WO2012062034A1 - 基于电磁箝位机构的尺蠖运动直线电机 - Google Patents

基于电磁箝位机构的尺蠖运动直线电机 Download PDF

Info

Publication number
WO2012062034A1
WO2012062034A1 PCT/CN2011/001512 CN2011001512W WO2012062034A1 WO 2012062034 A1 WO2012062034 A1 WO 2012062034A1 CN 2011001512 W CN2011001512 W CN 2011001512W WO 2012062034 A1 WO2012062034 A1 WO 2012062034A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic
output shaft
casing
clamping mechanism
electromagnetic clamping
Prior art date
Application number
PCT/CN2011/001512
Other languages
English (en)
French (fr)
Inventor
杨斌堂
Original Assignee
上海交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海交通大学 filed Critical 上海交通大学
Priority to US13/884,949 priority Critical patent/US9306439B2/en
Publication of WO2012062034A1 publication Critical patent/WO2012062034A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K99/00Subject matter not provided for in other groups of this subclass
    • H02K99/20Motors

Definitions

  • the invention relates to a device in the technical field of electromagnetic motors, in particular to a ruler movement linear motor based on an electromagnetic clamping mechanism.
  • the present invention is directed to the above-mentioned deficiencies of the prior art, and provides a ruler-moving linear motor based on an electromagnetic clamping mechanism, which can control an mechanical rigid locking and releasing state by electromagnetic sensitivity, thereby making an electronically controlled super-large clamping force device.
  • This clamping device it is possible to make an extremely large load, a precisely moving drive or a linear motor.
  • the invention relates to an electromagnetic clamping mechanism, comprising: a magnetic field generating device, a rolling body, an output shaft and a casing, wherein: the magnetic field generating device is fixedly disposed outside the casing, and the casing and the rolling body are sequentially sleeved on the output shaft external.
  • the cross section of the casing is an isosceles trapezoid, a mirror-symmetrical hexagonal structure or a spindle shape;
  • the rolling body is made of a ferromagnetic material or a ferromagnetic-non-ferromagnetic composite material
  • the rolling elements are specifically more than one ball or roller.
  • the output shaft is a single or a plurality of rigid rods, plates, cables or steel cables connected in series by an intermediate telescopic expansion body.
  • the magnetic field generating device is any one of the following structures:
  • the invention relates to a ruler movement linear motor, comprising two or more electromagnetic clamping mechanisms arranged in pairs and symmetrically connected by an intermediate telescopic expansion body, wherein the ruler movement linear motor alternately controls one side card of a pair of electromagnetic clamping mechanisms Long-distance movement or reciprocating motion is achieved by releasing the other side.
  • the present invention works by:
  • the output shaft penetrates the casing, and one or more rolling bodies are disposed on the upper and lower sides of the inner output shaft of the casing, and the rolling elements are freely placed in the casing.
  • An electromagnetic coil is arranged on each of the two outer end faces of the housing, and the output shaft also penetrates the two electromagnetic coils, and the housing is fixed.
  • the rolling element in the free state is attracted to the side of the inner wall close to the housing due to the magnetic attraction. Since the cavity size of the cavity at the inner wall of the left end of the housing is slightly smaller than the size of the output shaft and the output shaft and the size of the rolling element in the same direction, when the rolling element is adsorbed, the rolling body will be It is caught between the output shaft and the inner wall of the housing (upper and lower sides) and cannot finally come into contact with the left side wall of the housing.
  • the output shaft drives the rolling elements due to the frictional force, so that the rolling elements are more tightly caught between the output shaft and the inner wall of the casing (upper and lower sides), resulting in the output shaft.
  • the clamp is locked, and the locking force increases as the drag force to the left increases, and the drag force becomes tighter.
  • the output shaft is in a one-way clamp clamping state in which the movement is locked to the left.
  • the rolling elements are attached to the right end of the housing. Since the cavity size of the cavity at the inner wall of the right end of the housing is slightly larger than the size of the output shaft and the output shaft and the size of the rolling element in the same direction, the rolling element is rolled when it is adsorbed. The body is not caught between the output shaft and the inner wall of the housing (upper and lower sides) and may eventually come into contact with the right side wall of the housing. At this point, the output shaft can be dragged left and right, and the output shaft is in the clamp release state.
  • the components are identical.
  • the mechanism of the electromagnetic coil is the same as before.
  • the attracting rolling element is close to the left inner wall of the casing.
