WO2012062037A1 - 基于电子式互感器的输电线路行波故障测距方法 - Google Patents
基于电子式互感器的输电线路行波故障测距方法 Download PDFInfo
- Publication number
- WO2012062037A1 WO2012062037A1 PCT/CN2011/001591 CN2011001591W WO2012062037A1 WO 2012062037 A1 WO2012062037 A1 WO 2012062037A1 CN 2011001591 W CN2011001591 W CN 2011001591W WO 2012062037 A1 WO2012062037 A1 WO 2012062037A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- traveling wave
- fault location
- electronic transformer
- wave fault
- signal
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/08—Locating faults in cables, transmission lines, or networks
- G01R31/081—Locating faults in cables, transmission lines, or networks according to type of conductors
- G01R31/085—Locating faults in cables, transmission lines, or networks according to type of conductors in power transmission or distribution lines, e.g. overhead
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H7/00—Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
- H02H7/26—Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured
- H02H7/265—Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured making use of travelling wave theory
Definitions
- the invention relates to a traveling wave fault location method for a transmission line based on an electronic transformer, and belongs to the technical field of power system relay protection.
- the voltage and current signal conversion circuits In order to observe the transient traveling wave phenomenon on the transmission line on the secondary side, it is required that the voltage and current signal conversion circuits have sufficient response speed. For example, assuming that the traveling speed of the traveling wave is equal to the speed of light, in order to control the ranging resolution within 500 m, the rising time of the output signal of the voltage and current transient signal conversion circuit must be within 3. 3 us, and the cutoff frequency of the corresponding conversion circuit cannot be lower than 25kHz.
- the digitization and intelligence of substations have become a trend.
- intelligent substations 'Because some primary and secondary equipment and operation modes are different from conventional substations, some of the original equipments are no longer working properly, and can only be applied to smart substations after improvement.
- the traveling wave distance measuring device In the digital substation, the traveling wave distance measuring device is the same as the traditional substation in the principle of ranging. The main difference between the two is the change of signal extraction and processing.
- the electromagnetic wave current transformer and voltage transformer are mainly used to obtain the traveling wave fault information, while the intelligent substation mainly relies on the electronic transformer to extract the electrical information, then how to extract the available traveling wave fault from the electronic transformer Information becomes the key to achieving traveling wave ranging.
- Publication No. 101776725A discloses a transmission line fault location method, which acquires a three-phase line current line mode wave head by installing a Rogowski coil-based broadband transversal traveling wave detection device in a high voltage transmission line ->:
- the GPS high-precision clock is used to accurately determine the arrival time of the wave head.
- the real-time traveling wave mode mode wave velocity is measured online to realize accurate fault location.
- this method requires a high-voltage transmission line between the two substations Vietnamese t: Installation of two sets of traveling wave detection devices is very troublesome, the detection device is malfunctioning, and the inspection is inconvenient.
- the object of the present invention is to solve the problems of the transmission line and the wave distance measuring device in the intelligent substation application.
- the present invention extracts the available traveling wave fault information from the electronic transformer and provides an electronic transformer based on the electronic transformer. Traveling wave traveling fault location method.
- the traveling wave fault location method of the transmission line based on the electronic transformer is:
- the signal input module of the original traveling wave fault distance measuring device is changed to a digital signal input module suitable for the electronic transformer, and mainly includes a traveling wave signal combining unit, a traveling wave signal processing unit, and a traveling wave data transmission unit.
- (c) Optical fiber communication between the optical digital signal of the electronic transformer and the traveling wave fault location device.
- the sampling frequency is basically within 10 kfe, although it can meet the requirements of protection and other equipment, but the upper megahertz required for traveling wave fault location
- the signal, the existing electronic transformer can not provide, and therefore can not meet the requirements of traveling wave ranging. Therefore, in the digital substation to achieve the traveling wave fault location function, the first problem is to solve the problem of the extraction of the traveling wave signal.
- the present invention starts from an electronic transformer and makes appropriate modifications to the existing electronic transformer. Under the premise that the existing protection signal output is unchanged, another one is added to the traveling wave fault ranging not less than 1MHz signal output >
- the method adopted by the invention is to add a traveling wave signal high-speed data acquisition module in the transformer (Roche coil type electronic current transformer), and output a signal with a sampling frequency of 500 kHz to meet the needs of traveling wave fault location. Since this frequency is still less than ⁇ , this signal needs to be further processed to meet the reliability and accuracy of traveling wave fault location.
