WO2012060640A9 - 광대역 무선 접속 시스템에서의 상향링크 전력 제어 방법 - Google Patents

광대역 무선 접속 시스템에서의 상향링크 전력 제어 방법 Download PDF

Info

Publication number
WO2012060640A9
WO2012060640A9 PCT/KR2011/008326 KR2011008326W WO2012060640A9 WO 2012060640 A9 WO2012060640 A9 WO 2012060640A9 KR 2011008326 W KR2011008326 W KR 2011008326W WO 2012060640 A9 WO2012060640 A9 WO 2012060640A9
Authority
WO
WIPO (PCT)
Prior art keywords
base station
message
terminal
power control
ranging
Prior art date
Application number
PCT/KR2011/008326
Other languages
English (en)
French (fr)
Other versions
WO2012060640A3 (ko
WO2012060640A2 (ko
Inventor
정인욱
곽진삼
류기선
이욱봉
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020110032175A external-priority patent/KR101759940B1/ko
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US13/883,245 priority Critical patent/US9026116B2/en
Priority to CN201180062862.1A priority patent/CN103270795B/zh
Priority to JP2013537607A priority patent/JP5715706B2/ja
Publication of WO2012060640A2 publication Critical patent/WO2012060640A2/ko
Publication of WO2012060640A3 publication Critical patent/WO2012060640A3/ko
Publication of WO2012060640A9 publication Critical patent/WO2012060640A9/ko
Priority to US14/569,503 priority patent/US9369972B2/en
Priority to US15/146,101 priority patent/US9674794B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point

