WO2012063378A1 - Semiconductor integrated circuit - Google Patents

Semiconductor integrated circuit Download PDF

Info

Publication number
WO2012063378A1
WO2012063378A1 PCT/JP2011/002683 JP2011002683W WO2012063378A1 WO 2012063378 A1 WO2012063378 A1 WO 2012063378A1 JP 2011002683 W JP2011002683 W JP 2011002683W WO 2012063378 A1 WO2012063378 A1 WO 2012063378A1
Authority
WO
WIPO (PCT)
Prior art keywords
input
output
output terminal
type well
semiconductor integrated
Prior art date
Application number
PCT/JP2011/002683
Other languages
French (fr)
Japanese (ja)
Inventor
荒井勝也
甲上歳浩
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2012063378A1 publication Critical patent/WO2012063378A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • H01L27/0259Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using bipolar transistors as protective elements
    • H01L27/0262Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using bipolar transistors as protective elements including a PNP transistor and a NPN transistor, wherein each of said transistors has its base coupled to the collector of the other transistor, e.g. silicon controlled rectifier [SCR] devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/74Thyristor-type devices, e.g. having four-zone regenerative action
    • H01L29/7436Lateral thyristors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/0817Thyristors only

Definitions

  • the present disclosure relates to a semiconductor integrated circuit, in particular, a semiconductor integrated circuit including an electrostatic discharge (ESD) protection element.
  • ESD electrostatic discharge
  • the resistance to surge of the semiconductor integrated circuit is the breakdown voltage of the weakest combination when a surge is applied between all terminals. Therefore, when it is difficult to predict the surge discharge path of the semiconductor integrated circuit, it is necessary to apply a surge to all terminal combinations of the semiconductor integrated circuit and test the resistance to the surge.
  • This test method is generally called a pin-to-pin test or a pin combination test (hereinafter referred to as “pin combination test”).
  • the distance between adjacent terminals is reduced due to process miniaturization or narrow pad (PAD) pitch (multiple pins). For this reason, the tolerance with respect to the surge of the parasitic element which exists between adjacent terminals is falling. As a result, the resistance to surge of the semiconductor integrated circuit tends to be determined by the resistance to surge between adjacent terminals.
  • PAD narrow pad
  • the conventional semiconductor integrated circuit includes an input / output cell 100 and an input / output cell 101, and a power line 110 and a ground line 111 are arranged so as to straddle the input / output cells 100 and 101. ing.
  • the input / output cell 100 includes an input / output terminal 102, an NMOS transistor 103, a PMOS transistor 104, and an input / output circuit 105.
  • the input / output cell 101 includes an input / output terminal 106, an NMOS transistor 107, a PMOS transistor 108, and an input / output circuit 109.
  • sources 122 and 124 made of a P + diffusion layer and a drain 123 made of a P + diffusion layer constituting the PMOS transistor 104 are provided in an N-type well 150 provided on a semiconductor substrate (not shown). Is provided. Further, the gate 131 constituting the PMOS transistor 104 is provided on the N-type well 150 so that the source 122 and the drain 123 are located on the lower side, and the PMOS transistor so that the drain 123 and the source 124 are located on the lower side. 104 is provided on the N-type well 150.
  • sources 127 and 129 made of a P + diffusion layer and a drain 128 made of a P + diffusion layer constituting the PMOS transistor 108 are provided. Further, the gate 133 constituting the PMOS transistor 108 is provided on the N-type well 150 so that the source 127 and the drain 128 are located on the lower side, and the PMOS transistor so that the drain 128 and the source 129 are located on the lower side. A gate 134 constituting 108 is provided on the N-type well 150.
  • substrate contacts 121, 125, 126 and 130 made of N + diffusion layers are provided in the N-type well 150, and the power supply line 110 includes substrate contacts 121, 125, 126 and 130, gates 131 to 134, Also connected to the drains 122, 124, 127 and 129.
  • the drain 123 is connected to the input / output terminal 102, and the drain 128 is connected to the input / output circuit 105.
  • the parasitic element PNP bipolar is connected between the input / output terminal 102 and the input / output circuit 105 and the base is connected to the power supply line 110 as equivalently shown in the N-type well 150 in FIG. Transistor 112 is present.
  • sources 136 and 138 made of an N + diffusion layer constituting the NMOS transistor 103 and a drain made of a P + diffusion layer. 137 is provided in a P-type well 151 provided on a semiconductor substrate (not shown). Further, the gate 145 constituting the NMOS transistor 103 is provided on the N-type well 151 so that the source 136 and the drain 137 are located on the lower side, and the NMOS transistor is arranged so that the drain 137 and the source 138 are located on the lower side. 103 is provided on the P-type well 151.
  • sources 141 and 143 made of an N + diffusion layer and a drain 142 made of an N + diffusion layer constituting the NMOS transistor 107 are provided in a P-type well 151 provided on a semiconductor substrate (not shown). Further, the gate 147 constituting the NMOS transistor 107 is provided on the P-type well 151 so that the source 141 and the drain 142 are located on the lower side, and the NMOS transistor is arranged such that the drain 142 and the drain 143 are located on the lower side. A gate 148 constituting 107 is provided on the P-type well 151.
  • substrate contacts 135, 139, 140 and 144 made of P + diffusion layers are provided in the P-type well 151.
  • the power supply line 111 includes substrate contacts 135, 139, 140 and 144, gates 145 to 148, And connected to drains 136, 138, 141 and 144.
  • the drain 137 is connected to the input / output terminal 102, and the drain 142 is connected to the input / output circuit 105.
  • a parasitic element NPN bipolar device connected between the input / output terminal 102 and the input / output circuit 105 and having the base connected to the ground line 111 as equivalently shown in the P-type well 151 in FIG. A transistor 113 is present.
  • the parasitic element exists between adjacent input / output cells, which may cause the following problems. That is, when the input / output terminal 102 of one input / output cell 100 is grounded and a surge is applied to the input / output terminal 106 of the other input / output cell 101, a parasitic element (parasitic) existing between adjacent input / output cells is detected. Since a surge current flows through the element PNP transistor 112 and the parasitic element NPN transistor 113), these parasitic elements may be destroyed.
  • an object of the present invention is to provide a semiconductor integrated circuit having a configuration excellent in surge resistance without increasing the area of an ESD protection element of an input / output cell.
  • a semiconductor integrated circuit includes a power source line and a ground line, a first input / output terminal, and a drain connected to the first input / output terminal.
  • a first NMOS transistor connected to the ground line, a drain connected to the first input / output terminal, a source and gate connected to the power supply line, a first PMOS transistor, and a first input / output terminal;
  • a first input / output cell having a first input / output circuit connected to the drain of the first NMOS transistor and the drain of the first PMOS transistor; a second input / output terminal;
  • a second NMOS transistor connected to a terminal, a source and a gate connected to a ground line, and a drain connected to a second input / output terminal;
  • a second PMOS transistor having a source and a gate connected to the power supply line, and a second input / output terminal connected to the second input / output terminal, the drain of the second NMOS transistor, and the drain of the second
  • a second input / output cell having a circuit wherein the first PMOS transistor in the first input / output cell and the second NMOS transistor in the second input / output cell are arranged adjacent to each other,
  • the first input / output cell and the second input / output cell are arranged so that the first NMOS transistor in the first input / output cell and the second PMOS transistor in the second input / output cell are adjacent to each other.
  • Input / output cells are arranged adjacent to each other.
  • the anode is connected to the first input / output terminal and the cathode is the second input / output between the first input / output cell and the second input / output cell.
  • a first thyristor connected to the terminal is configured, and a second thyristor is configured with the cathode connected to the first input / output terminal and the anode connected to the second input / output terminal. It is preferable.
  • a semiconductor integrated circuit includes a power line and a ground line, a first input / output terminal, a cathode connected to the first input / output terminal, and an anode connected to the ground line.
  • the input / output cell, the second input / output terminal, the cathode is connected to the second input / output terminal, and the anode is connected to the ground line.
  • Second P-type diffusion layer-N-type well diode connected to input / output terminal and cathode connected to power supply line, and second input / output terminal, second N-type diffusion layer-P-type well
  • a second input / output cell having a second input / output circuit connected to the cathode of the diode and the anode of the second P-type diffusion layer-N-type well diode.
  • 1 P-type diffusion layer-N-type well diode and the second N-type diffusion layer-P-type well diode in the second input / output cell are arranged adjacent to each other, and in the first input / output cell
  • the first input / output is so arranged that the first N-type diffusion layer-P-type well diode and the second P-type diffusion layer-N-type well diode in the second input / output cell are arranged adjacent to each other.
  • the cell and the second input / output cell It is located adjacent to.
  • the anode is connected to the first input / output terminal and the cathode is the second input / output between the first input / output cell and the second input / output cell.
  • a first thyristor connected to the terminal is configured, and a second thyristor is configured with the cathode connected to the first input / output terminal and the anode connected to the second input / output terminal. It is preferable.
  • the semiconductor integrated circuit according to the embodiment of the present invention has a configuration in which a thyristor exists between adjacent first and second input / output cells, the semiconductor integrated circuit is excellent against surge without increasing the area of the ESD protection element. Tolerance is realized.
  • FIG. 1 is a plan view showing the configuration of the semiconductor integrated circuit according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing the configuration of the semiconductor integrated circuit according to the first embodiment of the present invention. Specifically, it shows a cross-sectional configuration along the line II-II in FIG. 1 and is an equivalent thyristor. , A connection relationship with a power line, a ground line, and an input / output terminal is schematically shown.
  • FIG. 3 is a cross-sectional view showing the configuration of the semiconductor integrated circuit according to the first embodiment of the present invention. Specifically, the cross-sectional configuration along the line III-III in FIG. , A connection relationship with a power line, a ground line, and an input / output terminal is schematically shown.
  • FIG. 4 is a plan view showing a configuration of a semiconductor integrated circuit according to the second embodiment of the present invention.
  • FIG. 5 is a cross-sectional view showing the configuration of the semiconductor integrated circuit according to the second embodiment of the present invention. Specifically, the cross-sectional configuration of the VV line in FIG. The connection relation with a line, a ground line, and an input / output terminal is shown typically.
  • FIG. 6 is a cross-sectional view showing the configuration of the semiconductor integrated circuit according to the second embodiment of the present invention. Specifically, it shows the cross-sectional configuration of the VI-VI line of FIG. 4 and is an equivalent thyristor. , A connection relationship with a power line, a ground line, and an input / output terminal is schematically shown.
  • FIG. 5 is a cross-sectional view showing the configuration of the semiconductor integrated circuit according to the second embodiment of the present invention. Specifically, the cross-sectional configuration of the VV line in FIG. The connection relation with a line, a ground line, and an input
  • FIG. 7 is a plan view showing a configuration of a conventional semiconductor integrated circuit.
  • FIG. 8 is a cross-sectional view showing a configuration of a conventional semiconductor integrated circuit. Specifically, it shows a cross-sectional configuration of line VIII-VIII in FIG. 7, and an equivalent transistor, power supply line, input / output terminal, And a connection relationship with the input / output circuit.
  • FIG. 9 is a cross-sectional view showing the configuration of a conventional semiconductor integrated circuit. Specifically, the cross-sectional configuration of the IX-IX line in FIG. 7 is shown, and an equivalent transistor, ground line, input / output terminal, And a connection relationship with the input / output circuit.
  • a semiconductor integrated circuit includes an input / output cell 1 and an input / output cell 2 arranged adjacent to each other so as to straddle the input / output cells 1 and 2.
  • the power supply line 11 and the ground line 12 are arranged.
  • the input / output cell 1 includes an input / output terminal 3, an NMOS transistor 4, a PMOS transistor 5, and an input / output circuit 6.
  • the input / output cell 2 includes an input / output terminal 7, an NMOS transistor 8, a PMOS transistor 9, and an input / output circuit 10.
  • sources 22 and 24 made of a P + diffusion layer and a drain 23 made of a P + diffusion layer constituting the PMOS transistor 5 are provided. Is provided. Further, the gate 31 constituting the PMOS transistor 5 is provided on the N-type well 63 so that the source 22 and the drain 23 are located on the lower side, and the PMOS transistor so that the drain 23 and the source 24 are located on the lower side. 5 is provided on the N-type well 63. Further, substrate contacts 21 and 25 made of N + diffusion layers are provided in the N-type well 63, and the power supply line 11 is connected to the substrate contacts 21 and 25, gates 31 and 32, and sources 22 and 24. ing. The drain 23 is connected to the input / output terminal 3. As described above, the PMOS transistor 5 having the gates 31 and 32 connected to the power supply line 11, the sources 22 and 24 connected to the power supply line 11, and the drain 23 connected to the input / output terminal 3 is provided.
  • a P-type well 64 provided on a semiconductor substrate (not shown) and adjacent to the N-type well 63, sources 27 and 29 made of an N + diffusion layer and a drain 28 made of an N + diffusion layer constituting the NMOS transistor 9 are provided. It has been. Further, the gate 33 constituting the NMOS transistor 9 is provided on the P-type well 64 so that the source 27 and the drain 28 are located below the side, and the NMOS transistor 9 is located so that the drain 28 and the source 29 are located below the side. 9 is provided on the P-type well 64.
  • substrate contacts 26 and 30 made of a P + diffusion layer are provided in the P-type well 64, and the ground line 12 is connected to the substrate contacts 26 and 30, gates 33 and 34, and sources 27 and 29. ing.
  • the drain 28 is connected to the input / output terminal 7.
  • the NMOS transistor 9 having the gates 33 and 34 connected to the ground line 12, the sources 27 and 29 connected to the ground line 12, and the drain 28 connected to the input / output terminal 7 is provided.
  • the input / output cell 1 and the input / output cell 1 are arranged so that the PMOS transistor 5 in the input / output cell 1 and the NMOS transistor 9 in the input / output cell 2 are arranged adjacent to each other.
  • the cells 2 are arranged adjacent to each other.
  • the anode is connected between the input / output cells 1 and 2 as equivalently shown in FIG. 3 and a thyristor (also referred to as a silicon controlled rectifier (SCR)) 13 having a cathode connected to the input / output terminal 7 is present.
  • a thyristor also referred to as a silicon controlled rectifier (SCR)
  • sources 36 and 38 made of N + diffusion layers constituting the NMOS transistor 4 and a drain made of N + diffusion layers. 37 is provided.
  • the gate 45 constituting the NMOS transistor 4 is provided on the P-type well 65 so that the source 36 and the drain 37 are located below the side, and the NMOS transistor 4 is located such that the drain 37 and the source 38 are located below the side. 4 is provided on the P-type well 65.
  • substrate contacts 35 and 39 made of a P + diffusion layer are provided in the P-type well 65, and the ground line 12 is connected to the substrate contacts 35 and 39, the gates 45 and 46, and the sources 36 and 38. ing.
  • the drain 37 is connected to the input / output terminal 3.
  • the NMOS transistor 4 having the gates 45 and 46 connected to the ground line 12, the sources 36 and 38 connected to the ground line 12, and the drain 37 connected to the input / output terminal 3 is provided.
  • an N-type well 66 provided on a semiconductor substrate (not shown) and adjacent to the P-type well 65, sources 41 and 43 made of a P + diffusion layer and a drain 42 made of a P + diffusion layer constituting the PMOS transistor 8 are provided. It has been. Further, the gate 47 constituting the PMOS transistor 8 is provided on the N-type well 66 so that the source 41 and the drain 42 are located on the lower side, and the PMOS transistor so that the drain 42 and the source 43 are located on the lower side. 8 is provided on the N-type well 66.
  • substrate contacts 40 and 44 made of N + diffusion layers are provided in the N-type well 66, and the power supply line 11 is connected to the substrate contacts 40 and 44, gates 47 and 48, and sources 41 and 43. ing.
  • the drain 42 is connected to the input / output terminal 7.
  • the PMOS transistor 8 is provided in which the gates 47 and 48 are connected to the power supply line 11, the sources 41 and 43 are connected to the power supply line 11, and the drain 42 is connected to the input / output terminal 7.
  • the input / output cell 1 and the input / output cell 1 are arranged so that the NMOS transistor 4 in the input / output cell 1 and the PMOS transistor 8 in the input / output cell 2 are arranged adjacent to each other.
  • the cells 2 are arranged adjacent to each other.
  • the cathode is connected between the input / output cells 1 and 2 as equivalently shown in FIG. 3 and a thyristor 14 having an anode connected to the input / output terminal 7 is present.
  • the input / output circuit 6 is connected to the input / output terminal 3, the drain 37 of the NMOS transistor 4, and the drain 23 of the PMOS transistor 5.
  • the input / output circuit 10 is connected to the input / output terminal 7, the drain 42 of the PMOS transistor 8, and the drain 28 of the NMOS transistor 9.
  • HBM human body model
  • MM machine model
  • the junction between the P-type well 65 and the N-type well 66 breaks down, and the thyristors 13 and 14 are in a positive feedback state. Thus, a latch-up operation is induced.
  • the discharge capability against surge of the thyristors 13 and 14 existing between the adjacent input / output cells 1 and 2 in the semiconductor integrated circuit according to the present embodiment is the same as that of the adjacent input / output cell in the semiconductor integrated circuit according to the related art.
  • the parasitic element bipolar transistors 112 and 113 existing between 100 and 101 are about 5 to 10 times higher.
  • the semiconductor integrated circuit according to the present embodiment it is possible to improve the resistance against the surge between the adjacent input / output cells 1 and 2 without increasing the area of the ESD protection circuit. Therefore, in recent semiconductor integrated circuit process miniaturization (such as shallow junction of diffusion layer) or narrow pad pitch (protection element area reduction), the adjacent input / output cells in the conventional semiconductor integrated circuit described above Compared with the parasitic element bipolar transistors 112 and 113 existing in the semiconductor integrated circuit, the semiconductor integrated circuit according to the present embodiment is very useful.
  • a semiconductor integrated circuit includes an input / output cell 1a and an input / output cell 2a arranged adjacent to each other, and straddles the input / output cells 1a and 2a.
  • the power supply line 11 and the ground line 12 are arranged.
  • the input / output cell 1a includes an input / output terminal 3, an N type diffusion layer-P type well diode 51 (hereinafter referred to as "N + PW diode 51”), a P type diffusion layer-N type well diode 52 (hereinafter referred to as “P + NW diode 52"). And an input / output circuit 6.
  • the input / output cell 2 includes an input / output terminal 7, a P-type diffusion layer-N-type well diode 53 (hereinafter referred to as "P + NW diode 53”), an N-type diffusion layer-P-type well diode 54 (hereinafter referred to as "N + PW diode”). 54 ”) and the input / output circuit 10.
  • a cathode 55 made of an N + diffusion layer and an anode 56 made of a P + diffusion layer constituting the P + NW diode 52 are provided in an N-type well 63 provided on a semiconductor substrate (not shown). ing. Further, substrate contacts 21 and 25 made of N + diffusion layers are provided in the N-type well 63, and the power supply line 11 is connected to the substrate contacts 21 and 25 and the cathode 55. The anode 56 is connected to the input / output terminal 3. As described above, the P + NW diode 52 having the cathode 55 connected to the power supply line 11 and the anode 56 connected to the input / output terminal 3 is provided.
  • a cathode 57 made of an N + diffusion layer and an anode 58 made of a P + diffusion layer constituting an N + PW diode 54 are provided in a P-type well 64 provided on a semiconductor substrate (not shown) and adjacent to the N-type well 63. Yes. Further, substrate contacts 26 and 30 made of P + diffusion layers are provided in the P-type well 64, and the ground line 12 is connected to the substrate contacts 26 and 30 and the anode 58. The cathode 57 is connected to the input / output terminal 7.
  • the N + PW diode 54 having the anode 58 connected to the ground line 12 and the cathode 57 connected to the input / output terminal 7 is provided.
  • the input / output cell 1a and the input / output cell 1a are arranged so that the P + NW diode 52 in the input / output cell 1a and the N + PW diode 54 in the input / output cell 2a are arranged adjacent to each other.
  • the cells 2a are arranged adjacent to each other.
  • the cathode is connected between the input / output cells 1a and 2a as equivalently shown in FIG. 3 and a thyristor 13a having an anode connected to the input / output terminal 7 is present.
  • an anode 59 composed of a P + diffusion layer and a cathode 60 composed of an N + diffusion layer constituting the N + PW diode 51 are provided. Is provided. Further, substrate contacts 35 and 39 made of P + diffusion layers are provided in the P-type well 65, and the ground line 12 is connected to the substrate contacts 35 and 39 and the anode 59. The cathode 60 is connected to the input / output terminal 3. Thus, the N + PW diode 51 having the anode 59 connected to the ground line 12 and the cathode 60 connected to the input / output terminal 3 is provided.
  • an anode 61 made of a P + diffusion layer and a cathode 62 made of an N + diffusion layer constituting the P + NW diode 53 are provided in an N type well 66 adjacent to the P type well 65 provided on a semiconductor substrate (not shown). Yes. Further, substrate contacts 40 and 44 made of an N + diffusion layer are provided in the N-type well 66, and the power supply line 11 is connected to the substrate contacts 40 and 44 and the cathode 62. The anode 61 is connected to the input / output terminal 7. As described above, the P + NW diode 53 having the cathode 62 connected to the power supply line 11 and the anode 61 connected to the input / output terminal 7 is provided.
  • the input / output cell 1a and the input / output cell 1a are arranged so that the N + PW diode 51 in the input / output cell 1a and the P + NW diode 53 in the input / output cell 2a are arranged adjacent to each other.
  • the cells 2a are arranged adjacent to each other.
  • the cathode is connected between the input / output cells 1a and 2a as equivalently shown in FIG. 3 and a thyristor 14a having an anode connected to the input / output terminal 7 is present.
  • the input / output circuit 6 is connected to the input / output terminal 3, the anode 56 of the P + NW diode 52, and the cathode 60 of the N + PW diode 51.
  • the input / output circuit 10 is connected to the input / output terminal 7, the anode 61 of the P + NW diode 53, and the cathode 57 of the N + PW diode 54.
  • the junction between the P-type well 65 and the N-type well 66 breaks down, and the thyristors 13a and 14a are in a positive feedback state.
  • a latch-up operation is induced.
  • the discharge capability against the surge of the thyristors 13a and 14a existing between the adjacent input / output cells 1a and 2a in the semiconductor integrated circuit according to the present embodiment is equal to the adjacent input / output cell in the semiconductor integrated circuit according to the related art.
  • the parasitic element bipolar transistors 112 and 113 existing between 100 and 101 are about 5 to 10 times higher.
  • the configuration of the semiconductor integrated circuit according to the present embodiment it is possible to improve the resistance against a surge between the adjacent input / output cells 1a and 2a without increasing the area of the ESD protection circuit. Therefore, in recent semiconductor integrated circuit process miniaturization (such as shallow junction of diffusion layer) or narrow pad pitch (protection element area reduction), the adjacent input / output cells in the conventional semiconductor integrated circuit described above
  • the semiconductor integrated circuit according to the present embodiment is very useful as compared with the parasitic element bipolar transistors 112 and 113 existing in FIG.
  • the diode type protection circuit is used in the input / output cell 1a and the input / output cell 2a, the input / output terminal 3 and the input / output terminal 3 and 7 capacity can be reduced. Therefore, the input / output cell 1a and the input / output cell 2a in this embodiment can be used as an input / output cell for a high-speed interface such as a high-resolution multimedia interface (HDMI) or a universal serial bus (USB). is there.
  • HDMI high-resolution multimedia interface
  • USB universal serial bus
  • the semiconductor integrated circuit according to various embodiments of the present invention can realize a semiconductor integrated circuit excellent in surge resistance without increasing the area of the ESD protection circuit. Therefore, it is particularly useful for a semiconductor integrated circuit provided with an ESD protection circuit.