- the high-speed data acquisition and storage system of the traveling wave signal of the present invention can meet the demand of the high-speed data acquisition and storage system with low cost and low-cost data acquisition and storage system to meet the requirements of high-speed data processing.
- the information collected by the electronic transformer of the present invention is sent to the traveling wave fault ranging device in real time, but the traveling wave ranging device is activated only when the fault is detected.
- the traveling wave ranging device needs to access the time synchronization signal as in the conventional station.
- the high-stability hardware real-time clock (with a resolution of 1 S) inside the traveling wave acquisition device is accurately synchronized in seconds, so that the travel time error is always less than 1 ⁇ s.
- the invention solves the traveling wave fault signal differently from the conventional station, performs polynomial curve fitting on the traveling wave fault signal, determines the coefficient by the least square method, and reconstructs the dynamic process by using the obtained coefficient, so that the final data is the same. Traveling wave fault location data in conventional substation to achieve double-ended ranging and single-ended ranging analysis functions while ensuring ranging accuracy.
- the present invention employs a signal input processing unit that is different from conventional traveling wave ranging systems. Since the analog wave signal is different from the conventional wave station in the conventional station, the digital signal is collected from the electronic transformer. Therefore, the signal input module of the original fault distance measuring device should also be applied to the electronic device.
- the digital signal input module of the transformer comprises a traveling wave signal combining unit, a traveling wave signal processing unit and a data transmission unit based on the IEC 61850 standard.
- the invention adopts a data processing algorithm which is different from the traditional traveling wave ranging system. Even after the relevant transformer modification, the sampling frequency can only meet the basic needs of traveling wave fault location. In order to achieve the same ranging accuracy as the traditional traveling wave ranging system, a new data processing algorithm is needed to meet the requirements. Ranging needs.
- the invention can accurately calibrate the arrival time of the wave surge.
- the initial line wave of the fault only appears as a singular point at the starting point of its wave head, and this singularity is not affected by the attenuation and distortion of the traveling wave waveform caused by factors such as traveling wave dispersion and shock corona. Therefore, the starting point of the transient wave head should be used to characterize the arrival time of the line wave, and the propagation speed corresponding to the point is the overall propagation speed of the line wave. Since there is a certain rise time of the actual fault traveling wave signal, there is a certain deviation between the arrival time of the line wave surge directly detected by the traveling wave acquisition device and the actual arrival time of the line wave surge, which needs to be taken. The digital signal processing method is corrected.
- the wavelet modulus maximum value analysis method can be used to calibrate the arrival time of the wave surge, and the base small function with the second-order vanishing moment is selected to eliminate the line itself and the analog low-pass filter circuit in the traveling wave acquisition device. The effect of the singularity of the starting point of the surge wave.
- the beneficial effects of the present invention compared with the prior art are: 1 can directly collect the digital fault information outputted by the modified electronic transformer; 2 use a special digital signal processing algorithm to improve the ranging accuracy; 3 adopt an embedded system Technology and plug-in structure, no need to configure the background industrial computer, improve the reliability of the distance measuring device; 4 use a special high-speed data storage processing unit to buffer, record and real-time processing of traveling wave signals; 5 detection by wavelet transform technology The absolute time corresponding to the starting point of the traveling wave head, so that the ranging error of the double-ended modern traveling wave ranging principle is controlled within 330 meters.
- the method of the invention is suitable for traveling wave fault location of intelligent substation.
- FIG. 1 is a schematic diagram of a data processing flow of the present invention
- FIG. 2 is a schematic diagram of a working principle of a high-speed data acquisition module for traveling wave signal extraction according to the present invention
- FIG. 3 is a schematic diagram of a functional module of a traveling wave fault ranging device according to the present invention
- the figure numbers in the figure are expressed as: 1 is the electronic current transformer sensor head; 2 is the original low frequency signal acquisition circuit board; 3 is the original secondary processing system; 4 is the traveling wave signal high speed acquisition and processing board; 5 is the optical fiber; It is a traveling wave fault location device; 7 is a traveling wave signal combining unit; 8 is a traveling wave signal processing unit; 9 is a 61S50 standard traveling wave data transmission unit; 11 is a traveling wave acquisition and processing system; .12 is a traveling wave comprehensive analysis System; 13 is a remote maintenance system.