Definitions

  • the present invention relates to a broadband wireless access system, and more particularly, to a method for efficiently determining power of ranging performed by a terminal to a target base station or a target area during handover or region change.
  • Handover refers to a terminal moving from a radio interface of one base station to a radio interface of another base station.
  • HO Handover procedure
  • a serving base station transmits neighboring base station information to a neighbor announcement (MOB_NBR) in order to inform a mobile station (MS) of a basic network configuration information (topology). Broadcast through an ADV message.
  • SBS serving base station
  • MOB_NBR neighbor announcement
  • MS mobile station
  • topology basic network configuration information
  • the MOB_NBR-ADV message includes system information about the serving base station and neighbor base stations, for example, preamble index, frequency, HO optimization possibility, and downlink channel descriptor / DCD. (Uplink Channel Descriptor) information and the like.
  • the DCD / UCD information includes information that the terminal needs to know in order to perform information communication through downlink and uplink in the terminal. For example, there is information such as handover trigger (HO trigger) information, a medium access control version (MAC) of the base station, and media independent handover capability (MIH).
  • HO trigger handover trigger
  • MAC medium access control version
  • MIH media independent handover capability
  • the general MOB_NBR-ADV message includes only information on neighbor base stations of the IEEE 802.16e type. Accordingly, neighbor base station information having a type other than IEEE 802.16e may be broadcast to terminals through a SII-ADV (Service Identity Information ADVertisement) message. Accordingly, the terminal may obtain information on the heterogeneous network base station by requesting the serving base station to transmit the SII-ADV message.
  • SII-ADV Service Identity Information ADVertisement
  • FIG. 1 shows an example of a handover procedure that may be performed in a general IEEE 802.16 system.
  • a terminal MS may be connected to a serving base station SBS to perform data exchange (S101).
  • the serving base station may periodically broadcast information about neighboring base stations located therein to the terminal through a MOB_NBR-ADV message (S102).
  • the UE may start scanning for candidate HO BSs using a handover trigger condition while communicating with the serving base station.
  • a handover condition for example, a predetermined hysteresis margin value
  • the terminal may request a serving base station to perform a handover procedure by transmitting a handover request (MOB_MSHO-REQ) message (S103).
  • MOB_MSHO-REQ handover request
  • the serving base station may inform the candidate base station (candidate HO BS) included in the MOB_MSHO-REQ message through the HO-REQ message of the handover request of the terminal (S104).
  • Candidate base stations BS may take preliminary measures for the UE requesting the handover and transmit information related to the handover to the serving base station through the HO-RSP message (S105).
  • the serving base station may transmit information related to handover obtained from candidate base stations through a HO-RSP message to the terminal through a handover response (MOB_BSHO-RSP) message.
  • the MOB_BSHO-RSP message includes information for performing handover such as an action time for handover, a handover identifier (HO-ID), and a dedicated handover CDMA ranging code. It may be included (S106).
  • the terminal may determine one target base station among the candidate stations based on the information included in the MOB_BSHO-RSP message received from the serving base station. Accordingly, the terminal may attempt ranging by transmitting the CDMA code to the determined target base station (S107).
  • the target base station may transmit success of ranging and physical correction values through a ranging response (RNG-RSP) message to the terminal (S108).
  • RNG-RSP ranging response
  • the terminal may transmit a ranging request (RNG-REQ) message for authentication to the target base station (S109).
  • RNG-REQ ranging request
  • the target base station receiving the ranging request message of the terminal may provide the terminal with system ranging information such as CID (Connection IDentifier) that can be used in the corresponding base station through the ranging response message (S110).
  • system ranging information such as CID (Connection IDentifier) that can be used in the corresponding base station through the ranging response message (S110).
  • the target base station may inform the serving base station of the terminal whether the handover is successful through the handover completion message (HO-CMPT) (S111).
  • HO-CMPT handover completion message
  • the terminal may perform information exchange with the target base station which performed the handover (S112).
  • the above handover procedure is assumed to be performed between the terminal and the base station conforming to the IEEE 802.16e (WirelessMAN-OFDMA R1 Reference System) standard.
  • IEEE 802.16m WirelessMAN-Advanced Air Interface
  • some types of medium access control (MAC) management messages and parameters included therein may be different. For example, a ranging request / response (RNG-REQ / RSP) message is replaced with an enhanced ranging request / response (AAI-RNG-REQ / RSP) message and a handover response (BSHO-RSP) message is handovered. Replaced with an Command (AAI-HO-CMD) message.
  • RNG-REQ / RSP ranging request / response
  • AI-RNG-REQ / RSP enhanced ranging request / response
  • BSHO-RSP handover response
  • the optimal transmission power is not known, so The transmission is performed at the default power. If the power is too low, the signal may not be transmitted correctly, and if the power is too strong, it may cause interference with signals transmitted by other terminals or battery consumption of the terminal, so optimal uplink power control is an important factor.
  • the base station transmits a ranging acknowledgment (AAI_RNG-ACK) message to the terminal in response to the ranging code transmitted from the terminal.
  • the terminal may know information such as whether a ranging code is detected, a physical correction value, and determine whether retransmission of the ranging code is necessary. If the default power is inappropriate for the channel environment between the current terminal and the base station, the ranging status field is set to "continue" in the ranging acknowledgment message, and the power correction value is included in the message. In this case, the terminal transmits the ranging code to the target base station again at the transmission power to which the correction value is applied. In this process, an unnecessary delay occurs and an efficient uplink power determination method is required to solve this problem. Such a problem in power control may similarly occur when the terminal changes an area in the base station operating in the mixed mode.
  • an object of the present invention is to define a more efficient uplink power determination method.
  • the present invention provides a method for efficiently determining uplink transmission power in performing ranging to a target base station or a target area during a handover.
  • a method for performing uplink power control for network reentry from a first area to a second area by the terminal from the first area Receiving a MAC management message including a power control parameter to be applied to the second area; And performing ranging to the second area by applying the power control parameter.
  • the first area is a serving base station (S-ABS)
  • the second area is a target base station (S-ABS)
  • the medium access control management message may be a handover command (AAI-HO-CMD) message.
  • the handover command message may further include a dedicated ranging code, and the performing of the ranging may include transmitting the dedicated ranging code to the target base station.
  • the first region is an LZone of a base station operating in a mixed mode
  • the second region is an MZone of the base station
  • the media access control management message is a ranging response (RNG-RSP) message.
  • RNG-RSP ranging response
  • the ranging response message may further include a temporary identifier (TSTID) for temporarily identifying the terminal in the M zone, and the performing of the ranging may include requesting an uplink resource for transmitting a ranging request message. And transmitting the band request (BR) information to the M-zone, wherein the power control parameter may be applied to the band request information.
  • TSTID temporary identifier
  • BR band request
  • the serving base station supports handover in consideration of uplink power control of the terminal, a dedicated ranging code and power from the target base station Receiving control information; And transmitting a handover command (AAI-HO-CMD) message including a power control parameter to be applied to the target base station and the dedicated ranging code to the terminal.
  • a handover command (AAI-HO-CMD) message including a power control parameter to be applied to the target base station and the dedicated ranging code to the terminal.
  • the base station operating in the mixed mode to support the area change in consideration of the uplink power control of the terminal, through the first region Transmitting a ranging response message to the terminal, the ranging response message including a temporary identifier for identifying the terminal in a second region and a power control parameter to be applied to the second region; And receiving band request information including the temporary identifier through the second region.
  • an improved terminal (AMS) device for performing uplink power control for network reentry from the first area to the second area of the broadband wireless access system according to an embodiment of the present invention includes a processor; And a radio communication (RF) module for transmitting and receiving a radio signal to and from the outside under the control of the processor.
  • a radio communication (RF) module for transmitting and receiving a radio signal to and from the outside under the control of the processor.
  • the first area is a serving base station (S-ABS)
  • the second area is a target base station (S-ABS)
  • the medium access control management message may be a handover command (AAI-HO-CMD) message.
  • the handover command message may further include a dedicated ranging code, and the processor may control to transmit the power control parameter to the dedicated ranging code and transmit the same to the target base station.
  • the first region is an LZone of a base station operating in a mixed mode
  • the second region is an MZone of the base station
  • the media access control management message is a ranging response (RNG-RSP) message. Is preferably.
  • the ranging response message further includes a temporary identifier (TSTID) for temporarily identifying the terminal device in the M zone, and the processor is a band for requesting an uplink resource for transmitting the ranging request message
  • TSTID temporary identifier
  • the power control parameter may be applied to the request (BR) information to control the transmission to the M-zone.
  • the power control parameter may include a tropical rain interference (iotFP) value and an offset control value of frequency division.
  • iotFP tropical rain interference
  • the terminal can efficiently determine the transmission power of the ranging code during handover.
  • the terminal can efficiently determine the transmission power for the bandwidth request in the target area when the area is changed.
  • FIG. 1 illustrates an example of a handover procedure that may be performed in an IEEE 802.16e system.
  • FIG. 2 illustrates an example of a process of performing a handover by efficiently determining a transmission power of a ranging code transmitted to a target base station by a mobile terminal according to an embodiment of the present invention.
  • FIG. 3 is a flowchart illustrating an example of an area change procedure that can be performed by a mobile terminal according to an embodiment of the present invention.
  • FIG. 4 is a flowchart illustrating another example of an area change procedure that can be performed by a mobile terminal according to an embodiment of the present invention.
  • FIG. 5 is a flowchart illustrating an example in which a mobile terminal performs ranging by controlling transmission power when performing a region change according to an embodiment of the present invention.
  • FIG. 6 is a block diagram illustrating an example of a structure of a transmitting end and a receiving end according to another embodiment of the present invention.
  • each component or feature may be considered to be optional unless otherwise stated.
  • Each component or feature may be embodied in a form that is not combined with other components or features.
  • some components and / or features may be combined to form an embodiment of the present invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment.
  • the base station has a meaning as a terminal node of the network that directly communicates with the terminal.
  • the specific operation described as performed by the base station in this document may be performed by an upper node of the base station in some cases.
  • a 'base station (BS)' may be replaced by terms such as a fixed station, a Node B, an eNode B (eNB), and an access point (AP).
  • eNB eNode B
  • AP access point
  • the term 'terminal' may be replaced with terms such as a user equipment (UE), a mobile station (MS), a mobile subscriber station (MSS), or a subscriber station (SS).
  • a system to which general technology, including the IEEE 802.16e standard, is applied is referred to as a "legacy system” or “R1 system” for convenience.
  • a terminal to which legacy technology is applied is referred to as “legacy terminal” or “R1 MS”
  • a base station to which legacy technology is applied is referred to as “legacy base station” or “R1 BS”.
  • the operation mode of the terminal or base station to which the general technology is applied is referred to as a "legacy mode”.
  • a terminal to which an advanced technology including the IEEE 802.16m standard (WirelessMAN-OFDMA Advanced Air Interface) is applied is referred to as an "Advanced MS” or an “improved terminal", and an advanced technology is applied.
  • the base station is referred to as “ABS (Advanced BS)” or “improved base station”.
  • ABS Advanced BS
  • the operation mode of the terminal or base station to which the advanced technology is applied is referred to as an "improvement mode”.
  • the improved base station also has an ABS (WirelessMAN-OFDMA R1 Reference System / WirelessMAN-OFDMA Advanced co-existing System) that supports both AMS and YMS.
  • ABS WirelessMAN-OFDMA R1 Reference System / WirelessMAN-OFDMA Advanced co-existing System
  • AMS and YMS supports both legacy and enhanced modes
  • a mixed mode base station an operation mode of such a base station is called "mix mode”.
  • R1 BS has a legacy zone (LZone: Legacy Zone) having a physical channel frame structure applied to the legacy system, and ABS supports the AMS only (WirelssMAN-OFDMA advanced system only). It is assumed that there is only an enhanced terminal support area (MZone: 16M Zone) having a structure.
  • the ABS WirelessMAN-OFDMA R1 Reference System / WirelessMAN-OFDMA Advanced Co-existing System: legacy supportive
  • supporting both AMS and R1 MS has both a legacy area and an enhanced terminal support area, respectively in uplink and downlink.
  • time division for example, is divided into units of a frame or subframe (TDD: Time Division Duplex).
  • AMS can receive service from both ABS and R1 BS. That is, it is assumed that the AMS can receive a service through one of the enhanced terminal support area and the legacy area, and can perform both the handover execution process defined in the legacy system and the handover execution process defined in the enhanced system.
  • Embodiments of the invention may be implemented through various means.
  • embodiments of the present invention may be implemented by hardware, firmware, software, or a combination thereof.
  • a method according to embodiments of the present invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs). Field programmable gate arrays (FPGAs), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs Field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, and the like.
  • the method according to the embodiments of the present invention may be implemented in the form of a module, a procedure, or a function that performs the functions or operations described above.
  • the software code may be stored in a memory unit and driven by a processor.
  • the memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.
  • Embodiments of the present invention may be supported by standard documents disclosed in at least one of the wireless access systems IEEE 802 system, 3GPP system, 3GPP LTE system and 3GPP2 system. That is, steps or parts which are not described to clearly reveal the technical spirit of the present invention among the embodiments of the present invention may be supported by the above documents. In addition, all terms disclosed in the present document can be described by the above standard document. In particular, embodiments of the present invention may be supported by one or more of the standard documents P802.16-2005, P802.16e-2009, P802.16Rev2, and P802.16m documents of the IEEE 802.16 system.
  • Uplink power control aims at controlling the inter-cell interference level. To this end, uplink power control supports initial calibration and periodic adjustment to prevent data loss. In addition, the uplink power algorithm compensates for pathloss, shadowing and fast fading to determine the transmission power of an OFDM symbol.
  • a terminal operating as a transmitting end must maintain the transmitted power density until the maximum power level is reached. That is, if the number of active LRUs allocated to a user decreases, the total transmit power of the terminal decreases in proportion to the number of LRUs unless there is an additional power control parameter change. On the contrary, when the number of LRUs increases, the total transmit power of the terminal increases in proportion to the increase. However, the transmit power level cannot exceed the maximum power level in accordance with signal integrity or regulatory requirements.
  • the terminal reports the maximum possible power of the carrier for the initial network entry to the base station through the MAX Tx Power field of the AAI-SBC-REQ message.
  • the current interference level of each base station may be shared with other base stations. Power per subcarrier and power per stream can be calculated as in Equation 1 below.
  • Equation 1 P denotes a TX power level per stream / per carrier in the current transmission, L is a parameter related to a path propagation loss calculated by the UE, and NI is an expected average of noise and interference at the base station. Means power level.
  • the offset is a terminal specific power correction value. Denotes a target uplink signal to interference and noise ratio (SINR) at the base station.
  • SINR target uplink signal to interference and noise ratio
  • the base station transmits a CDMA Allocation A-MAP IE to the terminal, and the map information element includes a predicted average power level of noise / interference.
  • Key power control parameters such as NI) and OffsetControl are included.
  • the terminal successfully acquires the above-described CDMA key parameter through the CDMA Allocation A-MAP IE, the corresponding parameter is applied to uplink power control.
  • the other uplink power control parameter depends on the default value.
  • Table 1 below shows an example of the default uplink power control parameters.
  • the terminal acquires a transmission power parameter to be applied to an uplink signal to be transmitted from a serving base station to a target base station in controlling uplink transmission power for ranging. It is suggested to apply.
  • the transmission power parameter to be applied to the uplink signal to be transmitted to the target base station is iotFP and an offset control value.
  • iotFP refers to an interference over thermal value of frequency partition used for terminal resource allocation
  • offsetControl refers to a power offset value set in 0.5 decibel units.
  • the transmission power parameter may be included in a handover command (AAI-HO-CMD) message and transmitted to the terminal during the handover process.
