-15 Method and device for time-division control of drying device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/006699 WO2012066590A1 (en) 2010-11-15 2010-11-15 Method and device for time-division control of drying device

Publications (1)

Publication Number Publication Date
WO2012066590A1 true WO2012066590A1 (en) 2012-05-24

Family

ID=46083564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/006699 WO2012066590A1 (en) 2010-11-15 2010-11-15 Method and device for time-division control of drying device

Country Status (4)

Country Link
JP (1) JP5130415B2 (en)
KR (1) KR20130098858A (en)
CN (1) CN102869937B (en)
WO (1) WO2012066590A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019120736A (en) * 2017-12-28 2019-07-22 パナソニックIpマネジメント株式会社 Transparent screen system and video projection system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0240955Y2 (en) * 1985-01-09 1990-10-31
JP2688628B2 (en) * 1989-11-24 1997-12-10 東京エレクトロン株式会社 Heating equipment
JP2738458B2 (en) * 1989-03-28 1998-04-08 インパクト システムズ インコーポレーテッド Power control device and method for heating load

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0128505Y2 (en) * 1981-05-07 1989-08-30
DE4101354A1 (en) * 1991-01-18 1992-07-23 Kuesters Eduard Maschf Inductive heated roller - has monitors and controls for each embedded heater to give the required temp. profile
JP2002071219A (en) * 2000-08-29 2002-03-08 Toto Ltd Water heater power managing device
CN2506956Y (en) * 2001-11-26 2002-08-21 大庆油田有限责任公司 Electric heater and controller for rock sample oven
JP2005007290A (en) * 2003-06-19 2005-01-13 Matsushita Electric Ind Co Ltd Garbage treatment apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0240955Y2 (en) * 1985-01-09 1990-10-31
JP2738458B2 (en) * 1989-03-28 1998-04-08 インパクト システムズ インコーポレーテッド Power control device and method for heating load
JP2688628B2 (en) * 1989-11-24 1997-12-10 東京エレクトロン株式会社 Heating equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019120736A (en) * 2017-12-28 2019-07-22 パナソニックIpマネジメント株式会社 Transparent screen system and video projection system
JP7014596B2 (en) 2017-12-28 2022-02-01 パナソニックIpマネジメント株式会社 Transparent screen system and video projection system

Also Published As

Publication number Publication date
JPWO2012066590A1 (en) 2014-05-12
JP5130415B2 (en) 2013-01-30
KR20130098858A (en) 2013-09-05
CN102869937B (en) 2015-04-08
CN102869937A (en) 2013-01-09

Similar Documents

Publication Publication Date Title
RU2477555C2 (en) Power supply device for immediate electric heating of pipeline system
CN103712465B (en) Annealing device
JP5130415B2 (en) Time-sharing control method and apparatus for dryer
US6727475B2 (en) Heating control system which minimizes AC power line voltage fluctuations
JP2006313053A (en) Electric floor heating control device
CN204256582U (en) A kind of three-phase electric appliance five notch power control device
JP2010011729A (en) Electric-energy converting apparatus for heating cylindrical semiconductor material conduction-wise
US10253742B2 (en) Motor starter
US11626733B2 (en) Method and system for determining and controlling an electricity feed to an electricity grid from a load side of an electric circuit
AU2012261605B2 (en) Equipment for redirection of electric power in a boiler during regulated water heating by use of direct current gained by photovoltaic panels
CN202363845U (en) Anti-condensation device for non-segregated phase bus
JP5707184B2 (en) Power distribution system
JP3921121B2 (en) Energization control device and electric water heater operation control system
KR101571052B1 (en) Power switching equipment for boilers used within regulated water heating using direct current form photovoltaic panels
KR102248220B1 (en) heating device of semiconductor producing process
JP6397296B2 (en) Temperature control apparatus and temperature control method
WO2017051277A4 (en) Method and device for electric power supply of a single-phase appliance during a failure of one or multiple phases
CN203133633U (en) Adaptable AC-DC temperature control system
RU90284U1 (en) DEVICE FOR HEATING FLAT ELECTRIC HEATERS
KR100520874B1 (en) Power supply of induction heating system for improved circulation and control method for the same
WO2013008084A1 (en) System for placing solar power plants into a safe condition
JP2008287313A (en) Electric power device
JP4171691B2 (en) Heating device and temperature control method thereof
KR101396600B1 (en) Power control apparatus, method and apparatus comprising the same
JPH0830336A (en) Abnormal temperature controller for electronic equipment

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080066423.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10859734

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012539124

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127029206

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10859734

Country of ref document: EP

Kind code of ref document: A1