- FIG. 1 is a schematic diagram of a data processing flow of the present invention.
- the sampling frequency of the existing electronic transformer mainly meets the functional requirements of protection and measurement.
- the sampling frequency is basically around 10k3 ⁇ 4. It is difficult to meet the requirements of traveling wave ranging. It is necessary to add a separate high-speed data acquisition building block.
- the electronic current transformer sensing head 1 is composed of a Rogowisk coil and a collector circuit, and the ogowisk coil As the current sensor outputs a small pressure signal proportional to the primary current.
- a traveling wave high-speed data acquisition board 4 is added, and at the same time, the Rogowski coil is collected.
- Data in the case that the two acquisition modules do not affect each other, can not only ensure the output of the low frequency signal, but also the acquisition of the traveling wave fault signal.
- the signal collected from the electronic current transformer is input to the traveling wave fault ranging device 6 through the optical fiber 5, thereby realizing the fault location function of the transmission line monitored by the electronic transformer.
- FIG 2 is a schematic diagram of the working principle of the traveling wave signal high-speed data acquisition and processing board.
- the sampling board mainly includes the following three functional modules: 1 high-speed sampling unit: used to collect three-phase data required for traveling wave ranging; 2 low-speed sampling unit: judge whether the fault occurs or not, and the judgment result is sent to the high speed. The acquisition unit confirms whether to save the data.
- 3 Cache AM Temporarily stores high-speed data collection and waits for transmission.
- FIG. 3 is a schematic diagram of functional modules of the traveling wave fault ranging device of the present invention. Since the analog wave signal is different from the conventional wave station in the conventional station, the digital signal is collected from the electronic transformer. Therefore, the signal input module of the original fault distance measuring device should also be applied to the electronic device.