  • the handover command message has a field (ie, CDMA_RNG_FLAG) indicating whether the terminal should perform ranging using a CDMA ranging code to the target base station. If the CDMA_RNG_FLAG field is set to 0, the terminal transmits a ranging request message to the target base station without performing ranging using the CDMA code. If the CDMA_RNG_FLAG field is set to 1, the terminal performs ranging using the CDMA code to the target base station. Done.
  • the handover procedure according to an embodiment of the present invention will be described by dividing according to the value of the CDMA_RNG_FLAG field.
  • the UE does not perform ranging using the CDMA ranging code to the target base station. Instead, the terminal controls uplink transmission power according to transmission power related parameters (eg, offset data value and / or offset control value) included in the AAI-HO-CMD message.
  • transmission power related parameters eg, offset data value and / or offset control value
  • the uplink transmission power parameter values applied to the serving base station may be applied to the target base station as it is.
  • the procedure may be different depending on whether a dedicated CDMA ranging code is included in the corresponding message.
  • the terminal may determine the uplink transmission power through a process according to the general uplink power control procedure described above.
  • the UE may set the iotFP value and the offset control value of the uplink transmit power parameter applied to the dedicated ranging code transmission to a value included in the AAI-HO-CMD message.
  • the base station may include the iotFP value and the offsetControl value in the corresponding message when the dedicated ranging code is included in the AAI-HO-CMD message.
  • the remaining uplink transmission power control parameters except for the iotFP value and the offset control value may be determined through a process according to the general uplink power control procedure described above. Of course, the remaining parameters may follow the value applied to the serving base station.
  • FIG. 2 illustrates an example of a process of performing a handover by efficiently determining a transmission power of a ranging code transmitted to a target base station by a mobile terminal according to an embodiment of the present invention.
  • the terminal while performing data exchange with the serving base station (S201), the terminal transmits a handover request (AAI-HO-REQ) message to the serving base station as the handover trigger condition is satisfied (S202).
  • a handover request (AAI-HO-REQ) message to the serving base station as the handover trigger condition is satisfied (S202).
  • the serving base station may exchange information with the target base station to obtain a dedicated ranging code of the target base station and determine an iotFP value and an offsetControl value to be applied to the target base station.
  • the serving base station transmits a handover command (AAI-HO-CMD) message including an iotFP value, an offsetControl value, and a dedicated ranging code to the terminal (S203).
  • a handover command (AAI-HO-CMD) message including an iotFP value, an offsetControl value, and a dedicated ranging code to the terminal (S203).
  • the CDMA_RNG_FLAG value of the handover command message is set to one.
  • Table 2 An example of the AAI-HO-CMD message type for this is shown in Table 2 below.
  • Table 2 shows an example of a form in which parameters for uplink transmission power control according to an embodiment of the present invention are included in an AAI-HO-CMD message.
  • the iotFP and offsetControl values may also be included in the message.
  • the UE Since the CDMA_RNG_FLAG value is set to 1 and the dedicated ranging code is included in the handover command message, the UE attempts CDMA ranging to the target base station using the dedicated ranging code (S204). At this time, the iotFP value and the offsetControl value of the uplink transmission power control parameters applied to the dedicated ranging code transmission follow the values included in the AAI-HO-CMD message.
  • the base station When the base station successfully receives the dedicated ranging code transmitted by the terminal, the base station sets the ranging status field to "success” and transmits it to the terminal (S205).
  • the terminal exchanges a ranging request / response message with the target base station (S206, S207) and completes a network reentry procedure to the target base station to perform data exchange normally (S208).
  • FIG. 3 is a flowchart illustrating an example of an area change procedure that can be performed by a mobile terminal according to an embodiment of the present invention.
  • the terminal AMS may start scanning for candidate HO BSs using a handover trigger condition during communication with a legacy serving base station.
  • a handover condition for example, a predetermined hysteresis margin value
  • the terminal may request a serving base station to perform a handover procedure by transmitting a handover request (MOB_MSHO-REQ) message (S301).
  • MOB_MSHO-REQ handover request
  • the serving base station may transmit information related to handover obtained from candidate base stations to the terminal through a handover response (MOB_BSHO-RSP) message.
  • the MOB_BSHO-RSP message includes information for performing handover such as an action time for handover, a handover identifier (HO-ID), and a dedicated handover CDMA ranging code. It may be included (S302).
  • the terminal may determine the legacy support ABS as the target base station among the candidate stations based on the information included in the MOB_BSHO-RSP message received from the serving base station. Accordingly, the terminal may transmit a handover indication message to the serving legacy base station (S303).
  • the terminal transmits a ranging request (RNG-REQ) message to the LZone of the target base station (S304).
  • RNG-REQ ranging request
  • the ranging request message may include the MAC version information of the terminal, the value is set to a value corresponding to the AMS.
  • the ranging request message may include a Zone Switch Capability field indicating the type of area change that the UE can perform.
  • the base station knows that the terminal transmitting the ranging message is an enhanced terminal (AMS) through MAC version information included in the ranging request message, an area change capability field, or information obtained from a previous serving legacy base station. can do.
  • AMS enhanced terminal
  • the target base station transmits a ranging response (RNG-RSP) message including information (Zone switch TLV, hereinafter referred to as "ZS TLV") required for the terminal to change the area to the terminal (S305).
  • RNG-RSP ranging response
  • ZS TLV Zero switch TLV
  • the ZS TLV may include information as shown in Table 3 below.
  • Table 3 shows an example of ZS TLV information included in the RNG-RSP message according to the present invention.
  • the ZS TLV includes MZone A-Preamble index information used in MZone, time offset information indicating a boundary (or ratio) between LZone and MZone in a TDD frame structure, and an area.
  • Zone Switch Mode information indicating whether the terminal maintains connection with the LZone during the change process
  • Temporary STID information for temporarily identifying the terminal in the MZone
  • the valid time of the temporary station identifier Ranging initiation deadline information may be included.
  • a nonce_base station (NONCE_ABS) value for generating a security key (PMK) may be included.
  • the UE performs synchronization with the MZone of the target ABS by using the information included in the ZS TLV (S306), and requests an uplink resource for transmitting a ranging request (AAI_RNG-REQ) message in order to perform a region change.
  • a ranging request (AAI_RNG-REQ) message in order to perform a region change.
  • BR request for AAI_RNG-REQ (not shown).
  • the terminal transmits a ranging request (AAI_RNG-REQ) message to the MZone (S307).
  • a value of a ranging purpose indication field of the ranging request message is set to a value indicating a region change from LZone to MZone (for example, 0b1010).
  • the target ABS transmits a ranging response (AAI_RNG-RSP) message to the terminal in response to the ranging request message transmitted by the terminal (S308).
  • a ranging response (AAI_RNG-RSP) message
  • the terminal finishes the area change to the MZone and may perform normal communication with the target ABS through the MZone (S309).
  • the terminal may change the area to MZone while the terminal does not complete network reentry into the LZone of the target base station. However, the terminal may perform the area change to the MZone after the terminal reenters the LZone. This will be described with reference to FIG. 4.
  • FIG. 4 is a flowchart illustrating another example of an area change procedure that can be performed by a mobile terminal according to an embodiment of the present invention.
  • steps S401 to S404 are similar to steps S301 to S304 in FIG. 3, and thus descriptions thereof will be omitted for simplicity.
  • the target base station receiving the RNG-REQ message from the terminal knows that the terminal transmitting the ranging message is the enhanced terminal (AMS) through the MAC version information included in the ranging request message or the information obtained from the previous serving legacy base station, to the MZone. You can make an area change. However, the target base station may suspend the area change of the terminal due to load balancing between LZone and MZone.
  • AMS enhanced terminal
  • the target base station transmits a ranging response (RNG-RSP) message not including the ZS TLV to the terminal (S405), and the terminal may perform normal communication after completing network reentry into the LZone of the target base station (S406).
  • RNG-RSP ranging response
  • the target base station may transmit a ranging response (RNG-RSP) message including the ZS TLV to the terminal as unsolicited (S407).
  • RNG-RSP ranging response
  • the UE performs synchronization with the MZone of the target ABS by using the information included in the ZS TLV (S408), and requests an uplink resource for transmitting a ranging request (AAI_RNG-REQ) message to perform area change. (BR request for AAI_RNG-REQ) (not shown).
  • the terminal transmits a ranging request (AAI_RNG-REQ) message to the MZone (S409).
  • a value of a ranging purpose indication field of the ranging request message is set to a value indicating a region change from LZone to MZone (for example, 0b1010).
  • the target ABS transmits a ranging response (AAI_RNG-RSP) message to the terminal in response to the ranging request message transmitted by the terminal (S410).
  • a ranging response (AAI_RNG-RSP) message
  • the terminal finishes the area change to the MZone and may perform normal communication with the target ABS through the MZone (S411).
  • the transmission power parameter to be applied to the uplink signal to be transmitted from the LZone to the MZone is obtained. Then, it is proposed to apply this to the transmission power control. That is, the base station operating in the mixed mode proposes to inform the terminal in advance of uplink power control parameters to be applied to the MZone through the LZone.
  • the uplink power control parameter to be applied to the uplink signal to be transmitted to the MZone is preferably iotFP and offsetControl (offsetControl) value.
  • Power control parameters such as iotFP and offset control may be included in a ZS-TLV format in a ranging response (RNG-RSP) message transmitted through LZone during a region change process.
  • RNG-RSP ranging response
  • this power control parameter is useful when the ZS-TLV includes a temporary station identifier (TSTID) for temporarily identifying a terminal in MZone.
  • TSTID temporary station identifier
  • the ZS-TLV includes the TSTID and the power control parameters
  • CDMA ranging is omitted
  • BR bandwidth resource
  • the parameter may be applied to uplink power control applied.
  • the BR may be performed by transmitting or piggybacking a bandwidth request header (BR header) or a bandwidth request message (BR message).
  • the above-described method assumes a case of performing BR directly without CDMA ranging for MZone and transmitting a ranging request message when a corresponding resource is allocated.
  • the terminal may apply the power control parameter included in the ZS-TLV to the code transmission while transmitting the dedicated ranging code to the MZone.
  • the UE Upon successful completion of the ranging code transmission, the UE transmits an AAI-RNG-REQ message to the MZone. If the TSTID is included in the ZS-TLV, the UE transmits the AAI-RNG-REQ message.
  • the power control method has been described in two procedures depending on whether CDMA ranging is performed.
  • the uplink power control parameters other than iotFP and offsetControl included in the ZS-TLV may be applied to the MZone as they are applied to the LZone.
  • An area change method according to the above-described two procedures will be described in more detail with reference to FIG. 5.
  • FIG. 5 is a flowchart illustrating an example in which a mobile terminal performs ranging by controlling transmission power when performing a region change according to an embodiment of the present invention.
  • the UE may obtain ZS-TLV information including uplink power control parameters such as iotFP and offsetControl from the ranging response message from the LZone of the base station operating in the mixed mode (S501).
  • uplink power control parameters such as iotFP and offsetControl
  • the power control parameter obtained in the corresponding ranging code is applied to the MZone (S502).
  • the base station transmits a ranging acknowledgment (AAI-RNG-ACK) message to the terminal through the MZone in response to the ranging code (S503).
  • the UE omits the CDMA ranging procedure and immediately performs a band request to the MZone using the TSTID (S504).
  • the uplink power control parameter included in the ZS-TLV is applied to the band request BR.
  • the UE After the UE is allocated a resource according to BR from the base station, and transmits the ranging request (AAI-RNG-REQ) message to the MZone through the corresponding resource (S505), in response to the ranging response (AAI-RNG-RSP) ) A message is received (S506).
  • the terminal may complete network reentry to MZone and perform normal data exchange (S507).
  • the uplink power control method in the handover and region change process has been described so far.
  • system configuration descriptor (AAI-SCD) message When network re-entry through handover or area change is completed, system configuration descriptor (AAI-SCD) message, uplink power control noise / interference (AAI-ULPC-NI) message and uplink power control (AAI-
  • the UL power control parameter may be updated by receiving a UL-POWER-ADJ) message.
  • the terminal may operate as a transmitter in uplink and operate as a receiver in downlink.
  • the base station may operate as a receiver in the uplink, and may operate as a transmitter in the downlink. That is, the terminal and the base station may include a transmitter and a receiver for transmitting information or data.
  • the transmitter and receiver may include a processor, module, part, and / or means for carrying out the embodiments of the present invention.
  • the transmitter and receiver may include a module (means) for encrypting the message, a module for interpreting the encrypted message, an antenna for transmitting and receiving the message, and the like.
  • a module for encrypting the message
  • a module for interpreting the encrypted message an antenna for transmitting and receiving the message, and the like.
  • FIG. 6 is a block diagram illustrating an example of a structure of a transmitting end and a receiving end according to another embodiment of the present invention.
  • each of the transmitting end and the receiving end includes an antenna 5, 10, a processor 20, 30, a transmission module (Tx module 40, 50), a receiving module (Rx module 60, 70) and a memory 80, 90. It may include.
  • Each component may perform a function corresponding to each other. Hereinafter, each component will be described in more detail.
  • the antennas 5 and 10 transmit the signals generated by the transmission modules 40 and 50 to the outside, or receive the radio signals from the outside and transmit the signals to the receiving modules 60 and 70.
  • MIMO multiple antenna
  • the antenna, the transmission module and the reception module may together constitute a radio communication (RF) module.
  • RF radio communication
  • Processors 20 and 30 typically control the overall operation of the entire mobile terminal.
  • a controller function for performing the above-described embodiments of the present invention a medium access control (MAC) frame variable control function, a handover function, an authentication and encryption function, etc. according to service characteristics and a propagation environment may be used. Can be performed. More specifically, the processors 20 and 30 may perform overall control for performing the handover or region change shown in FIGS. 2 to 5.
  • MAC medium access control
  • the processor of the mobile station in performing a handover, a dedicated lane that receives iotFP and offset control information through a handover command (AAI-HO-CMD) message received from a serving base station and transmits it to a target base station. Applicable to the transmission power of the gong code.
  • the iotFP processor obtained through ZS-TLV included in the RNG-RSP message in requesting a bandwidth for transmitting a ranging code or a ranging request message to a target area in performing a region change. And offset control information to transmit power control.
  • the processor of the terminal may perform the overall control operation of the operation process disclosed in the above embodiments.
  • the transmission modules 40 and 50 may perform a predetermined encoding and modulation on data scheduled from the processors 20 and 30 to be transmitted to the outside, and then transmit the data to the antenna 10.
  • the receiving module 60, 70 decodes and demodulates a radio signal received through the antennas 5, 10 from the outside to restore the original data to the processor 20, 30. I can deliver it.
  • the memory 80, 90 may store a program for processing and controlling the processor 20, 30, or may perform a function for temporarily storing input / output data.
  • the memory 80, 90 may be a flash memory type, a hard disk type, a multimedia card micro type, a card type memory (eg, SD or XD memory). Etc.), random access memory (RAM), static random access memory (SRAM), read-only memory (ROM), electrically erasable programmable read-only memory (EPEROM), programmable read-only memory (PROM), At least one type of storage medium may include a magnetic memory, a magnetic disk, and an optical disk.
  • the base station is a controller function for performing the above-described embodiments of the present invention, orthogonal frequency division multiple access (OFDMA) packet scheduling, time division duplex (TDD) packet scheduling and channel multiplexing function MAC frame variable control function according to service characteristics and propagation environment, high speed traffic real time control function, handover function, authentication and encryption function, packet modulation and demodulation function for data transmission, high speed packet channel coding function and real time modem control function Etc.
  • OFDMA orthogonal frequency division multiple access
  • TDD time division duplex
  • MAC frame variable control function according to service characteristics and propagation environment
  • high speed traffic real time control function handover function
  • authentication and encryption function packet modulation and demodulation function for data transmission
  • high speed packet channel coding function and real time modem control function Etc may be performed through at least one of the above-described modules, or may further include additional means, modules or parts for performing such a function.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 발명은 광대역 무선 접속 시스템에 관한 것으로, 보다 상세히는 핸드오버 또는 영역 변경시 단말이 타겟 기지국 또는 타겟 영역에 수행하는 레인징의 전력을 효율적으로 결정하는 방법에 관한 것이다. 본 발명의 일 실시예에 따른 광대역 무선 접속 시스템에서 단말이 제 1 영역으로부터 제 2 영역으로 망 재진입을 위한 상향링크 전력제어를 수행하는 방법은, 상기 제 1 영역으로부터 상기 제 2 영역에 적용될 전력제어 파라미터를 포함하는 매체접속제어 관리(MAC management) 메시지를 수신하는 단계; 및 상기 전력제어 파라미터를 적용하여 상기 제 2 영역으로 레인징을 수행하는 단계를 포함할 수 있다.

