WO2012063823A1 - 振動波モータ及び同モータを駆動源とする発音装置 - Google Patents

振動波モータ及び同モータを駆動源とする発音装置 Download PDF

Info

Publication number
WO2012063823A1
WO2012063823A1 PCT/JP2011/075728 JP2011075728W WO2012063823A1 WO 2012063823 A1 WO2012063823 A1 WO 2012063823A1 JP 2011075728 W JP2011075728 W JP 2011075728W WO 2012063823 A1 WO2012063823 A1 WO 2012063823A1
Authority
WO
WIPO (PCT)
Prior art keywords
wave motor
drive
vibration wave
vibration
driving
Prior art date
Application number
PCT/JP2011/075728
Other languages
English (en)
French (fr)
Inventor
根岸 廣和
郁夫 大平
寿郎 大賀
石井 孝明
Original Assignee
Negishi Hirokazu
Oohira Ikuo
Ohga Juro
Ishii Takaaki
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Negishi Hirokazu, Oohira Ikuo, Ohga Juro, Ishii Takaaki filed Critical Negishi Hirokazu
Priority to JP2012542932A priority Critical patent/JP5873802B2/ja
Priority to US13/884,522 priority patent/US20130230196A1/en
Publication of WO2012063823A1 publication Critical patent/WO2012063823A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/0005Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing non-specific motion; Details common to machines covered by H02N2/02 - H02N2/16
    • H02N2/005Mechanical details, e.g. housings
    • H02N2/0065Friction interface
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/103Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors by pressing one or more vibrators against the rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/105Cycloid or wobble motors; Harmonic traction motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/12Constructional details