- the traveling wave fault ranging device 6 mainly includes the following three functional modules: 1 traveling wave signal combining unit 7: three-phase data for collecting traveling wave ranging; 2 traveling wave signal processing unit 8: The judgment result is sent to the 61850 standard data transmission unit 9; 3 61850 standard traveling wave data transmission unit 9: provides a data transmission interface conforming to the IEC 61850 standard.
- FIG. 4 is a schematic diagram of a specific implementation process of the present invention, as shown in FIG. 4.
- the transmission line fault location system using electronic transformers is mainly composed of four components: traveling wave storage and processing system 11, traveling wave comprehensive analysis system 12, remote maintenance system 13 and communication network, except signal source and processing algorithm. Different from the traditional traveling wave fault location system, the other is the same. '
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Locating Faults (AREA)
Description
基于电子式互感器的输电线路行波故障测距方法 技术领域
本发明涉及一种基于电子式互感器的输电线路行波故障测距方法, 属电力 系统继电保护技术领域。
背景技术
为了能够在二次侧观察到输电线路上的暂态行波现象, 要求电压、 电流信 号变换回路要有足够的响应速度。 例如, 假定行波传播速度等于光速, 为了将 测距分辩率控制在 500m以内, 电压和电流暂态信号变换回路输出信号的上升时 间必须在 3. 3us以内, 相应变换回路的截止频率不能低于 25kHz。
随着智能电网的发展, 变电站的数字化、 智能化已经成为一种趋势。 在智 能变电站中, '由于一些一、 二次设备以及运行方式不同于常规的变电站, 原有 一些设备已经不能正常工作, 只有在改进后才能继续应用于智能变电站。 输电 线路行波测距装置就存在这方面的问题。 在数字化变电站中, 行波测距装置在 测距原理上与传统变电站一样, 两者主要差异在于信号提取及处理方式的改变。 在传统变电站中, 主要是利用电磁式电流互感器和电压互感器获取行波故障信 息, 而智能变电站中主要依赖电子式互感器提取电气信息, 那么如何从电子式 互感器提取可用的行波故障信息就成为实现行波测距的关键。
公开号 101776725A公开了一种输电线路故障测距方法, 该发明通过在高压 输电线― )::安装基于罗氏线圈的宽频穿芯式行波检测装置, 采集三相线路电流行 模波头, 并利用 G P S高精度时钟精确判定波头到达时刻; 依据不同的波头时 差信息, 在线测量实时行波线模波速, 实现精确故障测距。 但这种方法需在两 个变电站之间的高压输电线路 ..... t:安装两套行波检测装置, 显得十分麻烦, 检测装置出现故障, 检修卜分不便。
发明内容
本发明的目的是, 为了解决输电线路行,波测距装置在智能变电站应用中存 在的一些问题, 本发明从电子式互感器提取可用的行波故障信息, 提供一种基 于电子式互感器的输电线路行波故障测距方法。
本发明的技术方案是: 基于电子式互感器的输电线路行波故障测距方法为:
(a)在电子式互感器中增加行波信号高速数据采集模块, 以满足行波故障 测距的需要;
(b )将原有行波故障测距装置的信号输入模块改为适用于电子式互感器的 数字信号输入模块, 主要包括行波信号合并单元、 行波信号处理单元、 行波数 据传输单元。
(c ) 电子式互感器光数字信号与行波故障测距装置之间采用光纤通信。 •由于现有的电子式互感器在采样频率上主要满足保护等功能需求, 因而其 采样频率基本在 lOkfe以内, 虽然能够满足保护等设备的要求, 但对于行波故障 测距需要的上兆赫兹的信号, 现有的电子式互感器则不能提供, 因而不能满足 行波测距的要求。 因此, 在数字化变电站中要实现行波故障测距功能, 首先就 要解决行波信号的提取问题。 为此,, 本发明从电子互感器入手, 对现有的电子 式互感器做适当改动, 在现有保护信号输出不变的前提下, 另外再增加一路适 用于行波故障测距的不小于 1MHz的信号输出 >
本发明采用的方式是在互感器 (罗氏线圈型电子式电流互感器) 中专门增 加一个行波信号高速数据采集模块, 输出采样频率为 500KHz的信号, 以满足行 波故障测距的需要。 由于这个频率仍小于 ΙΜΗζ, 因此需要对此信号进行进一步 的处理, 以满足行波故障测距的可靠性和精度。