Description

광대역 무선 접속 시스템에서의 상향링크 전력 제어 방법
본 발명은 광대역 무선 접속 시스템에 관한 것으로, 보다 상세히는 핸드오버 또는 영역 변경시 단말이 타겟 기지국 또는 타겟 영역에 수행하는 레인징의 전력을 효율적으로 결정하는 방법에 관한 것이다.
핸드오버(Handover, HO)는 단말이 한 기지국의 무선 인터페이스에서 다른 기지국의 무선 인터페이스로 이동하는 것을 말한다. 이하에서는 일반적인 IEEE 802.16 시스템에서의 핸드오버 절차를 설명한다.
IEEE 802.16 망에서 서빙 기지국(SBS: Serving Base Station)은 이동 단말(MS: Mobile Station, 이하 "단말"이라 칭함)에 기본적인 네트워크 구성에 대한 정보(토폴로지)를 알리기 위하여 인접 기지국 정보를 이웃 공시(MOB_NBR-ADV) 메시지를 통하여 브로드캐스트(broadcast)할 수 있다.
MOB_NBR-ADV 메시지에는 서빙 기지국과 이웃 기지국들에 대한 시스템 정보, 예를 들면 프리엠블 인덱스(preamble index), 주파수(frequency), 핸드오버 최적화(HO optimization) 가능 정도와 DCD(Downlink Channel Descriptor)/UCD(Uplink Channel Descriptor) 정보 등을 담고 있다.
DCD/UCD 정보는 단말에서 하향링크와 상향링크를 통한 정보 교신을 수행하기 위해 단말이 알아야 할 정보들을 포함 하고 있다. 예를 들면, 핸드오버 트리거(HO trigger) 정보, 기지국의 MAC 버전(Medium Access Control version) 및 MIH 능력(Media Independent Handover capability)과 같은 정보들이 있다.
일반적인 MOB_NBR-ADV 메시지에서는 IEEE 802.16e 유형의 이웃 기지국들에 대한 정보만을 포함하고 있다. 그에 따라, IEEE 802.16e 이외의 유형을 갖는 이웃 기지국 정보들은 SII-ADV(Service Identity Information ADVertisement) 메시지를 통하여 단말들에게 브로드캐스트 될 수 있다. 따라서, 단말은 서빙 기지국에 SII-ADV 메시지를 전송할 것을 요청함으로써 이기종 망 기지국에 대한 정보들을 획득할 수 있다.
상술한 방법을 통하여 이웃 기지국의 정보를 획득한 단말이 IEEE 802.16 망에서 핸드오버를 수행하는 절차를 도 1을 참조하여 보다 자세히 설명한다.
도 1은 일반적인 IEEE 802.16 시스템에서 수행될 수 있는 핸드오버 절차의 일례를 보여준다.
도 1을 참조하면, 먼저 단말(MS)은 서빙 기지국(SBS)에 접속되어 데이터 교환을 수행할 수 있다(S101).
서빙 기지국은 주기적으로 자신에 위치하는 이웃 기지국에 대한 정보를 MOB_NBR-ADV 메시지를 통해 단말에 브로드캐스트 할 수 있다(S102).
단말은 서빙 기지국과 교신을 하는 중 핸드오버 트리거(HO trigger) 조건을 이용하여 후보 기지국(candidate HO BS)들에 대한 스캔을 시작할 수 있다. 단말은 핸드오버 조건, 예를 들어 소정의 이력 마진(Hysterisis margin) 값을 초과하였을 경우 핸드오버 요청(MOB_MSHO-REQ) 메시지를 전송하여 서빙 기지국에 핸드오버 절차수행을 요청할 수 있다(S103).
서빙 기지국은 MOB_MSHO-REQ 메시지에 포함 되어있는 후보 기지국(candidate HO BS)들에게 HO-REQ 메시지를 통하여 단말의 핸드오버 요청을 알려줄 수 있다(S104).
후보 기지국(Candidate HO BS)들은 핸드오버를 요청한 단말을 위한 사전 조치를 취하여 핸드오버에 관련된 정보들을 HO-RSP 메시지를 통하여 서빙 기지국에 전달할 수 있다(S105).
서빙 기지국은 후보 기지국들로부터 HO-RSP 메시지를 통하여 획득한 핸드오버에 관련된 정보들을 핸드오버 응답(MOB_BSHO-RSP) 메시지를 통하여 단말에 전달할 수 있다. 여기서 MOB_BSHO-RSP 메시지에는 핸드오버를 위한 동작 시간(Action Time), 핸드오버 식별자(HO-ID) 및 전용 핸드오버 CDMA 레인징 코드(Dedicated HO CDMA ranging code) 등의 핸드오버를 수행하기 위한 정보들이 포함될 수 있다(S106).
단말은 서빙 기지국으로부터 수신한 MOB_BSHO-RSP 메시지에 포함된 정보를 토대로, 후보기지국들 중에서 하나의 타겟 기지국을 결정할 수 있다. 그에 따라 단말은 결정된 타겟 기지국에 CDMA 코드를 전송하여 레인징을 시도할 수 있다(S107).
CDMA 코드를 수신한 타겟 기지국은 단말에게 레인징 응답(RNG-RSP) 메시지를 통하여 레인징의 성공여부 및 물리 보정 값들을 전송할 수 있다(S108).
다음으로, 단말은 타겟 기지국에 인증을 위한 레인징 요청(RNG-REQ) 메시지를 전송할 수 있다(S109).
단말의 레인징 요청 메시지를 수신한 타겟 기지국은 단말에게 CID(Connection IDentifier)와 같은 해당 기지국에서 사용될 수 있는 시스템 정보 등을 레인징 응답 메시지를 통하여 제공할 수 있다(S110).
타겟 기지국이 단말의 인증을 성공적으로 마치고 업데이트 정보를 모두 보냈을 경우, 단말의 서빙 기지국에게 핸드오버 완료 메시지(HO-CMPT)를 통하여 핸드오버의 성공 여부를 알릴 수 있다(S111).
이후 단말은 핸드오버를 수행한 타겟 기지국과 정보 교환을 수행할 수 있다(S112).
상술된 핸드오버 과정은 IEEE 802.16e(WirelessMAN-OFDMA R1 Reference System) 규격을  따르는 단말과 기지국 사이에서 수행되는 것을 가정하고 있다. IEEE 802.16m(WirelessMAN-Advanced Air Interface) 시스템에서 정의된 핸드오버 절차에서는 일부 매체 접속제어(MAC: Medium Access Control) 관리 메시지의 종류 및 그에 포함되는 파라미터가 상이할 수 있다. 예를 들어, 레인징 요청/응답(RNG-REQ/RSP) 메시지는 개선 레인징 요청/응답(AAI-RNG-REQ/RSP) 메시지로 대체되며, 핸드오버 응답(BSHO-RSP) 메시지는 핸드오버 명령(AAI-HO-CMD) 메시지로 대체된다.
핸드오버 과정에서 일반적으로 단말이 타겟 기지국에 최초로 직접적으로 상향링크 신호를 전송할 때(예를 들어, S107 단계와 같이 레인징 코드를 전송할 때) 최적의 전송 전력을 알 수 없기 때문에 시스템서 미리 정의된 디폴트 전력으로 전송을 수행하게 된다. 전력이 너무 약하면 신호가 정확히 전달되지 않을 수 있으며, 전력이 너무 강하면 다른 단말이 전송한 신호와 간섭을 일으키거나 단말의 배터리 소모를 야기할 수 있기 때문에 최적의 상향링크 전력 제어는 중요한 요소이다. IEEE 802.16m 시스템에서는 단말로부터 전송된 레인징 코드에 대한 응답으로 기지국은 레인징 긍정응답(AAI_RNG-ACK) 메시지를 단말로 전송한다. 레인징 긍정응답 메시지를 통하여 단말은 레인징 코드의 검출 여부, 물리 보정 값 등의 정보를 알 수 있으며, 레인징 코드의 재전송이 필요한지 여부를 판단할 수 있다. 만일, 디폴트 전력이 현재 단말과 기지국 사이의 채널 환경에 부적절한 경우, 레인징 긍정응답 메시지에 레인징 상태(ranging status) 필드는 "컨티뉴"로 설정되며, 전력 보정값이 해당 메시지에 포함된다. 이러한 경우, 단말은 보정값을 적용한 전송 전력으로 다시 레인징 코드를 타겟 기지국으로 전송하게 된다. 이러한 과정에서 불필요한 지연시간이 발생하여 이를 해결할 수 있는 효율적인 상향링크 전력 결정 방법이 요구된다. 이러한 전력 제어 상의 문제점은 단말이 믹스모드로 동작하는 기지국에서 영역을 변경하는 경우에도 유사하게 발생할 수 있다.
본 발명은 상기한 바와 같은 일반적인 기술의 문제점을 해결하기 위하여 안출된 것으로서, 본 발명의 목적은 보다 효율적인 상향링크 전력 결정 방법을 정의하기 위한 것이다.
본 발명은, 특히 핸드오버시 타겟 기지국이나 영역변경시 타겟 영역으로 레인징을 수행함에 있어 상향링크 전송 전력을 효율적으로 결정할 수 있는 방법을 제공하기 위한 것이다.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
상기의 기술적 과제를 이루기 위하여, 본 발명의 일 실시예에 따른 광대역 무선 접속 시스템에서 단말이 제 1 영역으로부터 제 2 영역으로 망 재진입을 위한 상향링크 전력제어를 수행하는 방법은, 상기 제 1 영역으로부터 상기 제 2 영역에 적용될 전력제어 파라미터를 포함하는 매체접속제어 관리(MAC management) 메시지를 수신하는 단계; 및 상기 전력제어 파라미터를 적용하여 상기 제 2 영역으로 레인징을 수행하는 단계를 포함할 수 있다.
이때, 상기 제 1 영역은 서빙 기지국(S-ABS)이고, 상기 제 2 영역은 타겟 기지국(S-ABS)이며, 상기 매체접속제어 관리 메시지는 핸드오버 명령(AAI-HO-CMD) 메시지일 수 있다.
또한, 상기 핸드오버 명령 메시지는 전용 레인징 코드를 더 포함하고, 상기 레인징을 수행하는 단계는, 상기 전용 레인징 코드를 상기 타겟 기지국으로 전송하는 단계를 포함할 수 있다.
또한, 상기 제 1 영역은 믹스모드로 동작하는 기지국의 엘존(LZone)이고, 상기 제 2 영역은 상기 기지국의 엠존(MZone)이며, 상기 매체접속제어 관리 메시지는 레인징 응답(RNG-RSP) 메시지일 수 있다.
아울러, 상기 레인징 응답 메시지는 상기 엠존에서 상기 단말을 임시로 식별하기 위한 임시 식별자(TSTID)를 더 포함하고, 상기 레인징을 수행하는 단계는 레인징 요청 메시지를 전송하기 위한 상향링크 자원을 요청하기 위한 대역요청(BR) 정보를 상기 엠존으로 전송하는 단계를 포함하되, 상기 대역요청 정보에 상기 전력제어 파라미터가 적용될 수 있다.
상기의 기술적 과제를 이루기 위하여, 본 발명의 일 실시예에 따른 광대역 무선 접속 시스템에서 서빙 기지국이 단말의 상향링크 전력제어를 고려하여 핸드오버를 지원하는 방법은, 타겟 기지국으로부터 전용 레인징 코드 및 전력제어 정보를 수신하는 단계; 및 상기 타겟 기지국에 적용될 전력제어 파라미터 및 상기 전용 레인징 코드를 포함하는 핸드오버 명령(AAI-HO-CMD) 메시지를 상기 단말로 전송하는 단계를 포함할 수 있다.
상기의 기술적 과제를 이루기 위하여, 본 발명의 일 실시예에 따른 광대역 무선 접속 시스템에서 믹스모드로 동작하는 기지국이 단말의 상향링크 전력제어를 고려하여 영역 변경을 지원하는 방법은, 제 1 영역을 통하여 상기 단말을 제 2 영역에서 식별하기 위한 임시 식별자 및 상기 제 2 영역에 적용될 전력제어 파라미터를 포함하는 레인징 응답 메시지를 상기 단말로 전송하는 단계; 및 상기 제 2 영역을 통하여 상기 임시 식별자를 포함하는 대역 요청 정보를 수신하는 단계를 포함할 수 있다.
상기의 기술적 과제를 이루기 위하여, 본 발명의 일 실시예에 따른 광대역 무선 접속 시스템의 제 1 영역으로부터 제 2 영역으로 망 재진입을 위한 상향링크 전력제어를 수행하는 개선 단말(AMS) 장치는 프로세서; 및 상기 프로세서의 제어에 따라 외부와 무선 신호를 송수신하기 위한 무선통신(RF) 모듈을 포함할 수 있다. 여기서 상기 프로세서는 상기 제 1 영역으로부터 상기 제 2 영역에 적용될 전력제어 파라미터를 포함하는 매체접속제어 관리(MAC management) 메시지가 수신되면, 상기 수신된 전력제어 파라미터를 적용하여 상기 제 2 영역으로 레인징을 수행하도록 제어할 수 있다.
이때, 상기 제 1 영역은 서빙 기지국(S-ABS)이고, 상기 제 2 영역은 타겟 기지국(S-ABS)이며, 상기 매체접속제어 관리 메시지는 핸드오버 명령(AAI-HO-CMD) 메시지일 수 있다.
또한, 상기 핸드오버 명령 메시지는 전용 레인징 코드를 더 포함하고, 상기 프로세서는 상기 전용 레인징 코드에 상기 전력제어 파라미터를 적용하여 상기 타겟 기지국으로 전송하도록 제어할 수 있다.
또한, 상기 제 1 영역은 믹스모드로 동작하는 기지국의 엘존(LZone)이고, 상기 제 2 영역은 상기 기지국의 엠존(MZone)이며, 상기 매체접속제어 관리 메시지는 레인징 응답(RNG-RSP) 메시지인 것이 바람직하다.
아울러, 상기 레인징 응답 메시지는 상기 엠존에서 상기 단말 장치를 임시로 식별하기 위한 임시 식별자(TSTID)를 더 포함하고, 상기 프로세서는 상기 레인징 요청 메시지를 전송하기 위한 상향링크 자원을 요청하기 위한 대역요청(BR) 정보에 상기 전력제어 파라미터를 적용하여 상기 엠존으로 전송하도록 제어할 수 있다.
한편, 상술한 실시예들에서 상기 전력제어 파라미터는 주파수 분할의 열대비간섭(iotFP) 값 및 오프셋컨트롤(offsetControl) 값을 포함한다.
본 발명의 실시예들에 따르면 다음과 같은 효과가 있다.
첫째, 본 발명의 실시예들을 이용함으로써, 단말은 효율적으로 핸드오버시 레인징 코드의 전송 전력을 결정할 수 있다.
둘째, 본 발명의 실시예들을 통해 단말은 영역 변경시 타겟 영역에 효율적으로 대역 요청을 위한 전송 전력을 결정할 수 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
도 1은 IEEE 802.16e 시스템에서 수행될 수 있는 핸드오버 절차의 일례를 나타낸다.
도 2는 본 발명의 일 실시예에 따른 이동 단말기가 타겟 기지국으로 전송하는 레인징 코드의 전송 전력을 효율적으로 결정하여 핸드오버를 수행하는 과정의 일례를 나타낸다.
도 3은 본 발명의 일 실시예에 따른 이동 단말기가 수행할 수 있는 영역 변경절차의 일례를 나타내는 순서도이다.
도 4는 본 발명의 일 실시예에 따른 이동 단말기가 수행할 수 있는 영역 변경절차의 다른 일례를 나타내는 순서도이다.
도 5는 본 발명의 일 실시예에 따른 이동 단말기가 영역 변경을 수행함에 있어 전송 전력을 제어하여 레인징을 수행하는 형태의 일례를 나타내는 순서도이다.
도 6은 본 발명의 다른 실시예로서, 송신단 및 수신단 구조의 일례를 나타내는 블록도이다.
이하의 실시예들은 본 발명의 구성요소들과 특징들을 소정 형태로 결합한 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려될 수 있다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성할 수도 있다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다.
본 명세서에서 본 발명의 실시예들은 기지국과 단말 간의 데이터 송수신 관계를 중심으로 설명되었다. 여기서, 기지국은 단말과 직접적으로 통신을 수행하는 네트워크의 종단 노드(terminal node)로서의 의미를 갖는다. 본 문서에서 기지국에 의해 수행되는 것으로 설명된 특정 동작은 경우에 따라서는 기지국의 상위 노드(upper node)에 의해 수행될 수도 있다.
즉, 기지국을 포함하는 다수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. '기지국(BS: Base Station)'은 고정국(fixed station), Node B, eNode B(eNB), 억세스 포인트(AP: Access Point) 등의 용어에 의해 대체될 수 있다. 또한, '단말(Terminal)'은 UE(User Equipment), MS(Mobile Station), MSS(Mobile Subscriber Station) 또는 SS(Subscriber Station) 등의 용어로 대체될 수 있다.
보다 상세히, 본 명세서에서는 편의상 IEEE 802.16e 규격을 포함한 일반적 기술이 적용되는 시스템을 "레거시 시스템(legacy system)" 또는 "R1 system"이라 칭한다. 또한, 레거시 기술이 적용되는 단말을 "레거시 단말" 또는 "R1 MS", 레거시 기술이 적용되는 기지국을 "레거시 기지국" 또는 "R1 BS"라 각각 호칭한다. 아울러, 일반적인 기술이 적용되는 단말 또는 기지국의 동작 모드를 "레거시 모드"라 칭한다.
또한, IEEE 802.16m 규격(WirelessMAN-OFDMA Advanced Air Interface)을 포함하는, 일반적 기술보다 진보된 기술이 적용되는 단말을 "AMS(Advanced MS)" 또는 "개선 단말"이라 칭하고, 진보된 기술이 적용되는 기지국을 "ABS(Advanced BS)" 또는 "개선 기지국"이라 칭한다. 아울러, 진보된 기술이 적용되는 단말 또는 기지국의 동작 모드를 "개선 모드"라 칭한다.