Definitions

  • the present invention relates to extending the life of a vibration wave motor and a sound generator / sound vibration generator using the motor as a drive source.
  • a vibration wave motor is a kind of actuator that uses vibration waves as a drive source, and a disk traveling wave type ultrasonic motor according to the invention of Toshio Shida is a typical example.
  • the principle diagram and speed characteristics are shown in FIG.
  • the characteristics of the vibration wave motor are non-magnetic, low speed high torque, high holding torque, precision controllability, high speed response, quietness, etc., and many are caused by contact driving. These characteristics are not found in non-contact drive electromagnetic motors, and therefore vibration wave motors have occupy unique positions as drive sources for various machines. All of these are the results of opening up applications that take advantage of individual or multiple features.
  • the former is known as rotational drive, and the latter is known as both direct drive and rotational drive.
  • the former is substantially driven in contact with the entire contact ring portion, but the latter has many point or thin line contact drive areas.
  • contact driving there is a drawback due to contact driving. The longest is the lifespan, with a commercial product from 1,000 to 20,000 hours.
  • the non-contact drive electromagnetic motor is assumed to be 100,000 hours or more and has a clearly short life.
  • the main factor is wear caused by contact drive. This is because a fundamental friction phenomenon occurs at the time of contact, and as a result, the conversion efficiency of the input power into the machine output is low, causing heat generation and wear.
  • Applications that are currently in use can often make use of unique performance even with a short lifetime.
  • the life of a vibration wave motor depends on the application.
  • the normal nominal value is mainly for driving an XY stage, and an example of a shorter one is a speaker drive source.
  • the voice coil motor vibrates the cone, but a resonance phenomenon that is unavoidable in principle occurs at low frequencies, and faithful sound reproduction cannot be performed.
  • this resonance phenomenon does not occur.
  • FIG. 1B The principle diagram and speed characteristics of the embodiment are shown in FIG. 1B, and the technical details are shown in Patent Document 1.
  • the operation of a vibration wave motor has two major characteristics: 1) normal operation, and 2) vibration centered at the origin.
  • the regularity of 1) is to reproduce a signal that does not stop and changes, called sound.
  • the vibration at the center of origin in 2) is because a sounding body such as a cone receives an audio signal and vibrates around the center of origin.
  • the influence of the two major features on the life is obviously different depending on the motor type described above.
  • the traveling wave type always drives the contact drive part between the driver and the moving member around the entire contact ring portion.
  • FIG. 1 (a) there are a plurality of traveling wave wave front portions generated on a driver called a stator, and a slider called a rotor is driven in contact.
  • the wave front of the traveling wave is exactly the driving point and runs around the entire circumference at high speed. Basically, since it is a point contact drive, wear should be concentrated at the contact point, but since the contact point, that is, the drive point and the driven point, run around the entire circumference, the wear of the driving element and the moving element also occurs. It has a clever mechanism that is distributed all around and does not concentrate.
  • Non-Patent Document 1 shows its structure and operating principle
  • FIG. 2 (c) shows its principle diagram and speed characteristics.
  • the longitudinal bending independent excitation type has a higher local pressure than the traveling wave type, and the frictional force applied to the drive point is large accordingly.
  • the velocity characteristic is better than the traveling wave type because it can separately control the longitudinal vibration and the bending vibration, but it is not perfect yet.
  • the normal use is mainly for precise positioning of the XY stage.
  • the driving element is fixed, and the driven point is expanded by moving the moving element. For this reason, the wear of the driver often determines the life.
  • the nominal value is endorsed by using a highly wear-resistant metal or ceramic for both the driver and the mover.
  • the lifetime is still shorter than that of the electromagnetic motor even if it is 20,000 hours.
  • the characteristics common to the vibration wave motor are shown in terms of low speed and high torque, precision controllability, high speed response, and the like.
  • the zero-cross distortion still exists in the speed characteristics of the nano motion motor drive speaker.
  • the speaker driving mechanism is different from the traveling wave type, and in the case of the longitudinal bending independent excitation type, the small area driving element drives the large area moving element.
  • the characteristics of the speaker operation and 2) the vibration at the center of the origin causes the localized area of the contacted drive region generated on the moving element, and thus the localized wear, and scratches occur as shown in FIG. As a result, the service life is shortened. Details will be described later.
  • the traveling wave type When viewed at the vibration wave motor level, the traveling wave type has a short life and the longitudinal bending independent excitation type has a relatively long life. However, in the case of a speaker application, 1) there is normal operation, and 2) the vibration is centered on the origin, so the life of each type is shortened for each reason. In the case of a traveling waveform motor, it is practically an all-round contact drive type, but the driver and mover often contain organic materials, and 1) is a degraded type due to the normality of 1).
  • the vertical bending independent excitation type is a point contact drive type, as described above, the unipolar concentrated wear phenomenon caused by the vibration at the center of the origin of 2) occurs on the moving element, thereby shortening the life. Therefore, the conventional vibration wave motor has a short life and is difficult to commercialize in a speaker application.
  • JP 2007-67999 A Japanese Patent Publication No. 7-44849 JP 2010-124603 A JP 2011-155761 A
  • the vibration wave motor clearly has a common defect as compared with a normal electromagnetic motor. This is because the life of the electromagnetic motor is 100,000 hours or more although the life of the commercial product is 20,000 hours at the longest. As a driving source for industrial machinery and durable consumer goods, the life is still short. Of the technical issues related to vibration wave motors, extending the service life is one of the most important technical issues for further application development. The effort to extend the life is also the history of vibration wave motors in recent years. In particular, the inventors have been working on research and development since 1994 as the driving source of the sound generation device. However, the biggest issue for commercialization is the short life, and a long life is indispensable.
  • the problem to be solved by the present invention is to realize a long life of a longitudinal bending independent excitation type vibration wave motor and a sound generator using a longitudinal bending independent excitation type vibration wave motor as a drive source. Lifespan is determined at the weakest place.
  • the vibration wave motor since the driving element drives the moving element by contact driving, it is essential to appropriately design both and the relationship between them.
  • the operation has the operation characteristics of 1) normal operation and 2) vibration centered at the origin. First of all, 1) normality is manifested regardless of the structure of the vibration wave motor. On the other hand, the vibration at the center of the origin differs substantially in the contact portion depending on the structure of the vibration wave motor as described above.
  • the present invention focuses on this point.
  • One of the problems is to obtain a structure that does not fix the contacted part of the slider to the origin even in the case of the vertical bending independent excitation type.
  • a structure in which the substantial contact area of the driver is not changed by wear and the characteristics are constant is also considered. Needless to say, a longer life can be achieved by combining the two.
  • the problems in the reconfirmation of the prior invention and the experimental machine for speaker use will be described below.
  • the HR8 driver has a diameter of 3 mm, the tip is a part of a spherical surface, and the slider is flat. Since both are made of alumina and have high hardness, the contact area should be a point. However, in actuality, wear marks having the size as described above have been found. This means that the contact driving area is substantially increased, and this is evidence that the initial driving conditions are not maintained. In addition, the fact that scratches were found in 5 of the 8 locations was a 63% probability of scratches. It was considered that abnormal wear occurred as a result of intensive contact driving of only the contacted drive area on the moving element by the driver.
  • the present invention proposes a configuration / mechanism for extending the life of a vibration wave motor in an integrated manner.
  • three kinds of members ie, a moving element, a driving element core, and a driving element sheath coexist.
  • driver core material>mover> driver element sheath The definition of wear resistance relates to the amount of wear when each member is in contact friction, and is specifically compared with a Taber abrasion tester.
  • the design policy is as follows. First, the wear resistance is maximized so that the driver core material having a small contact area determines the life of the entire motor.
  • the moving element has a large area compared to a small area driving element core. It is best that the entire contactable driveable area on the moving element is worn out and the driving element core material is worn out at the same time. Therefore, by introducing the second drive mechanism, the drive load from the driver is received in the entire contacted drive region.
  • the driver sheath is intended to have a reinforcing function to prevent breakage of the core material, but when contacting the mover, both the drive element core material itself is shaved and wear resistant so as not to damage the mover by shortening it. Is minimized.
  • the second drive mechanism causes the contacted drive region on the moving element to relatively drift simultaneously with the original operation of the vibration wave motor, and distributes the drive load over a wide range.
  • Patent Document 2 is reconfirmed, and then the difference from the present invention is shown.
  • the present invention is not a rotational traveling wave type as in Patent Document 2, but a vertical bending independent excitation type.
  • the drive type is compatible with both the rotary type and the direct acting type.
  • the second drive mechanism was actively introduced. Regardless of the moving direction of the moving element, the driven point is surely drifted and contributes to longer life. As described above, the present invention is clearly different from Patent Document 2.
  • Patent Document 3 is reconfirmed, and then the difference from the present invention is clarified.
  • the first aspect is that “the drive control unit moves the movable body within a predetermined range, and a contact area between the vibrating body and the movable body when moving within the predetermined range. It is possible to move the moving body so as to change ".”
  • Patent Document 3 performs the original operation and movement of the drive region in different time zones.
  • the configuration of the present invention is the longitudinal bending independent excitation type vibration wave motor drive / modulation circuit (901), the longitudinal bending independent excitation type vibration wave motor (902), and the second drive mechanism (as shown in the block diagram of FIG.
  • Claim 1 of Patent Document 4 states that “a pin-shaped member that maintains the same cross-sectional outer shape and cross-sectional area along the axial direction when the contact at the tip of the vibrator is worn by frictional contact with the driven body. It is characterized by comprising " Specifically, the drive unit has a two-stage stacked structure in which a base and a pin are combined.
  • the present invention is clearly different from the structure of the previous example in which the entire drive element has a core-sheath structure, and only the thin drive element protrudes from the support base. Specifically, as shown in FIG.
  • the drive element has a core-sheath structure, so that even in applications where the drive element such as a sound generator / vibrator is burdened, breakage due to fatigue occurs due to the strength reinforcing effect of the sheath. Hateful. Further, even if the entire driver element is worn out, the original driver element that is the core maintains the same driving area, so that the initial driving characteristics are maintained.
  • the sound generation / vibration device has a mission of constantly reciprocating vibration, and the local pressure is further increased in a lubricating oil environment, so that the core material of the driver element becomes thinner.
  • the vibration wave motor of the present invention can achieve a long service life even in an application in which the contact drive range is likely to be concentrated near the contact center point of the driver and the mover.
  • the driver element has a core-sheath structure, and by increasing the wear resistance of the driver element core material, the original driver element member that is the core part is the same even if the entire driver element is worn away. Maintain driving area.
  • the wear resistance sequence of the driver core material, the same sheath material, and the mover as described above, the initial drive characteristics can be maintained for a long time without breaking even in the continuous vibration load unique to the sound generator. Maintained.
  • the second drive mechanism causes the contacted drive area on the moving element to drift simultaneously with the speaker operation.
  • the longitudinal bending independent excitation type vibration wave motor of the present invention can have a long life in not only a speaker application but also a similar reciprocating vibration application.
  • FIG. 1 is an explanatory diagram of a lift mechanism of a linear vertical bending independent excitation type vibration wave motor contact drive unit according to the present invention.
  • FIG. 4 is an example of a contacted drive locus on the linear longitudinal bending independent excitation type vibration wave motor moving element shown in FIG. (Example 1)
  • FIG. 1 is an explanatory diagram of a lift mechanism of a linear vertical bending independent excitation type vibration wave motor contact drive unit according to the present invention.
  • FIG. 4 is an example of a contacted drive locus on the linear longitudinal bending independent excitation type vibration wave motor moving element shown in FIG. (Example 1)
  • FIG. 1 is an explanatory diagram of a lift mechanism of a linear vertical bending independent excitation type vibration wave motor contact drive unit according to the present invention.
  • FIG. 4 is an example of a contacted drive locus on the linear longitudinal bending independent excitation type vibration wave motor moving element shown in FIG. (Example 1)
  • FIG. 2 is a principle diagram of a contact drive unit drift mechanism in a cylinder type vertical bending independent excitation type vibration wave motor of the present invention.
  • FIG. 2 is a principle diagram of the contact drive unit drift mechanism in the disc-type longitudinal bending independent excitation type vibration wave motor of the present invention.
  • Example 3 It is a touched drive locus explanation on the disc type vertical bending independent excitation type vibration wave motor moving element shown in FIG. (Example 3)
  • FIG. 4 is a block diagram of an excitation type vibration wave motor independent of vertical bending for driving a speaker with a second drive mechanism, which is an example of the present invention. The speed characteristics of the NU-30 vertical bending independent excitation type vibration wave motor manufactured by Nikko Corporation are shown.
  • the present invention relates to a vibration wave motor, in particular, a moving element and a driving element that dominate the life in order to achieve a long life in an application in which vibration centered at the origin such as a speaker is used as a mechanical output. Optimize both.
  • a hybrid type driver having a core-sheath structure will be described with reference to Example 4 and FIG.
  • the driver core material, driver sheath material, and mover material are ceramic or metal, and the selection and heat treatment conditions are related to the life design of the entire vibration wave motor. Member selection and various conditions are selected depending on the length and shape.
  • a second driving mechanism is introduced to drift the contacted driving point on the moving element. As described above, FIG.
  • Example 9 shows a schematic configuration / mechanism as a block diagram.
  • the second drive mechanism differs depending on the type of the longitudinal bending independent excitation type vibration wave motor, that is, the direct acting type or the rotary type, and therefore, Example 1-3 will be described with reference to FIGS.
  • the driver core material ensures the long life of the entire motor, so that the wear resistance is maximized, while the moving element is intended to be durable, but the driver element is not worn during contacted driving. While the mover's wear resistance is in the middle, and the driver's sheath has a reinforcing function to prevent breakage of the core material, it moves by shaving itself together with the driver's core material when contacting the mover. Minimize wear resistance so as not to damage the child.
  • the dimensions and materials are selected from design conditions such as local pressure and life on the driver core.
  • the wear resistance of the moving element is lower than that of the driving element, and the material and heat treatment conditions for obtaining the required toughness, and the abrasion resistance of the driving element sheath material are made lower than that of the moving element.
  • the driving environment is also determined. In particular, a lubricating oil environment is desirable from the standpoint of efficiency.
  • FIG. 9 illustrates an outline in which the second drive mechanism according to the present invention performs the contacted drive point drift during operation.
  • the ultrasonic transmission circuit (91) is for driving a vibration wave motor. Branches in the middle and becomes a second drive mechanism drive source.
  • the audio signal (92) is an original signal for outputting audio via a speaker function.
  • the ultrasonic signal is voice-modulated by the modulator (93) to drive the driver (94).
  • the movable element (95) is contact-driven by the driver (94) and vibrates in accordance with the audio signal.
  • the frequency reducer (96) electrically reduces the ultrasonic signal frequency and converts it into a machine by the electromechanical converter (98) as a drift signal (97), and is driven or moved via the drift mechanism (99).
  • the vibration wave motor drive / modulation circuit (901) drives the longitudinal bending independent excitation type vibration wave motor (902).
  • the second drive mechanism (903) drifts the drive element (94) or the mover (95).
  • the drive element generates mechanical vibration based on the sound vibration
  • the contacted drive point on the mover is changed. It is relatively drifting.
  • the drive element in the direct acting type (hereinafter also referred to as linear), the drive element is also referred to as a stator and the mover is also referred to as a slider.
  • the slider linearly reciprocates around the origin of contact by an audio signal, and a locus along a short line-shaped contact drive is generated on the slider surface.