由于高速数据采集频率高, 数据量特别大, 为了实现对暂态行波信号的不 间断采集, 需要一种高灵活性 (采样时间长度、 采样通道数、 触发方式等都可 以在线设置) 、 连续性 (多次数据记录之间无死区) 以及低成本的高速数据采 集存贮系统, 以满足高速数据处理的需求, 本发明中的行波信号高速数据采集 模块能够满足这种需求。
为了保证测距可靠性, 本发明中的电子;式互感器所采集信息实时送往行波 故障测距装置, 但只有在检测到故障时, 行波测距装置才启动。 为了实现双端 测距功能, 同常规站中的装置一样, 行波测距装置需接入时间同步信号。 采用 基于 GPS/北斗技术的电力系统同步时钟, 对行波采集装置内部的高稳定度硬件 实时时钟 (分辨率为 1 S ) 系统进行精确秒同步, 使其走时误差始终不超过 1 μ s, 满足了双端时间同步的要求。
由于采集信号频率的限制, 因此需要对行波故障信号做不同于常规站的处 理。 本发明对行波故障信号做不同于常规站的处理方法为, 对行波故障信号进 行多项式曲线拟合, 通过最小二乘法确定系数, 再利用求得的系数重构动态过 程,使最终数据同常规变电站中行波故障测距数据, 以实现双端测距和单端测距 分析功能, 同时保证测距精度。
本发明采用了区别于传统行波测距系统的信号输入处理单元。 由于不同于 常规站中行波测距装置采集的是模拟信号, 从电子式互感器上采集的是数字信 号, 因此, 对于原有的故障测距装置的信号输入模块, 也要改为适用于电子式 互感器的数字信号输入模块, 包括行波信号合并单元、 行波信号处理单元和基 于 IEC 61850标准的数据传输单元。
本发明采用了区别于传统行波测距系统的数据处理算法。 即使在进行相关 互感器改造后, 采样频率也只能满足行波故障测距的基本需要, 为了达到和传 统的行波测距系统一样的测距精度, 需要采用新的数据处理算法, 以满足测距 需要。
本发明对行波浪涌到达时刻能进行准确标定。 故障初始行波浪涌只在其波 头起始点表现为奇异点, 并且这种奇异性不受行波频散和冲击电晕等因素引起 的行波波形衰减和畸变的影响。 因此, 应该用暂态行波浪涌波头的起始点来表 征行波浪涌的到达时刻, 而对应于该点的传播速度就是行波浪涌的整体传播速 度。 由于实际故障行波信号存在一定的上升时间, '行波采集装置直接检测到的 行波浪涌到达时间与实际的行波浪涌到达时间之间存在一定的偏差, 需要采取
数字信号处理方法予以修正。 采用小波模极大值分析方法可以用于行波浪涌到 达时刻的标定, 选取具有 2阶消失矩的基小^函数, 以消除线路本身以及行波采 集装置中模拟低通滤波电路对行波浪涌波 ^起始点奇异特性的影响。
本发明与现有技术相比较的有益效果是., ①可直接采集经改造的电子式互 感器输出的数字故障信息; ②采用专门的数字信号处理算法, 提高测距精度; ③采用嵌入式系统技术和插件式结构, 不需要配置后台工控机, 提高了测距装 置的可靠性; ④采用专门的高速数据存贮处理单元对行波信号进行缓存、 记录 与实时处理; ⑤采用小波变换技术检测行波波头起始点所对应的绝对时间, 从 而将双端现代行波测距原理的测距误差控制庄 330米以内。
本发明方法适用于智能变电站的行波故障测距。
附图说明
图 1为本发明的数据处理流程示意图;
图 2为本发明用于行波信号提取的高速数据采集模块工作原理图; 图 3 为本发明的行波故障测距装置功能模块示意图;
图 4为本发明的具体实现示意图;
图中图号表示为: 1是电子式电流互感器传感头; 2是原低频信号采集线路 板; 3是原二次处理系统; 4是行波信号高速采集处理板; 5是光纤; 6是行波 故障测距装置; 7是行波信号合并单元; 8是行波信号处理单元; 9是 61S50标 准行波数据传输单元; 11是行波采集与处理系统; .12是行波综合分析系统; 13 是远程维护系统。
具体实施方式
本发明具体实施方式如图 1至图 4所示。
图 1为本发明的数据处理流程示意图。 如图 1所示, 现有电子式互感器采 样频率主要满足保护、 测量等功能需求, 其采样频率基本在 10k¾ 左右, 难以 达到行波测距要求, 必须再增加单独的高速数据采集樓块。 以电流互感器为例, 电子式电流互感器传感头 1由 Rogowisk线圈及采集器电路组成, ogowisk线圈
作为电流传感器输出正比于一次电流的小 压信号。 为了不改变互感器特性和 不影响原保护、测量等二次处理系统 3的数据采集, 在原低频信号采集线路板 2 的基础上, 增加一块行波高速数据采集处 板 4, 同时采集 Rogowski线圈的数 据, 在做到两个采集模块互不影响的情况下, 既能够保证低频率信号的输出, 也可以满足行波故障信号的采集。从电子式电流互感器采集的信号, 通过光纤 5 输入行波故障测距装置 6,实现采用电子式互感器实现监测的输电线路故障测距 功能。
图 2为行波信号高速数据采集处理板的工作原理示意图。 如图 2所示, 采 样板主要包括以下三个功能模块: ①高速采样单元: 用于采集行波测距所需三 相数据; ②低速采样单元: 判断故障发生与否, 判断结果发送给高速采集单元, 确认是否保存数据; ③高速缓存 AM: 临时存储高速采集数据, 等待发送。
图 3 本发明的行波故障测距装置功能模块示意图。 由于不同于常规站中行 波测距装置采集的是模拟信号, 从电子式互感器上采集的是数字信号, 因此, 对于原有的故障测距装置的信号输入模块, 也要改为适用于电子式互感器的数 字信号输入模块。 如图 3所示, 行波故障测距装置 6主要包括以下三个功能模 块: ①行波信号合并单元 7: 用于采集行波测距所需三相数据; ②行波信号处理 单元 8:判断故障发生与否,判断结果发送给 61850标准数据传输单元 9;③ 61850 标准行波数据传输单元 9: 提供遵循 IEC 61850标准的数据传输接口。
