WO2012060012A1 - Control device of internal combustion engine - Google Patents

Control device of internal combustion engine Download PDF

Info

Publication number
WO2012060012A1
WO2012060012A1 PCT/JP2010/069706 JP2010069706W WO2012060012A1 WO 2012060012 A1 WO2012060012 A1 WO 2012060012A1 JP 2010069706 W JP2010069706 W JP 2010069706W WO 2012060012 A1 WO2012060012 A1 WO 2012060012A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
egr
control valve
response
integrated value
Prior art date
Application number
PCT/JP2010/069706
Other languages
French (fr)
Japanese (ja)
Inventor
卓 伊吹
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2010/069706 priority Critical patent/WO2012060012A1/en
Priority to JP2012541696A priority patent/JP5429401B2/en
Publication of WO2012060012A1 publication Critical patent/WO2012060012A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/005Controlling exhaust gas recirculation [EGR] according to engine operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/09Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine
    • F02M26/10Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine having means to increase the pressure difference between the exhaust and intake system, e.g. venturis, variable geometry turbines, check valves using pressure pulsations or throttles in the air intake or exhaust system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/0017Controlling intake air by simultaneous control of throttle and exhaust gas recirculation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1409Introducing closed-loop corrections characterised by the control or regulation method using at least a proportional, integral or derivative controller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/34Control of exhaust back pressure, e.g. for turbocharged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a control device for an internal combustion engine.
  • Patent Document 1 describes a control device for an internal combustion engine.
  • An internal combustion engine described in Patent Document 1 includes a supercharger that increases the pressure of gas sucked into a combustion chamber, and an exhaust gas recirculation device (hereinafter referred to as exhaust gas recirculation device) that introduces exhaust gas discharged from the combustion chamber into the exhaust passage.
  • This device is referred to as an “EGR device”.
  • the supercharger has a variable nozzle for controlling the pressure of exhaust gas flowing into the exhaust turbine (hereinafter, this pressure is referred to as “exhaust pressure”).
  • exhaust pressure exhaust pressure
  • the EGR device has a control valve for controlling the amount of exhaust gas (hereinafter referred to as “EGR gas”) introduced into the intake passage (hereinafter referred to as “EGR control valve”). is doing.
  • the control device described in Patent Document 1 controls the pressure of the gas sucked into the combustion chamber by controlling the opening of the variable nozzle (hereinafter, this pressure is referred to as “supercharging pressure”), and EGR control.
  • the amount of EGR gas (in other words, the so-called EGR rate) is controlled by controlling the opening of the valve.
  • the boost pressure is accurately set to the target boost pressure. In order to control, it is preferable to consider the influence of the change in the EGR rate on the supercharging pressure.
  • control device described in Patent Document 1 controls the supercharging pressure to the target supercharging pressure while considering the influence of the change in supercharging pressure on the EGR rate and the influence of the change in EGR rate on the supercharging pressure.
  • the opening of the variable nozzle of the supercharger and the opening of the EGR control valve of the EGR device are controlled so that the EGR rate is controlled to the target EGR rate.
  • the response of the variable nozzle of the supercharger is also the EGR control valve of the EGR device. These effects are considered on the assumption that the response is also the intended response. Therefore, if the response of the variable nozzle is slower or faster than the intended response, or if the response of the EGR control valve is slower or faster than the intended response, the response of the variable nozzle and the response of the EGR control valve.
  • the supercharging pressure is not controlled to the target supercharging pressure
  • the supercharging pressure is not controlled with a predetermined followability to the target supercharging pressure
  • the EGR rate is not controlled to the target EGR rate, or at least the EGR rate is predetermined to the target EGR rate. It will not be controlled with the following ability.
  • the supercharging pressure and the EGR rate are not controlled with good balance with respect to the target supercharging pressure and the target EGR rate, respectively.
  • the response of the variable nozzle or the response of the EGR control valve is expected. If not, the supercharging pressure and the EGR rate are controlled so as to control the target supercharging pressure and the EGR rate with a predetermined follow-up according to the response of the variable nozzle or the response of the EGR control valve, respectively. Control of supply pressure and EGR rate should be changed.
  • an object of the present invention is to control two control amounts that affect each other with a predetermined followability to each target control amount, or to control two control amounts that affect each other in a balanced manner with respect to each target control amount. There is to do.
  • 1st invention of this application is the 1st control object which controls the 1st control amount which is one of the 2 control amounts which mutually affect, and the remaining 1 of the 2 control amounts which mutually affect
  • the present invention relates to a control device for an internal combustion engine including a second control target that controls a second control amount.
  • the control device of the present invention sets the first control amount to be targeted as the target first control amount and sets the second control amount to be targeted as the target second control amount. Then, an operation amount to be input to the first control target in order to make the first control amount reach the target first control amount and make the second control amount reach the target second control amount is set as the target first operation amount. At the same time, the operation amount to be input to the second control target is set as the target second operation amount. Then, an operation amount corresponding to the target first operation amount is input to the first control object, and an operation amount corresponding to the target second operation amount is input to the second control object, thereby setting the first control amount to the target first control. And the second control amount is controlled to the target second control amount.
  • the integrated value of the deviation of the actual first control amount with respect to the target first control amount is calculated as the first control amount deviation integrated value and the target second control.
  • the integrated value of the deviation of the actual second control amount with respect to the amount is calculated as the second controlled variable deviation integrated value.
  • the target first operation amount and the target second operation amount are corrected based on the first control amount deviation integrated value and the second control amount deviation integrated value.
  • the first control amount can be controlled to the target first control amount with a predetermined followability
  • the second control amount can be controlled to the target second control amount with a predetermined followability.
  • at least the first control amount and the second control amount can be controlled in a balanced manner with respect to the target first control amount and the target second control amount, respectively.
  • the first control amount deviation integrated value includes not only the continuous shift of the first control amount with respect to the target first control amount (that is, the shift of the response of the first control target to the intended response), but also the target first control amount.
  • the deviation of the second controlled variable with respect to the two controlled variables that is, the deviation of the response of the second controlled object with respect to the intended response) is also reflected.
  • the second control amount deviation integrated value not only the continuous shift of the second control amount with respect to the target second control amount (that is, the shift of the response of the second control target to the intended response), but also the target
  • the deviation of the first control amount with respect to the first control amount that is, the deviation of the response of the first control object with respect to the intended response
  • the response of the first control target slower than the intended response or the expected response is the response of the first control target slower than the intended response or the expected response? Or grasping whether the response of the second control target is faster than the intended response, and whether the response of the second control target is slower than the intended response, is the intended response, or is faster than the intended response Can do.
  • the target first operation amount and the target second operation amount are corrected. That is, whether the response of the first controlled object is slower than the intended response, is the intended response, or is faster than the intended response, and the response of the second controlled object is the expected response.
  • the target first manipulated variable and the target second manipulated variable are corrected according to whether the response is slower than the intended response or faster than the intended response.
  • an operation amount corresponding to the corrected target first operation amount is input to the first control object and an operation amount corresponding to the corrected target second operation amount is input to the second control object
  • the one control amount is controlled with a predetermined followability to the target first control amount and the second control amount is controlled with a predetermined followability to the target second control amount, or at least the first control amount and the first control amount
  • the two control amounts are controlled in a balanced manner with respect to the target first control amount and the target second control amount, respectively.
  • the correction of the target first operation amount includes a deviation of the response of the first control target with respect to the intended response. It is not reflected accurately, and the deviation of the response of the second control object with respect to the intended response is not reflected at all.
  • the first control amount is not controlled with a predetermined followability to the target first control amount, and at least the first control amount.
  • the second control amount are not controlled in a balanced manner with respect to the target first control amount and the target second control amount.
  • the correction of the target second operation amount includes a deviation of the response of the second control target with respect to the intended response. Not only is not accurately reflected, but also the deviation of the response of the first control object with respect to the intended response is not reflected at all, so that the corrected target second operation amount is input to the second control object.
  • the second control amount is not controlled with a predetermined followability to the target second control amount, and at least the first control amount and the second control amount are less than the target first control amount and the target second control amount. Are not well balanced.
  • the first control amount or the second control amount is a control amount that affects the emission discharged from the internal combustion engine
  • the structure of the internal combustion engine and the control related to the internal combustion engine are determined and the second control amount affects the emission, it is generally determined that the second control amount is controlled with a predetermined followability to the target second control amount.
  • the structure of the internal combustion engine and the control related to the internal combustion engine are determined so as to reduce emissions as much as possible.
  • the followability of the first control amount with respect to the target first control amount may be determined so that the emission becomes as small as possible, and the second control amount becomes the emission.
  • the followability of the second control amount with respect to the target second control amount may be determined so that the emission is reduced as much as possible.
  • the first control amount is controlled to the target first control amount with a predetermined followability
  • the second control amount is controlled to the target second control amount with the predetermined followability.
  • a first control amount deviation integrated value to be compared with the first control amount deviation integrated value is prepared as a first threshold value
  • the second A second controlled variable deviation integrated value to be compared with the controlled variable deviation integrated value is prepared as a second threshold value.
  • the first control amount can be reliably controlled to the target first control amount with a predetermined followability
  • the second control amount can be reliably controlled to the target second control amount with the predetermined followability.
  • the effect that it can control is acquired. That is, in the present invention, the correction result of the target first manipulated variable and the target second manipulated variable is a comparison result of the first control variable deviation integrated value with respect to the first threshold value and a comparison result of the second control variable deviation integrated value with respect to the second threshold value. Is used. Therefore, by appropriately setting the first threshold value and the second threshold value, it is possible to reliably control the first control amount with the target first control amount with a predetermined followability and to set the second control amount to the target second value.
  • the target first operation amount and the target second operation amount can be corrected so that the control amount can be reliably controlled with a predetermined followability.
  • a comparison result of the first control amount deviation integrated value with respect to the first threshold value and a comparison result of the second control amount deviation integrated value with respect to the second threshold value is corrected based on the above.
  • the first controlled variable deviation integrated value matches the first threshold value
  • the second controlled variable deviation integrated value is 2 so that the ratio of the first controlled variable deviation integrated value and the second controlled variable deviation integrated value matches the ratio of the first threshold value to the second threshold value.
  • the first operation amount and the target second operation amount are corrected.
  • the first control amount can be controlled more reliably with a predetermined followability to the target first control amount
  • the second control amount can be controlled with a predetermined followability to the target second control amount.
  • the effect that it can control reliably is acquired.
  • the target first manipulated variable and the target second manipulated variable are corrected, so that the first control variable deviation integrated value matches the first threshold value and the second control variable deviation integrated value is the second. It corresponds to the threshold value, or the ratio between the first control amount deviation integrated value and the second control amount deviation integrated value matches the ratio between the first threshold value and the second threshold value.
  • the first threshold value and the second threshold value are controlled by the first control amount with the predetermined followability to the target first control amount, and the second control amount is controlled with the predetermined followability to the target second control amount.
  • the threshold value By setting the threshold value to be set, the first control amount can be more reliably controlled with the target first control amount with the predetermined followability, and the second control amount can be controlled with the target second control amount with the predetermined followability. Therefore, it can control more reliably.
  • the fourth invention of the present application is a first control object that controls a first control amount that is one of two control amounts that affect each other, and one of the remaining two control amounts that affect each other.
  • the present invention relates to a control device for an internal combustion engine including a second control target that controls a second control amount.
  • the control device of the present invention sets the control amount to be targeted as the first control amount as the target first control amount, and sets the control amount to be targeted as the second control amount as the target second control amount. .
  • the operation state of the first control target that should be set to reach the first control amount to the target first control amount and the second control amount to the target second control amount is set as the target first operation state.
  • the operation state of the second control target to be targeted is set as the target second operation state.
  • the second control is performed such that the operation state of the first control object is controlled so that the operation state of the first control object becomes the target first operation state, and the operation state of the second control object becomes the target second operation state.
  • the first control amount is controlled to the target first control amount and the second control amount is controlled to the target second control amount.
  • the integrated value of the deviation of the actual first control amount with respect to the target first control amount is calculated as the first control amount deviation integrated value and the target second control.
  • the integrated value of the deviation of the actual second control amount with respect to the amount is calculated as the second controlled variable deviation integrated value.
  • the target first operation state and the target second operation state are corrected based on the first control amount deviation integrated value and the second control amount deviation integrated value.
  • the first control amount can be controlled to the target first control amount with a predetermined followability
  • the second control amount can be controlled to the target second control amount with a predetermined followability.
  • the response of the first control target is determined by considering the relationship between the first control amount deviation integrated value and the second control amount deviation integrated value. Whether the response is slower than the initial response, is the intended response, or is faster than the intended response, and whether the response of the second controlled object is slower than the intended response or the expected response It is possible to grasp whether it is faster than the intended response.
  • the target first operation state and the target second operation state are corrected. That is, whether the response of the first controlled object is slower than the intended response, is the intended response, or is faster than the intended response, and the response of the second controlled object is the expected response.
  • the target first operation state and the target second operation state are corrected depending on whether the response is slower than the intended response, or is faster than the intended response.
  • the first control amount is The target controllable amount is controlled with a predetermined followability and the second control amount is controlled with a target followable control amount with a predetermined followability, or at least the first control amount and the second control amount Are controlled in a balanced manner with respect to the target first control amount and the target second control amount.
  • the correction of the target first operation state includes a deviation of the response of the first control target with respect to the intended response.
  • the operation state of the first control object is controlled in the corrected target first operation state.
  • the first control amount is not controlled with a predetermined followability to the target first control amount, and at least the first control amount and the second control amount are the target first control amount and the target second control amount. Are not controlled in a well-balanced manner.
  • the correction of the target second operation state includes a deviation of the response of the second control target with respect to the intended response.
  • the operation state of the second control object is controlled in the corrected target second operation state. Even if the second control amount is not controlled with a predetermined followability to the target second control amount, at least the first control amount and the second control amount are the target first control amount and the target second control amount. Are not controlled in a well-balanced manner.
  • the first control amount or the second control amount is a control amount that affects the emission discharged from the internal combustion engine, according to the present invention, the reason described in relation to the effect obtained from the first invention and For the same reason, it is possible to reduce the emission discharged from the internal combustion engine.
  • a first control amount deviation integrated value to be compared with the first control amount deviation integrated value is prepared as a first threshold value
  • the second A second controlled variable deviation integrated value to be compared with the controlled variable deviation integrated value is prepared as a second threshold value.
  • the first control amount can be reliably controlled with a predetermined followability to the target first control amount for the same reason as described in relation to the effect obtained from the second invention.
  • the second control amount can be reliably controlled to the target second control amount with a predetermined followability.
  • a comparison result of the first control amount deviation integrated value with respect to the first threshold value and a comparison result of the second control amount deviation integrated value with respect to the second threshold value is corrected based on the above.
  • the first control amount deviation integrated value matches the first threshold value
  • the second control amount deviation integrated value is 2 so that the ratio of the first controlled variable deviation integrated value and the second controlled variable deviation integrated value matches the ratio of the first threshold value to the second threshold value.
  • the first operation state and the target second operation state are corrected.
  • the supercharging pressure can be more reliably controlled with a predetermined followability to the target supercharging pressure for the same reason as described in relation to the effect obtained from the third invention.
  • the EGR rate can be more reliably controlled to the target EGR rate with a predetermined followability.
  • the first threshold value and the second threshold value are predetermined responses of the first control target. It is set to a value that is a response and can be taken when the response of the second control target is a predetermined response.
  • the first control amount can be controlled more reliably with a predetermined followability to the target first control amount
  • the second control amount can be controlled with a predetermined followability to the target second control amount.
  • the effect that it can control reliably is acquired. That is, in the present invention, the first threshold value and the second threshold value are set to values that can be taken when the response of the first control target is a predetermined response and the response of the second control target is a predetermined response. .
  • the first control amount and the second control amount are control amounts that influence each other, the first control amount is controlled to the target first control amount and the second control amount is set to the target second control amount.
  • the control system for controlling is constructed on the assumption that the response of the first control target is a predetermined response and the response of the second control target is a predetermined response. For this reason, the first threshold value and the second threshold value are set to values that can be taken when the response of the first control target is a predetermined response and the response of the second control target is a predetermined response. Based on the comparison result between the first threshold value and the first control amount deviation threshold value and the comparison result between the second threshold value and the second control amount deviation threshold value thus set, the target first operation amount and the target second operation If the amount or the target first operation state and the target second operation state are corrected, the first control object is operated so that the response of the first control object becomes a predetermined response, and the response of the second control object is predetermined.
  • the second control object is operated so as to be a response to the above. Therefore, the first control amount can be more reliably controlled with a predetermined followability to the target first control amount, and the second control amount can be more reliably controlled with a predetermined followability to the target second control amount. It can be done.
  • FIG. 1 is a schematic view of an internal combustion engine to which a control device of the present invention is applied. It is the figure which showed the inside of the exhaust turbine of the supercharger of the internal combustion engine shown by FIG. (A) is the figure which showed the map utilized in order to determine a target supercharging pressure, (B) is the figure which showed the map utilized in order to determine a target EGR rate. It is the figure which showed an example of the routine which performs the setting of the target vane operation amount and target EGR control valve operation amount according to 1st Embodiment of this invention. It is the figure which showed a part of example of the routine which performs correction
  • FIG. 1 shows an internal combustion engine 10 to which the control device of the present invention is applied.
  • the internal combustion engine 10 includes an internal combustion engine main body (hereinafter referred to as “engine main body”) 20, fuel injection valves 21 disposed corresponding to the four combustion chambers of the engine main body, and fuel supply to the fuel injection valves 21. And a fuel pump 22 for supplying fuel via a pipe 23.
  • the internal combustion engine 10 further includes an intake system 30 that supplies air to the combustion chamber from the outside, and an exhaust system 40 that exhausts exhaust gas discharged from the combustion chamber to the outside.
  • the internal combustion engine 10 is a compression self-ignition internal combustion engine (so-called diesel engine).
  • the intake system 30 includes an intake branch pipe 31 and an intake pipe 32.
  • the intake system 30 may be referred to as an “intake passage”.
  • One end portion (that is, a branch portion) of the intake branch pipe 31 is connected to an intake port (not shown) formed in the engine body 20 corresponding to each combustion chamber.
  • the other end of the intake branch pipe 31 is connected to the intake pipe 32.
  • a throttle valve 33 that controls the amount of air flowing through the intake pipe is disposed in the intake pipe 32.
  • an intercooler 34 for cooling the air flowing through the intake pipe is disposed in the intake pipe 32.
  • an air cleaner 36 is disposed at an end facing the outside of the intake pipe 32.
  • the throttle valve 33 controls the operating state (specifically, its opening, which will be referred to as “throttle valve opening” hereinafter).
  • the amount can be controlled variably.
  • the exhaust system 40 includes an exhaust branch pipe 41 and an exhaust pipe 42.
  • the exhaust system 40 may be referred to as an “exhaust passage”.
  • One end portion (that is, a branch portion) of the exhaust branch pipe 41 is connected to an exhaust port (not shown) formed in the engine body 20 corresponding to each combustion chamber.
  • the other end of the exhaust branch pipe 41 is connected to the exhaust pipe 42.
  • a catalytic converter 43 having an exhaust purification catalyst 43A for purifying a specific component in the exhaust gas is disposed.
  • the internal combustion engine 10 includes a supercharger 35.
  • the supercharger 35 includes a compressor 35A disposed in the intake pipe 32 upstream of the intercooler 34, and an exhaust turbine 35B disposed in the exhaust pipe 42 upstream of the catalytic converter 43.
  • the exhaust turbine 35B includes an exhaust turbine main body 35C and a plurality of blade-like vanes 35D.
  • the exhaust turbine 35B (strictly, the exhaust turbine main body 35C) is connected to the compressor 35A via a shaft (not shown).
  • the rotation is transmitted to the compressor 35A via the shaft, whereby the compressor 35A is rotated.
  • the rotation of the compressor 35A compresses the gas in the intake pipe 32 downstream of the compressor, and as a result, the pressure of the gas (hereinafter, this pressure is referred to as “supercharging pressure”) is increased.
  • the vanes 35D are radially arranged at equiangular intervals around the rotation center axis R1 of the exhaust turbine body so as to surround the exhaust turbine body 35C.
  • Each vane 35D is disposed so as to be rotatable around a corresponding axis indicated by reference numeral R2 in FIG.
  • the direction in which each vane 35D extends ie, the direction indicated by symbol E in FIG. 2 is referred to as the “extending direction”
  • the rotation center axis R1 of the exhaust turbine main body 35C and the rotation of the vane 35D When a line connecting to the movement axis R2 (that is, a line indicated by a symbol A in FIG.
  • each vane 35D has an extending direction E and a corresponding reference line A. Is rotated so that the angles formed by the two are equal for all the vanes 35D.
  • each vane 35D is rotated so that the angle formed by the extending direction E and the corresponding reference line A is small, that is, the flow area between the adjacent vanes 35D is small.
  • exhaust pressure increases, and as a result, the flow rate of the exhaust gas supplied to the exhaust turbine body 35C increases.
  • the supercharger 35 can variably control the supercharging pressure by controlling the operating state (specifically, the vane opening degree) of the vane 35D.
  • the internal combustion engine 10 includes an exhaust gas recirculation device (hereinafter referred to as “EGR device”) 50.
  • the EGR device 50 includes an exhaust gas recirculation pipe (hereinafter referred to as “EGR passage”) 51.
  • EGR passage 51 One end of the EGR passage 51 is connected to the exhaust branch pipe 41. That is, one end of the EGR passage 51 is connected to a portion of the exhaust passage 40 upstream of the exhaust turbine 35B.
  • the other end of the EGR passage 51 is connected to the intake branch pipe 31. That is, the other end of the EGR passage 51 is connected to a portion of the intake passage downstream of the compressor 35A.
  • an exhaust gas recirculation control valve (hereinafter, this exhaust gas recirculation control valve is referred to as an “EGR control valve”) 52 that controls the flow rate of exhaust gas flowing through the EGR passage is disposed in the EGR passage 51.
  • EGR control valve opening degree the opening degree of the EGR control valve 52
  • an exhaust gas recirculation cooler 53 for cooling the exhaust gas flowing in the EGR passage is disposed in the EGR passage 51.
  • the EGR device 50 controls the operating state of the EGR control valve 52 (specifically, the opening degree of the EGR control valve 52, which is hereinafter referred to as “EGR control valve opening degree”).
  • EGR control valve opening degree the opening degree of the EGR control valve 52, which is hereinafter referred to as “EGR control valve opening degree”.
  • the amount of exhaust gas introduced into the intake passage 30 via the EGR passage 51 (hereinafter, this exhaust gas is referred to as “EGR gas”) can be variably controlled.
  • an air flow meter 71 for detecting the flow rate of the air flowing in the intake pipe is attached to the intake pipe 32 downstream of the air cleaner 36 and upstream of the compressor 35A.
  • a pressure sensor (hereinafter referred to as “supercharging pressure sensor”) 72 for detecting the pressure of the gas in the intake branch pipe (that is, the supercharging pressure) is attached to the intake branch pipe 31.
  • the engine body 20 is provided with a crank position sensor 74 for detecting the rotational phase of the crankshaft.
  • the internal combustion engine 10 includes an electronic control device 60.
  • the electronic control device 60 includes a microprocessor (CPU) 61, a read only memory (ROM) 62, a random access memory (RAM) 63, a backup RAM (Back up RAM) 64, and an interface 65.
  • the fuel injection valve 21, the fuel pump 22, the throttle valve 33, the vane 35 ⁇ / b> D, and the EGR control valve 52 are connected to the interface 65, and control signals for controlling these operations are transmitted via the interface 65 to the electronic control device.
  • the interface 65 includes an air flow meter 71, a supercharging pressure sensor 72, a crank position sensor 74, and an opening degree of the accelerator pedal AP (that is, an amount of depression of the accelerator pedal AP.
  • An accelerator pedal opening sensor 75 for detecting the degree of pressure is also connected, a signal corresponding to the flow rate detected by the air flow meter 71, a signal corresponding to the pressure detected by the supercharging pressure sensor 72, a crank position sensor A signal corresponding to the rotational phase of the crankshaft detected by 74 and a signal corresponding to the depression amount of the accelerator pedal AP detected by the accelerator pedal opening sensor 75 are input to the interface 65.
  • the supercharging pressure is calculated by the electronic control unit 60 based on the signal corresponding to the pressure detected by the supercharging pressure sensor 72 and is based on the signal corresponding to the rotational phase of the crankshaft detected by the crank position sensor 74. Then, the engine speed (that is, the speed of the internal combustion engine 10) is calculated by the electronic control unit 60, and the accelerator pedal opening degree is based on a signal corresponding to the depression amount of the accelerator pedal AP detected by the accelerator pedal opening degree sensor 75. Is calculated by the electronic control unit 60.
  • an actual boost pressure is set to a target value of boost pressure (hereinafter referred to as “target boost pressure”) set as described later.
  • target boost pressure this supercharging pressure is also referred to as “actual supercharging pressure”.
  • EGR rate the ratio of the amount of EGR gas contained in the gas to the amount of gas sucked into the combustion chamber
  • the EGR rate set as described later is set.
  • the actual EGR rate (hereinafter, this EGR rate is also referred to as “actual EGR rate”) is controlled to the target value (hereinafter, this target value is referred to as “target EGR rate”).
  • the “engine operating state” is “the operating state of the internal combustion engine 10”
  • the “engine load” is “the load of the internal combustion engine 10”
  • the “engine speed” is “the engine rotational speed”.
  • “Rotational speed”, and “During engine operation” is “During operation of internal combustion engine 10”.
  • the target supercharging pressure TPim when an engine operating state in which the change amount of the engine speed per unit time is substantially zero and the change amount of the engine load per unit time is substantially zero is referred to as a steady operation state,
  • the supercharging pressure that should be the target when the operating state is in the steady operating state is obtained in advance by experiments or the like, and these supercharging pressures are used as the target supercharging pressure TPim as shown in FIG.
  • It is stored in the electronic control unit 60 in the form of a function map of the number N and the engine load L (hereinafter, this map is also referred to as “target boost pressure map”).
  • the target boost pressure TPim is acquired from the boost pressure map based on the engine speed N and the engine load L, and the acquired target boost pressure TPim is set as the target boost pressure.
  • the oxygen concentration in the intake gas to be targeted when the engine operation state is in the steady operation state is obtained in advance by experiments or the like, and these oxygen concentrations are the target oxygen concentration as shown in FIG. It is stored in the electronic control unit 60 in the form of a function map of the engine speed N and the engine load L (hereinafter, this map is also referred to as “target oxygen concentration map”) as TO2.
  • this map is also referred to as “target oxygen concentration map”.
  • the target oxygen concentration TO2 is acquired from the target oxygen concentration map based on the engine speed N and the engine load L, and the acquired target oxygen concentration TO2 is set as the target oxygen concentration.
  • the actual oxygen concentration in the intake gas (hereinafter, this oxygen concentration is also referred to as “actual oxygen concentration”) is set to the target oxygen concentration TO2.
  • a possible EGR rate is calculated as the target EGR rate. In other words, the target EGR rate is calculated based on the actual supercharging pressure and the target oxygen concentration TO2.
  • the operation amount to be input to the vane 35D in order to set the actual supercharging pressure to the target supercharging pressure is calculated (ie, set) as the target vane operation amount, and this calculated target An operation amount corresponding to the vane operation amount is input to the vane 35D.
  • the actual boost pressure is controlled to the target boost pressure.
  • the operation amount to be input to the EGR control valve 52 in order to set the actual EGR rate to the target EGR rate is calculated (that is, set) as the target EGR control valve operation amount.
  • the operation amount corresponding to the target EGR control valve operation amount is input to the EGR control valve 52.
  • the actual EGR rate is controlled to the target EGR rate.
  • so-called PID control that is, proportional-integral-derivative control
  • PID control that is, proportional-integral-derivative control
  • the actual boost pressure is acquired during engine operation, and the deviation of the acquired actual boost pressure with respect to the target boost pressure is calculated as the boost pressure deviation.
  • the supercharging pressure deviation integrated value is calculated by integrating the supercharging pressure deviation thus calculated.
  • the supercharging pressure deviation calculated as described above is represented by “ ⁇ Pim”, the supercharging pressure deviation integrated value calculated as described above is represented by “ ⁇ Pim”, and the target vane operation amount is represented by “Mv”.
  • the so-called proportional gain is represented by “GPp”
  • the so-called integral gain is represented by “GPi”
  • the so-called differential gain is represented by “GPd”
  • the so-called reference vane operation amount is represented by “Mvbse”.
  • a vane operation amount Mv is calculated.
  • the reference vane operation amount is a vane operation amount when the engine operating state is in a steady operation state, and is obtained in advance through experiments or the like, and is an electronic control device in the form of a map of a function of the engine speed N and the engine load L. 60.
  • Mv GPp ⁇ ⁇ Pim + GPi ⁇ ⁇ Pim + GPd ⁇ d ( ⁇ Pim) / dt + Mvbse (1)
  • the target vane operation amount Mv calculated from Equation 1 is set as the target vane operation amount, and the operation amount corresponding to the set target vane operation amount is transferred from the electronic control device 60 to the vane 35D. Is input.
  • PID control which is feedback control based on the deviation of the actual EGR rate with respect to the target EGR rate
  • PID control is feedback control based on the deviation of the actual EGR rate with respect to the target EGR rate
  • the target EGR control valve operation amount is set.
  • the actual EGR rate is acquired during engine operation, and the deviation of the acquired actual EGR rate with respect to the target EGR rate is calculated as the EGR rate deviation.
  • the EGR rate deviation integrated value is calculated by integrating the EGR rate deviation thus calculated.
  • the EGR rate deviation calculated as described above is represented by “ ⁇ Regr”
  • the EGR rate deviation integrated value calculated as described above is represented by “ ⁇ Regr”
  • the target EGR control valve operation amount is represented by “Megr”
  • GEp proportional gain
  • GEi integral gain
  • GPd so-called differential gain
  • GPd so-called reference EGR control valve operation amount
  • Megr A target EGR control valve operation amount Megr is calculated.
  • the reference EGR control valve operation amount is an EGR control valve operation amount when the engine operation state is in a steady operation state, and is obtained in advance by an experiment or the like and forms a function map of the engine speed N and the engine load L. Is stored in the electronic control unit 60.
  • Megr GEp ⁇ ⁇ Regr + GEi ⁇ ⁇ Regr + GEd ⁇ d ( ⁇ Regr) / dt + Megrbse (2)
  • the target EGR control valve operation amount Megr calculated from Equation 2 is set as the target EGR control valve operation amount, and the operation amount corresponding to the set target EGR control valve operation amount is an electronic value. It is input from the control device 60 to the EGR control valve 52.
  • the target vane operation amount proportional gain The proportional gain of the above equation 1 (hereinafter referred to as “vane operation amount proportional gain”) and the proportional gain of the above equation 2 (hereinafter referred to as this gain) used to set the target EGR control valve operation amount.
  • EGR control valve operation amount proportional gain is corrected based on the supercharging pressure deviation integrated value and the EGR rate deviation integrated value, and the corrected vane operation amount proportional gain is used as the proportional gain of Equation 1 above.
  • the target vane operation amount is set, and the corrected EGR control valve operation amount proportional gain is used as the proportional gain of the above equation 2 to set the target EGR control valve operation amount.
  • the vane operation amount proportional gain and the EGR control valve operation amount proportional gain are learned based on the boost pressure deviation integrated value and the EGR rate deviation integrated value, and these are learned.
  • the vane operation amount proportional gain and the EGR control valve operation amount proportional gain are used for setting the target vane operation amount and setting the target EGR control valve operation amount.
  • the supercharging pressure deviation integrated value calculated during engine operation is compared with a reference value (hereinafter, this value is referred to as “reference value”) and is calculated during engine operation.
  • the EGR rate deviation integrated value is compared with a reference value (hereinafter referred to as “reference value”).
  • a predetermined value (hereinafter referred to as this value) is set so that the vane operation amount proportional gain is increased.
  • the first correction value is added to the vane operation amount proportional gain so that the gain is corrected and the EGR control valve operation amount becomes smaller so that the EGR control valve operation amount proportional gain becomes smaller.
  • a predetermined value larger than 1 is set so that the EGR control valve operation amount proportional gain becomes large.
  • the second correction value is adjusted so that the gain is corrected and the vane operation amount proportional gain is increased.
  • the gain is corrected by multiplying the vane operation amount proportional gain.
  • the vane operation amount proportional gain is increased.
  • the gain is corrected by multiplying the vane manipulated variable proportional gain by a predetermined value greater than 1 (hereinafter referred to as “third correction value”) and the EGR control valve manipulated variable proportional gain is increased. In this way, the third correction value is multiplied by the EGR control valve operation amount proportional gain to correct the gain.
  • the vane operation amount proportional gain is also proportional to the EGR control valve operation amount proportional. Gain is not corrected.
  • the supercharging pressure deviation integrated value and the EGR rate deviation integrated value that can be taken when the response of the vane is the highest and the response of the EGR control valve is the highest are obtained in advance through experiments or the like. These values are used as a reference value for the supercharging pressure deviation integrated value and a reference value for the EGR rate deviation integrated value, respectively.
  • the vane operation amount proportional gain and the EGR control valve operation amount proportional gain are corrected, and these corrected gains are used for setting the target vane operation amount and the target EGR control valve operation amount, respectively.
  • the effect that the supply pressure can be controlled to the target supercharging pressure with predetermined followability and the EGR rate can be controlled to the target EGR rate with predetermined followability, or the supercharging pressure and the EGR rate Can be controlled in a balanced manner with respect to the target boost pressure and the target EGR rate.
  • the EGR device 50 can variably control the amount of EGR gas by controlling the EGR control valve opening. That is, the EGR device 50 can variably control the actual EGR rate by controlling the EGR control valve opening.
  • the EGR control valve opening is increased in order to increase the EGR rate, the amount of EGR gas increases. Therefore, the exhaust pressure 40 (ie, the exhaust passage 40 upstream of the exhaust turbine 35B of the supercharger 35). The pressure of the exhaust gas in the inside is reduced. For this reason, the compression effect of the supercharger 35 on the gas flowing in the intake pipe 32 is reduced, and as a result, the supercharging pressure is reduced.
  • the supercharger 35 when the supercharger 35 tries to control the supercharging pressure with a predetermined followability to the target supercharging pressure, the influence of the supercharging pressure control by the supercharger 35 on the supercharging pressure. It is advantageous to consider the influence of the control of the EGR rate by the EGR device 50 on the supercharging pressure as well.
  • the supercharger 35 can variably control the supercharging pressure by controlling the vane opening.
  • the vane opening is made small in order to increase the supercharging pressure, the exhaust pressure increases, so the differential pressure between the supercharging pressure and the exhaust pressure increases, and as a result, the amount of EGR gas increases.
  • the vane opening is increased in order to reduce the supercharging pressure, the exhaust pressure decreases, so that the differential pressure between the supercharging pressure and the exhaust pressure decreases, and as a result, the EGR gas amount decreases. That is, the control of the supercharging pressure by the supercharger 35 affects the EGR gas amount (as a result, the EGR rate).
  • the supercharging pressure and the EGR rate are control amounts that influence each other. Therefore, when trying to control the supercharging pressure to the target supercharging pressure with a predetermined followability by the supercharger 35, only the influence of the control of the supercharging pressure by the supercharger 35 on the supercharging pressure is considered.
  • considering the influence of the control of the EGR rate by the EGR device 50 on the supercharging pressure is advantageous from the viewpoint of controlling the supercharging pressure to the target supercharging pressure with higher accuracy.
  • the EGR device 50 tries to control the EGR rate with a predetermined followability to the target EGR rate, not only the influence of the control of the EGR rate by the EGR device 50 on the EGR rate but also the EGR rate is not considered.
  • Considering the influence of supercharging pressure control by the supercharger 35 is advantageous from the viewpoint of controlling the EGR rate to the target EGR rate with higher accuracy.
  • the proportional gain, integral gain, and differential gain of the above equation 1 are set so that the supercharging pressure becomes the target excess when the target vane operation amount Mv calculated from the above equation 1 is input to the vane.
  • a target vane operation amount that is appropriately controlled with predetermined followability to the supply pressure is obtained in advance by experiments or the like as a value calculated from the above equation 1.
  • the “reference proportional gain” and the “reference differential gain” are values based on the premise that the EGR rate is appropriately controlled with a predetermined followability to the target EGR rate. Therefore, the target vane operation amount calculated from the above equation 1 that employs the reference proportional gain, the reference integral gain, and the reference differential gain is controlled with a predetermined followability of the supercharging pressure to the target supercharging pressure. It is set on the assumption that the EGR rate is controlled with a predetermined followability to the target EGR rate.
  • the supercharging pressure has a predetermined followability to the target supercharging pressure. Therefore, as long as it is controlled and the EGR rate is controlled with a predetermined followability to the target EGR rate, the supercharging pressure is controlled with a predetermined followability to the target supercharging pressure.
  • the target vane calculated from the above equation 1 that employs the reference proportional gain, the reference integral gain, and the reference differential gain. Even if the operation amount is input to the vane, it is natural that the supercharging pressure is not controlled with a predetermined followability to the target supercharging pressure. Further, even when the EGR rate is not controlled with a predetermined followability to the target EGR rate, the target vane operation amount calculated from the above equation 1 that employs the reference proportional gain, the reference integral gain, and the reference differential gain is the vane. Even if it is input to the supercharging pressure, the supercharging pressure is not controlled with a predetermined followability to the target supercharging pressure.
  • the proportional gain, integral gain, and differential gain of the above equation 2 are the EGR rate when the target EGR control valve operation amount Megr calculated from the above equation 4 is input to the EGR control valve.
  • the target EGR control valve operation amount that is appropriately controlled with a predetermined followability to the target EGR rate is obtained in advance by experiments or the like as a value calculated from the above equation 2.
  • the proportional gain, integral gain, and derivative gain are values based on the premise that the supercharging pressure is appropriately controlled with a predetermined followability to the target supercharging pressure. Therefore, the target EGR control valve operation amount calculated from the above equation 2 that employs the reference proportional gain, the reference integral gain, and the reference differential gain is controlled with a predetermined followability of the EGR rate to the target EGR rate.
  • the supercharging pressure is set on the premise that the supercharging pressure is controlled with a predetermined followability to the target supercharging pressure. Therefore, when the target EGR control valve operation amount calculated from the above equation 2 that employs the reference proportional gain, the reference integral gain, and the reference differential gain is input to the EGR control valve, the EGR rate is set to the target EGR rate. As long as it is controlled with follow-up and the supercharging pressure is controlled with a predetermined follow-up to the target supercharging pressure, the EGR rate is controlled with a predetermined follow-up with respect to the target EGR rate.
  • the target EGR control valve calculated from the above equation 2 adopting the reference proportional gain, the reference integral gain, and the reference differential gain. Even if the operation amount is input to the EGR control valve, as a matter of course, the EGR rate is not controlled with a predetermined followability to the target EGR rate. Further, even when the supercharging pressure is not controlled with a predetermined followability to the target supercharging pressure, the target EGR control valve calculated from the above equation 2 that employs the reference proportional gain, the reference integral gain, and the reference differential gain. Even if the operation amount is input to the EGR control valve, the EGR rate is not controlled with a predetermined followability to the target EGR rate.
  • the supercharging pressure is not controlled with the target supercharging pressure with a predetermined followability, or the EGR rate is not controlled with the target EGR rate with a predetermined followability, the supercharging pressure follows the target supercharging pressure with a predetermined followability. Therefore, if the EGR rate is controlled with the predetermined EGR rate and the target EGR rate is controlled with a predetermined followability, the desired internal combustion engine characteristics cannot be obtained.
  • the boost pressure deviation integrated value is larger than the reference value and the EGR The rate deviation integrated value becomes smaller than the reference value.
  • the vane opening is made small in order to increase the actual supercharging pressure toward the target supercharging pressure, and at the same time, the EGR control valve opening is used to decrease the actual EGR rate toward the target EGR rate. Is reduced.
  • the rate of increase of the exhaust pressure due to the decrease in the opening degree of the EGR control valve is In spite of this speed, the exhaust pressure increase rate due to the decrease in the vane opening becomes slower than the intended speed. For this reason, as a whole, the increase speed of the supercharging pressure becomes slower than the intended speed. Therefore, when the actual supercharging pressure is to be increased when the response of the EGR control valve is the intended response but the vane response is slower than the intended response, the supercharging pressure deviation integrated value is It becomes larger than the reference value.
  • the rate of decrease of the EGR gas amount due to the decrease in the opening degree of the EGR control valve is The increase rate of the EGR gas amount due to the decrease in the vane opening degree is slower than the intended speed, regardless of the intended speed. For this reason, as a whole, the rate of decrease of the EGR gas amount becomes faster than the intended rate. Therefore, when the actual EGR rate is to be reduced when the response of the vane is slower than the intended response even though the response of the EGR control valve is the intended response, the integrated value of the EGR rate deviation is the reference value. Smaller than the value.
  • the vane opening is increased in order to decrease the actual supercharging pressure toward the target supercharging pressure, and at the same time, the EGR control valve opening is increased in order to increase the actual EGR rate toward the target EGR rate. Is also enlarged.
  • the rate of decrease in the exhaust pressure due to the increase in the opening degree of the EGR control valve is In spite of this speed, the exhaust pressure lowering speed due to the increase in the vane opening becomes slower than the intended speed. For this reason, as a whole, the decrease speed of the supercharging pressure becomes slower than the intended speed. Therefore, when the actual boost pressure is to be reduced when the response of the EGR control valve is the intended response but the vane response is slower than the intended response, the boost pressure deviation integrated value is It becomes larger than the reference value.
  • the increase rate of the EGR gas amount due to the increase of the EGR control valve opening degree is Despite the initial speed, the rate of decrease in the EGR gas amount due to the increase in the vane opening becomes slower than the intended speed. For this reason, as a whole, the increasing rate of the EGR gas amount becomes faster than the intended rate. Accordingly, when the actual EGR rate is to be increased when the response of the vane is slower than the intended response even though the response of the EGR control valve is the intended response, the EGR rate deviation integrated value is the reference value. Smaller than the value.
  • the boost pressure deviation integrated value is larger than the reference value and the EGR rate deviation The integrated value becomes smaller than the reference value.
  • the response of the vanes becomes faster. Therefore, when the supercharging pressure deviation integrated value is larger than the reference value and the EGR rate deviation integrated value is smaller than the reference value, if the vane operation amount is increased, the response of the vane becomes faster.
  • the actual turbocharging pressure change speed that is, the actual turbocharging pressure increasing speed when increasing the actual turbocharging pressure, or the actual turbocharging pressure decreasing speed when decreasing the actual turbocharging pressure
  • the first correction value is added to the vane operation amount proportional gain so as to increase the vane operation amount proportional gain.
  • the vane operation amount proportional gain is increased, the set target vane operation amount is increased.
  • the response of the vane becomes faster, and as a result, the change speed of the actual supercharging pressure becomes faster and approaches the intended speed. Then, if the correction of the vane operation amount proportional gain is repeated, the change speed of the actual supercharging pressure finally reaches the intended speed. Therefore, the actual supercharging pressure is controlled with a predetermined followability to the target supercharging pressure.
  • the operation amount of the EGR control valve is reduced, the response of the EGR control valve is delayed. Therefore, when the supercharging pressure deviation integrated value is larger than the reference value and the EGR rate deviation integrated value is smaller than the reference value, if the EGR control valve operation amount is reduced, the response of the EGR control valve is delayed.
  • the change rate of the actual EGR rate that is, the decrease rate of the actual EGR rate when the actual EGR rate is decreased or the increase rate of the actual EGR rate when the actual EGR rate is increased
  • the first correction value is subtracted from the EGR control valve operation amount proportional gain so that the EGR control valve operation amount proportional gain becomes smaller.
  • the EGR control valve operation amount proportional gain is decreased, the set target EGR control valve operation amount is decreased. According to this, the response of the EGR control valve becomes slow, and as a result, the change speed of the actual EGR rate becomes slow and approaches the intended speed. Then, if the correction of the EGR control valve operation amount proportional gain is repeated, the actual EGR rate change speed finally reaches the intended speed. Therefore, the actual EGR rate is controlled with a predetermined followability to the target EGR rate.
  • the supercharging pressure deviation integrated value is larger than the reference value and the EGR rate deviation integrated value is smaller than the reference value, and therefore the response of the EGR control valve is expected.
  • the actual supercharging pressure can be controlled to the target supercharging pressure with a predetermined followability, and the actual EGR rate can be set to the target EGR.
  • the rate can be controlled with a predetermined followability, or at least the actual boost pressure and the actual EGR rate can be controlled in good balance with the target boost pressure and the target EGR rate, respectively.