개선 기지국에는 AMS와 YMS 모두를 지원하는 ABS(WirelessMAN-OFDMA R1 Reference System/WirelessMAN-OFDMA Advanced co-existing System)도 있다. 이와 같이 AMS와 YMS 모두를 지원하는, 즉, 레거시 모드와 개선 모드를 함께 지원하는 ABS를 "믹스 모드 기지국"이라 칭하며, 이러한 기지국의 동작 모드를 "믹스 모드"라 칭한다.
R1 BS는 레거시 시스템에 적용되는 물리 채널 프레임 구조를 갖는 레거시 영역만(LZone: Legacy Zone)을 가지고 있으며, ABS는 AMS만을 지원하는 경우(WirelssMAN-OFDMA advanced system only) 개선 시스템에 적용되는 물리 채널 프레임 구조를 갖는 개선 단말 지원영역(MZone: 16M Zone)만을 갖는다고 가정한다. 또한, AMS 및 R1 MS 모두를 지원하는 ABS(WirelessMAN-OFDMA R1 Reference System/WirelessMAN-OFDMA Advanced co-existing System: legacy supportive)는 레거시 영역과 개선 단말 지원영역을 모두 가지며, 상향링크 및 하향링크 각각에서 시간 단위, 예를 들면, 프레임 또는 서브 프레임 단위로 구분(TDD: Time Division Duplex)되어 있다고 가정한다.
아울러, AMS는 ABS 및 R1 BS 모두로부터 서비스를 받을 수 있다고 가정한다. 즉, AMS는 개선 단말 지원영역 및 레거시 영역 중 어느 하나를 통하여 서비스를 받을 수 있으며, 레거시 시스템에서 정의된 핸드오버 수행과정과 개선 시스템에서 정의된 핸드오버 수행과정 모두를 수행할 수 있다고 가정한다.
본 발명의 실시예들은 다양한 수단을 통해 구현될 수 있다. 예를 들어, 본 발명의 실시예들은 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다.
하드웨어에 의한 구현의 경우, 본 발명의 실시예들에 따른 방법은 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 실시예들에 따른 방법은 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차 또는 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 발명의 실시예들은 무선 접속 시스템들인 IEEE 802 시스템, 3GPP 시스템, 3GPP LTE 시스템 및 3GPP2 시스템 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있다. 즉, 본 발명의 실시예들 중 본 발명의 기술적 사상을 명확히 드러내기 위해 설명하지 않은 단계들 또는 부분들은 상기 문서들에 의해 뒷받침될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다. 특히, 본 발명의 실시예들은 IEEE 802.16 시스템의 표준 문서인 P802.16-2005, P802.16e-2009, P802.16Rev2 및 P802.16m 문서들 중 하나 이상에 의해 뒷받침될 수 있다.
이하의 설명에서 사용되는 특정 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
일반적인 상향링크 전송 전력제어 절차
이하, IEEE 802.16m 시스템에서 상향링크 전력제어(ULPC) 절차를 설명한다.
상향링크 전력제어는 셀간 간섭 레벨을 제어함을 목적으로 한다. 이를 위하여 상향링크 전력 제어는 데이터 손실을 방지하기 위하여 최초 조정(initial calibration)과 주기적 조정(periodic adjustment)을 지원한다. 또한, 상향링크 전력 알고리즘은 경로 손실, 음영화 및 고속 페이딩(pathloss, shadowing and fast fading) 등을 보상하여 OFDM 심볼의 전송전력을 결정하도록 한다.
송신단으로 동작하는 단말은 전송전력밀도(transmitted power density)를 최대 파워 레벨에 도달할 때까지 유지해야한다. 즉, 사용자에 할당되는 액티브 논리 자원 유닛(active LRU)의 숫자가 감소하면 추가적인 전력 제어 파라미터 변경이 없는 이상 단말의 전체 전송전력은 LRU 숫자에 비례하여 감소한다. 반대로, LRU의 수가 증가하면, 증가에 비례하여 단말의 전체 전송전력은 증가하게 된다. 그러나, 전송 전력 레벨은 신호무결성이나 규정 요구사항에 따른 최대 전력 레벨을 초과할 수 없다.
단말은 단말 기본 능력 요청(AAI-SBC-REQ) 메시지의 최대 전송 전력 필드(MAX Tx Power field)를 통하여 초기 망 진입을 위한 캐리어의 최대 가능 전력을 기지국에 보고한다. 간섭 레벨 제어를 위해 각 기지국의 현재 간섭 레벨이 다른 기지국들과 서로 공유될 수 있다. 서브캐리어 당 전력 및 스트림 당 전력은 아래 수학식 1과 같이 계산될 수 있다.
수학식 1
Figure PCTKR2011008326-appb-M000001
수학식 1에서 P는 현재전송에서 스트림 당/캐리어 당 전송 전력 레벨(TX power level)을 의미하고, L은 단말이 계산한 경로 전달 손실에 관련된 파라미터 이고, NI는 기지국에서 잡음과 간섭의 예상 평균 전력 레벨을 의미한다. 또한, 오프셋은 단말 특정의 전력 보정값이며
Figure PCTKR2011008326-appb-I000001
은 기지국에서의 목표 상향링크 신호 대 간섭 및 잡음비(SINR)를 의미한다.
망 초기/재진입시에는 성공적인 초기 레인징 절차가 수행된 후 기지국은 CDMA 할당 맵 정보요소(CDMA Allocation A-MAP IE)를 단말에 전송하는데, 이러한 맵 정보요소에는 잡음/간섭의 예측 평균 파워 레벨(NI)이나 오프셋컨트롤(OffsetControl)과 같은 키 파라미터(key power control parameter)가 포함된다. 상술한 CDMA 키 파라미터를 단말이 CDMA Allocation A-MAP IE를 통해 성공적으로 획득한 경우, 해당 파라미터를 상향링크 전력 제어에 적용한다. 다른 상향링크 전력 제어 파라미터는 디폴트 값에 따른다.
아래 표 1은 디폴트 상향링크 전력 제어 파라미터의 일례를 나타낸다.
표 1
Figure PCTKR2011008326-appb-T000001
다만, 상술한 전력 제어는 초기 레인징 절차가 성공적으로 수행됨을 가정하므로, 초기 레인징 절차에서 단말이 효율적으로 상향링크 전송 전력을 결정할 수 있는 방법이 요구된다.
이하, 본 발명에 따른 효율적인 상향링크 전송 전력을 단말이 결정할 수 있는 방법들을 설명한다.
핸드오버 절차에서의 전력 제어
먼저, 본 발명에 따른 핸드오버 상황에서의 상향링크 전송 전력 제어방법을 설명한다.
본 발명의 일 실시예에서는 핸드오버 절차에서 단말이 레인징 수행을 위한 상향링크 전송전력을 제어함에 있어서 서빙 기지국으로부터 타겟 기지국으로 전송될 상향링크 신호에 적용될 전송 전력 파라미터를 획득하고, 이를 전송전력 제어에 적용할 것을 제안한다.
여기서 타겟 기지국으로 전송될 상향링크 신호에 적용될 전송 전력 파라미터는 iotFP 및 오프셋컨트롤(offsetControl) 값인 것이 바람직하다. iotFP는 단말 자원 할당을 위해 사용되는 주파수 분할의 열대비간섭값(Interference over Thermal value of Frequency Partition)을 의미하고, offsetControl은 0.5 데시벨 단위로 설정되는 전력 오프셋값을 말한다. 이러한 전송 전력 파라미터들은 백본망을 통한 서빙 기지국과 타겟 기지국 간의 정보 교환에 의해 결정될 수 있다.
상술한 바와 같은 전송 전력 파라미터는 핸드오버 과정에서 핸드오버 명령(AAI-HO-CMD) 메시지에 포함되어 단말로 전송될 수 있다. 핸드오버 명령 메시지에는 단말이 타겟 기지국으로의 CDMA 레인징 코드를 이용한 레인징을 수행해야하는지 여부를 지시하는 필드(즉, CDMA_RNG_FLAG)가 존재한다. CDMA_RNG_FLAG 필드가 0으로 설정되면, 단말은 CDMA 코드를 이용한 레인징 수행없이 레인징 요청 메시지를 타겟 기지국으로 전송하게되며, CDMA_RNG_FLAG 필드가 1로 설정되면 단말은 CDMA 코드를 이용한 레인징을 타겟 기지국으로 수행하게 된다. 이하에서는 본 발명의 일 실시예에 따른 핸드오버 절차를 CDMA_RNG_FLAG 필드의 값에 따라 나누어 설명한다.
1)CDMA_RNG_FLAG 필드가 0인 경우
AAI-HO-CMD 메시지의 CDMA_RNG_FLAG 필드가 0으로 설정된 경우에는 단말은 타겟 기지국으로 CDMA 레인징 코드를 이용한 레인징을 수행하지 않는다. 대신, 단말은 AAI-HO-CMD 메시지에 포함된 전송 전력 관련 파라미터(예를 들어, 오프셋데이터 값 및/또는 오프셋컨트롤 값)에 따라 상향링크 전송 전력을 제어한다. AAI-HO-CMD 메시지에 포함되지 않은 전송 전력 관련 파라미터에 대해서는 서빙 기지국에 적용하던 상향링크 전송 전력 파라미터 값들이 그대로 타겟 기지국에 적용될 수 있다.
2)CDMA_RNG_FLAG 필드가 1인 경우
AAI-HO-CMD 메시지의 CDMA_RNG_FLAG 필드가 1로 설정된 경우에는 다시 전용 레인징 코드(dedicated CDMA ranging code)가 해당 메시지에 포함되었는지 여부에 따라 절차가 상이할 수 있다.
전용 레인징 코드가 포함되지 않은 경우, 단말은 상술한 일반적인 상향링크 전력 제어절차에 따른 과정을 통해 상향링크 전송 전력을 결정할 수 있다.
반대로 전용 레인징 코드가 포함되는 경우, 단말은 전용 레인징 코드 전송에 적용되는 상향링크 전송 전력 파라미터 중 iotFP값 및 오프셋컨트롤(offsetControl)값을 AAI-HO-CMD 메시지에 포함된 값으로 설정할 수 있다. 즉, 기지국은 AAI-HO-CMD 메시지에 전용 레인징 코드가 포함되는 경우 iotFP 값과 offsetControl 값을 해당 메시지에 포함시킬 수 있다. iotFP 값 및 오프셋컨트롤(offsetControl) 값을 제외한 나머지 상향링크 전송 전력제어 파라미터는 상술한 일반적인 상향링크 전력 제어절차에 따른 과정을 통해 결정될 수 있다. 물론, 상기 나머지 파라미터는 서빙 기지국에 적용되던 값을 그대로 따르도록 할 수도 있다.
상술한 바와 같이 AAI-HO-CMD 메시지의 CDMA_RNG_FLAG 필드가 1로 설정되고, 전용 레인징 코드가 포함된 경우의 핸드오버 과정을 도 2를 참조하여 설명한다.
도 2는 본 발명의 일 실시예에 따른 이동 단말기가 타겟 기지국으로 전송하는 레인징 코드의 전송 전력을 효율적으로 결정하여 핸드오버를 수행하는 과정의 일례를 나타낸다.
도 2를 참조하면, 단말은 서빙 기지국과 데이터 교환을 수행하던 중(S201) 핸드오버 트리거 조건이 만족됨에 따라 서빙 기지국으로 핸드오버 요청(AAI-HO-REQ) 메시지를 전송한다(S202).
그에 따라 서빙 기지국은 타겟 기지국과 정보를 교환하여 타겟 기지국의 전용 레인징 코드를 획득하고 타겟 기지국에 적용될 iotFP 값과 offsetControl 값을 결정할 수 있다.
서빙 기지국은 단말로 iotFP 값과 offsetControl 값 및 전용 레인징 코드를 포함하는 핸드오버 명령(AAI-HO-CMD) 메시지를 전송한다(S203). 이때, 핸드오버 명령 메시지의 CDMA_RNG_FLAG 값은 1로 설정된다. 이를 위한 AAI-HO-CMD 메시지 형태의 일례는 아래 표 2와 같다.
표 2는 본 발명의 일 실시예에 따른 상향링크 전송 전력제어를 위한 파라미터가 AAI-HO-CMD 메시지에 포함되는 형태의 일례를 나타낸다.
표 2
필드 사이즈 (bits) 값/설명 조건
}else {
전용 CDMA 레인징 코드(Dedicated CDMA ranging code) 5 전용 레인징 코드를 지시 심리스 핸드오버(Seamless HO) = 1인 경우; 그렇지 않은 경우엔 옵션
if (dedicated CDMA ranging code != NULL) {
주파수 분할의 열대비간섭 (iotFP) 7 단말의 자원 할당을 위해 사용되는 주파수 파티션의 IoT값(IoT value of Frequency Partition used for AMS resource assignment), IoT 레벨 0 dB 부터 63.5 dB까지를 0.5 dB 단위로 양자화
오프셋콘트롤 (offsetControl) 7 It represents the value among -31.5 to 32 dB with 0.5 dB step
}
레인징 기회 인덱스(Ranging opportunity index) 3 해당 RAID에서 사용되는 동적 레인징 채널에 할당된 레인징 기회의 인덱스를 나타냄. 옵션
표 2를 참조하면, 전용 CDMA 레인징 코드가 AAI-HO-CMD 메시지에 포함되는 경우, iotFP 및 offsetControl 값 또한 해당 메시지에 포함될 수 있다.
핸드오버 명령 메시지에 CDMA_RNG_FLAG 값이 1로 설정되고, 전용 레인징 코드가 포함되어 있으므로 단말은 전용 레인징 코드를 이용하여 타겟 기지국으로 CDMA 레인징을 시도 한다(S204). 이때, 전용 레인징 코드 전송에 적용되는 상향링크 전송 전력제어 파라미터 중 iotFP 값과 offsetControl값은 AAI-HO-CMD 메시지에 포함된 값을 따른다.
기지국은 단말이 전송한 전용 레인징 코드를 성공적으로 수신한 경우, 레인징 상태(ranging status) 필드를 "success"로 설정하여 단말로 전송한다(S205).
그에 따라 단말은 타겟 기지국과 레인징 요청/응답 메시지를 교환하고(S206, S207) 타겟 기지국으로의 망 재진입 절차를 완료하여 정상적으로 데이터 교환을 수행할 수 있다(S208).
영역 변경 절차에서의 상향링크 전력제어
이하에서는, 본 발명에 따른 영역 변경 절차에서의 상향링크 전력제어방법을 설명한다.
본 발명에 따른 상향링크 전력제어방법을 설명하기 앞서, IEEE 802.16m 시스템에서 수행될 수 있는 영역 변경절차를 도 3 및 도 4를 참조하여 설명한다.
도 3은 본 발명의 일 실시예에 따른 이동 단말기가 수행할 수 있는 영역 변경절차의 일례를 나타내는 순서도이다.
도 3을 참조하면, 단말(AMS)은 레거시 서빙 기지국과 통신 중 핸드오버 트리거(HO trigger) 조건을 이용하여 후보 기지국(candidate HO BS)들에 대한 스캔을 시작할 수 있다. 단말은 핸드오버 조건, 예를 들어 소정의 이력 마진(Hysterisis margin) 값을 초과하였을 경우 핸드오버 요청(MOB_MSHO-REQ) 메시지를 전송하여 서빙 기지국에 핸드오버 절차수행을 요청할 수 있다(S301).
서빙 기지국은 후보 기지국들로부터 획득한 핸드오버에 관련된 정보들을 핸드오버 응답(MOB_BSHO-RSP) 메시지를 통하여 단말에 전달할 수 있다. 여기서 MOB_BSHO-RSP 메시지에는 핸드오버를 위한 동작 시간(Action Time), 핸드오버 식별자(HO-ID) 및 전용 핸드오버 CDMA 레인징 코드(Dedicated HO CDMA ranging code) 등의 핸드오버를 수행하기 위한 정보들이 포함될 수 있다(S302).
단말은 서빙 기지국으로부터 수신한 MOB_BSHO-RSP 메시지에 포함된 정보를 토대로, 후보기지국들 중에서 레거시 지원 ABS를 타겟 기지국으로 결정할 수 있다. 그에 따라 단말은 서빙 레거시 기지국에 핸드오버 지시 메시지를 전송할 수 있다(S303).
이후 단말은 타겟 기지국의 LZone으로 레인징 요청(RNG-REQ) 메시지를 전송한다(S304).
이때, 레인징 요청 메시지에는 단말의 매체접속제어 버전(MAC version) 정보가 포함될 수 있으며, 그 값은 AMS에 해당하는 값으로 설정된다. 또한, 레인징 요청 메시지에는 단말이 수행가능한 영역 변경의 형태를 지시하는 영역 변경 능력(Zone Switch Capability) 필드가 포함될 수 있다.
기지국은 레인징 요청 메시지에 포함된 MAC 버전 정보, 영역 변경 능력 필드 또는 이전 서빙 레거시 기지국으로부터 획득한 정보를 통해 레인징 메시지를 전송한 단말이 개선 단말(AMS)임을 알고 MZone으로 영역변경을 수행하도록 할 수 있다.