Abstract

Provided is a semiconductor integrated circuit which has achieved excellent resistance against surge without increasing the area of an ESD protection circuit. The semiconductor integrated circuit has a configuration wherein a thyristor (13), in which an anode is connected to an input/output terminal (3) and a cathode is connected to an input/output terminal (7), and a thyristor (14), in which a cathode is connected to the input/output terminal (3) and an anode is connected to the input/output terminal (7), are arranged between an input/output cell (1) and an input/output cell (2) that are disposed adjacent to each other.

Description

半導体集積回路Semiconductor integrated circuit
 本開示は、半導体集積回路、特に、静電放電(ESD)保護素子を備えた半導体集積回路に関する。 The present disclosure relates to a semiconductor integrated circuit, in particular, a semiconductor integrated circuit including an electrostatic discharge (ESD) protection element.
 近年、半導体集積回路は、素子の微細化及び高密度化と並行して高集積化が進んでいることにより、静電放電(以下、「サージ」という)によってもたらされるダメージに対して弱くなっている。例えば、外部接続用パッド(外部パッド)から侵入するサージにより、入力回路、出力回路、入出力回路及び内部回路などの素子が破壊され、素子の性能が低下する可能性が高くなっている。このため、半導体集積回路には、外部接続用パッドと、入力回路、出力回路、入出力回路又は内部回路との間に、サージから保護するための静電放電保護素子が設けられている(例えば特許文献1を参照)。 In recent years, semiconductor integrated circuits have become weak against damage caused by electrostatic discharge (hereinafter referred to as “surge”) due to progress in high integration in parallel with miniaturization and high density of elements. Yes. For example, a surge entering from an external connection pad (external pad) destroys elements such as an input circuit, an output circuit, an input / output circuit, and an internal circuit, and there is a high possibility that the performance of the element is deteriorated. For this reason, the semiconductor integrated circuit is provided with an electrostatic discharge protection element for protecting from a surge between the external connection pad and the input circuit, output circuit, input / output circuit or internal circuit (for example, (See Patent Document 1).
 また、半導体集積回路のサージに対する耐性は、全ての端子間にサージを印加した場合の最も弱い組合せの破壊電圧である。従って、半導体集積回路のサージ放電経路が予測し難い場合、半導体集積回路の全ての端子の組合せに対してサージを印加し、サージに対する耐性を試験する必要がある。この試験方法は、一般的に、Pin-to-Pin試験又はピン・コンビネーション試験と呼ばれている(以下、「ピン・コンビネーション試験」という)。 Also, the resistance to surge of the semiconductor integrated circuit is the breakdown voltage of the weakest combination when a surge is applied between all terminals. Therefore, when it is difficult to predict the surge discharge path of the semiconductor integrated circuit, it is necessary to apply a surge to all terminal combinations of the semiconductor integrated circuit and test the resistance to the surge. This test method is generally called a pin-to-pin test or a pin combination test (hereinafter referred to as “pin combination test”).
 ピン・コンビネーション試験では、非電源端子を接地基準としてその他の端子にサージを印加し、さらに、接地基準端子を順次変えながらサージ試験を実施する。このようにして、半導体集積回路の端子間に存在する寄生素子を介したサージ放電経路のサージに対する耐性を試験している。 In the pin combination test, surge is applied to the other terminals with the non-power supply terminal as the ground reference, and the ground reference terminal is changed sequentially. In this way, the resistance to surge of the surge discharge path through the parasitic element existing between the terminals of the semiconductor integrated circuit is tested.
 さらに、近年の半導体集積回路では、プロセスの微細化又は狭パッド(PAD)ピッチ化(多ピン化)により、隣接する端子間の距離が縮小している。このため、隣接する端子間に存在する寄生素子のサージに対する耐性が低下している。その結果、半導体集積回路のサージに対する耐性は、この隣接する端子間のサージに対する耐性で決定される傾向にある。 Furthermore, in recent semiconductor integrated circuits, the distance between adjacent terminals is reduced due to process miniaturization or narrow pad (PAD) pitch (multiple pins). For this reason, the tolerance with respect to the surge of the parasitic element which exists between adjacent terminals is falling. As a result, the resistance to surge of the semiconductor integrated circuit tends to be determined by the resistance to surge between adjacent terminals.
 以下に、図7~図9を参照しながら、従来の半導体集積回路について説明する。 Hereinafter, a conventional semiconductor integrated circuit will be described with reference to FIGS.
 図7に示すように、従来の半導体集積回路は、入出力セル100と入出力セル101とを含んでおり、入出力セル100及び101を跨ぐようにして電源ライン110及びグランドライン111が配置されている。入出力セル100は、入出力端子102、NMOSトランジスタ103、PMOSトランジスタ104及び入出力回路105によって構成されている。また、入出力セル101は、入出力端子106、NMOSトランジスタ107、PMOSトランジスタ108及び入出力回路109によって構成されている。 As shown in FIG. 7, the conventional semiconductor integrated circuit includes an input / output cell 100 and an input / output cell 101, and a power line 110 and a ground line 111 are arranged so as to straddle the input / output cells 100 and 101. ing. The input / output cell 100 includes an input / output terminal 102, an NMOS transistor 103, a PMOS transistor 104, and an input / output circuit 105. The input / output cell 101 includes an input / output terminal 106, an NMOS transistor 107, a PMOS transistor 108, and an input / output circuit 109.
 図7及び図8に示すように、図示しない半導体基板に設けられたN型ウェル150内には、PMOSトランジスタ104を構成するP+拡散層からなるソース122及び124とP+拡散層からなるドレイン123が設けられている。また、側方下にソース122及びドレイン123が位置するようにPMOSトランジスタ104を構成するゲート131がN型ウェル150上に設けられ、側方下にドレイン123及びソース124が位置するようにPMOSトランジスタ104を構成するゲート132がN型ウェル150上に設けられている。 As shown in FIGS. 7 and 8, in an N-type well 150 provided on a semiconductor substrate (not shown), sources 122 and 124 made of a P + diffusion layer and a drain 123 made of a P + diffusion layer constituting the PMOS transistor 104 are provided. Is provided. Further, the gate 131 constituting the PMOS transistor 104 is provided on the N-type well 150 so that the source 122 and the drain 123 are located on the lower side, and the PMOS transistor so that the drain 123 and the source 124 are located on the lower side. 104 is provided on the N-type well 150.
 同様に、図示しない半導体基板に設けられたN型ウェル150内には、PMOSトランジスタ108を構成するP+拡散層からなるソース127及び129とP+拡散層からなるドレイン128が設けられている。また、側方下にソース127及びドレイン128が位置するようにPMOSトランジスタ108を構成するゲート133がN型ウェル150上に設けられ、側方下にドレイン128及びソース129が位置するようにPMOSトランジスタ108を構成するゲート134がN型ウェル150上に設けられている。 Similarly, in an N-type well 150 provided on a semiconductor substrate (not shown), sources 127 and 129 made of a P + diffusion layer and a drain 128 made of a P + diffusion layer constituting the PMOS transistor 108 are provided. Further, the gate 133 constituting the PMOS transistor 108 is provided on the N-type well 150 so that the source 127 and the drain 128 are located on the lower side, and the PMOS transistor so that the drain 128 and the source 129 are located on the lower side. A gate 134 constituting 108 is provided on the N-type well 150.
 さらに、N型ウェル150内には、N+拡散層からなる基板コンタクト121、125、126及び130が設けられており、電源ライン110は、基板コンタクト121、125、126及び130、ゲート131~134、並びにドレイン122、124、127及び129に接続されている。また、ドレイン123は入出力端子102に接続されており、ドレイン128は入出力回路105に接続されている。 Further, substrate contacts 121, 125, 126 and 130 made of N + diffusion layers are provided in the N-type well 150, and the power supply line 110 includes substrate contacts 121, 125, 126 and 130, gates 131 to 134, Also connected to the drains 122, 124, 127 and 129. The drain 123 is connected to the input / output terminal 102, and the drain 128 is connected to the input / output circuit 105.
 以上の構成により、図8におけるN型ウェル150内に等価的に示すように、入出力端子102と入出力回路105との間に接続され、ベースが電源ライン110に接続された寄生素子PNPバイポーラトランジスタ112が存在している。 With the above configuration, the parasitic element PNP bipolar is connected between the input / output terminal 102 and the input / output circuit 105 and the base is connected to the power supply line 110 as equivalently shown in the N-type well 150 in FIG. Transistor 112 is present.
 また、図7及び図9に示すように、図示しない半導体基板に設けられたP型ウェル151内には、NMOSトランジスタ103を構成するN+拡散層からなるソース136及び138とP+拡散層からなるドレイン137が設けられている。また、側方下にソース136及びドレイン137が位置するようにNMOSトランジスタ103を構成するゲート145がN型ウェル151上に設けられ、側方下にドレイン137及びソース138が位置するようにNMOSトランジスタ103を構成するゲート146がP型ウェル151上に設けられている。 Further, as shown in FIGS. 7 and 9, in a P-type well 151 provided on a semiconductor substrate (not shown), sources 136 and 138 made of an N + diffusion layer constituting the NMOS transistor 103 and a drain made of a P + diffusion layer. 137 is provided. Further, the gate 145 constituting the NMOS transistor 103 is provided on the N-type well 151 so that the source 136 and the drain 137 are located on the lower side, and the NMOS transistor is arranged so that the drain 137 and the source 138 are located on the lower side. 103 is provided on the P-type well 151.
 同様に、図示しない半導体基板に設けられたP型ウェル151内には、NMOSトランジスタ107を構成するN+拡散層からなるソース141及び143とN+拡散層からなるドレイン142が設けられている。また、側方下にソース141及びドレイン142が位置するようにNMOSトランジスタ107を構成するゲート147がP型ウェル151上に設けられ、側方下にドレイン142及びドレイン143が位置するようにNMOSトランジスタ107を構成するゲート148がP型ウェル151上に設けられている。 Similarly, in a P-type well 151 provided on a semiconductor substrate (not shown), sources 141 and 143 made of an N + diffusion layer and a drain 142 made of an N + diffusion layer constituting the NMOS transistor 107 are provided. Further, the gate 147 constituting the NMOS transistor 107 is provided on the P-type well 151 so that the source 141 and the drain 142 are located on the lower side, and the NMOS transistor is arranged such that the drain 142 and the drain 143 are located on the lower side. A gate 148 constituting 107 is provided on the P-type well 151.
 さらに、P型ウェル151内には、P+拡散層からなる基板コンタクト135、139、140及び144が設けられており、電源ライン111は、基板コンタクト135、139、140及び144、ゲート145~148、並びにドレイン136、138、141及び144に接続されている。また、ドレイン137は入出力端子102に接続されており、ドレイン142は入出力回路105に接続されている。 Further, substrate contacts 135, 139, 140 and 144 made of P + diffusion layers are provided in the P-type well 151. The power supply line 111 includes substrate contacts 135, 139, 140 and 144, gates 145 to 148, And connected to drains 136, 138, 141 and 144. The drain 137 is connected to the input / output terminal 102, and the drain 142 is connected to the input / output circuit 105.
 以上の構成により、図9におけるP型ウェル151内に等価的に示すように、入出力端子102と入出力回路105との間に接続され、ベースがグランドライン111に接続された寄生素子NPNバイポーラトランジスタ113が存在している。 With the above configuration, a parasitic element NPN bipolar device connected between the input / output terminal 102 and the input / output circuit 105 and having the base connected to the ground line 111 as equivalently shown in the P-type well 151 in FIG. A transistor 113 is present.
特開2007-19413号公報JP 2007-19413 A