  • the rolling element is attracted to the right inner wall of the housing so that the output shaft can be clamped by the bidirectional clamp. In this case, the output shaft can be bi-directionally clamped.
  • the mechanism of the electromagnetic coil is the same as before.
  • the moving body needs to move to the left, the attracting rolling body is close to the right inner wall of the housing.
  • the left inner wall measures so that the output shaft can move in both directions. In this case, the output shaft can be released in both directions.
  • any one of the electromagnetic coils at both ends of the housing can be replaced with a permanent magnet in its components. Body.
  • the clamping clamp and release state is achieved in exactly the same way as the aforementioned mechanism of action.
  • the electromagnetic force that only attracts the rolling of the rolling elements is the result of the combined action of the magnetic force generated by the electromagnetic coil and the force of the permanent magnetic force.
  • the suction rolling body is close to the side wall of the permanent magnet.
  • the position of the rolling elements in the housing can be controlled by means of an electromagnetic coil, so that clamping clamping and clamping release of the output shaft can also be achieved.
  • a one-way clamp and limit device in the case of power failure can be realized.
  • the permanent magnet is placed on the left side of the housing, so when the power is off, the output axial left movement is limited by the clamp.
  • the permanent magnet is placed on the right side of the housing, so the output shaft can be in the always released state when the power is off.
  • the invention has the following advantages: 1.
  • the mechanism is simple, the components are few, and the clamping force of the clamp can be realized; 2.
  • the electromagnetic signal control, the clamp and the motor motion control are sensitive and convenient; It is a basic clamp component that can be used in a wide variety of applications requiring clamp clamping mechanisms. 4.
  • the drive clamp process has low energy consumption and has no energy consumption and clamping performance.
  • the mechanism of the invention can be used for developing instruments and equipment requiring large displacement and ⁇ precision driving functions, as well as improvement of existing electric and magnetostrictive driving material application equipment and instruments, and can be widely applied to drivers (actuators), Brakes, sensors, motors, vibration and control equipment, robotics, precision manufacturing, biomedical engineering, etc.
  • FIG. 1 is a schematic structural view of a one-way electromagnetic clamp clamping mechanism of a linear motor based on a ruler movement
  • FIG. 2 is a schematic structural view of a two-way electromagnetic clamp clamping mechanism of a linear motor based on a ruler movement
  • FIG. 3 is a schematic structural view of an electromagnetic clamp-type clamping mechanism of an electromagnetic-permanent magnet excited linear motor based on a ruler;
  • FIG. 4 is a schematic diagram of a double permanent magnet clamp-limit mechanism;
  • FIG. 5 is a schematic diagram showing the state and structure of the electromagnetic clamp card clamping mechanism of the ruler-moving linear motor based on one or more rolling elements before and during operation;
  • Figure 6 is a schematic diagram of the mechanism of two or more types of linear motion motor clamping mechanism and telescopic expansion body combined into a squat motion linear motor based on the ruler movement linear motor (in the form of the fixed output shaft movement of the mechanism);
  • Fig. 7 is a schematic diagram of the mechanism of the two-or two-dimensional electromagnetic clamping clamp mechanism and the telescopic expansion body combined into a squat motion linear motor (the form in which the output shaft fixing mechanism moves).
  • Example 1 The embodiments of the present invention are described in detail below. The present embodiment is implemented on the premise of the technical solution of the present invention, and the detailed implementation manner and the specific operation process are given. However, the protection scope of the present invention is not limited to the following implementation. example. Example 1
  • the embodiment includes: a magnetic field generating device 1, a rolling body 2, an output shaft 3, and a housing 4, wherein: the magnetic field generating device 1 is fixedly disposed outside the housing 4, and the housing 4 and the rolling body 2 The sleeve is sequentially sleeved on the outside of the output shaft 3.
  • the magnetic field generating device 1 is two sets of electromagnetic coils 5, 6 respectively disposed on two sides of the casing 4 or two sets of permanent magnets 7 respectively disposed on two sides of the casing 4. 8 or electromagnetic coils 5 and permanent magnets 7 respectively disposed on both sides of the housing 4;
  • the rolling body 2 is made of a ferromagnetic material or a ferromagnetic-non-ferromagnetic composite material;
  • the output shaft 3 is a single rigid rod, plate, tube, cable or steel cable.
  • the housing of the housing 4 has a trapezoidal cross section