그를 위하여, 타겟 기지국은 영역변경을 위해 단말에 요구되는 정보(Zone switch TLV, 이하 "ZS TLV"라 칭함)를 포함하는 레인징 응답(RNG-RSP) 메시지를 단말로 전송한다(S305).
이때, ZS TLV에는 아래 표 3과 같은 정보들이 포함될 수 있다.
표 3은 본 발명에 따른 RNG-RSP 메시지에 포함되는 ZS TLV 정보의 일례를 나타낸다.
표 3
이름 타입(1바이트) 길이
엠존 개선 프리엠블 인덱스 41 2
타임 오프셋 42 1 엘존과 엠존 사이의 시간 오프셋
영역 변경 모드 44 1 0x01: 개선단말은 엠존에 망 재진입을 수행하는 동안 해당 기지국의 엘존과 데이터 통신을 유지함0x00: 개선단말은 엠존에 망 재진입을 수행하기 전에 엘존과 데이터 통신을 해제함
임시 스테이션식별자 46 1 엠존에서 사용될 임시 스테이션 식별자
레인징 개시 한계점 47 1 임시 스테이션식별자의 유효시간. 임시 스테이션 식별자가 포함되면 포함됨
표 3을 참조하면, ZS TLV에는 MZone에서 사용되는 프리엠블 인덱스(MZone A- Preamble index) 정보, TDD 프레임 구조에서 LZone과 MZone의 구분 경계(또는 비율)을 나타내는 타임 오프셋(Time offset) 정보, 영역변경 과정에서 단말이 LZone과의 연결을 유지하는지 여부를 지시하는 영역변경 모드(Zone Switch Mode) 정보, MZone에서 임시적으로 단말을 식별하기 위한 임시 스테이션 식별자(Temporary STID) 정보 및 임시 스테이션 식별자의 유효시간을 나타내는 레인징 개시 한계점(Ranging initiation deadline) 정보 등이 포함될 수 있다. 이외에도 표 1에 나타나지는 않았으나, 보안키(PMK) 생성을 위한 넌스_기지국(NONCE_ABS) 값이 포함될 수도 있다.
이후 단말은 ZS TLV에 포함된 정보를 이용하여 타겟 ABS의 MZone과 동기화를 수행하고(S306), 영역변경을 수행하기 위하여 레인징 요청(AAI_RNG-REQ) 메시지를 전송하기 위한 상향링크 자원을 요청(BR request for AAI_RNG-REQ)한다(미도시).
MZone으로부터 요청한 상향링크 자원이 할당되면, 단말은 MZone으로 레인징 요청(AAI_RNG-REQ) 메시지를 전송한다(S307). 이때, 레인징 요청 메시지의 레인징 목적 시지(Ranging Purpose Indication) 필드의 값은 LZone에서 MZone으로의 영역변경을 지시하는 값(예를 들어, 0b1010)으로 설정된다.
타겟 ABS는 단말이 전송한 레인징 요청 메시지에 대한 응답으로 레인징 응답(AAI_RNG-RSP) 메시지를 단말로 전송한다(S308).
이후 단말은 MZone으로의 영역변경을 마치고 MZone을 통하여 타겟 ABS와 정상적인 통신을 수행할 수 있다(S309).
도 3을 참조하여 상술한 방법은 단말이 타겟 기지국의 LZone으로 망 재진입을 마치지 않은 상태에서 MZone으로 영역변경을 수행하나, 단말이 LZone으로 망 재진입을 마친 후 MZone으로 영역변경을 수행할 수도 있다. 이를 도 4를 참조하여 설명한다.
도 4는 본 발명의 일 실시예에 따른 이동 단말기가 수행할 수 있는 영역 변경절차의 다른 일례를 나타내는 순서도이다.
도 4에서 S401 단계 내지 S404 과정은 도 3의 S301 단계 내지 S304 단계와 유사하므로 명세서의 간명함을 위하여 중복되는 설명은 생략하기로 한다.
단말로부터 RNG-REQ 메시지를 수신한 타겟 기지국은 레인징 요청 메시지에 포함된 MAC 버전 정보나 이전 서빙 레거시 기지국으로부터 획득한 정보를 통해 레인징 메시지를 전송한 단말이 개선 단말(AMS)임을 알고 MZone으로 영역변경을 수행하도록 할 수 있다. 다만, 타겟 기지국은 LZone과 MZone 사이의 부하 밸런싱(Load balancing) 등을 이유로 단말의 영역변경을 유보할 수 있다.
그에 따라 타겟 기지국은 ZS TLV가 포함되지 않은 레인징 응답(RNG-RSP) 메시지를 단말로 전송하고(S405), 단말은 타겟 기지국의 LZone에 망 재진입을 마치고 정상적인 통신을 수행할 수 있다(S406).
이후 타겟 기지국이 해당 단말에 MZone으로의 영역변경을 지시하기로 결정한 경우, ZS TLV를 포함하는 레인징 응답(RNG-RSP) 메시지를 비요청으로(unsolicited) 단말에 전송할 수 있다(S407).
그에 따라 단말은 ZS TLV에 포함된 정보를 이용하여 타겟 ABS의 MZone과 동기화를 수행하고(S408), 영역변경을 수행하기 위하여 레인징 요청(AAI_RNG-REQ) 메시지를 전송하기 위한 상향링크 자원을 요청(BR request for AAI_RNG-REQ)한다(미도시).
MZone으로부터 요청한 상향링크 자원이 할당되면, 단말은 MZone으로 레인징 요청(AAI_RNG-REQ) 메시지를 전송한다(S409). 이때, 레인징 요청 메시지의 레인징 목적 시지(Ranging Purpose Indication) 필드의 값은 LZone에서 MZone으로의 영역변경을 지시하는 값(예를 들어, 0b1010)으로 설정된다.
타겟 ABS는 단말이 전송한 레인징 요청 메시지에 대한 응답으로 레인징 응답(AAI_RNG-RSP) 메시지를 단말로 전송한다(S410).
이후 단말은 MZone으로의 영역변경을 마치고 MZone을 통하여 타겟 ABS와 정상적인 통신을 수행할 수 있다(S411).
도 3 및 도 4를 참조하여 상술한 절차는 핸드오버 과정의 하나로 영역 변경이 수행되는 형태를 설명하였다. 따라서, 실질적인 영역 변경 절차는 도 3의 경우 S305 내지 S309 단계로 볼 수 있으며, 도 4의 경우 S407 내지 S411 단계로 볼 수 있다.
본 발명의 일 실시예의 다른 양상에서는 핸드오버 절차에서 단말이 영역 변경시 MZone으로의 레인징 수행을 위한 상향링크 전송전력을 제어함에 있어서 LZone으로부터 MZone으로 전송될 상향링크 신호에 적용될 전송 전력 파라미터를 획득하고, 이를 전송전력 제어에 적용할 것을 제안한다. 즉, 믹스모드로 동작하는 기지국은 LZone을 통해 MZone에 적용될 상향링크 전력제어 파라미터를 단말에 미리 알려줄 것을 제안한다.
여기서 MZone으로 전송될 상향링크 신호에 적용될 상향링크 전력제어 파라미터는 iotFP 및 오프셋컨트롤(offsetControl) 값인 것이 바람직하다. iotFP 및 오프셋컨트롤과 같은 전력제어 파라미터는 영역변경 과정에서 LZone을 통해 전송되는 레인징 응답(RNG-RSP) 메시지에 ZS-TLV 형태로 포함될 수 있다. 특히, 이러한 전력제어 파라미터는 ZS-TLV에 MZone에서 단말을 임시로 식별하기 위한 임시 스테이션 식별자(TSTID)가 포함될 때 유용하다. 보다 상세히, ZS-TLV에 TSTID와 전력제어 파라미터가 포함되는 경우 CDMA 레인징이 생략되고 바로 MZone으로 개선 레인징 요청 메시지를 전송하기 위한 상향링크 자원을 요청(BR: Bandwidth Request)할 때, BR에 적용되는 상향링크 전력제어에 상기 파라미터가 적용될 수 있다. BR은 대역요청 헤더(BR Header)나 대역 요청 메시지(BR message)의 전송 또는 피기백(piggy back) 방식을 통해 수행될 수 있다.
한편, 상술한 방법은 MZone에 대한 CDMA 레인징 없이 바로 BR을 수행하고, 그에 따른 자원이 할당되면 레인징 요청 메시지를 전송하는 경우를 가정한다. 만일, ZS-TLV에 전용 CDMA 레인징 코드가 포함되는 경우라면 단말은 전용 레인징 코드를 MZone에 전송하면서 ZS-TLV에 포함된 전력제어 파라미터를 코드 전송에 적용할 수 있다. 레인징 코드 전송이 성공적으로 완료되면 단말은 AAI-RNG-REQ 메시지를 MZone으로 전송하며, ZS-TLV에 TSTID가 포함되는 경우 AAI-RNG-REQ 메시지에 이를 포함시켜 전송한다.
지금까지 CDMA 레인징 수행여부에 따라 두 가지 절차로 나누어 전력제어방법을 설명하였다. 두 절차 모두, ZS-TLV에 포함되는 iotFP 및 offsetControl을 제외한 나머지 상향링크 전력제어 파라미터는 LZone에서 적용되던 값이 그대로 MZone에 적용될 수 있다. 상술한 두 절차에 따른 영역 변경 방법을 도 5를 참조하여 보다 상세히 설명한다.
도 5는 본 발명의 일 실시예에 따른 이동 단말기가 영역 변경을 수행함에 있어 전송 전력을 제어하여 레인징을 수행하는 형태의 일례를 나타내는 순서도이다.
도 5에서는 도 3의 S304 단계 이후 또는 도 4의 S406 이후 과정인 것으로 가정한다.
먼저, 단말은 믹스모드로 동작하는 기지국의 LZone으로부터 레인징 응답 메시지를 통해 iotFP 및 offsetControl 등의 상향링크 전력제어 파라미터를 포함하는 ZS-TLV 정보를 획득할 수 있다(S501).
만일, ZS-TLV 정보에 전용 레인징 코드(dedicated CDMA ranging code)가 포함된 경우에는 해당 레인징 코드에 획득한 전력제어 파라미터를 적용하여 MZone으로 전송한다(S502). 기지국은 레인징 코드에 대한 응답으로 레인징 긍정응답(AAI-RNG-ACK) 메시지를 MZone을 통해 단말로 전송한다(S503).
ZS-TLV 정보에 전용 레인징 코드가 포함되지 않고 전력제어 파라미터와 함께 TSTID가 포함된 경우, 단말은 CDMA 레인징 절차를 생략하고 바로 TSTID를 이용하여 MZone으로 대역 요청을 수행한다(S504). 이때, 대역 요청(BR)에는 ZS-TLV에 포함된 상향링크 전력제어 파라미터가 적용된다.
이후 단말은 기지국으로부터 BR에 따른 자원이 할당되면, 해당 자원을 통하여 MZone으로 레인징 요청(AAI-RNG-REQ) 메시지를 전송하고(S505), 그에 대한 응답으로 레인징 응답(AAI-RNG-RSP) 메시지를 수신한다(S506).
레인징 절차가 성공적으로 완료된 후 나머지 망 재진입 절차를 마치면, 단말은 MZone으로의 망 재진입을 완료하고 정상적인 데이터 교환을 수행할 수 있다(S507).
지금까지 본 발명에 따른 핸드오버 및 영역 변경 과정에서의 상향링크 전력제어 방법을 설명하였다. 핸드오버나 영역 변경을 통한 망 재진입이 완료되면, 시스템 설정 기술자(AAI-SCD: System Configuration Descriptor) 메시지, 상향링크 전력제어 잡음/간섭(AAI-ULPC-NI) 메시지 및 상향링크 전력 조절(AAI-UL-POWER-ADJ) 메시지를 수신하여 상향링크 전력제어 파라미터를 갱신할 수 있다.
단말 및 기지국 구조
이하, 본 발명의 다른 실시예로서, 상술한 본 발명의 실시예들이 수행될 수 있는 단말 및 기지국(FBS, MBS)을 설명한다.
단말은 상향링크에서는 송신기로 동작하고, 하향링크에서는 수신기로 동작할 수 있다. 또한, 기지국은 상향링크에서는 수신기로 동작하고, 하향링크에서는 송신기로 동작할 수 있다. 즉, 단말 및 기지국은 정보 또는 데이터의 전송을 위해 송신기 및 수신기를 포함할 수 있다.
송신기 및 수신기는 본 발명의 실시예들이 수행되기 위한 프로세서, 모듈, 부분 및/또는 수단 등을 포함할 수 있다. 특히, 송신기 및 수신기는 메시지를 암호화하기 위한 모듈(수단), 암호화된 메시지를 해석하기 위한 모듈, 메시지를 송수신하기 위한 안테나 등을 포함할 수 있다. 이러한 송신단과 수신단의 일례를 도 6을 참조하여 설명한다.
도 6은 본 발명의 다른 실시예로서, 송신단 및 수신단 구조의 일례를 나타내는 블록도이다.
도 6을 참조하면, 좌측은 송신단의 구조를 나타내고, 우측은 수신단의 구조를 나타낸다. 송신단과 수신단 각각은 안테나(5, 10), 프로세서(20, 30), 전송모듈(Tx module(40, 50)), 수신모듈(Rx module(60, 70)) 및 메모리(80, 90)를 포함할 수 있다. 각 구성 요소는 서로 대응되는 기능을 수행할 수 있다. 이하 각 구성요소를 보다 상세히 설명한다.
안테나(5, 10)는 전송모듈(40, 50)에서 생성된 신호를 외부로 전송하거나, 외부로부터 무선 신호를 수신하여 수신모듈(60, 70)로 전달하는 기능을 수행한다. 다중 안테나(MIMO) 기능이 지원되는 경우에는 2개 이상이 구비될 수 있다.
안테나, 전송모듈 및 수신모듈은 함께 무선통신(RF) 모듈을 구성할 수 있다.
프로세서(20, 30)는 통상적으로 이동 단말기 전체의 전반적인 동작을 제어한다. 예를 들어, 상술한 본 발명의 실시예들을 수행하기 위한 콘트롤러 기능, 서비스 특성 및 전파 환경에 따른 MAC(Medium Access Control) 프레임 가변 제어 기능, 핸드오버(Hand Over) 기능, 인증 및 암호화 기능 등이 수행될 수 있다. 보다 구체적으로, 프로세서(20, 30)는 도 2 내지 도 5에 나타난 핸드오버 또는 영역변경을 수행하기 위한 전반적인 제어를 수행할 수 있다.
특히, 이동 단말기(AMS)의 프로세서는 핸드오버를 수행함에 있어 서빙 기지국으로부터 수신되는 핸드오버 명령(AAI-HO-CMD) 메시지를 통하여 iotFP 및 오프셋 컨트롤 정보를 수신하고 이를 타겟 기지국으로 전송하는 전용 레인징 코드의 전송 전력에 적용할 수 있다.
또한, 이동 단말기의 프로세서는 영역 변경을 수행함에 있어 타겟 영역에 레인징 코드를 전송하거나 레인징 요청 메시지를 전송하기 위한 대역폭을 요청함에 있어 RNG-RSP 메시지에 포함되는 ZS-TLV를 통하여 획득되는 iotFP 및 오프셋 컨트롤 정보를 전송 전력 제어에 적용할 수 있다.
이 외에도 단말의 프로세서는 상술한 실시예들에 개시된 동작 과정의 전반적인 제어 동작을 수행할 수 있다.
전송 모듈(40, 50)은 프로세서(20, 30)로부터 스케쥴링되어 외부로 전송될 데이터에 대하여 소정의 부호화(coding) 및 변조(modulation)를 수행한 후 안테나(10)에 전달할 수 있다.
수신 모듈(60, 70)은 외부에서 안테나(5, 10)를 통하여 수신된 무선 신호에 대한 복호(decoding) 및 복조(demodulation)을 수행하여 원본 데이터의 형태로 복원하여 프로세서(20, 30)로 전달할 수 있다.
메모리(80, 90)는 프로세서(20, 30)의 처리 및 제어를 위한 프로그램이 저장될 수도 있고, 입/출력되는 데이터들의 임시 저장을 위한 기능을 수행할 수도 있다. 또한, 메모리(80, 90)는 플래시 메모리 타입(flash memory type), 하드디스크 타입(hard disk type), 멀티미디어 카드 마이크로 타입(multimedia card micro type), 카드 타입의 메모리(예를 들어 SD 또는 XD 메모리 등), 램(Random Access Memory, RAM), SRAM(Static Random Access Memory), 롬(Read-Only Memory, ROM), EEPROM(Electrically Erasable Programmable Read-Only Memory), PROM(Programmable Read-Only Memory), 자기 메모리, 자기 디스크, 광디스크 중 적어도 하나의 타입의 저장매체를 포함할 수 있다.
한편, 기지국은 상술한 본 발명의 실시예들을 수행하기 위한 콘트롤러 기능, 직교주파수분할다중접속(OFDMA: Orthogonal Frequency Division Multiple Access) 패킷 스케줄링, 시분할듀플렉스(TDD: Time Division Duplex) 패킷 스케줄링 및 채널 다중화 기능, 서비스 특성 및 전파 환경에 따른 MAC 프레임 가변 제어 기능, 고속 트래픽 실시간 제어 기능, 핸드오버(Handover) 기능, 인증 및 암호화 기능, 데이터 전송을 위한 패킷 변복조 기능, 고속 패킷 채널 코딩 기능 및 실시간 모뎀 제어 기능 등이 상술한 모듈 중 적어도 하나를 통하여 수행하거나, 이러한 기능을 수행하기 위한 별도의 수단, 모듈 또는 부분 등을 더 포함할 수 있다.
본 발명은 본 발명의 정신 및 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다. 또한, 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함할 수 있다.
상술한 바와 같은 광대역 무선 접속 시스템에서 보다 효율적인 영역변경을 위한 전력제어 방법 및 이를 위한 단말 구조는 IEEE802.16m 시스템에 적용되는 예를 중심으로 설명하였으나, IEEE802.xx 시스템 이외에도 3GPP/3GPP2와 같은 다른 다양한 이동통신 시스템에 적용하는 것이 가능하다.

