WO2012064208A1 - Procédé de conversion d'énergie thermique à basse température en énergie thermique à haute température et en énergie mécanique, et dispositif de pompe à chaleur pour une telle conversion - Google Patents

Procédé de conversion d'énergie thermique à basse température en énergie thermique à haute température et en énergie mécanique, et dispositif de pompe à chaleur pour une telle conversion Download PDF

Info

Publication number
WO2012064208A1
WO2012064208A1 PCT/PL2010/050057 PL2010050057W WO2012064208A1 WO 2012064208 A1 WO2012064208 A1 WO 2012064208A1 PL 2010050057 W PL2010050057 W PL 2010050057W WO 2012064208 A1 WO2012064208 A1 WO 2012064208A1
Authority
WO
WIPO (PCT)
Prior art keywords
exchanger
heat
compressor
thermal energy
heat exchanger
Prior art date
Application number
PCT/PL2010/050057
Other languages
English (en)
Inventor
Mieczysław Tadeusz OLPIŃSKI
Original Assignee
Olpek-Garden Usługi Ogrodnicze Olpiński, Marcin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olpek-Garden Usługi Ogrodnicze Olpiński, Marcin filed Critical Olpek-Garden Usługi Ogrodnicze Olpiński, Marcin
Priority to EP10795791.2A priority Critical patent/EP2638336A1/fr
Publication of WO2012064208A1 publication Critical patent/WO2012064208A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps

Definitions

  • the subject of the present invention is a method for converting low temperature thermal energy into high temperature thermal energy and mechanical energy and a heat pump device for such conversion.
  • Heat pumps known in the art make use of the evaporation and condensation phenomena, where a working medium passes through two states of aggregation. This process enables extracting thermal energy from a lower temperature location and transferring this energy to a higher temperature location.
  • a Japanese Patent No. JP2010096429 discloses a heat pump system which uses waste heat and improves COP efficiency coefficient by recovering enthalpy of a refrigerant on the high pressure side of a compressor and using the enthalpy to operate an absorption type heat pump circuit, while using waste heat of a prime mover as a heat source of a regenerator.
  • the method for converting low temperature thermal energy into high temperature thermal energy and mechanical energy consists in that a compressor and a water pump are driven by a heat engine operating in a closed circuit which is supplied with a part of the thermal energy extracted by a heat pump from a low temperature thermal energy source, said compressor being driven by an externally-supplied engine in the start-up phase.
  • a heat engine supplied with high temperature thermal energy is used as the start-up engine.
  • the working medium is passed through three states of aggregation. The same working medium is used in both the heat pump circuit and in the thermodynamic circuit of the heat engine which drives that heat pump .
  • Another invention described herein is a heat pump.
  • a source of low temperature thermal energy is connected through a water pump to a cold heat exchanger and an exchanger which stabilizes the temperature of the working medium.
  • a pressurized working medium tank is connected, via a cut-off valve, to a nozzle at the cold heat exchanger.
  • the cut-off valve is also connected to a check valve, and the chamber of the heat exchanger is connected, via a heating exchanger, to the inlet of the chamber of the first cylinder of the compressor.
  • the outlet of this compressor cylinder is connected, through a first exchanger of the heat exchanger, to the inlet of the second compressor cylinder.
  • the outlet of the second compressor cylinder is connected, through the hot heat exchanger of the heat engine and the second exchanger of the hot heat exchanger, to the inlet of the heat pump cold exchanger which is connected to the check valve of the working medium tank through cooling exchangers, cold exchanger of the heat engine and a condensing exchanger.
  • a first control valve is located between the check valve and the nozzle of the cold heat exchanger, said control valve controlling the whole device by regulating the amount of the working medium directed to the nozzle.
  • a second control valve is located between the outlet of a compressor cylinder and the second exchanger of the hot heat exchanger.
  • a third control valve is located between the cooling exchangers of the cold heat exchanger. The latter two valves control the operation of the heat engine.
  • T-pipes which direct water stream to the exchangers.
  • the compressor and the water pump are coupled with the start-up engine and the drive shaft of the heat engine or with the heat engine shaft only, and a power receiving device is connected to the heat engine drive shaft.
  • the heat pump according to the present invention increases the efficiency of a heat engine operating in a closed circuit, since it utilizes the thus far unused waste energy, not utilized in the thermodynamic circuit of that engine.
  • the heat pump recycles that waste energy to its thermodynamic circuit.
  • Compressor 1 and thermal pump 4 are driven by a heat engine 3 which operates in a closed circuit which is supplied with a part of the thermal energy extracted by the heat pump from a low temperature thermal energy source 6, said compressor being driven by an electric motor 2 in start-up phase.
  • the working medium is passed through three states of aggregation.
  • the same working medium is used in both the heat pump circuit and the thermodynamic circuit of the heat engine which drives that heat pump.
  • the medium is conveyed by compressor 1 through cold heat exchanger 7 of that pump and condenses to form liquid condensate which is pumped into pressurized tank 9 through check valve 13.
  • Figure 1 shows a schematic view of an exemplary embodiment of the heat pump according to the present invention.
  • a two-stage water-cooled compressor and pump 1 is coupled with a start-up electric engine 2 which is coupled with a Stirling heat engine 3.
  • the Stirling engine 3 is connected to a water pump 4 and a power generator 5.
  • a source of low temperature thermal energy 6 is connected through the water pump 4 to a cold heat exchanger 7 and an exchanger 8 which stabilizes the temperature of the working medium.
  • a pressurized working medium tank 9 is connected, via a cut-off valve 10, to a nozzle 11 of the cold heat exchanger 7.
  • the cut-off valve 10 is connected through a safety valve 12 to a check valve 13, and the internal chamber of a cold heat exchanger 14 is connected, via a heating exchanger 15 and an outlet 16, to the inlet of the chamber of the first cylinder 17 of the compressor 1.
  • the outlet of this cylinder 17 is connected, through a first exchanger 18a of a hot heat exchanger 18, to the inlet of the second cylinder 19 of the compressor 1.
  • the outlet of the second cylinder 19 of the compressor 1 is connected, through the hot heat exchanger 20 of the Stirling heat engine 3 and the second exchanger 18b of the hot heat exchanger 18, to the inlet 21 of the cold exchanger 7 of the heat pump, which is connected to the check valve 13 of the working medium tank, through cooling exchangers 22 and 23, a cold exchanger 24 of the Stirling heat engine 3 and a condensing exchanger 25.
  • a control valve 26 which controls the whole device by regulating the amount of the working medium directed to nozzle 11.
  • a second control valve 27 is located between the outlet of the cylinder 19 of the compressor 1 and the second exchanger of the hot heat exchanger 18.
  • a third control valve 28 is located between the cooling exchangers 23 and 25 of the cold heat exchanger 7. The two latter control valves control the operation of the heat engine.
  • T-pipes 29 and 30 Located between the low temperature energy source 6 and the cold exchanger 7 are T-pipes 29 and 30 which direct water stream to the exchangers 7 and 8.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