  • the first correction value used for correcting the proportional gain is the target boost pressure when the boost pressure deviation integrated value is larger than the reference value and the EGR rate deviation integrated value is smaller than the reference value.
  • the followability can be set to a value that can reach the predetermined followability as early as possible and the target EGR rate followability is not lower than the predetermined followability.
  • the correction of the proportional gain using the first correction value is that the supercharging pressure deviation integrated value is larger than the reference value and the EGR rate deviation integrated value is smaller than the reference value. It is performed that the response of the EGR control valve is an expected response later than the intended response.
  • the vane manipulated variable proportional gain and the EGR control valve manipulated variable proportional gain are corrected without considering how much the boost pressure deviation accumulated value and the EGR rate deviation accumulated value deviate from their reference values. . Therefore, the first correction value is obtained by correcting the target boost pressure follow-up significantly beyond the predetermined follow-up by the correction of the one-time vane manipulated variable proportional gain and the EGR control valve manipulated variable proportional gain, and the target EGR rate follow-up. It is considered that it is preferable to set the value to such a small value that the performance does not greatly exceed the predetermined followability.
  • the correction of the proportional gain is performed from the viewpoint of simplifying the correction of the vane operation amount proportional gain and the EGR control valve operation amount proportional gain and correcting the proportional gain in a balanced manner.
  • the same first correction value is used as the correction value.
  • the correction values for correcting each proportional gain may be different from each other.
  • the gain is corrected by adding the first correction value to the vane operation amount proportional gain. However, if necessary, a specific value larger than 1 is set to a vane operation amount proportional gain. The gain may be corrected by multiplying by. In the first embodiment, the gain is corrected by subtracting the first correction value from the EGR control valve operation amount proportional gain. However, if necessary, a specific value smaller than 1 is set to an EGR control valve. The gain may be corrected by multiplying the manipulated variable proportional gain.
  • the specific values multiplied by these proportional gains are set such that the sum of the specific values becomes a constant value, or It is considered preferable that the ratio of the values is set to a constant value.
  • the vane opening is made small in order to increase the actual supercharging pressure toward the target supercharging pressure, and at the same time, the EGR control valve opening is used to decrease the actual EGR rate toward the target EGR rate. Is reduced.
  • the boost pressure is increased.
  • the response of the EGR control valve is slower than the intended response although the response of the vane is the intended response
  • the exhaust pressure increase rate due to the decrease in the vane opening is the expected speed.
  • the exhaust pressure increase rate due to the decrease in the opening degree of the EGR control valve becomes slower than the intended speed.
  • the increase speed of the supercharging pressure becomes slower than the intended speed. Therefore, when the actual boost pressure is to be increased when the response of the EGR control valve is slower than the expected response even though the vane response is the expected response, the boost pressure deviation integrated value is It becomes larger than the reference value.
  • the EGR gas increases due to the decrease in the vane opening and the EGR gas due to the decrease in the EGR control valve opening.
  • a decrease in volume occurs at the same time.
  • the response of the EGR control valve is slower than the intended response although the response of the vane is the intended response
  • the increase rate of the EGR gas amount due to the decrease in the vane opening is the desired response.
  • the rate of decrease in the amount of EGR gas caused by the decrease in the opening degree of the EGR control valve becomes slower than the intended rate. For this reason, as a whole, the rate of decrease in the amount of EGR gas becomes slower than the intended rate. Therefore, when the actual EGR rate is to be lowered when the response of the EGR control valve is slower than the intended response even though the vane response is the intended response, the EGR rate deviation integrated value is the reference value. Larger than the value.
  • the vane opening is increased in order to decrease the actual supercharging pressure toward the target supercharging pressure, and at the same time, the EGR control valve opening is increased in order to increase the actual EGR rate toward the target EGR rate. Is also enlarged.
  • the EGR gas is decreased due to the increase in the vane opening and the EGR gas is increased due to the increase in the EGR control valve opening.
  • An increase in quantity occurs simultaneously.
  • the rate of decrease in the EGR gas amount due to the increase in the vane opening is the desired response.
  • the increase rate of the EGR gas amount due to the increase in the opening degree of the EGR control valve becomes slower than the intended speed. For this reason, as a whole, the rate of increase in the amount of EGR gas is slower than the intended rate. Therefore, when the actual EGR rate is to be increased when the response of the EGR control valve is slower than the intended response even though the vane response is the intended response, the EGR rate deviation integrated value is the reference value. Larger than the value.
  • the EGR control valve operation amount proportional gain is multiplied by the second correction value so that the EGR control valve operation amount proportional gain is increased.
  • the response of the EGR control valve becomes faster, and as a result, the rate change rate of the actual EGR becomes faster and approaches the intended speed. Then, if the correction of the EGR control valve operation amount proportional gain is repeated, the actual EGR rate change speed finally reaches the intended speed. Therefore, the actual EGR rate is controlled with a predetermined followability to the target EGR rate.
  • the vane operation amount proportional gain is multiplied by the second correction value so that the vane operation amount proportional gain is increased.
  • the response of the vane becomes faster, and as a result, the change speed of the actual supercharging pressure becomes faster and approaches the intended speed. If the correction of the vane operation amount gain is repeated, the change speed of the actual supercharging pressure finally reaches the intended speed. Therefore, the actual supercharging pressure is controlled with a predetermined followability to the target supercharging pressure.
  • the response of the EGR control valve becomes faster, so that the change of the exhaust pressure due to the change of the EGR control valve opening degree is reduced.
  • the speed is slow.
  • the change speed of the actual supercharging pressure increases and approaches the expected speed. Therefore, the actual supercharging pressure is controlled with a predetermined followability to the target supercharging pressure earlier.
  • the supercharging pressure deviation integrated value is larger than the reference value and the EGR rate deviation integrated value is larger than the reference value, and therefore the vane response is the desired response.
  • the actual boost pressure can be controlled with a predetermined follow-up to the target boost pressure and the actual EGR rate can be set to the target EGR rate.
  • the rate can be controlled with a predetermined followability, or the actual boost pressure and the actual EGR rate can be controlled in a balanced manner with respect to the target boost pressure and the target EGR rate, respectively.
  • the second correction value used for correcting the proportional gain is the target boost pressure when the boost pressure deviation integrated value is larger than the reference value and the EGR rate deviation integrated value is larger than the reference value.
  • the followability can be set to a value that can reach the predetermined followability as early as possible and the target EGR rate followability can reach the predetermined followability as early as possible.
  • the correction of the proportional gain using the second correction value is based on the fact that the supercharging pressure deviation integrated value is larger than the reference value and the EGR rate deviation integrated value is larger than the reference value.
  • the predetermined response is performed when the response of the EGR control valve is slower than the predetermined response.
  • the vane manipulated variable proportional gain and the EGR control valve manipulated variable proportional gain are corrected without considering how much the boost pressure deviation accumulated value and the EGR rate deviation accumulated value deviate from their reference values. . Therefore, the second correction value does not increase the target boost pressure follow-up performance and the target EGR rate follow-up performance greatly beyond the predetermined follow-up performance by correcting the vane operation amount proportional gain and the EGR control valve operation amount proportional gain once. It is considered preferable to set a value as small as possible.
  • the correction of the proportional gain is performed from the viewpoint of simplifying the correction of the vane operation amount proportional gain and the EGR control valve operation amount proportional gain and correcting the proportional gain in a well-balanced manner.
  • the same second correction value is used as the correction value.
  • the correction values for correcting each proportional gain may be different from each other.
  • the gain is corrected by multiplying the vane operation amount proportional gain by the second correction value.
  • a specific value is set so that the vane operation amount proportional gain is increased. May be added to the vane manipulated variable proportional gain to correct the gain.
  • the EGR control valve operation amount proportional gain is corrected by multiplying the second correction value by the EGR control valve operation amount proportional gain.
  • the EGR control valve operation amount proportional gain is increased.
  • the gain may be corrected by adding a specific value to the EGR control valve operation amount proportional gain. In this case, from the viewpoint of correcting these proportional gains in a well-balanced manner, it is considered preferable that specific values added to these proportional gains are set to the same value.
  • the supercharging pressure deviation integrated value is larger than the reference value (in detail, The EGR rate deviation integrated value is larger than the supercharging pressure deviation integrated value when the response of the EGR control valve is slower than the intended response although the vane response is the desired response). Is approximately equal to the reference value (or, in some cases, is equal to the reference value).
  • the vane opening is made small in order to increase the actual supercharging pressure toward the target supercharging pressure, and at the same time, the EGR control valve opening is used to decrease the actual EGR rate toward the target EGR rate. Is also made smaller.
  • the exhaust pressure increases due to the decrease in the vane opening and the exhaust pressure due to the decrease in the EGR control valve opening.
  • the boost pressure is increased.
  • the exhaust pressure increase rate due to the decrease in the vane opening degree also increases the exhaust pressure due to the decrease in the EGR control valve opening degree.
  • the speed is also slower than the intended speed. For this reason, the increasing speed of the supercharging pressure is significantly slower than the intended speed. Therefore, when the actual supercharging pressure is to be increased when both the vane response and the EGR control valve response are slower than the intended response, the supercharging pressure deviation integrated value becomes significantly larger than the reference value.
  • the EGR gas increases due to the decrease in the vane opening and the EGR gas due to the decrease in the EGR control valve opening.
  • a decrease in volume occurs at the same time.
  • the increase rate of the EGR gas amount due to the decrease in the vane opening degree is also the EGR gas amount due to the decrease in the EGR control valve opening degree.
  • the rate of decrease of is also slower than the expected rate.
  • the rate of decrease in the EGR rate is substantially the expected rate, and in some cases, the expected rate. Therefore, when the actual EGR rate is to be reduced when both the vane response and the EGR control valve response are slower than the intended response, the EGR rate deviation integrated value becomes substantially equal to the reference value (or in some cases Is equal to its reference value).
  • the vane opening is increased in order to decrease the actual supercharging pressure toward the target supercharging pressure, and at the same time, the EGR control valve opening is increased in order to increase the actual EGR rate toward the target EGR rate. Is also enlarged.
  • the supercharging pressure is reduced.
  • the exhaust pressure decrease rate due to the increase in the vane opening degree also decreases the exhaust pressure due to the increase in the EGR control valve opening degree.
  • the speed is also slower than the intended speed. For this reason, as a whole, the decrease rate of the supercharging pressure is significantly slower than the intended speed. Therefore, when the actual supercharging pressure is to be reduced when both the vane response and the EGR control valve response are slower than the intended response, the supercharging pressure deviation integrated value becomes significantly larger than the reference value.
  • the vane opening and the EGR control valve opening are simultaneously increased, the EGR gas is decreased due to the increase in the vane opening and the EGR gas is increased due to the increase in the EGR control valve opening.
  • An increase in quantity occurs simultaneously.
  • the rate of decrease in the EGR gas amount due to the increase in the vane opening is also the amount of EGR gas due to the increase in the EGR control valve opening.
  • the increase speed of the speed is also slower than the expected speed.
  • the decrease in the decrease rate of the EGR gas amount due to the increase in the vane opening degree and the decrease in the increase rate of the EGR gas amount due to the increase in the EGR control valve opening amount are offset, and as a result, as a whole
  • the rate of decrease in the EGR rate is substantially the expected rate, and in some cases, the expected rate. Therefore, when the actual EGR rate is to be reduced when both the vane response and the EGR control valve response are slower than the intended response, the EGR rate deviation integrated value becomes substantially equal to the reference value (or in some cases Is equal to its reference value).
  • the supercharging pressure deviation integrated value is larger than the reference value and the EGR rate deviation integrated value becomes the reference value. It is approximately equal (or equal to the reference value).
  • the third correction value is multiplied by the vane operation amount proportional gain so that the vane operation amount proportional gain is increased.
  • the vane operation amount proportional gain is increased, the set target vane operation amount is increased. According to this, the response of the vane becomes faster, and as a result, the change speed of the actual supercharging pressure becomes faster and approaches the intended speed. Then, if the correction of the vane operation amount proportional gain is repeated, the change speed of the actual supercharging pressure finally reaches the intended speed. Therefore, the actual supercharging pressure is controlled with a predetermined followability to the target supercharging pressure.
  • the supercharging pressure deviation integrated value is larger than the reference value and the EGR rate deviation integrated value is substantially equal to the reference value, it is considered that the actual EGR rate is controlled to the target EGR rate with a predetermined followability. be able to.
  • the vane operation amount proportional gain is increased and the response of the vane is accelerated, the EGR gas amount caused by the change in the vane opening (that is, the increase or decrease in the vane opening).
  • Change rate that is, the rate of decrease or increase of the EGR gas amount
  • the target EGR rate followability becomes lower than the predetermined followability.
  • the operation amount of the EGR control valve is increased, the response of the EGR control valve becomes faster, so that it is possible to suppress the target EGR rate tracking performance from becoming lower than the predetermined tracking performance. Therefore, in the first embodiment, when the boost pressure deviation integrated value is larger than the reference value and the EGR rate deviation integrated value is substantially equal to the reference value, the EGR control valve operation amount proportional gain is increased. The third correction value is multiplied by the EGR control valve operation amount proportional gain. Thus, if the EGR control valve operation amount proportional gain is increased, the set target EGR control valve operation amount is increased. For this reason, it can suppress that target EGR rate followability becomes lower than predetermined followability. Therefore, the actual EGR rate is controlled with a predetermined followability to the target EGR rate.
  • the response of the EGR control valve becomes faster, so that the change in the exhaust pressure caused by the change in the EGR control valve opening degree is reduced. Increases speed. Also from this, the change speed of the actual supercharging pressure increases and approaches the expected speed. Therefore, the actual supercharging pressure is controlled with a predetermined followability to the target supercharging pressure earlier.
  • the supercharging pressure deviation integrated value is larger than the reference value and the EGR rate deviation integrated value is substantially equal to the reference value, and therefore the vane response is also the response of the EGR control valve.
  • the actual supercharging pressure can be controlled to the target supercharging pressure with a predetermined followability, and the actual EGR rate can be controlled to the target EGR rate with a predetermined followability.
  • the actual boost pressure and the actual EGR rate can be controlled in a balanced manner with respect to the target boost pressure and the target EGR rate, respectively.
  • the third correction value used for correcting the proportional gain is the target boost pressure when the boost pressure deviation integrated value is larger than the reference value and the EGR rate deviation integrated value is substantially equal to the reference value.
  • the followability can be set to a value that can reach the predetermined followability as early as possible, and the target EGR rate followability can reach the predetermined followability as early as possible.
  • the correction of the proportional gain using the third correction value is based on the fact that the supercharging pressure deviation integrated value is larger than the reference value and the EGR rate deviation integrated value is substantially equal to the reference value. This is performed with a slower response than the predetermined response and a response of the EGR control valve slower than the predetermined response.
  • the vane operation amount proportional gain and the EGR control valve operation amount proportional gain are corrected without considering how much the accumulated value of the supercharging pressure deviation deviates from the reference value. Therefore, the third correction value does not increase the target boost pressure follow-up performance and the target EGR rate follow-up performance greatly beyond the predetermined follow-up performance by correcting the vane operation amount proportional gain and the EGR control valve operation amount proportional gain once. It is considered preferable to set a value as small as possible.
  • the correction of the proportional gain is performed from the viewpoint of simplifying the correction of the vane operation amount proportional gain and the EGR control valve operation amount proportional gain and correcting the proportional gain in a well-balanced manner.
  • the correction value is the same third correction value. However, if necessary, the correction values for correcting each proportional gain may be different from each other.
  • the gain is corrected by multiplying the vane operation amount proportional gain by the third correction value. However, if necessary, a specific value is set so that the vane operation amount proportional gain is increased. May be added to the vane manipulated variable proportional gain to correct the gain.
  • the gain is corrected by multiplying the EGR control valve operation amount proportional gain by the third correction value. However, if necessary, the EGR control valve operation amount proportional gain is increased.
  • the gain may be corrected by adding a specific value to the EGR control valve operation amount proportional gain. In this case, from the viewpoint of correcting these proportional gains in a well-balanced manner, it is considered preferable that specific values added to these proportional gains are set to the same value.
  • the vane operation amount proportional gain and the EGR control valve operation amount proportional gain are corrected based on the deviation of the supercharging pressure deviation integrated value with respect to the reference value and the deviation of the EGR rate deviation integrated value with respect to the reference value.
  • the target vane operation amount and the target EGR control valve operation amount are corrected so that the supercharging pressure deviation integrated value matches the reference value and the EGR rate deviation integrated value matches the reference value. It can be said that it is a thing.
  • the vane operation amount proportional gain and the EGR control valve operation amount proportional gain are corrected based on the boost pressure deviation integrated value and the EGR rate deviation integrated value.
  • the integral gain, differential gain, or integral gain and differential gain of the above equation 1 may be corrected, and instead of or in addition to the correction of the EGR control valve operation amount proportional gain.
  • the integral gain or differential gain of the above equation 2 or the integral gain and the differential gain may be corrected.
  • the supercharging pressure and the EGR rate are converted into a target supercharging pressure and a target EGR rate.
  • This is an embodiment to which the present invention is applied in order to control with a predetermined followability, or when controlling the supercharging pressure and the EGR rate in a balanced manner with respect to the target supercharging pressure and the target EGR rate.
  • the idea of the present invention described in relation to the first embodiment is that, in an internal combustion engine provided with a control object that controls two control amounts that influence each other, these two control amounts are set as target control amounts, respectively.
  • the present invention can also be applied to control with a predetermined followability, or to control these two control amounts in a balanced manner with respect to the target control amount.
  • the control device for an internal combustion engine of the present invention described in relation to the first embodiment has a first control amount (for example, a first control amount) that is one of two control amounts that influence each other.
  • the first control object for example, the vane of the first embodiment
  • the second control amount for example, the first control amount that is the remaining one of the two control amounts that influence each other.
  • a target first control amount is set as a target first control amount Set as the amount (for example, the target boost pressure of the first embodiment) and the second control amount to be targeted is set as the target second control amount (for example, the target EGR rate of the first embodiment), and the first The control amount is made to reach the target first control amount, and the second control amount is set to the target second.
  • the operation amount to be input to the first control object in order to reach the control amount is set as the target first operation amount (for example, the target vane operation amount of the first embodiment) and the operation amount to be input to the second control object Is set as the target second operation amount (for example, the target EGR control valve operation amount of the first embodiment), and the operation amount corresponding to the target first operation amount is input to the first control target and the target second operation amount is set.
  • the target first operation amount for example, the target vane operation amount of the first embodiment
  • the operation amount to be input to the second control object Is set as the target second operation amount (for example, the target EGR control valve operation amount of the first embodiment)
  • the operation amount corresponding to the target first operation amount is input to the first control target and the target second operation amount is set.
  • a control device that controls a first control amount to a target first control amount by inputting a corresponding operation amount to a second control target, and controls the second control amount to a target second control amount, during engine operation
  • the integrated value of the deviation of the actual first control amount with respect to the target first control amount is calculated as the first control amount deviation integrated value (for example, the boost pressure deviation integrated value of the first embodiment) and the target second control amount.
  • Integrated value of deviation of actual second controlled variable with respect to A second control amount deviation integrated value (for example, an EGR rate deviation integrated value of the first embodiment) is calculated, and a target first operation is performed based on the first control amount deviation integrated value and the second control amount deviation integrated value. It can be said that the control device corrects the amount and the target second operation amount.
  • the supercharging pressure and the EGR rate are control amounts that affect the emissions discharged from the internal combustion engine. Accordingly, the control of the internal combustion engine structure and the internal combustion engine is based on the premise that the supercharging pressure is controlled with a predetermined followability to the target supercharging pressure and the EGR rate is controlled with a predetermined followability to the target EGR rate. It has been decided to reduce emissions as much as possible.
  • the supercharging pressure follows the target supercharging pressure for a predetermined amount.
  • the EGR rate is controlled with a predetermined followability to the target EGR rate. Therefore, according to the first embodiment, the emission discharged from the internal combustion engine is reliably maintained at a low level.
  • the response of the EGR control valve is an intended response, and the target
  • the response of the EGR control valve is delayed by reducing the EGR control valve operation amount proportional gain. According to this, even if temporarily, the target EGR rate followability may be lower than the predetermined followability.
  • the reason why the response of the EGR control valve is delayed in this way is determined that it is appropriate to delay the response of the EGR control valve in order to improve the target boost pressure tracking performance to a predetermined tracking performance. Because it was done.
  • This routine is shown in FIG. 4 and is executed at predetermined time intervals.
  • the engine speed N, the engine load L, the current boost pressure Pim, and the current EGR rate Regr are acquired.
  • the target boost pressure TPim is acquired from the target boost pressure map of FIG. 3A based on the engine speed N and the engine load L acquired at step 10, and at step 10, Based on the acquired engine speed N and engine load L, the target oxygen concentration TO2 is acquired from the target oxygen concentration map of FIG.
  • the target EGR rate TRegr is calculated based on the current supercharging pressure Pim acquired at step 10 and the target oxygen concentration TO2 acquired at step 11.
  • step 13 a deviation (ie, supercharging pressure deviation) ⁇ Pim of the current supercharging pressure Pim acquired in step 10 with respect to the target supercharging pressure TPim acquired in step 11 is calculated, and in step 12.
  • a deviation (ie, EGR rate deviation) ⁇ Regr of the current EGR rate Regr acquired in step 10 with respect to the calculated target EGR rate TRegr is calculated.
  • step 14 the supercharging pressure deviation ⁇ Pim calculated at step 13 is added to the supercharging pressure deviation integrated value ⁇ Pim stored at step 15 when the routine of FIG.
  • the pressure deviation integrated value ⁇ Pim is calculated
  • the EGR rate deviation ⁇ Regr calculated in step 13 is added to the EGR rate deviation integrated value ⁇ Regr stored in step 15 when the routine of FIG.
  • An EGR rate deviation integrated value ⁇ Regr is calculated.
  • step 15 the new boost pressure deviation integrated value ⁇ Pim calculated in step 14 and the new EGR rate deviation integrated value ⁇ Regr are stored.
  • the target vane operation amount Mv is calculated from the above equation 1 using the boost pressure deviation ⁇ Pim calculated at step 13 and the boost pressure deviation integrated value ⁇ Pim calculated at step 14.
  • the target EGR control valve operation amount Megr is calculated from the above equation 2, and the routine ends.
  • This routine is shown in FIGS. 5 and 6, and is executed at predetermined time intervals.
  • step 100 the current supercharging pressure deviation integrated value ⁇ Pim (k) stored at step 15 of FIG. 4 and the current EGR rate deviation integrated value ⁇ Regr are stored. (K) is acquired.
  • step 101 the current supercharging pressure deviation integrated value ⁇ Pim (k) acquired in step 100 is larger than the reference value THpim ( ⁇ Pim (k)> THpim) and the current EGR acquired in step 100.
  • the routine proceeds to step 102.
  • the routine proceeds to step 104.
  • the value obtained by subtracting the predetermined value ⁇ from the reference value THegr of the EGR rate deviation integrated value is used as the lower limit value compared with the current EGR rate deviation integrated value ⁇ Regr (k) in step 101.
  • a predetermined value ⁇ is subtracted from the reference value THegr of the EGR rate deviation integrated value. This is because the value is used.
  • the predetermined value ⁇ is set to an extremely small value.
  • step 101 When it is determined in step 101 that ⁇ Pim (k)> THpim and ⁇ Regr (k) ⁇ THegr ⁇ , and the routine proceeds to step 102, the current vane manipulated variable proportional gain GPp (k) and the current EGR The control valve operation amount proportional gain GEp (k) is acquired.
  • step 103 a value (GPp (k) + K1) obtained by adding the first correction value K1 to the current vane operation amount proportional gain GPp (k) acquired in step 102 is a new vane operation amount proportional.
  • a value obtained by subtracting the first correction value K1 from the current EGR control valve operation amount proportional gain GEp (k) acquired in step 102 and being set to the gain GPp (k + 1) (GEp (k) ⁇ K1) ) Is set to a new EGR control valve operation amount proportional gain GEp (k + 1), and the routine ends.
  • the target vane operation amount Mv is calculated from the above equation 1 using the new vane operation amount proportional gain GPp (k + 1) set in step 103, and step 103
  • the target EGR control valve operation amount Megr is calculated from the above equation 2 using the new EGR control valve operation amount proportional gain GEp (k + 1) set in (1).
  • step 101 when it is determined in step 101 that ⁇ Pim (k)> THpim and ⁇ Regr (k) ⁇ THegr ⁇ are not satisfied, and the routine proceeds to step 104, the current supercharging pressure deviation accumulated in step 100 is obtained.
  • the value ⁇ Pim (k) is larger than its reference value THpim ( ⁇ Pim (k)> THpim), and the current EGR rate deviation integrated value ⁇ Regr (k) acquired in step 100 is its upper limit value (that is, its reference value THegr). It is determined whether or not ( ⁇ Regr (k)> THegr + ⁇ ) is greater than (THegr + ⁇ ), which is a value obtained by adding a predetermined value ⁇ to.
  • step 105 when it is determined that ⁇ Pim (k)> THpim and ⁇ Regr (k)> THegr + ⁇ , the routine proceeds to step 105. On the other hand, if it is determined that ⁇ Pim (k)> THpim and ⁇ Regr (k)> THegr + ⁇ is not established, the routine proceeds to step 107 in FIG.
  • the value obtained by adding the predetermined value ⁇ to the reference value THegr of the EGR rate deviation integrated value is used as the upper limit value compared with the current EGR rate deviation integrated value ⁇ Regr (k) in step 104.
  • a predetermined value ⁇ is added to the reference value THegr of the EGR rate deviation integrated value to determine whether or not the current EGR rate deviation integrated value ⁇ Regr (k) is substantially equal to the reference value THegr. This is because the value is used.
  • the predetermined value ⁇ is set to a very small value. Has been.
  • step 104 When it is determined in step 104 that ⁇ Pim (k)> THpim and ⁇ Regr (k)> THegr + ⁇ , and the routine proceeds to step 105, the current vane operation amount proportional gain GPp (k) and the current EGR control valve The manipulated variable proportional gain GEp (k) is acquired.
  • step 106 a value (GPp (k) ⁇ K2) obtained by multiplying the current vane operation amount proportional gain GPp (k) acquired in step 105 by the second correction value K2 is a new vane operation amount.
  • the target vane operation amount Mv is calculated from the above equation 1 using the new vane operation amount proportional gain GPp (k + 1) set in step 106, and step 106
  • the target EGR control valve operation amount Megr is calculated from the above equation 2 using the new EGR control valve operation amount proportional gain GEp (k + 1) set in (1).
  • step 104 if it is determined in step 104 that ⁇ Pim (k)> THpim and ⁇ Regr (k)> THegr + ⁇ is not established and the routine proceeds to step 107 in FIG. 6, the current boost pressure deviation obtained in step 100 is determined.
  • the integrated value ⁇ Pim (k) is larger than the reference value THpim ( ⁇ Pim (k)> THpim), and the current EGR rate deviation integrated value ⁇ Regr (k) acquired in step 100 is substantially equal to the reference value THegr, that is, The current EGR rate deviation integrated value ⁇ Regr (k) acquired in step 100 is not less than the lower limit value (THegr ⁇ ) and not more than the upper limit value (THegr + ⁇ ) (THegr ⁇ ⁇ ⁇ Regr (k)). It is determined whether or not ⁇ THegr + ⁇ ).
  • the routine proceeds to step 108.
  • the routine ends.
  • the target vane operation amount Mv is calculated from the above equation 1 using the current vane operation amount proportional gain GPp (k), and the current EGR control valve operation amount is proportional.
  • the target EGR control valve operation amount Megr is calculated from the above equation 2 using the gain GEp (k).
  • step 107 it is determined that ⁇ Pim (k)> THpim and THegr ⁇ ⁇ ⁇ Regr (k) ⁇ THegr + ⁇ .
  • the routine proceeds to step 108, the current vane operation amount proportional gain GPp (k) and the current EGR control valve operation amount proportional gain GEp (k) is acquired.
  • step 109 a value (GPp (k) ⁇ K3) obtained by multiplying the current vane operation amount proportional gain GPp (k) acquired in step 108 by the third correction value K3 is a new vane operation amount.
  • a value obtained by multiplying the current EGR control valve operation amount proportional gain GEp (k) acquired in step 108 by the third correction value K3, while being set to the proportional gain GPp (k + 1) (GEp (k) ⁇ K3) is set to a new EGR control valve operation amount proportional gain GEp (k + 1), and the routine ends.
  • the target vane operation amount Mv is calculated from the above equation 1 using the new vane operation amount proportional gain GPp (k + 1) set in step 108, and step 108.
  • the target EGR control valve operation amount Megr is calculated from the above equation 2 using the new EGR control valve operation amount proportional gain GEp (k + 1) set in (1).
  • the target vane operation amount and the target EGR control valve operation amount for setting the actual supercharging pressure to the target supercharging pressure and the EGR rate to the target EGR rate are expressed by the above equation 1 respectively.
  • the operation amount corresponding to the calculated target vane operation amount is input to the vane 35D, and the operation amount corresponding to the calculated target EGR control valve operation amount is calculated using the EGR control. This is input to the valve 52, whereby the actual supercharging pressure is controlled to the target supercharging pressure and the actual EGR rate is controlled to the target EGR rate.
  • the actual supercharging pressure is controlled to the target supercharging pressure by the control different from the control of the actual supercharging pressure and the actual EGR rate in the first embodiment, and the actual EGR rate is reduced. Controlled to the target EGR rate.
  • the amount of change in the vane opening that should be the target in order to set the actual supercharging pressure to the target supercharging pressure and the actual EGR rate to the target EGR rate is calculated as the target vane opening change amount.
  • the amount of change in the opening degree of the EGR control valve to be targeted is calculated as the target amount of change in the opening degree of the EGR control valve. Then, using a target vane opening change amount conversion formula (that is, a conversion formula determined in advance to calculate the target vane opening change amount corresponding to the target vane opening change amount from the target vane opening change amount).
  • a target vane operation amount is calculated from the calculated target vane opening change amount, and a target EGR control valve operation amount corresponding to the target EGR control valve opening change amount is calculated from the target EGR control valve opening change amount. Therefore, the target EGR control valve operation amount is calculated from the calculated target EGR control valve opening change amount using a predetermined conversion equation).
  • An operation amount corresponding to the calculated target vane operation amount is input from the electronic control device 60 to the vane 35D, and an operation amount corresponding to the calculated target EGR control valve operation amount is input from the electronic control device 60. Input to the EGR control valve 52.
  • the actual boost pressure is controlled to the target boost pressure
  • the actual EGR rate is controlled to the target EGR rate.
  • PID control using the supercharging pressure deviation is used for setting the target vane opening change amount.
  • the actual supercharging pressure is acquired during engine operation, and a deviation (that is, a supercharging pressure deviation) of the acquired actual supercharging pressure with respect to the target supercharging pressure is calculated.
  • the supercharging pressure deviation integrated value is calculated by integrating the supercharging pressure deviation thus calculated.
  • the supercharging pressure deviation calculated as described above is represented by “ ⁇ Pim”, the supercharging pressure deviation integrated value calculated as described above is represented by “ ⁇ Pim”, and the target vane opening change amount is represented by “TDv”.
  • the proportional gain in PID control is represented by “GPp”
  • the integral gain in PID control is represented by “GPi”
  • the differential gain in PID control is represented by “GPd”
  • a quantity TDv is calculated (ie set).
  • TDv GPp ⁇ ⁇ Pim + GPi ⁇ ⁇ Pim + GPd ⁇ d ( ⁇ Pim) / dt (3)
  • the target vane opening change amount corresponding to the target vane opening change amount calculated from the above equation 3 is calculated from the target vane opening change amount conversion formula, and this calculation is performed.
  • An operation amount corresponding to the target vane operation amount is input from the electronic control device 60 to the vane 35D.
  • PID control using the EGR rate deviation is used for setting the target EGR control valve opening change amount.
  • the actual EGR rate is acquired during engine operation, and a deviation (that is, EGR rate deviation) of the acquired actual EGR rate with respect to the target EGR rate is calculated.
  • the EGR rate deviation integrated value is calculated by integrating the EGR rate deviation thus calculated.
  • the EGR rate deviation calculated as described above is represented by “ ⁇ Regr”
  • the EGR rate deviation integrated value calculated as described above is represented by “ ⁇ Regr”
  • the target EGR control valve opening change amount is represented by “TDegr”.
  • the proportional gain in PID control is represented by “GEp”
  • the integral gain in PID control is represented by “GEi”
  • the differential gain in PID control is represented by “GEd”
  • the target EGR control valve is opened according to the following equation 4.
  • a degree change amount TDegr is calculated.
  • TDegr GPp ⁇ ⁇ Regr + GPi ⁇ ⁇ Regr + GPd ⁇ d ( ⁇ Regr) / dt (4)
  • the target EGR control valve operation amount corresponding to the target EGR control valve opening change amount calculated from the above equation 4 is calculated from the target EGR control valve opening change amount conversion equation. Then, an operation amount corresponding to the calculated target EGR control valve operation amount is input from the electronic control device 60 to the EGR control valve 52.
  • the proportional gain of Equation 3 used for setting the change amount (hereinafter, this gain is referred to as “vane opening proportional gain”) and the proportional gain of Equation 4 used for setting the target EGR opening change amount (hereinafter referred to as this gain).
  • the gain is referred to as “EGR control valve opening proportional gain”) is corrected based on the supercharging pressure deviation integrated value and the EGR rate deviation integrated value, and the corrected vane opening proportional gain is the proportional gain of Equation 3 above.
  • the corrected EGR control valve opening proportional gain is used as the proportional gain of Equation 4 to set the target EGR control valve change amount.
  • the vane opening proportional gain and the EGR control valve opening proportional gain are learned based on the boost pressure deviation integrated value and the EGR rate deviation integrated value, and these are learned.
  • the vane opening proportional gain and the EGR control valve proportional gain are used for setting the target vane opening change amount and setting the target EGR control valve opening change amount.
  • the supercharging pressure deviation integrated value calculated during engine operation is compared with a reference value (that is, the reference value), and the EGR rate deviation integrated value calculated during engine operation.
  • the value is compared with a certain reference value (ie its reference value).
  • a predetermined value (hereinafter referred to as this value) is set so that the vane opening proportional gain is increased. Is added to the vane opening proportional gain, the gain is corrected and the EGR control valve opening is adjusted so that the EGR control valve opening proportional gain is reduced. By subtracting from the proportional gain, the gain is corrected.
  • a predetermined value larger than 1 is set so that the EGR control valve opening proportional gain is increased.
  • the second correction value is set so that the gain is corrected and the vane opening proportional gain is increased.
  • the gain is corrected by multiplying the vane opening proportional gain.
  • the vane opening proportional gain is increased.
  • the gain is corrected by multiplying the vane opening proportional gain by a predetermined value greater than 1 (hereinafter, this value is referred to as a “third correction value”) and the EGR control valve opening proportional gain is increased.
  • the gain is corrected by multiplying the EGR control valve opening proportional gain by the third correction value.
  • the vane opening proportional gain is also set to open the EGR control valve. The degree proportional gain is not corrected.
  • the supercharging pressure deviation integrated value and the EGR rate deviation integrated value that can be taken when the response of the vane is the highest and the response of the EGR control valve is the highest are obtained in advance through experiments or the like.
  • the obtained values are used as a reference value for the supercharging pressure deviation integrated value and a reference value for the EGR rate deviation integrated value, respectively.
  • the vane opening proportional gain and the EGR control valve opening proportional gain are corrected, and these corrected gains are used for setting the target vane opening change amount and setting the target EGR control valve opening change amount, respectively.
  • the supercharging pressure can be controlled to the target supercharging pressure with a predetermined followability and the EGR rate can be controlled to the target EGR rate with a predetermined followability, or the actual supercharging.
  • An effect is obtained that the pressure and the actual EGR rate can be controlled in a balanced manner with respect to the target supercharging pressure and the target EGR rate, respectively.
  • the supercharging pressure and the EGR rate are control amounts that influence each other. Therefore, when the supercharging pressure is controlled by the supercharger 35, when the supercharging pressure is controlled with a predetermined followability to the target supercharging pressure, the same supercharging pressure by the supercharger 35 with respect to the supercharging pressure. Considering the influence of the control of the EGR rate by the EGR device 50 on the supercharging pressure as well as the influence of the control of the supercharging pressure is advantageous from the viewpoint of controlling the supercharging pressure to the target supercharging pressure with higher accuracy. There is.
  • the control of the EGR rate by the EGR device 50 on the EGR rate is taken into account when the EGR rate is to be controlled with a predetermined followability to the target EGR rate.
  • the influence of the supercharging pressure control by the supercharger 35 on the EGR rate is advantageous from the viewpoint of controlling the EGR rate to the target EGR rate with higher accuracy.
  • the proportional gain, integral gain, and differential gain of Equation 3 are calculated from the target vane opening change amount TDv calculated from Equation 3 according to the target vane opening change amount conversion equation.
  • a value such that a target vane opening change amount is calculated from the above equation 3 so that the supercharging pressure is appropriately controlled with a predetermined followability to the target supercharging pressure when an operation amount is input to the vane. It is calculated
  • the “reference proportional gain” and the “reference differential gain” are values based on the premise that the EGR rate is appropriately controlled with a predetermined followability to the target EGR rate. Therefore, the target vane opening change amount calculated from the above equation 3 that employs the reference proportional gain, the reference integral gain, and the reference differential gain is controlled with a predetermined followability of the supercharging pressure to the target supercharging pressure.
  • the EGR rate is set on the assumption that the target EGR rate is controlled with a predetermined followability.
  • the boost pressure As long as the EGR rate is controlled with a predetermined followability to the target supercharging pressure and the EGR rate is controlled with a predetermined followability to the target EGR rate, the supercharging pressure has a predetermined followability to the target supercharging pressure. Be controlled.
  • the target vane calculated from the above equation 3 adopting the reference proportional gain, the reference integral gain, and the reference differential gain. Even if an operation amount calculated based on the amount of change in opening is input to the vane, it is natural that the supercharging pressure is not controlled with a predetermined followability to the target supercharging pressure. Further, even when the EGR rate is not controlled with a predetermined followability to the target EGR rate, the target vane opening change amount calculated from the above equation 3 that employs the reference proportional gain, the reference integral gain, and the reference differential gain. Even if the operation amount calculated based on the above is input to the vane, the supercharging pressure is not controlled with a predetermined followability to the target supercharging pressure.
  • the proportional gain, integral gain, and differential gain of the above equation 4 are converted from the target EGR control valve opening change amount TDegr calculated from the above equation 4 to the target EGR control valve opening change amount.
  • the target EGR control valve opening change amount that the EGR rate is appropriately controlled with a predetermined followability to the target EGR rate when the operation amount calculated according to the equation is input to the EGR control valve from the above equation 4. As a value to be calculated, it is obtained in advance by experiments or the like.
  • the proportional gain, integral gain, and derivative gain are values based on the premise that the supercharging pressure is appropriately controlled with a predetermined followability to the target supercharging pressure. Accordingly, the target EGR control valve opening change amount calculated from the above equation 4 that employs the reference proportional gain, the reference integral gain, and the reference differential gain is controlled by the EGR rate with a predetermined followability to the target EGR rate.
  • the supercharging pressure is set on the premise that the supercharging pressure is controlled with a predetermined followability to the target supercharging pressure. Therefore, when the operation amount calculated based on the target EGR control valve opening change amount calculated from the above equation 4 adopting the reference proportional gain, the reference integral gain, and the reference differential gain is input to the EGR control valve. As long as the EGR rate is controlled with a predetermined followability to the target EGR rate and the supercharging pressure is controlled with a predetermined followability to the target supercharging pressure, the EGR rate has a predetermined followability to the target EGR rate. So it is controlled.
  • the target EGR control valve calculated from the above equation 4 adopting the reference proportional gain, the reference integral gain, and the reference differential gain. Even if the operation amount calculated based on the amount of change in opening is input to the EGR control valve, it is natural that the EGR rate is not controlled with a predetermined followability to the target EGR rate. Further, even when the supercharging pressure is not controlled with a predetermined followability to the target supercharging pressure, the target EGR control valve calculated from the above equation 4 that employs the reference proportional gain, the reference integral gain, and the reference differential gain. Even if the operation amount calculated based on the opening change amount is input to the EGR control valve, the EGR rate is not controlled with a predetermined followability to the target EGR rate.
  • the supercharging pressure is not controlled with the target supercharging pressure with a predetermined followability, or the EGR rate is not controlled with the target EGR rate with a predetermined followability, the supercharging pressure follows the target supercharging pressure with a predetermined followability. Therefore, if the EGR rate is controlled with the predetermined EGR rate and the target EGR rate is controlled with a predetermined followability, the desired internal combustion engine characteristics cannot be obtained.
  • the response of the vanes becomes faster. Therefore, when the supercharging pressure deviation integrated value is larger than the reference value and the EGR rate deviation integrated value is smaller than the reference value, if the vane operation amount is increased, the response of the vane becomes faster.
  • the actual turbocharging pressure change speed that is, the actual turbocharging pressure increasing speed when increasing the actual turbocharging pressure, or the actual turbocharging pressure decreasing speed when decreasing the actual turbocharging pressure
  • the first correction value is added to the vane opening proportional gain so that the vane opening proportional gain is increased.
  • the vane opening proportional gain When the vane opening proportional gain is increased in this way, the set target vane opening change amount increases, and therefore the target vane operation amount calculated based on the target vane opening change amount also increases. According to this, the response of the vane becomes faster, and as a result, the change speed of the actual supercharging pressure becomes faster and approaches the intended speed. If the correction of the vane opening proportional gain is repeated, the change speed of the actual supercharging pressure finally reaches the desired speed. Therefore, the actual supercharging pressure is controlled with a predetermined followability to the target supercharging pressure.
  • the operation amount of the EGR control valve is reduced, the response of the EGR control valve is delayed. Therefore, when the supercharging pressure deviation integrated value is larger than the reference value and the EGR rate deviation integrated value is smaller than the reference value, if the EGR control valve operation amount is reduced, the response of the EGR control valve is delayed.
  • the change rate of the actual EGR rate that is, the decrease rate of the actual EGR rate when the actual EGR rate is decreased or the increase rate of the actual EGR rate when the actual EGR rate is increased
  • the first correction value is subtracted from the EGR control valve opening proportional gain so that the EGR control valve opening proportional gain becomes small.
  • the EGR control valve opening proportional gain is reduced in this way, the set target EGR control valve opening change amount becomes small, and therefore, the target EGR control calculated based on the target EGR control valve opening change amount.
  • the valve operation amount is also reduced. According to this, the response of the EGR control valve becomes slow, and as a result, the change speed of the actual EGR rate becomes slow and approaches the intended speed. If the correction of the EGR control valve opening proportional gain is repeated, finally, the actual EGR rate change speed reaches the desired speed. Therefore, the actual EGR rate is controlled with a predetermined followability to the target EGR rate.
  • the response of the vane becomes faster, so that the rate of change in the EGR gas amount due to the change in the vane opening becomes faster. Also from this, the rate of change of the actual EGR rate becomes slow and approaches the intended rate. Therefore, the actual EGR rate is controlled with a predetermined followability to the target EGR rate earlier.
  • the supercharging pressure deviation integrated value is larger than the reference value and the EGR rate deviation integrated value is smaller than the reference value, and therefore the response of the EGR control valve is expected.
  • the actual supercharging pressure can be controlled to the target supercharging pressure with a predetermined followability and the actual EGR rate can be set to the target EGR.
  • the rate can be controlled with a predetermined followability, or the actual boost pressure and the actual EGR rate can be controlled in a balanced manner with respect to the target boost pressure and the target EGR rate, respectively.
  • the first correction value used for correcting the vane opening proportional gain and the EGR control valve opening proportional gain is set based on the same concept as that for setting the first correction value in the first embodiment.
  • the boost pressure The integrated deviation value is larger than the reference value, and the EGR rate deviation integrated value is larger than the reference value.
  • the EGR control valve opening proportional gain is multiplied by the second correction value so that the EGR control valve opening proportional gain is increased.
  • the EGR control valve opening proportional gain is increased, the set target EGR control valve opening change amount is increased, and therefore the target EGR control calculated based on the target EGR control valve opening change amount is increased.
  • the valve operation amount is also increased. According to this, the response of the EGR control valve becomes faster, and as a result, the change speed of the actual EGR becomes faster and approaches the intended speed. If the correction of the EGR control valve opening proportional gain is repeated, finally, the actual EGR rate change speed reaches the desired speed. Therefore, the actual EGR rate is controlled with a predetermined followability to the target EGR rate.