 しかしながら、上記従来の半導体集積回路においては、隣接する入出力セル間に寄生素子が存在しているために、以下の問題を生じる可能性がある。すなわち、一方の入出力セル100の入出力端子102を接地して他方の入出力セル101の入出力端子106にサージを印加した場合、隣接する入出力セル間に存在している寄生素子(寄生素子PNPトランジスタ112及び寄生素子NPNトランジスタ113)を介してサージ電流が流れるため、これらの寄生素子が破壊されるおそれがある。 However, in the above-described conventional semiconductor integrated circuit, the parasitic element exists between adjacent input / output cells, which may cause the following problems. That is, when the input / output terminal 102 of one input / output cell 100 is grounded and a surge is applied to the input / output terminal 106 of the other input / output cell 101, a parasitic element (parasitic) existing between adjacent input / output cells is detected. Since a surge current flows through the element PNP transistor 112 and the parasitic element NPN transistor 113), these parasitic elements may be destroyed.
 また、近年、半導体集積回路は、プロセスの微細化(拡散層の浅接合化など)又は狭PADピッチ化(保護素子の小面積化)により、寄生素子のサージに対する耐性が弱くなっている。その結果、半導体集積回路のサージに対する耐性が低くなってきている。このような問題に対して、入出力セル間の距離を広げて寄生素子のON電圧とON抵抗とを上昇させること、又は入出力セル内の保護素子のサイズを大きくして寄生素子のサイズを増大させることなどの対策も考えられるが、入出力セルの面積の増大、ひいては半導体集積回路の面積の増大を招いてしまう。 In recent years, semiconductor integrated circuits have become less resistant to parasitic element surges due to process miniaturization (such as shallow junction of diffusion layers) or narrow PAD pitch (protection element area reduction). As a result, the semiconductor integrated circuit is less resistant to surges. To solve this problem, increase the ON voltage and ON resistance of the parasitic element by increasing the distance between the input / output cells, or increase the size of the protection element in the input / output cell to increase the size of the parasitic element. Although measures such as an increase can be considered, an increase in the area of the input / output cells and an increase in the area of the semiconductor integrated circuit will be caused.
 前記に鑑み、本発明の目的は、入出力セルのESD保護素子の面積を増大させることなく、サージに対する耐性に優れた構成を有する半導体集積回路を提供することである。 In view of the above, an object of the present invention is to provide a semiconductor integrated circuit having a configuration excellent in surge resistance without increasing the area of an ESD protection element of an input / output cell.
 上記の課題を解決するために、本発明のある実施形態による半導体集積回路は、電源ライン及びグランドラインと、第1の入出力端子、ドレインが第1の入出力端子に接続され、ソース及びゲートがグランドラインに接続された第1のNMOSトランジスタ、ドレインが第1の入出力端子に接続され、ソース及びゲートが電源ラインに接続された第1のPMOSトランジスタ、並びに、第1の入出力端子、第1のNMOSトランジスタのドレイン、及び第1のPMOSトランジスタのドレインに接続された第1の入出力回路を有する第1の入出力セルと、第2の入出力端子、ドレインが第2の入出力端子に接続され、ソース及びゲートがグランドラインに接続された第2のNMOSトランジスタ、ドレインが第2の入出力端子に接続され、ソース及びゲートが電源ラインに接続された第2のPMOSトランジスタ、並びに、第2の入出力端子、第2のNMOSトランジスタのドレイン及び第2のPMOSトランジスタのドレインに接続された第2の入出力回路を有する第2の入出力セルとを備えており、第1の入出力セルにおける第1のPMOSトランジスタと、第2の入出力セルにおける第2のNMOSトランジスタとが互いに隣接して配置され、且つ、第1の入出力セルにおける第1のNMOSトランジスタと、第2の入出力セルにおける第2のPMOSトランジスタとが互いに隣接して配置されるように、第1の入出力セルと第2の入出力セルとが互いに隣接して配置されている。 In order to solve the above-described problems, a semiconductor integrated circuit according to an embodiment of the present invention includes a power source line and a ground line, a first input / output terminal, and a drain connected to the first input / output terminal. A first NMOS transistor connected to the ground line, a drain connected to the first input / output terminal, a source and gate connected to the power supply line, a first PMOS transistor, and a first input / output terminal; A first input / output cell having a first input / output circuit connected to the drain of the first NMOS transistor and the drain of the first PMOS transistor; a second input / output terminal; A second NMOS transistor connected to a terminal, a source and a gate connected to a ground line, and a drain connected to a second input / output terminal; A second PMOS transistor having a source and a gate connected to the power supply line, and a second input / output terminal connected to the second input / output terminal, the drain of the second NMOS transistor, and the drain of the second PMOS transistor. A second input / output cell having a circuit, wherein the first PMOS transistor in the first input / output cell and the second NMOS transistor in the second input / output cell are arranged adjacent to each other, In addition, the first input / output cell and the second input / output cell are arranged so that the first NMOS transistor in the first input / output cell and the second PMOS transistor in the second input / output cell are adjacent to each other. Input / output cells are arranged adjacent to each other.
 本発明の上記実施形態による半導体集積回路において、第1の入出力セルと第2の入出力セルとの間には、アノードが第1の入出力端子に接続され、カソードが第2の入出力端子に接続された第1のサイリスタが構成されており、且つ、カソードが第1の入出力端子に接続され、アノードが第2の入出力端子に接続された第2のサイリスタが構成されていることが好ましい。 In the semiconductor integrated circuit according to the embodiment of the present invention, the anode is connected to the first input / output terminal and the cathode is the second input / output between the first input / output cell and the second input / output cell. A first thyristor connected to the terminal is configured, and a second thyristor is configured with the cathode connected to the first input / output terminal and the anode connected to the second input / output terminal. It is preferable.
 本発明の他の実施形態による半導体集積回路は、電源ライン及びグランドラインと、第1の入出力端子、カソードが第1の入出力端子に接続され、且つ、アノードがグランドラインに接続された第1のN型拡散層-P型ウェルダイオード、アノードが第1の入出力端子に接続され、且つ、カソードが電源ラインに接続された第1のP型拡散層-N型ウェルダイオード、並びに、第1の入出力端子、第1のN型拡散層-P型ウェルダイオードのカソード及び第1のP型拡散層-N型ウェルダイオードのアノードに接続された第1の入出力回路を有する第1の入出力セルと、第2の入出力端子、カソードが第2の入出力端子に接続され、且つ、アノードがグランドラインに接続された第2のN型拡散層-P型ウェルダイオード、アノードが第2の入出力端子に接続され、且つ、カソードが電源ラインに接続された第2のP型拡散層-N型ウェルダイオード、並びに、第2の入出力端子、第2のN型拡散層-P型ウェルダイオードのカソード及び第2のP型拡散層-N型ウェルダイオードのアノードに接続された第2の入出力回路を有する第2の入出力セルとを備えており、第1の入出力セルにおける第1のP型拡散層-N型ウェルダイオードと、第2の入出力セルにおける第2のN型拡散層-P型ウェルダイオードとが互いに隣接して配置され、且つ、第1の入出力セルにおける第1のN型拡散層-P型ウェルダイオードと、第2の入出力セルにおける第2のP型拡散層-N型ウェルダイオードとが互いに隣接して配置されるように、第1の入出力セル及び第2の入出力セルとが互いに隣接して配置されている。 A semiconductor integrated circuit according to another embodiment of the present invention includes a power line and a ground line, a first input / output terminal, a cathode connected to the first input / output terminal, and an anode connected to the ground line. 1 N-type diffusion layer-P-type well diode, first P-type diffusion layer-N-type well diode having an anode connected to the first input / output terminal and a cathode connected to the power supply line, A first N-type diffusion layer—a first input / output circuit connected to the cathode of the P-type well diode and the first P-type diffusion layer—the anode of the N-type well diode; The input / output cell, the second input / output terminal, the cathode is connected to the second input / output terminal, and the anode is connected to the ground line. 2 Second P-type diffusion layer-N-type well diode connected to input / output terminal and cathode connected to power supply line, and second input / output terminal, second N-type diffusion layer-P-type well And a second input / output cell having a second input / output circuit connected to the cathode of the diode and the anode of the second P-type diffusion layer-N-type well diode. 1 P-type diffusion layer-N-type well diode and the second N-type diffusion layer-P-type well diode in the second input / output cell are arranged adjacent to each other, and in the first input / output cell The first input / output is so arranged that the first N-type diffusion layer-P-type well diode and the second P-type diffusion layer-N-type well diode in the second input / output cell are arranged adjacent to each other. The cell and the second input / output cell It is located adjacent to.
 本発明の上記実施形態による半導体集積回路において、第1の入出力セルと第2の入出力セルとの間には、アノードが第1の入出力端子に接続され、カソードが第2の入出力端子に接続された第1のサイリスタが構成されており、且つ、カソードが第1の入出力端子に接続され、アノードが第2の入出力端子に接続された第2のサイリスタが構成されていることが好ましい。 In the semiconductor integrated circuit according to the embodiment of the present invention, the anode is connected to the first input / output terminal and the cathode is the second input / output between the first input / output cell and the second input / output cell. A first thyristor connected to the terminal is configured, and a second thyristor is configured with the cathode connected to the first input / output terminal and the anode connected to the second input / output terminal. It is preferable.
 本発明の実施形態による半導体集積回路は、隣接する第1及び第2の入出力セル間に、サイリスタが存在する構成を有するため、ESD保護素子の面積を増大させることなく、サージに対して優れた耐性が実現される。 Since the semiconductor integrated circuit according to the embodiment of the present invention has a configuration in which a thyristor exists between adjacent first and second input / output cells, the semiconductor integrated circuit is excellent against surge without increasing the area of the ESD protection element. Tolerance is realized.
図1は、本発明の第1の実施形態に係る半導体集積回路の構成を示す平面図である。FIG. 1 is a plan view showing the configuration of the semiconductor integrated circuit according to the first embodiment of the present invention. 図2は、本発明の第1の実施形態に係る半導体集積回路の構成を示す断面図であって、具体的には、図1のII-II線の断面構成を示す共に、等価的なサイリスタ、電源ライン、グランドライン、及び入出力端子との接続関係を模式的に示している。FIG. 2 is a cross-sectional view showing the configuration of the semiconductor integrated circuit according to the first embodiment of the present invention. Specifically, it shows a cross-sectional configuration along the line II-II in FIG. 1 and is an equivalent thyristor. , A connection relationship with a power line, a ground line, and an input / output terminal is schematically shown. 図3は、本発明の第1の実施形態に係る半導体集積回路の構成を示す断面図であって、具体的には、図1のIII-III線の断面構成を示す共に、等価的なサイリスタ、電源ライン、グランドライン、及び入出力端子との接続関係を模式的に示している。FIG. 3 is a cross-sectional view showing the configuration of the semiconductor integrated circuit according to the first embodiment of the present invention. Specifically, the cross-sectional configuration along the line III-III in FIG. , A connection relationship with a power line, a ground line, and an input / output terminal is schematically shown. 図4は、本発明の第2の実施形態に係る半導体集積回路の構成を示す平面図である。FIG. 4 is a plan view showing a configuration of a semiconductor integrated circuit according to the second embodiment of the present invention. 図5は、本発明の第2の実施形態に係る半導体集積回路の構成を示す断面図であって、具体的には、図4のV-V線の断面構成を示す共に、等価的なサイリスタ、電源ライン、グランドライン、及び入出力端子との接続関係を模式的に示している。FIG. 5 is a cross-sectional view showing the configuration of the semiconductor integrated circuit according to the second embodiment of the present invention. Specifically, the cross-sectional configuration of the VV line in FIG. The connection relation with a line, a ground line, and an input / output terminal is shown typically. 図6は、本発明の第2の実施形態に係る半導体集積回路の構成を示す断面図であって、具体的には、図4のVI-VI線の断面構成を示す共に、等価的なサイリスタ、電源ライン、グランドライン、及び入出力端子との接続関係を模式的に示している。FIG. 6 is a cross-sectional view showing the configuration of the semiconductor integrated circuit according to the second embodiment of the present invention. Specifically, it shows the cross-sectional configuration of the VI-VI line of FIG. 4 and is an equivalent thyristor. , A connection relationship with a power line, a ground line, and an input / output terminal is schematically shown. 図7は、従来の半導体集積回路の構成を示す平面図である。FIG. 7 is a plan view showing a configuration of a conventional semiconductor integrated circuit. 図8は、従来の半導体集積回路の構成を示す断面図であって、具体的には、図7のVIII-VIII線の断面構成を示す共に、等価的なトランジスタ、電源ライン、入出力端子、及び入出力回路との接続関係を模式的に示している。FIG. 8 is a cross-sectional view showing a configuration of a conventional semiconductor integrated circuit. Specifically, it shows a cross-sectional configuration of line VIII-VIII in FIG. 7, and an equivalent transistor, power supply line, input / output terminal, And a connection relationship with the input / output circuit. 図9は、従来の半導体集積回路の構成を示す断面図であって、具体的には、図7のIX-IX線の断面構成を示す共に、等価的なトランジスタ、グランドライン、入出力端子、及び入出力回路との接続関係を模式的に示している。FIG. 9 is a cross-sectional view showing the configuration of a conventional semiconductor integrated circuit. Specifically, the cross-sectional configuration of the IX-IX line in FIG. 7 is shown, and an equivalent transistor, ground line, input / output terminal, And a connection relationship with the input / output circuit.