  • the output shaft 3 penetrates the casing 4, and the upper and lower sides of the inner output shaft 3 of the casing 4 are provided with a rolling body 2 (shown in Fig. 1), and the rolling bodies 2 are freely placed in the casing 4.
  • the first electromagnetic coil 5 and the second electromagnetic coil 6 are placed on the two outer end faces of the casing 4, and the output shaft 3 also penetrates the two electromagnetic coils, and the casing 4 is fixed.
  • the rolling element 2 in a free state is adsorbed on the side close to the left inner wall of the casing 4 due to the magnetic attraction. Since the cavity at the inner wall of the left end of the casing 4 has a cavity size in the moving direction of the vertical output shaft 3 is slightly smaller than that of the upper and lower rolling bodies 2 in the same direction as the output shaft 3 and the output shaft 3 (as shown in FIG. 1) The sum of the dimensions, so when the rolling bodies 2 are adsorbed, the rolling elements 2 are caught between the output shaft 3 and the inner wall of the casing 4 (upper and lower sides) and cannot finally come into contact with the left side wall of the casing 4.
  • the output shaft 3 drives the rolling elements 2 due to the frictional force, so that the rolling elements 2 are more tightly caught on the inner wall of the output shaft 3 and the casing 4 (upper and lower sides). Between, the output shaft 3 is clamped and locked, and the locking force increases as the drag force to the left increases, and the drag force becomes tighter. At this time, the output shaft 3 is in a one-way clamp chucking state in which the movement is moved to the left.
  • the rolling elements 2 are adsorbed at the right end face of the casing 4. Since the cavity at the inner wall of the right end of the casing 4 is slightly larger in the direction of movement of the vertical output shaft 3 than the output shaft 3 and the output shaft 3 in the same direction (as shown in FIG. 1), the upper and lower rolling elements 2 are The sum of the dimensions, so that when the rolling elements are adsorbed, the rolling bodies 2 are not caught between the output shaft 3 and the inner wall of the casing 4 (upper and lower sides), but may eventually contact the right side wall of the casing 4. . At this time, the output shaft 3 can be dragged left and right, and the output shaft 3 is in the clamp release state.
  • the rolling elements 2 are composed of one or more rolling elements, and the clamped state and the released state can be realized by electromagnetic control.
  • the cross section of the housing 4 in this embodiment is a spindle shape, specifically a mirror-symmetrical hexagonal structure,
  • the rolling elements 2 are symmetrically disposed in the casing 4, respectively, and the number of the rolling elements 2 is one pair or two pairs.
  • the rolling bodies 1 are in particular balls or rollers.
  • the clamping clamping and releasing state is realized in the same manner as the aforementioned magnetic attraction mechanism, except that the electromagnetic force that attracts the rolling of the rolling element 2 is a vector resultant force of the magnetic field force and the permanent magnetic force generated by the first electromagnetic coil 5 or the second electromagnetic coil 6. the result of.
  • the strong current is applied to the first electromagnetic coil 5 or the second electromagnetic coil 6 to generate a strong current.
  • the magnetic attraction force opposite to the suction of the permanent magnet 7 causes the rolling element 2 to approach the side wall of the first electromagnetic coil 5 or the second electromagnetic coil 6 side.
  • the smaller current or the passage of the first electromagnetic coil 5 or the second electromagnetic coil 6 can generate the same magnetic field as the permanent magnet 7.
  • the suction force of the permanent magnet 7 or the electric and permanent magnet composite suction force the suction rolling body 2 is close to the side wall of the permanent magnet 7.
  • the position of the rolling bodies 2 in the housing 4 can be controlled by a first electromagnetic coil 5 or a second electromagnetic coil 6, so that clamping clamping and clamping release of the output shaft 3 can also be achieved.
  • the output shaft can be unidirectionally clamped, limited or released in the event of a power failure.
  • the permanent magnets 7, 8 are respectively adsorbed on the inner side walls of the casing 4, and the output shaft 3 is output. It can realize the state of no power supply clamping and fixing.
  • the present embodiment relates to a linear motion motor of a ruler movement, comprising: two or more electromagnetic clamping mechanisms 9 arranged in pairs and symmetrically connected to each other by an intermediate telescopic expansion body 10, the ruler movement straight line
  • the motor realizes long-distance movement or reciprocation by alternately controlling one side of the pair of electromagnetic clamping mechanisms to be released from the other side.
  • the output shaft 3 in the electromagnetic clamping mechanism 9 is a plurality of rigid rods, plates, cables or steel cables connected in series by the intermediate telescopic expansion body 10.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Linear Motors (AREA)