  • the driver when the longitudinal bending independent excitation type rotary vibration wave motor is used for a speaker, the driver is also referred to as a stator and the mover is also referred to as a rotor.
  • the reciprocating vibration is caused by an audio signal.
  • the contact driving part of the stator and the rotor being a circumferential outer surface, that is, a cylinder, or a disk disposed at the end of the cylinder.
  • the former is also called a cylinder type and the latter is also called a disk type.
  • the second drive mechanism is also referred to as a contacted drive area drift mechanism.
  • the core-sheath structure driver is also referred to as a hybrid driver. Further, for example, FIG. 6 (e) is simply abbreviated as (e).
  • the first embodiment relates to a hybrid driver having a core-sheath structure, and will be described with reference to FIG.
  • the hybrid drive element is likened to a pencil in terms of shape, and a sheath member (91) for preventing breakage of the drive element and the like is provided in the periphery, and the original drive element (92) is arranged in the core.
  • the difference from a pencil is its aspect ratio, end face shape, and usage, and the sheath wears with the driver in operation.
  • the aspect ratio is 2.5 mm in length and 3.0 mm in thickness
  • the curvature of the driving end surface is a radius of 30 mm.
  • the material of the sheath shown in (31) is aluminum, the material of the driver element in (32) is alumina, and the diameter is 1.0 mm.
  • the material of the movable body to be driven was a cemented carbide material having lower wear resistance than the sheath core material but higher wear resistance than the sheath material. The order of wear resistance is as described above. Note that NU-30 manufactured by Nikko Corporation was used as the longitudinal bending independent excitation type drive source.
  • FIG. 4 is an example of a contact driven drive unit drift mechanism in a longitudinal bending independent excitation type linear vibration wave motor speaker, and its operation will be described below.
  • the figure consists of two parts.
  • the first half is an electric circuit, from generation of a vibration wave motor drive signal by the electric circuit to generation of an electric drive force of the actual second drive mechanism.
  • the second half shows the configuration and means of the drift drive mechanism of the contactor drive part of the moving element in the final linear type based on the electrical drive force generation, conversion and transmission of the mechanical drive force. Explains the operation.
  • the electric circuit includes an oscillator, an amplifier, a frequency reducer, a differentiation circuit, and a power amplifier.
  • the oscillator (401) is originally for driving a vibration wave motor. In this case, an electric signal having a frequency of about 55-56 kHz is generated, and the signal is branched into two circuits through the amplifier (402).
  • One signal (403) enters the driver through the sound modulator and amplifier, and drives the driver as an original vibration wave motor to generate mechanical vibration according to the sound signal.
  • the other is reduced to about 1 / 560,000 by the frequency reducer (404), generates an electrical signal of approximately 0.1 Hz, and differentiates it in the differentiation circuit (405) to generate a pulse once every 10 seconds.
  • This pulse is added to the one-shot multivibrator and power amplifier (406), and the time width is 0.2 to 0.3 once every 10 seconds.
  • a rectangular wave of seconds is generated and supplied to the plunger (407) for moving in the vertical direction.
  • a shaft (408) is connected to the shaft sucked by the plunger, and its tip meshes with the teeth of the gear (409) to rotate the one-pulse one-tooth gear (409). It is set to return to the same relationship position as the next tooth when it is finished.
  • (408 ') is a spring for this purpose, and it is for changing the length of the collar (408) to make it easy to return to the old position. For example, if the number of teeth of the gear (409) is 60, the gear (409) rotates once in 10 minutes.
  • the back side of the gear (409) is a cam (410), and the tip of the motor body support device (411) is in contact with the surface of the cam (410).
  • the motor body support device (411) also moves up and down once in about 10 minutes.
  • the length of the reciprocating motion is set to 3 mm.
  • the motor (412) sandwiching the slider (417) moves up and down by the movement of the motor body support device, and the stator (413) fixed to the motor and vibrated by a piezoelectric element or the like, and the slider (417)
  • the relative position is 3 in the vertical direction. mm Reciprocate.
  • the slider (417) receives the vibration of the stator based on the audio signal, and performs the reciprocating vibration for reproducing the audio along the rail (416) by the support of the slider support (415).
  • the vibration is transmitted to the speaker via the link mechanism.
  • the second moving mechanism module is directly connected to fixed coordinates, while the slider is supported by upper and lower guide rails to hold the original speaker drive shaft, but is partially omitted in the drawing. Yes.
  • the output of the power amplifier (406) is branched and reduced by a factor of sixteen by a further frequency reducer and differentiation circuit (418), resulting in a pulse of 0.006 Hz, amplified by the power amplifier (419) and plunger (420) )
  • the gear (422) is rotated at a rate of one tooth per 160 seconds by a mechanism similar to the above.
  • (421) is a gutter connected to the plunger. If the number of gear teeth is 60, the gear (422) rotates once every 160 minutes.
  • the front side of the gear (422) is a cam (423), and the front end of the motor main body support device (426) is in contact with the surface of the cam (422), and the motor main body support device (426) is moved along with the rotation of the gear (422). Move.
  • the motor (412 ′) vibrated by the piezoelectric element or the like also reciprocally moves 8 mm in the vibration direction.
  • the cam (423) associated with the gear (422) is different from the cam (409) described above in that the top portion has a flat length (424) corresponding to 1 / 160th of the entire circumference. Therefore, since the horizontal movement stops in that portion, the vertical movement is shifted as a result, and the contact points are evenly distributed over an area of 3 mm ⁇ 8 mm.
  • FIG. 5 shows an example of a drift track of the contacted drive unit of the second embodiment.
  • Example 3 is outlined by FIG.
  • FIG. 6 is composed of FIGS. (E) and (f), and the whole behaves as a longitudinal bending independent excitation type cylinder-type vibration wave motor in a normal concept, the content of which is a narrowly defined motor / function shown by (601). It consists of a cylinder movable part and a drift module (602).
  • FIG. (E) and FIG. (F) are cross-sectional views of each other.
  • FIG. (E) shows the drive part of the vibration wave motor part, and is a cross-sectional view taken along the line BB of FIG. (F) described later.
  • FIG. (E) shows the drive part of the vibration wave motor part, and is a cross-sectional view taken along the line BB of FIG. (F) described later.
  • FIG. (F) shows a vibration wave motor portion and a drift module, and is a cross-sectional view taken along the line AA in FIG. (E).
  • the cylinder movable part (601) receives a moving force from the drift module (602), and shows a mechanism that rotates at a low speed in a spiral shape.
  • FIG. (E) is a cross section of the cylinder-type contact drive unit, and shows a cross section taken along the line BB in FIG. (F).
  • the motor body (61) contacts the cylinder surface (62) at the opposite position in the AA section.
  • the drive elements of the two motors (61) reciprocate in the circumferential direction based on the audio signal, and the cylinder surface (62) is driven by the drift module (601) as a representative.
  • the sound generator is driven through the drift module shaft (68) and the link mechanism (substantially) to produce sound.
  • the cylinder surface (62) can be regarded as being substantially integral with the rotor.
  • the cylinder surface is the moving element itself, and the material, heat treatment conditions, etc. are selected based on the aforementioned conditions.
  • the rotor (63) rotates at a slow speed with respect to the drift module (65) according to the usage time, and changes the contact portion. This fine speed refers to a movement of about 1 mm per minute operation, and is the minute hand level of a quartz wristwatch.
  • the figure (f) relates to the fine speed spiral rotation of the rotor (63) in the narrow sense and the contact area dispersion / widening mechanism.
  • the narrowly defined rotor (63) is connected to the keyed drive shaft (64) through a hole having a key groove at the center.
  • tension by a crimp spring or a member for mechanical damping is used in the key groove portion so that there is no backlash.
  • This keyed drive shaft (64) is driven in a drift module housing (66) by a fine speed drift drive source (67) similar to a quartz watch.
  • the screws in the inner circle of the rotor (63) in a narrow sense are fitted with the screws in the outer circle of the drift module housing (66), and the entire rotor (601) rotates at a low speed. Moreover, it not only rotates at a slow speed in the circumferential direction but also moves gradually in a direction parallel to the axis. Therefore, the contact portion on the rotor (63) in a narrow sense moves so as to draw a spiral on the cylinder surface (62).
  • the drive source (67) substantially is moved up and down to reverse the drift direction via the reverse rotation gear (68).
  • FIG. 7 includes a vibration wave motor (701) in a narrow sense and a drift module (702). Both are detachable with a set screw.
  • This figure is a conceptual diagram of a contact drive unit drift mechanism of a disk longitudinal bending independent excitation type rotary vibration wave motor, and is a subsystem of a vibration wave motor speaker.
  • FIG. 8 is an explanatory view of a contact locus example and the like on the disk rotation type vibration wave motor shown in FIG.
  • FIG. (G) is an explanatory view of the mechanism for expressing the central function of the drift module (702), orbital dispersion / widening. It is DD sectional drawing of a figure (i), and consists of an eccentric cam (71) planetary rotating gear (72) and a drift module main body gear part (73).
  • FIG. (H) is an enlarged view of a meshing portion between the drift module inner surface fixed gear (73) and the planetary rotation gear (72). As described above, it is a cross-sectional view taken along the line DD in FIG.
  • FIG. (I) is a cross-sectional view taken along the line CC of FIG. (G).
  • the planetary rotation gear (72) is rotated at a slow speed by being directly connected to the disk-like rotor (75) in the vibration wave motor through the connector as shown in FIG. ),
  • the trajectory drawn by the contacted drive unit on the rotor (75) is dispersed and widened.
  • the driver (74) is arranged at a symmetrical position with respect to the rotation center of the drift module (702), and forms the vibration wave motor (701) together with the rotor (75).
  • the drive source (77) substantially) rotates the eccentric cam (71) at a slow speed in proportion to the use time, as in the cylinder type described above.
  • the drift module shaft (78) drives the sounding body as in the third embodiment.
  • the driven drive unit drift speed is also about 1 mm per minute of the actual operation time.
  • FIG. 8 is an example of the movement of the disk by the second drive mechanism and the resulting trajectory in the longitudinal bending independent excitation type disk rotating vibration wave motor speaker shown in FIG. FIG. J, FIG. K, FIG. 1, and FIG. M show typical relative positions when the driven surface on the disk is planetary rotated by the mechanism shown in FIG.
  • FIG. N shows an example of a contacted drive trajectory group after the use of the motor has progressed and the planetary motion of the rotor has occurred many times.
  • the actual trajectory is a kind of cycloid, and varies depending on the planetary gear ratio and the arrangement of the driving elements. It is desirable that the specifications such as the gear ratio and the arrangement of the drive elements are determined so as to widen the locus while minimizing the overlapping portion between the driven contact tracks and to make the best use of the effective contact surface on the disk.
  • a quartz watch driving source may be used as a driving source for the means for drifting the contact portion other than the initial locus, or an oscillation mechanism of a vibration wave motor as the driving source as shown in the second embodiment.
  • a quartz watch When a quartz watch is used, it can be driven by a battery power source, so no wiring is required even when a drift module is installed on the moving element side.
  • the size of the entire drive element is almost the same as that of an individual drive chip of HR8, but the effective contact drive area does not extend to the entire cross-sectional area of 3 mm diameter like HR8 even if the wear progresses.
  • the maximum diameter does not exceed 1 mm.
  • the properties required of the sheath member are lower in wear resistance than the moving element, play a role of reinforcement with tenacity, and have a low specific gravity so that there is little change in mass even when worn. A member is desirable.
  • the specific gravity is large, the mass change is large, and the driving conditions such as the resonance frequency is easily changed. In this sense, aluminum is useful.
  • Non-Patent Document 4 a description will be given of a technique for making the surface of the driver element a micro-mould in a driving source in a lubricating oil environment.
  • This knowledge was obtained from a CVT type automatic transmission (Non-Patent Document 4), which is a completely unrelated world.
  • the shape control technology of the contacted surface which is useful for improving the efficiency, has been introduced to the study of vibration wave motors.
  • the micro structure of the drive-side contact surface and the improvement of the friction coefficient by combining the types of lubricants are predicted to be useful for improving the efficiency of the vibration wave motor as a result. .
  • CVT lubricating oil a chemical surface modification technique using an additive metal salt or the like can also be used. These techniques are useful not only in vibration wave motor speaker applications but also in ordinary usage, that is, in positioning usage, and the applications are wide. Further, in order to maintain the lubricating oil environment, it is necessary to cut off the relationship with the outside as well as CVT. This is to prevent the lubricant from flowing out and to prevent the cemented carbide from entering from the outside.
  • a whisker bundle is hardened with a metal or an inorganic material, or an abrasive grain often found in various tools is hardened with a sintered metal.
  • the materials, dimensions, and heat treatment conditions of the above-described driver and mover are selected in accordance with the guaranteed life, usage conditions, and cost.
  • the characteristics regarding the power consumption of the longitudinal bending independent excitation type vibration wave motor speaker and the smart power conversion will be described.
  • the power consumption is compared with a conductive speaker.
  • the conductive speaker is a converter, and the relationship between the audio output and the power consumption is y ⁇ x, that is, is directly proportional.
  • y is the reproduction sound pressure
  • x is the input power.
  • the longitudinal bending independent excitation type vibration wave motor speaker was clearly different.
  • the audio output and the power consumption can be represented by the relationship y ⁇ bx ′ + 1, where “b” is a bending vibration voltage and “l” is a coefficient related to the longitudinal vibration voltage. This is a kind of modulation type.
  • the audio output and the input voltage have a linear relationship.
  • y is also an audio output
  • x ′ is an audio signal voltage, not power.
  • the detailed relationship between x 'and power is profound, and we will wait for further research.
  • the longitudinal bending independent excitation type vibrator motor speaker has a region where the power consumption of the speaker can be reduced if “b” is 1 or less.
  • “b” is about 0.3.
  • the increase in power consumption was about 3 times.
  • the longitudinal bending independent excitation type vibration wave motor speaker it is possible to reduce the electric power at a certain volume or higher than the conventional conductive type.
  • the audio signal voltage has a very large difference between the average output and the peak output. Focusing on this point, we examined smarting from two viewpoints. The focus was 3) master volume and 4) adaptive processing. The master volume of 3) is set by the user during playback. Internally connected directly to the maximum playback sound pressure. Specifically, it is substantially synonymous with determining the maximum value of “b” in audio reproduction, and “l” is set within a finite width.
  • L1Fix (M) 3.3 Vrms.
  • L1Fix (L) 11 Vrms is shown in black.
  • the master volume is directly connected to the maximum playback sound pressure. Specifically, it is substantially synonymous with determining the maximum value of “b” in audio reproduction, and “l” is set within a finite width by a look-up table or the like. Comparing L1Fix (L) and L1Fix (M), the primary term “l” operates satisfactorily at 30% of the maximum value.
  • the adaptive processing of 4) indicates that the motor driving condition at low volume is further reduced by utilizing the fluctuation of the audio signal voltage while keeping the audio conversion efficiency constant.
  • another factor increases to aim for this smart. This is because the above-described B2 and L1 settings are static, so no consideration is required, but additional control factors are indispensable for performing dynamic control.
  • the black L1Fix (L) is 0.20 m / s
  • the red L1Fix (M) is 0.12 m / s.
  • AVC Automatic Volume Control
  • the normal AVC is a method for suppressing the maximum input, but here the reverse, that is, boosts the small audio input voltage.
  • this gain is expressed by “g”
  • y ⁇ gbx ′ + 1 is obtained, and “g” compensates for the drop of “b”.
  • the smart is made when x ′ fluctuates greatly as a tendency.
  • This operation makes use of the fact that the mechanical action causes a delay of the order of ms, predicts the envelope of the audio signal in advance, predicts the amplitude, and increases “l” ahead of the audio signal when the amplitude increases.
  • “l” was reduced in a form following the signal.
  • Stator 2. Rotor 3. Motor speed characteristics10. 10. Acoustic signal source Drive device 12. Rotary vibration wave motor 13. Connecting rod 14. Edge 15. Cone 16. Arm 17. Speaker speed characteristics 21. Motor speed characteristic 22. Speaker speed characteristics 31. Driver element core 32. Driver sheath 401. Vibration wave oscillation circuit 402. Amplifier 403. Divided signal 404. Frequency reducer 405. Differentiation circuit 406. One-shot multivibrator and power amplifier 407. Plunger 408. ⁇ 409. Gear 410. Cam 411. Motor body support device 412. & 412 '. Motor 413. Stator 414. & 414 '. (Travel distance 3mm) 415. & 415 '. Slider support 416. & 416 '. Guide rail 417. Slider 418.
  • Differentiation circuit 419 One-shot multivibrator and power amplifier 420. Plunger 421. ⁇ 422. Gear 423. Cam 424. Cam flat top 425. (Movement distance 8mm) 426.
  • Quartz clock drive source (omitted) 78. Shift module shaft 701. Narrowly defined vibration wave motor 702. Shift module body (j) Disk position example at typical planetary gear position 1 (K) Example of disk position at representative planetary gear position 2 (L) Example of disk position at representative planetary gear position 3 (M) Example of disk position at representative planetary gear position 4 (n) Example of driven contact locus on the disk during motor use 91. Ultrasonic transmission circuit 92. Audio signal 93. Modulator 94. Driver 95. Mover 96. Frequency reducer 97. Drift signal 98. Electromechanical transducer 99. Drift mechanism 901. Longitudinal bending independent excitation type vibration wave motor drive / modulation circuit 902.