 図面を参照して本発明のさまざまな実施形態が以下に説明される。同じ参照符号は、同じまたは同様の構成要素を表す。 Various embodiments of the present invention are described below with reference to the drawings. The same reference signs represent the same or similar components.
 図1に示すように、本発明のある実施形態に係る半導体集積回路は、互いに隣接して配置された入出力セル1及び入出力セル2を含んでおり、入出力セル1及び2を跨ぐようにして電源ライン11及びグランドライン12が配置されている。 As shown in FIG. 1, a semiconductor integrated circuit according to an embodiment of the present invention includes an input / output cell 1 and an input / output cell 2 arranged adjacent to each other so as to straddle the input / output cells 1 and 2. Thus, the power supply line 11 and the ground line 12 are arranged.
 入出力セル1は、入出力端子3、NMOSトランジスタ4、PMOSトランジスタ5及び入出力回路6によって構成されている。また、入出力セル2は、入出力端子7、NMOSトランジスタ8、PMOSトランジスタ9及び入出力回路10によって構成されている。 The input / output cell 1 includes an input / output terminal 3, an NMOS transistor 4, a PMOS transistor 5, and an input / output circuit 6. The input / output cell 2 includes an input / output terminal 7, an NMOS transistor 8, a PMOS transistor 9, and an input / output circuit 10.
 図1及び図2に示すように、図示しない半導体基板に設けられたN型ウェル63内には、PMOSトランジスタ5を構成するP+拡散層からなるソース22及び24とP+拡散層からなるドレイン23が設けられている。また、側方下にソース22及びドレイン23が位置するようにPMOSトランジスタ5を構成するゲート31がN型ウェル63上に設けられ、側方下にドレイン23及びソース24が位置するようにPMOSトランジスタ5を構成するゲート32がN型ウェル63上に設けられている。さらに、N型ウェル63内には、N+拡散層からなる基板コンタクト21及び25が設けられており、電源ライン11は、基板コンタクト21及び25、ゲート31及び32、並びにソース22及び24に接続されている。また、ドレイン23は入出力端子3に接続されている。このように、ゲート31、32が電源ライン11に接続され、ソース22及び24が電源ライン11に接続され、ドレイン23が入出力端子3に接続されたPMOSトランジスタ5が設けられている。 As shown in FIGS. 1 and 2, in an N-type well 63 provided on a semiconductor substrate (not shown), sources 22 and 24 made of a P + diffusion layer and a drain 23 made of a P + diffusion layer constituting the PMOS transistor 5 are provided. Is provided. Further, the gate 31 constituting the PMOS transistor 5 is provided on the N-type well 63 so that the source 22 and the drain 23 are located on the lower side, and the PMOS transistor so that the drain 23 and the source 24 are located on the lower side. 5 is provided on the N-type well 63. Further, substrate contacts 21 and 25 made of N + diffusion layers are provided in the N-type well 63, and the power supply line 11 is connected to the substrate contacts 21 and 25, gates 31 and 32, and sources 22 and 24. ing. The drain 23 is connected to the input / output terminal 3. As described above, the PMOS transistor 5 having the gates 31 and 32 connected to the power supply line 11, the sources 22 and 24 connected to the power supply line 11, and the drain 23 connected to the input / output terminal 3 is provided.
 一方、図示しない半導体基板に設けられ、N型ウェル63に隣接するP型ウェル64内には、NMOSトランジスタ9を構成するN+拡散層からなるソース27及び29とN+拡散層からなるドレイン28が設けられている。また、側方下にソース27及びドレイン28が位置するようにNMOSトランジスタ9を構成するゲート33がP型ウェル64上に設けられ、側方下にドレイン28及びソース29が位置するようにNMOSトランジスタ9を構成するゲート34がP型ウェル64上に設けられている。さらに、P型ウェル64内には、P+拡散層からなる基板コンタクト26及び30が設けられており、グランドライン12は、基板コンタクト26及び30、ゲート33及び34、並びにソース27及び29に接続されている。また、ドレイン28は入出力端子7に接続されている。このように、ゲート33、34がグランドライン12に接続され、ソース27及び29がグランドライン12に接続され、ドレイン28が入出力端子7に接続されたNMOSトランジスタ9が設けられている。 On the other hand, in a P-type well 64 provided on a semiconductor substrate (not shown) and adjacent to the N-type well 63, sources 27 and 29 made of an N + diffusion layer and a drain 28 made of an N + diffusion layer constituting the NMOS transistor 9 are provided. It has been. Further, the gate 33 constituting the NMOS transistor 9 is provided on the P-type well 64 so that the source 27 and the drain 28 are located below the side, and the NMOS transistor 9 is located so that the drain 28 and the source 29 are located below the side. 9 is provided on the P-type well 64. Further, substrate contacts 26 and 30 made of a P + diffusion layer are provided in the P-type well 64, and the ground line 12 is connected to the substrate contacts 26 and 30, gates 33 and 34, and sources 27 and 29. ing. The drain 28 is connected to the input / output terminal 7. As described above, the NMOS transistor 9 having the gates 33 and 34 connected to the ground line 12, the sources 27 and 29 connected to the ground line 12, and the drain 28 connected to the input / output terminal 7 is provided.
 また、図1及び図2に示すように、入出力セル1内のPMOSトランジスタ5と入出力セル2内のNMOSトランジスタ9とが互いに隣接して配置されるように、入出力セル1と入出力セル2とは互いに隣接して配置されている。 As shown in FIGS. 1 and 2, the input / output cell 1 and the input / output cell 1 are arranged so that the PMOS transistor 5 in the input / output cell 1 and the NMOS transistor 9 in the input / output cell 2 are arranged adjacent to each other. The cells 2 are arranged adjacent to each other.
 以上説明した構成を有するPMOSトランジスタ5及びNMOSトランジスタ9により、本実施形態に係る半導体集積回路では、図2において等価的に示すように、入出力セル1及び2間には、アノードが入出力端子3に接続され、カソードが入出力端子7に接続されたサイリスタ(シリコン制御整流器(SCR)ともいう)13が存在している。 With the PMOS transistor 5 and the NMOS transistor 9 having the above-described configuration, in the semiconductor integrated circuit according to this embodiment, the anode is connected between the input / output cells 1 and 2 as equivalently shown in FIG. 3 and a thyristor (also referred to as a silicon controlled rectifier (SCR)) 13 having a cathode connected to the input / output terminal 7 is present.
 また、図1及び図3に示すように、図示しない半導体基板に設けられたP型ウェル65内には、NMOSトランジスタ4を構成するN+拡散層からなるソース36及び38とN+拡散層からなるドレイン37が設けられている。また、側方下にソース36及びドレイン37が位置するようにNMOSトランジスタ4を構成するゲート45がP型ウェル65上に設けられ、側方下にドレイン37及びソース38が位置するようにNMOSトランジスタ4を構成するゲート46がP型ウェル65上に設けられている。さらに、P型ウェル65内には、P+拡散層からなる基板コンタクト35及び39が設けられており、グランドライン12は、基板コンタクト35及び39、ゲート45及び46、並びにソース36及び38に接続されている。また、ドレイン37は入出力端子3に接続されている。このように、ゲート45、46がグランドライン12に接続され、ソース36及び38がグランドライン12に接続され、ドレイン37が入出力端子3に接続されたNMOSトランジスタ4が設けられている。 As shown in FIGS. 1 and 3, in a P-type well 65 provided on a semiconductor substrate (not shown), sources 36 and 38 made of N + diffusion layers constituting the NMOS transistor 4 and a drain made of N + diffusion layers. 37 is provided. Further, the gate 45 constituting the NMOS transistor 4 is provided on the P-type well 65 so that the source 36 and the drain 37 are located below the side, and the NMOS transistor 4 is located such that the drain 37 and the source 38 are located below the side. 4 is provided on the P-type well 65. Further, substrate contacts 35 and 39 made of a P + diffusion layer are provided in the P-type well 65, and the ground line 12 is connected to the substrate contacts 35 and 39, the gates 45 and 46, and the sources 36 and 38. ing. The drain 37 is connected to the input / output terminal 3. As described above, the NMOS transistor 4 having the gates 45 and 46 connected to the ground line 12, the sources 36 and 38 connected to the ground line 12, and the drain 37 connected to the input / output terminal 3 is provided.
 一方、図示しない半導体基板に設けられ、P型ウェル65に隣接するN型ウェル66内には、PMOSトランジスタ8を構成するP+拡散層からなるソース41及び43とP+拡散層からなるドレイン42が設けられている。また、側方下にソース41及びドレイン42が位置するようにPMOSトランジスタ8を構成するゲート47がN型ウェル66上に設けられ、側方下にドレイン42及びソース43が位置するようにPMOSトランジスタ8を構成するゲート48がN型ウェル66上に設けられている。さらに、N型ウェル66内には、N+拡散層からなる基板コンタクト40及び44が設けられており、電源ライン11は、基板コンタクト40及び44、ゲート47及び48、並びにソース41及び43に接続されている。また、ドレイン42は入出力端子7に接続されている。このように、ゲート47、48が電源ライン11に接続され、ソース41及び43が電源ライン11に接続され、ドレイン42が入出力端子7に接続されたPMOSトランジスタ8が設けられている。 On the other hand, in an N-type well 66 provided on a semiconductor substrate (not shown) and adjacent to the P-type well 65, sources 41 and 43 made of a P + diffusion layer and a drain 42 made of a P + diffusion layer constituting the PMOS transistor 8 are provided. It has been. Further, the gate 47 constituting the PMOS transistor 8 is provided on the N-type well 66 so that the source 41 and the drain 42 are located on the lower side, and the PMOS transistor so that the drain 42 and the source 43 are located on the lower side. 8 is provided on the N-type well 66. Further, substrate contacts 40 and 44 made of N + diffusion layers are provided in the N-type well 66, and the power supply line 11 is connected to the substrate contacts 40 and 44, gates 47 and 48, and sources 41 and 43. ing. The drain 42 is connected to the input / output terminal 7. As described above, the PMOS transistor 8 is provided in which the gates 47 and 48 are connected to the power supply line 11, the sources 41 and 43 are connected to the power supply line 11, and the drain 42 is connected to the input / output terminal 7.
 また、図1及び図3に示すように、入出力セル1内のNMOSトランジスタ4と入出力セル2内のPMOSトランジスタ8とが互いに隣接して配置されるように、入出力セル1と入出力セル2とは互いに隣接して配置されている。 Further, as shown in FIGS. 1 and 3, the input / output cell 1 and the input / output cell 1 are arranged so that the NMOS transistor 4 in the input / output cell 1 and the PMOS transistor 8 in the input / output cell 2 are arranged adjacent to each other. The cells 2 are arranged adjacent to each other.
 以上説明した構成を有するNMOSトランジスタ4及びPMOSトランジスタ8により、本実施形態に係る半導体集積回路では、図3において等価的に示すように、入出力セル1及び2間には、カソードが入出力端子3に接続され、アノードが入出力端子7に接続されたサイリスタ14が存在している。 With the NMOS transistor 4 and the PMOS transistor 8 having the above-described configuration, in the semiconductor integrated circuit according to the present embodiment, the cathode is connected between the input / output cells 1 and 2 as equivalently shown in FIG. 3 and a thyristor 14 having an anode connected to the input / output terminal 7 is present.