La présente invention concerne un procédé dans lequel, pendant le fonctionnement d'une pompe à chaleur, un compresseur et une pompe à eau sont entraînés par un moteur thermique fonctionnant en circuit fermé, qui est alimenté par une partie de l'énergie thermique extraite par la pompe à chaleur d'une source de chaleur à basse température, tandis que le compresseur est entraîné par un moteur supplémentaire au cours de la phase de démarrage. L'invention englobe également la pompe à chaleur.
PCT/PL2010/050057 2010-11-12 2010-11-15 Procédé de conversion d'énergie thermique à basse température en énergie thermique à haute température et en énergie mécanique, et dispositif de pompe à chaleur pour une telle conversion WO2012064208A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP10795791.2A EP2638336A1 (fr) 2010-11-12 2010-11-15 Procédé de conversion d'énergie thermique à basse température en énergie thermique à haute température et en énergie mécanique, et dispositif de pompe à chaleur pour une telle conversion

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PLP-392931 2010-11-12
PL392931A PL219931B1 (pl) 2010-11-12 2010-11-12 Sposób zamiany niskotemperaturowej energii cieplnej na wysokotemperaturową energię cieplną oraz energię mechaniczną i pompa ciepła, będąca urządzeniem do tej zamiany

Publications (1)

Publication Number Publication Date
WO2012064208A1 true WO2012064208A1 (fr) 2012-05-18

Family

ID=44624948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/PL2010/050057 WO2012064208A1 (fr) 2010-11-12 2010-11-15 Procédé de conversion d'énergie thermique à basse température en énergie thermique à haute température et en énergie mécanique, et dispositif de pompe à chaleur pour une telle conversion