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
  • Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)

Abstract

振動波モータ、及び振動波モータを駆動源とする発音装置の長寿命化を行うことを課題とし、本発明は振動波モータ、及び同モータを駆動源とする発音装置を統合的に長寿命化させる構成・機構を提案する。まず駆動子の駆動性能を維持する為、駆動子を芯鞘構造とすることにより、駆動子の折損を防止し、更に駆動子全体が磨り減っても、芯部である本来の駆動子部材は同一の駆動面積を維持するため、初期駆動特性が維持される。なお前記諸部材間の耐摩耗性の序列は、駆動子芯材>移動子>駆動子鞘材である。また第二の駆動機構を含む振動波モータに於いて、振動波モータの本来の作動と同時に、移動子上の被接触駆動領域を相対的にドリフトさせる。

Description

振動波モータ及び同モータを駆動源とする発音装置
 本発明は、振動波モータ及び同モータを駆動源とする発音装置・音声振動発生装置の長寿命化に関するものである。
振動波モータは振動波を駆動源とするアクチェータの一種であり、指田年生の発明による円板進行波型超音波モータが代表例である。原理図及び速度特性を図1(a)に示す。振動波モータの特徴は、非磁性、低速高トルク、高保持トルク、精密制御性、高速応答性そして静穏性等で、多くは接触駆動から生じているものである。これらの特徴は非接触駆動である電磁モータにないものであり、それ故に振動波モータは各種機械の駆動源として特異な位置を占めて来た。いずれも個々あるいは複数の特徴を活かした用途を、切り開いてきた結果である。
また、振動波モータには複数の形式があり、それぞれ原理や用途に応じた特徴を持っている。実用化されているものは円板進行波型とその他各種とに分類でき、前者は回転駆動、後者は直動駆動と回転駆動双方が知られている。また後述のごとく、前者は実質的に接触円環部全域で接触駆動されるが、後者は点又は細線状の接触駆動域が多い。
一方接触駆動ゆえの欠点もある。最大のものは寿命で、市販品では1千から2万時間。非接触駆動の電磁モータが10万時間以上とされており、明らかに短寿命である。主要因は接触駆動時に生じる磨耗。接触時に原理的な摩擦現象が発生、結果として投入電力に対する機械出力への変換効率が低く、発熱と磨耗を引き起こしているからである。現在使用されている用途は、短寿命でも特異な性能を生かせる場合が多い。
振動波モータは用途によっても寿命が左右される。通常の公称値は主にXYステージ駆動用の場合等であり、より短くなる一例がスピーカ用駆動源である。市販のスピーカはボイスコイルモータがコーンを振動させているが、低域で原理的に不可避な共振現象が生じ、忠実な音響再生が出来ない。一方振動波モータで駆動するとこの共振現象を生じない。実施例の原理図及び速度特性を図1(b)に、また特許文献1に技術的詳細が示されている。
スピーカ用途の場合、振動波モータの作動には、1)常動性、および2)原点中心の振動と云う二大特徴がある。1)の常動性は、音と云う変化して止まない信号を再生するため。2)の原点中心の振動とは、コーン等の発音体が音声信号を受け原点中心に振動するからである。しかも二大特徴が寿命に及ぼす影響は、以下の通り前述のモータ形式により明らかに異なっている。
まず先行した円板進行波型振動波モータの特徴と寿命に関する説明を行う。前述のごとく進行波型は原理上、駆動子と移動子間の接触駆動部位が常に接触円環部全周を駆け巡る。前記図1(a)でも明らかなように、ステータと呼ばれる駆動子上に生じる進行波の波頭部分が複数あり、ロータと呼ばれる移動子を接触駆動。しかもその進行波の波頭がまさに駆動点として、全周を高速で駆け巡るからである。基本的には点接触駆動であるため磨耗もその接触点に集中するはずだが、その接触点すなわち駆動点と被駆動点が実質的に全周を駆け巡るため、駆動子と移動子の磨耗も全周に分散され、一極集中しない巧妙な機構を有している。
この特徴は前記図1(b)に示すスピーカの如き往復振動の用途でも、単に進行波の移動方向が頻繁に変わるだけで、実質的な全周接触駆動の機構はまったく同様である。従って駆動子上と移動子上の摩耗部位も特定部位に集中することなく、全周に偏在。一極集中ではないため、寿命を延ばす働きがある。しかしながらその寿命は、スピーカ用途の場合公称値よりは低い。また前記図1(b)にあるとおり速度特性にゼロクロス領域の非直線性があり、歪みの原因になって居る。
更に後述の特許文献2のごとく、固定子と回転子を互いに偏芯させて配置する事により、駆動に伴って発生する移動力で両者の相対位置を変化させて、長寿命化を目指したものもある。しかしスピーカのごとく短距離の往復振動のみを行う用途に於いては、特許文献2の場合に於いては限られた範囲のみの移動を生じるだけで、長寿命化には寄与しない。
加えて市販の進行波型回転式は、接触部位や構造部品に有機系材料を使用して居るものが多く、無機材料と比較して摩耗や変質を来たし易い。言い換えれば、摩耗部位は特定個所に集中せず全周に偏在し短寿命化を防いでいるが、材料的制約等から磨耗や特性劣化が早かったのであり、前述のスピーカ動作の特徴の内、
1)常動性、すなわち使用中はいつも動いていると云う特徴が、寿命を短くしたと言える。 
この様な進行波型の限界に対する改善策がその他各種の複合振動子型振動波モータ群であり、代表的一例が縦屈曲独立励振型振動波モータであった。以下その他の代表例として、縦屈曲独立励振型を中心に説明する。進行波型が同じ圧電素子にサイン波とコサイン波を重畳、進行波を作り出しているのに対し、縦屈曲独立励振型は縦振動と屈曲振動を別個の圧電素子部分が分担、それらを複合させてモータとして作動させている。
市販品の一例としてナノモーションモータがあり、非特許文献1にその構造及び作動原理を、図2(c)にその原理図と速度特性を示す。小面積の駆動子が大面積の移動子を駆動しており、駆動点(=磨耗点)は接触部位に限定されている。しかも縦屈曲独立励振型は進行波型に比較して局圧が高く、それだけ駆動点にかかる摩擦力は大きい。一方速度特性は前記図2(c)にあるとおり、縦振動と屈曲振動を別個に制御できる為、進行波型よりは良いがまだ完全ではなかった。
通常の用途は主にXYステージの精密位置決め用で、この場合は駆動子が固定され、移動子が移動することにより被駆動点が拡がる。そのため駆動子の磨耗が寿命を左右する場合が多い。具体的には駆動子・移動子とも耐摩耗性の高い金属あるいはセラミック等を使用、前記の公称値を裏書していると思われる。しかしながら、例え2万時間でもまだ電磁モータより寿命が短い事は前述の通りである。
スピーカ用途では縦屈曲振動子型モータに於いても、低速高トルク、精密制御性、高速応答性等で振動波モータ共通の特徴を示している。しかし図2(d)に示した通り
ナノモーションモータ駆動スピーカの速度特性には、ゼロクロス歪みがまだ存在している。加えて前述のごとくスピーカ駆動機構は進行波型と異なり、縦屈曲独立励振型の場合小面積の駆動子が大面積の移動子を駆動する。結果としてスピーカ動作の特徴、2)原点中心の振動は移動子上に生じる被接触駆動領域の局部化、従って磨耗の局部化を引き起こし、前述の図(d)にある通り傷が発生。結果として短寿命化する。詳細は後述する。
以上を総括すると以下のようになる。振動波モータレベルで見ると、進行波型は寿命が短く縦屈曲独立励振型は相対的に長寿命である。ところがスピーカ用途の場合、1)常動性があり、しかも2)原点中心の振動であるため、どちらの形式ともそれぞれの理由で寿命が短くなっていた。進行波形モータの場合、実質的には全周接触駆動型だが駆動子・移動子に有機系材料を含む場合が多く、1)の常動性による劣化型。一方縦屈曲独立励振型は点接触駆動型のため、前述のごとく2)の原点中心の振動がもたらす一極集中磨耗現象が移動子上に生じ、寿命を短くしている。従って従来の振動波モータは、スピーカ用途に於いては短寿命で、商業化は困難であった。
特開2007-67999号公報 特公平7ー44849号公報 特開2010-124603号公報 特開2011-155761号公報
"HR8 Ultrasonic Motor User Manual", Nanomotion Ltd. "超音波モータを用いたスピーカ-変調型アクチュエータ           への挑戦"大賀寿郎、 騒音制御Vol.34 No.3           2010.6 P211‐217 学位論文「超音波モータの摩擦特性向上に関する研究」           東京工業大学大学院 石井孝明 2000年 "エレメント・プーリ間μ向上によるベルトCVTの伝達           効率向上" 山崎正典他、自動車技術論文集 P287           -292 39(No.2)2008.3 "独立励振型振動子を用いた小型超音波アクチュエータ"、           ニッコー株式会社 2010年7月版 技術資料 P2
前述のごとく振動波モータは通常の電磁モータと比較して、明らかに共通の欠点を有している。市販品の寿命が最長2万時間とは言え、電磁モータ寿命は10万時間以上だからである。産業機械や耐久消費財の駆動源としては、まだ寿命が短い。振動波モータの技術的課題のうち、長寿命化は更なる用途開拓にとって最重要技術課題の一つ。長寿命化の努力は近年の振動波モータの歴史でもある。特に発音装置の駆動源としては1994年から発明者等が研究開発に取り組んでいるが、商品化に向け最大の課題が寿命の短さであり、長寿命化は不可欠である。
本発明が解決しようとする課題は縦屈曲独立励振型振動波モータ、および縦屈曲独立励振型振動波モータを駆動源とする発音装置の長寿命化を実現することである。寿命は一番弱いところで決まる。振動波モータの場合、駆動子が接触駆動で移動子を駆動するので、両者及び両者の関係を適切に設計する事が必須である。特に前述の発音装置の場合は、その動作が1)常動性、2)原点中心の振動、と云う動作特徴を持つ。
まず1)常動性は、振動波モータの構造に関わらず発現する。一方2)原点中心の振動は、前述のごとく振動波モータの構造によって実質的接触部位は異なる。本発明はこの点に着目。縦屈曲独立励振型であっても、移動子の被接触部位を原点に固定させない構造を得る事を課題の一つとした。同じく実質的な駆動子接触面積が、磨耗により変化せず、特性が一定になるようにする構造も考慮した。両者が相俟って更なる長寿命化が達成される事は言うまでも無い。以下に先行発明の再確認、及びスピーカ用途の実験機に於ける課題を説明する。
まず先行発明に於ける長寿命化技術を再確認する。長寿命をキーワードとして含む進行波モータ、超音波モータ関連の特許・実用新案は、出願時点で42件あった。まず具体的に長寿命化の手段等を提示している大半は、駆動子や移動子と云う接触部材の選択。一方、少数派は多岐に亘っていた。例えば放熱・吸熱手段導入によるものや、印加電圧や電極の改良によるもの。更には、機構的に奇数次高調波を発生させ、原理的に摩擦現象を減らして、摩耗を減少させるものもある。以上手段は異なるが、いずれも駆動子と移動子間の接触摩擦駆動に基づく磨耗現象の低減を主目的としていた。
次に縦屈曲独立励振型振動波モータスピーカの実験で見出した技術的課題を述べる。非特許文献1で示した、縦屈曲独立励振型であるナノモーション社製HR8の場合、駆動子は4×2のマトリックス配置。移動子であるスライダを8ヶの駆動子が駆動。直結しているコーンを駆動している。スピーカ機能は音響振動の再生であり、移動子に直結したコーンが原点中心に往復振動を行う構造である。
しかし実験中に異音発生。スライダとコーンを切り離し、移動子表面を観察した所、前記図2(d)にある通り幅約1mm、長さ2mm弱の傷が5ヶ所発見された。公称寿命2万時間だが、実働百時間程度で傷が発生した。
一方駆動子は磨耗していたが傷は見当たらなかった。更に偶然切り離されたスライダだけを、音声信号で振動させたところ、スライダが振動しながらレール上で動き出した。そこでスライダのドリフト方向を持ち上げたところ、約10度の角度で移動停止。15度辺りで戻り始めた。
HR8の駆動子は直径3mmあり先端が球面の一部で、移動子は平面。両者とも材質はアルミナで硬度大であるから、接触面積は本来点のはずである。しかし実際には上記のような大きさの磨耗痕が見出されている。これは実質的には接触駆動面積が増大している事を意味し、初期の駆動条件が維持されていない証拠である。その上8ヶ所中5ヶ所に傷が見出されたという事は、63%の傷発生確率。駆動子により、移動子上の被接触駆動領域のみが集中的に接触駆動を受けた結果、異常磨耗が発生したものと考えられた。