图 4为本发明具体实现流程示意图, 如图 4所示。 采用电子式互感器实现 监测的输电线路故障测距系统主要由行波存贮与处理系统 11、 行波综合分析系 统 12、远程维护系统 13以及通信网络等 4部分组成, 除信号来源和处理算法与 传统的行波故障测距系统有所区别, 其他一样。 '
Claims
1、 一种基于电子式互感器的输电线路行波故障测距方法, '其特征在于, 所 述方法为:
( a)在电子式互感器中增加行波信号高速数据采集模块, 以满足行波故障 测距的需要;
( b )将原有行波故障测距装置的信号输入模块改为适用于电子式互感器的 数字信号输入模块, 所述模块包括行波信号合并单元、 行波信号处理单元、 行 波数据传输单元;
( c ) 电子式互感器光数字信号与行波故障测距装置之间采用光纤通信。
2、 根据权利要求 1所述的基于电子式互感器的输电线路行波故障测距方法, 其特征在于, 所述方法对行波故障信号采用曲线拟合方法进行不同于常规站的 处理, 即对行波故障信号进行多项式曲线拟合, 通过最小二乘法确定系数, 再 利用求得的系数重构动态过程,使最终数据同常规变电站中行波故障测距数据, 实现双端测距和单端测距分析功能, 同时保证测距精度。
3、 根据权利要求 1所述的基于电子式互感器的输电线路行波故障测距方法, 其特征在于, 所述方法釆用小波模极大值分析方法可以用于行波浪涌到达时刻 的标定, 选取具有 2阶消失矩的基小波函数, 以消除线路本身以及行波采集装置 中模拟低通滤波电路对行波浪涌波头起始点奇异特性的影响。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010542342.8 | 2010-11-12 | ||
CN 201010542342 CN102033190A (zh) | 2010-11-12 | 2010-11-12 | 基于电子式互感器的输电线路行波故障测距方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012062037A1 true WO2012062037A1 (zh) | 2012-05-18 |
Family
ID=43886342
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2011/001591 WO2012062037A1 (zh) | 2010-11-12 | 2011-09-19 | 基于电子式互感器的输电线路行波故障测距方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN102033190A (zh) |
WO (1) | WO2012062037A1 (zh) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103941151A (zh) * | 2014-04-03 | 2014-07-23 | 昆明理工大学 | 一种利用电压、电流量配合不依赖双端同步的零、线模时差辐射网故障定位方法 |
CN103969524A (zh) * | 2014-04-18 | 2014-08-06 | 国家电网公司 | 基于反馈的智能扫描电子式互感器合并单元特性测试方法 |
CN108120899A (zh) * | 2017-12-21 | 2018-06-05 | 国网宁夏电力公司中卫供电公司 | 一种配电网单相接地故障单端区段定位方法 |
CN108872732A (zh) * | 2018-04-16 | 2018-11-23 | 南京理工大学 | 一种基于小波变换模极大值法的避雷器老化程度诊断方法 |
CN113109669A (zh) * | 2021-04-12 | 2021-07-13 | 国网陕西省电力公司西安供电公司 | 一种基于行波特征频率的配电网混联线路故障定位方法 |
CN113205127A (zh) * | 2021-04-27 | 2021-08-03 | 国网电力科学研究院有限公司 | 一种基于边缘计算的变压器自我诊断评估装置及方法 |
CN114113879A (zh) * | 2021-11-04 | 2022-03-01 | 云南电网有限责任公司 | 一种基于小波变换的低压线路故障定位方法及系统 |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102033190A (zh) * | 2010-11-12 | 2011-04-27 | 江西省电力科学研究院 | 基于电子式互感器的输电线路行波故障测距方法 |
CN102323516A (zh) * | 2011-09-06 | 2012-01-18 | 中国电力科学研究院 | 一种基于无源磁光玻璃电流互感器原理的行波测距装置 |
CN103091657A (zh) * | 2012-11-12 | 2013-05-08 | 辽宁省电力有限公司 | 一种行波测距系统校验方法 |
CN103135087B (zh) * | 2012-12-28 | 2015-12-02 | 辽宁省电力有限公司 | 电子式互感器整体检测与评估系统 |
CN103884964B (zh) * | 2014-03-17 | 2015-12-09 | 国家电网公司 | 一种基于iec61850通信规约的行波测距方法 |