 なお、入出力回路6は、入出力端子3、NMOSトランジスタ4のドレイン37、及びPMOSトランジスタ5のドレイン23に接続されている。一方、入出力回路10は、入出力端子7、PMOSトランジスタ8のドレイン42、及びNMOSトランジスタ9のドレイン28に接続されている。 The input / output circuit 6 is connected to the input / output terminal 3, the drain 37 of the NMOS transistor 4, and the drain 23 of the PMOS transistor 5. On the other hand, the input / output circuit 10 is connected to the input / output terminal 7, the drain 42 of the PMOS transistor 8, and the drain 28 of the NMOS transistor 9.
 次に、本実施形態に係る半導体集積回路の動作について説明する。 Next, the operation of the semiconductor integrated circuit according to this embodiment will be described.
 以下では、半導体集積回路のESD評価規格である、ヒューマン・ボディ・モデル(HBM)又はマシン・モデル(MM)などのピン・コンビネーション試験を用いて説明する。 Hereinafter, description will be made using a pin combination test such as a human body model (HBM) or a machine model (MM) which is an ESD evaluation standard of a semiconductor integrated circuit.
 まず、入出力端子7を接地基準として入出力端子3に+(プラス)サージを加えた場合、PMOSトランジスタ5とNMOSトランジスタ9との間に配置されたサイリスタ13のアノードからカソードを通じてサージ電流が放電される。さらに、入出力端子7を接地基準として入出力端子3に-(マイナス)サージを加えた場合、NMOSトランジスタ4とPMOSトランジスタ8との間に配置されたサイリスタ14のアノードからカソードを通じてサージ電流が放電される。 First, when a + (plus) surge is applied to the input / output terminal 3 with the input / output terminal 7 as a ground reference, a surge current is discharged from the anode of the thyristor 13 disposed between the PMOS transistor 5 and the NMOS transistor 9 through the cathode. Is done. Further, when a negative surge is applied to the input / output terminal 3 with the input / output terminal 7 as a ground reference, the surge current is discharged from the anode of the thyristor 14 disposed between the NMOS transistor 4 and the PMOS transistor 8 through the cathode. Is done.
 また、入出力端子3を接地基準として入出力端子7に-サージを加えた場合、PMOSトランジスタ5とNMOSトランジスタ9との間に配置されたサイリスタ13のアノードからカソードを通じてサージ電流が放電される。さらに、入出力端子3を接地基準として入出力端子7に+サージを加えた場合、NMOSトランジスタ4とPMOSトランジスタ8との間に配置されたサイリスタ14のアノードからカソードを通じてサージ電流が放電される。 When a surge is applied to the input / output terminal 7 with the input / output terminal 3 as the ground reference, a surge current is discharged from the anode of the thyristor 13 disposed between the PMOS transistor 5 and the NMOS transistor 9 through the cathode. Further, when + surge is applied to the input / output terminal 7 with the input / output terminal 3 as a ground reference, a surge current is discharged from the anode of the thyristor 14 disposed between the NMOS transistor 4 and the PMOS transistor 8 through the cathode.
 ここで、サイリスタ13及び14にサージが印加され、カソードの電圧よりもアノードの電圧が高くなると、P型ウェル65とN型ウェル66の接合部がブレークダウンし、サイリスタ13及び14が正帰還状態となってラッチアップ動作が誘発される。この際、本実施形態に係る半導体集積回路における隣り合う入出力セル1と2との間に存在するサイリスタ13及び14のサージに対する放電能力は、上記従来に係る半導体集積回路における隣り合う入出力セル100と101との間に存在する寄生素子バイポーラトランジスタ112及び113よりも5倍~10倍程度高い。したがって、本実施形態に係る半導体集積回路の構成によると、ESD保護回路の面積を増大させることなく、隣り合う入出力セル1と2との間のサージに対する耐性を向上させることができる。このため、最近の半導体集積回路のプロセスの微細化(拡散層の浅接合化など)又は狭パッドピッチ化(保護素子の小面積化)において、上記従来の半導体集積回路における隣り合う入出力セル間に存在する寄生素子バイポーラトランジスタ112及び113に比較して、本実施形態に係る半導体集積回路は大変有用である。 Here, when a surge is applied to the thyristors 13 and 14 and the anode voltage becomes higher than the cathode voltage, the junction between the P-type well 65 and the N-type well 66 breaks down, and the thyristors 13 and 14 are in a positive feedback state. Thus, a latch-up operation is induced. At this time, the discharge capability against surge of the thyristors 13 and 14 existing between the adjacent input / output cells 1 and 2 in the semiconductor integrated circuit according to the present embodiment is the same as that of the adjacent input / output cell in the semiconductor integrated circuit according to the related art. The parasitic element bipolar transistors 112 and 113 existing between 100 and 101 are about 5 to 10 times higher. Therefore, according to the configuration of the semiconductor integrated circuit according to the present embodiment, it is possible to improve the resistance against the surge between the adjacent input / output cells 1 and 2 without increasing the area of the ESD protection circuit. Therefore, in recent semiconductor integrated circuit process miniaturization (such as shallow junction of diffusion layer) or narrow pad pitch (protection element area reduction), the adjacent input / output cells in the conventional semiconductor integrated circuit described above Compared with the parasitic element bipolar transistors 112 and 113 existing in the semiconductor integrated circuit, the semiconductor integrated circuit according to the present embodiment is very useful.
 また、上述した本実施形態では、隣接する入出力セル1及び2間にサージが印加される場合について説明したが、互いに隣り合うことなく離れて配置された入出力セル間にサージが印加される場合であっても、サージが印加される入出力セル間に上述した構成を有する複数の入出力セルが配置されている構造であれば、この複数の入出力セル間に存在するサイリスタを介して、サージ電流を放電することが可能である。 Further, in the above-described embodiment, the case where a surge is applied between the adjacent input / output cells 1 and 2 has been described. However, a surge is applied between input / output cells arranged apart from each other without being adjacent to each other. Even in such a case, if a plurality of input / output cells having the above-described configuration are arranged between input / output cells to which a surge is applied, a thyristor existing between the plurality of input / output cells is used. It is possible to discharge the surge current.
 (変形例)
 図4に示すように、本発明の代替の実施形態に係る半導体集積回路は、互いに隣接して配置された入出力セル1a及び入出力セル2aを含んでおり、入出力セル1a及び2aを跨ぐようにして電源ライン11及びグランドライン12が配置されている。
(Modification)
As shown in FIG. 4, a semiconductor integrated circuit according to an alternative embodiment of the present invention includes an input / output cell 1a and an input / output cell 2a arranged adjacent to each other, and straddles the input / output cells 1a and 2a. Thus, the power supply line 11 and the ground line 12 are arranged.
 入出力セル1aは、入出力端子3、N型拡散層-P型ウェルダイオード51(以下、「N+PWダイオード51」という)、P型拡散層-N型ウェルダイオード52(以下、「P+NWダイオード52」という)及び入出力回路6によって構成されている。また、入出力セル2は、入出力端子7、P型拡散層-N型ウェルダイオード53(以下、「P+NWダイオード53」という)、N型拡散層-P型ウェルダイオード54(以下、「N+PWダイオード54」という)及び入出力回路10によって構成されている。 The input / output cell 1a includes an input / output terminal 3, an N type diffusion layer-P type well diode 51 (hereinafter referred to as "N + PW diode 51"), a P type diffusion layer-N type well diode 52 (hereinafter referred to as "P + NW diode 52"). And an input / output circuit 6. The input / output cell 2 includes an input / output terminal 7, a P-type diffusion layer-N-type well diode 53 (hereinafter referred to as "P + NW diode 53"), an N-type diffusion layer-P-type well diode 54 (hereinafter referred to as "N + PW diode"). 54 ”) and the input / output circuit 10.
 図4及び図5に示すように、図示しない半導体基板に設けられたN型ウェル63内には、P+NWダイオード52を構成するN+拡散層からなるカソード55及びP+拡散層からなるアノード56が設けられている。さらに、N型ウェル63内には、N+拡散層からなる基板コンタクト21及び25が設けられており、電源ライン11は、基板コンタクト21及び25、並びにカソード55に接続されている。また、アノード56は入出力端子3に接続されている。このように、カソード55が電源ライン11に接続され、アノード56が入出力端子3に接続されたP+NWダイオード52が設けられている。 As shown in FIGS. 4 and 5, a cathode 55 made of an N + diffusion layer and an anode 56 made of a P + diffusion layer constituting the P + NW diode 52 are provided in an N-type well 63 provided on a semiconductor substrate (not shown). ing. Further, substrate contacts 21 and 25 made of N + diffusion layers are provided in the N-type well 63, and the power supply line 11 is connected to the substrate contacts 21 and 25 and the cathode 55. The anode 56 is connected to the input / output terminal 3. As described above, the P + NW diode 52 having the cathode 55 connected to the power supply line 11 and the anode 56 connected to the input / output terminal 3 is provided.
 一方、図示しない半導体基板に設けられ、N型ウェル63に隣接するP型ウェル64内には、N+PWダイオード54を構成するN+拡散層からなるカソード57とP+拡散層からなるアノード58が設けられている。さらに、P型ウェル64内には、P+拡散層からなる基板コンタクト26及び30が設けられており、グランドライン12は、基板コンタクト26及び30、並びにアノード58に接続されている。また、カソード57は入出力端子7に接続されている。このように、アノード58がグランドライン12に接続され、カソード57が入出力端子7に接続されたN+PWダイオード54が設けられている。 On the other hand, a cathode 57 made of an N + diffusion layer and an anode 58 made of a P + diffusion layer constituting an N + PW diode 54 are provided in a P-type well 64 provided on a semiconductor substrate (not shown) and adjacent to the N-type well 63. Yes. Further, substrate contacts 26 and 30 made of P + diffusion layers are provided in the P-type well 64, and the ground line 12 is connected to the substrate contacts 26 and 30 and the anode 58. The cathode 57 is connected to the input / output terminal 7. Thus, the N + PW diode 54 having the anode 58 connected to the ground line 12 and the cathode 57 connected to the input / output terminal 7 is provided.
 また、図4及び図5に示すように、入出力セル1a内のP+NWダイオード52と入出力セル2a内のN+PWダイオード54とが互いに隣接して配置されるように、入出力セル1aと入出力セル2aとは互いに隣接して配置されている。 As shown in FIGS. 4 and 5, the input / output cell 1a and the input / output cell 1a are arranged so that the P + NW diode 52 in the input / output cell 1a and the N + PW diode 54 in the input / output cell 2a are arranged adjacent to each other. The cells 2a are arranged adjacent to each other.
 以上説明した構成を有するP+NWダイオード52及びN+PWダイオード54により、本実施形態に係る半導体集積回路では、図5において等価的に示すように、入出力セル1a及び2a間には、カソードが入出力端子3に接続され、アノードが入出力端子7に接続されたサイリスタ13aが存在している。 With the P + NW diode 52 and the N + PW diode 54 having the above-described configuration, in the semiconductor integrated circuit according to the present embodiment, the cathode is connected between the input / output cells 1a and 2a as equivalently shown in FIG. 3 and a thyristor 13a having an anode connected to the input / output terminal 7 is present.
 また、図4及び図6に示すように、図示しない半導体基板に設けられたP型ウェル65内には、N+PWダイオード51を構成するP+拡散層からなるアノード59とN+拡散層からなるカソード60が設けられている。さらに、P型ウェル65内には、P+拡散層からなる基板コンタクト35及び39が設けられており、グランドライン12は、基板コンタクト35及び39、並びにアノード59に接続されている。また、カソード60は入出力端子3に接続されている。このように、アノード59がグランドライン12に接続され、カソード60が入出力端子3に接続されたN+PWダイオード51が設けられている。 As shown in FIGS. 4 and 6, in a P-type well 65 provided on a semiconductor substrate (not shown), an anode 59 composed of a P + diffusion layer and a cathode 60 composed of an N + diffusion layer constituting the N + PW diode 51 are provided. Is provided. Further, substrate contacts 35 and 39 made of P + diffusion layers are provided in the P-type well 65, and the ground line 12 is connected to the substrate contacts 35 and 39 and the anode 59. The cathode 60 is connected to the input / output terminal 3. Thus, the N + PW diode 51 having the anode 59 connected to the ground line 12 and the cathode 60 connected to the input / output terminal 3 is provided.