Country Status (3)

Country Link
EP (1) EP2638336A1 (fr)
PL (1) PL219931B1 (fr)
WO (1) WO2012064208A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8844291B2 (en) 2010-12-10 2014-09-30 Vaporgenics Inc. Universal heat engine
CN108016598A (zh) * 2017-11-30 2018-05-11 江苏科技大学 一种直燃式船用恒温恒湿空调系统及工作方法
US11137177B1 (en) 2019-03-16 2021-10-05 Vaporgemics, Inc Internal return pump

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6484501B1 (en) * 1998-02-03 2002-11-26 Miturbo Umwelttechnik Gmbh & Co. Kg Method of heat transformation for generating heating media with operationally necessary temperature from partly cold and partly hot heat loss of liquid-cooled internal combustion piston engines and device for executing the method
JP2009019351A (ja) * 2007-07-10 2009-01-29 Toyo Constr Co Ltd 海水の鉛直循環装置
JP2010096429A (ja) 2008-10-16 2010-04-30 Osaka Gas Co Ltd 排熱利用ヒートポンプシステム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6484501B1 (en) * 1998-02-03 2002-11-26 Miturbo Umwelttechnik Gmbh & Co. Kg Method of heat transformation for generating heating media with operationally necessary temperature from partly cold and partly hot heat loss of liquid-cooled internal combustion piston engines and device for executing the method
JP2009019351A (ja) * 2007-07-10 2009-01-29 Toyo Constr Co Ltd 海水の鉛直循環装置
JP2010096429A (ja) 2008-10-16 2010-04-30 Osaka Gas Co Ltd 排熱利用ヒートポンプシステム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8844291B2 (en) 2010-12-10 2014-09-30 Vaporgenics Inc. Universal heat engine
CN108016598A (zh) * 2017-11-30 2018-05-11 江苏科技大学 一种直燃式船用恒温恒湿空调系统及工作方法
US11137177B1 (en) 2019-03-16 2021-10-05 Vaporgemics, Inc Internal return pump

Also Published As

Publication number Publication date
PL392931A1 (pl) 2012-05-21
EP2638336A1 (fr) 2013-09-18
PL219931B1 (pl) 2015-08-31

Similar Documents

Publication Publication Date Title
US20180156506A1 (en) Integrated Power, Cooling, and Heating Device and Method Thereof
US10030646B2 (en) Gas compressor
US10458285B2 (en) Device for controlling the working fluid circulating in a closed circuit operating according to a rankine cycle and method of using same
US9932862B2 (en) Method and apparatus for heating an expansion machine of a waste heat recovery apparatus
CN106687667B (zh) 用于冷却压缩机设备的压缩气体的方法和应用该方法的压缩机
EP1669701A2 (fr) Système de cogénération d'énergie
KR20120004442A (ko) 폐열 공조 시스템
EP2529086B1 (fr) Système de production électrique
JP5261473B2 (ja) 中温熱機関
JP2014231738A (ja) 廃熱回生システム
JP5837512B2 (ja) 空気調和又は水分生成のための装置
US9746215B2 (en) Heat powered reciprocating piston engine
EP2638336A1 (fr) Procédé de conversion d'énergie thermique à basse température en énergie thermique à haute température et en énergie mécanique, et dispositif de pompe à chaleur pour une telle conversion
WO2009118342A1 (fr) Procédé pour convertir l’énergie thermique en travail mécanique
KR20210104067A (ko) 열 펌프 장치 및 열 펌프 장치를 포함하는 지역 난방 네트워크
JP2014190586A (ja) エジェクタ式冷凍サイクル装置
JP4152140B2 (ja) 排熱吸収冷凍機
KR20180056148A (ko) 복합화력발전시스템
CN205477784U (zh) 一种热电联产装置
TWI399512B (zh) 利用低階熱能產生電力及冷凍之裝置與方法
CN109268098A (zh) 工业余热回收系统与调峰供热耦合技术
RU2519895C2 (ru) Многоцелевая теплонасосная установка
WO2015076951A1 (fr) Dispositif d'alimentation, de refroidissement et de chauffage intégré et procédé associé
KR101183777B1 (ko) 소형 열병합발전기에서 엔진 배기유로의 배출구조
CN117072257A (zh) 轴封气体实现压缩机和/或透平热态启动系统及储能系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10795791

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2010795791

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010795791

Country of ref document: EP