これらの事実は、次の課題を示している。まずダイアモンドに次ぐ超硬物質であるアルミナ同士の接触駆動は、傷がつき始めると意外に傷の拡大が速い事。
また、ナノモーションのモータはオープンな環境での作動であり、空中に浮遊する超硬微粒子を巻き込む事で、想定より早く傷つく事もあり得る。これはCVTが、クリーンルームで組み立てられている事を見ても明らかであろう。
さらに、駆動子の磨耗は接触面積を変化させ、当然駆動力の変化を生じる。これらの課題は前述のスピーカ用途の特徴 2)、原点中心の振動のため生じた為と推定。結果として移動子の被接触駆動領域のみが集中的に駆動負荷を受け、傷が生じ短寿命となったと推定される。従って現在の如き構造では、スピーカ用途の場合縦屈曲独立励振型本来の寿命を発揮出来ない。
本発明は振動波モータを統合的に長寿命化させる構成・機構を提案する。本発明には移動子、駆動子芯材、そして駆動子鞘と云う3種類の部材が共存する。これらの個別の材料や表面処理は多岐に亘るが、三者間の耐摩耗性の序列は駆動子芯材>移動子>駆動子鞘とする。なお耐摩耗性の定義は、それぞれの部材同士が接触摩擦をする場合、磨耗量の大小と関係し、具体的にはテーバー摩耗試験機で相対比較する。
設計方針は以下の通りである。まず小接触面積の前記駆動子芯材がモータ全体の寿命を決定する様、耐摩耗性を最大にする。一方小面積な駆動子芯材と比較すると前記移動子は大面積を有する。最善は移動子上の被接触駆動可能領域全体が摩滅する事と、駆動子芯材が摩滅する事とが同時である事が望ましい。その為第二駆動機構導入により、被接触駆動領域全体で駆動子からの駆動負荷を受けるようにする。
一方駆動子鞘は芯材の折損を防止する補強機能を旨とするが、移動子と接する時は駆動子芯材共々自ら身を削り、短くなる事で移動子を傷つけない様、耐摩耗性を最小とする。
さらに第二の駆動機構は振動波モータの本来の作動と同時に、移動子上の被接触駆動領域を相対的にドリフトさせ、駆動負荷を広範囲に分配する。
ここで更に本発明の特徴を更に明確にする為、前記特許文献2、3、4に示した先行例と本発明の相違を個別に再検討する。
まず特許文献2を再確認し、その後本発明との相違を示す。同特許は円環進行波型に於いて、回転子(=被駆動体)の中心軸を駆動子(=固定子)の中心軸に対して偏芯させて配置。超音波モータが回転する事により、偏芯から従属的に発生する駆動力で、自動的に被駆動領域を変化拡大させるものである。またその移動方向は、当然回転子の回転方向と対応する。
従って超音波モータを音声振動させた場合には、超音波モータの回転は限られた範囲内での往復振動に留まり、被駆動領域の移動も限定された範囲のみしか活用できないため、超音波モータの長寿命化には寄与しない。
一方本発明は、特許文献2のごとく回転進行波型ではなく縦屈曲独立励振型。その駆動形式も回転式及び直動式双方に対応している。またその構成・機構に於いても、積極的に第二の駆動機構を導入。移動子の運動方向に関係なく確実に被駆動点をドリフトさせ、長寿命化に寄与する。以上のごとく本発明は特許文献2とは明らかに異なっている。
次に特許文献3を再確認し、その後本発明との相違を明確にする。 
特許文献3は請求項1が、“前記駆動制御部は、前記移動体を所定範囲内で移動させること、及び、前記所定範囲内で移動させる際の前記振動体と前記移動体との接触領域を変更するように前記移動体を移動させることが可能であることを特徴とする”としている。加えて特許文献3は、本来の作動と駆動領域の移動を別の時間帯に行っている。
一方本発明の構成は前述の図9ブロック・ダイアグラムのとおり、縦屈曲独立励振型振動波モータ駆動・変調回路(901)、縦屈曲独立励振型振動波モータ(902)、そして第二駆動機構(903)からなっており、全体を制御する駆動制御部は存在せず、明らかに異なる構成である。また本発明は音声再生と云う常時振動する出力を提供する事が主目的である為、本来の作動と駆動領域の移動は同時である事が不可欠。この点でも逐次移動を旨とする特許文献3とは明確に異なる。
最後に特許文献4の再確認と、本発明の相違を明確にする。
特許文献4の請求項1は“振動子先端の接触子を前記被駆動体との摩擦接触で摩耗する際に軸方向に沿って横断面の外形と横断面積が同一の状態を保つピン形部材で構成したことを特徴とする”としている。また具体的には駆動部の形状を台座とピンを組み合わせた、二段重ね構造となっている。
一方本発明は駆動子全体が芯鞘構造であり、細い駆動子だけが支持台から突き出ている先行例の構造とは明らかに異なる。具体的には図3に示したごとく駆動子を芯鞘構造とすることにより、発音・振動装置等駆動子に負担がかかる用途に於いても、鞘による強度補強効果により疲労による折損等を生じにくい。さらに駆動子全体が磨り減っても、芯部である本来の駆動子部材は同一の駆動面積を維持するため、初期駆動特性が維持される。
特に発音・振動装置は常時往復振動することが使命であり、しかも潤滑油環境に於いてはさらに局圧が高くなるため、いきおい駆動子芯材は細くなる。その為先行例では駆動子の根元に応力集中して駆動子が疲労骨折を生じ易く、結果として長寿命を達成し難い。
以上前述の如き先行発明である特許文献2-4との対比でより明確になったように、本発明に於ける移動子ドリフト機構導入と、ここで述べた芯鞘構造の駆動子導入が相俟って、前記振動波モータ及び同発音・振動装置に長寿命をもたらす。
本発明の振動波モータは、特に接触駆動域が駆動子と移動子の接触中心点付近に集中し易い用途に於いても、長寿命を達成できる。具体的には図3のごとく駆動子を芯鞘構造とし、駆動子芯材の耐摩耗性を高める事により、駆動子全体が磨り減っても、芯部である本来の駆動子部材は同一の駆動面積を維持する。かつ駆動子芯材、同鞘材、そして移動子の耐摩耗性序列を前述のごとく制御することにより、発音装置に特有な連続振動負荷に於いても、折損することなく長時間初期駆動特性が維持される。
また第二の駆動機構により、移動子上の被接触駆動域をスピーカ作動と同時にドリフトさせる。本機構により被接触駆動域が一点集中型から、特定部位に集中せず分散・広域化して、結果として移動子の磨耗が分散・広域化。移動子の長寿命化に寄与する。
以上のごとく前述の機構や構造を導入する事により、本発明の縦屈曲独立励振型振動波モータは、単にスピーカ用途のみならず同様な往復振動用途に於いても、長寿命が得られる。
進行波型回転式振動波モータ、及び振動波モータスピーカの原理図      である。 縦屈曲独立励振型振動波モータの原理図と、移動子面磨耗痕の実例      である。 芯鞘構造を持つ、ハイブリッド駆動子の概念図を示す。(実施例4) 本発明の、リニア式縦屈曲独立励振型振動波モータ接触駆動部ドリ      フト機構説明図である。 (実施例1) 図4に示した、リニア式縦屈曲独立励振型振動波モータ移動子上の、      被接触駆動軌跡例である。 (実施例1) 本発明の、シリンダ式縦屈曲独立励振型振動波モータに於ける、被      接触駆動部ドリフト機構原理図である。 (実施例2) 本発明の、ディスク式縦屈曲独立励振型振動波モータに於ける、被      接触駆動部ドリフト機構原理図である。 (実施例3) 図7に示したディスク式縦屈曲独立励振型振動波モータ移動子上の、      被接触駆動軌跡解説である。 (実施例3) 本発明の一例である、第二駆動機構付きスピーカ駆動用縦屈曲独立      励振型振動波モータ・ブロックダイアグラム図である。 ニッコー社製NU-30縦屈曲独立励振型振動波モータの速度特       性を示す。
本発明は振動波モータ、特にはスピーカ用途の如き原点を中心とする振動を、機械的出力とする用途に於いての長寿命化を達成するため、寿命を支配している移動子と駆動子双方を最適化する。具体的には芯鞘構造を持つハイブリッド型駆動子を実施例4と図3で解説する。なお駆動子芯材、駆動子鞘材、そして移動子材質はセラミックまたは金属部材であり、選定や熱処理条件等は振動波モータ全体の寿命設計と関係し、駆動子本体の材質や移動子の大きさ及び形状等により部材選定や諸条件が選ばれる。
一方移動子の長寿命化のため、第二の駆動機構を導入して移動子上の被接触駆動点をドリフトさせる。前述のごとく図9は構成・機構の概略を、ブロック・ダイアグラムとして示している。この内、第二の駆動機構は縦屈曲独立励振型振動波モータの形式、すなわち直動式か回転式で異なるため、実施例1-3を図4から図8にて解説する。
これら3要素間では、駆動子芯材がモータ全体の長寿命を保証する為耐摩耗性を最大に、一方移動子は耐久性を旨とするが、被接触駆動時には駆動子を磨耗させない為に移動子の耐磨耗性を中間に、そして駆動子鞘は芯材の折損を防止する補強機能を旨とするが、移動子と接する時は駆動子芯材とともに自ら身を削る事で、移動子を傷つけない様耐摩耗性を最小とする。
具体的には、駆動子芯材への局圧や寿命等の設計条件から、その寸法と材質を選定する。合わせて、移動子の耐摩耗性を駆動子より低くかつ必要な靭性を得られる材質や熱処理条件、そして駆動子鞘材の耐摩耗性を移動子より低くする。また駆動環境を決定する。特には潤滑油環境が効率の点等から望ましい。 
図9は本発明に於ける第二の駆動機構が、作動中に被接触駆動点ドリフトを行う概略を説明している。超音波発信回路(91)は、振動波モータ駆動用のもの。途中で分岐し、第二の駆動機構駆動源ともなる。また音声信号(92)は、スピーカ機能を介して音声出力する為の原信号である。変調器(93)により、超音波信号は音声変調され駆動子(94)を駆動する。
一方移動子(95)は駆動子(94)により接触駆動され、音声信号に即した振動をする。また周波数逓減器(96)は、超音波信号周波数を電気的に逓減し、ドリフト信号(97)として電気機械変換器(98)により機械へ変換され、ドリフト機構(99)を介し駆動子又は移動子を移動させ、移動子の被接触駆動中心点を、駆動子本来の音声信号に基づく機械的振動を発生中にドリフトさせる。
以上ここまでを俯瞰すると、振動波モータ駆動・変調回路(901)は縦屈曲独立励振型振動波モータ(902)を駆動。第二駆動機構(903)は駆動子(94)又は移動子(95)をドリフトさせ、結果として駆動子が音声振動に基づく機械的振動を発生中に、移動子上にある被接触駆動点を相対的にドリフトさせている。
さらに実施例を説明する前に、用語の定義と接触駆動部の再確認を行う。まず直動式(以後、リニアとも称する)では駆動子をステータ、移動子をスライダとも表記する。スピーカ用途の場合、従来の縦屈曲独立励振型ではスライダが音声信号により被接触原点中心に直線往復振動し、スライダ表面に短い線分状の接触駆動に伴う軌跡を生じる。
一方、縦屈曲独立励振型回転式振動波モータをスピーカに使用する場合、駆動子をステータ、移動子をロータとも表記する。前者は固定側であり、後者はスピーカ用の場合、音声信号により回転往復振動する。回転型は2つあり、ステータとロータの接触駆動部を円周外面、すなわちシリンダとするか、円筒端部に配置されるディスクとするかの違いがある。以後前者をシリンダ型、後者をディスク型とも称する。
スピーカ用途の場合には、いずれも接触駆動部を被接触原点とする短い円弧状の往復振動を行い、ロータ上に接触駆動に伴う線分軌跡を生じる。
また、第二の駆動機構は被接触駆動域ドリフト機構とも称する。そして芯鞘構造駆動子は、ハイブリッド駆動子とも称する。更に図面表記を例えば図6(e) を、単に(e)とも略す。
実施例1は、芯鞘構造を有するハイブリッド駆動子に関するもので、図3で説明する。ハイブリッド駆動子は形状的には鉛筆に例えられ、周辺に駆動子の折損等を防止する鞘部材(91)を、芯部に本来の駆動子(92)を配する。鉛筆と異なる点は、その縦横比と端面形状そしてその使用法で、鞘は駆動子と共に作動時に磨耗して行く。
図9に示した試作品の場合、縦横比は長さ2.5mm、太さ3.0mmであり、駆動端面の曲率は半径30mm。また(31)に示す鞘の材質はアルミニウム、(32)の駆動子材質はアルミナで直径は1.0mmである。なお駆動を受ける移動子材質は、駆動子芯材よりは耐摩耗性が低いものの、鞘材よりは耐摩耗性の高い超硬鋼材を使用した。この耐摩耗性の序列は前述の通りである。なお縦屈曲独立励振型駆動源としては、ニッコー株式会社製のNU-30を用いた。
 