Description

基于电磁箝位机构的尺蠖运动直线电机 技术领域
本发明涉及的是一种电磁电机技术领域的装置, 具体是一种基于电磁箝位机构的尺蠖运动 直线电机。
背景技术 说
近些年来, 电、 磁致伸缩驱动技术发展迅速, 产生了如巨磁致伸縮材料、 电陶瓷以及磁致 伸縮形状记忆合金等智能材料。 这些智能材料具有能量密度大, 输出功率高, 伸缩形变精确等 优点, 因此基于这些智能材料可以研发高性能驱动器书和直线电机。但是基于智能材料研制的直 线电机, 特别是对于尺蠖运动类直线电机, 由于没有性能匹配的箝位机构, 而使的智能材料的 大输出应力性能不能够得到充分发挥, 致使这类电机不能用于超大负载驱动、 传动领域。
经对现有技术的文献检索发现, Jaebran Kim等在 《 Mechatronics 》 (机械电子学期 刊, 2002年第 12期第几 525 - 542页)上发表的论文 A hybrid inchworm linear motor (混 合式尺蠖运动直线电机), 该直线电机的设计基于尺蠖运动机理, 由一个磁致伸縮机构和两个 压电伸縮机构组成; 磁致伸縮机构用来产生尺蠖运动直线位移, 两个压电伸缩机构作为尺蠖箝 位机构产生箝位动作。这种电机采用的压电箝位机构, 由于其使用的是脆性压电材料, 其抗挤 压能力有限, 过大的箝位及压力会将压电材料压碎, 致使箝位功能丧失, 其作直线驱动的磁致 伸縮机构可产生超大输出应力的性能因此无法实现。
发明内容
本发明针对现有技术存在的上述不足,提供一种基于电磁箝位机构的尺蠖运动直线电机,通 过电磁灵敏控制机械刚性锁紧和释放状态,而可以制成电控超大箝位力装置。利用这种箝位装置 可以制成超大负载、 精密移动的驱动装置或直线电机。
本发明是通过以下技术方案实现的:
本发明涉及一种电磁箝位机构, 包括: 磁场产生装置、 滚动体、 输出轴和壳体, 其中: 磁 场产生装置固定设置于壳体的外部, 壳体和滚动体依次套接于输出轴的外部。
所述的壳体的剖面为等腰梯形、 镜像对称的六边形结构或纺锤形;
所述的滚动体为铁磁材料或铁磁-非铁磁复合材料制成;
所述的滚动体具体为一个以上的滚珠或滚轴。
所述的输出轴为单根或多根由中间伸缩膨胀体串联连接的刚性的杆件、板件、线缆或钢缆。 所述的磁场产生装置为以下结构中的任意一种:
a)分别设置于壳体两侧的两组电磁线圈;
b)分别设置于壳体两侧的两组永磁体;
c)分别设置于壳体两侧的电磁线圈以及永磁体;
本发明涉及一种尺蠖运动直线电机,包括两个以上成对设置且由中间伸缩膨胀体相互对称 连接的电磁箝位机构,该尺蠖运动直线电机通过交替控制一对电磁箝位机构中一侧卡紧另一侧 释放的方式实现长距离移动或往复运动。
本发明通过以下方式进行工作:
初始状态下输出轴贯通壳体, 壳体内部输出轴上下两侧各设有一个以上滚动体, 滚动体在 壳体中自由放置。在壳体两个外端面各设有一个电磁线圈, 输出轴也贯穿这两个电磁线圈, 壳 体固定不动。
对壳体左端电磁线圈通电时, 处于自由状态的滚动体由于磁吸力, 吸附在靠近壳体做内壁 一侧。由于壳体左端内壁处腔体在垂直输出轴移动方向上的腔体尺寸略小于在同方向上输出轴 和输出轴上、 下测滚动体的尺寸之和, 所以当滚动体被吸附时, 滚动体会被卡在输出轴和壳体 (上、 下侧) 内壁之间, 而不能最终接触到壳体的左侧壁。 此时, 当拖动输出轴向左移动, 由 于摩擦力作用, 输出轴会带动滚动体, 使得滚动体更加紧地卡在输出轴和壳体(上、 下侧) 内 壁之间,致使输出轴被箝位锁紧,并且锁紧力随向左拖动力增大而增大,拖动力越大卡得越紧。 此时, 输出轴处于向左移动卡紧的单向箝位卡紧状态。
当给壳体左端电磁线圈断电, 同时给壳体右端电磁线圈通电, 滚动体被咴附在壳体内测右 端面处。由于壳体右端内壁处腔体在垂直输出轴移动方向上的腔体尺寸略大于在同方向上的输 出轴和输出轴上、 下测滚动体的尺寸之和, 所以当滚动体被吸附时, 滚动体不会被卡在输出轴 和壳体(上、 下侧) 内壁之间, 而可以最终接触到壳体的右侧壁。 此时, 输出轴可以被左、 右 拖动, 输出轴处于箝位释放状态。
组成部件完全相同, 当壳体变为对称梯形时, 电磁线圈通断作用机理同前, 当需要限制移 动体向左移动, 则吸引滚动体靠近壳体左内测壁, 当需要限制移动体向右移动, 则吸引滚动体 靠近壳体右内测壁, 这样输出轴可以被双向箝位卡紧。此种情况下, 输出轴可实现双向卡紧状 态。