CN103969554A (zh) * | 2014-05-30 | 2014-08-06 | 智友光电技术发展有限公司 | 高压电缆线路在线故障定位装置及其定位方法 |
CN104375018A (zh) * | 2014-07-11 | 2015-02-25 | 国家电网公司 | 将行波测距技术应用于电子式互感器智能化变电站的方法 |
CN105259470B (zh) * | 2015-09-30 | 2018-08-24 | 贵州电力试验研究院 | 一种基于光学电流互感器的故障测距系统和方法 |
CN105738766B (zh) * | 2016-02-23 | 2018-09-21 | 武汉大学 | 接触网单端行波故障定位装置 |
CN105911428A (zh) * | 2016-04-28 | 2016-08-31 | 国网河南省电力公司电力科学研究院 | 一种基于电压行波的故障测距装置 |
CN105929307A (zh) * | 2016-07-05 | 2016-09-07 | 哈尔滨工业大学 | 一种适应行波测距需求的电流采集器 |
CN106226588A (zh) * | 2016-07-05 | 2016-12-14 | 国家电网公司 | 一种适应行波测距需求的光学电流采集方法 |
CN107247214B (zh) * | 2017-06-30 | 2019-06-21 | 南京南瑞继保电气有限公司 | 一种集成输电线路保护、行波测距方法 |
CN110646689A (zh) * | 2019-09-10 | 2020-01-03 | 许继集团有限公司 | 一种同源双采样方式的行波测距方法与装置 |
CN113589100A (zh) * | 2021-07-26 | 2021-11-02 | 国电南瑞科技股份有限公司 | 基于双向长短期记忆和注意力机制的异常放电识别方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7535233B2 (en) * | 2004-07-15 | 2009-05-19 | Cooper Technologies Company | Traveling wave based relay protection |
CN102033190A (zh) * | 2010-11-12 | 2011-04-27 | 江西省电力科学研究院 | 基于电子式互感器的输电线路行波故障测距方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101242098B (zh) * | 2008-03-12 | 2010-06-23 | 昆明理工大学 | 一种直流输电线路行波保护的雷击故障识别方法 |
CN101776725B (zh) * | 2010-01-13 | 2011-07-20 | 上海交通大学 | 输电线路故障测距方法 |
CN101776710B (zh) * | 2010-02-01 | 2011-11-16 | 昆明理工大学 | 一种高压直流输电线路雷电绕击电流波形反演恢复方法 |
-
2010
- 2010-11-12 CN CN 201010542342 patent/CN102033190A/zh active Pending
-
2011
- 2011-09-19 WO PCT/CN2011/001591 patent/WO2012062037A1/zh active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7535233B2 (en) * | 2004-07-15 | 2009-05-19 | Cooper Technologies Company | Traveling wave based relay protection |
CN102033190A (zh) * | 2010-11-12 | 2011-04-27 | 江西省电力科学研究院 | 基于电子式互感器的输电线路行波故障测距方法 |
Non-Patent Citations (3)
Title |
---|
JIANG, SHENG ET AL.: "Wavelet Transform Based Singularity Detection of Traveling Wave Signal Containing Noise", POWER SYSTEM TECHNOLOGY, vol. 28, no. 10, May 2004 (2004-05-01), pages 59 - 62 * |
ZHANG, BINGDA ET AL.: "Cable Fault Location Based on Apparent Traveling Wave Velocity", HIGH VOLTAGE ENGINEERING, vol. 31, no. 2, February 2005 (2005-02-01), pages 79 - 80,86 * |
ZHU, HUOFENG: "Travelling Wave Fault Location Technology Base on Electronic Instrument Transformer in Smart Substation", CHINESE MASTER'S THESES FULL-TEXT DATABASE, ENGINEERING SCIENCE AND TECHNOLOGY II, September 2010 (2010-09-01), pages 26 * |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103941151A (zh) * | 2014-04-03 | 2014-07-23 | 昆明理工大学 | 一种利用电压、电流量配合不依赖双端同步的零、线模时差辐射网故障定位方法 |