実施例2を図4により説明する。図4は縦屈曲独立励振型リニア振動波モータスピーカにおける被接触駆動部ドリフト機構の一例であり、以下にその動作を説明する。同図は二つの部分からなっている。前半は電気回路であり、電気回路による振動波モータ駆動信号の発生から実際の第二駆動機構の電気的駆動力発生まで。後半はその電気的駆動力に基づき機械的駆動力の発生・変換と伝達、そして最終的なリニア式に於ける移動子の被接触駆動部ドリフト機構の構成と手段を示し、長寿命化モジュールの動作を解説している。
ここでは電気回路及び、駆動の基本を解説する。電気回路は発振器、増幅器、周波数低減器、微分回路、電力増幅器からなる。発振器(401)は本来振動波モータ駆動の為のもので、この場合周波数約55-56kHzの電気信号を発生、増幅器(402)を通ってその信号を2回路に分岐させる。
一方の信号(403)は音声変調器、増幅器を通じて駆動器に入り、本来の振動波モータとして、駆動子を駆動して音声信号に従った機械振動を発生させる。他方は周波数低減器(404)により約56万分の1に低減され、ほぼ0.1Hzの電気信号を作り、微分回路(405)に於いてそれを微分して10秒に1回のパルスを発生させる。 
このパルスをワンショットマルチバイブレータ及び電力増幅器(406)に加え、10秒に1回の割合で時間幅0.2~0.3
秒の矩形波を作り、上下方向移動用のプランジャ(407)に供給する。プランジャによって吸引されるシャフトには桿(408)が接続されていて、その先端は歯車(409)の歯とかみ合い、1パルス1歯分歯車(409)を回転させるようになっており、パルスが終了した時点で次の歯と同様な関係位置に戻るように設定されている。
(408’)はその為のスプリングであって桿(408)の長さを変えて旧位置に戻りやすくする為のものである。今例えば歯車(409)の歯数が60であれば歯車(409)は10分で一回転する事になる。
更に実施例2の、モータ本体支持装置に於ける、上下方向の動きを説明する。歯車(409)の裏側はカム(410)となっており、その表面にモータ本体支持装置(411)の先端が接触している。歯車が回転する事により、モータ本体支持装置(411)も約10分で一往復の上下運動をする。この例では往復運動の長さを3mmに設定している。
このモータ本体支持装置の動きにより、スライダ(417)を挟み込んでいるモータ(412)が上下し、モータに固定されていて圧電素子等により加振されているステータ(413)と、スライダ(417)との相対位置も上下方向に3
mm 往復移動する。
一方スライダ(417)は音声信号に基づくステータの振動を受け、スライダ支持部(415)の支えにより、レール(416)に沿って音声再生の為の往復振動を行う。その振動はリンク機構を介しスピーカに伝達される。なお、この第二の移動機構モジュールは固定座標に直結しており、一方スライダは本来のスピーカ駆動軸を保持するため、上下のガイドレールで支持されているが、図面上では一部省略されている。
続いて実施例2のモータ本体支持装置に於ける、水平方向への動きを説明する。電力増幅器(406)の出力は分岐されて更なる周波数低減器および微分回路(418)により十六分の一に低減され、0.006Hzのパルスとなり電力増幅器(419)により増幅されてプランジャ(420)に加えられ、上記と同様な機構により160秒間に一歯の割合で歯車(422)を回転させる。
(421)はプランジャに接続されている桿である。歯車の歯数を 60 個にすると歯車(422)は
160 分に一回転する事になる。歯車(422)の表側はカム(423)となっていてその表面にモータ本体支持装置(426)の先端が接触しており、歯車(422)の回転に伴ってモータ本体支持装置(426)を移動させる。
これにより圧電素子等により加振されているモータ(412’)も相対的に振動方向に8mm往復移動する。ただしこの歯車(422)に付随するカム(423)は、前述のカム(409)と異なり、頂部が円周全体の160分の1に相当する長さ(424)が平坦になっている。その為、其の部分では水平移動が止まるので、結果として縦方向の移動がずれることになり、接触点が3mm×8mmの面積に均等に分布するようになっている。
図5に上記実施例2の、被接触駆動部ドリフト軌跡例を示す。このようにステータとスライダの接点が移動子にもたらす軌跡を広い面積に分散・広域化させることによって、縦屈曲独立励振型直動式振動波モータスピーカの寿命を、大幅に延長する事が可能となり有効な技術である。
実施例3を図6により概説する。図6は、図(e)及び図(f)からなり、全体が通常の概念に於ける縦屈曲独立励振型シリンダ式振動波モータとして振舞い、その内容は(601)で示される狭義のモータ兼シリンダ可動部と、(602)のドリフトモジュールからなる。図(e)及び図(f)は、互いに相手の断面図となっている。
図(e)は振動波モータ部分の駆動部を示しており、後述する図(f)のB-B断面図。一方図(f)は振動波モ-タ部分とドリフトモジュールを示し、前述の図(e)におけるA-A断面図である。シリンダ可動部(601)が、ドリフトモジュール(602)からの移動力を受け、スパイラル状に微速度回転シフトする機構を示している。
まず実施例3の作動前半を説明する。前述の如く図(e)は、シリンダ式の接触駆動部断面であり図(f)に於けるB-B断面を示す。
モータ本体(61)がA-A部に於いて、シリンダ面(62)に対向位置で接触。振動波モータスピーカの場合は、2つのモータ(61)の駆動子が音声信号に基づき円周方向に往復振動し、それをシリンダ面(62)がドリフトモジュール(601)を代表して駆動を受け、ドリフトモジュール軸(68)とリンク機構(略)を通じて発音体を駆動、音声を発する。
この時、シリンダ面(62)は実質上ロータと一体と看做せる。また、シリンダ面は移動子そのものであり、材質や熱処理条件等は前述の諸条件に基づき選定する。使用時間に応じてロータ(63)が、ドリフトモジュール(65)に対して微速度スパイラル回転し、接触部位を変化させる。この微速度とは1分作動当たり1mm程度の移動を指しており、クォーツ腕時計の分針レベルである。
続いて実施例3の後半、ドリフトモジュール(602)の主要機能である、微速度スパイラル回転ドリフト機構を説明する。図(f)は狭義のロータ(63)の微速度スパイラル回転、及び接触域分散・広域化機構に関する。
狭義のロータ(63)は中心部にキー溝を持つ穴により、キー付き駆動軸(64)と連結されている。なお必要に応じてガタのないようにキー溝部分で圧着バネによる緊定や、メカニカルダンピング用部材を援用する。このキー付駆動軸(64)はドリフトモジュール筐体(66)の中で、クォーツ時計類似の微速度ドリフト駆動源(67)により駆動される。
同時に狭義のロータ(63)の内円部にあるネジは、ドリフトモジュール筐体(66)の外円部にあるネジと嵌合しており、ロータ部全体(601)が微速度回転する。しかも単に円周方向に微速度回転するのみではなく、軸に平行な方向に対しても徐々に移動する。従って狭義のロータ(63)上の接触部は、シリンダ面(62)にスパイラルを描くように移動して行く。
位置センサー(65)が折り返し点を検知すると、駆動源(67)(略)を上下動させ、逆転ギア(68)を介してドリフト方向を反転させる。なお逆転作動の際ギア部の遊びにより、反転作動までに有限の時間経過が生じ、結果として反転軌道は正転とは異なるので、必然的に接触駆動域の分散化と広域化がなされる。本来の音声信号に基づく往復動回転振動は、ドリフトモジュール軸(69)から発音体に伝達される。
ここでは実施例4を図7と図8で説明する。図7は狭義の振動波モータ(701)と、ドリフトモジュール(702)からなる。両者はセットビスで着脱可能である。同図はディスク縦屈曲独立励振型回転型振動波モータの接触駆動部ドリフト機構概念図であり、振動波モータスピーカのサブシステムである。更に図8は、図7で示したディスク回転型振動波モータ上に於ける、接触軌跡例等の解説図である。
まず実施例4に於ける、縦屈曲独立励振型ディスク式振動波モータの作動前半を、図7により説明する。3つの部分からなり、図(g)は、ドリフトモジュール(702)の中心的機能、軌道分散・広域化を発現するための機構説明図である。図(i)のD-D断面図であり、偏芯カム(71)遊星回転ギア(72)およびドリフトモジュール本体ギア部(73)からなる。
図(h)はドリフトモジュール内面固定ギア(73)と、遊星回転ギア(72)間の、噛み合い部位拡大図。前述の如く図(i)のD-D断面図であり、偏芯カム(71)が以下に説明する駆動力を受けて微速度回転する。一方、図(i)は図(g)のC-C部断面図である。ディスク回転型振動波モータの一部省略した本体部(701)と、ドリフトモジュール(702)を示している。
続いて後半の説明を行う。この遊星回転ギア(72)の微速度シフト回転は、図(i)に示されているとおり振動波モータ内のディスク状ロータ(75)に、コネクタを通じて直結されており、結果として駆動子(74)によるロータ
(75)上の被接触駆動部が描く軌跡が分散・広域化される。
このような動作を可能にするために、駆動子(74)はドリフトモジュール(702)の回転中心に対称な位置に配置され、前述のロータ(75)と共に振動波モータ(701)を形成。一方ドリフトモジュール(702)は、前述のシリンダ式と同様駆動源(77)(略)が、使用時間に比例して偏芯カム(71)を微速度回転させる。
ドリフトモジュール軸(78)が、発音体を駆動することは実施例3と同じ。またシリンダ式と同様、これらの微速度ドリフト機構が音響振動で不要な共振を生じないよう、圧着バネ使用やダンピング処理を施すことも有用である。この場合の被接触駆動部ドリフト速度も、実作動時間1分あたり1mm程度である。
結果として、被接触駆動部はディスク上に中心が揺動するため、少しずつ中心が移動する円形図形を、微速度でドリフトしながら描き続けることとなる。代表的軌跡例を図8に示しており以下に詳述する。
前述の如く図8は、図7で示した縦屈曲独立励振型ディスク回転式振動波モータスピーカにおいて、第二の駆動機構によるディスクの動きとその結果生じる軌跡例である。図j、図k、図l、そして図mは、ディスク上の被駆動面が図7に示した機構により、遊星回転シフトした時の代表的相対位置を示している。
図nは、モータの使用が進んで、ロータの遊星運動が多数回生じた後の、被接触駆動軌道群の一例を表示したものである。実際の軌跡は、一種のサイクロイドとなり、遊星ギア比や駆動子の配置で異なってくる。ギア比および駆動子の配置等の諸元は、被駆動接触軌道間での重畳部分を少なくしながら軌跡を拡げ、かつディスク上の有効接触面を最大限に活用するように定める事が望ましい。
この様にリニア式、シリンダ式、あるいはディスク式かにより、接触駆動部が描く図形の形態、発生個所と、接触点の在り方も異なってくる。しかし本発明の主眼である被接触駆動部の分散・広域化を図ると言う点では共通。加えて点接触のみならず、線接触系に於ても、同様な接触部の分散・広域化は有用である。