当组成部件完全相同, 电磁线圈通断作用机理同前, 当需要移动体向左移动, 则吸引滚动 体靠近壳体右内测壁, 当需要移动体向右移动, 则吸引滚动体靠近壳体左内测壁, 这样输出轴 可以双向移动。 此种情况下, 输出轴可实现双向释放状态。
对于以上箝位机构,其组成部件中可以将壳体两端的电磁线圈中的任何一个线圈换成永磁 体。箝位卡紧和释放状态的实现与前述作用机理完全相同。 只是吸引滚动体滚动的电磁力是电 磁线圈产生的磁场力和永磁场力的矢量合力作用的结果。当需要将滚动体靠近电磁线圈一侧的 壳体内壁时, 则对电磁线圈通入较强的电流产生较强的与永磁吸力相反的磁吸力, 吸动滚动体 靠近电磁线圈一侧侧壁。 当需要将滚动体靠近永磁体一侧的壳体内壁时, 则对电磁线圈通入较 小的电流或通入与永磁体磁场同向的电磁场电流或断电, 则永磁吸力或电、 永磁复合吸力, 吸 动滚动体靠近永磁体一侧侧壁。这样, 通过一个电磁线圈可以控制滚动体在壳体中的位置, 从 而也可以实现对输出轴的箝位卡紧和箝位释放。 并且, 基于这种永磁吸力, 可以实现断电情况 下的单向箝位、限位装置。永磁体置于壳体左测,那么在断电时,输出轴向左移动被箝位限制。 永磁体置于壳体右测, 那么在断电时, 输出轴可处于始终释放状态。
当壳体两侧都使用永磁体, 并且其内部具有对称分布的滚动体, 那么输出轴将会卡紧而始 终不动, 这样可以实现一种永磁吸力永久箝位和固位装置。
与现有技术相比, 本发明具有以下优点: 1.机构简单, 组成部件少, 可以实现巨大的箝位 卡紧力; 2.电磁信号控制, 箝位和电机运动控制灵敏、 方便; 3.是一种基础箝位部件, 可以广 泛用于多种需要箝位卡紧机构领域。 4.驱动箝位过程能耗低, 具有无能耗卡紧性能。
本发明的机构可用于研制要求产生大位移、髙精度驱动功能的仪器和设备,以及对现有电、 磁致伸缩驱动材料应用设备、 仪器的改进, 可广泛应用于驱动器(致动器)、 制动器、 传感器、 电机、 振动及控制设备、 机器人、 精密制造、 生物医学工程等领域。
附图说明
图 1为基于尺蠖运动直线电机单向电磁箝位卡紧机构的结构示意图;
图 2为基于尺蠖运动直线电机双向电磁箝位卡紧机构的结构示意图;
图 3为电磁-永磁激励的基于尺蠖运动直线电机的电磁箝位卡紧机构的结构示意图; 图 4为双永磁箝位 -限位机构示意图;
图 5为一个以上滚动体作用的基于尺蠖运动直线电机的电磁箝卡紧位机构的在工作前和工 作中的状态和结构示意图;
图 6为两个或两个以上的基于尺蠖运动直线电机电磁箝位卡紧机构与伸縮膨胀体组合成尺 蠖运动直线电机的机构示意图 (机构固定输出轴移动的形式);
图 7为两个或两个以上的基于尺蠖运动直线电机电磁箝位卡紧机构与伸縮膨胀体组合成尺 蠖运动直线电机的机构示意图 (输出轴固定机构移动的形式)。
具体实施方式
下面对本发明的实施例作详细说明, 本实施例在以本发明技术方案为前提下进行实施, 给 出了详细的实施方式和具体的操作过程, 但本发明的保护范围不限于下述的实施例。 实施例 1
如图 1所示, 本实施例包括: 磁场产生装置 1、滚动体 2、输出轴 3和壳体 4, 其中: 磁场 产生装置 1固定设置于壳体 4的外部, 壳体 4和滚动体 2依次套接于输出轴 3的外部。
如图 1至图 4所示,所述的磁场产生装置 1为分别设置于壳体 4两侧的两组电磁线圈 5、 6 或者是分别设置于壳体 4两侧的两组永磁体 7、 8或者是分别设置于壳体 4两侧的电磁线圈 5 以及永磁体 7;
所述的滚动体 2为铁磁材料或铁磁-非铁磁复合材料制成;
所述的输出轴 3为单根刚性的杆件、 板件、 管体、 线缆或钢缆。
所述的壳体 4所述的壳体的剖面为梯形;
初始状态下输出轴 3贯通壳体 4, 壳体 4内部输出轴 3上、 下两侧各设有一个(如图 1所 示)滚动体 2, 滚动体 2在壳体 4中自由放置。 在壳体 4两个外端面放有第一电磁线圈 5和第 二电磁线圈 6, 输出轴 3也贯穿这两个电磁线圈, 壳体 4固定不动。