  • the vane opening proportional gain is multiplied by the second correction value so that the vane opening proportional gain is increased. If the vane opening proportional gain is increased in this way, the set target vane opening change amount increases, and therefore the target vane operation amount calculated based on the target vane opening change amount also increases.
  • the response of the vanes becomes faster, and as a result, the change speed of the actual supercharging pressure becomes faster and approaches the intended speed. If the correction of the vane opening gain is repeated, finally, the change speed of the actual supercharging pressure reaches the intended speed. Therefore, the actual supercharging pressure is controlled with a predetermined followability to the target supercharging pressure.
  • the response of the EGR control valve becomes faster, so that the change in the exhaust pressure due to the change in the EGR control valve opening is reduced.
  • the speed is slow.
  • the change speed of the actual supercharging pressure increases and approaches the expected speed. Therefore, the actual supercharging pressure is controlled with a predetermined followability to the target supercharging pressure earlier.
  • the supercharging pressure deviation integrated value is larger than the reference value and the EGR rate deviation integrated value is larger than the reference value, and therefore the vane response is the expected response.
  • the actual supercharging pressure can be controlled with a predetermined followability to the target supercharging pressure and the actual EGR rate can be set to the target EGR.
  • the rate can be controlled with a predetermined followability, or the actual boost pressure and the actual EGR rate can be controlled in a balanced manner with respect to the target boost pressure and the target EGR rate, respectively.
  • the second correction value used for correcting the vane opening proportional gain and the EGR control valve opening proportional gain is set based on the same concept as that for setting the second correction value in the first embodiment.
  • the boost pressure deviation integration is performed.
  • Value is larger than the reference value (specifically, the supercharging pressure when the response of the EGR control valve is slower than the intended response although the vane response is the intended response)
  • the EGR rate deviation integrated value becomes substantially equal to the reference value (or, in some cases, becomes equal to the reference value).
  • the vane opening proportional gain is multiplied by the third correction value so that the vane opening proportional gain is increased.
  • the response of the vane becomes faster, and as a result, the change speed of the actual supercharging pressure becomes faster and approaches the intended speed. If the correction of the vane opening proportional gain is repeated, the change speed of the actual supercharging pressure finally reaches the desired speed. Therefore, the actual supercharging pressure is controlled with a predetermined followability to the target supercharging pressure.
  • the supercharging pressure deviation integrated value is larger than the reference value and the EGR rate deviation integrated value is substantially equal to the reference value, it is considered that the actual EGR rate is controlled to the target EGR rate with a predetermined followability. be able to.
  • the vane opening proportional gain is increased and the response of the vane is accelerated, the amount of EGR gas caused by the change in the vane opening (that is, the increase or decrease in the vane opening).
  • Change rate that is, the rate of decrease or increase of the EGR gas amount
  • the target EGR rate followability becomes lower than the predetermined followability.
  • the EGR control valve opening proportional gain is increased.
  • the EGR control valve opening proportional gain is multiplied by the third correction value.
  • the response of the EGR control valve becomes faster. Increases speed. Also from this, the change speed of the actual supercharging pressure becomes faster and approaches the expected speed. Thus, at an earlier stage, so that the actual boost pressure is controlled with a predetermined follow-up property to the target supercharging pressure.
  • the supercharging pressure deviation integrated value is larger than the reference value and the EGR rate deviation integrated value is substantially equal to the reference value, and therefore the vane response is also the response of the EGR control valve.
  • the actual supercharging pressure can be controlled to the target supercharging pressure with a predetermined followability, and the actual EGR rate can be controlled to the target EGR rate with a predetermined followability.
  • the actual boost pressure and the actual EGR rate can be controlled in a balanced manner with respect to the target boost pressure and the target EGR rate, respectively.
  • the third correction value used for correcting the vane opening proportional gain and the EGR control valve opening proportional gain is set based on the same concept as that for setting the third correction value in the first embodiment.
  • the vane opening proportional gain and the EGR control valve opening proportional gain are corrected based on the deviation of the boost pressure deviation integrated value with respect to the reference value and the deviation of the EGR rate deviation integrated value with respect to the reference value.
  • the target vane opening change amount and the target EGR control valve opening change so that the supercharging pressure deviation integrated value matches the reference value and the EGR rate deviation integrated value matches the reference value. It can be said that it corrects the amount.
  • the vane opening proportional gain and the EGR control valve opening proportional gain are corrected based on the supercharging pressure deviation integrated value and the EGR rate deviation integrated value, but the vane opening proportional gain is corrected.
  • the integral gain, differential gain, or integral gain and differential gain of the above equation 3 may be corrected, and instead of or in addition to the correction of the EGR control valve opening proportional gain.
  • the integral gain or differential gain of the above equation 4 or the integral gain and the differential gain may be corrected.
  • first correction value to the third correction value in the second embodiment are not necessarily the same values as the first correction value to the third correction value in the first embodiment, respectively.
  • the supercharging pressure and the EGR rate are changed to the target supercharging pressure and the target EGR rate.
  • This embodiment is an embodiment to which the present invention is applied in order to control with a predetermined followability or when the supercharging pressure and the EGR rate are controlled with good balance with respect to the target supercharging pressure and the target EGR rate.
  • the idea of the present invention described in relation to the first embodiment is that, in an internal combustion engine provided with a control object that controls two control amounts that affect each other, these two control amounts are set as target control amounts, respectively.
  • the present invention can also be applied to control with a predetermined followability, or to control these two control amounts in a balanced manner with respect to the target control amount.
  • the control device for an internal combustion engine of the present invention described in relation to the second embodiment has a first control amount (for example, a second control amount) that is one of two control amounts that influence each other.
  • the first control target for example, the vane of the second embodiment
  • the second control amount for example, the first control amount that is the remaining one of the two control amounts that affect each other.
  • the target first control amount is a target first control amount.
  • the operation state (for example, the vane opening degree of the second embodiment) of the first control object to be targeted in order to reach the control amount is set as the target first operation state (for example, the target vane opening degree of the second embodiment).
  • the operation state (for example, the EGR control valve opening degree of the second embodiment) to be set and set as the target is set as the target second operation state (for example, the target EGR control valve opening degree of the second embodiment).
  • the second control is performed so that the operation state of the first control object is controlled so that the operation state of the first control object becomes the target first operation state and the operation state of the second control object becomes the target second operation state.
  • a control device that controls a first control amount to a target first control amount by controlling an operation state of a control target, and controls a second control amount to a target second control amount.
  • Deviation of actual first controlled variable from controlled variable Is calculated as the first control amount deviation integrated value (for example, the boost pressure deviation integrated value of the second embodiment), and the integrated value of the actual second control amount deviation with respect to the target second control amount is calculated as the second integrated value.
  • a control device that calculates the control amount deviation integrated value and corrects the target first operation state and the target second operation state based on the first control amount deviation integrated value and the second control amount deviation integrated value. I can say that.
  • the emission discharged from the internal combustion engine is reliably maintained at a low level.
  • the response of the EGR control valve when the supercharging pressure deviation integrated value is larger than the reference value and the EGR rate deviation integrated value is smaller than the reference value, the response of the EGR control valve is an intended response and the target Although the EGR rate followability is higher than the predetermined followability, the response of the EGR control valve is delayed by reducing the EGR control valve opening proportional gain. According to this, even if temporarily, the target EGR rate followability may be lower than the predetermined followability. However, the reason why the response of the EGR control valve is delayed in this way is determined that it is appropriate to delay the response of the EGR control valve in order to improve the target boost pressure tracking performance to a predetermined tracking performance. Because it was done.
  • This routine is shown in FIG. 7, and is executed at predetermined time intervals. Note that steps 20 to 25 in FIG. 7 are the same as steps 10 to 15 in FIG. 4, respectively, and thus description of these steps is omitted.
  • the above equation 3 is obtained using the boost pressure deviation ⁇ Pim calculated in step 23 and the boost pressure deviation integrated value ⁇ Pim calculated in step 24.
  • the target vane opening change amount TDv is calculated from the above equation 4, and the target EGR control valve is calculated from the above equation 4 using the EGR rate deviation ⁇ Regr calculated in step 23 and the EGR rate deviation integrated value ⁇ Regr calculated in step 24.
  • An opening change amount TDegr is calculated.
  • step 27 the target vane opening amount TDv calculated in step 26 is multiplied by a constant conversion coefficient to calculate the target vane operation amount Mv, and the target EGR control valve calculated in step 26 is calculated.
  • the target EGR control valve operation amount Megr is calculated by multiplying the opening change amount TDegr by a constant conversion coefficient, and the routine ends.
  • the routine which modified step 106, step 108, and step 109 as follows can be mentioned.
  • step 102 the current vane is calculated.
  • the opening proportional gain GPp (k) and the current EGR control valve opening proportional gain GEp (k) are acquired.
  • step 103 a value (GPp (k) + K1) obtained by adding the first correction value K1 to the current vane opening proportional gain GPp (k) acquired in step 102 is a new vane opening proportional.
  • a value obtained by subtracting the first correction value K1 from the current EGR control valve opening proportional gain GEp (k) acquired in step 102 and being set to the gain GPp (k + 1) (GEp (k) ⁇ K1) ) Is set to a new EGR control valve opening proportional gain GEp (k + 1), and the routine ends.
  • the target vane opening change amount TDv is calculated from the above equation 3 using the new vane opening proportional gain GPp (k + 1) set in step 103, and Using the new EGR control valve opening proportional gain GEp (k + 1) set in step 103, the target EGR control valve opening change amount TDegr is calculated from the above equation 4.
  • step 105 the current vane opening proportional gain GPp (k) and the current EGR control valve opening proportional gain GEp (k) are acquired.
  • step 106 a value (GPp (k) ⁇ K2) obtained by multiplying the current vane opening proportional gain GPp (k) acquired in step 105 by the second correction value K2 is a new vane opening.
  • the proportional gain GPp (k + 1) is set, and the current EGR control valve opening proportional gain GEp (k) acquired in step 105 is multiplied by the second correction value K2 to obtain a value (GEp (k) ⁇ K2). Is set to a new EGR control valve opening proportional gain GEp (k + 1), and the routine ends.
  • the target vane opening change amount TDv is calculated from the above equation 3 using the new vane opening proportional gain GPp (k + 1) set in step 106, and Using the new EGR control valve opening proportional gain GEp (k + 1) set in step 106, the target EGR control valve opening change amount TDegr is calculated from the above equation 4.
  • step 108 the current vane opening proportional gain GPp (k) and the current EGR control valve opening proportional gain GEp (k) are acquired.
  • step 109 a value (GPp (k) ⁇ K2) obtained by multiplying the current vane opening proportional gain GPp (k) acquired in step 108 by the third correction value K3 is a new vane opening.
  • a value obtained by multiplying the current EGR control valve opening proportional gain GEp (k) acquired in step 108 by the third correction value K3 is set to the proportional gain GPp (k + 1)
  • GEp (k) ⁇ K3 is set to a new EGR control valve opening proportional gain GEp (k + 1), and the routine ends.
  • the target vane opening change amount TDv is calculated from the above equation 3 using the new vane opening proportional gain GPp (k + 1) set in step 109, and Using the new EGR control valve opening proportional gain GEp (k + 1) set in step 109, the target EGR control valve opening change amount TDegr is calculated from the above equation 4.
  • the supercharging pressure deviation integrated value and its reference value are compared regardless of the engine operating state, and the EGR rate deviation integrated value and its reference value are compared. Based on the result, it is determined whether or not to correct the vane operation amount proportional gain or whether to correct the EGR control valve operation amount proportional gain.
  • the boost pressure deviation integrated value is also the EGR rate deviation integrated value. Also grows.
  • the supercharging pressure deviation integrated value deviation from the reference value or the EGR rate deviation from the reference value increases. Therefore, when the supercharging pressure deviation integrated value is compared with the reference value or when the EGR rate deviation integrated value is compared with the reference value, the response of the vane is based on the result of the comparison. It is possible to accurately determine that the response is slower than the response or that the response of the EGR control valve is slower than the intended response. Therefore, in the third embodiment, the actual boost pressure and the actual EGR rate are controlled as follows.
  • the engine speed and the engine load are stored during engine operation, and the acceleration state of the engine operation state is grasped based on the stored engine speed and engine load.
  • the acceleration state of the engine operation state is the predetermined acceleration state
  • the supercharging pressure deviation integrated value and the reference value thereof are compared and the EGR rate deviation as in the first embodiment.
  • the integrated value is compared with its reference value.
  • the vane operation amount proportional gain and the EGR control valve operation amount proportional gain are corrected in the same manner as in the first embodiment.
  • neither the vane operation amount proportional gain nor the EGR control valve operation amount proportional gain may be corrected.
  • the boost pressure deviation integrated value and the reference value thereof are compared as in the second embodiment.
  • the EGR rate deviation integrated value is compared with the reference value, and the vane opening proportional gain and the EGR control valve opening proportional gain are corrected according to the comparison result, as in the second embodiment. Also good.
  • neither the vane opening proportional gain nor the EGR control valve opening proportional gain may be corrected.
  • routines for correcting the vane operation amount proportional gain and the EGR control valve operation amount proportional gain according to the third embodiment include the routines of FIGS. 8 and 9.
  • This routine is executed at predetermined time intervals.
  • the routines of FIGS. 8 and 9 are started, first, the current engine speed N and the current engine load L are acquired in step 200A of FIG. Next, at step 200B, the current engine speed N and the current engine load L acquired at step 200A are stored. Next, at step 200C, the current engine speed N, the current engine load L acquired at step 200A, and the engine speed N stored at step 200B of this routine prior to the execution of this routine. Based on the engine load L, it is determined whether or not the engine operation state up to the present is a predetermined acceleration operation state. Here, when it is determined that the engine operating state up to now has been in a predetermined acceleration state, the routine proceeds to step 200.
  • the routine ends as it is.
  • the target vane operation amount Mv is calculated from the above equation 1 using the current vane operation amount proportional gain GPp (k), and the current EGR control valve operation amount is proportional.
  • the target EGR control valve operation amount Megr is calculated from the above equation 2 using the gain GEp (k).
  • steps 200 to 209 in FIGS. 8 and 9 are the same as steps 100 to 109 in FIGS. 5 and 6, respectively, and thus description of these steps is omitted.
  • the supercharging pressure deviation integrated value and the EGR rate deviation integrated value that can be taken when the response of the vane is the highest and the response of the EGR control valve is the highest are obtained in advance by experiments or the like.
  • the obtained values are used as a reference value for the integrated value of supercharging pressure deviation and a reference value for the integrated value of EGR rate deviation.
  • the reference value of the supercharging pressure deviation integrated value and the reference value of the EGR rate deviation integrated value the supercharging pressure deviation integrated value and EGR that can be taken when the response of the vane is relatively high and the response of the EGR control valve is relatively high. It may be preferable to adopt the rate deviation integrated value.
  • a supercharging pressure deviation integrated value and an EGR rate deviation integrated value that can be taken when the response of the vane is relatively high and the response of the EGR control valve is relatively high are adopted.
  • the actual supercharging pressure and the actual EGR rate are controlled as follows.
  • the boost pressure deviation integrated value calculated during engine operation is compared with the reference value, and the EGR rate deviation integrated value calculated during engine operation is compared with the reference value.
  • a predetermined value (hereinafter referred to as this value) is set so that the vane operation amount proportional gain is increased.
  • the first correction value is added to the vane operation amount proportional gain so that the gain is corrected and the EGR control valve operation amount is reduced so that the EGR control valve operation amount proportional gain becomes small.
  • a predetermined value larger than 1 is set so that the EGR control valve operation amount proportional gain becomes large.
  • the second correction value is adjusted so that the gain is corrected and the vane operation amount proportional gain is increased.
  • the gain is corrected by multiplying the vane manipulated variable proportional gain.
  • the vane operation amount proportional gain is increased.
  • the gain is corrected and the EGR control valve operation amount proportional gain is increased.
  • the gain is corrected by multiplying the correction value by the EGR control valve operation amount proportional gain.
  • the vane operation amount proportional gain is increased.
  • a predetermined value hereinafter referred to as a “fourth correction value” is added to the vane manipulated variable proportional gain, so that the gain is corrected and the EGR control valve manipulated variable proportional gain is decreased.
  • the gain is corrected by subtracting the correction value from the EGR control valve operation amount proportional gain.
  • the vane operation amount proportional gain is decreased.
  • a predetermined value hereinafter referred to as “fifth correction value”
  • the gain is corrected by adding the correction value to the EGR control valve operation amount proportional gain.
  • a predetermined value (less than 1) is set so that the vane operation amount proportional gain becomes small.
  • This value is hereinafter referred to as a “sixth correction value” and multiplied by the vane operation amount proportional gain so that the gain is corrected and the sixth correction value is EGR controlled so that the EGR control valve operation amount proportional gain becomes small.
  • the gain is corrected by multiplying the valve operation amount proportional gain.
  • a predetermined value (hereinafter referred to as this value) is set so that the vane operation amount proportional gain becomes small.
  • the seventh correction value is proportional to the EGR control valve operation amount so that the gain is corrected by subtracting the "seventh correction value" from the vane operation amount proportional gain and the EGR control valve operation amount proportional gain is increased. The gain is corrected by being added to the gain.
  • the vane operation amount proportional gain is reduced.
  • the gain is corrected by multiplying the vane manipulated variable proportional gain by a predetermined value smaller than 1 (hereinafter referred to as “eighth correction value”), and the EGR control valve manipulated variable proportional gain is reduced.
  • the gain is corrected by multiplying the EGR control valve operation amount proportional gain by the eighth correction value.
  • the vane operation amount proportional gain is also proportional to the EGR control valve operation amount. Gain is not corrected.
  • the vane operation amount proportional gain and the EGR control valve operation amount proportional gain are corrected, and these corrected gains are used for setting the target vane operation amount and the target EGR control valve operation amount, respectively.
  • the effect that the supply pressure can be controlled to the target boost pressure with a predetermined followability and the EGR rate can be controlled to the target EGR rate with the predetermined followability, or the actual boost pressure and the actual EGR The rate can be controlled in a balanced manner with respect to the target boost pressure and the target EGR rate, respectively.
  • the supercharging pressure and the EGR rate are control amounts that influence each other. Accordingly, when the supercharging pressure is controlled by the supercharger 35, the supercharging pressure by the supercharger 35 with respect to the supercharging pressure when the supercharging pressure is to be controlled with the target supercharging pressure with a predetermined followability. Considering the influence of the control of the EGR rate by the EGR device 50 on the supercharging pressure as well as the influence of the control of the supercharging pressure is advantageous from the viewpoint of controlling the supercharging pressure to the target supercharging pressure with higher accuracy. There is.
  • the control of the EGR rate by the EGR device 50 with respect to the EGR rate is taken into account when the EGR rate is controlled with a predetermined followability to the target EGR rate.
  • the effect of supercharging pressure control by the supercharger 35 on the EGR rate is advantageous from the viewpoint of controlling the EGR rate to the target EGR rate with higher accuracy.
  • the first correction value is added to the vane operation amount proportional gain so that the vane operation amount proportional gain is increased, and the EGR control valve operation amount proportional gain is decreased.
  • the first correction value is subtracted from the manipulated variable proportional gain.
  • the first correction value used for correcting the proportional gain is set based on the same concept as that for setting the first correction value in the first embodiment.
  • the boost pressure The integrated deviation value is larger than the reference value, and the EGR rate deviation integrated value is larger than the reference value.
  • the second correction value is multiplied by the vane operation amount proportional gain so that the vane operation amount proportional gain is increased, and the EGR control valve operation amount proportional gain is increased.
  • the operation amount proportional gain is multiplied by the second correction value.
  • the second correction value used for correcting the proportional gain is set based on the same concept as that for setting the second correction value in the first embodiment.
  • the boost pressure deviation integration is performed.
  • the value is larger than the reference value, and the EGR rate deviation integrated value becomes substantially equal to the reference value (or, in some cases, becomes equal to the reference value).
  • the third correction value is multiplied by the vane operation amount proportional gain so that the vane operation amount proportional gain is increased, and the EGR control valve operation amount proportional gain is increased.
  • the operation amount proportional gain is multiplied by the third correction value.
  • the third correction value used for correcting the proportional gain is set based on the same concept as that for setting the third correction value in the first embodiment.
  • the boost pressure deviation integrated value is substantially equal to the reference value (or the reference value).
  • the EGR rate deviation integrated value becomes smaller than the reference value.
  • the vane opening is made small in order to increase the actual supercharging pressure toward the target supercharging pressure, and at the same time, the EGR control valve opening is used to decrease the actual EGR rate toward the target EGR rate. Is reduced.
  • the exhaust pressure increase rate due to the decrease in the vane opening becomes slower than the intended rate.
  • the exhaust pressure increase rate due to the decrease in the EGR control valve opening becomes faster than the intended rate. For this reason, the decrease in the exhaust pressure increase rate due to the decrease in the vane opening and the increase in the exhaust pressure increase rate due to the decrease in the EGR control valve opening cancel each other.
  • the increase speed of the supercharging pressure is substantially the expected speed, and in some cases, the expected speed. Therefore, when the actual boost pressure is to be increased when the response of the vane is slower than the expected response and the response of the EGR control valve is faster than the expected response, the boost pressure deviation integrated value Is approximately equal to the reference value (or, in some cases, is equal to the reference value).
  • the EGR gas amount increases due to the decrease in the vane opening and the EGR gas due to the decrease in the EGR control valve opening.
  • a decrease in volume occurs at the same time.
  • the response of the vane is slower than the intended response, the increasing rate of the EGR gas amount due to the decrease in the vane opening becomes slower than the intended rate.
  • the rate of decrease in the EGR gas amount due to the decrease in the EGR control valve opening becomes faster than the intended rate. For this reason, as a whole, the rate of decrease of the EGR gas amount becomes faster than the intended rate. Therefore, if the actual EGR rate is to be reduced when the vane response is slower than the intended response and the EGR control valve response is faster than the intended response, the integrated EGR rate deviation value is It becomes smaller than the reference value.
  • the vane opening is increased in order to decrease the actual supercharging pressure toward the target supercharging pressure, and at the same time, the EGR control valve opening is increased in order to increase the actual EGR rate toward the target EGR rate. Is increased.
  • the supercharging pressure is reduced.
  • the exhaust pressure decrease rate due to the increase in the vane opening becomes slower than the intended rate.
  • the exhaust pressure decreasing rate due to the increase in the EGR control valve opening becomes faster than the intended rate. For this reason, the decrease in the exhaust pressure decrease rate due to the increase in the vane opening and the increase in the exhaust pressure decrease rate due to the increase in the EGR control valve opening cancel each other.
  • the decreasing speed of the supercharging pressure is substantially the expected speed, and in some cases, the expected speed. Therefore, when the actual supercharging pressure is to be reduced when the response of the vane is slower than the intended response and the response of the EGR control valve is faster than the intended response, the supercharging pressure deviation integrated value Is approximately equal to the reference value (or, in some cases, is equal to the reference value).
  • the EGR gas is decreased due to the increase in the vane opening and the EGR gas is increased due to the increase in the EGR control valve opening.
  • An increase in quantity occurs simultaneously.
  • the rate of decrease in the EGR gas amount due to the increase in the vane opening becomes slower than the intended rate.
  • the response of the EGR control valve is faster than the intended response, the increasing speed of the EGR gas amount due to the increase in the EGR control valve opening degree becomes faster than the intended speed. For this reason, as a whole, the increasing rate of the EGR gas amount becomes faster than the intended rate. Therefore, the EGR rate deviation integrated value is also obtained when the actual EGR rate is increased when the response of the vane is slower than the intended response and the response of the EGR control valve is faster than the intended response. Becomes smaller than the reference value.
  • the boost pressure deviation integrated value is substantially equal to the reference value (or The EGR rate deviation integrated value becomes smaller than the reference value).
  • the fourth correction value is subtracted from the EGR control valve operation amount proportional gain so that the EGR control valve operation amount proportional gain becomes smaller.
  • the response of the EGR control valve becomes slow, and as a result, the change speed of the actual EGR rate becomes slow and approaches the intended speed. Then, if the correction of the EGR control valve operation amount proportional gain is repeated, the actual EGR rate change speed finally reaches the intended speed. Therefore, the actual EGR rate is controlled with a predetermined followability to the target EGR rate.
  • the actual supercharging pressure has a predetermined followability. It can be seen that the target boost pressure is controlled. However, as described above, in this case, since the EGR control valve operation amount proportional gain is reduced and the response of the EGR control valve is delayed, the rate of change of the exhaust pressure due to the change of the EGR control valve becomes slow. In this case, the target supercharging pressure followability becomes lower than the predetermined followability. On the other hand, if the vane operation amount is increased, the response of the vanes becomes faster, so that it is possible to suppress the target boost pressure followability from becoming lower than the predetermined followability.
  • the vane operation amount proportional gain is added to the vane operation amount proportional gain so as to increase the proportional gain.
  • the vane operation amount proportional gain is increased, the set target vane operation amount is increased. For this reason, it can suppress that target supercharging pressure followability becomes lower than predetermined followability. Therefore, the actual supercharging pressure is controlled with a predetermined followability to the target supercharging pressure.
  • the supercharging pressure deviation integrated value is substantially equal to (or equal to) the reference value, and the EGR rate deviation integrated value is smaller than the reference value.
  • the actual supercharging pressure can be controlled to the target supercharging pressure with a predetermined follow-up performance.
  • the EGR rate can be controlled with a predetermined followability to the target EGR rate, or the actual boost pressure and the actual EGR rate can be controlled in a balanced manner with respect to the target boost pressure and the target EGR rate, respectively. It can be done.
  • the fourth correction value used for correcting the proportional gain is that the boost pressure deviation integrated value is substantially equal to (or equal to) the reference value, and the EGR rate deviation integrated value is the reference value. Is set to a value that allows the target boost pressure followability to reach the predetermined followability as early as possible and does not lower the target EGR rate followability below the predetermined followability.
  • the boost pressure deviation integrated value is substantially equal to (or equal to) the reference value, and the EGR rate deviation integrated value is smaller than the reference value.
  • the response of the vane is slower than the predetermined response and the response of the EGR control valve is faster than the predetermined response.
  • the vane operation amount proportional gain and the EGR control valve operation amount proportional gain are corrected without considering how much the vane response and the EGR control valve response deviate from the predetermined responses.
  • the fourth correction value is obtained by correcting the target boost pressure follow-up significantly beyond the predetermined follow-up by the correction of the one-time vane operation amount proportional gain and the EGR control valve operation amount proportional gain, and the target EGR rate follow-up. It is considered that it is preferable to set the value to such a small value that the performance does not greatly exceed the predetermined followability.
  • correction of the proportional gain is performed from the viewpoint of simplifying the correction of the vane operation amount proportional gain and the EGR control valve operation amount proportional gain and correcting the proportional gain in a well-balanced manner.
  • the same fourth correction value is used as the correction value.
  • the correction values for correcting each proportional gain may be different from each other.
  • the gain is corrected by adding the fourth correction value to the vane operation amount proportional gain.
  • a specific value larger than 1 is set to a vane operation amount proportional gain.
  • the gain may be corrected by multiplying by.
  • the fourth correction value is corrected by subtracting the fourth correction value from the EGR control valve operation amount proportional gain.
  • a specific value smaller than 1 is set to an EGR control valve.
  • the gain may be corrected by multiplying the manipulated variable proportional gain.
  • the specific values multiplied by these proportional gains are set so that the sum of the specific values becomes a constant value, or It is considered preferable that the ratio of specific values is set to be a constant value.
  • the boost pressure deviation integrated value is substantially equal to the reference value (or the reference value).
  • the EGR rate deviation integrated value becomes larger than the reference value.
  • the vane opening is made small in order to increase the actual supercharging pressure toward the target supercharging pressure, and at the same time, the EGR control valve opening is used to decrease the actual EGR rate toward the target EGR rate. Is reduced.
  • the exhaust pressure increase rate due to the decrease in the vane opening becomes faster than the intended rate.
  • the exhaust pressure increase rate due to the decrease in the EGR control valve opening becomes slower than the intended rate. For this reason, the increase in the exhaust pressure increase rate due to the decrease in the vane opening and the decrease in the exhaust pressure increase rate due to the decrease in the EGR control valve opening cancel each other.
  • the increase speed of the supercharging pressure is substantially the expected speed, and in some cases, the expected speed. Therefore, when an attempt is made to increase the actual boost pressure when the response of the vane is faster than the expected response and the response of the EGR control valve is slower than the expected response, the supercharging pressure deviation integrated value Is approximately equal to the reference value (or, in some cases, is equal to the reference value).
  • the EGR gas increases due to the decrease in the vane opening and the EGR gas due to the decrease in the EGR control valve opening.
  • a decrease in volume occurs at the same time.
  • the response of the vane is faster than the intended response, the increasing speed of the EGR gas amount due to the decrease in the vane opening becomes faster than the intended speed.
  • the rate of decrease in the EGR gas amount due to the decrease in the EGR control valve opening becomes slower than the intended rate. For this reason, as a whole, the rate of decrease in the amount of EGR gas becomes slower than the intended rate. Accordingly, when the actual EGR rate is to be reduced when the vane response is faster than the intended response and the EGR control valve response is slower than the intended response, the EGR rate deviation integrated value is less than the reference value. Also grows.
  • the vane opening is increased in order to decrease the actual supercharging pressure toward the target supercharging pressure, and at the same time, the EGR control valve opening is increased in order to increase the actual EGR rate toward the target EGR rate. Is increased.
  • the supercharging pressure is reduced.
  • the exhaust pressure lowering rate due to the increase in the vane opening becomes faster than the intended rate.
  • the exhaust pressure decrease rate due to the increase in the EGR control valve opening becomes slower than the intended rate. For this reason, the increase in the exhaust pressure decrease rate due to the increase in the vane opening and the decrease in the exhaust pressure decrease rate due to the increase in the EGR control valve opening cancel each other.
  • the decreasing speed of the supercharging pressure is substantially the expected speed, and in some cases, the expected speed. Therefore, when the actual supercharging pressure is to be reduced when the response of the vane is faster than the intended response and the response of the EGR control valve is slower than the intended response, the supercharging pressure deviation integrated value Is approximately equal to the reference value (or, in some cases, is equal to the reference value).
  • the EGR gas is decreased due to the increase in the vane opening and the EGR gas is increased due to the increase in the EGR control valve opening.
  • An increase in quantity occurs simultaneously.
  • the rate of decrease in the EGR gas amount due to the increase in the vane opening becomes slower than the intended rate.
  • the response of the EGR control valve is faster than the intended response, the increasing speed of the EGR gas amount due to the increase in the EGR control valve opening degree becomes faster than the intended speed. For this reason, as a whole, the increasing rate of the EGR gas amount becomes faster than the intended rate. Therefore, the EGR rate deviation integrated value is also obtained when the actual EGR rate is increased when the response of the vane is slower than the intended response and the response of the EGR control valve is faster than the intended response. Becomes smaller than the reference value.
  • the boost pressure deviation integrated value is approximately equal to the reference value (or The EGR rate deviation integrated value becomes larger than the reference value.
  • the operation amount of the EGR control valve is increased, the response of the EGR control valve becomes faster. Therefore, when the supercharging pressure deviation integrated value is substantially equal to (or equal to) the reference value and the EGR rate deviation integrated value is larger than the reference value, the EGR control valve operation amount is increased. As a result, the response of the EGR control valve becomes faster, and as a result, the change rate of the actual EGR rate approaches the intended speed. Therefore, in the fourth embodiment, in this case, the fifth correction value is added to the EGR control valve operation amount proportional gain so that the EGR control valve operation amount proportional gain is increased. Thus, if the EGR control valve operation amount proportional gain is increased, the set target EGR control valve operation amount is increased.
  • the response of the EGR control valve becomes faster, and as a result, the change speed of the actual EGR rate becomes faster and approaches the intended speed. Then, if the correction of the EGR control valve operation amount proportional gain is repeated, the actual EGR rate change speed finally reaches the intended speed. Therefore, the actual EGR rate is controlled with a predetermined followability to the target EGR rate.
  • the actual supercharging pressure has a predetermined followability.
  • the target boost pressure is controlled.
  • the EGR control valve operation amount proportional gain is increased, and the response of the EGR control valve is increased, so that the exhaust pressure change rate due to the change of the EGR control valve is increased.
  • the target boost pressure followability is higher than the predetermined followability.
  • the vane operation amount is reduced, the response of the vane is delayed, so that the target boost pressure followability can be suppressed from becoming higher than the predetermined followability.
  • the vane operation amount proportional gain is subtracted from the vane operation amount proportional gain so that the proportional gain becomes smaller.
  • the vane operation amount proportional gain is reduced, the set target vane operation amount is reduced. For this reason, it can suppress that target supercharging pressure followability becomes higher than predetermined followability. Therefore, the actual supercharging pressure is controlled with a predetermined followability to the target supercharging pressure.
  • the boost pressure deviation integrated value is substantially equal to (or equal to) the reference value, and the EGR rate deviation integrated value is larger than the reference value.
  • the actual supercharging pressure can be controlled to the target supercharging pressure with a predetermined follow-up performance.
  • the EGR rate can be controlled with a predetermined followability to the target EGR rate, or the actual boost pressure and the actual EGR rate can be controlled in a balanced manner with respect to the target boost pressure and the target EGR rate, respectively. It can be done.
  • the fifth correction value used for correcting the proportional gain is that the boost pressure deviation integrated value is substantially equal to (or equal to) the reference value and the EGR rate deviation integrated value is the reference value. Is set to a value that allows the target boost pressure followability to reach the predetermined followability as early as possible and does not lower the target EGR rate followability below the predetermined followability.
  • the boost pressure deviation integrated value is substantially equal to (or equal to) the reference value, and the EGR rate deviation integrated value is larger than the reference value.
  • the vane response is faster than the predetermined response and the EGR control valve response is slower than the predetermined response.
  • the vane operation amount proportional gain and the EGR control valve operation amount proportional gain are corrected without considering how much the vane response and the EGR control valve response deviate from the predetermined responses.
  • the fifth correction value is obtained by making the target boost pressure follow-up performance not significantly lower than the predetermined follow-up performance and correcting the target EGR rate follow-up by correcting the vane operation amount proportional gain and the EGR control valve operation amount proportional gain once. It is considered that it is preferable to set the value to such a small value that the performance does not greatly exceed the predetermined followability.
  • correction of the proportional gain is performed from the viewpoint of simplifying the correction of the vane operation amount proportional gain and the EGR control valve operation amount proportional gain and correcting the proportional gain in a well-balanced manner.
  • the same fifth correction value is used as the correction value.
  • the correction values for correcting each proportional gain may be different from each other.
  • the fifth correction value is corrected by subtracting the fifth correction value from the vane operation amount proportional gain. However, if necessary, a specific value smaller than 1 is set to a vane operation amount proportional gain. The gain may be corrected by multiplying by. In the fourth embodiment, the fifth correction value is corrected by adding the fifth correction value to the EGR control valve operation amount proportional gain. However, if necessary, a specific value greater than 1 is set to an EGR control valve. The gain may be corrected by multiplying the manipulated variable proportional gain.
  • the specific values multiplied by these proportional gains are set so that the sum of the specific values becomes a constant value, or It is considered preferable that the ratio of specific values is set to be a constant value.
  • the supercharging pressure deviation integrated value is smaller than the reference value and the EGR rate deviation integrated value. Becomes smaller than the reference value.
  • the vane opening is made small in order to increase the actual supercharging pressure toward the target supercharging pressure, and at the same time, the EGR control valve opening is used to decrease the actual EGR rate toward the target EGR rate. Is reduced.
  • the boost pressure is increased.
  • the response of the vane is an intended response
  • the exhaust pressure increasing speed resulting from the decrease in the vane opening becomes the intended speed.
  • the response of the EGR control valve is faster than the intended response
  • the exhaust pressure increase rate due to the decrease in the EGR control valve opening becomes faster than the intended rate. For this reason, as a whole, the increase speed of the supercharging pressure becomes faster than the intended speed. Therefore, when the actual boost pressure is to be increased when the vane response is the desired response and the EGR control valve response is faster than the expected response, the boost pressure deviation integrated value is It becomes smaller than the reference value.
  • the EGR gas amount increases due to the decrease in the vane opening and the EGR gas due to the decrease in the EGR control valve opening.
  • a decrease in volume occurs at the same time.
  • the response of the vane is an intended response
  • the increase rate of the EGR gas amount due to the decrease in the vane opening becomes the intended rate.
  • the rate of decrease in the EGR gas amount due to the decrease in the EGR control valve opening becomes faster than the intended rate. For this reason, as a whole, the rate of decrease of the EGR gas amount becomes faster than the intended rate. Therefore, when the actual EGR rate is to be reduced when the vane response is the intended response and the EGR control valve response is faster than the intended response, the EGR rate deviation integrated value is less than the reference value. Get smaller.
  • the vane opening is increased in order to decrease the actual supercharging pressure toward the target supercharging pressure, and at the same time, the EGR control valve opening is increased in order to increase the actual EGR rate toward the target EGR rate. Is increased.
  • the exhaust pressure decreases due to the increase in the vane opening and the exhaust pressure due to the increase in the EGR control valve opening.
  • the supercharging pressure is reduced.
  • the response of the vane is an intended response
  • the exhaust pressure lowering speed resulting from the increase in the vane opening becomes the intended speed.
  • the response of the EGR control valve is faster than the intended response
  • the exhaust pressure decreasing rate due to the increase in the EGR control valve opening becomes faster than the intended rate. For this reason, as a whole, the reduction speed of the supercharging pressure becomes faster than the intended speed. Therefore, when the actual boost pressure is to be reduced when the vane response is the desired response and the EGR control valve response is faster than the expected response, the boost pressure deviation integrated value is It becomes smaller than the reference value.
  • the vane opening and the EGR control valve opening are simultaneously increased, the EGR gas caused by the decrease in the EGR gas amount due to the increase in the vane opening and the increase in the EGR control valve opening.
  • An increase in quantity occurs simultaneously.
  • the rate of decrease in the EGR gas amount due to the increase in the vane opening becomes the intended rate.
  • the response of the EGR control valve is faster than the intended response, the increasing speed of the EGR gas amount due to the increase in the EGR control valve opening degree becomes faster than the intended speed. For this reason, as a whole, the rate of increase in the amount of EGR gas is faster than the intended rate. Accordingly, when the actual EGR rate is to be increased when the vane response is the intended response and the EGR control valve response is faster than the intended response, the EGR rate deviation integrated value is less than the reference value. Get smaller.
  • the supercharging pressure deviation integrated value is smaller than the reference value and the EGR rate deviation The integrated value becomes smaller than the reference value.
  • the EGR control valve operation amount proportional gain is multiplied by the sixth correction value so that the EGR control valve operation amount proportional gain becomes smaller.
  • the response of the EGR control valve becomes slow, and as a result, the change speed of the actual EGR rate becomes slow and approaches the intended speed. Then, if the correction of the EGR control valve operation amount proportional gain is repeated, the actual EGR rate changing speed finally reaches the intended speed. Therefore, the actual EGR rate is controlled with a predetermined followability to the target EGR rate.
  • the vane operation amount proportional gain is multiplied by the second correction value so that the vane operation amount proportional gain becomes small.
  • the response of the vane becomes slow, and as a result, the change speed of the actual supercharging pressure becomes slow and approaches the intended speed. If the correction of the vane operation amount gain is repeated, the change speed of the actual supercharging pressure finally reaches the intended speed. Therefore, the actual supercharging pressure is controlled with a predetermined followability to the target supercharging pressure.
  • the response of the EGR control valve becomes slow, so that the change of the exhaust pressure due to the change of the EGR control valve opening degree is reduced.
  • the speed is slow.
  • the change speed of the actual supercharging pressure becomes slow and approaches the intended speed.
  • the supercharging pressure deviation integrated value is smaller than the reference value and the EGR rate deviation integrated value is smaller than the reference value, and therefore the vane response is the desired response.
  • the actual boost pressure can be controlled with a predetermined follow-up to the target boost pressure and the actual EGR rate can be set to the target EGR rate.
  • the rate can be controlled with a predetermined followability, or the actual boost pressure and the actual EGR rate can be controlled in a balanced manner with respect to the target boost pressure and the target EGR rate, respectively.
  • the sixth correction value used to correct the proportional gain is the target boost pressure when the boost pressure deviation integrated value is smaller than the reference value and the EGR rate deviation integrated value is smaller than the reference value.
  • the followability can be set to a value that can reach the predetermined followability as early as possible and the target EGR rate followability can reach the predetermined followability as early as possible.
  • the correction of the proportional gain using the sixth correction value is performed when the supercharging pressure deviation integrated value is smaller than the reference value and the EGR rate deviation integrated value is smaller than the reference value. This is performed with a predetermined response and that the response of the EGR control valve is faster than the predetermined response.
  • the vane manipulated variable proportional gain and the EGR control valve manipulated variable proportional gain are corrected without considering how much the boost pressure deviation accumulated value and the EGR rate deviation accumulated value deviate from their reference values.
  • the sixth correction value does not decrease the target boost pressure follow-up performance and the target EGR rate follow-up performance greatly beyond the predetermined follow-up performance by correcting the vane operation amount proportional gain and the EGR control valve operation amount proportional gain once. It is considered preferable to set a value as small as possible.
  • correction of the proportional gain is performed from the viewpoint of simplifying the correction of the vane operation amount proportional gain and the EGR control valve operation amount proportional gain and correcting the proportional gain in a well-balanced manner.
  • the same second correction value is used as the correction value.
  • the correction values for correcting each proportional gain may be different from each other.
  • the gain is corrected by multiplying the vane operation amount proportional gain by the sixth correction value, but if necessary, a specific value is set so that the vane operation amount proportional gain is reduced. May be corrected from the vane manipulated variable proportional gain.
  • the EGR control valve operation amount proportional gain is corrected by multiplying the sixth correction value by the EGR control valve operation amount proportional gain. However, if necessary, the EGR control valve operation amount proportional gain is reduced.
  • the gain may be corrected by subtracting a specific value from the EGR control valve operation amount proportional gain. In this case, from the viewpoint of correcting these proportional gains in a well-balanced manner, it is considered preferable that specific values added to these proportional gains are set to the same value.
  • the vane opening is made small in order to increase the actual supercharging pressure toward the target supercharging pressure, and at the same time, the EGR control valve opening is used to decrease the actual EGR rate toward the target EGR rate. Is reduced.
  • the boost pressure is increased.
  • the response of the vane is faster than the intended response
  • the exhaust pressure increase rate due to the decrease in the vane opening becomes faster than the intended rate.
  • the response of the EGR control valve is an intended response
  • the rising speed of the exhaust pressure due to the decrease in the EGR control valve opening becomes the intended speed. For this reason, as a whole, the increase speed of the supercharging pressure becomes faster than the intended speed. Therefore, when the actual boost pressure is to be increased when the response of the vane is faster than the expected response and the response of the EGR control valve is the expected response, the boost pressure deviation integrated value is It becomes smaller than the reference value.
  • the EGR gas amount increases due to the decrease in the vane opening and the EGR gas due to the decrease in the EGR control valve opening.
  • a decrease in volume occurs at the same time.
  • the response of the vane is faster than the intended response, the increasing speed of the EGR gas amount due to the decrease in the vane opening becomes faster than the intended speed.
  • the rate of decrease of the EGR gas amount resulting from the decrease in the EGR control valve opening becomes the intended rate. For this reason, as a whole, the rate of decrease of the EGR gas amount becomes slower than the intended rate. Accordingly, when the actual EGR rate is to be reduced when the response of the vane is faster than the intended response and the response of the EGR control valve is the intended response, the EGR rate deviation integrated value is less than the reference value. growing.
  • the vane opening is increased in order to decrease the actual supercharging pressure toward the target supercharging pressure, and at the same time, the EGR control valve opening is increased in order to increase the actual EGR rate toward the target EGR rate. Is increased.
  • the supercharging pressure is reduced.
  • the response of the vane is faster than the intended response
  • the exhaust pressure decrease rate due to the increase in the vane opening becomes faster than the intended rate.
  • the response of the EGR control valve is the intended response
  • the exhaust pressure decrease rate due to the increase in the EGR control valve opening becomes the intended rate.
  • the boost pressure deviation integrated value is It becomes smaller than the reference value.
  • the vane opening and the EGR control valve opening are simultaneously increased, the EGR gas caused by the decrease in the EGR gas amount due to the increase in the vane opening and the increase in the EGR control valve opening.
  • An increase in quantity occurs simultaneously.
  • the rate of decrease of the EGR gas amount due to the increase in the vane opening becomes faster than the intended rate.