更に共通技術として接触部を当初の軌跡以外にドリフトさせる手段の駆動源としてクォーツ時計駆動源、あるいは実施例2で示したように、振動波モータの発振機構を駆動源として使用してもよい。クォーツ時計を使用する場合、電池電源で駆動できるため、移動子側へのドリフトモジュール設置の場合でも配線が不要である。
本実施例の場合、駆動子全体の大きさはほぼHR8個別の駆動チップと匹敵する大きさだが、磨耗が進んでもその実効的接触駆動面積はHR8のごとく3mm直径の全断面積には広がらず、最大でも1mm径を超える事はない。
なお、鞘用部材に求められる性質は、前記のごとく移動子よりは耐摩耗性が低く、また粘り強さを兼ね備え補強と云う役割を果たし、かつ磨耗しても質量の変化が少ないよう比重の小さい部材が望ましい。また比重が大きいと質量変化が大きく、共振周波数が変化する等駆動条件が変化しやすい。この意味でアルミニウムは有用である。
更には振動子モータ駆動源を、通常のドライ環境ではなく潤滑油環境に於いて使用する利点を述べる。従来の進行波型回転式振動波モータは、その生い立ちからドライ環境であった。振動波モータは原理的に摩擦駆動による駆動力発生方式。潤滑油とは相容れない性格であったからである。
しかしその後の研究により、ドライ環境下に於いてもある種の潤滑作用が有用であることが判り、実質的に固形潤滑材を摩擦面に導入している機種もある。更に積極的に潤滑油環境を導入、効率と寿命を飛躍的に向上させる研究が現在一部の発明者等により進行中。既に効率72%と言うドライ環境の2倍近い実績(非特許文献3)があり、当然縦屈曲独立励振型振動波モータスピーカ用途に於いても、その利点を生かすことは有用である。
なお潤滑油環境下に於いては局圧が増加し、しかも管理がドライより一段とその重要性を増す。潤滑油を用いた場合は、局圧をあげる為に駆動子面積は小さくなり、かつ摺動面の接線力係数は圧力の大きさによって大きく変わることが知られており、その挙動はストライベック曲線によって説明される。
当然この場合の圧力とはミクロな意味での局部圧力を指しており、同じ外部圧力でもその接触面積が変化すれば、当然接線力係数も変化する。例えば駆動子の磨耗によりミクロな接触面積が一桁増加すれば、局圧は逆方向に一桁減少。その摩擦駆動力変化は更に大幅になる事を、ストライベック曲線は教えている。
従って潤滑油環境の利点を活用するためには、前記実質的接触面積の恒常化は必須である。さらに作動により必然的に発生する磨耗粉塵を飛散させず、潤滑油内にスラッジとして取り込むこと。さらにスラッジを無害化するキレート化合物等の添加等も、作動環境の保全にとって有用である。
また潤滑油環境下の駆動源に於いて、駆動子の表面をミクロの母型とする技術に関して説明する。この知見は一見まったく無関係な世界であるCVT型自動変速機(非特許文献4)から得たもの。ベルト式CVT型無段変速システムに於いて、効率向上に役立っている被接触表面の形状制御技術を、振動波モータ研究に導入したものである。
中でも駆動側接触表面のミクロな構造や、潤滑材の種類を組み合わせる事による摩擦係数の向上は、結果として振動波モータの効率向上にも役立つ事が予測され、特にDsumの制御に着目している。さらにCVT潤滑油でも活用されているように、添加金属塩等による化学的表面改質技術も用できる。これらの技術は振動波モータスピーカ用途のみならず、通常の使用法すなわち位置決め的使用法に於いても有用であり、その用途は広い。
更に潤滑油環境を維持する為にはこれもCVT同様外部との関係を絶つ必要がある。これは潤滑油の流出を防ぐ事と、外部からの超硬物質の粉塵混入を防止する為である。
他にも多くの工業的に知られた実効駆動面積維持方法はある。例えば、ウイスカーの束を金属や無機材料で固めたものや、各種のバイトでよく見られる砥粒を焼結金属で固めた形式などである。いずれも設計段階では、振動波モータの設計仕様に基づき、保証寿命と使用条件やコストに見合わせて、前述の駆動子と移動子の材質、寸法や熱処理条件の選定を行う。
最後に縦屈曲独立励振型振動波モータスピーカの消費電力に関する特徴、およびスマート電力化を説明する。まず消費電力に関して、導電型スピーカと比較する。前述の通り導電型スピーカは変換器であり、音声出力と消費電力の関係はy∝x、すなわち正比例している。この場合yは再生音圧、xは投入電力である。
一方縦屈曲独立励振型振動波モータスピーカは、明らかに異なっていた。音声出力と消費電力はy∝bx‘+lの関係で示す事ができ、“b”は屈曲振動電圧、“l”は縦振動電圧に関連する係数である。これは一種の変調型。つまり音声出力と投入電圧とが、一次式の関係にある。但しyは同じく音声出力だが、x’は音声信号電圧であって電力ではない。なおx’と電力の詳細な関係は奥深いものがあり、今後の研究に待つ。
この両者の消費電力比較を行うと、導電型は前述のごとく音声出力と消費電力は常に正比例。一方縦屈曲独立励振型振動子型モータスピーカは“b”が1以下なら、スピーカの低消費電力化可能領域が存在する。例えばナノモーションの場合“b”は0.3程度。10倍の音圧を出す時に、消費電力の増加分は3倍程度であった。つまり縦屈曲独立励振型振動波モータスピーカの場合、ある音量以上に於いては、従来からある導電型より小電力化が可能と云うことである。
次いでスマート化について説明する。音声信号電圧は平均出力とピーク出力の差が非常に大きい。この点に着目し、スマート化を2つの視点から検討した。着眼点は3)マスターボリュームと、4)適応処理だった。3)のマスターボリュームは再生時にユーザーが設定する。内部的には再生音圧の最大値と直結。具体的には音声再生に於ける”b”の最大値を決める事と実質的に同義であり、“l”を有限幅内にて設定した。
図10はニッコー社製NU-30縦屈曲独立励振型振動波モータに於ける、B2とL1の変動に伴う速度特性を示したもの。点線はB2=L1、すなわち両者を共に変化させた場合で、ゼロクロス領域に於いて不感帯がある。一方一点鎖線L1Fix(M)の場合は、ゼロクロスに於ける不感帯が無い。
この時のL1Fix(M)=3.3Vrmsであった。またL1Fix (L)=11Vrmsが黒で示されて居る。マスターボリュームは再生音圧の最大値と直結。具体的には音声再生に於ける”b”の最大値を決める事と実質的に同義であり、”l”をルックアップテーブル等で有限幅内にて設定した。L1Fix(L)とL1Fix(M)を比較すると、一次項の”l“は最大値の30%で十分作動する。
一方4)の適応処理は小音量時のモータ駆動条件を、音声変換効率を一定に保ちながら、音声信号電圧の変動を活用して、更に小電力化する事を指す。だがこのスマート化を目指すためには、もう一つ要因が増加する。それは前述のB2やL1設定がスタティックであった為考慮が不要であったが、ダイナミック制御を行う為には更なる制御要因が不可欠となったからである。
再び図10をご覧頂きたい。速度特性の係数を見ると、黒のL1Fix(L)は0.20m/sで、一方赤のL1Fix(M)は0.12m/s。同じ音声入力電圧では、音声出力として5dB程度の開きを生じる。
この差をAMラジオで使用されているAVC(Automatic Volume Control)で補償し、音声出力を一定に保つ。但し通常のAVCは、最大入力を抑える使用法だがここでは逆、すなわち小音声入力電圧をブーストする。このゲインを”g”で表わすとy∝gbx‘+lとなり、“b”の落ち込み分を”g”が補償する。
具体的には音声信号電圧の先行把握に基づき、x’が傾向として大きく変動する場合にスマート化する。この操作は機械的作動がmsオーダーの遅れを生じる事を活用し、音声信号のエンビロープを先行把握して振幅の予測を行い、振幅の増大局面では音声信号より先行して”l”を上昇させ、一方下降局面では信号に追随する形で”l”を低減させた。
このような適応処理により、例えマスターボリュームが最大であっても、実質的な”l”は音声信号電圧次第で、可能な限り適応式低減させることにより、結果として投入電力のスマート化を達成できた。
以上をまとめると、縦屈曲独立励振型振動波モータスピーカ自身変調器の為、従来式に比較し小電力化に寄与可能であるが、適応化により更にオーディオのスマート化に寄与出来る。
縦屈曲独立励振型振動波モータでスピーカ駆動を行う場合、駆動子の磨耗に伴う接触駆動力変化や、移動子の局部磨耗を防ぐことにより長寿命化出来る。また、スピーカと類似の往復振動や作動プログラムが定型的である場合に於いても、従来品より長寿命化できる。
1. ステータ
2. ロータ
3. モータ速度特性
10.音響信号源
11.駆動装置
12.回転式振動波モータ
13. 連結棒
14.エッジ
15.コーン
16.アーム
17.スピーカ速度特性
21.モータ速度特性
22.スピーカ速度特性
31.駆動子芯
32.駆動子鞘
401.振動波発振回路
402.増幅器
403.分割信号
404.周波数低減器
405.微分回路
406.ワンショットマルチバイブレータ及び電力増幅器
407.プランジャ
408.棹
409.歯車
410.カム
411.モータ本体支持装置
412.& 412’.モータ
413.ステータ
414.& 414’. (移動距離3mm)
415.& 415’.スライダ支持部
416.& 416’.ガイドレール
417.スライダ
418.微分回路
419.ワンショットマルチバイブレータ及び電力増幅器
420.プランジャ
421.棹
422.歯車
423.カム
424.カム平坦頭頂部
425.(移動距離8mm)
426.モータ本体支持装置
61.モータ本体
62.シリンダ面
63.ロータ
64.キー溝つき駆動軸
65.位置センサ
66.シフトモジュール
67.クォーツ時計発振部
68.逆転ギア
69.シフトモジュール軸 
601.シリンダ可動部
602.シフトモジュール
71.偏芯カム
72.ロータのディスク部分
73.シフトモジュール・ギア部
74.狭義の振動波モータ本体
75.ロータ
76.遊星ギア噛み合い部分
77.クォーツ時計駆動源(略)
78.シフトモジュール軸
701.狭義の振動波モータ
702.シフトモジュール本体
(j)代表的遊星ギア位置1に於けるディスク位置例 
(k)代表的遊星ギア位置2に於けるディスク位置例 
(l)代表的遊星ギア位置3に於けるディスク位置例 
(m)代表的遊星ギア位置4に於けるディスク位置例
(n)モータ使用途中に於ける、ディスク上の被駆動接触軌跡例 
91.超音波発信回路
92.音声信号
93.変調器
94.駆動子
95.移動子
96.周波数逓減器
97.ドリフト信号
98.電気機械変換器
99.ドリフト機構
901.縦屈曲独立励振型振動波モータ駆動・変調回路
902.縦屈曲独立励振型振動波モータ
903.第二駆動機構
101.B2=L1 曲げ第二次振動電圧=縦第一次振動電圧とした場合
102.L1:Fix(M) 縦第一次振動電圧を最大値に固定した場合
103.L1:Fix(L) 縦第一次振動電圧を最小値に固定した場合