Claims (16)

  1. 광대역 무선 접속 시스템에서 단말이 제 1 영역으로부터 제 2 영역으로 망 재진입을 위한 상향링크 전력제어를 수행하는 방법에 있어서,
    상기 제 1 영역으로부터 상기 제 2 영역에 적용될 전력제어 파라미터를 포함하는 매체접속제어 관리(MAC management) 메시지를 수신하는 단계; 및
    상기 전력제어 파라미터를 적용하여 상기 제 2 영역으로 레인징을 수행하는 단계를 포함하는, 전력제어 방법.
  2. 제 1항에 있어서,
    상기 전력제어 파라미터는,
    주파수 분할의 열대비간섭(iotFP) 값 및 오프셋컨트롤(offsetControl) 값을 포함하는, 전력제어 방법.
  3. 제 2항에 있어서,
    상기 제 1 영역은 서빙 기지국(S-ABS)이고, 상기 제 2 영역은 타겟 기지국(S-ABS)이며,
    상기 매체접속제어 관리 메시지는 핸드오버 명령(AAI-HO-CMD) 메시지인 것을 특징으로 하는 전력제어 방법.
  4. 제 3항에 있어서,
    상기 핸드오버 명령 메시지는 전용 레인징 코드를 더 포함하고,
    상기 레인징을 수행하는 단계는, 상기 전용 레인징 코드를 상기 타겟 기지국으로 전송하는 단계를 포함하는 전력제어 방법.
  5. 제 2항에 있어서,
    상기 제 1 영역은 믹스모드로 동작하는 기지국의 엘존(LZone)이고, 상기 제 2 영역은 상기 기지국의 엠존(MZone)이며,
    상기 매체접속제어 관리 메시지는 레인징 응답(RNG-RSP) 메시지인 것을 특징으로 하는 전력제어 방법.
  6. 제 5항에 있어서,
    상기 레인징 응답 메시지는 상기 엠존에서 상기 단말을 임시로 식별하기 위한 임시 식별자(TSTID)를 더 포함하고,
    상기 레인징을 수행하는 단계는 레인징 요청 메시지를 전송하기 위한 상향링크 자원을 요청하기 위한 대역요청(BR) 정보를 상기 엠존으로 전송하는 단계를 포함하되,
    상기 대역요청 정보에 상기 전력제어 파라미터가 적용되는 것을 특징으로 하는 전력제어 방법.
  7. 광대역 무선 접속 시스템에서 서빙 기지국이 단말의 상향링크 전력제어를 고려하여 핸드오버를 지원하는 방법에 있어서,
    타겟 기지국으로부터 전용 레인징 코드 및 전력제어 정보를 수신하는 단계; 및
    상기 타겟 기지국에 적용될 전력제어 파라미터 및 상기 전용 레인징 코드를 포함하는 핸드오버 명령(AAI-HO-CMD) 메시지를 상기 단말로 전송하는 단계를 포함하는, 핸드오버 지원방법.
  8. 제 7항에 있어서,
    상기 전력제어 파라미터는,
    주파수 분할의 열대비간섭(iotFP) 값 및 오프셋컨트롤(offsetControl) 값을 포함하는, 핸드오버 지원방법.
  9. 광대역 무선 접속 시스템에서 믹스모드로 동작하는 기지국이 단말의 상향링크 전력제어를 고려하여 영역 변경을 지원하는 방법에 있어서,
    제 1 영역을 통하여 상기 단말을 제 2 영역에서 식별하기 위한 임시 식별자 및 상기 제 2 영역에 적용될 전력제어 파라미터를 포함하는 레인징 응답 메시지를 상기 단말로 전송하는 단계; 및
    상기 제 2 영역을 통하여 상기 임시 식별자를 포함하는 대역 요청 정보를 수신하는 단계를 포함하는 영역 변경 지원방법.
  10. 제 9항에 있어서,
    상기 전력제어 파라미터는,
    주파수 분할의 열대비간섭(iotFP) 값 및 오프셋컨트롤(offsetControl) 값을 포함하는, 영역 변경 지원방법.
  11. 광대역 무선 접속 시스템의 제 1 영역으로부터 제 2 영역으로 망 재진입을 위한 상향링크 전력제어를 수행하는 개선 단말(AMS) 장치에 있어서,
    프로세서; 및
    상기 프로세서의 제어에 따라 외부와 무선 신호를 송수신하기 위한 무선통신(RF) 모듈을 포함하되,
    상기 프로세서는,
    상기 제 1 영역으로부터 상기 제 2 영역에 적용될 전력제어 파라미터를 포함하는 매체접속제어 관리(MAC management) 메시지가 수신되면, 상기 수신된 전력제어 파라미터를 적용하여 상기 제 2 영역으로 레인징을 수행하도록 제어하는 것을 특징으로 하는 단말 장치.
  12. 제 11항에 있어서,
    상기 전력제어 파라미터는,
    주파수 분할의 열대비간섭(iotFP) 값 및 오프셋컨트롤(offsetControl) 값을 포함하는, 단말 장치.
  13. 제 12항에 있어서,
    상기 제 1 영역은 서빙 기지국(S-ABS)이고, 상기 제 2 영역은 타겟 기지국(S-ABS)이며,
    상기 매체접속제어 관리 메시지는 핸드오버 명령(AAI-HO-CMD) 메시지인 것을 특징으로 하는 단말 장치.
  14. 제 13항에 있어서,
    상기 핸드오버 명령 메시지는 전용 레인징 코드를 더 포함하고,
    상기 프로세서는,
    상기 전용 레인징 코드에 상기 전력제어 파라미터를 적용하여 상기 타겟 기지국으로 전송하도록 제어하는 것을 특징으로 하는 단말 장치.
  15. 제 12항에 있어서,
    상기 제 1 영역은 믹스모드로 동작하는 기지국의 엘존(LZone)이고, 상기 제 2 영역은 상기 기지국의 엠존(MZone)이며,
    상기 매체접속제어 관리 메시지는 레인징 응답(RNG-RSP) 메시지인 것을 특징으로 하는 단말 장치.
  16. 제 15항에 있어서,
    상기 레인징 응답 메시지는 상기 엠존에서 상기 단말 장치를 임시로 식별하기 위한 임시 식별자(TSTID)를 더 포함하고,
    상기 프로세서는,
    상기 레인징 요청 메시지를 전송하기 위한 상향링크 자원을 요청하기 위한 대역요청(BR) 정보에 상기 전력제어 파라미터를 적용하여 상기 엠존으로 전송하도록 제어하는 것을 특징으로 하는 단말 장치.
PCT/KR2011/008326 2010-11-03 2011-11-03 광대역 무선 접속 시스템에서의 상향링크 전력 제어 방법 WO2012060640A2 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/883,245 US9026116B2 (en) 2010-11-03 2011-11-03 Method for controlling uplink power in a broadband wireless access system
CN201180062862.1A CN103270795B (zh) 2010-11-03 2011-11-03 在宽带无线接入系统中控制上行功率的方法
JP2013537607A JP5715706B2 (ja) 2010-11-03 2011-11-03 広帯域無線接続システムにおける上りリンク電力制御方法
US14/569,503 US9369972B2 (en) 2010-11-03 2014-12-12 Method for controlling uplink power in a broadband wireless access system
US15/146,101 US9674794B2 (en) 2010-11-03 2016-05-04 Apparatus and method of performing synchronizing in a wireless access system supporting a plurality of zones for communication between mobile station and base station