  • the response of the EGR control valve is a desired response, the increasing speed of the EGR gas amount resulting from the increase in the EGR control valve opening becomes the intended speed. For this reason, as a whole, the increase rate of the EGR gas amount becomes slower than the intended rate. Accordingly, when the actual EGR rate is to be reduced when the response of the vane is faster than the intended response and the response of the EGR control valve is the intended response, the EGR rate deviation integrated value is less than the reference value. growing.
  • the boost pressure deviation integrated value is substantially equal to the reference value (or The EGR rate deviation integrated value becomes smaller than the reference value).
  • the seventh correction value is subtracted from the vane operation amount proportional gain so that the vane operation amount proportional gain becomes smaller.
  • the vane operation amount proportional gain is reduced, the set target vane operation amount is reduced. According to this, the response of the vane becomes slow, and as a result, the change speed of the actual supercharging pressure becomes slow and approaches the intended speed. If the correction of the vane operation amount proportional gain is repeated, finally, the change speed of the actual supercharging pressure reaches the intended speed. Therefore, the actual supercharging pressure is controlled with a predetermined followability to the target supercharging pressure.
  • the seventh correction value is added to the EGR control valve operation amount proportional gain so that the EGR control valve operation amount proportional gain is increased.
  • the response of the EGR control valve becomes faster, and as a result, the change speed of the actual EGR rate becomes faster and approaches the intended speed. Then, if the correction of the EGR control valve operation amount proportional gain is repeated, the actual EGR rate changing speed finally reaches the intended speed. Therefore, the actual EGR rate is controlled with a predetermined followability to the target EGR rate.
  • the supercharging pressure deviation integrated value is smaller than the reference value and the EGR rate deviation integrated value is larger than the reference value. Therefore, the response of the EGR control valve is expected. Even when the response of the vane is faster than the intended response, the actual supercharging pressure can be controlled to the target supercharging pressure with a predetermined followability, and the actual EGR rate can be set to the target EGR. The rate can be controlled with a predetermined followability, or the actual boost pressure and the actual EGR rate can be controlled in a balanced manner with respect to the target boost pressure and the target EGR rate, respectively.
  • the seventh correction value used for correcting the proportional gain is the target boost pressure when the boost pressure deviation integrated value is smaller than the reference value and the EGR rate deviation integrated value is larger than the reference value.
  • the followability can be set to a value that can reach the predetermined followability as early as possible and that the target EGR rate followability is not lower than the predetermined followability.
  • the correction of the proportional gain using the seventh correction value is performed when the supercharging pressure deviation integrated value is smaller than the reference value and the EGR rate deviation integrated value is larger than the reference value. It is performed that the response of the EGR control valve is the intended response faster than the intended response. In other words, the vane manipulated variable proportional gain and the EGR control valve manipulated variable proportional gain are corrected without considering how much the boost pressure deviation accumulated value and the EGR rate deviation accumulated value deviate from their reference values. . Accordingly, the seventh correction value is obtained by making the target boost pressure follow-up performance not significantly lower than the predetermined follow-up performance and the target EGR rate follow-up by correcting the vane operation amount proportional gain and the EGR control valve operation amount proportional gain once. It is considered that it is preferable to set the value to such a small value that the performance does not greatly exceed the predetermined followability.
  • correction of the proportional gain is performed from the viewpoint of simplifying the correction of the vane operation amount proportional gain and the EGR control valve operation amount proportional gain and correcting the proportional gain in a well-balanced manner.
  • the same seventh correction value is used as the correction value.
  • the correction values for correcting each proportional gain may be different from each other.
  • the gain is corrected by subtracting the seventh correction value from the vane operation amount proportional gain.
  • a specific value smaller than 1 is set to a vane operation amount proportional gain.
  • the gain may be corrected by multiplying by.
  • the gain is corrected by adding the seventh correction value to the EGR control valve operation amount proportional gain.
  • a specific value larger than 1 is set to an EGR control valve.
  • the gain may be corrected by multiplying the manipulated variable proportional gain.
  • the specific values multiplied by these proportional gains are set such that the sum of the specific values becomes a constant value, or It is considered preferable that the ratio of the values is set to a constant value.
  • the supercharging pressure deviation integrated value is smaller than the reference value (in detail, The EGR rate deviation integrated value is smaller than the supercharging pressure deviation integrated value when the response of the EGR control valve is faster than the intended response although the vane response is the expected response). Is approximately equal to the reference value (or, in some cases, is equal to the reference value).
  • the vane opening is made small in order to increase the actual supercharging pressure toward the target supercharging pressure, and at the same time, the EGR control valve opening is used to decrease the actual EGR rate toward the target EGR rate. Is also made smaller.
  • the exhaust pressure increases due to the decrease in the vane opening and the exhaust pressure due to the decrease in the EGR control valve opening.
  • the boost pressure is increased.
  • the exhaust pressure increase rate due to the decrease in the vane opening degree also increases the exhaust pressure due to the decrease in the EGR control valve opening degree.
  • the speed is also faster than the intended speed. For this reason, the increasing speed of the supercharging pressure is significantly faster than the intended speed. Therefore, when the actual supercharging pressure is increased when both the vane response and the EGR control valve response are faster than the intended response, the supercharging pressure deviation integrated value becomes significantly smaller than the reference value.
  • the EGR gas increases due to the decrease in the vane opening and the EGR gas due to the decrease in the EGR control valve opening.
  • a decrease in volume occurs at the same time.
  • the increase rate of the EGR gas amount due to the decrease in the vane opening is also the EGR gas amount due to the decrease in the EGR control valve opening.
  • the rate of decrease of is also faster than the expected rate.
  • the rate of decrease in the EGR rate is approximately the expected rate, and in some cases, the expected rate. Therefore, if the actual EGR rate is to be reduced when both the vane response and the EGR control valve response are faster than the intended response, the EGR rate deviation integrated value becomes substantially equal to the reference value (or depending on circumstances) Is equal to its reference value).
  • the vane opening is increased in order to decrease the actual supercharging pressure toward the target supercharging pressure, and at the same time, the EGR control valve opening is increased in order to increase the actual EGR rate toward the target EGR rate. Is also enlarged.
  • the supercharging pressure is reduced.
  • the exhaust pressure decrease rate due to the increase in the vane opening degree also decreases the exhaust pressure due to the increase in the EGR control valve opening degree.
  • the speed is also faster than the intended speed. For this reason, as a whole, the supercharging pressure decreasing rate is significantly faster than the intended rate. Therefore, when the actual supercharging pressure is to be reduced when both the vane response and the EGR control valve response are faster than the intended response, the supercharging pressure deviation integrated value is significantly smaller than the reference value.
  • the vane opening and the EGR control valve opening are simultaneously increased, the EGR gas is decreased due to the increase in the vane opening and the EGR gas is increased due to the increase in the EGR control valve opening.
  • An increase in quantity occurs simultaneously.
  • the rate of decrease in the EGR gas amount due to the increase in the vane opening is also the amount of EGR gas due to the increase in the EGR control valve opening. The rate of increase of this is also faster than the intended rate.
  • the increase in the decrease rate of the EGR gas amount due to the increase in the vane opening degree and the increase in the increase rate of the EGR gas amount due to the increase in the EGR control valve opening amount are offset, and as a result, as a whole
  • the rate of decrease in the EGR rate is substantially the expected speed, and in some cases, the expected speed. Therefore, if the actual EGR rate is to be reduced when both the vane response and the EGR control valve response are faster than the intended response, the EGR rate deviation integrated value becomes substantially equal to the reference value (or depending on circumstances) Is equal to its reference value).
  • the supercharging pressure deviation integrated value is smaller than the reference value, and the EGR rate deviation integrated value becomes the reference value. It becomes substantially equal (or equal to the reference value).
  • the vane operation amount proportional gain is multiplied by the eighth correction value so that the vane operation amount proportional gain becomes small.
  • the vane operation amount proportional gain is reduced, the set target vane operation amount is reduced. According to this, the response of the vane becomes slow, and as a result, the change speed of the actual supercharging pressure becomes slow and approaches the intended speed. Then, if the correction of the vane operation amount proportional gain is repeated, the change speed of the actual supercharging pressure finally reaches the intended speed. Therefore, the actual supercharging pressure is controlled with a predetermined followability to the target supercharging pressure.
  • the supercharging pressure deviation integrated value is smaller than the reference value and the EGR rate deviation integrated value is substantially equal to the reference value, it is considered that the actual EGR rate is controlled to the target EGR rate with a predetermined followability. be able to.
  • the vane operation amount proportional gain is reduced and the response of the vane is delayed, the rate of change in the EGR gas amount due to the change in the vane opening is delayed.
  • the target EGR rate followability becomes higher than the predetermined followability.
  • the EGR control valve operation amount is reduced, the response of the EGR control valve is delayed, so that it is possible to suppress the target EGR rate tracking performance from becoming higher than the predetermined tracking performance.
  • the EGR control valve operation amount proportional gain is reduced.
  • the eighth correction value is multiplied by the EGR control valve operation amount proportional gain.
  • the response of the EGR control valve becomes slow, so that the change in the exhaust pressure caused by the change in the EGR control valve opening degree is reduced.
  • the speed is slow.
  • the change speed of the actual supercharging pressure becomes slow and approaches the intended speed. Therefore, the actual supercharging pressure is controlled with a predetermined followability to the target supercharging pressure earlier.
  • the supercharging pressure deviation integrated value is smaller than the reference value and the EGR rate deviation integrated value is substantially equal to the reference value. Therefore, the vane response is also the response of the EGR control valve. Even when the response is faster than the intended response, the actual supercharging pressure can be controlled to the target supercharging pressure with a predetermined followability, and the actual EGR rate can be controlled to the target EGR rate with a predetermined followability. Alternatively, the actual boost pressure and the actual EGR rate can be controlled in a balanced manner with respect to the target boost pressure and the target EGR rate, respectively.
  • the eighth correction value used for correcting the proportional gain is the target boost pressure when the boost pressure deviation integrated value is larger than the reference value and the EGR rate deviation integrated value is substantially equal to the reference value.
  • the followability can be set to a value that can reach the predetermined followability as early as possible and the target EGR rate followability can reach the predetermined followability as early as possible.
  • the correction of the proportional gain using the eighth correction value is based on the fact that the supercharging pressure deviation integrated value is smaller than the reference value and the EGR rate deviation integrated value is substantially equal to the reference value. This is done with a faster than predetermined response and a faster response of the EGR control valve than the predetermined response.
  • the vane operation amount proportional gain and the EGR control valve operation amount proportional gain are corrected without considering how much the accumulated value of the supercharging pressure deviation deviates from the reference value. Therefore, the eighth correction value does not decrease the target boost pressure follow-up performance and the target EGR rate follow-up performance greatly beyond the predetermined follow-up performance by correcting the vane operation amount proportional gain and the EGR control valve operation amount proportional gain once. It is considered preferable to set a value as small as possible.
  • correction of the proportional gain is performed from the viewpoint of simplifying the correction of the vane operation amount proportional gain and the EGR control valve operation amount proportional gain and correcting the proportional gain in a well-balanced manner.
  • the correction value is the same as the eighth correction value. However, if necessary, the correction values for correcting each proportional gain may be different from each other.
  • the gain is corrected by multiplying the vane operation amount proportional gain by the eighth correction value.
  • a specific value is set so that the vane operation amount proportional gain is reduced. May be corrected from the vane manipulated variable proportional gain.
  • the EGR control valve operation amount proportional gain is corrected by multiplying the eighth correction value by the EGR control valve operation amount proportional gain.
  • the gain may be corrected by subtracting a specific value from the EGR control valve operation amount proportional gain. In this case, from the viewpoint of correcting these proportional gains in a well-balanced manner, it is considered preferable that specific values added to these proportional gains are set to the same value.
  • the vane operation amount proportional gain and the EGR control valve operation amount proportional gain are corrected based on the deviation of the boost pressure deviation integrated value with respect to the reference value and the deviation of the EGR rate deviation integrated value with respect to the reference value.
  • the target vane operation amount and the target EGR control valve operation amount are corrected so that the supercharging pressure deviation integrated value matches the reference value and the EGR rate deviation integrated value matches the reference value. It can be said that it is a thing.
  • routines for correcting the vane operation amount proportional gain and the EGR control valve operation amount proportional gain according to the fourth embodiment include the routines shown in FIGS.
  • This routine is executed at predetermined time intervals.
  • step 400 the current supercharging pressure deviation integrated value ⁇ Pim (k) stored at step 15 of FIG. 4 and the current EGR rate deviation integrated value ⁇ Regr are stored. (K) is acquired.
  • step 401 the current supercharging pressure deviation integrated value ⁇ Pim (k) acquired at step 400 is larger than its upper limit value (that is, a value obtained by adding a predetermined value ⁇ to the reference value THpim) (THpim + ⁇ ).
  • step 400 the current EGR rate deviation integrated value ⁇ Regr (k) acquired in step 400 is a lower limit value thereof (that is, a value obtained by subtracting the predetermined value ⁇ from the reference value THegr) (THegr ⁇ Is smaller than ( ⁇ Regr (k) ⁇ THegr ⁇ ).
  • the routine proceeds to step 402.
  • the routine proceeds to step 404.
  • the value obtained by subtracting the predetermined value ⁇ from the reference value THegr of the EGR rate deviation integrated value is used as the lower limit value to be compared with the current EGR rate deviation integrated value ⁇ Regr (k) in Step 401.
  • the reference value THegr of the EGR rate deviation integrated value is used in order to determine whether or not the current EGR rate deviation integrated value ⁇ Regr (k) is substantially equal to the reference value THegr. This is because a value obtained by subtracting the predetermined value ⁇ is used. Since the lower limit value is used to determine whether or not the current EGR rate deviation integrated value ⁇ Regr (k) is substantially equal to the reference value, the predetermined value ⁇ is set to a very small value.
  • step 401 a value obtained by adding a predetermined value ⁇ to the reference value THpim of the boost pressure deviation integrated value is used.
  • step 410 in FIG. 11 and step 413 in FIG. 12, which will be described later in order to determine whether or not the current boost pressure deviation integrated value ⁇ Pim (k) is substantially equal to the reference value THpim, This is because a value obtained by adding a predetermined value ⁇ to the reference value THpim is used.
  • the predetermined value ⁇ is set to an extremely small value. .
  • step 401 it is determined that ⁇ Pim (k)> THpim + ⁇ and ⁇ Regr (k) ⁇ THegr ⁇ , and when the routine proceeds to step 402, the current vane operation amount proportional gain GPp (k) and the current EGR are obtained.
  • the control valve operation amount proportional gain GEp (k) is acquired.
  • step 403 a value (GPp (k) + K1) obtained by adding the first correction value K1 to the current vane operation amount proportional gain GPp (k) acquired in step 402 is a new vane operation amount proportional.
  • a value obtained by subtracting the first correction value K1 from the current EGR control valve operation amount proportional gain GEp (k) acquired in step 402 and set to the gain GPp (k + 1) (GEp (k) ⁇ K1) ) Is set to a new EGR control valve operation amount proportional gain GEp (k + 1), and the routine ends.
  • the target vane operation amount Mv is calculated from the above equation 1 using the new vane operation amount proportional gain GPp (k + 1) set in step 403, and step 403.
  • the target EGR control valve operation amount Megr is calculated from the above equation 2 using the new EGR control valve operation amount proportional gain GEp (k + 1) set in (1).
  • step 401 when it is determined in step 401 that ⁇ Pim (k)> THpim + ⁇ and ⁇ Regr (k) ⁇ THegr ⁇ is not satisfied and the routine proceeds to step 404, the current boost pressure deviation integration obtained in step 400 is performed.
  • the value ⁇ Pim (k) is larger than the upper limit value (THpim + ⁇ ) ( ⁇ Pim (k)> THpim + ⁇ ) and the current EGR rate deviation integrated value ⁇ Regr (k) acquired in step 400 is the upper limit value (that is, its reference It is determined whether or not the value THegr is greater than (THegr + ⁇ ) ( ⁇ Regr (k)> THegr + ⁇ ).
  • the value obtained by adding the predetermined value ⁇ to the reference value THegr of the EGR rate deviation integrated value is used as the upper limit value compared with the current EGR rate deviation integrated value ⁇ Regr (k) in step 404.
  • the reference value THegr of the EGR rate deviation integrated value is set. This is because a value obtained by adding the predetermined value ⁇ is used.
  • the predetermined value ⁇ is set to a very small value. Has been.
  • step 404 When it is determined in step 404 that ⁇ Pim (k)> THpim + ⁇ and ⁇ Regr (k)> THegr + ⁇ , and the routine proceeds to step 405, the current vane operation amount proportional gain GPp (k) and the current EGR control valve The manipulated variable proportional gain GEp (k) is acquired.
  • step 406 a value (GPp (k) ⁇ K2) obtained by multiplying the current vane operation amount proportional gain GPp (k) acquired in step 405 by the second correction value K2 is a new vane operation amount.
  • the target vane operation amount Mv is calculated from the above equation 1 using the new vane operation amount proportional gain GPp (k + 1) set in step 406, and step 406 is performed.
  • the target EGR control valve operation amount Megr is calculated from the above equation 2 using the new EGR control valve operation amount proportional gain GEp (k + 1) set in (1).
  • step 404 when it is determined in step 404 that ⁇ Pim (k)> THpim + ⁇ and ⁇ Regr (k)> THegr + ⁇ are not satisfied and the routine proceeds to step 407 in FIG. 11, the current boost pressure deviation obtained in step 400 is determined.
  • the integrated value ⁇ Pim (k) is larger than the upper limit value (THpim + ⁇ ) ( ⁇ Pim (k)> THpim + ⁇ ), and the current EGR rate deviation integrated value ⁇ Regr (k) acquired in step 400 is substantially equal to the reference value THegr.
  • the current EGR rate deviation integrated value ⁇ Regr (k) acquired in step 400 is not less than the lower limit value (THegr ⁇ ) and not more than the upper limit value (THegr + ⁇ ) (THegr ⁇ ⁇ ⁇ Regr ( k) ⁇ THegr + ⁇ ) is determined. If it is determined that ⁇ Pim (k)> THpim + ⁇ and THegr ⁇ ⁇ ⁇ Regr (k) ⁇ THegr + ⁇ , the routine proceeds to step 408. On the other hand, if it is determined that ⁇ Pim (k)> THpim and that THegr ⁇ ⁇ ⁇ Regr (k) ⁇ THegr + ⁇ is not established, the routine proceeds to step 410.
  • step 407 it is determined that ⁇ Pim (k)> THpim and THegr ⁇ ⁇ ⁇ Regr (k) ⁇ THegr + ⁇ .
  • the routine proceeds to step 408, the current vane operation amount proportional gain GPp (k) and the current EGR control valve operation amount proportional gain GEp (k) is acquired.
  • step 409 a value (GPp (k) ⁇ K3) obtained by multiplying the current vane operation amount proportional gain GPp (k) acquired in step 408 by the third correction value K3 is a new vane operation amount.
  • a value obtained by multiplying the current EGR control valve operation amount proportional gain GEp (k) acquired in step 408 by the third correction value K3, and being set to the proportional gain GPp (k + 1) (GEp (k) ⁇ K3) is set to a new EGR control valve operation amount proportional gain GEp (k + 1), and the routine ends.
  • the target vane operation amount Mv is calculated from the above equation 1 using the new vane operation amount proportional gain GPp (k + 1) set in step 408, and step 408 is performed.
  • the target EGR control valve operation amount Megr is calculated from the above equation 2 using the new EGR control valve operation amount proportional gain GEp (k + 1) set in (1).
  • Deviation integrated value ⁇ Pim (k) is substantially equal to reference value THpim, that is, current boost pressure deviation integrated value ⁇ Pim (k) acquired in step 400 is a lower limit value (that is, a predetermined value from reference value THpim).
  • the lower limit value of the boost pressure deviation integrated value is used in step 410 to determine whether or not the current boost pressure deviation integrated value ⁇ Pim (k) is substantially equal to the reference value, as described above.
  • the predetermined value ⁇ is set to a very small value.
  • step 410 it is determined that THpim ⁇ ⁇ ⁇ Pim (k) ⁇ THpim + ⁇ and ⁇ Regr (k) ⁇ THegr ⁇ , and when the routine proceeds to step 411, the current vane operation amount proportional gain GPp (k) And the current EGR control valve operation amount proportional gain GEp (k).
  • step 412 a value (GPp (k) + K4) obtained by adding the fourth correction value K4 to the current vane operation amount proportional gain GPp (k) acquired in step 411 is a new vane operation amount proportional.
  • a value obtained by subtracting the fourth correction value K4 from the current EGR control valve operation amount proportional gain GEp (k) acquired in step 411 and set to the gain GPp (k + 1) (GEp (k) ⁇ K4) ) Is set to a new EGR control valve operation amount proportional gain GEp (k + 1), and the routine ends.
  • the target vane operation amount Mv is calculated from the above equation 1 using the new vane operation amount proportional gain GPp (k + 1) set in step 412, and step 412.
  • the target EGR control valve operation amount Megr is calculated from the above equation 2 using the new EGR control valve operation amount proportional gain GEp (k + 1) set in (1).
  • step 410 it is determined that THpim ⁇ ⁇ ⁇ Pim (k) ⁇ THpim + ⁇ and ⁇ Regr (k) ⁇ THegr ⁇ , and when the routine proceeds to step 413 in FIG.
  • the current supercharging pressure deviation integrated value ⁇ Pim (k) is substantially equal to the reference value THpim, that is, the current supercharging pressure deviation integrated value ⁇ Pim (k) acquired in step 400 is its lower limit value (THpim ⁇ ).
  • step 413 it is determined that THpim ⁇ ⁇ ⁇ Pim (k) ⁇ THpim + ⁇ and ⁇ Regr (k)> THegr + ⁇ .
  • the routine proceeds to step 414, the current vane operation amount proportional gain GPp (k) and the current EGR control valve operation amount proportional gain GEp (k) is acquired.
  • step 415 a value (GPp (k) ⁇ K5) obtained by subtracting the fifth correction value K5 from the current vane operation amount proportional gain GPp (k) acquired in step 414 is a new vane operation amount.
  • the target vane operation amount Mv is calculated from the above equation 1 using the new vane operation amount proportional gain GPp (k + 1) set in step 415, and step 415.
  • the target EGR control valve operation amount Megr is calculated from the above equation 2 using the new EGR control valve operation amount proportional gain GEp (k + 1) set in (1).
  • step 413 if it is determined in step 413 that THpim ⁇ ⁇ ⁇ Pim (k) ⁇ THpim + ⁇ and ⁇ Regr (k)> THegr + ⁇ , and the routine proceeds to step 416, the current boost pressure deviation acquired in step 400 is determined.
  • the integrated value ⁇ Pim (k) is smaller than the lower limit value (THpim ⁇ ) ( ⁇ Pim (k) ⁇ THpim ⁇ ), and the current EGR rate deviation integrated value ⁇ Regr (k) acquired in step 400 is the lower limit value. It is determined whether or not ( ⁇ Regr (k) ⁇ THegr ⁇ ) is smaller than (THegr ⁇ ).
  • step 417 If it is determined that ⁇ Pim (k) ⁇ THpim ⁇ and ⁇ Regr (k) ⁇ THegr ⁇ , the routine proceeds to step 417. On the other hand, if it is determined that ⁇ Pim (k) ⁇ THpim ⁇ and ⁇ Regr (k) ⁇ THegr ⁇ is not established, the routine proceeds to step 419 in FIG.
  • step 416 it is determined that ⁇ Pim (k) ⁇ THpim ⁇ and ⁇ Regr (k) ⁇ THegr ⁇ , and when the routine proceeds to step 417, the current vane operation amount proportional gain GPp (k) and the current EGR control valve operation amount proportional gain GEp (k) is acquired.
  • step 418 a value (GPp (k) ⁇ K6) obtained by multiplying the current vane operation amount proportional gain GPp (k) acquired in step 417 by the sixth correction value K6 is a new vane operation amount.
  • the target vane operation amount Mv is calculated from the above equation 1 using the new vane operation amount proportional gain GPp (k + 1) set in step 418, and step 418.
  • the target EGR control valve operation amount Megr is calculated from the above equation 2 using the new EGR control valve operation amount proportional gain GEp (k + 1) set in (1).
  • step 416 if it is determined in step 416 that ⁇ Pim (k) ⁇ THpim ⁇ and ⁇ Regr (k) ⁇ THegr ⁇ is not satisfied, and the routine proceeds to step 419 in FIG.
  • the supercharging pressure deviation integrated value ⁇ Pim (k) is smaller than the lower limit value (THpim ⁇ ) ( ⁇ Pim (k) ⁇ THpim ⁇ ) and the current EGR rate deviation integrated value ⁇ Regr (k) acquired in step 400 Is larger than the upper limit value (THegr + ⁇ ) ( ⁇ Regr (k)> THegr + ⁇ ).
  • step 420 If it is determined that ⁇ Pim (k) ⁇ THpim ⁇ and ⁇ Regr (k)> THegr + ⁇ , the routine proceeds to step 420. On the other hand, when it is determined that ⁇ Pim (k) ⁇ THpim ⁇ and ⁇ Regr (k)> THegr + ⁇ is not established, the routine proceeds to step 422.
  • step 419 it is determined that ⁇ Pim (k) ⁇ THpim ⁇ and ⁇ Regr (k)> THegr + ⁇ .
  • the routine proceeds to step 420, the current vane operation amount proportional gain GPp (k) and the current EGR are determined.
  • the control valve operation amount proportional gain GEp (k) is acquired.
  • step 421 a value (GPp (k) ⁇ K7) obtained by subtracting the seventh correction value K7 from the current vane operation amount proportional gain GPp (k) acquired in step 420 is a new vane operation amount.
  • a value obtained by adding the seventh correction value K7 to the current EGR control valve operation amount proportional gain GEp (k) acquired in step 420 and being set to the proportional gain GPp (k + 1) (GEp (k) + K7) ) Is set to a new EGR control valve operation amount proportional gain GEp (k + 1), and the routine ends.
  • the target vane operation amount Mv is calculated from the above equation 1 using the new vane operation amount proportional gain GPp (k + 1) set in step 421, and step 421.
  • the target EGR control valve operation amount Megr is calculated from the above equation 2 using the new EGR control valve operation amount proportional gain GEp (k + 1) set in (1).
  • step 419 if it is determined in step 419 that ⁇ Pim (k) ⁇ THpim ⁇ and ⁇ Regr (k)> THegr + ⁇ is not established, and the routine proceeds to step 422, the current boost pressure deviation integration obtained in step 400 is performed.
  • the value ⁇ Pim (k) is smaller than the lower limit value (THpim ⁇ ) ( ⁇ Pim (k) ⁇ THpim ⁇ ), and the current EGR rate deviation integrated value ⁇ Regr (k) acquired in step 400 is the reference value THegr.
  • the current EGR rate deviation integrated value ⁇ Regr (k) acquired in step 400 is equal to or higher than the lower limit (THegr ⁇ ) and equal to or lower than the upper limit (THegr + ⁇ ) (THegr ⁇ ). It is determined whether or not ⁇ ⁇ Regr (k) ⁇ THegr + ⁇ ). If it is determined that ⁇ Pim (k) ⁇ THpim ⁇ and THegr ⁇ ⁇ ⁇ Regr (k) ⁇ THegr + ⁇ , the routine proceeds to step 423.
  • the routine ends.
  • the target vane operation amount Mv is calculated from the above equation 1 using the current vane operation amount proportional gain GPp (k), and the current EGR control valve operation amount is proportional.
  • the target EGR control valve operation amount Megr is calculated from the above equation 2 using the gain GEp (k).
  • step 422 it is determined that ⁇ Pim (k) ⁇ THpim ⁇ and THegr ⁇ ⁇ ⁇ Regr (k) ⁇ THegr + ⁇ .
  • the routine proceeds to step 423, the current vane operation amount proportional gain GPp (k) And the current EGR control valve operation amount proportional gain GEp (k).
  • a value (GPp (k) ⁇ K8) obtained by multiplying the current vane operation amount proportional gain GPp (k) acquired in step 423 by the eighth correction value K8 is a new vane operation amount.
  • the target vane operation amount Mv is calculated from the above equation 1 using the new vane operation amount proportional gain GPp (k + 1) set in step 424, and step 424.
  • the target EGR control valve operation amount Megr is calculated from the above equation 2 using the new EGR control valve operation amount proportional gain GEp (k + 1) set in (1).
  • the supercharger 35 is employed as a control target for directly controlling the supercharging pressure.
  • the throttle valve 33 may be employed in addition to the supercharger 35 as a control target for controlling the supercharging pressure.
  • the throttle valve 33 can variably control the amount of gas sucked into the combustion chamber (hereinafter, this gas is referred to as “intake gas”) by controlling its opening degree.
  • intake gas this gas
  • the throttle valve opening is increased.
  • the gas easily passes through the throttle valve 33 correspondingly, and as a result, the supercharging pressure increases.
  • the supercharging pressure increases, the differential pressure between the supercharging pressure and the exhaust pressure decreases accordingly, and as a result, the EGR gas amount decreases. That is, when the throttle valve opening is increased, the supercharging pressure increases and the EGR gas amount decreases.
  • the throttle valve opening is decreased.
  • the gas is less likely to pass through the throttle valve 33, and as a result, the supercharging pressure is lowered.
  • the supercharging pressure decreases, the differential pressure between the supercharging pressure and the exhaust pressure increases accordingly, and as a result, the amount of EGR gas increases. That is, when the throttle valve opening is decreased, the supercharging pressure is lowered and the EGR gas amount is increased. That is, the control of the intake gas amount by the throttle valve 33 affects the EGR gas amount (as a result, the EGR rate) and the supercharging pressure.
  • the throttle valve is also adopted as a control target.
  • the vane response is slower than the intended response based on the relationship between the boost pressure deviation integrated value with respect to the reference value and the relationship between the EGR rate deviation integrated value with respect to the reference value.
  • the response of the throttle valve is also determined to be the intended response. Is determined to be faster than the intended response, the throttle valve response is also determined to be faster than the intended response.
  • the vane operation amount proportional gain is corrected based on the relationship between the supercharging pressure deviation integrated value with respect to the reference value and the relationship between the EGR rate deviation integrated value with respect to the reference value.
  • the vane operation amount proportional gain is corrected.
  • the throttle valve operation amount proportional gain that is, the proportional gain in PID control of the operation amount input to the throttle valve based on the boost pressure deviation
  • the gain is corrected so that the throttle valve operation amount proportional gain becomes smaller.
  • the vane opening proportional gain is corrected based on the relationship between the supercharging pressure deviation integrated value with respect to the reference value and the relationship between the EGR rate deviation integrated value with respect to the reference value in the embodiment described above.
  • the throttle valve opening proportional gain that is, the proportional gain in the PID control of the throttle valve opening based on the boost pressure deviation
  • the vane When the gain is corrected so that the opening proportional gain becomes small, the gain is corrected so that the throttle valve opening proportional gain becomes small.
  • the target vane opening change amount and the target EGR control valve opening change amount are set by the PID control, and the target vane opening change amount conversion formula (that is, the target vane opening change) is set.
  • the target vane operation amount is calculated from the target vane opening change amount using a predetermined conversion formula for calculating the target vane operation amount corresponding to the amount, and the target EGR control valve opening change From the target EGR control valve opening change amount using a quantity conversion equation (that is, a conversion equation determined in advance to calculate the target EGR control valve operation amount corresponding to the target EGR control valve opening change amount).
  • a target EGR control valve operation amount is calculated, an operation amount corresponding to the target vane operation amount is input to the vane, and an operation amount corresponding to the target EGR control valve operation amount is input to the EGR control valve,
  • the EGR rate is controlled to the target EGR rate with the boost pressure is controlled to the target boost pressure.
  • the target throttle valve opening change amount, the target EGR control valve opening change amount, and the target vane opening change amount are set by so-called sliding mode control instead of PID control. .
  • the target throttle valve operation amount is converted using a target throttle valve opening change amount conversion formula (that is, a conversion formula determined in advance for calculating the target throttle valve operation amount corresponding to the target throttle valve opening). Is calculated, a target EGR control valve operation amount is calculated using the target EGR control valve opening change amount conversion equation, and a target vane operation amount is calculated using the target vane opening change amount conversion equation.
  • an operation amount corresponding to the target throttle valve operation amount is input to the throttle valve
  • an operation amount corresponding to the target EGR control valve operation amount is input to the EGR control valve
  • an operation amount corresponding to the target vane operation amount is input to the vane.
  • a throttle valve is also employed in addition to the supercharger as a control target for controlling the supercharging pressure.
  • variables are set as follows. That is, the target throttle valve opening change amount to be calculated is expressed by “TDth”, the target EGR control valve opening change amount to be calculated is expressed by “TDegr”, and the target vane opening change amount to be calculated is A matrix U expressed by “TDv” and having these target throttle valve opening change amount, target EGR control valve opening change amount, and target vane opening change amount as elements is defined by the following equation (5).
  • a linear term related to the throttle valve is represented by “UL1”
  • a linear term related to the EGR control valve is represented by “UL2”
  • a linear term related to the vane is represented by “UL3”
  • a matrix UL having these linear terms as elements is expressed by the following equation: This is defined in 6.
  • a nonlinear term related to the throttle valve is expressed by “UNL1”
  • a nonlinear term related to the EGR control valve is expressed by “UNL2”
  • a nonlinear term related to the vane is expressed by “UNL3”
  • a matrix UNF having these nonlinear terms as elements is expressed by the following equation: 7 to define.
  • the adaptation term for the throttle valve is represented by “Umap1”
  • the adaptation term for the EGR control valve is represented by “Umap2”
  • the adaptation term for the vane is represented by “Umap3”
  • a matrix Umap having these adaptation terms as elements is expressed by the following equation: 8 is defined.
  • the nominal model that is, the supercharging pressure and the EGR rate when the operation state of the throttle valve, the EGR control valve, and the vane is controlled by using the state equation regarding the throttle valve, the EGR control valve, and the vane.
  • the weight matrix S calculated from the model representing the behavior is defined by the following equation 10
  • the expanded system Be of the nominal model input matrix is defined by the following equation 11
  • the expanded system Ae of the system matrix of the nominal model is defined by the following equation: 12 to define.
  • the weight matrix S represents a sliding surface in the sliding mode, and this is called a hyperplane.
  • the integrated value of the value obtained by multiplying the weight gain by the EGR rate deviation is represented by “Xe1”
  • the integrated value of the value obtained by multiplying the weight gain by the supercharging pressure deviation is represented by “Xe2”
  • the EGR rate is represented by “Xe3”.
  • the supercharging pressure is expressed by “Xe4”
  • a matrix Xe whose elements are the integrated value, the EGR rate, and the supercharging pressure is defined by the following equation (13).
  • the unit matrix expansion system Ee is defined by the following equation (14).
  • the target EGR rate is represented by “TRegr”
  • the target supercharging pressure is represented by “TPim”
  • a matrix R having these target EGR rate and target supercharging pressure as elements is defined by the following equation (15).
  • a matrix J is defined by the following Expression 17.
  • the distance from the hyperplane related to the throttle valve is represented by “ ⁇ 1”
  • the distance from the hyperplane related to the EGR control valve is represented by “ ⁇ 2”
  • the distance from the hyperplane related to the vane is represented by “ ⁇ 3”
  • these distances are expressed as A matrix (that is, a switching function) ⁇ as an element is defined by the following equation 18.
  • the distance from the hyperplane changes according to the supercharging pressure deviation integrated value and the EGR rate deviation integrated value, and increases as the supercharging pressure deviation integrated value increases or the EGR rate deviation integrated value increases.
  • the matrix having the gain coefficient for each nonlinear term as an element is represented by “Jk”
  • the matrix of the above equation 9 is obtained by using the matrix of the above equation 10, the above equation 11, the above equation 17, and the above equation 18.
  • UNL is expressed by the following equation 19. Since the distances ⁇ 1 to ⁇ 3 from the nominal increase as the supercharging pressure deviation integrated value increases or as the EGR rate deviation integrated value increases, the nonlinear term UNL also increases the supercharging pressure deviation integrated as can be seen from the following equation 19. The larger the value or the larger the EGR rate deviation integrated value, the larger the value.
  • the target throttle valve opening change amount, the target EGR control valve opening change amount, and the target vane opening change amount are calculated (that is, set) using the above equation 20, and these are calculated.
  • the target throttle valve operation amount, the target EGR control valve operation amount, and the target vane operation amount are calculated based on the target throttle opening change amount, the target EGR control valve opening change amount, and the target vane opening change amount.
  • the calculated target throttle valve operation amount, target EGR control valve operation amount, and target vane operation amount are input to the throttle valve, EGR control valve, and vane, respectively. Thereby, the supercharging pressure and the EGR rate are controlled to the target supercharging pressure and the target EGR rate, respectively.
  • a weight gain (hereinafter, this gain is referred to as “EGR rate weight gain”) GE multiplied by the above-described EGR rate deviation and a weight gain (hereinafter, this gain) that is multiplied by the above-described supercharging pressure deviation. Is a gain to be corrected based on the supercharging pressure deviation integrated value and the EGR rate deviation integrated value.
  • the boost pressure deviation integrated value calculated during engine operation is compared with the reference value, and the EGR rate deviation integrated value calculated during engine operation is compared. The value is compared with its reference value.
  • a predetermined value (hereinafter referred to as this value) is set so that the supercharging pressure weight gain GP becomes large.
  • the first correction value is set to the EGR rate weight gain GE so that the gain is corrected and the EGR rate weight gain GE is reduced by adding the value to the supercharging pressure weight gain GP. The same gain is corrected by subtracting from.
  • the gain is corrected and the second correction value is set to the boost pressure so that the boost pressure weight gain GP is increased.
  • the gain is corrected by multiplying by the weight gain GP.
  • the boost pressure weight gain GP is increased.
  • the boost pressure gain gain GP By multiplying the boost pressure gain gain GP by a predetermined value larger than 1 (hereinafter referred to as “third correction value”), the gain is corrected and the EGR rate weight gain GE is increased. In this way, the third correction value is multiplied by the EGR rate weight gain GE to correct the gain.
  • the supercharging pressure weight gain is also the EGR rate weight gain. Is not corrected.
  • the supercharging pressure weight gain and the EGR rate weight gain are corrected, and these corrected gains are the target throttle valve opening change amount, the target EGR control valve opening change amount, and the target vane opening change amount, respectively.
  • the supercharging pressure can be controlled to the target supercharging pressure with a predetermined followability and the EGR rate can be set to the target EGR.
  • the supercharging pressure weight gain and the EGR rate weight gain are corrected based on the deviation of the supercharging pressure deviation integrated value with respect to the reference value and the deviation of the EGR rate deviation integrated value with respect to the reference value. Therefore, as a result, in the fifth embodiment, the target vane opening change amount and the target EGR are set such that the supercharging pressure deviation integrated value matches the reference value and the EGR rate deviation integrated value matches the reference value. It can also be said that the amount of change in the control valve opening is corrected.
  • correction for the proportional gain of the second to fourth embodiments may be applied to the correction for the supercharging pressure weight gain and the EGR rate weight gain of the fifth embodiment.
  • Step 50 to Step 55 in FIG. 14 are the same as Step 10 to Step 15 in FIG. 4, respectively, and description of these steps will be omitted.
  • step 56 the target vane opening change amount TDv, the target EGR control valve opening change amount TDegr, and the target throttle valve opening change amount TDth are calculated using the above equation 20.
  • step 57 based on the target vane opening change amount TDv, the target EGR control valve opening change amount TDegr, and the target throttle valve opening change amount TDth calculated at step 56, the target vane operation amount Mv, the target The EGR control valve operation amount Megr and the target throttle valve operation amount Mth are calculated, and the routine ends.
  • routines for executing correction of the supercharging pressure weight gain and the EGR rate weight gain can be exemplified.
  • step 500, step 501, step 504, and step 507 in FIGS. 15 and 16 are the same as step 100, step 101, step 104, and step 107 in FIGS. 5 and 6, respectively. Description of these steps is omitted.
  • the remaining steps of FIGS. 15 and 16 are the same as the supercharging pressure weight gains GP and EGR, respectively, in which the vane operation amount proportional gain GPp and the current EGR control valve operation amount proportional gain GEp in the remaining steps of FIGS. Since these steps are changed to the rate weight gain GE, description of these steps is also omitted.
  • the vane operation amount proportional gain and the EGR control valve operation amount proportional gain are set so that the supercharging pressure deviation integrated value matches the reference value and the EGR rate deviation integrated value matches the reference value. Is corrected, the vane opening proportional gain and the EGR control valve opening proportional gain are corrected, or the supercharging pressure weight gain and the EGR rate weight gain are corrected.
  • the vane operation is performed so that the ratio between the supercharging pressure deviation integrated value and the EGR rate deviation integrated value coincides with the ratio between the reference value of the supercharging pressure deviation integrated value and the EGR rate deviation integrated value.
  • the amount proportional gain and the EGR control valve operation amount proportional gain are corrected, the vane opening proportional gain and the EGR control valve opening proportional gain are corrected, or the boost pressure weight gain and the EGR rate weight gain are corrected. Also good.
  • the vane operation amount proportional gain and the EGR are set so that the ratio of the supercharging pressure deviation integrated value and the EGR rate deviation integrated value matches the ratio of the reference value of the supercharging pressure deviation integrated value and the EGR rate deviation integrated value.
  • the control valve operation amount proportional gain is corrected, the vane opening proportional gain and the EGR control valve opening proportional gain are corrected, or the supercharging pressure weight gain and the EGR rate weight gain are corrected. This will be described as a sixth embodiment.
  • the vane operation amount proportional gain is increased.
  • first correction value a predetermined value
  • the gain is corrected and the EGR control valve operation amount proportional gain is decreased.
  • the first correction value is subtracted from the EGR control valve operation amount proportional gain to correct the gain.
  • the supercharging pressure deviation integrated value and the EGR rate deviation integrated value when the supercharging pressure and the EGR rate are controlled Is inputted to the vane and the EGR control valve, respectively, and the supercharging pressure deviation integrated value and the EGR rate deviation integrated value when the supercharging pressure and the EGR rate are controlled (hereinafter, this ratio is referred to as “deviation integrated value ratio”).
  • the reference value ratio or the deviation integrated value so that the ratio of the reference value of the supercharging pressure deviation integrated value and the reference value of the EGR rate deviation integrated value (hereinafter referred to as “reference value ratio”)
  • the first correction value is set so that the ratio approaches the reference value ratio.
  • the EGR control valve operation is performed.
  • the gain is corrected and the vane is corrected by multiplying the EGR control valve operation amount proportional gain by a predetermined value larger than 1 (hereinafter referred to as “second correction value”) so that the amount proportional gain becomes large.
  • the gain is corrected by multiplying the vane manipulated variable proportional gain by the second correction value so that the manipulated variable proportional gain is increased.
  • the target vane operation amount and the target EGR control valve operation amount calculated from the above equations 1 and 2 using the corrected vane operation amount proportional gain and the corrected EGR control valve operation amount proportional gain.
  • the second correction value is set so as to approach the ratio.
  • the supercharging pressure deviation integrated value is larger than the reference value and the EGR rate deviation integrated value is substantially equal to the reference value (or equal to the reference value).
  • the vane manipulated variable proportional gain is multiplied by a predetermined value larger than 1 (hereinafter referred to as “third correction value”) so that the vane manipulated variable proportional gain is increased.
  • the gain is corrected by multiplying the EGR control valve operation amount proportional gain by the third correction value so that the EGR control valve operation amount proportional gain is increased.
  • the target vane operation amount and the target EGR control valve operation amount calculated from the above equations 1 and 2 using the corrected vane operation amount proportional gain and the corrected EGR control valve operation amount proportional gain.
  • the third correction value is set so as to approach the ratio.
  • the target vane operation amount and the target EGR control valve operation amount are corrected so that the deviation integrated value ratio matches the reference value ratio.
  • the deviation integrated value ratio matches the reference value ratio
  • at least the relationship between the target boost pressure tracking capability and the target EGR rate tracking capability is the desired relationship (that is, the vane response is also the EGR control valve). Is also close to the relationship between the target boost pressure follow-up property and the target EGR rate follow-up property when the response is an intended response. Therefore, the target boost pressure followability and the target EGR rate followability are corrected with a good balance.
  • routines for correcting the vane operation amount proportional gain and the EGR control valve operation amount proportional gain according to the sixth embodiment include the routines shown in FIGS. 17 and 18.
  • routines of FIGS. 17 and 18 will be described.
  • This routine is executed at predetermined time intervals. Also, steps 600, 601, 602 to 604, 605 to 607, 608, and 609 of the routines of FIGS. Since these steps are the same as 107 to 108 and 109, description of these steps is omitted.