CN103969524A (zh) * | 2014-04-18 | 2014-08-06 | 国家电网公司 | 基于反馈的智能扫描电子式互感器合并单元特性测试方法 |
CN108120899A (zh) * | 2017-12-21 | 2018-06-05 | 国网宁夏电力公司中卫供电公司 | 一种配电网单相接地故障单端区段定位方法 |
CN108120899B (zh) * | 2017-12-21 | 2019-11-12 | 国网宁夏电力公司中卫供电公司 | 一种配电网单相接地故障单端区段定位方法 |
CN108872732A (zh) * | 2018-04-16 | 2018-11-23 | 南京理工大学 | 一种基于小波变换模极大值法的避雷器老化程度诊断方法 |
CN113109669A (zh) * | 2021-04-12 | 2021-07-13 | 国网陕西省电力公司西安供电公司 | 一种基于行波特征频率的配电网混联线路故障定位方法 |
CN113109669B (zh) * | 2021-04-12 | 2022-11-25 | 国网陕西省电力公司西安供电公司 | 一种基于行波特征频率的配电网混联线路故障定位方法 |
CN113205127A (zh) * | 2021-04-27 | 2021-08-03 | 国网电力科学研究院有限公司 | 一种基于边缘计算的变压器自我诊断评估装置及方法 |
CN114113879A (zh) * | 2021-11-04 | 2022-03-01 | 云南电网有限责任公司 | 一种基于小波变换的低压线路故障定位方法及系统 |
CN114113879B (zh) * | 2021-11-04 | 2024-04-12 | 云南电网有限责任公司 | 一种基于小波变换的低压线路故障定位方法及系统 |
Also Published As
Publication number | Publication date |
---|---|
CN102033190A (zh) | 2011-04-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012062037A1 (zh) | 基于电子式互感器的输电线路行波故障测距方法 | |
CN103257280B (zh) | 基于电场传感器的容性设备介损监测方法 | |
WO2015117304A1 (zh) | 一种氧化锌避雷器在线监测系统及其方法 | |
CN103135013B (zh) | 数据采集器检测与评估系统 | |
CN106443307B (zh) | 变电设备绝缘在线监测系统 | |
CN105137158A (zh) | 电力系统暂态过电压监测系统 | |
CN105807182B (zh) | 一种输电线路的双端行波故障定位方法 | |
CN202770913U (zh) | 变压器套管介损在线监测装置 | |
CN107797007B (zh) | 一种现场容性设备在线监测装置的校验系统及检验方法 | |
Ma et al. | A Method of line fault location based on traveling wave theory | |
CN103454520A (zh) | 基于在线频率响应法的变压器绕组变形在线监测方法 | |
CN106199349B (zh) | 基于校准方波信号传递比的变压器局部放电区域判断方法 | |
CN203826281U (zh) | 一种真空断路器真空度监测装置 | |
CN108508399B (zh) | 基于电子式电压互感器传递过程仿真的电压暂态测试方法 | |
CN104897974A (zh) | 一种容性设备介质损耗测量方法及系统 | |
CN206411250U (zh) | 一种直流电子式电流互感器数字化实时校验装置 | |
CN110470963A (zh) | 一种基于dsp的高压容性设备绝缘性能在线监测装置 | |
CN204666729U (zh) | 一种容性设备介质损耗带电检测装置 | |
CN104076317A (zh) | 电力谐波引起的电子式电能表计量误差分析校正系统 | |
CN204116451U (zh) | 一种配电变压器能效计量检测装置 | |
CN203688701U (zh) | 变压器套管绝缘在线监测系统 | |
CN204101619U (zh) | 一种用于gis雷电侵入过电压的监测装置 | |
CN203025253U (zh) | 容性设备介质损耗带电测试装置 | |
CN203178369U (zh) | 适用于智能变电站的套管监测系统 | |
CN202815078U (zh) | 一种电流测量装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11839171 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11839171 Country of ref document: EP Kind code of ref document: A1 |