 一方、図示しない半導体基板に設けられ、P型ウェル65に隣接するN型ウェル66内には、P+NWダイオード53を構成するP+拡散層からなるアノード61とN+拡散層からなるカソード62が設けられている。さらに、N型ウェル66内には、N+拡散層からなる基板コンタクト40及び44が設けられており、電源ライン11は、基板コンタクト40及び44、並びにカソード62に接続されている。また、アノード61は入出力端子7に接続されている。このように、カソード62が電源ライン11に接続され、アノード61が入出力端子7に接続されたP+NWダイオード53が設けられている。 On the other hand, an anode 61 made of a P + diffusion layer and a cathode 62 made of an N + diffusion layer constituting the P + NW diode 53 are provided in an N type well 66 adjacent to the P type well 65 provided on a semiconductor substrate (not shown). Yes. Further, substrate contacts 40 and 44 made of an N + diffusion layer are provided in the N-type well 66, and the power supply line 11 is connected to the substrate contacts 40 and 44 and the cathode 62. The anode 61 is connected to the input / output terminal 7. As described above, the P + NW diode 53 having the cathode 62 connected to the power supply line 11 and the anode 61 connected to the input / output terminal 7 is provided.
 また、図4及び図6に示すように、入出力セル1a内のN+PWダイオード51と入出力セル2a内のP+NWダイオード53とが互いに隣接して配置されるように、入出力セル1aと入出力セル2aとは互いに隣接して配置されている。 Also, as shown in FIGS. 4 and 6, the input / output cell 1a and the input / output cell 1a are arranged so that the N + PW diode 51 in the input / output cell 1a and the P + NW diode 53 in the input / output cell 2a are arranged adjacent to each other. The cells 2a are arranged adjacent to each other.
 以上説明した構成を有するN+PWダイオード51及びP+NWダイオード53により、本実施形態に係る半導体集積回路では、図6において等価的に示すように、入出力セル1a及び2a間には、カソードが入出力端子3に接続され、アノードが入出力端子7に接続されたサイリスタ14aが存在している。 With the N + PW diode 51 and the P + NW diode 53 having the above-described configuration, in the semiconductor integrated circuit according to the present embodiment, the cathode is connected between the input / output cells 1a and 2a as equivalently shown in FIG. 3 and a thyristor 14a having an anode connected to the input / output terminal 7 is present.
 なお、入出力回路6は、入出力端子3、P+NWダイオード52のアノード56及びN+PWダイオード51のカソード60に接続されている。一方、入出力回路10は、入出力端子7、P+NWダイオード53のアノード61及びN+PWダイオード54のカソード57に接続されている。 The input / output circuit 6 is connected to the input / output terminal 3, the anode 56 of the P + NW diode 52, and the cathode 60 of the N + PW diode 51. On the other hand, the input / output circuit 10 is connected to the input / output terminal 7, the anode 61 of the P + NW diode 53, and the cathode 57 of the N + PW diode 54.
 次に、本実施形態に係る半導体集積回路の動作について説明する。 Next, the operation of the semiconductor integrated circuit according to this embodiment will be described.
 以下では、半導体集積回路のESD評価規格である、上記HBM又はMMなどのピン・コンビネーション試験を用いて説明する。 Hereinafter, description will be made using the above-mentioned pin combination test such as HBM or MM, which is an ESD evaluation standard for semiconductor integrated circuits.
 まず、入出力端子7を接地基準として入出力端子3に+サージを加えた場合、P+NWダイオード52とN+PWダイオード54との間に配置されたサイリスタ13aのアノードからカソードを通じてサージ電流が放電される。さらに、入出力端子7を接地基準として入出力端子3に-サージを加えた場合、N+PWダイオード51とP+NWダイオード53との間に配置されたサイリスタ14aのアノードからカソードを通じてサージ電流が放電される。 First, when a + surge is applied to the input / output terminal 3 using the input / output terminal 7 as a ground reference, a surge current is discharged from the anode of the thyristor 13a disposed between the P + NW diode 52 and the N + PW diode 54 through the cathode. Further, when −surge is applied to the input / output terminal 3 with the input / output terminal 7 as the ground reference, a surge current is discharged through the cathode from the anode of the thyristor 14 a disposed between the N + PW diode 51 and the P + NW diode 53.
 また、入出力端子3を接地基準として入出力端子7に-サージを加えた場合、P+NWダイオード52とN+PWダイオード54との間に配置されたサイリスタ13aのアノードからカソードを通じてサージ電流が放電される。さらに、入出力端子3を接地基準として入出力端子7に+サージを加えた場合、N+PWダイオード51とP+NWダイオード53との間に配置されたサイリスタ14aのアノードからカソードを通じてサージ電流が放電される。 When a negative surge is applied to the input / output terminal 7 with the input / output terminal 3 as a ground reference, a surge current is discharged from the anode of the thyristor 13a disposed between the P + NW diode 52 and the N + PW diode 54 through the cathode. Further, when a + surge is applied to the input / output terminal 7 with the input / output terminal 3 as a ground reference, a surge current is discharged through the cathode from the anode of the thyristor 14a disposed between the N + PW diode 51 and the P + NW diode 53.
 ここで、サイリスタ13a及び14aにサージが印加され、カソードの電圧よりもアノードの電圧が高くなると、P型ウェル65とN型ウェル66の接合部がブレークダウンし、サイリスタ13a及び14aが正帰還状態となってラッチアップ動作が誘発される。この際、本実施形態に係る半導体集積回路における隣り合う入出力セル1aと2aとの間に存在するサイリスタ13a及び14aのサージに対する放電能力は、上記従来に係る半導体集積回路における隣り合う入出力セル100と101との間に存在する寄生素子バイポーラトランジスタ112及び113よりも5~10倍程度高い。したがって、本実施形態に係る半導体集積回路の構成によると、ESD保護回路の面積を増大させることなく、隣り合う入出力セル1aと2aとの間のサージに対する耐性を向上させることができる。このため、最近の半導体集積回路のプロセスの微細化(拡散層の浅接合化など)又は狭パッドピッチ化(保護素子の小面積化)において、上記従来の半導体集積回路における隣り合う入出力セル間に存在する寄生素子バイポーラトランジス112及び113に比較して、本実施形態に係る半導体集積回路は大変有用である。 Here, when a surge is applied to the thyristors 13a and 14a and the anode voltage becomes higher than the cathode voltage, the junction between the P-type well 65 and the N-type well 66 breaks down, and the thyristors 13a and 14a are in a positive feedback state. Thus, a latch-up operation is induced. At this time, the discharge capability against the surge of the thyristors 13a and 14a existing between the adjacent input / output cells 1a and 2a in the semiconductor integrated circuit according to the present embodiment is equal to the adjacent input / output cell in the semiconductor integrated circuit according to the related art. The parasitic element bipolar transistors 112 and 113 existing between 100 and 101 are about 5 to 10 times higher. Therefore, according to the configuration of the semiconductor integrated circuit according to the present embodiment, it is possible to improve the resistance against a surge between the adjacent input / output cells 1a and 2a without increasing the area of the ESD protection circuit. Therefore, in recent semiconductor integrated circuit process miniaturization (such as shallow junction of diffusion layer) or narrow pad pitch (protection element area reduction), the adjacent input / output cells in the conventional semiconductor integrated circuit described above The semiconductor integrated circuit according to the present embodiment is very useful as compared with the parasitic element bipolar transistors 112 and 113 existing in FIG.
 また、この代替の実施形態では、隣接する入出力セル1a及び2a間にサージが印加される場合について説明したが、互いに隣り合うことなく離れて配置された入出力セル間にサージが印加される場合であっても、サージが印加される入出力セル間に上述した構成を有する複数の入出力セルが配置されている構造であれば、この複数の入出力セル間に存在するサイリスタを介して、サージ電流を放電することが可能である。 In this alternative embodiment, the case where a surge is applied between adjacent input / output cells 1a and 2a has been described. However, a surge is applied between input / output cells that are spaced apart from each other without being adjacent to each other. Even in such a case, if a plurality of input / output cells having the above-described configuration are arranged between input / output cells to which a surge is applied, a thyristor existing between the plurality of input / output cells is used. It is possible to discharge the surge current.
 さらに、この代替の実施形態では、入出力セル1a及び入出力セル2a内においてダイオードタイプの保護回路を使用しているため、先に述べた実施形態の場合と比較して、入出力端子3及び7の容量を小さくすることができる。このため、本実施形態における入出力セル1a及び入出力セル2aは、高解像度マルチメディアインターフェース(HDMI)又はユニバーサル・シリアル・バス(USB)などの高速インターフェースの入出力セルとして用いられることが可能である。 Furthermore, in this alternative embodiment, since the diode type protection circuit is used in the input / output cell 1a and the input / output cell 2a, the input / output terminal 3 and the input / output terminal 3 and 7 capacity can be reduced. Therefore, the input / output cell 1a and the input / output cell 2a in this embodiment can be used as an input / output cell for a high-speed interface such as a high-resolution multimedia interface (HDMI) or a universal serial bus (USB). is there.
 本発明の趣旨を逸脱しない範囲で、上述の複数の実施形態における各要素(または行為)を任意に組み合わせてもよい。 In the range which does not deviate from the meaning of this invention, you may combine each element (or action) in the above-mentioned several embodiment arbitrarily.
 上に説明されてきたものには、本発明のさまざまな例が含まれる。本発明を記載する目的では、要素や手順の考えられるあらゆる組み合わせを記載することは当然のことながら不可能であるが、当業者なら本発明の多くのさらなる組み合わせおよび順列が可能であることがわかるだろう。したがって本発明は、特許請求の範囲の精神および範囲に入るそのような改変、変更および変形例を全て含むよう意図される。 What has been described above includes various examples of the present invention. For the purposes of describing the present invention, it is of course impossible to describe every possible combination of elements and procedures, but those skilled in the art will recognize that many further combinations and permutations of the present invention are possible. right. Accordingly, the present invention is intended to embrace all such alterations, modifications and variations that fall within the spirit and scope of the appended claims.
 本発明のさまざまな実施形態による半導体集積回路は、ESD保護回路の面積を増大させることなく、サージに対する耐性に優れた半導体集積回路を実現できる。よって特に、ESD保護回路を備えた半導体集積回路にとって有用である。 The semiconductor integrated circuit according to various embodiments of the present invention can realize a semiconductor integrated circuit excellent in surge resistance without increasing the area of the ESD protection circuit. Therefore, it is particularly useful for a semiconductor integrated circuit provided with an ESD protection circuit.
1、1a、2、2a   入出力セル
3   入出力端子
4   NMOSトランジスタ
5   PMOSトランジスタ
6   入出力回路
7   入出力端子
8   PMOSトランジスタ
9   NMOSトランジスタ
10  入出力回路
11  電源ライン
12  グランドライン
13、13a、14、14a  サイリスタ
21、25、40、44 基板コンタクト
26、30、35、39 基板コンタクト
23、42 PMOSトランジスタのドレイン
28、37 NMOSトランジスタのドレイン
22、24、41、43 PMOSトランジスタのソース
27、29、36、38 NMOSトランジスタのソース
51 N+PWダイオード
52 P+NWダイオード
53 P+NWダイオード
54 N+PWダイオード
55、62 P+NWダイオードのカソード
56、61 P+NWダイオードのアノード
57、60 N+PWダイオードのカソード
58、59 N+PWダイオードのアノード
63、66 N型ウェル
64、65 P型ウェル
1, 1a, 2, 2a Input / output cell 3 Input / output terminal 4 NMOS transistor 5 PMOS transistor 6 Input / output circuit 7 Input / output terminal 8 PMOS transistor 9 NMOS transistor 10 Input / output circuit 11 Power supply line 12 Ground lines 13, 13a, 14, 14a Thyristors 21, 25, 40, 44 Substrate contacts 26, 30, 35, 39 Substrate contacts 23, 42 PMOS transistor drains 28, 37 NMOS transistor drains 22, 24, 41, 43 PMOS transistor sources 27, 29, 36 , 38 NMOS transistor source 51 N + PW diode 52 P + NW diode 53 P + NW diode 54 N + PW diode 55, 62 P + NW diode cathode 56, 61 P + NW diode The anode of the cathode 58, 59 N + PW diode de anode 57, 60 N + PW diodes 63 and 66 N-type well 64 and 65 P-type well