  • the supercharging pressure deviation integrated value ⁇ Pim (k) acquired in step 600 in step 601 is larger than the reference value THpim ( ⁇ Pim (k)> THpim) and acquired in step 600. Further, the current EGR rate deviation integrated value ⁇ Regr (k) is smaller than the lower limit value (that is, the value obtained by subtracting the predetermined value ⁇ from the reference value THegr) (THegr ⁇ ) ( ⁇ Regr (k) ⁇ THegr ⁇ ).
  • step 601A the deviation integrated value ratio (that is, the supercharging pressure deviation integrated value ⁇ Pim (k) acquired in step 600 with respect to the EGR rate deviation integrated value ⁇ Regr (k) acquired in step 600). ))) ⁇ Pim (k) / ⁇ Regr (k) is calculated.
  • step 601B when the vane operation amount proportional gain GPp and the EGR control valve operation amount proportional gain GEp corrected in the subsequent step 603 are used for setting the vane operation amount and the EGR control valve operation amount, the deviation integrated value.
  • the ratio can be matched with the reference value ratio (that is, the ratio of the reference value of the boost pressure deviation integrated value to the reference value of the EGR rate deviation integrated value) (or the deviation integrated value ratio can be made closer to the reference value ratio).
  • One correction value K1 is set based on the deviation integrated value ratio ⁇ Pim (k) / ⁇ Regr (k) calculated in step 601A.
  • the gain is corrected by adding the first correction value K1 set in step 601B to the current vane operation amount proportional gain GPp (k) acquired in step 602.
  • the gain is corrected.
  • the current boost pressure deviation integrated value ⁇ Pim (k) acquired in step 600 in step 604 is larger than the reference value THpim ( ⁇ Pim (k)> THpim) and step
  • the current EGR rate deviation integrated value ⁇ Regr (k) acquired at 600 is larger than its upper limit value (that is, a value obtained by adding a predetermined value ⁇ to the reference value THegr) (THegr + ⁇ ) ( ⁇ Regr (k)> THegr + ⁇ ).
  • step 604A the deviation integrated value ratio (that is, the supercharging pressure deviation integrated value ⁇ Pim (k) acquired in step 600 with respect to the EGR rate deviation integrated value ⁇ Regr (k) acquired in step 600). ))) ⁇ Pim (k) / ⁇ Regr (k) is calculated.
  • step 604B when the vane operation amount proportional gain GPp and the EGR control valve operation amount proportional gain GEp corrected in the subsequent step 606 are used for setting the vane operation amount and the EGR control valve operation amount, the deviation integrated value.
  • the ratio can be matched with the reference value ratio (that is, the ratio of the reference value of the boost pressure deviation integrated value to the reference value of the EGR rate deviation integrated value) (or the deviation integrated value ratio can be made closer to the reference value ratio).
  • 2 correction value K2 is set based on the deviation integrated value ratio ⁇ Pim (k) / ⁇ Regr (k) calculated in step 604A.
  • the current vane operation amount proportional gain GPp (k) acquired in step 605 is multiplied by the second correction value K2 set in step 604B, thereby correcting the gain.
  • the current EGR control valve operation amount proportional gain GEp (k) acquired in 605 is multiplied by the second correction value K2 set in step 604B to correct the gain.
  • the current supercharging pressure deviation integrated value ⁇ Pim (k) acquired in step 600 is larger than the reference value THpim ( ⁇ Pim (k)> THpim) and
  • the current EGR rate deviation integrated value ⁇ Regr (k) acquired in step 600 is substantially equal to the reference value THegr, that is, the current EGR rate deviation integrated value ⁇ Regr (k) acquired in step 600 is its lower limit value (
  • the deviation integrated value ratio ie, Step In step 600 for the EGR rate deviation integrated value ⁇ Regr (k) acquired in step 600 Obtained by the ratio of supercharging pressure deviation integrated value ⁇ Pim (k)) ⁇ Pim (k)
  • step 607B the deviation integrated value when the vane operation amount proportional gain GPp and the EGR control valve operation amount proportional gain GEp corrected in the subsequent step 609 are used for setting the vane operation amount and the EGR control valve operation amount.
  • the ratio can be matched with the reference value ratio (that is, the ratio of the reference value of the boost pressure deviation integrated value to the reference value of the EGR rate deviation integrated value) (or the deviation integrated value ratio can be made closer to the reference value ratio).
  • 3 correction value K3 is set based on deviation integrated value ratio ⁇ Pim (k) / ⁇ Regr (k) calculated in step 607A.
  • step 609 the current vane manipulated variable proportional gain GPp (k) acquired in step 608 is multiplied by the third correction value K3 set in step 607B, thereby correcting the gain.
  • the current EGR control valve operation amount proportional gain GEp (k) acquired in 608 is multiplied by the third correction value K3 set in step 607B to correct the gain.
  • the above-described embodiment is an embodiment when the present invention is applied to a compression self-ignition internal combustion engine (so-called diesel engine).
  • the control device of the present invention is also applicable to a spark ignition type internal combustion engine (so-called gasoline engine).

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

The present invention is a controlling device for a combustion engine provided with a first controlled object (35D) and a second controlled object (52) respectively controlling a first controlled variable (Pim) and a second controlled variable (Regr). The invention pertains to a control device which sets a targeted first manipulated variable (Mv) and a targeted second manipulated variable (Megr) so that the first controlled variable reaches the targeted value (TPim) and the second controlled variable reaches the targeted value (TRegr). The control device controls the first manipulated variable so that the targeted value is achieved, and controls the second manipulated variable so that the target value is achieved, by entering the targeted first manipulated variable in the first controlled object and the targeted second manipulated variable in the second controlled object. During operation of the internal combustion engine (10), an accumulated value (ΣΔPim) of the deviation of the actual first controlled variable in relation to the target first controlled variable is calculated, and an accumulated value (ΣΔRegr) of the deviation of the actual second controlled variable in relation to the target second controlled variable is also calculated. On the basis of the accumulated values, the targeted first manipulated variable and the targeted second manipulated variable are corrected.

Description

内燃機関の制御装置Control device for internal combustion engine
 本発明は、内燃機関の制御装置に関する。 The present invention relates to a control device for an internal combustion engine.
 特許文献1に内燃機関の制御装置が記載されている。特許文献1に記載の内燃機関は、燃焼室に吸入されるガスの圧力を上昇させる過給機と、燃焼室から排気通路に排出された排気ガスを吸気通路に導入する排気再循環装置(以下この装置を「EGR装置」という)とを有している。また、過給機は、その排気タービンに流入する排気ガスの圧力(以下この圧力を「排気圧」という)を制御するための可変ノズルを有している。また、EGR装置は、吸気通路に導入される排気ガス(以下この排気ガスを「EGRガス」という)の量を制御するための制御弁(以下この制御弁を「EGR制御弁」という)を有している。そして、特許文献1に記載の制御装置は、可変ノズルの開度を制御することによって燃焼室に吸入されるガスの圧力(以下この圧力を「過給圧」という)を制御すると共に、EGR制御弁の開度を制御することによってEGRガス量(云い方を換えれば、いわゆるEGR率)を制御する。 Patent Document 1 describes a control device for an internal combustion engine. An internal combustion engine described in Patent Document 1 includes a supercharger that increases the pressure of gas sucked into a combustion chamber, and an exhaust gas recirculation device (hereinafter referred to as exhaust gas recirculation device) that introduces exhaust gas discharged from the combustion chamber into the exhaust passage. This device is referred to as an “EGR device”. The supercharger has a variable nozzle for controlling the pressure of exhaust gas flowing into the exhaust turbine (hereinafter, this pressure is referred to as “exhaust pressure”). Further, the EGR device has a control valve for controlling the amount of exhaust gas (hereinafter referred to as “EGR gas”) introduced into the intake passage (hereinafter referred to as “EGR control valve”). is doing. The control device described in Patent Document 1 controls the pressure of the gas sucked into the combustion chamber by controlling the opening of the variable nozzle (hereinafter, this pressure is referred to as “supercharging pressure”), and EGR control. The amount of EGR gas (in other words, the so-called EGR rate) is controlled by controlling the opening of the valve.
 ところで、特許文献1にも記載されているように、過給機とEGR装置とを有する内燃機関において、過給圧を変化させるために過給機の可変ノズルの開度を変化させると、EGR装置のEGR制御弁の開度が変化されなくても、EGR率が変化する。一方、EGR率を変化させるためにEGR装置のEGR制御弁の開度を変化させると、過給機の可変ノズルの開度が変化されなくても、過給圧が変化する。 Incidentally, as described in Patent Document 1, in an internal combustion engine having a supercharger and an EGR device, if the opening of the variable nozzle of the supercharger is changed in order to change the supercharging pressure, EGR Even if the opening degree of the EGR control valve of the apparatus is not changed, the EGR rate changes. On the other hand, when the opening degree of the EGR control valve of the EGR device is changed in order to change the EGR rate, the supercharging pressure changes even if the opening degree of the variable nozzle of the supercharger is not changed.
 したがって、過給圧を目標過給圧に制御するために過給機によって過給圧を変化させようとするときに、EGR率を目標EGR率に正確に制御するためには、EGR率に対する過給圧の変化の影響を考慮することが好ましいし、EGR率を目標EGR率に制御するためにEGR装置によってEGR率を変化させようとするときに、過給圧を目標過給圧に正確に制御するためには、過給圧に対するEGR率の変化の影響を考慮することが好ましい。 Therefore, in order to accurately control the EGR rate to the target EGR rate when trying to change the supercharging pressure by the supercharger in order to control the supercharging pressure to the target boost pressure, It is preferable to consider the effect of changes in the supply pressure, and when trying to change the EGR rate by the EGR device in order to control the EGR rate to the target EGR rate, the boost pressure is accurately set to the target boost pressure. In order to control, it is preferable to consider the influence of the change in the EGR rate on the supercharging pressure.
 こうしたことから、特許文献1に記載の制御装置は、EGR率に対する過給圧の変化の影響と過給圧に対するEGR率の変化の影響とを考慮しつつ過給圧が目標過給圧に制御されると共にEGR率が目標EGR率に制御されるように、過給機の可変ノズルの開度およびEGR装置のEGR制御弁の開度を制御するようにしている。 For this reason, the control device described in Patent Document 1 controls the supercharging pressure to the target supercharging pressure while considering the influence of the change in supercharging pressure on the EGR rate and the influence of the change in EGR rate on the supercharging pressure. In addition, the opening of the variable nozzle of the supercharger and the opening of the EGR control valve of the EGR device are controlled so that the EGR rate is controlled to the target EGR rate.
特開2001-59447号公報JP 2001-59447 A 特開2005-299424号公報JP 2005-299424 A
 ところで、上述したように、EGR率に対する過給圧の変化の影響と過給圧に対するEGR率の変化の影響とを考慮する場合、過給機の可変ノズルの応答もEGR装置のEGR制御弁の応答も所期の応答であることを前提としてこれら影響が考慮される。したがって、可変ノズルの応答が所期の応答よりも遅かったり速かったりしたり、EGR制御弁の応答が所期の応答よりも遅かったり速かったりしたりすると、可変ノズルの応答およびEGR制御弁の応答が所期の応答であることを前提にEGR率に対する過給圧の変化の影響と過給圧に対するEGR率の変化の影響とを考慮したとしても、過給圧が目標過給圧に制御されないか、或いは、少なくとも、過給圧が目標過給圧に所定の追従性でもって制御されず、また、EGR率が目標EGR率に制御されないか、或いは、少なくとも、EGR率が目標EGR率に所定の追従性でもって制御されないことになる。或いは、過給圧とEGR率とがそれぞれ目標過給圧と目標EGR率とに対してバランス良く制御されないことになる。 By the way, as described above, when considering the effect of the change in the supercharging pressure on the EGR rate and the effect of the change in the EGR rate on the supercharging pressure, the response of the variable nozzle of the supercharger is also the EGR control valve of the EGR device. These effects are considered on the assumption that the response is also the intended response. Therefore, if the response of the variable nozzle is slower or faster than the intended response, or if the response of the EGR control valve is slower or faster than the intended response, the response of the variable nozzle and the response of the EGR control valve. Even if the influence of the change of the supercharging pressure on the EGR rate and the influence of the change of the EGR rate on the supercharging pressure are considered on the assumption that the response is an expected response, the supercharging pressure is not controlled to the target supercharging pressure Or, at least, the supercharging pressure is not controlled with a predetermined followability to the target supercharging pressure, and the EGR rate is not controlled to the target EGR rate, or at least the EGR rate is predetermined to the target EGR rate. It will not be controlled with the following ability. Alternatively, the supercharging pressure and the EGR rate are not controlled with good balance with respect to the target supercharging pressure and the target EGR rate, respectively.
 すなわち、互いに影響し合う過給圧とEGR率とをそれぞれ目標過給圧および目標EGR率に所定の追従性でもって制御するためには、可変ノズルの応答またはEGR制御弁の応答が所期の応答になっていない場合、可変ノズルの応答またはEGR制御弁の応答に応じて過給圧とEGR率とがそれぞれ目標過給圧および目標EGR率に所定の追従性でもって制御されるように過給圧およびEGR率の制御を変更すべきである。 That is, in order to control the supercharging pressure and the EGR rate that influence each other with a predetermined followability to the target supercharging pressure and the target EGR rate, respectively, the response of the variable nozzle or the response of the EGR control valve is expected. If not, the supercharging pressure and the EGR rate are controlled so as to control the target supercharging pressure and the EGR rate with a predetermined follow-up according to the response of the variable nozzle or the response of the EGR control valve, respectively. Control of supply pressure and EGR rate should be changed.
 そして、このことは、広く、互いに影響し合う2つの制御量をそれぞれ目標制御量に所定の追従性でもって制御しようとする場合にも等しく当てはまる。すなわち、こうした2つの制御弁量をそれぞれ目標制御量に所定の追従性でもって制御するためには、各制御量を制御する制御対象の応答がそれぞれ所期の応答になっていない場合、これら制御対象の応答に応じて制御量がそれぞれ目標制御量に所定の追従性でもって制御されるように各制御量の制御を変更すべきである。 This is equally true when two controlled variables that affect each other are controlled with a predetermined followability to each target controlled variable. That is, in order to control these two control valve amounts with the target follow-up amount with a predetermined followability, if the response of the control object that controls each control amount is not the intended response, these controls The control of each control amount should be changed so that the control amount is controlled with a predetermined followability according to the response of the target.
 そこで、本発明の目的は、互いに影響し合う2つの制御量をそれぞれ目標制御量に所定の追従性でもって制御し或いは互いに影響し合う2つの制御量をそれぞれ目標制御量に対してバランス良く制御することにある。 Accordingly, an object of the present invention is to control two control amounts that affect each other with a predetermined followability to each target control amount, or to control two control amounts that affect each other in a balanced manner with respect to each target control amount. There is to do.
 本願の1番目の発明は、互いに影響し合う2つの制御量の1つである第1制御量を制御する第1制御対象と、前記互いに影響し合う2つの制御量の残りの1つである第2制御量を制御する第2制御対象とを備えた内燃機関の制御装置に関する。 1st invention of this application is the 1st control object which controls the 1st control amount which is one of the 2 control amounts which mutually affect, and the remaining 1 of the 2 control amounts which mutually affect The present invention relates to a control device for an internal combustion engine including a second control target that controls a second control amount.
 そして、本発明の制御装置は、目標とするべき第1制御量を目標第1制御量として設定すると共に目標とするべき第2制御量を目標第2制御量として設定する。そして、第1制御量を目標第1制御量に到達させ且つ第2制御量を目標第2制御量に到達させるために第1制御対象に入力するべき操作量を目標第1操作量として設定すると共に第2制御対象に入力するべき操作量を目標第2操作量として設定する。そして、目標第1操作量に相当する操作量を第1制御対象に入力すると共に目標第2操作量に相当する操作量を第2制御対象に入力することによって第1制御量を目標第1制御量に制御すると共に第2制御量を目標第2制御量に制御する。 The control device of the present invention sets the first control amount to be targeted as the target first control amount and sets the second control amount to be targeted as the target second control amount. Then, an operation amount to be input to the first control target in order to make the first control amount reach the target first control amount and make the second control amount reach the target second control amount is set as the target first operation amount. At the same time, the operation amount to be input to the second control target is set as the target second operation amount. Then, an operation amount corresponding to the target first operation amount is input to the first control object, and an operation amount corresponding to the target second operation amount is input to the second control object, thereby setting the first control amount to the target first control. And the second control amount is controlled to the target second control amount.
 ここで、本発明の制御装置では、内燃機関の運転中に目標第1制御量に対する実際の第1制御量の偏差の積算値が第1制御量偏差積算値として算出されると共に目標第2制御量に対する実際の第2制御量の偏差の積算値が第2制御量偏差積算値として算出される。そして、前記第1制御量偏差積算値と前記第2制御量偏差積算値とに基づいて目標第1操作量と目標第2操作量とが補正される。 Here, in the control device of the present invention, during the operation of the internal combustion engine, the integrated value of the deviation of the actual first control amount with respect to the target first control amount is calculated as the first control amount deviation integrated value and the target second control. The integrated value of the deviation of the actual second control amount with respect to the amount is calculated as the second controlled variable deviation integrated value. Then, the target first operation amount and the target second operation amount are corrected based on the first control amount deviation integrated value and the second control amount deviation integrated value.
 本発明によれば、第1制御量を目標第1制御量に所定の追従性でもって制御することができると共に第2制御量を目標第2制御量に所定の追従性でもって制御することができるという効果、或いは、少なくとも、第1制御量と第2制御量とをそれぞれ目標第1制御量と目標第2制御量とに対してバランス良く制御することができるという効果が得られる。 According to the present invention, the first control amount can be controlled to the target first control amount with a predetermined followability, and the second control amount can be controlled to the target second control amount with a predetermined followability. Or at least the first control amount and the second control amount can be controlled in a balanced manner with respect to the target first control amount and the target second control amount, respectively.
 すなわち、第1制御量は第2制御量の影響を受ける。したがって、第1制御量偏差積算値には、目標第1制御量に対する第1制御量の継続的なズレ(すなわち、所期の応答に対する第1制御対象の応答のズレ)のみならず、目標第2制御量に対する第2制御量のズレ(すなわち、所期の応答に対する第2制御対象の応答のズレ)も反映されている。同様に、第2制御量偏差積算値には、目標第2制御量に対する第2制御量の継続的なズレ(すなわち、所期の応答に対する第2制御対象の応答のズレ)のみならず、目標第1制御量に対する第1制御量のズレ(すなわち、所期の応答に対する第1制御対象の応答のズレ)も反映されている。 That is, the first control amount is affected by the second control amount. Therefore, the first control amount deviation integrated value includes not only the continuous shift of the first control amount with respect to the target first control amount (that is, the shift of the response of the first control target to the intended response), but also the target first control amount. The deviation of the second controlled variable with respect to the two controlled variables (that is, the deviation of the response of the second controlled object with respect to the intended response) is also reflected. Similarly, in the second control amount deviation integrated value, not only the continuous shift of the second control amount with respect to the target second control amount (that is, the shift of the response of the second control target to the intended response), but also the target The deviation of the first control amount with respect to the first control amount (that is, the deviation of the response of the first control object with respect to the intended response) is also reflected.
 したがって、第1制御量偏差積算値と第2制御量偏差積算値との関係を考慮すれば、第1制御対象の応答が所期の応答よりも遅いのか或いは所期の応答になっているのか或いは所期の応答よりも速いのか、並びに、第2制御対象の応答が所期の応答よりも遅いのか或いは所期の応答になっているのか或いは所期の応答よりも速いのかを把握することができる。 Accordingly, in consideration of the relationship between the first control amount deviation integrated value and the second control amount deviation integrated value, is the response of the first control target slower than the intended response or the expected response? Or grasping whether the response of the second control target is faster than the intended response, and whether the response of the second control target is slower than the intended response, is the intended response, or is faster than the intended response Can do.
 本発明によれば、これら第1制御量偏差積算値と第2制御量偏差積算値とに基づいて(すなわち、第1制御量偏差積算値と第2制御量偏差積算値とを考慮して)も目標第1操作量と目標第2操作量とが補正される。すなわち、第1制御対象の応答が所期の応答よりも遅いのか或いは所期の応答になっているのか或いは所期の応答よりも速いのか、並びに、第2制御対象の応答が所期の応答よりも遅いのか或いは所期の応答になっているのか或いは所期の応答よりも速いのかに応じて目標第1操作量と目標第2操作量とが補正される。したがって、補正された目標第1操作量に相当する操作量が第1制御対象に入力されると共に補正された目標第2操作量に相当する操作量が第2制御対象に入力されれば、第1制御量が目標第1制御量に所定の追従性でもって制御されると共に第2制御量が目標第2制御量に所定の追従性でもって制御され、或いは、少なくとも、第1制御量と第2制御量とがそれぞれ目標第1制御量と目標第2制御量とに対してバランス良く制御されることになる。 According to the present invention, based on the first controlled variable deviation integrated value and the second controlled variable deviation integrated value (that is, considering the first controlled variable deviation integrated value and the second controlled variable deviation integrated value). Also, the target first operation amount and the target second operation amount are corrected. That is, whether the response of the first controlled object is slower than the intended response, is the intended response, or is faster than the intended response, and the response of the second controlled object is the expected response The target first manipulated variable and the target second manipulated variable are corrected according to whether the response is slower than the intended response or faster than the intended response. Therefore, if an operation amount corresponding to the corrected target first operation amount is input to the first control object and an operation amount corresponding to the corrected target second operation amount is input to the second control object, The one control amount is controlled with a predetermined followability to the target first control amount and the second control amount is controlled with a predetermined followability to the target second control amount, or at least the first control amount and the first control amount The two control amounts are controlled in a balanced manner with respect to the target first control amount and the target second control amount, respectively.
 なお、第1制御量と第2制御量とが互いに影響し合う制御量であることから、第1制御量偏差積算値のみに基づいて第1制御対象の応答が所期の応答よりも遅いのか或いは所期の応答になっているのか或いは所期の応答よりも速いのかを正確に把握することはできない。したがって、第1制御量偏差積算値のみを考慮して目標第1操作量が補正された場合、この目標第1操作量の補正には、所期の応答に対する第1制御対象の応答のズレが正確に反映されていないばかりでなく、所期の応答に対する第2制御対象の応答のズレが全く反映されていない。このため、補正された目標第1操作量が第1制御対象に入力されたとしても、第1制御量は目標第1制御量に所定の追従性でもって制御されないし、少なくとも、第1制御量と第2制御量とが目標第1制御量と目標第2制御量とに対してバランス良く制御されない。 Since the first control amount and the second control amount are control amounts that influence each other, is the response of the first control target slower than the intended response based only on the first control amount deviation integrated value? Alternatively, it is impossible to accurately grasp whether the response is an intended response or is faster than the intended response. Therefore, when the target first operation amount is corrected in consideration of only the first control amount deviation integrated value, the correction of the target first operation amount includes a deviation of the response of the first control target with respect to the intended response. It is not reflected accurately, and the deviation of the response of the second control object with respect to the intended response is not reflected at all. For this reason, even if the corrected target first operation amount is input to the first control target, the first control amount is not controlled with a predetermined followability to the target first control amount, and at least the first control amount. And the second control amount are not controlled in a balanced manner with respect to the target first control amount and the target second control amount.
 一方、第2制御量偏差積算値のみに基づいて第2制御対象の応答が所期の応答よりも遅いのか或いは所期の応答になっているのか或いは所期の応答よりも速いのかを正確に把握することはできない。したがって、第2制御量偏差積算値のみを考慮して目標第2操作量が補正された場合、この目標第2操作量の補正には、所期の応答に対する第2制御対象の応答のズレが正確に反映されていないばかりでなく、所期の応答に対する第1制御対象の応答のズレが全く反映されていないことから、補正された目標第2操作量が第2制御対象に入力されたとしても、第2制御量は目標第2制御量に所定の追従性でもって制御されないし、少なくとも、第1制御量と第2制御量とが目標第1制御量と目標第2制御量とに対してバランス良く制御されない。 On the other hand, whether the response of the second controlled object is slower than the intended response, the expected response, or faster than the intended response based on only the second controlled variable deviation integrated value. I can't figure it out. Therefore, when the target second operation amount is corrected in consideration of only the second control amount deviation integrated value, the correction of the target second operation amount includes a deviation of the response of the second control target with respect to the intended response. Not only is not accurately reflected, but also the deviation of the response of the first control object with respect to the intended response is not reflected at all, so that the corrected target second operation amount is input to the second control object. However, the second control amount is not controlled with a predetermined followability to the target second control amount, and at least the first control amount and the second control amount are less than the target first control amount and the target second control amount. Are not well balanced.
 また、第1制御量または第2制御量が内燃機関から排出されるエミッションに影響する制御量である場合、本発明によれば、内燃機関から排出されるエミッションを低減することができるという効果が得られる。すなわち、第1制御量がエミッションに影響する場合、一般的に、第1制御量が目標第1制御量に所定の追従性でもって制御されることを前提に可能な限りエミッションが少なくなるように内燃機関の構造や内燃機関に関する制御が決定され、第2制御量がエミッションに影響する場合、一般的に、第2制御量が目標第2制御量に所定の追従性でもって制御されることを前提に可能な限りエミッションが少なくなるように内燃機関の構造や内燃機関に関する制御が決定される。また、第1制御量がエミッションに影響する場合、エミッションが可能な限り少なくなるように目標第1制御量に対する第1制御量の追従性が決定されることもあり、第2制御量がエミッションに影響する場合、エミッションが可能な限り少なくなるように目標第2制御量に対する第2制御量の追従性が決定されることもある。 Further, when the first control amount or the second control amount is a control amount that affects the emission discharged from the internal combustion engine, according to the present invention, it is possible to reduce the emission discharged from the internal combustion engine. can get. That is, when the first control amount affects the emission, generally, the emission is reduced as much as possible on the assumption that the first control amount is controlled with a predetermined followability to the target first control amount. When the structure of the internal combustion engine and the control related to the internal combustion engine are determined and the second control amount affects the emission, it is generally determined that the second control amount is controlled with a predetermined followability to the target second control amount. The structure of the internal combustion engine and the control related to the internal combustion engine are determined so as to reduce emissions as much as possible. In addition, when the first control amount affects the emission, the followability of the first control amount with respect to the target first control amount may be determined so that the emission becomes as small as possible, and the second control amount becomes the emission. In the case of influence, the followability of the second control amount with respect to the target second control amount may be determined so that the emission is reduced as much as possible.
 本発明では、上述したように、第1制御量を目標第1制御量に所定の追従性でもって制御すると共に第2制御量を目標第2制御量に所定の追従性でもって制御することができる。こうした理由から、本発明によれば、内燃機関から排出されるエミッションを低減することができるのである。 In the present invention, as described above, the first control amount is controlled to the target first control amount with a predetermined followability, and the second control amount is controlled to the target second control amount with the predetermined followability. it can. For these reasons, according to the present invention, the emission discharged from the internal combustion engine can be reduced.
 また、本願の2番目の発明では、上記1番目の発明において、前記第1制御量偏差積算値と比較されるべき第1制御量偏差積算値が第1閾値として用意されると共に、前記第2制御量偏差積算値と比較されるべき第2制御量偏差積算値が第2閾値として用意される。そして、前記第1制御量偏差積算値と前記第2制御量偏差積算値とに基づいて目標第1操作量と目標第2操作量とが補正される場合、前記第1制御量偏差積算値が前記第1閾値と比較されると共に、前記第2制御量偏差積算値が前記第2閾値と比較される。そして、前記第1閾値に対する前記第1制御量偏差積算値の比較結果と前記第2閾値に対する前記第2制御量偏差積算値の比較結果とに基づいて目標第1操作量と目標第2操作量とが補正される。 In the second invention of the present application, in the first invention, a first control amount deviation integrated value to be compared with the first control amount deviation integrated value is prepared as a first threshold value, and the second A second controlled variable deviation integrated value to be compared with the controlled variable deviation integrated value is prepared as a second threshold value. When the target first manipulated variable and the target second manipulated variable are corrected based on the first controlled variable deviation integrated value and the second controlled variable deviation integrated value, the first controlled variable deviation integrated value is The second control amount deviation integrated value is compared with the second threshold value while being compared with the first threshold value. Then, based on the comparison result of the first control amount deviation integrated value with respect to the first threshold and the comparison result of the second control amount deviation integrated value with respect to the second threshold, the target first operation amount and the target second operation amount. And are corrected.
 本発明によれば、第1制御量を目標第1制御量に所定の追従性でもって確実に制御することができると共に第2制御量を目標第2制御量に所定の追従性でもって確実に制御することができるという効果が得られる。すなわち、本発明では、目標第1操作量および目標第2操作量の補正に第1閾値に対する第1制御量偏差積算値の比較結果と第2閾値に対する第2制御量偏差積算値の比較結果とが利用される。したがって、第1閾値と第2閾値とを適切に設定することによって第1制御量を目標第1制御量に所定の追従性でもって確実に制御することができると共に第2制御量を目標第2制御量に所定の追従性でもって確実に制御することができるように目標第1操作量と目標第2操作量とを補正することができる。 According to the present invention, the first control amount can be reliably controlled to the target first control amount with a predetermined followability, and the second control amount can be reliably controlled to the target second control amount with the predetermined followability. The effect that it can control is acquired. That is, in the present invention, the correction result of the target first manipulated variable and the target second manipulated variable is a comparison result of the first control variable deviation integrated value with respect to the first threshold value and a comparison result of the second control variable deviation integrated value with respect to the second threshold value. Is used. Therefore, by appropriately setting the first threshold value and the second threshold value, it is possible to reliably control the first control amount with the target first control amount with a predetermined followability and to set the second control amount to the target second value. The target first operation amount and the target second operation amount can be corrected so that the control amount can be reliably controlled with a predetermined followability.
 また、本願の3番目の発明では、上記2番目の発明において、前記第1閾値に対する前記第1制御量偏差積算値の比較結果と前記第2閾値に対する前記第2制御量偏差積算値の比較結果とに基づいて目標第1操作量と目標第2操作量とが補正される場合、前記第1制御量偏差積算値が前記第1閾値に一致すると共に前記第2制御量偏差積算値が前記第2閾値に一致するように、或いは、前記第1制御量偏差積算値と前記第2制御量偏差積算値との比が前記第1閾値と前記第2閾値との比に一致するように、目標第1操作量と目標第2操作量とが補正される。 In the third invention of the present application, in the second invention, a comparison result of the first control amount deviation integrated value with respect to the first threshold value and a comparison result of the second control amount deviation integrated value with respect to the second threshold value. When the target first manipulated variable and the target second manipulated variable are corrected based on the above, the first controlled variable deviation integrated value matches the first threshold value, and the second controlled variable deviation integrated value is 2 so that the ratio of the first controlled variable deviation integrated value and the second controlled variable deviation integrated value matches the ratio of the first threshold value to the second threshold value. The first operation amount and the target second operation amount are corrected.
 本発明によれば、第1制御量を目標第1制御量に所定の追従性でもってより確実に制御することができると共に第2制御量を目標第2制御量に所定の追従性でもってより確実に制御することができるという効果が得られる。すなわち、本発明では、目標第1操作量と目標第2操作量とが補正されることによって、第1制御量偏差積算値が第1閾値に一致すると共に第2制御量偏差積算値が第2閾値に一致し、或いは、第1制御量偏差積算値と第2制御量偏差積算値との比が第1閾値と第2閾値との比に一致する。したがって、第1閾値と第2閾値とを第1制御量が目標第1制御量に所定の追従性でもって制御されると共に第2制御量が目標第2制御量に所定の追従性でもって制御される閾値に設定することによって、第1制御量を目標第1制御量に所定の追従性でもってより確実に制御することができると共に第2制御量を目標第2制御量に所定の追従性でもってより確実に制御することができる。 According to the present invention, the first control amount can be controlled more reliably with a predetermined followability to the target first control amount, and the second control amount can be controlled with a predetermined followability to the target second control amount. The effect that it can control reliably is acquired. In other words, in the present invention, the target first manipulated variable and the target second manipulated variable are corrected, so that the first control variable deviation integrated value matches the first threshold value and the second control variable deviation integrated value is the second. It corresponds to the threshold value, or the ratio between the first control amount deviation integrated value and the second control amount deviation integrated value matches the ratio between the first threshold value and the second threshold value. Therefore, the first threshold value and the second threshold value are controlled by the first control amount with the predetermined followability to the target first control amount, and the second control amount is controlled with the predetermined followability to the target second control amount. By setting the threshold value to be set, the first control amount can be more reliably controlled with the target first control amount with the predetermined followability, and the second control amount can be controlled with the target second control amount with the predetermined followability. Therefore, it can control more reliably.
 また、本願の4番目の発明は、互いに影響し合う2つの制御量の1つである第1制御量を制御する第1制御対象と、前記互いに影響し合う2つの制御量の残りの1つである第2制御量を制御する第2制御対象とを備えた内燃機関の制御装置に関する。 The fourth invention of the present application is a first control object that controls a first control amount that is one of two control amounts that affect each other, and one of the remaining two control amounts that affect each other. The present invention relates to a control device for an internal combustion engine including a second control target that controls a second control amount.
 そして、本発明の制御装置は、第1制御量として目標とするべき制御量を目標第1制御量として設定すると共に第2制御量として目標とするべき制御量を目標第2制御量として設定する。そして、第1制御量を目標第1制御量に到達させ且つ第2制御量を目標第2制御量に到達させるために目標とするべき第1制御対象の動作状態を目標第1動作状態として設定すると共に目標とするべき第2制御対象の動作状態を目標第2動作状態として設定する。そして、第1制御対象の動作状態が目標第1動作状態になるように第1制御対象の動作状態を制御すると共に第2制御対象の動作状態が目標第2動作状態になるように第2制御対象の動作状態を制御することによって第1制御量を目標第1制御量に制御すると共に第2制御量を目標第2制御量に制御する。 Then, the control device of the present invention sets the control amount to be targeted as the first control amount as the target first control amount, and sets the control amount to be targeted as the second control amount as the target second control amount. . Then, the operation state of the first control target that should be set to reach the first control amount to the target first control amount and the second control amount to the target second control amount is set as the target first operation state. In addition, the operation state of the second control target to be targeted is set as the target second operation state. Then, the second control is performed such that the operation state of the first control object is controlled so that the operation state of the first control object becomes the target first operation state, and the operation state of the second control object becomes the target second operation state. By controlling the operation state of the target, the first control amount is controlled to the target first control amount and the second control amount is controlled to the target second control amount.
 ここで、本発明の制御装置では、内燃機関の運転中に目標第1制御量に対する実際の第1制御量の偏差の積算値が第1制御量偏差積算値として算出されると共に目標第2制御量に対する実際の第2制御量の偏差の積算値が第2制御量偏差積算値として算出される。そして、前記第1制御量偏差積算値と前記第2制御量偏差積算値とに基づいて目標第1動作状態と目標第2動作状態とが補正される。 Here, in the control device of the present invention, during the operation of the internal combustion engine, the integrated value of the deviation of the actual first control amount with respect to the target first control amount is calculated as the first control amount deviation integrated value and the target second control. The integrated value of the deviation of the actual second control amount with respect to the amount is calculated as the second controlled variable deviation integrated value. Then, the target first operation state and the target second operation state are corrected based on the first control amount deviation integrated value and the second control amount deviation integrated value.
 本発明によれば、第1制御量を目標第1制御量に所定の追従性でもって制御することができると共に第2制御量を目標第2制御量に所定の追従性でもって制御することができるという効果、或いは、少なくとも、第1制御量と第2制御量とをそれぞれの目標第1制御量と目標第2制御量とに対してバランス良く制御することができるという効果が得られる。 According to the present invention, the first control amount can be controlled to the target first control amount with a predetermined followability, and the second control amount can be controlled to the target second control amount with a predetermined followability. The effect that it can do, or the effect that at least 1st control amount and 2nd control amount can be controlled with sufficient balance with respect to each target 1st control amount and target 2nd control amount is acquired.
 すなわち、1番目の発明から得られる効果に関連して説明したように、第1制御量偏差積算値と第2制御量偏差積算値との関係を考慮すれば、第1制御対象の応答が所期の応答よりも遅いのか或いは所期の応答になっているのか或いは所期の応答よりも速いのか、並びに、第2制御対象の応答が所期の応答よりも遅いのか或いは所期の応答になっているのか或いは所期の応答よりも速いのかを把握することができる。 That is, as explained in relation to the effect obtained from the first invention, the response of the first control target is determined by considering the relationship between the first control amount deviation integrated value and the second control amount deviation integrated value. Whether the response is slower than the initial response, is the intended response, or is faster than the intended response, and whether the response of the second controlled object is slower than the intended response or the expected response It is possible to grasp whether it is faster than the intended response.
 本発明によれば、これら第1制御量偏差積算値と第2制御量偏差積算値とに基づいて(すなわち、第1制御量偏差積算値と第2制御量偏差積算値とを考慮して)目標第1動作状態と目標第2動作状態とが補正される。すなわち、第1制御対象の応答が所期の応答よりも遅いのか或いは所期の応答になっているのか或いは所期の応答よりも速いのか、並びに、第2制御対象の応答が所期の応答よりも遅いのか或いは所期の応答になっているのか或いは所期の応答よりも速いのかに応じて目標第1動作状態と目標第2動作状態とが補正される。したがって、補正された目標第1動作状態に第1制御対象の動作状態が制御されると共に補正された目標第2動作状態に第2制御対象の動作状態に制御されれば、第1制御量が目標第1制御量に所定の追従性でもって制御されると共に第2制御量が目標第2制御量に所定の追従性でもって制御され、或いは、少なくとも、第1制御量と第2制御量とがそれぞれ目標第1制御量と目標第2制御量とに対してバランス良く制御されることになる。 According to the present invention, based on the first controlled variable deviation integrated value and the second controlled variable deviation integrated value (that is, considering the first controlled variable deviation integrated value and the second controlled variable deviation integrated value). The target first operation state and the target second operation state are corrected. That is, whether the response of the first controlled object is slower than the intended response, is the intended response, or is faster than the intended response, and the response of the second controlled object is the expected response The target first operation state and the target second operation state are corrected depending on whether the response is slower than the intended response, or is faster than the intended response. Therefore, if the operation state of the first control object is controlled to the corrected target first operation state and the operation state of the second control object is controlled to the corrected target second operation state, the first control amount is The target controllable amount is controlled with a predetermined followability and the second control amount is controlled with a target followable control amount with a predetermined followability, or at least the first control amount and the second control amount Are controlled in a balanced manner with respect to the target first control amount and the target second control amount.
 なお、第1制御量と第2制御量とが互いに影響し合う制御量であることから、第1制御量偏差積算値のみに基づいて第1制御対象の応答が所期の応答よりも遅いのか或いは所期の応答になっているのか或いは所期の応答よりも速いのかを正確に把握することはできない。したがって、第1制御量偏差積算値のみを考慮して目標第1動作状態が補正された場合、この目標第1動作状態の補正には、所期の応答に対する第1制御対象の応答のズレが正確に反映されていないばかりでなく、所期の応答に対する第2制御対象の応答のズレが全く反映されていないことから、補正された目標第1動作状態に第1制御対象の動作状態が制御されたとしても、第1制御量は目標第1制御量に所定の追従性でもって制御されないし、少なくとも、第1制御量と第2制御量とが目標第1制御量と目標第2制御量とに対してバランス良く制御されない。 Since the first control amount and the second control amount are control amounts that influence each other, is the response of the first control target slower than the intended response based only on the first control amount deviation integrated value? Alternatively, it is impossible to accurately grasp whether the response is an intended response or is faster than the intended response. Therefore, when the target first operation state is corrected in consideration of only the first control amount deviation integrated value, the correction of the target first operation state includes a deviation of the response of the first control target with respect to the intended response. In addition to not being accurately reflected, since the deviation of the response of the second control object with respect to the intended response is not reflected at all, the operation state of the first control object is controlled in the corrected target first operation state. Even if this is done, the first control amount is not controlled with a predetermined followability to the target first control amount, and at least the first control amount and the second control amount are the target first control amount and the target second control amount. Are not controlled in a well-balanced manner.
 一方、第2制御量偏差積算値のみに基づいて第2制御対象の応答が所期の応答よりも遅いのか或いは所期の応答になっているのか或いは所期の応答よりも速いのかを正確に把握することはできない。したがって、第2制御量偏差積算値のみを考慮して目標第2動作状態が補正された場合、この目標第2動作状態の補正には、所期の応答に対する第2制御対象の応答のズレが正確に反映されていないばかりでなく、所期の応答に対する第1制御対象の応答のズレが全く反映されていないことから、補正された目標第2動作状態に第2制御対象の動作状態が制御されたとしても、第2制御量は目標第2制御量に所定の追従性でもって制御されないし、少なくとも、第1制御量と第2制御量とが目標第1制御量と目標第2制御量とに対してバランス良く制御されない。 On the other hand, whether the response of the second controlled object is slower than the intended response, the expected response, or faster than the intended response based on only the second controlled variable deviation integrated value. I can't figure it out. Therefore, when the target second operation state is corrected only in consideration of the second control amount deviation integrated value, the correction of the target second operation state includes a deviation of the response of the second control target with respect to the intended response. In addition to not being reflected accurately, since the deviation of the response of the first control object with respect to the intended response is not reflected at all, the operation state of the second control object is controlled in the corrected target second operation state. Even if the second control amount is not controlled with a predetermined followability to the target second control amount, at least the first control amount and the second control amount are the target first control amount and the target second control amount. Are not controlled in a well-balanced manner.
 また、第1制御量または第2制御量が内燃機関から排出されるエミッションに影響する制御量である場合、本発明によれば、1番目の発明から得られる効果に関連して説明した理由と同じ理由から、内燃機関から排出されるエミッションを低減することができるという効果が得られる。 Further, when the first control amount or the second control amount is a control amount that affects the emission discharged from the internal combustion engine, according to the present invention, the reason described in relation to the effect obtained from the first invention and For the same reason, it is possible to reduce the emission discharged from the internal combustion engine.
 また、本願の5番目の発明では、上記4番目の発明において、前記第1制御量偏差積算値と比較されるべき第1制御量偏差積算値が第1閾値として用意されると共に、前記第2制御量偏差積算値と比較されるべき第2制御量偏差積算値が第2閾値として用意される。そして、前記第1制御量偏差積算値と前記第2制御量偏差積算値とに基づいて目標第1動作状態と目標第2動作状態とが補正される場合、前記第1制御量偏差積算値が前記第1閾値と比較されると共に、前記第2制御量偏差積算値が前記第2閾値と比較される。そして、前記第1閾値に対する前記第1制御量偏差積算値の比較結果と前記第2閾値に対する前記第2制御量偏差積算値の比較結果とに基づいて目標第1動作状態と目標第2動作状態とが補正される。 In the fifth invention of the present application, in the fourth invention, a first control amount deviation integrated value to be compared with the first control amount deviation integrated value is prepared as a first threshold value, and the second A second controlled variable deviation integrated value to be compared with the controlled variable deviation integrated value is prepared as a second threshold value. When the target first operation state and the target second operation state are corrected based on the first control amount deviation integrated value and the second control amount deviation integrated value, the first control amount deviation integrated value is The second control amount deviation integrated value is compared with the second threshold value while being compared with the first threshold value. Then, based on the comparison result of the first control amount deviation integrated value with respect to the first threshold and the comparison result of the second control amount deviation integrated value with respect to the second threshold, the target first operation state and the target second operation state And are corrected.
 本発明によれば、2番目の発明から得られる効果に関連して説明した理由と同じ理由から、第1制御量を目標第1制御量に所定の追従性でもって確実に制御することができると共に第2制御量を目標第2制御量に所定の追従性でもって確実に制御することができるという効果が得られる。 According to the present invention, the first control amount can be reliably controlled with a predetermined followability to the target first control amount for the same reason as described in relation to the effect obtained from the second invention. In addition, there is an effect that the second control amount can be reliably controlled to the target second control amount with a predetermined followability.
 また、本願の6番目の発明では、上記5番目の発明において、前記第1閾値に対する前記第1制御量偏差積算値の比較結果と前記第2閾値に対する前記第2制御量偏差積算値の比較結果とに基づいて目標第1動作状態と目標第2動作状態とが補正される場合、前記第1制御量偏差積算値が前記第1閾値に一致すると共に前記第2制御量偏差積算値が前記第2閾値に一致するように、或いは、前記第1制御量偏差積算値と前記第2制御量偏差積算値との比が前記第1閾値と前記第2閾値との比に一致するように、目標第1動作状態と目標第2動作状態とが補正される。 According to a sixth aspect of the present invention, in the fifth aspect, a comparison result of the first control amount deviation integrated value with respect to the first threshold value and a comparison result of the second control amount deviation integrated value with respect to the second threshold value. When the target first operation state and the target second operation state are corrected based on the above, the first control amount deviation integrated value matches the first threshold value, and the second control amount deviation integrated value is 2 so that the ratio of the first controlled variable deviation integrated value and the second controlled variable deviation integrated value matches the ratio of the first threshold value to the second threshold value. The first operation state and the target second operation state are corrected.