Claims (10)

  1. 駆動子が移動子を接触駆動する振動波モータに於いて、該駆動子は芯鞘構造を有し、芯材は本来の駆動子、鞘材は補強材であって、
    これら構成要素素材間の耐摩耗性序列が、該駆動子芯材>該移動子>該駆動子鞘材である事を特徴とする振動波モータ。
  2. 前記駆動子が前記移動子を接触駆動する機構を第一駆動機構とした時、これとは別に第二駆動機構を有し、該第一駆動機構が移動子にもたらす第一の移動方向に対し、
    該第二駆動機構は前記接触駆動領域である第一の移動方向とは異なる、第二の方向に移動させる事を特徴とする請求項1に記載の振動波モータ。
  3. 前記接触駆動を行う界面を含み、前記移動子がもたらす駆動力の出力軸端を除く主要部分を閉空間内に設置し、
    潤滑油を該閉空間内部に密封する事を特徴とする請求項1又は請求項2に記載の振動波モータ。
  4. 前記駆動子芯形状は円柱又は多角柱であって長期の振動負荷にも耐えることが主機能であり、前記駆動子鞘は該駆動子芯を長期振動負荷による折損防止を主機能とし、その構造は単層のみならず複層でも良く、振動波モータが長期間に亘って使用されている間にも、該駆動子芯と該駆動子鞘が前記移動子との摩擦駆動に伴って、共に摩滅してゆく事を特徴とする請求項1から3のいずれかに記載の振動波モータ。
  5. 音声振動を発する発音装置又は音声振動発生装置であって、駆動源が請求項1から4のいずれかに記載の振動波モータである事を特徴とする発音装置。
  6. 前記移動子が平面であり、かつ前記接触駆動領域が該移動子上で振動及び移動することを特徴とする、
    請求項1から4のいずれかに記載の振動波モータ又は同モータを駆動源とする発音装置。
  7. 前記移動子が円筒面であり、かつ前記接触駆動域が該移動子上で振動及び移動することを特徴とする、
    請求項1から4のいずれかに記載の振動波モータ又は同モータを駆動源とする発音装置。
  8. 前記移動子が円板面であり、かつ前記接触駆動域が該移動子上で振動及び移動することを特徴とする、
    請求項1から4のいずれかに記載の振動波モータ又は同モータを駆動源とする発音装置。
  9. 前記接触駆動域が移動子上を第二の駆動機構で移動することにより生じる軌跡が繰り返される矩形波の重なりであったり、円筒外面にスパイラルな軌跡を幾重にも書き残したり、
    一種のサイクロイドの繰り返しであったりする事を特徴とする、請求項1から8のいずれかに記載の振動波モータ又は同モータを駆動源とする発音装置。
  10. 前記音声振動を発する発音装置または、音声振動発生装置であって、発生音圧または振動振幅に応じて駆動電力を適応制御することを特徴とする、
    請求項4から9のいずれかに記載の振動波モータを駆動源とする発音装置。
PCT/JP2011/075728 2010-11-10 2011-11-08 振動波モータ及び同モータを駆動源とする発音装置 WO2012063823A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012542932A JP5873802B2 (ja) 2010-11-10 2011-11-08 振動波モータ及び同モータを駆動源とする発音装置
US13/884,522 US20130230196A1 (en) 2010-11-10 2011-11-08 Oscillatory wave motor and sound generation device using oscillatory wave motor as drive source

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-251434 2010-11-10
JP2010251434 2010-11-10

Publications (1)

Publication Number Publication Date
WO2012063823A1 true WO2012063823A1 (ja) 2012-05-18

Family

ID=46050965

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/075728 WO2012063823A1 (ja) 2010-11-10 2011-11-08 振動波モータ及び同モータを駆動源とする発音装置

Country Status (3)

Country Link
US (1) US20130230196A1 (ja)
JP (1) JP5873802B2 (ja)
WO (1) WO2012063823A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103354431A (zh) * 2013-06-28 2013-10-16 南京航空航天大学 一种纵弯复合模态夹心式超声电机振子
JP2018532136A (ja) * 2015-09-16 2018-11-01 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd 音を生成するための方法、及びシステム
US10658950B2 (en) 2016-07-28 2020-05-19 Seiko Epson Corporation Piezoelectric actuator, piezoelectric motor, robot, and electronic component conveyance apparatus

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6302346B2 (ja) * 2013-05-14 2018-03-28 キヤノン株式会社 超音波モータの駆動制御装置および駆動制御方法
US10712738B2 (en) * 2016-05-09 2020-07-14 Strong Force Iot Portfolio 2016, Llc Methods and systems for industrial internet of things data collection for vibration sensitive equipment
US11327475B2 (en) 2016-05-09 2022-05-10 Strong Force Iot Portfolio 2016, Llc Methods and systems for intelligent collection and analysis of vehicle data
US11774944B2 (en) 2016-05-09 2023-10-03 Strong Force Iot Portfolio 2016, Llc Methods and systems for the industrial internet of things

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6231379A (ja) * 1985-07-31 1987-02-10 Nippon Kogaku Kk <Nikon> 超音波モータ
JPH0866062A (ja) * 1994-08-19 1996-03-08 Asmo Co Ltd 超音波モータ
JPH11146673A (ja) * 1997-11-10 1999-05-28 Nikon Corp 振動アクチュエータ
JPH11146667A (ja) * 1997-11-11 1999-05-28 Toshiba Corp 超音波モータ装置
JP2000175466A (ja) * 1998-12-09 2000-06-23 Canon Inc 振動アクチュエータ及び機器
JP2004325827A (ja) * 2003-04-25 2004-11-18 Minolta Co Ltd 電子機器及び撮像装置
JP2007067999A (ja) * 2005-09-01 2007-03-15 Nippon Densan Corp 振動音響発生装置
JP2008206251A (ja) * 2007-02-19 2008-09-04 Toyota Industries Corp 振動アクチュエータ
JP2010063349A (ja) * 2008-08-06 2010-03-18 Sharp Corp 駆動装置およびこれを備える撮像装置ならびに電子機器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6231379A (ja) * 1985-07-31 1987-02-10 Nippon Kogaku Kk <Nikon> 超音波モータ
JPH0866062A (ja) * 1994-08-19 1996-03-08 Asmo Co Ltd 超音波モータ
JPH11146673A (ja) * 1997-11-10 1999-05-28 Nikon Corp 振動アクチュエータ
JPH11146667A (ja) * 1997-11-11 1999-05-28 Toshiba Corp 超音波モータ装置
JP2000175466A (ja) * 1998-12-09 2000-06-23 Canon Inc 振動アクチュエータ及び機器
JP2004325827A (ja) * 2003-04-25 2004-11-18 Minolta Co Ltd 電子機器及び撮像装置
JP2007067999A (ja) * 2005-09-01 2007-03-15 Nippon Densan Corp 振動音響発生装置
JP2008206251A (ja) * 2007-02-19 2008-09-04 Toyota Industries Corp 振動アクチュエータ
JP2010063349A (ja) * 2008-08-06 2010-03-18 Sharp Corp 駆動装置およびこれを備える撮像装置ならびに電子機器

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103354431A (zh) * 2013-06-28 2013-10-16 南京航空航天大学 一种纵弯复合模态夹心式超声电机振子
JP2018532136A (ja) * 2015-09-16 2018-11-01 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd 音を生成するための方法、及びシステム
US10725728B2 (en) 2015-09-16 2020-07-28 SZ DJI Technology Co., Ltd. System, apparatus and method for generating sound
US11347472B2 (en) 2015-09-16 2022-05-31 SZ DJI Technology Co., Ltd. System, apparatus and method for generating sound
US10658950B2 (en) 2016-07-28 2020-05-19 Seiko Epson Corporation Piezoelectric actuator, piezoelectric motor, robot, and electronic component conveyance apparatus

Also Published As

Publication number Publication date
JPWO2012063823A1 (ja) 2014-05-12
JP5873802B2 (ja) 2016-03-01
US20130230196A1 (en) 2013-09-05

Similar Documents

Publication Publication Date Title
JP5873802B2 (ja) 振動波モータ及び同モータを駆動源とする発音装置
US6926595B2 (en) Oscillatory drive
WO2004107554A2 (en) Piezoelectric motor and method of exciting an ultrasonic traveling wave to drive the motor
WO2001071899A2 (en) Vibratory motor and method of making and using same
CN107134946B (zh) 一种具有曲面定子齿的超低转速行波超声电机
KR20100089334A (ko) 압전 초음파 모터 및 이의 제조방법
GB2349738A (en) Rotary ultrasonic motors
CN108282106B (zh) 偏心旋转的压电陶瓷电机
CN110639808A (zh) 一种可实现振动筛双轨迹运动的调节偏心块
CN103516253A (zh) 一种压电悬臂梁式超声波电机
CN102158124B (zh) 振动波马达、透镜镜筒及相机
CN115566930B (zh) 一种能够输出连续角位移的大行程压电执行器
CN207559879U (zh) 外圈输出的中空式超声电机
CN106100438A (zh) 动态永磁场驱动式超磁致伸缩致动器
CN1653679A (zh) 压电电机和用于驱动该压电电机的方法
CN107947630A (zh) 外圈输出的中空式超声电机
JP2016513022A (ja) 振動システム
RU2449874C1 (ru) Устройство для плоского виброшлифования
CN203596763U (zh) 一种纵-弯-扭转复合型旋转式超声波电机压电振子
JP4924726B2 (ja) 振動波モータ、レンズ鏡筒及びカメラ
US20210370541A1 (en) Ultrasonic vibration assisted machining device
CN106944734A (zh) 补偿式电极轮座
US20200381612A1 (en) Non-contact force type micro-rotating mechanism and preparation method thereof
JP4491888B2 (ja) 振動アクチュエータ
JP3016481B1 (ja) 往復運動型工作機械

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11840199

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012542932

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13884522

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11840199

Country of ref document: EP

Kind code of ref document: A1