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US40993710P 2010-11-03 2010-11-03
US61/409,937 2010-11-03
KR1020110032175A KR101759940B1 (ko) 2010-11-03 2011-04-07 광대역 무선 접속 시스템에서의 상향링크 전력 제어 방법
KR10-2011-0032175 2011-04-07

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/883,245 A-371-Of-International US9026116B2 (en) 2010-11-03 2011-11-03 Method for controlling uplink power in a broadband wireless access system
US14/569,503 Continuation US9369972B2 (en) 2010-11-03 2014-12-12 Method for controlling uplink power in a broadband wireless access system

Publications (3)

Publication Number Publication Date
WO2012060640A2 WO2012060640A2 (ko) 2012-05-10
WO2012060640A3 WO2012060640A3 (ko) 2012-09-20
WO2012060640A9 true WO2012060640A9 (ko) 2012-11-15

Family

ID=46024960

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/008326 WO2012060640A2 (ko) 2010-11-03 2011-11-03 광대역 무선 접속 시스템에서의 상향링크 전력 제어 방법

Country Status (1)

Country Link
WO (1) WO2012060640A2 (ko)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060032466A (ko) * 2004-10-12 2006-04-17 삼성전자주식회사 이동 단말기의 핸드오버를 위한 광대역 무선 접속 통신시스템 및 그 시스템에서의 이동 단말기의 핸드오버 방법
KR101533091B1 (ko) * 2009-02-06 2015-07-10 삼성전자주식회사 광대역 무선접속 통신시스템에서 레인징을 위한 방법 및 장치
US8879482B2 (en) * 2009-02-26 2014-11-04 Lg Electronics Inc. Method allowing ranging dependent on status of mobile station in broadband wireless access system

Also Published As

Publication number Publication date
WO2012060640A3 (ko) 2012-09-20
WO2012060640A2 (ko) 2012-05-10

Similar Documents

Publication Publication Date Title
WO2011149309A2 (ko) 광대역 무선 접속 시스템에서 핸드오버 수행방법
WO2010098626A2 (ko) 광대역 무선 접속 시스템에서 단말의 상태에 따른 레인징 수행 방법
WO2010098623A2 (ko) 광대역 무선 접속 시스템에서 핸드오버 수행 중 시스템 정보 갱신 방법
WO2010071347A2 (en) Method for saving power of a femto base station using sleep period synchronization
WO2019194649A1 (en) Method for performing cell reselection and device supporting the same
WO2011025217A2 (en) Techniques for interference mitigation in multi-tier communication system
WO2010095880A2 (ko) 무선 통신 시스템에서 영역 변경을 통한 핸드오버 방법 및 장치
WO2010137836A9 (en) Method of dcr operation in a broadband wireless communication system
WO2011059239A2 (en) Methods and apparatus to support reconfiguration in self organized wireless communications and networks
WO2010147409A2 (en) Method of scanning neighbor base station in a broadband wieless access system
WO2010095888A2 (ko) 무선 통신 시스템에서 이동 단말과 중간 접속점 사이의 거리 계산을 이용한 핸드오버 방법 및 장치
WO2010074509A2 (ko) 중계국을 포함하는 광대역 무선 접속 시스템에서의 단말의 이동성 관리 방법
WO2011025289A2 (en) Method for detecting coverage loss in broadband wireless access system
WO2011068366A2 (ko) 광대역 무선 접속 시스템에서 단문메시지 전송 방법
KR101759940B1 (ko) 광대역 무선 접속 시스템에서의 상향링크 전력 제어 방법
WO2010087673A2 (ko) 광대역 무선 접속 시스템에서의 효율적인 핸드오버 수행방법
WO2010137833A2 (en) Method of dcr operation in a broadband wireless communication system
WO2010147446A2 (ko) 복수의 펨토 기지국을 포함하는 광대역 무선 접속 시스템에서 단말의 효율적인 핸드오버 수행방법
WO2011049385A2 (en) Method for mapping ranging channels and opportunities in a broadband wireless access system
WO2010107278A2 (en) Method of reliable handover signaling procedure in a broadband wireless access system
WO2011046371A2 (en) Method of performing handover in a broadband wireless access system
WO2011008021A2 (ko) 레거시 지원 모드에서 단말의 주변 레거시 기지국 정보 수신 방법
WO2010126335A2 (ko) 광대역 무선접속 시스템에서 효율적인 핸드오버 수행방법
WO2012036452A2 (ko) 광대역 무선 접속 시스템에서의 영역 변경 수행방법
WO2011078545A2 (ko) 광대역 무선접속 시스템에서의 영역변경을 통한 핸드오버 수행 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11838245

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2013537607

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13883245

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11838245

Country of ref document: EP

Kind code of ref document: A2