 本発明によれば、3番目の発明から得られる効果に関連して説明した理由と同じ理由から、過給圧を目標過給圧に所定の追従性でもってより確実に制御することができると共にEGR率を目標EGR率に所定の追従性でもってより確実に制御することができるという効果が得られる。 According to the present invention, the supercharging pressure can be more reliably controlled with a predetermined followability to the target supercharging pressure for the same reason as described in relation to the effect obtained from the third invention. There is an effect that the EGR rate can be more reliably controlled to the target EGR rate with a predetermined followability.
 また、本願の7番目の発明では、上記2、3、5、および、6番目の発明のいずれか1つにおいて、前記第1閾値と前記第2閾値とが第1制御対象の応答が所定の応答であって且つ第2制御対象の応答が所定の応答であるときにとり得る値に設定されている。 In the seventh invention of the present application, in any one of the second, third, fifth, and sixth inventions, the first threshold value and the second threshold value are predetermined responses of the first control target. It is set to a value that is a response and can be taken when the response of the second control target is a predetermined response.
 本発明によれば、第1制御量を目標第1制御量に所定の追従性でもってより確実に制御することができると共に第2制御量を目標第2制御量に所定の追従性でもってより確実に制御することができるという効果が得られる。すなわち、本発明では、第1閾値と第2閾値とが第1制御対象の応答が所定の応答であって且つ第2制御対象の応答が所定の応答であるときにとり得る値に設定されている。ここで、第1制御量と第2制御量とは互いに影響し合う制御量であることから、第1制御量を目標第1制御量に制御し且つ第2制御量を目標第2制御量に制御するための制御システムは、第1制御対象の応答が所定の応答であって且つ第2制御対象の応答が所定の応答であることを前提に構築される。このため、第1閾値と第2閾値とが第1制御対象の応答が所定の応答であって且つ第2制御対象の応答が所定の応答であるときにとり得る値に設定され、斯くして設定された第1閾値と第1制御量偏差閾値との比較結果および斯くして設定された第2閾値と第2制御量偏差閾値との比較結果に基づいて目標第1操作量および目標第2操作量または目標第1動作状態および目標第2動作状態が補正されれば、第1制御対象の応答が所定の応答となるように第1制御対象が動作せしめられると共に第2制御対象の応答が所定の応答となるように第2制御対象が動作せしめられることになる。したがって、第1制御量を目標第1制御量に所定の追従性でもってより確実に制御することができると共に第2制御量を目標第2制御量に所定の追従性でもってより確実に制御することができるのである。 According to the present invention, the first control amount can be controlled more reliably with a predetermined followability to the target first control amount, and the second control amount can be controlled with a predetermined followability to the target second control amount. The effect that it can control reliably is acquired. That is, in the present invention, the first threshold value and the second threshold value are set to values that can be taken when the response of the first control target is a predetermined response and the response of the second control target is a predetermined response. . Here, since the first control amount and the second control amount are control amounts that influence each other, the first control amount is controlled to the target first control amount and the second control amount is set to the target second control amount. The control system for controlling is constructed on the assumption that the response of the first control target is a predetermined response and the response of the second control target is a predetermined response. For this reason, the first threshold value and the second threshold value are set to values that can be taken when the response of the first control target is a predetermined response and the response of the second control target is a predetermined response. Based on the comparison result between the first threshold value and the first control amount deviation threshold value and the comparison result between the second threshold value and the second control amount deviation threshold value thus set, the target first operation amount and the target second operation If the amount or the target first operation state and the target second operation state are corrected, the first control object is operated so that the response of the first control object becomes a predetermined response, and the response of the second control object is predetermined. Thus, the second control object is operated so as to be a response to the above. Therefore, the first control amount can be more reliably controlled with a predetermined followability to the target first control amount, and the second control amount can be more reliably controlled with a predetermined followability to the target second control amount. It can be done.
本発明の制御装置が適用される内燃機関の概略図である。1 is a schematic view of an internal combustion engine to which a control device of the present invention is applied. 図1に示されている内燃機関の過給機の排気タービンの内部を示した図である。It is the figure which showed the inside of the exhaust turbine of the supercharger of the internal combustion engine shown by FIG. (A)は、目標過給圧を決定するために利用されるマップを示した図であり、(B)は、目標EGR率を決定するために利用されるマップを示した図である。(A) is the figure which showed the map utilized in order to determine a target supercharging pressure, (B) is the figure which showed the map utilized in order to determine a target EGR rate. 本発明の第1実施形態に従った目標ベーン操作量および目標EGR制御弁操作量の設定を実行するルーチンの一例を示した図である。It is the figure which showed an example of the routine which performs the setting of the target vane operation amount and target EGR control valve operation amount according to 1st Embodiment of this invention. 本発明の第1実施形態に従ったベーン操作量比例ゲインおよびEGR制御弁操作量比例ゲインの補正を実行するルーチンの一例の一部を示した図である。It is the figure which showed a part of example of the routine which performs correction | amendment of the vane operation amount proportional gain and the EGR control valve operation amount proportional gain according to 1st Embodiment of this invention. 本発明の第1実施形態に従ったベーン操作量比例ゲインおよびEGR制御弁操作量比例ゲインの補正を実行するルーチンの一例の一部を示した図である。It is the figure which showed a part of example of the routine which performs correction | amendment of the vane operation amount proportional gain and the EGR control valve operation amount proportional gain according to 1st Embodiment of this invention. 本発明の第2実施形態に従った目標ベーン操作量および目標EGR制御弁操作量の設定を実行するルーチンの一例を示した図である。It is the figure which showed an example of the routine which performs the setting of the target vane manipulated variable and the target EGR control valve manipulated variable according to 2nd Embodiment of this invention. 本発明の第2実施形態に従ったベーン開度比例ゲインおよびEGR制御弁開度比例ゲインの補正を実行するルーチンの一例の一部を示した図である。It is the figure which showed a part of example of the routine which performs correction | amendment of the vane opening proportional gain and EGR control valve opening proportional gain according to 2nd Embodiment of this invention. 本発明の第2実施形態に従ったベーン開度比例ゲインおよびEGR制御弁開度比例ゲインの補正を実行するルーチンの一例の一部を示した図である。It is the figure which showed a part of example of the routine which performs correction | amendment of the vane opening proportional gain and EGR control valve opening proportional gain according to 2nd Embodiment of this invention. 本発明の第4実施形態に従ったベーン操作量比例ゲインおよびEGR制御弁操作量比例ゲインの補正を実行するルーチンの一例の一部を示した図である。It is the figure which showed a part of example of the routine which performs correction | amendment of the vane operation amount proportional gain and the EGR control valve operation amount proportional gain according to 4th Embodiment of this invention. 本発明の第4実施形態に従ったベーン操作量比例ゲインおよびEGR制御弁操作量比例ゲインの補正を実行するルーチンの一例の一部を示した図である。It is the figure which showed a part of example of the routine which performs correction | amendment of the vane operation amount proportional gain and the EGR control valve operation amount proportional gain according to 4th Embodiment of this invention. 本発明の第4実施形態に従ったベーン操作量比例ゲインおよびEGR制御弁操作量比例ゲインの補正を実行するルーチンの一例の一部を示した図である。It is the figure which showed a part of example of the routine which performs correction | amendment of the vane operation amount proportional gain and the EGR control valve operation amount proportional gain according to 4th Embodiment of this invention. 本発明の第4実施形態に従ったベーン操作量比例ゲインおよびEGR制御弁操作量比例ゲインの補正を実行するルーチンの一例の一部を示した図である。It is the figure which showed a part of example of the routine which performs correction | amendment of the vane operation amount proportional gain and the EGR control valve operation amount proportional gain according to 4th Embodiment of this invention. 本発明の第5実施形態に従った目標ベーン操作量、目標EGR制御弁操作量、および、目標スロットル弁操作量の設定を実行するルーチンの一例を示した図である。It is the figure which showed an example of the routine which performs the setting of the target vane manipulated variable, the target EGR control valve manipulated variable, and the target throttle valve manipulated variable according to 5th Embodiment of this invention. 本発明の第5実施形態に従った過給圧重みゲインおよびEGR率重みゲインの補正を実行するルーチンの一例の一部を示した図である。It is the figure which showed a part of example of the routine which performs correction | amendment of the supercharging pressure weight gain and EGR rate weight gain according to 5th Embodiment of this invention. 本発明の第5実施形態に従った過給圧重みゲインおよびEGR率重みゲインの補正を実行するルーチンの一例の一部を示した図である。It is the figure which showed a part of example of the routine which performs correction | amendment of the supercharging pressure weight gain and EGR rate weight gain according to 5th Embodiment of this invention. 本発明の第6実施形態に従ったベーン操作量比例ゲインおよびEGR制御弁操作量比例ゲインの補正を実行するルーチンの一例の一部を示した図である。It is the figure which showed a part of example of the routine which performs correction | amendment of the vane operation amount proportional gain and the EGR control valve operation amount proportional gain according to 6th Embodiment of this invention. 本発明の第6実施形態に従ったベーン操作量比例ゲインおよびEGR制御弁操作量比例ゲインの補正を実行するルーチンの一例の一部を示した図である。It is the figure which showed a part of example of the routine which performs correction | amendment of the vane operation amount proportional gain and the EGR control valve operation amount proportional gain according to 6th Embodiment of this invention.
 以下、図面を参照して本発明の実施形態について説明する。図1は、本発明の制御装置が適用された内燃機関10を示している。内燃機関10は、内燃機関の本体(以下「機関本体」という)20と、該機関本体の4つの燃焼室にそれぞれ対応して配置された燃料噴射弁21と、該燃料噴射弁21に燃料供給管23を介して燃料を供給する燃料ポンプ22とを具備する。また、内燃機関10は、外部から燃焼室に空気を供給する吸気系30と、燃焼室から排出される排気ガスを外部に排出する排気系40とを具備する。また、内燃機関10は、圧縮自着火式の内燃機関(いわゆる、ディーゼルエンジン)である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows an internal combustion engine 10 to which the control device of the present invention is applied. The internal combustion engine 10 includes an internal combustion engine main body (hereinafter referred to as “engine main body”) 20, fuel injection valves 21 disposed corresponding to the four combustion chambers of the engine main body, and fuel supply to the fuel injection valves 21. And a fuel pump 22 for supplying fuel via a pipe 23. The internal combustion engine 10 further includes an intake system 30 that supplies air to the combustion chamber from the outside, and an exhaust system 40 that exhausts exhaust gas discharged from the combustion chamber to the outside. The internal combustion engine 10 is a compression self-ignition internal combustion engine (so-called diesel engine).
 吸気系30は、吸気枝管31と吸気管32とを有する。なお、以下の説明において、吸気系30を「吸気通路」と称することもある。吸気枝管31の一方の端部(すなわち、枝部)は、各燃焼室に対応して機関本体20内に形成された吸気ポート(図示せず)に接続されている。一方、吸気枝管31の他方の端部は、吸気管32に接続されている。吸気管32内には、該吸気管内を流れる空気の量を制御するスロットル弁33が配置されている。さらに、吸気管32には、該吸気管内を流れる空気を冷却するインタークーラ34が配置されている。さらに、吸気管32の外部を臨む端部には、エアクリーナ36が配置されている。 The intake system 30 includes an intake branch pipe 31 and an intake pipe 32. In the following description, the intake system 30 may be referred to as an “intake passage”. One end portion (that is, a branch portion) of the intake branch pipe 31 is connected to an intake port (not shown) formed in the engine body 20 corresponding to each combustion chamber. On the other hand, the other end of the intake branch pipe 31 is connected to the intake pipe 32. A throttle valve 33 that controls the amount of air flowing through the intake pipe is disposed in the intake pipe 32. Further, an intercooler 34 for cooling the air flowing through the intake pipe is disposed in the intake pipe 32. Further, an air cleaner 36 is disposed at an end facing the outside of the intake pipe 32.
 なお、スロットル弁33は、その動作状態(具体的には、その開度であって、以下この開度を「スロットル弁開度」という)が制御されることによって燃焼室に吸入されるガスの量を可変に制御することができる。 The throttle valve 33 controls the operating state (specifically, its opening, which will be referred to as “throttle valve opening” hereinafter). The amount can be controlled variably.
 一方、排気系40は、排気枝管41と排気管42とを有する。なお、以下の説明において、排気系40を「排気通路」と称することもある。排気枝管41の一方の端部(すなわち、枝部)は、各燃焼室に対応して機関本体20内に形成された排気ポート(図示せず)に接続されている。一方、排気枝管41の他方の端部は、排気管42に接続されている。排気管42には、排気ガス中の特定成分を浄化する排気浄化触媒43Aを内蔵した触媒コンバータ43が配置されている。 On the other hand, the exhaust system 40 includes an exhaust branch pipe 41 and an exhaust pipe 42. In the following description, the exhaust system 40 may be referred to as an “exhaust passage”. One end portion (that is, a branch portion) of the exhaust branch pipe 41 is connected to an exhaust port (not shown) formed in the engine body 20 corresponding to each combustion chamber. On the other hand, the other end of the exhaust branch pipe 41 is connected to the exhaust pipe 42. In the exhaust pipe 42, a catalytic converter 43 having an exhaust purification catalyst 43A for purifying a specific component in the exhaust gas is disposed.
 また、内燃機関10は、過給機35を具備する。過給機35は、インタークーラ34よりも上流の吸気管32内に配置されるコンプレッサ35Aと、触媒コンバータ43よりも上流の排気管42内に配置される排気タービン35Bとを有する。排気タービン35Bは、図2に示されているように、排気タービン本体35Cと翼状の複数のベーン35Dとを有する。 Further, the internal combustion engine 10 includes a supercharger 35. The supercharger 35 includes a compressor 35A disposed in the intake pipe 32 upstream of the intercooler 34, and an exhaust turbine 35B disposed in the exhaust pipe 42 upstream of the catalytic converter 43. As shown in FIG. 2, the exhaust turbine 35B includes an exhaust turbine main body 35C and a plurality of blade-like vanes 35D.
 排気タービン35B(厳密には、排気タービン本体35C)は、シャフト(図示せず)を介してコンプレッサ35Aに接続されている。排気タービン本体35Cが排気ガスによって回転せしめられると、その回転がシャフトを介してコンプレッサ35Aに伝達され、これによって、コンプレッサ35Aが回転せしめられる。このコンプレッサ35Aの回転によってコンプレッサよりも下流の吸気管32内のガスが圧縮せしめられ、その結果、同ガスの圧力(以下この圧力を「過給圧」という)が上昇せしめられる。 The exhaust turbine 35B (strictly, the exhaust turbine main body 35C) is connected to the compressor 35A via a shaft (not shown). When the exhaust turbine main body 35C is rotated by the exhaust gas, the rotation is transmitted to the compressor 35A via the shaft, whereby the compressor 35A is rotated. The rotation of the compressor 35A compresses the gas in the intake pipe 32 downstream of the compressor, and as a result, the pressure of the gas (hereinafter, this pressure is referred to as “supercharging pressure”) is increased.
 一方、ベーン35Dは、排気タービン本体35Cを包囲するように該排気タービン本体の回転中心軸線R1を中心として放射状に等角度間隔で配置されている。また、各ベーン35Dは、図2に符号R2で示されているそれぞれ対応する軸線周りで回動可能に配置されている。そして、各ベーン35Dが延在している方向(すなわち、図2に符号Eで示されている方向)を「延在方向」と称し、排気タービン本体35Cの回転中心軸線R1とベーン35Dの回動軸線R2とを結ぶ線(すなわち、図2に符号Aで示されている線)を「基準線」と称したとき、各ベーン35Dは、その延在方向Eとそれに対応する基準線Aとがなす角度が全てのベーン35Dに関して等しくなるように回動せしめられる。そして、各ベーン35Dがその延在方向Eとそれに対応する基準線Aとがなす角度が小さくなるように、すなわち、隣り合うベーン35D間の流路面積が小さくなるように回動せしめられると、排気タービン本体35Cよりも上流の排気通路40内の圧力(以下この圧力を「排気圧」という)が高くなり、その結果、排気タービン本体35Cに供給される排気ガスの流速が速くなる。このため、排気タービン本体35Cの回転速度が速くなり、その結果、コンプレッサ35Aの回転速度も速くなり、したがって、吸気管32内を流れるガスがコンプレッサ35Aによって大きく圧縮されることになる。このため、各ベーン35Dの延在方向Eとそれに対応する基準線とがなす角度(以下この角度を「ベーン開度」という)が小さくなるほど、コンプレッサ35Aによって吸気管32内を流れるガスが圧縮される程度が大きくなる(すなわち、過給圧が高くなる)。 On the other hand, the vanes 35D are radially arranged at equiangular intervals around the rotation center axis R1 of the exhaust turbine body so as to surround the exhaust turbine body 35C. Each vane 35D is disposed so as to be rotatable around a corresponding axis indicated by reference numeral R2 in FIG. The direction in which each vane 35D extends (ie, the direction indicated by symbol E in FIG. 2) is referred to as the “extending direction”, and the rotation center axis R1 of the exhaust turbine main body 35C and the rotation of the vane 35D. When a line connecting to the movement axis R2 (that is, a line indicated by a symbol A in FIG. 2) is referred to as a “reference line”, each vane 35D has an extending direction E and a corresponding reference line A. Is rotated so that the angles formed by the two are equal for all the vanes 35D. When each vane 35D is rotated so that the angle formed by the extending direction E and the corresponding reference line A is small, that is, the flow area between the adjacent vanes 35D is small, The pressure in the exhaust passage 40 upstream of the exhaust turbine body 35C (hereinafter, this pressure is referred to as “exhaust pressure”) increases, and as a result, the flow rate of the exhaust gas supplied to the exhaust turbine body 35C increases. For this reason, the rotational speed of the exhaust turbine body 35C is increased, and as a result, the rotational speed of the compressor 35A is also increased. Therefore, the gas flowing in the intake pipe 32 is greatly compressed by the compressor 35A. For this reason, the gas flowing through the intake pipe 32 is compressed by the compressor 35A as the angle formed between the extending direction E of each vane 35D and the corresponding reference line (hereinafter, this angle is referred to as “vane opening degree”) becomes smaller. (That is, the supercharging pressure increases).
 したがって、過給機35は、ベーン35Dの動作状態(具体的には、ベーン開度)を制御することによって過給圧を可変に制御することができる。 Therefore, the supercharger 35 can variably control the supercharging pressure by controlling the operating state (specifically, the vane opening degree) of the vane 35D.
 また、内燃機関10は、排気再循環装置(以下これを「EGR装置」という)50を具備する。EGR装置50は、排気再循環管(以下これを「EGR通路」という)51を有する。EGR通路51の一端は、排気枝管41に接続されている。すなわち、EGR通路51の一端は、排気タービン35Bよりも上流の排気通路40の部分に接続されている。一方、EGR通路51の他端は、吸気枝管31に接続されている。すなわち、EGR通路51の他端は、コンプレッサ35Aよりも下流の吸気通路の部分に接続されている。また、EGR通路51には、該EGR通路内を流れる排気ガスの流量を制御する排気再循環制御弁(以下この排気再循環制御弁を「EGR制御弁」という)52が配置されている。内燃機関10では、EGR制御弁52の開度(以下この開度を「EGR制御弁開度」という)が大きいほど、EGR通路51内を流れる排気ガスの流量が多くなる。さらに、EGR通路51には、該EGR通路内を流れる排気ガスを冷却する排気再循環クーラ53が配置されている。 In addition, the internal combustion engine 10 includes an exhaust gas recirculation device (hereinafter referred to as “EGR device”) 50. The EGR device 50 includes an exhaust gas recirculation pipe (hereinafter referred to as “EGR passage”) 51. One end of the EGR passage 51 is connected to the exhaust branch pipe 41. That is, one end of the EGR passage 51 is connected to a portion of the exhaust passage 40 upstream of the exhaust turbine 35B. On the other hand, the other end of the EGR passage 51 is connected to the intake branch pipe 31. That is, the other end of the EGR passage 51 is connected to a portion of the intake passage downstream of the compressor 35A. Further, an exhaust gas recirculation control valve (hereinafter, this exhaust gas recirculation control valve is referred to as an “EGR control valve”) 52 that controls the flow rate of exhaust gas flowing through the EGR passage is disposed in the EGR passage 51. In the internal combustion engine 10, the flow rate of the exhaust gas flowing through the EGR passage 51 increases as the opening degree of the EGR control valve 52 (hereinafter, this opening degree is referred to as “EGR control valve opening degree”). Further, an exhaust gas recirculation cooler 53 for cooling the exhaust gas flowing in the EGR passage is disposed in the EGR passage 51.
 なお、EGR装置50は、EGR制御弁52の動作状態(具体的には、EGR制御弁52の開度であって、以下この開度を「EGR制御弁開度」という)を制御することによってEGR通路51を介して吸気通路30に導入される排気ガス(以下この排気ガスを「EGRガス」という)の量を可変に制御することができる。 The EGR device 50 controls the operating state of the EGR control valve 52 (specifically, the opening degree of the EGR control valve 52, which is hereinafter referred to as “EGR control valve opening degree”). The amount of exhaust gas introduced into the intake passage 30 via the EGR passage 51 (hereinafter, this exhaust gas is referred to as “EGR gas”) can be variably controlled.
 また、エアクリーナ36よりも下流であってコンプレッサ35Aよりも上流の吸気管32には、該吸気管内を流れる空気の流量を検出するエアフローメータ71が取り付けられている。また、吸気枝管31には、該吸気枝管内のガスの圧力(すなわち、過給圧)を検出する圧力センサ(以下「過給圧センサ」という)72が取り付けられている。また、機関本体20には、クランクシャフトの回転位相を検出するクランクポジションセンサ74が取り付けられている。 Further, an air flow meter 71 for detecting the flow rate of the air flowing in the intake pipe is attached to the intake pipe 32 downstream of the air cleaner 36 and upstream of the compressor 35A. Further, a pressure sensor (hereinafter referred to as “supercharging pressure sensor”) 72 for detecting the pressure of the gas in the intake branch pipe (that is, the supercharging pressure) is attached to the intake branch pipe 31. The engine body 20 is provided with a crank position sensor 74 for detecting the rotational phase of the crankshaft.
 また、内燃機関10は、電子制御装置60を具備する。電子制御装置60は、マイクロプロセッサ(CPU)61と、リードオンリメモリ(ROM)62と、ランダムアクセスメモリ(RAM)63と、バックアップRAM(Back up RAM)64と、インターフェース65とを有する。インターフェース65には、燃料噴射弁21、燃料ポンプ22、スロットル弁33、ベーン35D、および、EGR制御弁52が接続されており、これらの動作を制御する制御信号がインターフェース65を介して電子制御装置60から与えられる。また、インターフェース65には、エアフローメータ71、過給圧センサ72、クランクポジションセンサ74、および、アクセルペダルAPの開度(すなわち、アクセルペダルAPの踏込量であって、以下これを「アクセルペダル開度」という)を検出するアクセルペダル開度センサ75も接続されており、エアフローメータ71によって検出された流量に対応する信号、過給圧センサ72によって検出された圧力に対応する信号、クランクポジションセンサ74によって検出されたクランクシャフトの回転位相に対応する信号、および、アクセルペダル開度センサ75によって検出されたアクセルペダルAPの踏込量に対応する信号がインターフェース65に入力される。 In addition, the internal combustion engine 10 includes an electronic control device 60. The electronic control device 60 includes a microprocessor (CPU) 61, a read only memory (ROM) 62, a random access memory (RAM) 63, a backup RAM (Back up RAM) 64, and an interface 65. The fuel injection valve 21, the fuel pump 22, the throttle valve 33, the vane 35 </ b> D, and the EGR control valve 52 are connected to the interface 65, and control signals for controlling these operations are transmitted via the interface 65 to the electronic control device. 60. The interface 65 includes an air flow meter 71, a supercharging pressure sensor 72, a crank position sensor 74, and an opening degree of the accelerator pedal AP (that is, an amount of depression of the accelerator pedal AP. An accelerator pedal opening sensor 75 for detecting the degree of pressure) is also connected, a signal corresponding to the flow rate detected by the air flow meter 71, a signal corresponding to the pressure detected by the supercharging pressure sensor 72, a crank position sensor A signal corresponding to the rotational phase of the crankshaft detected by 74 and a signal corresponding to the depression amount of the accelerator pedal AP detected by the accelerator pedal opening sensor 75 are input to the interface 65.
 なお、過給圧センサ72によって検出された圧力に対応する信号に基づいて過給圧が電子制御装置60によって算出され、クランクポジションセンサ74によって検出されたクランクシャフトの回転位相に対応する信号に基づいて機関回転数(すなわち、内燃機関10の回転数)が電子制御装置60によって算出され、アクセルペダル開度センサ75によって検出されたアクセルペダルAPの踏込量に対応する信号に基づいてアクセルペダル開度が電子制御装置60によって算出される。 The supercharging pressure is calculated by the electronic control unit 60 based on the signal corresponding to the pressure detected by the supercharging pressure sensor 72 and is based on the signal corresponding to the rotational phase of the crankshaft detected by the crank position sensor 74. Then, the engine speed (that is, the speed of the internal combustion engine 10) is calculated by the electronic control unit 60, and the accelerator pedal opening degree is based on a signal corresponding to the depression amount of the accelerator pedal AP detected by the accelerator pedal opening degree sensor 75. Is calculated by the electronic control unit 60.
 ところで、本実施形態(以下「第1実施形態」という)では、後述するように設定される過給圧の目標値(以下この目標値を「目標過給圧」という)に実際の過給圧(以下この過給圧を「実過給圧」ともいう)が制御される。また、燃焼室に吸入されるガスの量に対する同ガス中に含まれるEGRガスの量の比を「EGR率」と称したとき、第1実施形態では、後述するように設定されるEGR率の目標値(以下この目標値を「目標EGR率」という)に実際のEGR率(以下このEGR率を「実EGR率」ともいう)が制御される。 By the way, in the present embodiment (hereinafter referred to as “first embodiment”), an actual boost pressure is set to a target value of boost pressure (hereinafter referred to as “target boost pressure”) set as described later. (Hereinafter, this supercharging pressure is also referred to as “actual supercharging pressure”). Further, when the ratio of the amount of EGR gas contained in the gas to the amount of gas sucked into the combustion chamber is referred to as “EGR rate”, in the first embodiment, the EGR rate set as described later is set. The actual EGR rate (hereinafter, this EGR rate is also referred to as “actual EGR rate”) is controlled to the target value (hereinafter, this target value is referred to as “target EGR rate”).
 次に、第1実施形態に従った目標過給圧および目標EGR率の設定について説明する。なお、以下の説明において、「機関運転状態」は「内燃機関10の運転状態」であり、「機関負荷」は「内燃機関10の負荷」であり、「機関回転数」は「内燃機関10の回転数」であり、「機関運転中」は「内燃機関10の運転中」である。 Next, setting of the target boost pressure and the target EGR rate according to the first embodiment will be described. In the following description, the “engine operating state” is “the operating state of the internal combustion engine 10”, the “engine load” is “the load of the internal combustion engine 10”, and the “engine speed” is “the engine rotational speed”. “Rotational speed”, and “During engine operation” is “During operation of internal combustion engine 10”.
 第1実施形態では、単位時間当たりの機関回転数の変化量が略零であって且つ単位時間当たりの機関負荷の変化量が略零である機関運転状態を定常運転状態と称したとき、機関運転状態が定常運転状態にあるときに目標とすべき過給圧が実験等によって予め求められ、これら過給圧が図3(A)に示されているように目標過給圧TPimとして機関回転数Nと機関負荷Lとの関数のマップ(以下このマップを「目標過給圧マップ」ともいう)の形で電子制御装置60に記憶されている。そして、機関運転中、機関回転数Nと機関負荷Lとに基づいて上記過給圧マップから目標過給圧TPimが取得され、この取得された目標過給圧TPimが目標過給圧に設定される。 In the first embodiment, when an engine operating state in which the change amount of the engine speed per unit time is substantially zero and the change amount of the engine load per unit time is substantially zero is referred to as a steady operation state, The supercharging pressure that should be the target when the operating state is in the steady operating state is obtained in advance by experiments or the like, and these supercharging pressures are used as the target supercharging pressure TPim as shown in FIG. It is stored in the electronic control unit 60 in the form of a function map of the number N and the engine load L (hereinafter, this map is also referred to as “target boost pressure map”). During engine operation, the target boost pressure TPim is acquired from the boost pressure map based on the engine speed N and the engine load L, and the acquired target boost pressure TPim is set as the target boost pressure. The
 また、機関運転状態が定常運転状態にあるときに目標とすべき吸入ガス中の酸素濃度が実験等によって予め求められ、これら酸素濃度が図3(B)に示されているように目標酸素濃度TO2として機関回転数Nと機関負荷Lとの関数のマップ(以下このマップを「目標酸素濃度マップ」ともいう)の形で電子制御装置60に記憶されている。そして、機関運転中、機関回転数Nと機関負荷Lとに基づいて上記目標酸素濃度マップから目標酸素濃度TO2が取得され、この取得された目標酸素濃度TO2が目標酸素濃度に設定される。 Further, the oxygen concentration in the intake gas to be targeted when the engine operation state is in the steady operation state is obtained in advance by experiments or the like, and these oxygen concentrations are the target oxygen concentration as shown in FIG. It is stored in the electronic control unit 60 in the form of a function map of the engine speed N and the engine load L (hereinafter, this map is also referred to as “target oxygen concentration map”) as TO2. During engine operation, the target oxygen concentration TO2 is acquired from the target oxygen concentration map based on the engine speed N and the engine load L, and the acquired target oxygen concentration TO2 is set as the target oxygen concentration.
 そして、実過給圧が目標過給圧TPimに制御されているとしたときに吸気ガス中の実際の酸素濃度(以下この酸素濃度を「実酸素濃度」ともいう)を目標酸素濃度TO2にすることができるEGR率が目標EGR率として算出される。別の云い方をすれば、実過給圧と目標酸素濃度TO2とに基づいて目標EGR率が算出される。 When the actual boost pressure is controlled to the target boost pressure TPim, the actual oxygen concentration in the intake gas (hereinafter, this oxygen concentration is also referred to as “actual oxygen concentration”) is set to the target oxygen concentration TO2. A possible EGR rate is calculated as the target EGR rate. In other words, the target EGR rate is calculated based on the actual supercharging pressure and the target oxygen concentration TO2.
 ところで、第1実施形態では、実過給圧を目標過給圧にするためにベーン35Dに入力されるべき操作量が目標ベーン操作量として算出され(すなわち、設定され)、この算出された目標ベーン操作量に相当する操作量がベーン35Dに入力される。これによって、実過給圧が目標過給圧に制御される。 By the way, in the first embodiment, the operation amount to be input to the vane 35D in order to set the actual supercharging pressure to the target supercharging pressure is calculated (ie, set) as the target vane operation amount, and this calculated target An operation amount corresponding to the vane operation amount is input to the vane 35D. As a result, the actual boost pressure is controlled to the target boost pressure.
 また、第1実施形態では、実EGR率を目標EGR率にするためにEGR制御弁52に入力されるべき操作量が目標EGR制御弁操作量として算出され(すなわち、設定され)、この算出された目標EGR制御弁操作量に相当する操作量がEGR制御弁52に入力される。これによって、実EGR率が目標EGR率に制御される。 In the first embodiment, the operation amount to be input to the EGR control valve 52 in order to set the actual EGR rate to the target EGR rate is calculated (that is, set) as the target EGR control valve operation amount. The operation amount corresponding to the target EGR control valve operation amount is input to the EGR control valve 52. As a result, the actual EGR rate is controlled to the target EGR rate.
 次に、第1実施形態に従った目標ベーン操作量の設定について説明する。第1実施形態では、目標過給圧に対する実過給圧の偏差に基づくフィードバック制御であるいわゆるPID制御(すなわち、比例積分微分制御)が目標ベーン操作量の設定に利用される。具体的には、機関運転中に実過給圧が取得され、目標過給圧に対するこの取得された実過給圧の偏差が過給圧偏差として算出される。そして、斯くして算出される過給圧偏差を積算することによって過給圧偏差積算値が算出される。 Next, setting of the target vane operation amount according to the first embodiment will be described. In the first embodiment, so-called PID control (that is, proportional-integral-derivative control) that is feedback control based on the deviation of the actual supercharging pressure with respect to the target supercharging pressure is used for setting the target vane operation amount. Specifically, the actual boost pressure is acquired during engine operation, and the deviation of the acquired actual boost pressure with respect to the target boost pressure is calculated as the boost pressure deviation. Then, the supercharging pressure deviation integrated value is calculated by integrating the supercharging pressure deviation thus calculated.
 そして、上述したように算出される過給圧偏差を「ΔPim」で表し、上述したように算出される過給圧偏差積算値を「ΣΔPim」で表し、目標ベーン操作量を「Mv」で表し、いわゆる比例ゲインを「GPp」で表し、いわゆる積分ゲインを「GPi」で表し、いわゆる微分ゲインを「GPd」で表し、いわゆる基準ベーン操作量を「Mvbse」で表したとき、次式1に従って目標ベーン操作量Mvが算出される。なお、基準ベーン操作量は機関運転状態が定常運転状態にあるときのベーン操作量であり、実験等によって予め求められて機関回転数Nと機関負荷Lとの関数のマップの形で電子制御装置60に記憶されている。
  Mv=GPp×ΔPim+GPi×ΣΔPim+GPd×d(ΔPim)/dt+Mvbse  …(1)
The supercharging pressure deviation calculated as described above is represented by “ΔPim”, the supercharging pressure deviation integrated value calculated as described above is represented by “ΣΔPim”, and the target vane operation amount is represented by “Mv”. The so-called proportional gain is represented by “GPp”, the so-called integral gain is represented by “GPi”, the so-called differential gain is represented by “GPd”, and the so-called reference vane operation amount is represented by “Mvbse”. A vane operation amount Mv is calculated. The reference vane operation amount is a vane operation amount when the engine operating state is in a steady operation state, and is obtained in advance through experiments or the like, and is an electronic control device in the form of a map of a function of the engine speed N and the engine load L. 60.
Mv = GPp × ΔPim + GPi × ΣΔPim + GPd × d (ΔPim) / dt + Mvbse (1)
 そして、第1実施形態では、上式1から算出される目標ベーン操作量Mvが目標ベーン操作量に設定され、この設定された目標ベーン操作量に相当する操作量が電子制御装置60からベーン35Dに入力される。 In the first embodiment, the target vane operation amount Mv calculated from Equation 1 is set as the target vane operation amount, and the operation amount corresponding to the set target vane operation amount is transferred from the electronic control device 60 to the vane 35D. Is input.
 次に、第1実施形態に従った目標EGR制御弁操作量の設定について説明する。第1実施形態では、目標EGR率に対する実EGR率の偏差に基づくフィードバック制御であるいわゆるPID制御が目標EGR制御弁操作量の設定に利用される。具体的には、機関運転中に実EGR率が取得され、目標EGR率に対するこの取得された実EGR率の偏差がEGR率偏差として算出される。そして、斯くして算出されるEGR率偏差を積算することによってEGR率偏差積算値が算出される。 Next, the setting of the target EGR control valve operation amount according to the first embodiment will be described. In the first embodiment, so-called PID control, which is feedback control based on the deviation of the actual EGR rate with respect to the target EGR rate, is used for setting the target EGR control valve operation amount. Specifically, the actual EGR rate is acquired during engine operation, and the deviation of the acquired actual EGR rate with respect to the target EGR rate is calculated as the EGR rate deviation. Then, the EGR rate deviation integrated value is calculated by integrating the EGR rate deviation thus calculated.
 そして、上述したように算出されるEGR率偏差を「ΔRegr」で表し、上述したように算出されるEGR率偏差積算値を「ΣΔRegr」で表し、目標EGR制御弁操作量を「Megrで表し、いわゆる比例ゲインを「GEp」で表し、いわゆる積分ゲインを「GEi」で表し、いわゆる微分ゲインを「GPd」で表し、いわゆる基準EGR制御弁操作量を「Megrbse」で表したとき、次式2に従って目標EGR制御弁操作量Megrが算出される。なお、基準EGR制御弁操作量は機関運転状態が定常運転状態にあるときのEGR制御弁操作量であり、実験等によって予め求められて機関回転数Nと機関負荷Lとの関数のマップの形で電子制御装置60に記憶されている。
  Megr=GEp×ΔRegr+GEi×ΣΔRegr+GEd×d(ΔRegr)/dt+Megrbse  …(2)
Then, the EGR rate deviation calculated as described above is represented by “ΔRegr”, the EGR rate deviation integrated value calculated as described above is represented by “ΣΔRegr”, the target EGR control valve operation amount is represented by “Megr”, When a so-called proportional gain is represented by “GEp”, a so-called integral gain is represented by “GEi”, a so-called differential gain is represented by “GPd”, and a so-called reference EGR control valve operation amount is represented by “Megrbse”, A target EGR control valve operation amount Megr is calculated. The reference EGR control valve operation amount is an EGR control valve operation amount when the engine operation state is in a steady operation state, and is obtained in advance by an experiment or the like and forms a function map of the engine speed N and the engine load L. Is stored in the electronic control unit 60.
Megr = GEp × ΔRegr + GEi × ΣΔRegr + GEd × d (ΔRegr) / dt + Megrbse (2)
 そして、第1実施形態では、上式2から算出される目標EGR制御弁操作量Megrが目標EGR制御弁操作量に設定され、この設定された目標EGR制御弁操作量に相当する操作量が電子制御装置60からEGR制御弁52に入力される。 In the first embodiment, the target EGR control valve operation amount Megr calculated from Equation 2 is set as the target EGR control valve operation amount, and the operation amount corresponding to the set target EGR control valve operation amount is an electronic value. It is input from the control device 60 to the EGR control valve 52.
 ところで、第1実施形態では、実過給圧を目標過給圧に所定の追従性でもって制御すると共に実EGR率を目標EGR率に所定の追従性でもって制御するために、目標ベーン操作量の設定に利用される上式1の比例ゲイン(以下このゲインを「ベーン操作量比例ゲイン」という)と目標EGR制御弁操作量の設定に利用される上式2の比例ゲイン(以下このゲインを「EGR制御弁操作量比例ゲイン」という)とが過給圧偏差積算値とEGR率偏差積算値とに基づいて補正され、この補正されたベーン操作量比例ゲインが上式1の比例ゲインとして利用されて目標ベーン操作量が設定されると共に、上記補正されたEGR制御弁操作量比例ゲインが上式2の比例ゲインとして利用されて目標EGR制御弁操作量が設定される。云い方を換えれば、第1実施形態では、ベーン操作量比例ゲインとEGR制御弁操作量比例ゲインとが過給圧偏差積算値とEGR率偏差積算値とに基づいて学習され、これら学習されたベーン操作量比例ゲインおよびEGR制御弁操作量比例ゲインが目標ベーン操作量の設定および目標EGR制御弁操作量の設定に利用される。 By the way, in the first embodiment, in order to control the actual supercharging pressure to the target supercharging pressure with a predetermined followability and to control the actual EGR rate to the target EGR rate with a predetermined followability, the target vane operation amount The proportional gain of the above equation 1 (hereinafter referred to as “vane operation amount proportional gain”) and the proportional gain of the above equation 2 (hereinafter referred to as this gain) used to set the target EGR control valve operation amount. "EGR control valve operation amount proportional gain") is corrected based on the supercharging pressure deviation integrated value and the EGR rate deviation integrated value, and the corrected vane operation amount proportional gain is used as the proportional gain of Equation 1 above. Thus, the target vane operation amount is set, and the corrected EGR control valve operation amount proportional gain is used as the proportional gain of the above equation 2 to set the target EGR control valve operation amount. In other words, in the first embodiment, the vane operation amount proportional gain and the EGR control valve operation amount proportional gain are learned based on the boost pressure deviation integrated value and the EGR rate deviation integrated value, and these are learned. The vane operation amount proportional gain and the EGR control valve operation amount proportional gain are used for setting the target vane operation amount and setting the target EGR control valve operation amount.
 次に、これらベーン操作量比例ゲインおよびEGR制御弁操作量比例ゲインの補正について説明する。 Next, correction of the vane operation amount proportional gain and the EGR control valve operation amount proportional gain will be described.
 第1実施形態では、機関運転中に算出される過給圧偏差積算値が或る基準となる値(以下この値を「基準値」という)と比較されると共に、機関運転中に算出されるEGR率偏差積算値が或る基準となる値(以下この値を「基準値」という)と比較される。 In the first embodiment, the supercharging pressure deviation integrated value calculated during engine operation is compared with a reference value (hereinafter, this value is referred to as “reference value”) and is calculated during engine operation. The EGR rate deviation integrated value is compared with a reference value (hereinafter referred to as “reference value”).
 ここで、過給圧偏差積算値がその基準値よりも大きく且つEGR率偏差積算値がその基準値よりも小さい場合には、ベーン操作量比例ゲインが大きくなるように所定の値(以下この値を「第1補正値」という)がベーン操作量比例ゲインに加算されることによって同ゲインが補正されると共にEGR制御弁操作量比例ゲインが小さくなるように第1補正値がEGR制御弁操作量比例ゲインから減算されることによって同ゲインが補正される。 Here, when the supercharging pressure deviation integrated value is larger than the reference value and the EGR rate deviation integrated value is smaller than the reference value, a predetermined value (hereinafter referred to as this value) is set so that the vane operation amount proportional gain is increased. (The first correction value) is added to the vane operation amount proportional gain so that the gain is corrected and the EGR control valve operation amount becomes smaller so that the EGR control valve operation amount proportional gain becomes smaller. By subtracting from the proportional gain, the gain is corrected.
 また、過給圧偏差積算値がその基準値よりも大きく且つEGR率偏差積算値がその基準値よりも大きい場合には、EGR制御弁操作量比例ゲインが大きくなるように1よりも大きい所定の値(以下この値を「第2補正値」という)がEGR制御弁操作量比例ゲインに乗算されることによって同ゲインが補正されると共にベーン操作量比例ゲインが大きくなるように第2補正値がベーン操作量比例ゲインに乗算されることによって同ゲインが補正される。 Further, when the supercharging pressure deviation integrated value is larger than the reference value and the EGR rate deviation integrated value is larger than the reference value, a predetermined value larger than 1 is set so that the EGR control valve operation amount proportional gain becomes large. By multiplying the value (hereinafter referred to as “second correction value”) by the EGR control valve operation amount proportional gain, the second correction value is adjusted so that the gain is corrected and the vane operation amount proportional gain is increased. The gain is corrected by multiplying the vane operation amount proportional gain.
 また、過給圧偏差積算値がその基準値よりも大きく且つEGR率偏差積算値がその基準値に略等しい(或いは、その基準値に等しい)場合には、ベーン操作量比例ゲインが大きくなるように1よりも大きい所定の値(以下この値を「第3補正値」という)がベーン操作量比例ゲインに乗算されることによって同ゲインが補正されると共にEGR制御弁操作量比例ゲインが大きくなるように第3補正値がEGR制御弁操作量比例ゲインに乗算されることによって同ゲインが補正される。 Further, when the supercharging pressure deviation integrated value is larger than the reference value and the EGR rate deviation integrated value is substantially equal to (or equal to) the reference value, the vane operation amount proportional gain is increased. The gain is corrected by multiplying the vane manipulated variable proportional gain by a predetermined value greater than 1 (hereinafter referred to as “third correction value”) and the EGR control valve manipulated variable proportional gain is increased. In this way, the third correction value is multiplied by the EGR control valve operation amount proportional gain to correct the gain.
 また、基準値に対する過給圧偏差積算値の関係と基準値に対するEGR率偏差積算値の関係とが上で挙げた関係以外にある場合には、ベーン操作量比例ゲインもEGR制御弁操作量比例ゲインも補正されない。 In addition, when the relationship between the supercharging pressure deviation integrated value with respect to the reference value and the relationship between the EGR rate deviation integrated value with respect to the reference value is other than the above-mentioned relationship, the vane operation amount proportional gain is also proportional to the EGR control valve operation amount proportional. Gain is not corrected.