如图 1所示, 对壳体 4左端第一电磁线圈 5通电时, 处于自由状态的滚动体 2由于磁吸力 作用, 吸附在靠近壳体 4左内壁一侧。 由于壳体 4左端内壁处腔体在垂直输出轴 3移动方向上 的腔体尺寸略小于在同方向上输出轴 3和输出轴 3 (如图 1所示位置的)上、 下侧滚动体 2的 尺寸之和, 所以当滚动体 2被吸附时, 滚动体 2会被卡在输出轴 3和壳体 4 (上、 下侧) 内壁 之间,而不能最终接触到壳体 4的左侧壁。此时, 当拖动输出轴 3向左移动, 由于摩擦力作用, 输出轴 3会带动滚动体 2, 使得滚动体 2更加紧地卡在输出轴 3和壳体 4 (上、 下侧) 内壁之 间, 致使输出轴 3被箝位锁紧, 并且锁紧力随向左拖动力增大而增大, 拖动力越大卡得越紧。 此时, 输出轴 3处于向左移动卡紧的单向箝位卡紧状态。
当给壳体 4左端第一电磁线圈 5断电, 同时给壳体 4右端第二电磁线圈 6通电, 滚动体 2 被吸附在壳体 4内测右端面处。由于壳体 4右端内壁处腔体在垂直输出轴 3移动方向上的腔体 尺寸略大于在同方向上的输出轴 3和输出轴 3 (如图 1所示位置的)上、 下测滚动体 2的尺寸 之和, 所以当滚动体被吸附时, 滚动体 2不会被卡在输出轴 3和壳体 4 (上、 下侧)内壁之间, 而可以最终接触到壳体 4的右侧壁。 此时, 输出轴 3可以被左、 右拖动, 输出轴 3处于箝位释 放状态。
如图 5所示, 对于以上实施例滚动体 2为一个以上的滚动体组成, 可已通过电磁控制实现 箝位卡紧状态和释放状态。
至此, 相对输出轴 3的单向电磁箝位和箝位释放两种状态得以实现。
实施例 2
如图 2所示, 本实施例中的壳体 4的剖面为纺锤形, 具体为镜像对称的六边形结构, 所述 的滚动体 2分别对称设置于壳体 4内, 滚动体 2的个数为一对或两对。
所述的滚动体 1具体为滚珠或滚轴。
如图 3和图 4所示。箝位卡紧和释放状态的实现与前述磁吸力作用机理相同, 只是吸引滚 动体 2滚动的电磁力是第一电磁线圈 5或第二电磁线圈 6产生的磁场力和永磁场力的矢量合力 作用的结果。当需要将滚动体 2靠近第一电磁线圈 5或第二电磁线圈 6—侧的壳体 4的内壁时, 则对第一电磁线圈 5或第二电磁线圈 6通入较强的电流产生较强的与永磁体 7吸力相反的磁吸 力, 吸动滚动体 2靠近第一电磁线圈 5或第二电磁线圈 6—侧的侧壁。 当需要将滚动体 2靠近 永磁体 7—侧的壳体 4的内壁时,则对第一电磁线圈 5或第二电磁线圈 6通入较小的电流或通 入能产生与永磁体 7磁场同向的电磁场电流或断电, 则永磁体 7的吸力或电、 永磁复合吸力, 吸动滚动体 2靠近永磁体 7—侧侧壁。这样, 通过一个第一电磁线圈 5或第二电磁线圈 6可以 控制滚动体 2在壳体 4中的位置, 从而也可以实现对输出轴 3的箝位卡紧和箝位释放。 并且, 基于这种永磁体 7的吸力, 可以实现断电情况下的输出轴单向箝位、 限位或释放状态。
如图 3 (a)所示, 当永磁体 7置于壳体 4左测,那么在断电时,输出轴 3向左移动被箝位限 制。 如图 3 (b)所示, 永磁体 7置于壳体 4右测, 那么断电时, 输出轴 3可处于始终释放状态。
至此,相对输出轴 3的电磁线圈和永磁体共同作用的作用的单向电磁箝位和箝位释放两种 状态得以实现。
另外,对于如图 4所示的双永磁体 7、 8的结构形式, 对于两对滚动体 2, 初始状态下被永 磁体 7、 8分别吸附在壳体 4两内侧壁上, 则输出轴 3可以实现无电源激励卡紧固定状态。
实施例 3
如图 6、 图 7所示, 本实施例中涉及一种尺蠖运动直线电机, 包括: 两个以上成对设置且 由中间伸縮膨胀体 10相互对称连接的电磁箝位机构 9,该尺蠖运动直线电机通过交替控制一对 电磁箝位机构中一侧卡紧另一侧释放的方式实现长距离移动或往复运动。
所述的电磁箝位机构 9中的输出轴 3为多根由中间伸缩膨胀体 10串联连接的刚性的杆件、 板件、 线缆或钢缆。
本实施例通过交替控制如图 6、 图 7中的直线电机的左边的箝位机构 9卡紧, 右边的箝位 机构 9释放, 此时中间伸缩膨胀体 10伸长会推动右端的输出轴 3向右端移动; 之后, 控制伸 缩膨胀体 10右边箝位机构 9卡紧, 释放伸縮膨胀体 10左端箝位机构 9, 然后收縮中间伸縮膨 胀体 10, 此时由于右端卡紧, 左端释放, 所以电机中间膨胀体 10也即是电机整体, 将随着中 间伸縮膨胀体 10的收缩而向右移动。 重复以上过程, 该电机将会单次移动位移累加, 变成一 个可长距离移动的直线电机。 并且, 通过控制电机的左和右端箝位的先后次序, 可以实现该电 机的往复运动。