Claims (4)

  1.  電源ライン及びグランドラインと、
     第1の入出力端子、
     ドレインが前記第1の入出力端子に接続され、ソース及びゲートが前記グランドラインに接続された第1のNMOSトランジスタ、
     ドレインが前記第1の入出力端子に接続され、ソース及びゲートが前記電源ラインに接続された第1のPMOSトランジスタ、並びに、
     前記第1の入出力端子、前記第1のNMOSトランジスタのドレイン、及び前記第1のPMOSトランジスタのドレインに接続された第1の入出力回路
    を有する第1の入出力セルと、
     第2の入出力端子、
     ドレインが前記第2の入出力端子に接続され、ソース及びゲートが前記グランドラインに接続された第2のNMOSトランジスタ、
     ドレインが前記第2の入出力端子に接続され、ソース及びゲートが前記電源ラインに接続された第2のPMOSトランジスタ、並びに、
     前記第2の入出力端子、前記第2のNMOSトランジスタのドレイン及び前記第2のPMOSトランジスタのドレインに接続された第2の入出力回路
    を有する第2の入出力セルとを備えており、
     前記第1の入出力セルにおける前記第1のPMOSトランジスタと、前記第2の入出力セルにおける前記第2のNMOSトランジスタとが互いに隣接して配置され、且つ、前記第1の入出力セルにおける前記第1のNMOSトランジスタと、前記第2の入出力セルにおける前記第2のPMOSトランジスタとが互いに隣接して配置されるように、前記第1の入出力セルと前記第2の入出力セルとが互いに隣接して配置されている
    半導体集積回路。
    A power line and a ground line;
    A first input / output terminal;
    A first NMOS transistor having a drain connected to the first input / output terminal and a source and a gate connected to the ground line;
    A first PMOS transistor having a drain connected to the first input / output terminal and a source and a gate connected to the power supply line; and
    A first input / output cell having a first input / output circuit connected to the first input / output terminal, the drain of the first NMOS transistor, and the drain of the first PMOS transistor;
    A second input / output terminal,
    A second NMOS transistor having a drain connected to the second input / output terminal and a source and a gate connected to the ground line;
    A second PMOS transistor having a drain connected to the second input / output terminal and a source and a gate connected to the power supply line; and
    A second input / output cell having a second input / output circuit connected to the second input / output terminal, the drain of the second NMOS transistor and the drain of the second PMOS transistor;
    The first PMOS transistor in the first input / output cell and the second NMOS transistor in the second input / output cell are arranged adjacent to each other, and the first input / output cell in the first input / output cell The first input / output cell and the second input / output cell are arranged such that the first NMOS transistor and the second PMOS transistor in the second input / output cell are arranged adjacent to each other. Semiconductor integrated circuits arranged adjacent to each other.
  2.  前記第1の入出力セルと前記第2の入出力セルとの間には、
     アノードが前記第1の入出力端子に接続され、カソードが前記第2の入出力端子に接続された第1のサイリスタが構成されており、且つ、
     カソードが前記第1の入出力端子に接続され、アノードが前記第2の入出力端子に接続された第2のサイリスタが構成されている
    請求項1に記載の半導体集積回路。
    Between the first input / output cell and the second input / output cell,
    A first thyristor having an anode connected to the first input / output terminal and a cathode connected to the second input / output terminal; and
    2. The semiconductor integrated circuit according to claim 1, wherein a second thyristor having a cathode connected to the first input / output terminal and an anode connected to the second input / output terminal is configured.
  3.  電源ライン及びグランドラインと、
     第1の入出力端子、
     カソードが前記第1の入出力端子に接続され、且つ、アノードが前記グランドラインに接続された第1のN型拡散層-P型ウェルダイオード、
     アノードが前記第1の入出力端子に接続され、且つ、カソードが前記電源ラインに接続された第1のP型拡散層-N型ウェルダイオード、並びに、
     前記第1の入出力端子、前記第1のN型拡散層-P型ウェルダイオードのカソード及び前記第1のP型拡散層-N型ウェルダイオードのアノードに接続された第1の入出力回路を有する第1の入出力セルと、
     第2の入出力端子、
     カソードが前記第2の入出力端子に接続され、且つ、アノードが前記グランドラインに接続された第2のN型拡散層-P型ウェルダイオード、
     アノードが前記第2の入出力端子に接続され、且つ、カソードが前記電源ラインに接続された第2のP型拡散層-N型ウェルダイオード、並びに、
     前記第2の入出力端子、前記第2のN型拡散層-P型ウェルダイオードのカソード及び前記第2のP型拡散層-N型ウェルダイオードのアノードに接続された第2の入出力回路を有する第2の入出力セルとを備えており、
     前記第1の入出力セルにおける前記第1のP型拡散層-N型ウェルダイオードと、前記第2の入出力セルにおける前記第2のN型拡散層-P型ウェルダイオードとが互いに隣接して配置され、且つ、前記第1の入出力セルにおける前記第1のN型拡散層-P型ウェルダイオードと、前記第2の入出力セルにおける前記第2のP型拡散層-N型ウェルダイオードとが互いに隣接して配置されるように、前記第1の入出力セル及び前記第2の入出力セルとが互いに隣接して配置されている
    半導体集積回路。
    A power line and a ground line;
    A first input / output terminal;
    A first N-type diffusion layer-P-type well diode having a cathode connected to the first input / output terminal and an anode connected to the ground line;
    A first P-type diffusion layer-N-type well diode having an anode connected to the first input / output terminal and a cathode connected to the power line; and
    A first input / output circuit connected to the first input / output terminal, the first N-type diffusion layer—the cathode of the P-type well diode, and the first P-type diffusion layer—the anode of the N-type well diode; A first input / output cell having
    A second input / output terminal,
    A second N-type diffusion layer-P-type well diode having a cathode connected to the second input / output terminal and an anode connected to the ground line;
    A second P-type diffusion layer-N-type well diode having an anode connected to the second input / output terminal and a cathode connected to the power line; and
    A second input / output circuit connected to the second input / output terminal, the second N-type diffusion layer—the cathode of the P-type well diode, and the second P-type diffusion layer—the anode of the N-type well diode; A second input / output cell having
    The first P-type diffusion layer-N-type well diode in the first input / output cell and the second N-type diffusion layer-P-type well diode in the second input / output cell are adjacent to each other. The first N-type diffusion layer-P-type well diode in the first input / output cell, and the second P-type diffusion layer-N-type well diode in the second input / output cell, A semiconductor integrated circuit in which the first input / output cell and the second input / output cell are arranged adjacent to each other such that are arranged adjacent to each other.
  4.  前記第1の入出力セルと前記第2の入出力セルとの間には、
     アノードが前記第1の入出力端子に接続され、カソードが前記第2の入出力端子に接続された第1のサイリスタが構成されており、且つ、
     カソードが前記第1の入出力端子に接続され、アノードが前記第2の入出力端子に接続された第2のサイリスタが構成されている
    請求項3に記載の半導体集積回路。
    Between the first input / output cell and the second input / output cell,
    A first thyristor having an anode connected to the first input / output terminal and a cathode connected to the second input / output terminal; and
    4. The semiconductor integrated circuit according to claim 3, wherein a second thyristor having a cathode connected to the first input / output terminal and an anode connected to the second input / output terminal is formed.
PCT/JP2011/002683 2010-11-08 2011-05-13 Semiconductor integrated circuit WO2012063378A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010249804A JP2012104552A (en) 2010-11-08 2010-11-08 Semiconductor integrated circuit
JP2010-249804 2010-11-08