 なお、第1実施形態では、例えば、ベーンの応答が最も高く且つEGR制御弁の応答が最も高いときにとり得る過給圧偏差積算値およびEGR率偏差積算値を実験等によって予め求め、この求められた値がそれぞれ過給圧偏差積算値の基準値およびEGR率偏差積算値の基準値とされる。 In the first embodiment, for example, the supercharging pressure deviation integrated value and the EGR rate deviation integrated value that can be taken when the response of the vane is the highest and the response of the EGR control valve is the highest are obtained in advance through experiments or the like. These values are used as a reference value for the supercharging pressure deviation integrated value and a reference value for the EGR rate deviation integrated value, respectively.
 以上のようにベーン操作量比例ゲインおよびEGR制御弁操作量比例ゲインが補正され、これら補正されたゲインがそれぞれ目標ベーン操作量の設定および目標EGR制御弁操作量の設定に利用されると、過給圧を目標過給圧に所定の追従性でもって制御することができると共にEGR率を目標EGR率に所定の追従性でもって制御することができるという効果、或いは、過給圧とEGR率とをそれぞれ目標過給圧と目標EGR率とに対してバランス良く制御することができるという効果が得られる。 As described above, when the vane operation amount proportional gain and the EGR control valve operation amount proportional gain are corrected, and these corrected gains are used for setting the target vane operation amount and the target EGR control valve operation amount, respectively, The effect that the supply pressure can be controlled to the target supercharging pressure with predetermined followability and the EGR rate can be controlled to the target EGR rate with predetermined followability, or the supercharging pressure and the EGR rate Can be controlled in a balanced manner with respect to the target boost pressure and the target EGR rate.
 すなわち、EGR装置50は、EGR制御弁開度を制御することによってEGRガスの量を可変に制御することができる。すなわち、EGR装置50は、EGR制御弁開度を制御することによって実EGR率を可変に制御することができる。ここで、EGR率を上昇させるためにEGR制御弁開度が大きくされるとEGRガス量が増大することから、排気圧(すなわち、過給機35の排気タービン35Bよりも上流側の排気通路40内の排気ガスの圧力)が低下する。このため、吸気管32内を流れるガスに対する過給機35の圧縮効果が低下し、その結果、過給圧が低下する。一方、EGR率を低下させるためにEGR制御弁開度が小さくされるとEGRガス量が減少することから、排気圧が上昇する。このため、吸気管32内を流れるガスに対する過給機35の圧縮効果が上昇し、その結果、過給圧が上昇する。すなわち、EGR装置50によるEGRガス量の制御(結果的には、EGR装置50によるEGR率の制御)が過給圧に影響する。 That is, the EGR device 50 can variably control the amount of EGR gas by controlling the EGR control valve opening. That is, the EGR device 50 can variably control the actual EGR rate by controlling the EGR control valve opening. Here, if the EGR control valve opening is increased in order to increase the EGR rate, the amount of EGR gas increases. Therefore, the exhaust pressure 40 (ie, the exhaust passage 40 upstream of the exhaust turbine 35B of the supercharger 35). The pressure of the exhaust gas in the inside is reduced. For this reason, the compression effect of the supercharger 35 on the gas flowing in the intake pipe 32 is reduced, and as a result, the supercharging pressure is reduced. On the other hand, if the EGR control valve opening is reduced in order to reduce the EGR rate, the amount of EGR gas decreases, so that the exhaust pressure increases. For this reason, the compression effect of the supercharger 35 with respect to the gas flowing through the intake pipe 32 increases, and as a result, the supercharging pressure increases. That is, the control of the EGR gas amount by the EGR device 50 (as a result, the control of the EGR rate by the EGR device 50) affects the supercharging pressure.
 したがって、過給機35によって過給圧を過給圧を目標過給圧に所定の追従性でもって制御しようとするときに、過給圧に対する過給機35による同過給圧の制御の影響を考慮するだけでなく、過給圧に対するEGR装置50によるEGR率の制御の影響を考慮することには利点がある。 Therefore, when the supercharger 35 tries to control the supercharging pressure with a predetermined followability to the target supercharging pressure, the influence of the supercharging pressure control by the supercharger 35 on the supercharging pressure. It is advantageous to consider the influence of the control of the EGR rate by the EGR device 50 on the supercharging pressure as well.
 一方、過給機35は、ベーン開度を制御することによって過給圧を可変に制御することができる。ここで、過給圧を上昇させるためにベーン開度が小さくされると排気圧が上昇することから、過給圧と排気圧との差圧が大きくなり、その結果、EGRガス量が増大する。一方、過給圧を低下させるためにベーン開度が大きくされると排気圧が低下することから、過給圧と排気圧との差圧が小さくなり、その結果、EGRガス量が減少する。すなわち、過給機35による過給圧の制御がEGRガス量(結果的には、EGR率)に影響する。 On the other hand, the supercharger 35 can variably control the supercharging pressure by controlling the vane opening. Here, if the vane opening is made small in order to increase the supercharging pressure, the exhaust pressure increases, so the differential pressure between the supercharging pressure and the exhaust pressure increases, and as a result, the amount of EGR gas increases. . On the other hand, if the vane opening is increased in order to reduce the supercharging pressure, the exhaust pressure decreases, so that the differential pressure between the supercharging pressure and the exhaust pressure decreases, and as a result, the EGR gas amount decreases. That is, the control of the supercharging pressure by the supercharger 35 affects the EGR gas amount (as a result, the EGR rate).
 したがって、EGR装置50によってEGR率を目標EGR率に所定の追従性でもって制御しようとするときに、EGR率に対するEGR装置50による同EGR率の制御の影響を考慮するだけなく、EGR率に対する過給機35による過給圧の制御の影響を考慮することには利点がある。 Therefore, when the EGR device 50 tries to control the EGR rate to the target EGR rate with a predetermined followability, not only the influence of the control of the EGR rate by the EGR device 50 on the EGR rate but also the excess on the EGR rate is considered. It is advantageous to consider the influence of supercharging pressure control by the feeder 35.
 このように、過給圧とEGR率とは互いに影響し合う制御量である。したがって、過給機35によって過給圧を目標過給圧に所定の追従性でもって制御しようとするときに、過給圧に対する過給機35による同過給圧の制御の影響を考慮するだけでなく、過給圧に対するEGR装置50によるEGR率の制御の影響を考慮することには、過給圧をより精度高く目標過給圧に制御するという観点から利点がある。また、EGR装置50によってEGR率を目標EGR率に所定の追従性でもって制御しようとするときに、EGR率に対するEGR装置50による同EGR率の制御の影響を考慮するだけでなく、EGR率に対する過給機35による過給圧の制御の影響を考慮することには、EGR率をより精度高く目標EGR率に制御するという観点から利点がある。 Thus, the supercharging pressure and the EGR rate are control amounts that influence each other. Therefore, when trying to control the supercharging pressure to the target supercharging pressure with a predetermined followability by the supercharger 35, only the influence of the control of the supercharging pressure by the supercharger 35 on the supercharging pressure is considered. In addition, considering the influence of the control of the EGR rate by the EGR device 50 on the supercharging pressure is advantageous from the viewpoint of controlling the supercharging pressure to the target supercharging pressure with higher accuracy. Further, when the EGR device 50 tries to control the EGR rate with a predetermined followability to the target EGR rate, not only the influence of the control of the EGR rate by the EGR device 50 on the EGR rate but also the EGR rate is not considered. Considering the influence of supercharging pressure control by the supercharger 35 is advantageous from the viewpoint of controlling the EGR rate to the target EGR rate with higher accuracy.
 ここで、一般的には、上式1の比例ゲイン、積分ゲイン、および、微分ゲインは、上式1から算出される目標ベーン操作量Mvがベーンに入力されたときに過給圧が目標過給圧に所定の追従性でもって適切に制御されるような目標ベーン操作量が上式1から算出されるような値として予め実験等によって求められる。これに関し、上述したように、過給圧がEGR率の影響を受けることから、予め実験等によって求められた比例ゲイン、積分ゲイン、および、微分ゲイン(以下これらゲインをそれぞれ「基準比例ゲイン」「基準積分ゲイン」および「基準微分ゲイン」ともいう)は、EGR率が目標EGR率に所定の追従性でもって適切に制御されることを前提とした値になっているとも言える。したがって、基準比例ゲイン、基準積分ゲイン、および、基準微分ゲインを採用した上式1から算出される目標ベーン操作量は、過給圧が目標過給圧に所定の追従性でもって制御されると共にEGR率が目標EGR率に所定の追従性でもって制御されることを前提に設定されていることになる。したがって、基準比例ゲイン、基準積分ゲイン、および、基準微分ゲインを採用した上式1から算出される目標ベーン操作量がベーンに入力された場合、過給圧が目標過給圧に所定の追従性でもって制御され且つEGR率が目標EGR率に所定の追従性でもって制御される限りにおいては、過給圧が目標過給圧に所定の追従性でもって制御される。 Here, in general, the proportional gain, integral gain, and differential gain of the above equation 1 are set so that the supercharging pressure becomes the target excess when the target vane operation amount Mv calculated from the above equation 1 is input to the vane. A target vane operation amount that is appropriately controlled with predetermined followability to the supply pressure is obtained in advance by experiments or the like as a value calculated from the above equation 1. In this regard, as described above, since the supercharging pressure is affected by the EGR rate, a proportional gain, an integral gain, and a derivative gain (hereinafter referred to as “reference proportional gain”, “ It can be said that the “reference integral gain” and the “reference differential gain” are values based on the premise that the EGR rate is appropriately controlled with a predetermined followability to the target EGR rate. Therefore, the target vane operation amount calculated from the above equation 1 that employs the reference proportional gain, the reference integral gain, and the reference differential gain is controlled with a predetermined followability of the supercharging pressure to the target supercharging pressure. It is set on the assumption that the EGR rate is controlled with a predetermined followability to the target EGR rate. Therefore, when the target vane operation amount calculated from the above equation 1 that employs the reference proportional gain, the reference integral gain, and the reference differential gain is input to the vane, the supercharging pressure has a predetermined followability to the target supercharging pressure. Therefore, as long as it is controlled and the EGR rate is controlled with a predetermined followability to the target EGR rate, the supercharging pressure is controlled with a predetermined followability to the target supercharging pressure.
 云い方を換えれば、過給圧が目標過給圧に所定の追従性でもって制御されない場合、基準比例ゲイン、基準積分ゲイン、および、基準微分ゲインを採用した上式1から算出される目標ベーン操作量がベーンに入力されたとしても、当然のことながら、過給圧は目標過給圧に所定の追従性でもって制御されない。また、EGR率が目標EGR率に所定の追従性でもって制御されない場合にも、基準比例ゲイン、基準積分ゲイン、および、基準微分ゲインを採用した上式1から算出される目標ベーン操作量がベーンに入力されたとしても、過給圧は目標過給圧に所定の追従性でもって制御されない。 In other words, when the supercharging pressure is not controlled with a predetermined followability to the target supercharging pressure, the target vane calculated from the above equation 1 that employs the reference proportional gain, the reference integral gain, and the reference differential gain. Even if the operation amount is input to the vane, it is natural that the supercharging pressure is not controlled with a predetermined followability to the target supercharging pressure. Further, even when the EGR rate is not controlled with a predetermined followability to the target EGR rate, the target vane operation amount calculated from the above equation 1 that employs the reference proportional gain, the reference integral gain, and the reference differential gain is the vane. Even if it is input to the supercharging pressure, the supercharging pressure is not controlled with a predetermined followability to the target supercharging pressure.
 同様に、一般的には、上式2の比例ゲイン、積分ゲイン、および、微分ゲインは、上式4から算出される目標EGR制御弁操作量MegrがEGR制御弁に入力されたときにEGR率が目標EGR率に所定の追従性でもって適切に制御されるような目標EGR制御弁操作量が上式2から算出されるような値として予め実験等によって求められる。これに関し、上述したように、EGR率が過給圧の影響を受けることから、予め実験等によって求められた比例ゲイン、積分ゲイン、および、微分ゲイン(以下これらゲインをそれぞれ「基準比例ゲイン」「基準積分ゲイン」および「基準微分ゲイン」ともいう)は、過給圧が目標過給圧に所定の追従性でもって適切に制御されることを前提とした値になっているとも言える。したがって、これら基準比例ゲイン、基準積分ゲイン、および、基準微分ゲインを採用した上式2から算出される目標EGR制御弁操作量は、EGR率が目標EGR率に所定の追従性でもって制御されると共に過給圧が目標過給圧に所定の追従性でもって制御されることを前提に設定されていることになる。したがって、基準比例ゲイン、基準積分ゲイン、および、基準微分ゲインを採用した上式2から算出される目標EGR制御弁操作量がEGR制御弁に入力された場合、EGR率が目標EGR率に所定の追従性でもって制御され且つ過給圧が目標過給圧に所定の追従性でもって制御される限りにおいては、EGR率が目標EGR率に所定の追従性でもって制御される。 Similarly, generally, the proportional gain, integral gain, and differential gain of the above equation 2 are the EGR rate when the target EGR control valve operation amount Megr calculated from the above equation 4 is input to the EGR control valve. The target EGR control valve operation amount that is appropriately controlled with a predetermined followability to the target EGR rate is obtained in advance by experiments or the like as a value calculated from the above equation 2. In this regard, since the EGR rate is affected by the supercharging pressure as described above, the proportional gain, integral gain, and derivative gain (hereinafter referred to as “reference proportional gain”, “ It can also be said that the “reference integral gain” and “reference differential gain” are values based on the premise that the supercharging pressure is appropriately controlled with a predetermined followability to the target supercharging pressure. Therefore, the target EGR control valve operation amount calculated from the above equation 2 that employs the reference proportional gain, the reference integral gain, and the reference differential gain is controlled with a predetermined followability of the EGR rate to the target EGR rate. At the same time, the supercharging pressure is set on the premise that the supercharging pressure is controlled with a predetermined followability to the target supercharging pressure. Therefore, when the target EGR control valve operation amount calculated from the above equation 2 that employs the reference proportional gain, the reference integral gain, and the reference differential gain is input to the EGR control valve, the EGR rate is set to the target EGR rate. As long as it is controlled with follow-up and the supercharging pressure is controlled with a predetermined follow-up to the target supercharging pressure, the EGR rate is controlled with a predetermined follow-up with respect to the target EGR rate.
 云い方を換えれば、EGR率が目標EGR率に所定の追従性でもって制御されない場合、基準比例ゲイン、基準積分ゲイン、および、基準微分ゲインを採用した上式2から算出される目標EGR制御弁操作量がEGR制御弁に入力されたとしても、当然のことながら、EGR率は目標EGR率に所定の追従性でもって制御されない。また、過給圧が目標過給圧に所定の追従性でもって制御されない場合にも、基準比例ゲイン、基準積分ゲイン、および、基準微分ゲインを採用した上式2から算出される目標EGR制御弁操作量がEGR制御弁に入力されたとしても、EGR率は目標EGR率に所定の追従性でもって制御されない。 In other words, when the EGR rate is not controlled with a predetermined followability to the target EGR rate, the target EGR control valve calculated from the above equation 2 adopting the reference proportional gain, the reference integral gain, and the reference differential gain. Even if the operation amount is input to the EGR control valve, as a matter of course, the EGR rate is not controlled with a predetermined followability to the target EGR rate. Further, even when the supercharging pressure is not controlled with a predetermined followability to the target supercharging pressure, the target EGR control valve calculated from the above equation 2 that employs the reference proportional gain, the reference integral gain, and the reference differential gain. Even if the operation amount is input to the EGR control valve, the EGR rate is not controlled with a predetermined followability to the target EGR rate.
 そして、過給圧が目標過給圧に所定の追従性でもって制御されず或いはEGR率が目標EGR率に所定の追従性でもって制御されない場合、過給圧が目標過給圧に所定の追従性でもって制御され且つEGR率が目標EGR率に所定の追従性でもって制御されていれば得られるはずの所期の内燃機関の特性が得られないことにもなる。 If the supercharging pressure is not controlled with the target supercharging pressure with a predetermined followability, or the EGR rate is not controlled with the target EGR rate with a predetermined followability, the supercharging pressure follows the target supercharging pressure with a predetermined followability. Therefore, if the EGR rate is controlled with the predetermined EGR rate and the target EGR rate is controlled with a predetermined followability, the desired internal combustion engine characteristics cannot be obtained.
 ここで、EGR制御弁の応答が所期の応答であるにも係わらずベーンの応答が所期の応答よりも遅くなっている場合、過給圧偏差積算値がその基準値よりも大きく且つEGR率偏差積算値がその基準値よりも小さくなる。次に、このことについて説明する。 Here, if the response of the vane is slower than the intended response although the response of the EGR control valve is the intended response, the boost pressure deviation integrated value is larger than the reference value and the EGR The rate deviation integrated value becomes smaller than the reference value. Next, this will be described.
 すなわち、目標過給圧が上昇せしめられると目標EGR率は低下せしめられる。したがって、このときには、実過給圧を目標過給圧に向かって上昇させるためにベーン開度が小さくされると同時に、実EGR率を目標EGR率に向かって低下させるためにEGR制御弁開度が小さくされる。 That is, when the target supercharging pressure is increased, the target EGR rate is decreased. Therefore, at this time, the vane opening is made small in order to increase the actual supercharging pressure toward the target supercharging pressure, and at the same time, the EGR control valve opening is used to decrease the actual EGR rate toward the target EGR rate. Is reduced.
 ここで、上述したように、ベーン開度が小さくされると排気圧が上昇し、その結果、過給圧が上昇する。一方、EGR制御弁開度が小さくされても排気圧が上昇し、その結果、過給圧が上昇する。すなわち、ベーン開度とEGR制御弁開度とが同時に小さくされると、ベーン開度の減少に起因する排気圧の上昇とEGR制御弁開度の減少に起因する排気圧の上昇とによって過給圧が上昇せしめられることになる。ここで、EGR制御弁の応答が所期の応答であるにも係わらずベーンの応答が所期の応答よりも遅い場合、EGR制御弁開度の減少に起因する排気圧の上昇速度が所期の速度であるにも係わらずベーン開度の減少に起因する排気圧の上昇速度は所期の速度よりも遅くなる。このため、全体としては、過給圧の上昇速度が所期の速度よりも遅くなる。したがって、EGR制御弁の応答が所期の応答であるにも係わらずベーンの応答が所期の応答よりも遅い場合において実過給圧を上昇させようとしたときには、過給圧偏差積算値はその基準値よりも大きくなる。 Here, as described above, when the vane opening is decreased, the exhaust pressure increases, and as a result, the supercharging pressure increases. On the other hand, even if the EGR control valve opening is reduced, the exhaust pressure increases, and as a result, the supercharging pressure increases. That is, when the vane opening and the EGR control valve opening are simultaneously reduced, the supercharging is caused by the increase in the exhaust pressure due to the decrease in the vane opening and the increase in the exhaust pressure due to the decrease in the EGR control valve opening. The pressure will be raised. Here, when the response of the vane is slower than the intended response even though the response of the EGR control valve is the intended response, the rate of increase of the exhaust pressure due to the decrease in the opening degree of the EGR control valve is In spite of this speed, the exhaust pressure increase rate due to the decrease in the vane opening becomes slower than the intended speed. For this reason, as a whole, the increase speed of the supercharging pressure becomes slower than the intended speed. Therefore, when the actual supercharging pressure is to be increased when the response of the EGR control valve is the intended response but the vane response is slower than the intended response, the supercharging pressure deviation integrated value is It becomes larger than the reference value.
 一方、上述したように、ベーン開度が小さくされると排気圧が上昇し、その結果、排気圧と過給圧との差圧が大きくなることから、EGRガス量が増大する。一方、EGR制御弁開度が小さくされると、当然のことながら、EGRガス量が減少する。すなわち、ベーン開度とEGR制御弁開度とが同時に小さくされると、ベーン開度の減少に起因するEGRガス量の増大とEGR制御弁開度の減少に起因するEGRガス量の減少とが同時に発生する。ここで、EGR制御弁の応答が所期の応答であるにも係わらずベーンの応答が所期の応答よりも遅い場合、EGR制御弁開度の減少に起因するEGRガス量の減少速度が所期の速度であるにも係わらずベーン開度の減少に起因するEGRガス量の増大速度が所期の速度よりも遅くなる。このため、全体としては、EGRガス量の減少速度が所期の速度よりも速くなる。したがって、EGR制御弁の応答が所期の応答であるにも係わらずベーンの応答が所期の応答よりも遅い場合において実EGR率を低下させようとしたときには、EGR率偏差積算値がその基準値よりも小さくなる。 On the other hand, as described above, when the vane opening is reduced, the exhaust pressure increases, and as a result, the differential pressure between the exhaust pressure and the supercharging pressure increases, and the EGR gas amount increases. On the other hand, when the EGR control valve opening is reduced, the EGR gas amount naturally decreases. That is, when the vane opening and the EGR control valve opening are simultaneously reduced, an increase in the EGR gas amount due to the decrease in the vane opening and a decrease in the EGR gas amount due to the decrease in the EGR control valve opening. It occurs at the same time. Here, when the response of the vane is slower than the intended response even though the response of the EGR control valve is the intended response, the rate of decrease of the EGR gas amount due to the decrease in the opening degree of the EGR control valve is The increase rate of the EGR gas amount due to the decrease in the vane opening degree is slower than the intended speed, regardless of the intended speed. For this reason, as a whole, the rate of decrease of the EGR gas amount becomes faster than the intended rate. Therefore, when the actual EGR rate is to be reduced when the response of the vane is slower than the intended response even though the response of the EGR control valve is the intended response, the integrated value of the EGR rate deviation is the reference value. Smaller than the value.
 また、目標過給圧が低下せしめられると目標EGR率は上昇せしめられる。したがって、このときには、実過給圧を目標過給圧に向かって低下させるためにベーン開度が大きくされると同時に、実EGR率を目標EGR率に向かって上昇させるためにEGR制御弁開度も大きくされる。 Also, when the target supercharging pressure is lowered, the target EGR rate is raised. Accordingly, at this time, the vane opening is increased in order to decrease the actual supercharging pressure toward the target supercharging pressure, and at the same time, the EGR control valve opening is increased in order to increase the actual EGR rate toward the target EGR rate. Is also enlarged.
 ここで、上述したように、ベーン開度が大きくされると排気圧が低下し、その結果、過給圧が低下する。一方、EGR制御弁開度が大きくされても排気圧が低下し、その結果、過給圧が低下する。すなわち、ベーン開度とEGR制御弁開度とが同時に大きくされると、ベーン開度の増大に起因する排気圧の低下とEGR制御弁開度の増大に起因する排気圧の低下とによって過給圧が低下せしめられることになる。ここで、EGR制御弁の応答が所期の応答であるにも係わらずベーンの応答が所期の応答よりも遅い場合、EGR制御弁開度の増大に起因する排気圧の低下速度が所期の速度であるにも係わらずベーン開度の増大に起因する排気圧の低下速度が所期の速度よりも遅くなる。このため、全体としては、過給圧の低下速度が所期の速度よりも遅くなる。したがって、EGR制御弁の応答が所期の応答であるにも係わらずベーンの応答が所期の応答よりも遅い場合において実過給圧を低下させようとしたときには、過給圧偏差積算値はその基準値よりも大きくなる。 Here, as described above, when the vane opening degree is increased, the exhaust pressure is decreased, and as a result, the supercharging pressure is decreased. On the other hand, even if the EGR control valve opening is increased, the exhaust pressure decreases, and as a result, the supercharging pressure decreases. That is, when the vane opening and the EGR control valve opening are simultaneously increased, supercharging is caused by a decrease in the exhaust pressure due to the increase in the vane opening and a decrease in the exhaust pressure due to the increase in the EGR control valve opening. The pressure will be reduced. Here, when the response of the vane is slower than the intended response although the response of the EGR control valve is the intended response, the rate of decrease in the exhaust pressure due to the increase in the opening degree of the EGR control valve is In spite of this speed, the exhaust pressure lowering speed due to the increase in the vane opening becomes slower than the intended speed. For this reason, as a whole, the decrease speed of the supercharging pressure becomes slower than the intended speed. Therefore, when the actual boost pressure is to be reduced when the response of the EGR control valve is the intended response but the vane response is slower than the intended response, the boost pressure deviation integrated value is It becomes larger than the reference value.
 一方、上述したように、ベーン開度が大きくされると排気圧が低下し、その結果、排気圧と過給圧との差圧が小さくなることから、EGRガス量が減少する。一方、EGR制御弁開度が大きくされると、当然のことながら、EGRガス量が増大する。すなわち、ベーン開度とEGR制御弁開度とが同時に大きくされると、ベーン開度の増大に起因するEGRガス量の減少とEGR制御弁開度の増大に起因するEGRガス量の増大とが同時に発生する。ここで、EGR制御弁の応答が所期の応答であるにも係わらずベーンの応答が所期の応答よりも遅い場合、EGR制御弁開度の増大に起因するEGRガス量の増大速度が所期の速度であるにも係わらずベーン開度の増大に起因するEGRガス量の減少速度が所期の速度よりも遅くなる。このため、全体としては、EGRガス量の増大速度が所期の速度よりも速くなる。したがって、EGR制御弁の応答が所期の応答であるにも係わらずベーンの応答が所期の応答よりも遅い場合において実EGR率を上昇させようとしたときには、EGR率偏差積算値がその基準値よりも小さくなる。 On the other hand, as described above, when the vane opening degree is increased, the exhaust pressure is decreased, and as a result, the differential pressure between the exhaust pressure and the supercharging pressure is decreased, so that the EGR gas amount is decreased. On the other hand, when the EGR control valve opening is increased, the amount of EGR gas naturally increases. That is, when the vane opening and the EGR control valve opening are increased simultaneously, the decrease in the EGR gas amount due to the increase in the vane opening and the increase in the EGR gas amount due to the increase in the EGR control valve opening. It occurs at the same time. Here, when the response of the vane is slower than the intended response although the response of the EGR control valve is the intended response, the increase rate of the EGR gas amount due to the increase of the EGR control valve opening degree is Despite the initial speed, the rate of decrease in the EGR gas amount due to the increase in the vane opening becomes slower than the intended speed. For this reason, as a whole, the increasing rate of the EGR gas amount becomes faster than the intended rate. Accordingly, when the actual EGR rate is to be increased when the response of the vane is slower than the intended response even though the response of the EGR control valve is the intended response, the EGR rate deviation integrated value is the reference value. Smaller than the value.
 このように、EGR制御弁の応答が所期の応答であるにも係わらずベーンの応答が所期の応答よりも遅い場合、過給圧偏差積算値がその基準値よりも大きく且つEGR率偏差積算値がその基準値よりも小さくなるのである。 Thus, when the response of the EGR control valve is the intended response but the vane response is slower than the intended response, the boost pressure deviation integrated value is larger than the reference value and the EGR rate deviation The integrated value becomes smaller than the reference value.
 ここで、ベーン操作量が大きくされれば、ベーンの応答が速くなる。したがって、過給圧偏差積算値がその基準値よりも大きく且つEGR率偏差積算値がその基準値よりも小さい場合に、ベーン操作量が大きくされれば、ベーンの応答が速くなり、その結果、実過給圧の変化速度(すなわち、実過給圧を上昇させるときの実過給圧の上昇速度、または、実過給圧を低下させるときの実過給圧の低下速度)が所期の速度に近づくことになる。そこで、第1実施形態では、この場合には、ベーン操作量比例ゲインが大きくなるようにベーン操作量比例ゲインに第1補正値が加算されるのである。このようにベーン操作量比例ゲインが大きくされれば、設定される目標ベーン操作量が大きくなる。これによれば、ベーンの応答が速くなり、その結果、実過給圧の変化速度が速くなって所期の速度に近づく。そして、こうしたベーン操作量比例ゲインの補正が繰り返されれば、最終的には、実過給圧の変化速度が所期の速度に到達する。したがって、実過給圧が目標過給圧に所定の追従性でもって制御されることになる。 Here, if the amount of vane operation is increased, the response of the vanes becomes faster. Therefore, when the supercharging pressure deviation integrated value is larger than the reference value and the EGR rate deviation integrated value is smaller than the reference value, if the vane operation amount is increased, the response of the vane becomes faster. The actual turbocharging pressure change speed (that is, the actual turbocharging pressure increasing speed when increasing the actual turbocharging pressure, or the actual turbocharging pressure decreasing speed when decreasing the actual turbocharging pressure) It will approach speed. Therefore, in the first embodiment, in this case, the first correction value is added to the vane operation amount proportional gain so as to increase the vane operation amount proportional gain. Thus, if the vane operation amount proportional gain is increased, the set target vane operation amount is increased. According to this, the response of the vane becomes faster, and as a result, the change speed of the actual supercharging pressure becomes faster and approaches the intended speed. Then, if the correction of the vane operation amount proportional gain is repeated, the change speed of the actual supercharging pressure finally reaches the intended speed. Therefore, the actual supercharging pressure is controlled with a predetermined followability to the target supercharging pressure.
 一方、EGR制御弁操作量が小さくされれば、EGR制御弁の応答が遅くなる。したがって、過給圧偏差積算値がその基準値よりも大きく且つEGR率偏差積算値がその基準値よりも小さい場合に、EGR制御弁操作量が小さくされれば、EGR制御弁の応答が遅くなり、その結果、実EGR率の変化速度(すなわち、実EGR率を低下させるときの実EGR率の低下速度、または、実EGR率を上昇させるときの実EGR率の上昇速度)が所期の速度に近づくことになる。そこで、第1実施形態では、この場合には、EGR制御弁操作量比例ゲインが小さくなるようにEGR制御弁操作量比例ゲインから第1補正値が減算されるのである。このようにEGR制御弁操作量比例ゲインが小さくされれば、設定される目標EGR制御弁操作量が小さくなる。これによれば、EGR制御弁の応答が遅くなり、その結果、実EGR率の変化速度が遅くなって所期の速度に近づく。そして、こうしたEGR制御弁操作量比例ゲインの補正が繰り返されれば、最終的には、実EGR率の変化速度が所期の速度に到達する。したがって、実EGR率が目標EGR率に所定の追従性でもって制御されることになる。 On the other hand, if the operation amount of the EGR control valve is reduced, the response of the EGR control valve is delayed. Therefore, when the supercharging pressure deviation integrated value is larger than the reference value and the EGR rate deviation integrated value is smaller than the reference value, if the EGR control valve operation amount is reduced, the response of the EGR control valve is delayed. As a result, the change rate of the actual EGR rate (that is, the decrease rate of the actual EGR rate when the actual EGR rate is decreased or the increase rate of the actual EGR rate when the actual EGR rate is increased) is an intended rate. Will approach. Therefore, in the first embodiment, in this case, the first correction value is subtracted from the EGR control valve operation amount proportional gain so that the EGR control valve operation amount proportional gain becomes smaller. Thus, if the EGR control valve operation amount proportional gain is decreased, the set target EGR control valve operation amount is decreased. According to this, the response of the EGR control valve becomes slow, and as a result, the change speed of the actual EGR rate becomes slow and approaches the intended speed. Then, if the correction of the EGR control valve operation amount proportional gain is repeated, the actual EGR rate change speed finally reaches the intended speed. Therefore, the actual EGR rate is controlled with a predetermined followability to the target EGR rate.
 なお、上述した第1補正値を用いたベーン操作量比例ゲインの補正によれば、ベーンの応答が速くなることから、ベーン開度の変化に起因するEGRガス量の変化の速度が速くなる。このことからも、実EGR率の変化速度が遅くなって所期の速度に近づく。したがって、より早期に、実EGR率が目標EGR率に所定の追従性でもって制御されるようになる。 In addition, according to the correction | amendment of the vane operation amount proportional gain using the 1st correction value mentioned above, since the response of a vane becomes quick, the speed of the change of the EGR gas amount resulting from the change of a vane opening degree becomes quick. Also from this, the rate of change of the actual EGR rate becomes slow and approaches the intended rate. Therefore, the actual EGR rate is controlled with a predetermined followability to the target EGR rate earlier.
 斯くして、第1実施形態によれば、過給圧偏差積算値がその基準値よりも大きく且つEGR率偏差積算値がその基準値よりも小さく、したがって、EGR制御弁の応答が所期の応答であるにも係わらずベーンの応答が所期の応答よりも遅い場合においても、実過給圧を目標過給圧に所定の追従性でもって制御することができると共に実EGR率を目標EGR率に所定の追従性でもって制御することができ、或いは、少なくとも、実過給圧と実EGR率とをそれぞれ目標過給圧と目標EGR率とにバランス良く制御することができるのである。 Thus, according to the first embodiment, the supercharging pressure deviation integrated value is larger than the reference value and the EGR rate deviation integrated value is smaller than the reference value, and therefore the response of the EGR control valve is expected. Even when the response of the vane is slower than the intended response, the actual supercharging pressure can be controlled to the target supercharging pressure with a predetermined followability, and the actual EGR rate can be set to the target EGR. The rate can be controlled with a predetermined followability, or at least the actual boost pressure and the actual EGR rate can be controlled in good balance with the target boost pressure and the target EGR rate, respectively.
 なお、比例ゲインを補正するために利用される第1補正値は、過給圧偏差積算値がその基準値よりも大きく且つEGR率偏差積算値がその基準値よりも小さい場合において目標過給圧追従性を可能な限り早期に所定の追従性に到達させることができ且つ目標EGR率追従性を所定の追従性よりも低くしない値に設定される。 The first correction value used for correcting the proportional gain is the target boost pressure when the boost pressure deviation integrated value is larger than the reference value and the EGR rate deviation integrated value is smaller than the reference value. The followability can be set to a value that can reach the predetermined followability as early as possible and the target EGR rate followability is not lower than the predetermined followability.
 また、第1補正値を利用した比例ゲインの補正は、過給圧偏差積算値がその基準値よりも大きく且つEGR率偏差積算値がその基準値よりも小さいことをもって、すなわち、ベーンの応答が所期の応答よりも遅く且つEGR制御弁の応答が所期の応答であることを行われる。云い換えれば、過給圧偏差積算値およびEGR率偏差積算値がそれらの基準値からどの程度ずれているかが考慮されずに、ベーン操作量比例ゲインおよびEGR制御弁操作量比例ゲインが補正される。したがって、第1補正値は、1回のベーン操作量比例ゲインおよびEGR制御弁操作量比例ゲインの補正によって目標過給圧追従性が所定の追従性を大きく越えて高くならず且つ目標EGR率追従性が所定の追従性を大きく越えて低くならない程度に小さい値に設定されることが好ましいと考えられる。 Further, the correction of the proportional gain using the first correction value is that the supercharging pressure deviation integrated value is larger than the reference value and the EGR rate deviation integrated value is smaller than the reference value. It is performed that the response of the EGR control valve is an expected response later than the intended response. In other words, the vane manipulated variable proportional gain and the EGR control valve manipulated variable proportional gain are corrected without considering how much the boost pressure deviation accumulated value and the EGR rate deviation accumulated value deviate from their reference values. . Therefore, the first correction value is obtained by correcting the target boost pressure follow-up significantly beyond the predetermined follow-up by the correction of the one-time vane manipulated variable proportional gain and the EGR control valve manipulated variable proportional gain, and the target EGR rate follow-up. It is considered that it is preferable to set the value to such a small value that the performance does not greatly exceed the predetermined followability.
 また、第1実施形態では、ベーン操作量比例ゲインおよびEGR制御弁操作量比例ゲインの補正を簡便なものにすると共にこれら比例ゲインをバランス良く補正するという観点から、これら比例ゲインを補正するための補正値として同じ第1補正値を利用している。しかしながら、必要があれば、各比例ゲインを補正するための補正値を互いに異なる値としてもよい。 In the first embodiment, the correction of the proportional gain is performed from the viewpoint of simplifying the correction of the vane operation amount proportional gain and the EGR control valve operation amount proportional gain and correcting the proportional gain in a balanced manner. The same first correction value is used as the correction value. However, if necessary, the correction values for correcting each proportional gain may be different from each other.
 また、第1実施形態では、第1補正値をベーン操作量比例ゲインに加算することによって同ゲインを補正しているが、必要に応じて、1よりも大きい特定の値をベーン操作量比例ゲインに乗算することによって同ゲインを補正するようにしてもよい。また、第1実施形態では、第1補正値をEGR制御弁操作量比例ゲインから減算することによって同ゲインを補正しているが、必要に応じて、1よりも小さい特定の値をEGR制御弁操作量比例ゲインに乗算することによって同ゲインを補正するようにしてもよい。なお、この場合、これら比例ゲインをバランス良く補正するという観点では、これら比例ゲインに乗算される特定の値は、それら特定の値の総和が一定の値になるように設定され、或いは、それら特定の値の比が一定の値になるように設定されると好ましいと考えられる。 In the first embodiment, the gain is corrected by adding the first correction value to the vane operation amount proportional gain. However, if necessary, a specific value larger than 1 is set to a vane operation amount proportional gain. The gain may be corrected by multiplying by. In the first embodiment, the gain is corrected by subtracting the first correction value from the EGR control valve operation amount proportional gain. However, if necessary, a specific value smaller than 1 is set to an EGR control valve. The gain may be corrected by multiplying the manipulated variable proportional gain. In this case, in terms of correcting these proportional gains in a well-balanced manner, the specific values multiplied by these proportional gains are set such that the sum of the specific values becomes a constant value, or It is considered preferable that the ratio of the values is set to a constant value.
 また、ベーンの応答が所期の応答であるにも係わらずEGR制御弁の応答が所期の応答よりも遅くなっている場合、過給圧偏差積算値がその基準値よりも大きく且つEGR率偏差積算値がその基準値よりも大きくなる。次に、このことについて説明する。 Further, when the response of the EGR control valve is slower than the intended response although the vane response is the intended response, the supercharging pressure deviation integrated value is larger than the reference value and the EGR rate The deviation integrated value becomes larger than the reference value. Next, this will be described.
 すなわち、目標過給圧が上昇せしめられると目標EGR率は低下せしめられる。したがって、このときには、実過給圧を目標過給圧に向かって上昇させるためにベーン開度が小さくされると同時に、実EGR率を目標EGR率に向かって低下させるためにEGR制御弁開度が小さくされる。 That is, when the target supercharging pressure is increased, the target EGR rate is decreased. Therefore, at this time, the vane opening is made small in order to increase the actual supercharging pressure toward the target supercharging pressure, and at the same time, the EGR control valve opening is used to decrease the actual EGR rate toward the target EGR rate. Is reduced.
 ここで、上述したように、ベーン開度とEGR制御弁開度とが同時に小さくされると、ベーン開度の減少に起因する排気圧の上昇とEGR制御弁開度の減少に起因する排気圧の上昇とによって過給圧が上昇せしめられることになる。ここで、ベーンの応答が所期の応答であるにも係わらずEGR制御弁の応答が所期の応答よりも遅い場合、ベーン開度の減少に起因する排気圧の上昇速度が所期の速度であるにも係わらずEGR制御弁開度の減少に起因する排気圧の上昇速度は所期の速度よりも遅くなる。このため、全体としては、過給圧の上昇速度が所期の速度よりも遅くなる。したがって、ベーンの応答が所期の応答であるにも係わらずEGR制御弁の応答が所期の応答よりも遅い場合において実過給圧を上昇させようとしたときには、過給圧偏差積算値はその基準値よりも大きくなる。 Here, as described above, when the vane opening and the EGR control valve opening are simultaneously reduced, the exhaust pressure increases due to the decrease in the vane opening and the exhaust pressure due to the decrease in the EGR control valve opening. As a result, the boost pressure is increased. Here, when the response of the EGR control valve is slower than the intended response although the response of the vane is the intended response, the exhaust pressure increase rate due to the decrease in the vane opening is the expected speed. In spite of this, the exhaust pressure increase rate due to the decrease in the opening degree of the EGR control valve becomes slower than the intended speed. For this reason, as a whole, the increase speed of the supercharging pressure becomes slower than the intended speed. Therefore, when the actual boost pressure is to be increased when the response of the EGR control valve is slower than the expected response even though the vane response is the expected response, the boost pressure deviation integrated value is It becomes larger than the reference value.
 一方、上述したように、ベーン開度とEGR制御弁開度とが同時に小さくされると、ベーン開度の減少に起因するEGRガス量の増大とEGR制御弁開度の減少に起因するEGRガス量の減少とが同時に発生する。ここで、ベーンの応答が所期の応答であるにも係わらずEGR制御弁の応答が所期の応答よりも遅い場合、ベーン開度の減少に起因するEGRガス量の増大速度が所期の速度であるにも係わらずEGR制御弁開度の減少に起因するEGRガス量の減少速度が所期の速度よりも遅くなる。このため、全体としては、EGRガス量の減少速度が所期の速度よりも遅くなる。したがって、ベーンの応答が所期の応答であるにも係わらずEGR制御弁の応答が所期の応答よりも遅い場合において実EGR率を低下させようとしたときには、EGR率偏差積算値がその基準値よりも大きくなる。 On the other hand, as described above, when the vane opening and the EGR control valve opening are simultaneously reduced, the EGR gas increases due to the decrease in the vane opening and the EGR gas due to the decrease in the EGR control valve opening. A decrease in volume occurs at the same time. Here, when the response of the EGR control valve is slower than the intended response although the response of the vane is the intended response, the increase rate of the EGR gas amount due to the decrease in the vane opening is the desired response. Regardless of the speed, the rate of decrease in the amount of EGR gas caused by the decrease in the opening degree of the EGR control valve becomes slower than the intended rate. For this reason, as a whole, the rate of decrease in the amount of EGR gas becomes slower than the intended rate. Therefore, when the actual EGR rate is to be lowered when the response of the EGR control valve is slower than the intended response even though the vane response is the intended response, the EGR rate deviation integrated value is the reference value. Larger than the value.
また、目標過給圧が低下せしめられると目標EGR率は上昇せしめられる。したがって、このときには、実過給圧を目標過給圧に向かって低下させるためにベーン開度が大きくされると同時に、実EGR率を目標EGR率に向かって上昇させるためにEGR制御弁開度も大きくされる。 Further, when the target supercharging pressure is lowered, the target EGR rate is raised. Accordingly, at this time, the vane opening is increased in order to decrease the actual supercharging pressure toward the target supercharging pressure, and at the same time, the EGR control valve opening is increased in order to increase the actual EGR rate toward the target EGR rate. Is also enlarged.
 ここで、上述したように、ベーン開度とEGR制御弁開度とが同時に大きくされると、ベーン開度の増大に起因する排気圧の低下とEGR制御弁開度の増大に起因する排気圧の低下とによって過給圧が低下せしめられることになる。ここで、ベーンの応答が所期の応答であるにも係わらずEGR制御弁の応答が所期の応答よりも遅い場合、ベーン開度の増大に起因する排気圧の低下速度が所期の速度であるにも係わらずEGR制御弁開度の増大に起因する排気圧の低下速度が所期の速度よりも遅くなる。このため、全体としては、過給圧の低下速度が所期の速度よりも遅くなる。したがって、ベーンの応答が所期の速度であるにも係わらずEGR制御弁の応答が所期の応答よりも遅い場合において実過給圧を低下させようとしたときには、過給圧偏差積算値はその基準値よりも大きくなる。 Here, as described above, when the vane opening and the EGR control valve opening are simultaneously increased, the exhaust pressure decreases due to the increase in the vane opening and the exhaust pressure due to the increase in the EGR control valve opening. As a result, the supercharging pressure is reduced. Here, when the response of the EGR control valve is slower than the intended response although the response of the vane is the intended response, the rate of decrease in the exhaust pressure due to the increase in the vane opening is the desired rate. In spite of this, the exhaust pressure reduction rate due to the increase in the EGR control valve opening becomes slower than the intended rate. For this reason, as a whole, the decrease speed of the supercharging pressure becomes slower than the intended speed. Therefore, when the actual supercharging pressure is to be reduced when the response of the EGR control valve is slower than the intended response even though the vane response is the intended speed, the supercharging pressure deviation integrated value is It becomes larger than the reference value.
 一方、上述したように、ベーン開度とEGR制御弁開度とが同時に大きくされると、ベーン開度の増大に起因するEGRガス量の減少とEGR制御弁開度の増大に起因するEGRガス量の増大とが同時に発生する。ここで、ベーンの応答が所期の応答であるにも係わらずEGR制御弁の応答が所期の応答よりも遅い場合、ベーン開度の増大に起因するEGRガス量の減少速度が所期の速度であるにも係わらずEGR制御弁開度の増大に起因するEGRガス量の増大速度が所期の速度よりも遅くなる。このため、全体としては、EGRガス量の増大速度が所期の速度よりも遅くなる。したがって、ベーンの応答が所期の応答であるにも係わらずEGR制御弁の応答が所期の応答よりも遅い場合において実EGR率を上昇させようとしたときには、EGR率偏差積算値がその基準値よりも大きくなる。 On the other hand, as described above, when the vane opening and the EGR control valve opening are simultaneously increased, the EGR gas is decreased due to the increase in the vane opening and the EGR gas is increased due to the increase in the EGR control valve opening. An increase in quantity occurs simultaneously. Here, when the response of the EGR control valve is slower than the intended response even though the response of the vane is the intended response, the rate of decrease in the EGR gas amount due to the increase in the vane opening is the desired response. Regardless of the speed, the increase rate of the EGR gas amount due to the increase in the opening degree of the EGR control valve becomes slower than the intended speed. For this reason, as a whole, the rate of increase in the amount of EGR gas is slower than the intended rate. Therefore, when the actual EGR rate is to be increased when the response of the EGR control valve is slower than the intended response even though the vane response is the intended response, the EGR rate deviation integrated value is the reference value. Larger than the value.