Claims

权 利 要 求 书
1、一种电磁箝位机构, 其特征在于, 包括: 磁场产生装置、滚动体、输出轴和壳体, 其中: 磁场产生装置固定设置于壳体的外部, 壳体和滚动体依次套接于输出轴的外部。
2、 根据权利要求 1所述的电磁箝位机构, 其特征是, 所述的磁场产生装置为以下结构中 的任意一种:
a)分别设置于壳体两侧的两组电磁线圈;
b)分别设置于壳体两侧的两组永磁体;
c)分别设置于壳体两侧的电磁线圈以及永磁体。
3、 根据权利要求 1所述的电磁箝位机构, 其特征是, 所述的壳体的剖面为等腰梯形、 镜 像对称的六边形结构或纺锤形。
4、根据权利要求1所述的电磁箝位机构, 其特征是, 所述的滚动体为铁磁材料或铁磁-非 铁磁复合材料制成。
5、 根据权利要求 1所述的电磁箝位机构, 其特征是, 所述的滚动体具体为一个以上的滚 珠或滚轴。
6、 根据权利要求 1所述的电磁箝位机构, 其特征是, 所述的输出轴为单根或多根由中间 伸縮膨胀体串联连接的刚性杆件、 板件、 线缆或钢缆。
7、 根据权利要求 1所述的电磁箝位机构, 其特征是, 所述的壳体为等腰梯形或镜像对称 的六边形结构。
8、 一种尺蠖运动直线电机, 其特征在于, 包括两个以上成对设置且由中间伸縮膨胀体相 互对称连接的如上述任一权利要求所述的电磁箝位机构,该尺蠖运动直线电机通过交替控制一 对电磁箝位机构中一侧卡紧另一侧释放的方式实现长距离移动或往复运动。
PCT/CN2011/001512 2010-11-12 2011-09-06 基于电磁箝位机构的尺蠖运动直线电机 WO2012062034A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/884,949 US9306439B2 (en) 2010-11-12 2011-09-06 Inchworm motion linear motor based on electromagnetic clamping mechanism

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2010105416509A CN101976932B (zh) 2010-11-12 2010-11-12 基于电磁箝位机构的尺蠖运动直线电机
CN201010541650.9 2010-11-12

Publications (1)

Publication Number Publication Date
WO2012062034A1 true WO2012062034A1 (zh) 2012-05-18

Family

ID=43576788

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/001512 WO2012062034A1 (zh) 2010-11-12 2011-09-06 基于电磁箝位机构的尺蠖运动直线电机

Country Status (3)

Country Link
US (1) US9306439B2 (zh)
CN (1) CN101976932B (zh)
WO (1) WO2012062034A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8490955B2 (en) * 2008-09-19 2013-07-23 The Boeing Company Electromagnetic clamping device
US8864120B2 (en) * 2009-07-24 2014-10-21 The Boeing Company Electromagnetic clamping system for manufacturing large structures
CN101976932B (zh) * 2010-11-12 2012-07-04 上海交通大学 基于电磁箝位机构的尺蠖运动直线电机
CN105527840B (zh) * 2016-01-20 2019-05-24 上海交通大学 电磁自适应箝位夹紧装置及组合式箝位夹紧装置
CN108933499B (zh) * 2017-05-23 2024-05-14 杨斌堂 自变形驱动装置及套杆、框架、轴系统
CN109751348B (zh) * 2017-11-01 2024-03-19 杨斌堂 转动箝位机构
CN112994518A (zh) * 2019-12-13 2021-06-18 宁波奥克斯电气股份有限公司 一种压电尺蠖旋转电机
DE102020107984A1 (de) 2020-03-23 2021-09-23 Christian Erker Motor zum antreiben eines starren körpers

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1206865A (zh) * 1998-07-10 1999-02-03 清华大学 蠕动式压电/电致伸缩微进给定位装置
CN1525635A (zh) * 2003-09-17 2004-09-01 吉林大学 定子钳位式步进机构
CN1569404A (zh) * 2003-07-15 2005-01-26 西北工业大学 伸缩变形箝位/定位方法
CN1758523A (zh) * 2004-10-09 2006-04-12 西北工业大学 磁致伸缩直线运动驱动器
CN101976932A (zh) * 2010-11-12 2011-02-16 上海交通大学 基于电磁箝位机构的尺蠖运动直线电机
CN201887641U (zh) * 2010-11-12 2011-06-29 上海交通大学 电磁箝位机构及其尺蠖运动直线电机