Publications (1)

Publication Number Publication Date
WO2012063378A1 true WO2012063378A1 (en) 2012-05-18

Family

ID=46050553

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/002683 WO2012063378A1 (en) 2010-11-08 2011-05-13 Semiconductor integrated circuit

Country Status (2)

Country Link
JP (1) JP2012104552A (en)
WO (1) WO2012063378A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110518010A (en) * 2019-08-29 2019-11-29 上海华力微电子有限公司 A kind of PMOS device and its implementation of embedded thyristor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002094001A (en) * 2000-09-11 2002-03-29 Matsushita Electric Ind Co Ltd Esd protection structure of semiconductor integrated circuit
JP2004336032A (en) * 2003-04-30 2004-11-25 Texas Instr Inc <Ti> Structure of integrated circuit for conducting electrostatic discharge energy
JP2009146977A (en) * 2007-12-12 2009-07-02 Toyota Motor Corp Semiconductor device
JP2010147282A (en) * 2008-12-19 2010-07-01 Renesas Technology Corp Semiconductor integrated circuit device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002094001A (en) * 2000-09-11 2002-03-29 Matsushita Electric Ind Co Ltd Esd protection structure of semiconductor integrated circuit
JP2004336032A (en) * 2003-04-30 2004-11-25 Texas Instr Inc <Ti> Structure of integrated circuit for conducting electrostatic discharge energy
JP2009146977A (en) * 2007-12-12 2009-07-02 Toyota Motor Corp Semiconductor device
JP2010147282A (en) * 2008-12-19 2010-07-01 Renesas Technology Corp Semiconductor integrated circuit device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110518010A (en) * 2019-08-29 2019-11-29 上海华力微电子有限公司 A kind of PMOS device and its implementation of embedded thyristor
CN110518010B (en) * 2019-08-29 2021-07-16 上海华力微电子有限公司 PMOS device with embedded silicon controlled rectifier and implementation method thereof

Also Published As

Publication number Publication date
JP2012104552A (en) 2012-05-31

Similar Documents

Publication Publication Date Title
CN106898606B (en) Electrostatic discharge protection device with low trigger voltage
KR101870995B1 (en) Esd protection circuit of semiconductor integrated circuit
JP5190913B2 (en) Semiconductor integrated circuit device
KR100724335B1 (en) Silicon controlled rectifier for electrostatic discharge protection circuit and structure thereof
US7763908B2 (en) Design of silicon-controlled rectifier by considering electrostatic discharge robustness in human-body model and charged-device model devices
US20100044748A1 (en) Electrostatic discharge protection device
KR20180087852A (en) Semiconductor device
US20150178433A1 (en) Semiconductor integrated circuit device and method for designing layout of the same
US10163888B2 (en) Self-biased bidirectional ESD protection circuit
US8736022B2 (en) Semiconductor device with a diode-type ESD protection circuit
US20140167169A1 (en) Esd protection circuit
JP6398696B2 (en) Electrostatic protection circuit and semiconductor integrated circuit device
TWI718611B (en) High voltage circuitry device and its ring circuitry layout
JP4763324B2 (en) Electrostatic protection circuit and semiconductor device including the electrostatic protection circuit
JP6405986B2 (en) Electrostatic protection circuit and semiconductor integrated circuit device
US8952457B2 (en) Electrostatic discharge protection circuit
US8823129B2 (en) Latch-up prevention structure and method for ultra-small high voltage tolerant cell
US9019668B2 (en) Integrated circuit having a charged-device model electrostatic discharge protection mechanism
WO2012063378A1 (en) Semiconductor integrated circuit
JP2007227697A (en) Semiconductor device, and semiconductor integrated device
JP2008193019A (en) Semiconductor integrated-circuit device
KR102082644B1 (en) Semiconductor device
US9245988B2 (en) Electrostatic discharge protection device and electronic apparatus thereof
JP4620387B2 (en) Semiconductor protection device
JP2020161721A (en) Semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11839794

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11839794

Country of ref document: EP

Kind code of ref document: A1