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5355597A (en) * 1976-10-28 1978-05-20 Inoue Japax Res Inc Device for horizontally moving working table or spindle
DE2809975A1 (de) * 1978-03-08 1979-09-20 Bosch Gmbh Robert Magnetstellwerk fuer eine regeleinrichtung
US6093989A (en) * 1990-06-04 2000-07-25 Joffe; Benjamin Advanced magnetically-stabilized couplings and bearings, for use in mechanical drives
US6317287B1 (en) * 1995-04-07 2001-11-13 Copal Company Limited Motor with output shaft having lead screw portion and pre-load generating mechanism
JP3593672B2 (ja) * 1998-05-01 2004-11-24 日創電機株式会社 成形機
KR101241666B1 (ko) * 2005-08-31 2013-03-11 티에치케이 가부시끼가이샤 리니어 모터
DE112006002849T5 (de) * 2005-10-21 2008-09-25 Kabushiki Kaisha Yaskawa Denki, Kitakyushu Zylindrischer Linearmotor
US7411322B2 (en) * 2005-12-06 2008-08-12 Lucent Technologies Inc. Micromachined reluctance motor
CN101207320B (zh) * 2007-12-13 2010-06-02 上海交通大学 快速直线电机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1206865A (zh) * 1998-07-10 1999-02-03 清华大学 蠕动式压电/电致伸缩微进给定位装置
CN1569404A (zh) * 2003-07-15 2005-01-26 西北工业大学 伸缩变形箝位/定位方法
CN1525635A (zh) * 2003-09-17 2004-09-01 吉林大学 定子钳位式步进机构
CN1758523A (zh) * 2004-10-09 2006-04-12 西北工业大学 磁致伸缩直线运动驱动器
CN101976932A (zh) * 2010-11-12 2011-02-16 上海交通大学 基于电磁箝位机构的尺蠖运动直线电机
CN201887641U (zh) * 2010-11-12 2011-06-29 上海交通大学 电磁箝位机构及其尺蠖运动直线电机

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JACOB JOSEPH LOVERICH.: "Development of a New High Specific Power Piezoelectric Actuator.", THE PENNSYLVANIA STATE UNIVERSITY, December 2004 (2004-12-01), THE PENNSYLVANIA STATE UNIVERSITY. *
ZHANG, ZHAOCHENG ET AL.: "Research Progress of Inchworm Actuator with Clutch Clamping Mechanism.", MICROMOTORS., vol. 42, no. 7, July 2009 (2009-07-01), pages 61 - 64 *

Also Published As

Publication number Publication date
CN101976932A (zh) 2011-02-16
US9306439B2 (en) 2016-04-05
US20140111033A1 (en) 2014-04-24
CN101976932B (zh) 2012-07-04

Similar Documents

Publication Publication Date Title
WO2012062034A1 (zh) 基于电磁箝位机构的尺蠖运动直线电机
US6982502B1 (en) Hybrid electric linear actuator
CN103001392B (zh) 基于电磁能和永磁能复合能量的摆动驱动装置
CN100587992C (zh) 磁致伸缩装置以及采用该装置的直线电机与振动装置
CN102983778B (zh) 基于超磁致伸缩材料的旋转电机
US20130334902A1 (en) Inchworm actuator
CN201038194Y (zh) 磁致伸缩装置以及采用该装置的直线电机与振动装置
CN111360803B (zh) 一种电磁人工肌肉
CN201887641U (zh) 电磁箝位机构及其尺蠖运动直线电机
CN201869079U (zh) 用于直线电机的电磁-永磁箝位机构
CN105527840B (zh) 电磁自适应箝位夹紧装置及组合式箝位夹紧装置
CN109304694B (zh) 一种电磁应力驱动的三自由度定位机构及控制方法
CN109039146B (zh) 一种惯性粘滑驱动跨尺度精密运动平台
CN103684039B (zh) 磁致伸缩式惯性冲击驱动器
Ci et al. A square-plate piezoelectric linear motor operating in two orthogonal and isomorphic face-diagonal-bending modes
CN205563122U (zh) 电磁自适应箝位夹紧装置及组合式箝位夹紧装置
CN101976931B (zh) 用于直线电机的电磁-永磁箝位机构
CN104124891A (zh) 压电振子及包括该压电振子的精密位移平台
WO2005015652A1 (fr) Procedes de positionnement et de liberation d'un corps de serrage deformable
PENG et al. A linear micro-stage with a long stroke for precision positioning of micro-objects
JP2014081002A (ja) 磁気バネ装置
Badr et al. Applications of piezoelectric materials
CN213637443U (zh) 一种Galfenol合金驱动的双惯性冲击式精密步进微型直线电机
Yan et al. Flux field formulation and back-iron analysis of tubular linear machines
Ueno et al. Linear step motor based on magnetic force control using composite of magnetostrictive and piezoelectric materials

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11840185

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13884949

Country of ref document: US

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 11/10/2013)

122 Ep: pct application non-entry in european phase

Ref document number: 11840185

Country of ref document: EP

Kind code of ref document: A1