 このように、ベーンの応答が所期の応答であるにも係わらずEGR制御弁の応答が所期の応答よりも遅い場合、過給圧偏差積算値がその基準値よりも大きく且つEGR率偏差積算値がその基準値よりも大きくなるのである。 As described above, when the response of the EGR control valve is slower than the intended response although the vane response is the intended response, the supercharging pressure deviation integrated value is larger than the reference value and the EGR rate deviation The integrated value becomes larger than the reference value.
 ここで、EGR制御弁操作量が大きくされれば、EGR制御弁の応答が速くなる。したがって、過給圧偏差積算値がその基準値よりも大きく且つEGR率偏差積算値がその基準値よりも大きい場合に、EGR制御弁操作量が大きくされれば、EGR制御弁の応答が速くなり、その結果、実EGR率の偏差速度が所期の速度に近づくことになる。そこで、第1実施形態では、この場合には、EGR制御弁操作量比例ゲインが大きくなるようにEGR制御弁操作量比例ゲインに第2補正値が乗算されるのである。このようにEGR制御弁操作量比例ゲインが大きくされれば、設定される目標EGR制御弁操作量が大きくなる。これによれば、EGR制御弁の応答が速くなり、その結果、実EGRの率変化速度が速くなって所期の速度に近づく。そして、こうしたEGR制御弁操作量比例ゲインの補正が繰り返されれば、最終的には、実EGR率の変化速度が所期の速度に到達する。したがって、実EGR率が目標EGR率に所定の追従性でもって制御されることになる。 Here, if the operation amount of the EGR control valve is increased, the response of the EGR control valve becomes faster. Therefore, when the boost pressure deviation integrated value is larger than the reference value and the EGR rate deviation integrated value is larger than the reference value, if the EGR control valve operation amount is increased, the response of the EGR control valve becomes faster. As a result, the deviation speed of the actual EGR rate approaches the intended speed. Therefore, in the first embodiment, in this case, the EGR control valve operation amount proportional gain is multiplied by the second correction value so that the EGR control valve operation amount proportional gain is increased. Thus, if the EGR control valve operation amount proportional gain is increased, the set target EGR control valve operation amount is increased. According to this, the response of the EGR control valve becomes faster, and as a result, the rate change rate of the actual EGR becomes faster and approaches the intended speed. Then, if the correction of the EGR control valve operation amount proportional gain is repeated, the actual EGR rate change speed finally reaches the intended speed. Therefore, the actual EGR rate is controlled with a predetermined followability to the target EGR rate.
 一方、ベーン操作量が大きくされれば、ベーンの応答が速くなる。したがって、過給圧偏差積算値がその基準値よりも大きく且つEGR率偏差積算値がその基準値よりも大きい場合に、ベーン操作量が大きくされれば、ベーンの応答が速くなり、その結果、実過給圧の変化速度が所期の速度に近づくことになる。そこで、第1実施形態では、この場合には、ベーン操作量比例ゲインが大きくなるようにベーン操作量比例ゲインに第2補正値が乗算されるのである。このようにベーン操作量比例ゲインが大きくされれば、設定される目標ベーン操作量が大きくなる。これによれば、ベーンの応答が速くなり、その結果、実過給圧の変化速度が速くなって所期の速度に近づく。そして、こうしたベーン操作量ゲインの補正が繰り返されれば、最終的には、実過給圧の変化速度が所期の速度に到達する。したがって、実過給圧が目標過給圧に所定の追従性でもって制御されることになる。 On the other hand, if the vane operation amount is increased, the response of the vanes becomes faster. Therefore, when the supercharging pressure deviation integrated value is larger than the reference value and the EGR rate deviation integrated value is larger than the reference value, if the vane operation amount is increased, the response of the vane becomes faster. The change speed of the actual supercharging pressure approaches the expected speed. Therefore, in the first embodiment, in this case, the vane operation amount proportional gain is multiplied by the second correction value so that the vane operation amount proportional gain is increased. Thus, if the vane operation amount proportional gain is increased, the set target vane operation amount is increased. According to this, the response of the vane becomes faster, and as a result, the change speed of the actual supercharging pressure becomes faster and approaches the intended speed. If the correction of the vane operation amount gain is repeated, the change speed of the actual supercharging pressure finally reaches the intended speed. Therefore, the actual supercharging pressure is controlled with a predetermined followability to the target supercharging pressure.
 なお、上述した第2補正値を用いたEGR制御弁操作量比例ゲインの補正によれば、EGR制御弁の応答が速くなることから、EGR制御弁開度の変化に起因する排気圧の変化の速度が遅くなる。このことからも、実過給圧の変化速度が速くなって所期の速度に近づく。したがって、より早期に、実過給圧が目標過給圧に所定の追従性でもって制御されるようになる。 In addition, according to the correction of the EGR control valve operation amount proportional gain using the second correction value described above, the response of the EGR control valve becomes faster, so that the change of the exhaust pressure due to the change of the EGR control valve opening degree is reduced. The speed is slow. Also from this, the change speed of the actual supercharging pressure increases and approaches the expected speed. Therefore, the actual supercharging pressure is controlled with a predetermined followability to the target supercharging pressure earlier.
 斯くして、第1実施形態によれば、過給圧偏差積算値がその基準値よりも大きく且つEGR率偏差積算値がその基準値よりも大きく、したがって、ベーンの応答が所期の応答であるにも係わらずEGR制御弁の応答が所期の応答よりも遅い場合においても、実過給圧を目標過給圧に所定の追従性でもって制御することができると共に実EGR率を目標EGR率に所定の追従性でもって制御することができ、或いは、実過給圧と実EGR率とをそれぞれ目標過給圧と目標EGR率とに対してバランス良く制御することができるのである。 Thus, according to the first embodiment, the supercharging pressure deviation integrated value is larger than the reference value and the EGR rate deviation integrated value is larger than the reference value, and therefore the vane response is the desired response. Nevertheless, even when the response of the EGR control valve is slower than the intended response, the actual boost pressure can be controlled with a predetermined follow-up to the target boost pressure and the actual EGR rate can be set to the target EGR rate. The rate can be controlled with a predetermined followability, or the actual boost pressure and the actual EGR rate can be controlled in a balanced manner with respect to the target boost pressure and the target EGR rate, respectively.
 なお、比例ゲインを補正するために利用される第2補正値は、過給圧偏差積算値がその基準値よりも大きく且つEGR率偏差積算値がその基準値よりも大きい場合において目標過給圧追従性を可能な限り早期に所定の追従性に到達させることができ且つ目標EGR率追従性を可能な限り早期に所定の追従性に到達させることができる値に設定される。 Note that the second correction value used for correcting the proportional gain is the target boost pressure when the boost pressure deviation integrated value is larger than the reference value and the EGR rate deviation integrated value is larger than the reference value. The followability can be set to a value that can reach the predetermined followability as early as possible and the target EGR rate followability can reach the predetermined followability as early as possible.
 また、第2補正値を利用した比例ゲインの補正は、過給圧偏差積算値がその基準値よりも大きく且つEGR率偏差積算値がその基準値よりも大きいことをもって、すなわち、ベーンの応答が所定の応答であって且つEGR制御弁の応答が所定の応答よりも遅いことをもって行われる。云い換えれば、過給圧偏差積算値およびEGR率偏差積算値がそれらの基準値からどの程度ずれているかが考慮されずに、ベーン操作量比例ゲインおよびEGR制御弁操作量比例ゲインが補正される。したがって、第2補正値は、1回のベーン操作量比例ゲインおよびEGR制御弁操作量比例ゲインの補正によって目標過給圧追従性および目標EGR率追従性が所定の追従性を大きく越えて高くならない程度に小さい値に設定されることが好ましいと考えられる。 Further, the correction of the proportional gain using the second correction value is based on the fact that the supercharging pressure deviation integrated value is larger than the reference value and the EGR rate deviation integrated value is larger than the reference value. The predetermined response is performed when the response of the EGR control valve is slower than the predetermined response. In other words, the vane manipulated variable proportional gain and the EGR control valve manipulated variable proportional gain are corrected without considering how much the boost pressure deviation accumulated value and the EGR rate deviation accumulated value deviate from their reference values. . Therefore, the second correction value does not increase the target boost pressure follow-up performance and the target EGR rate follow-up performance greatly beyond the predetermined follow-up performance by correcting the vane operation amount proportional gain and the EGR control valve operation amount proportional gain once. It is considered preferable to set a value as small as possible.
 また、第1実施形態では、ベーン操作量比例ゲインおよびEGR制御弁操作量比例ゲインの補正を簡便なものにすると共にこれら比例ゲインをバランス良く補正するという観点から、これら比例ゲインを補正するための補正値として同じ第2補正値を利用している。しかしながら、必要があれば、各比例ゲインを補正するための補正値を互いに異なる値としてもよい。 In the first embodiment, the correction of the proportional gain is performed from the viewpoint of simplifying the correction of the vane operation amount proportional gain and the EGR control valve operation amount proportional gain and correcting the proportional gain in a well-balanced manner. The same second correction value is used as the correction value. However, if necessary, the correction values for correcting each proportional gain may be different from each other.
 また、第1実施形態では、第2補正値をベーン操作量比例ゲインに乗算することによって同ゲインを補正しているが、必要に応じて、ベーン操作量比例ゲインが大きくなるように特定の値をベーン操作量比例ゲインに加算することによって同ゲインを補正するようにしてもよい。また、第1実施形態では、第2補正値をEGR制御弁操作量比例ゲインに乗算することによって同ゲインを補正しているが、必要に応じて、EGR制御弁操作量比例ゲインが大きくなるように特定の値をEGR制御弁操作量比例ゲインに加算することによって同ゲインを補正するようにしてもよい。なお、この場合、これら比例ゲインをバランス良く補正するという観点では、これら比例ゲインに加算される特定の値が互いに同じ値に設定されると好ましいと考えられる。 In the first embodiment, the gain is corrected by multiplying the vane operation amount proportional gain by the second correction value. However, if necessary, a specific value is set so that the vane operation amount proportional gain is increased. May be added to the vane manipulated variable proportional gain to correct the gain. In the first embodiment, the EGR control valve operation amount proportional gain is corrected by multiplying the second correction value by the EGR control valve operation amount proportional gain. However, if necessary, the EGR control valve operation amount proportional gain is increased. Alternatively, the gain may be corrected by adding a specific value to the EGR control valve operation amount proportional gain. In this case, from the viewpoint of correcting these proportional gains in a well-balanced manner, it is considered preferable that specific values added to these proportional gains are set to the same value.
 また、ベーンの応答が所期の応答よりも遅く且つEGR制御弁の応答も所期の応答よりも遅くなっている場合、過給圧偏差積算値がその基準値よりも大きく(詳細には、ベーンの応答が所期の応答になっているにも係わらずEGR制御弁の応答が所期の応答よりも遅くなっている場合の過給圧偏差積算値よりも大きく)且つEGR率偏差積算値がその基準値に略等しくなる(或いは、場合によっては、その基準値に等しくなる)。次に、このことについて説明する。 Further, when the response of the vane is slower than the intended response and the response of the EGR control valve is also slower than the intended response, the supercharging pressure deviation integrated value is larger than the reference value (in detail, The EGR rate deviation integrated value is larger than the supercharging pressure deviation integrated value when the response of the EGR control valve is slower than the intended response although the vane response is the desired response). Is approximately equal to the reference value (or, in some cases, is equal to the reference value). Next, this will be described.
 すなわち、目標過給圧が上昇せしめられると目標EGR率は低下せしめられる。したがって、このときには、実過給圧を目標過給圧に向かって上昇させるためにベーン開度が小さくされると同時に、実EGR率を目標EGR率に向かって低下させるためにEGR制御弁開度も小さくされる。 That is, when the target supercharging pressure is increased, the target EGR rate is decreased. Therefore, at this time, the vane opening is made small in order to increase the actual supercharging pressure toward the target supercharging pressure, and at the same time, the EGR control valve opening is used to decrease the actual EGR rate toward the target EGR rate. Is also made smaller.
 ここで、上述したように、ベーン開度とEGR制御弁開度とが同時に小さくされると、ベーン開度の減少に起因する排気圧の上昇とEGR制御弁開度の減少に起因する排気圧の上昇とによって過給圧が上昇せしめられることになる。ここで、ベーンの応答もEGR制御弁の応答も所期の応答よりも遅い場合、ベーン開度の減少に起因する排気圧の上昇速度もEGR制御弁開度の減少に起因する排気圧の上昇速度も所期の速度よりも遅くなる。このため、過給圧の上昇速度が所期の速度よりも大幅に遅くなる。したがって、ベーンの応答もEGR制御弁の応答も所期の応答よりも遅い場合において実過給圧を上昇させようとしたときには、過給圧偏差積算値はその基準値よりも大幅に大きくなる。 Here, as described above, when the vane opening and the EGR control valve opening are simultaneously reduced, the exhaust pressure increases due to the decrease in the vane opening and the exhaust pressure due to the decrease in the EGR control valve opening. As a result, the boost pressure is increased. Here, when the response of the vane and the response of the EGR control valve are slower than the intended response, the exhaust pressure increase rate due to the decrease in the vane opening degree also increases the exhaust pressure due to the decrease in the EGR control valve opening degree. The speed is also slower than the intended speed. For this reason, the increasing speed of the supercharging pressure is significantly slower than the intended speed. Therefore, when the actual supercharging pressure is to be increased when both the vane response and the EGR control valve response are slower than the intended response, the supercharging pressure deviation integrated value becomes significantly larger than the reference value.
 一方、上述したように、ベーン開度とEGR制御弁開度とが同時に小さくされると、ベーン開度の減少に起因するEGRガス量の増大とEGR制御弁開度の減少に起因するEGRガス量の減少とが同時に発生する。ここで、ベーンの応答もEGR制御弁の応答も所期の応答よりも遅い場合、ベーン開度の減少に起因するEGRガス量の増大速度もEGR制御弁開度の減少に起因するEGRガス量の減少速度も所期の速度よりも遅くなる。このため、ベーン開度の減少に起因するEGRガス量の増大速度の減少とEGR制御弁開度の減少に起因するEGRガス量の減少速度の減少とが互いに相殺され、結果的に、全体としては、EGR率の低下速度は、略所期の速度となり、場合によっては、所期の速度となる。したがって、ベーンの応答もEGR制御弁の応答も所期の応答よりも遅い場合において実EGR率を低下させようとしたときには、EGR率偏差積算値はその基準値に略等しくなる(或いは、場合によっては、その基準値に等しくなる)。 On the other hand, as described above, when the vane opening and the EGR control valve opening are simultaneously reduced, the EGR gas increases due to the decrease in the vane opening and the EGR gas due to the decrease in the EGR control valve opening. A decrease in volume occurs at the same time. Here, when both the response of the vane and the response of the EGR control valve are slower than the intended response, the increase rate of the EGR gas amount due to the decrease in the vane opening degree is also the EGR gas amount due to the decrease in the EGR control valve opening degree. The rate of decrease of is also slower than the expected rate. For this reason, the decrease in the increase rate of the EGR gas amount due to the decrease in the vane opening degree and the decrease in the decrease rate of the EGR gas amount due to the decrease in the EGR control valve opening amount cancel each other. The rate of decrease in the EGR rate is substantially the expected rate, and in some cases, the expected rate. Therefore, when the actual EGR rate is to be reduced when both the vane response and the EGR control valve response are slower than the intended response, the EGR rate deviation integrated value becomes substantially equal to the reference value (or in some cases Is equal to its reference value).
 また、目標過給圧が低下せしめられると目標EGR率は上昇せしめられる。したがって、このときには、実過給圧を目標過給圧に向かって低下させるためにベーン開度が大きくされると同時に、実EGR率を目標EGR率に向かって上昇させるためにEGR制御弁開度も大きくされる。 Also, when the target supercharging pressure is lowered, the target EGR rate is raised. Accordingly, at this time, the vane opening is increased in order to decrease the actual supercharging pressure toward the target supercharging pressure, and at the same time, the EGR control valve opening is increased in order to increase the actual EGR rate toward the target EGR rate. Is also enlarged.
 ここで、上述したように、ベーン開度とEGR制御弁開度とが同時に大きくされると、ベーン開度の増大に起因する排気圧の低下とEGR制御弁開度の増大に起因する排気圧の低下とによって過給圧が低下せしめられることになる。ここで、ベーンの応答もEGR制御弁の応答も所期の応答よりも遅い場合、ベーン開度の増大に起因する排気圧の低下速度もEGR制御弁開度の増大に起因する排気圧の低下速度も所期の速度よりも遅くなる。このため、全体としては、過給圧の低下速度が所期の速度よりも大幅に遅くなる。したがって、ベーンの応答もEGR制御弁の応答も所期の応答よりも遅い場合において実過給圧を低下させようとしたときには、過給圧偏差積算値はその基準値よりも大幅に大きくなる。 Here, as described above, when the vane opening and the EGR control valve opening are simultaneously increased, the exhaust pressure decreases due to the increase in the vane opening and the exhaust pressure due to the increase in the EGR control valve opening. As a result, the supercharging pressure is reduced. Here, when the response of the vane and the response of the EGR control valve are slower than the intended response, the exhaust pressure decrease rate due to the increase in the vane opening degree also decreases the exhaust pressure due to the increase in the EGR control valve opening degree. The speed is also slower than the intended speed. For this reason, as a whole, the decrease rate of the supercharging pressure is significantly slower than the intended speed. Therefore, when the actual supercharging pressure is to be reduced when both the vane response and the EGR control valve response are slower than the intended response, the supercharging pressure deviation integrated value becomes significantly larger than the reference value.
 一方、上述したように、ベーン開度とEGR制御弁開度とが同時に大きくされると、ベーン開度の増大に起因するEGRガス量の減少とEGR制御弁開度の増大に起因するEGRガス量の増大とが同時に発生する。ここで、ベーンの応答もEGR制御弁の応答も所期の応答よりも遅い場合、ベーン開度の増大に起因するEGRガス量の減少速度もEGR制御弁開度の増大に起因するEGRガス量の増大速度も所期の速度よりも遅くなる。このため、ベーン開度の増大に起因するEGRガス量の減少速度の減少とEGR制御弁開度の増大に起因するEGRガス量の増大速度の減少とが相殺され、結果的に、全体としては、EGR率の低下速度は、略所期の速度となり、場合によっては、所期の速度となる。したがって、ベーンの応答もEGR制御弁の応答も所期の応答よりも遅い場合において実EGR率を低下させようとしたときには、EGR率偏差積算値はその基準値に略等しくなる(或いは、場合によっては、その基準値に等しくなる)。 On the other hand, as described above, when the vane opening and the EGR control valve opening are simultaneously increased, the EGR gas is decreased due to the increase in the vane opening and the EGR gas is increased due to the increase in the EGR control valve opening. An increase in quantity occurs simultaneously. Here, when the response of the vane and the response of the EGR control valve are slower than the intended response, the rate of decrease in the EGR gas amount due to the increase in the vane opening is also the amount of EGR gas due to the increase in the EGR control valve opening. The increase speed of the speed is also slower than the expected speed. For this reason, the decrease in the decrease rate of the EGR gas amount due to the increase in the vane opening degree and the decrease in the increase rate of the EGR gas amount due to the increase in the EGR control valve opening amount are offset, and as a result, as a whole The rate of decrease in the EGR rate is substantially the expected rate, and in some cases, the expected rate. Therefore, when the actual EGR rate is to be reduced when both the vane response and the EGR control valve response are slower than the intended response, the EGR rate deviation integrated value becomes substantially equal to the reference value (or in some cases Is equal to its reference value).
 このように、ベーンの応答もEGR制御弁の応答も所期の応答よりも遅くなっている場合、過給圧偏差積算値がその基準値よりも大きく且つEGR率偏差積算値がその基準値に略等しく(或いは、その基準値に等しく)なるのである。 As described above, when the response of the vane and the response of the EGR control valve are slower than the intended response, the supercharging pressure deviation integrated value is larger than the reference value and the EGR rate deviation integrated value becomes the reference value. It is approximately equal (or equal to the reference value).
 ここで、ベーン操作量が大きくされれば、ベーンの応答が速くなる。したがって、過給圧偏差積算値がその基準値よりも大きく且つEGR率偏差積算値がその基準値に略等しい場合に、ベーン操作量が大きくされれば、ベーンの応答が速くなり、その結果、実過給圧の変化速度が所期の速度に近づくことになる。そこで、第1実施形態では、この場合には、ベーン操作量比例ゲインが大きくなるようにベーン操作量比例ゲインに第3補正値が乗算されるのである。このようにベーン操作量比例ゲインが大きくされれば、設定される目標ベーン操作量が大きくなる。これによれば、ベーンの応答が速くなり、その結果、実過給圧の変化速度が速くなって所期の速度に近づく。そして、こうしたベーン操作量比例ゲインの補正が繰り返されれば、最終的には、実過給圧の変化速度が所期の速度に到達する。したがって、実過給圧が目標過給圧に所定の追従性でもって制御されることになる。 Here, if the amount of vane operation is increased, the response of the vanes becomes faster. Therefore, when the supercharging pressure deviation integrated value is larger than the reference value and the EGR rate deviation integrated value is substantially equal to the reference value, if the vane operation amount is increased, the response of the vane becomes faster. The change speed of the actual supercharging pressure approaches the intended speed. Therefore, in the first embodiment, in this case, the third correction value is multiplied by the vane operation amount proportional gain so that the vane operation amount proportional gain is increased. Thus, if the vane operation amount proportional gain is increased, the set target vane operation amount is increased. According to this, the response of the vane becomes faster, and as a result, the change speed of the actual supercharging pressure becomes faster and approaches the intended speed. Then, if the correction of the vane operation amount proportional gain is repeated, the change speed of the actual supercharging pressure finally reaches the intended speed. Therefore, the actual supercharging pressure is controlled with a predetermined followability to the target supercharging pressure.
 一方、過給圧偏差積算値がその基準値よりも大きく且つEGR率偏差積算値がその基準値に略等しい場合、実EGR率は所定の追従性でもって目標EGR率に制御されていると見ることができる。しかしながら、上述したように、この場合、ベーン操作量比例ゲインが大きくされ、ベーンの応答が速くされることから、ベーン開度の変化(すなわち、ベーン開度の増大または減少)に起因するEGRガス量の変化速度(すなわち、EGRガス量の減少速度または増大速度)が速くなる。この場合、目標EGR率追従性が所定の追従性よりも低くなってしまう。一方、EGR制御弁操作量が大きくされれば、EGR制御弁の応答が速くなることから、目標EGR率追従性が所定の追従性よりも低くなることを抑制することができる。そこで、第1実施形態では、過給圧偏差積算値がその基準値よりも大きく且つEGR率偏差積算値がその基準値に略等しい場合には、EGR制御弁操作量比例ゲインが大きくなるようにEGR制御弁操作量比例ゲインに第3補正値が乗算されるのである。このようにEGR制御弁操作量比例ゲインが大きくされれば、設定される目標EGR制御弁操作量が大きくなる。このため、目標EGR率追従性が所定の追従性よりも低くなることを抑制することができる。したがって、実EGR率が目標EGR率に所定の追従性でもって制御されることになる。 On the other hand, when the supercharging pressure deviation integrated value is larger than the reference value and the EGR rate deviation integrated value is substantially equal to the reference value, it is considered that the actual EGR rate is controlled to the target EGR rate with a predetermined followability. be able to. However, as described above, in this case, since the vane operation amount proportional gain is increased and the response of the vane is accelerated, the EGR gas amount caused by the change in the vane opening (that is, the increase or decrease in the vane opening). Change rate (that is, the rate of decrease or increase of the EGR gas amount) becomes faster. In this case, the target EGR rate followability becomes lower than the predetermined followability. On the other hand, if the operation amount of the EGR control valve is increased, the response of the EGR control valve becomes faster, so that it is possible to suppress the target EGR rate tracking performance from becoming lower than the predetermined tracking performance. Therefore, in the first embodiment, when the boost pressure deviation integrated value is larger than the reference value and the EGR rate deviation integrated value is substantially equal to the reference value, the EGR control valve operation amount proportional gain is increased. The third correction value is multiplied by the EGR control valve operation amount proportional gain. Thus, if the EGR control valve operation amount proportional gain is increased, the set target EGR control valve operation amount is increased. For this reason, it can suppress that target EGR rate followability becomes lower than predetermined followability. Therefore, the actual EGR rate is controlled with a predetermined followability to the target EGR rate.
 なお、上述した第3補正値を用いたEGR制御弁操作量比例ゲインの補正によれば、EGR制御弁の応答が速くなることから、EGR制御弁開度の変化に起因する排気圧の変化の速度が速くなる。このことからも、実過給圧の変化速度が速くなって所期の速度に近づく。したがって、より早期に、実過給圧が目標過給圧に所定の追従性でもって制御されるようになる。 In addition, according to the correction of the EGR control valve operation amount proportional gain using the third correction value described above, the response of the EGR control valve becomes faster, so that the change in the exhaust pressure caused by the change in the EGR control valve opening degree is reduced. Increases speed. Also from this, the change speed of the actual supercharging pressure increases and approaches the expected speed. Therefore, the actual supercharging pressure is controlled with a predetermined followability to the target supercharging pressure earlier.
 斯くして、第1実施形態によれば、過給圧偏差積算値がその基準値よりも大きく且つEGR率偏差積算値がその基準値に略等しく、したがって、ベーンの応答もEGR制御弁の応答も所期の応答よりも遅い場合においても、実過給圧を目標過給圧に所定の追従性でもって制御することができると共に実EGR率を目標EGR率に所定の追従性でもって制御することができ、或いは、実過給圧と実EGR率とをそれぞれ目標過給圧と目標EGR率とに対してバランス良く制御することができるのである。 Thus, according to the first embodiment, the supercharging pressure deviation integrated value is larger than the reference value and the EGR rate deviation integrated value is substantially equal to the reference value, and therefore the vane response is also the response of the EGR control valve. Even when the response is slower than the intended response, the actual supercharging pressure can be controlled to the target supercharging pressure with a predetermined followability, and the actual EGR rate can be controlled to the target EGR rate with a predetermined followability. Alternatively, the actual boost pressure and the actual EGR rate can be controlled in a balanced manner with respect to the target boost pressure and the target EGR rate, respectively.
 なお、比例ゲインを補正するために利用される第3補正値は、過給圧偏差積算値がその基準値よりも大きく且つEGR率偏差積算値がその基準値に略等しい場合において目標過給圧追従性を可能な限り早期に所定の追従性に到達させることができ且つ目標EGR率追従性を可能な限り早期に所定の追従性に到達させることができる値に設定される。 The third correction value used for correcting the proportional gain is the target boost pressure when the boost pressure deviation integrated value is larger than the reference value and the EGR rate deviation integrated value is substantially equal to the reference value. The followability can be set to a value that can reach the predetermined followability as early as possible, and the target EGR rate followability can reach the predetermined followability as early as possible.
 また、第3補正値を利用した比例ゲインの補正は、過給圧偏差積算値がその基準値よりも大きく且つEGR率偏差積算値がその基準値に略等しいことをもって、すなわち、ベーンの応答が所定の応答よりも遅く且つEGR制御弁の応答が所定の応答よりも遅いことをもって行われる。云い換えれば、過給圧偏差積算値がその基準値からどの程度ずれているかが考慮されずに、ベーン操作量比例ゲインおよびEGR制御弁操作量比例ゲインが補正される。したがって、第3補正値は、1回のベーン操作量比例ゲインおよびEGR制御弁操作量比例ゲインの補正によって目標過給圧追従性および目標EGR率追従性が所定の追従性を大きく越えて高くならない程度に小さい値に設定されることが好ましいと考えられる。 Further, the correction of the proportional gain using the third correction value is based on the fact that the supercharging pressure deviation integrated value is larger than the reference value and the EGR rate deviation integrated value is substantially equal to the reference value. This is performed with a slower response than the predetermined response and a response of the EGR control valve slower than the predetermined response. In other words, the vane operation amount proportional gain and the EGR control valve operation amount proportional gain are corrected without considering how much the accumulated value of the supercharging pressure deviation deviates from the reference value. Therefore, the third correction value does not increase the target boost pressure follow-up performance and the target EGR rate follow-up performance greatly beyond the predetermined follow-up performance by correcting the vane operation amount proportional gain and the EGR control valve operation amount proportional gain once. It is considered preferable to set a value as small as possible.
 また、第1実施形態では、ベーン操作量比例ゲインおよびEGR制御弁操作量比例ゲインの補正を簡便なものにすると共にこれら比例ゲインをバランス良く補正するという観点から、これら比例ゲインを補正するための補正値が同じ第3補正値とされている。しかしながら、必要があれば、各比例ゲインを補正するための補正値を互いに異なる値としてもよい。 In the first embodiment, the correction of the proportional gain is performed from the viewpoint of simplifying the correction of the vane operation amount proportional gain and the EGR control valve operation amount proportional gain and correcting the proportional gain in a well-balanced manner. The correction value is the same third correction value. However, if necessary, the correction values for correcting each proportional gain may be different from each other.
 また、第1実施形態では、第3補正値をベーン操作量比例ゲインに乗算することによって同ゲインを補正しているが、必要に応じて、ベーン操作量比例ゲインが大きくなるように特定の値をベーン操作量比例ゲインに加算することによって同ゲインを補正するようにしてもよい。また、第1実施形態では、第3補正値をEGR制御弁操作量比例ゲインに乗算することによって同ゲインを補正しているが、必要に応じて、EGR制御弁操作量比例ゲインが大きくなるように特定の値をEGR制御弁操作量比例ゲインに加算することによって同ゲインを補正するようにしてもよい。なお、この場合、これら比例ゲインをバランス良く補正するという観点では、これら比例ゲインに加算される特定の値が互いに同じ値に設定されると好ましいと考えられる。 In the first embodiment, the gain is corrected by multiplying the vane operation amount proportional gain by the third correction value. However, if necessary, a specific value is set so that the vane operation amount proportional gain is increased. May be added to the vane manipulated variable proportional gain to correct the gain. In the first embodiment, the gain is corrected by multiplying the EGR control valve operation amount proportional gain by the third correction value. However, if necessary, the EGR control valve operation amount proportional gain is increased. Alternatively, the gain may be corrected by adding a specific value to the EGR control valve operation amount proportional gain. In this case, from the viewpoint of correcting these proportional gains in a well-balanced manner, it is considered preferable that specific values added to these proportional gains are set to the same value.
 なお、第1実施形態では、基準値に対する過給圧偏差積算値のズレと基準値に対するEGR率偏差積算値のズレとに基づいてベーン操作量比例ゲインおよびEGR制御弁操作量比例ゲインが補正される。したがって、第1実施形態は、過給圧偏差積算値がその基準値に一致すると共にEGR率偏差積算値がその基準値に一致するように目標ベーン操作量および目標EGR制御弁操作量を補正するものであるとも言える。 In the first embodiment, the vane operation amount proportional gain and the EGR control valve operation amount proportional gain are corrected based on the deviation of the supercharging pressure deviation integrated value with respect to the reference value and the deviation of the EGR rate deviation integrated value with respect to the reference value. The Therefore, in the first embodiment, the target vane operation amount and the target EGR control valve operation amount are corrected so that the supercharging pressure deviation integrated value matches the reference value and the EGR rate deviation integrated value matches the reference value. It can be said that it is a thing.
 なお、第1実施形態では、過給圧偏差積算値とEGR率偏差積算値とに基づいてベーン操作量比例ゲインおよびEGR制御弁操作量比例ゲインが補正されるが、ベーン操作量比例ゲインの補正に代えて或いは加えて、上式1の積分ゲイン、または、微分ゲイン、または、積分ゲインと微分ゲインを補正してもよく、また、EGR制御弁操作量比例ゲインの補正に代えて或いは加えて、上式2の積分ゲイン、または微分ゲイン、または、積分ゲインと微分ゲインを補正してもよい。 In the first embodiment, the vane operation amount proportional gain and the EGR control valve operation amount proportional gain are corrected based on the boost pressure deviation integrated value and the EGR rate deviation integrated value. Instead of or in addition to the above, the integral gain, differential gain, or integral gain and differential gain of the above equation 1 may be corrected, and instead of or in addition to the correction of the EGR control valve operation amount proportional gain. The integral gain or differential gain of the above equation 2 or the integral gain and the differential gain may be corrected.
 また、第1実施形態は、過給圧を制御する過給機とEGR率を制御するEGR装置を備えた内燃機関において、過給圧とEGR率とを目標過給圧と目標EGR率とに所定の追従性でもって制御するため、或いは、過給圧とEGR率とを目標過給圧と目標EGR率とに対してバランス良く制御する場合に本発明を適用した実施形態である。しかしながら、第1実施形態に関連して説明した本発明の思想は、互いに影響し合う2つの制御量をそれぞれ制御する制御対象を備えた内燃機関において、これら2つの制御量をそれぞれ目標制御量に所定の追従性でもって制御するため、或いは、これら2つの制御量をそれぞれ目標制御量に対してバランス良く制御する場合にも適用可能である。 Further, in the first embodiment, in an internal combustion engine including a supercharger that controls a supercharging pressure and an EGR device that controls an EGR rate, the supercharging pressure and the EGR rate are converted into a target supercharging pressure and a target EGR rate. This is an embodiment to which the present invention is applied in order to control with a predetermined followability, or when controlling the supercharging pressure and the EGR rate in a balanced manner with respect to the target supercharging pressure and the target EGR rate. However, the idea of the present invention described in relation to the first embodiment is that, in an internal combustion engine provided with a control object that controls two control amounts that influence each other, these two control amounts are set as target control amounts, respectively. The present invention can also be applied to control with a predetermined followability, or to control these two control amounts in a balanced manner with respect to the target control amount.
 以上のことを考慮すれば、第1実施形態に関連して説明した本発明の内燃機関の制御装置は、互いに影響し合う2つの制御量の1つである第1制御量(例えば、第1実施形態の過給圧)を制御する第1制御対象(例えば、第1実施形態のベーン)と、上記互いに影響し合う2つの制御量の残りの1つである第2制御量(例えば、第1実施形態のEGR率)を制御する第2制御対象(例えば、第1実施形態のEGR制御弁)とを備えた内燃機関の制御装置において、目標とするべき第1制御量を目標第1制御量(例えば、第1実施形態の目標過給圧)として設定すると共に目標とするべき第2制御量を目標第2制御量(例えば、第1実施形態の目標EGR率)として設定し、第1制御量を目標第1制御量に到達させ且つ第2制御量を目標第2制御量に到達させるために第1制御対象に入力するべき操作量を目標第1操作量(例えば、第1実施形態の目標ベーン操作量)として設定すると共に第2制御対象に入力するべき操作量を目標第2操作量(例えば、第1実施形態の目標EGR制御弁操作量)として設定し、目標第1操作量に相当する操作量を第1制御対象に入力すると共に目標第2操作量に相当する操作量を第2制御対象に入力することによって第1制御量を目標第1制御量に制御すると共に第2制御量を目標第2制御量に制御する制御装置であって、機関運転中に目標第1制御量に対する実際の第1制御量の偏差の積算値を第1制御量偏差積算値(例えば、第1実施形態の過給圧偏差積算値)として算出すると共に目標第2制御量に対する実際の第2制御量の偏差の積算値を第2制御量偏差積算値(例えば、第1実施形態のEGR率偏差積算値)として算出し、上記第1制御量偏差積算値と上記第2制御量偏差積算値とに基づいて目標第1操作量と目標第2操作量とを補正する制御装置であると言える。 In consideration of the above, the control device for an internal combustion engine of the present invention described in relation to the first embodiment has a first control amount (for example, a first control amount) that is one of two control amounts that influence each other. The first control object (for example, the vane of the first embodiment) that controls the supercharging pressure of the embodiment and the second control amount (for example, the first control amount that is the remaining one of the two control amounts that influence each other). In a control device for an internal combustion engine including a second control target (for example, an EGR control valve according to the first embodiment) that controls an EGR rate according to the first embodiment, a target first control amount is set as a target first control amount Set as the amount (for example, the target boost pressure of the first embodiment) and the second control amount to be targeted is set as the target second control amount (for example, the target EGR rate of the first embodiment), and the first The control amount is made to reach the target first control amount, and the second control amount is set to the target second. The operation amount to be input to the first control object in order to reach the control amount is set as the target first operation amount (for example, the target vane operation amount of the first embodiment) and the operation amount to be input to the second control object Is set as the target second operation amount (for example, the target EGR control valve operation amount of the first embodiment), and the operation amount corresponding to the target first operation amount is input to the first control target and the target second operation amount is set. A control device that controls a first control amount to a target first control amount by inputting a corresponding operation amount to a second control target, and controls the second control amount to a target second control amount, during engine operation In addition, the integrated value of the deviation of the actual first control amount with respect to the target first control amount is calculated as the first control amount deviation integrated value (for example, the boost pressure deviation integrated value of the first embodiment) and the target second control amount. Integrated value of deviation of actual second controlled variable with respect to A second control amount deviation integrated value (for example, an EGR rate deviation integrated value of the first embodiment) is calculated, and a target first operation is performed based on the first control amount deviation integrated value and the second control amount deviation integrated value. It can be said that the control device corrects the amount and the target second operation amount.
 また、過給圧およびEGR率は内燃機関から排出されるエミッションに影響する制御量である。したがって、内燃機関の構造や内燃機関に関する制御は、過給圧が目標過給圧に所定の追従性でもって制御され且つEGR率が目標EGR率に所定の追従性でもって制御されることを前提に可能な限りエミッションが少なくなるように決定されている。ここで、第1実施形態では、ベーンの応答とEGR制御弁の応答との少なくとも一方が所期の応答よりも遅くなった場合であっても、過給圧が目標過給圧に所定の追従性でもって制御されると共にEGR率が目標EGR率に所定の追従性でもって制御される。したがって、第1実施形態によれば、内燃機関から排出されるエミッションが確実に低いレベルに維持される。 Also, the supercharging pressure and the EGR rate are control amounts that affect the emissions discharged from the internal combustion engine. Accordingly, the control of the internal combustion engine structure and the internal combustion engine is based on the premise that the supercharging pressure is controlled with a predetermined followability to the target supercharging pressure and the EGR rate is controlled with a predetermined followability to the target EGR rate. It has been decided to reduce emissions as much as possible. Here, in the first embodiment, even when at least one of the response of the vane and the response of the EGR control valve becomes slower than the intended response, the supercharging pressure follows the target supercharging pressure for a predetermined amount. And the EGR rate is controlled with a predetermined followability to the target EGR rate. Therefore, according to the first embodiment, the emission discharged from the internal combustion engine is reliably maintained at a low level.
 また、第1実施形態では、過給圧偏差積算値がその基準値よりも大きく且つEGR率偏差積算値がその基準値よりも小さい場合、EGR制御弁の応答が所期の応答であって目標EGR率追従性が所定の追従性よりも高いにも係わらずEGR制御弁操作量比例ゲインを小さくすることによってEGR制御弁の応答が遅くされる。これによれば、一時的にせよ、目標EGR率追従性が所定の追従性よりも低くなる可能性もある。しかしながら、このようにEGR制御弁の応答が遅くされるのは、目標過給圧追従性を所定の追従性にまで向上させるためにはEGR制御弁の応答を遅くすることが適当であると判断されたからである。云い換えれば、目標EGR率追従性を高く維持することよりも目標過給圧追従性を向上させることが優先されたとも言える。すなわち、第1実施形態によれば、目標過給圧追従性と目標EGR率追従性とのいずれを優先させるかを決定することができるとも言える。 Further, in the first embodiment, when the supercharging pressure deviation integrated value is larger than the reference value and the EGR rate deviation integrated value is smaller than the reference value, the response of the EGR control valve is an intended response, and the target Although the EGR rate followability is higher than the predetermined followability, the response of the EGR control valve is delayed by reducing the EGR control valve operation amount proportional gain. According to this, even if temporarily, the target EGR rate followability may be lower than the predetermined followability. However, the reason why the response of the EGR control valve is delayed in this way is determined that it is appropriate to delay the response of the EGR control valve in order to improve the target boost pressure tracking performance to a predetermined tracking performance. Because it was done. In other words, it can be said that priority was given to improving the target boost pressure followability rather than maintaining the target EGR rate followability high. That is, according to the first embodiment, it can be said that it can be determined which of the target boost pressure followability and the target EGR rate followability is prioritized.
 次に、第1実施形態に従った目標ベーン操作量および目標EGR制御弁操作量の設定を実行するルーチンの一例について説明する。このルーチンは、図4に示されており、所定時間間隔毎に実行される。 Next, an example of a routine for setting the target vane operation amount and the target EGR control valve operation amount according to the first embodiment will be described. This routine is shown in FIG. 4 and is executed at predetermined time intervals.
 図4のルーチンが開始されると、始めに、ステップ10において、機関回転数Nと機関負荷Lと現在の過給圧Pimと現在のEGR率Regrとが取得される。次いで、ステップ11において、ステップ10で取得された機関回転数Nと機関負荷Lとに基づいて図3(A)の目標過給圧マップから目標過給圧TPimが取得されると共に、ステップ10で取得された機関回転数Nと機関負荷Lとに基づいて図3(B)の目標酸素濃度マップから目標酸素濃度TO2が取得される。次いで、ステップ12において、ステップ10で取得された現在の過給圧Pimとステップ11で取得された目標酸素濃度TO2とに基づいて目標EGR率TRegrが算出される。次いで、ステップ13において、ステップ11で取得された目標過給圧TPimに対するステップ10で取得された現在の過給圧Pimの偏差(すなわち、過給圧偏差)ΔPimが算出されると共に、ステップ12で算出された目標EGR率TRegrに対するステップ10で取得された現在のEGR率Regrの偏差(すなわち、EGR率偏差)ΔRegrが算出される。 4 is started, first, at step 10, the engine speed N, the engine load L, the current boost pressure Pim, and the current EGR rate Regr are acquired. Next, at step 11, the target boost pressure TPim is acquired from the target boost pressure map of FIG. 3A based on the engine speed N and the engine load L acquired at step 10, and at step 10, Based on the acquired engine speed N and engine load L, the target oxygen concentration TO2 is acquired from the target oxygen concentration map of FIG. Next, at step 12, the target EGR rate TRegr is calculated based on the current supercharging pressure Pim acquired at step 10 and the target oxygen concentration TO2 acquired at step 11. Next, in step 13, a deviation (ie, supercharging pressure deviation) ΔPim of the current supercharging pressure Pim acquired in step 10 with respect to the target supercharging pressure TPim acquired in step 11 is calculated, and in step 12. A deviation (ie, EGR rate deviation) ΔRegr of the current EGR rate Regr acquired in step 10 with respect to the calculated target EGR rate TRegr is calculated.
 次いで、ステップ14において、ステップ13で算出された過給圧偏差ΔPimを前回の図4のルーチンの実行時にステップ15で保存された過給圧偏差積算値ΣΔPimに加算することによって、新たな過給圧偏差積算値ΣΔPimが算出されると共に、ステップ13で算出されたEGR率偏差ΔRegrを前回の図4のルーチンの実行時にステップ15で保存されたEGR率偏差積算値ΣΔRegrに加算することによって、新たなEGR率偏差積算値ΣΔRegrが算出される。次いで、ステップ15において、ステップ14で算出された新たな過給圧偏差積算値ΣΔPimと新たなEGR率偏差積算値ΣΔRegrとが保存される。 Next, at step 14, the supercharging pressure deviation ΔPim calculated at step 13 is added to the supercharging pressure deviation integrated value ΣΔPim stored at step 15 when the routine of FIG. The pressure deviation integrated value ΣΔPim is calculated, and the EGR rate deviation ΔRegr calculated in step 13 is added to the EGR rate deviation integrated value ΣΔRegr stored in step 15 when the routine of FIG. An EGR rate deviation integrated value ΣΔRegr is calculated. Next, in step 15, the new boost pressure deviation integrated value ΣΔPim calculated in step 14 and the new EGR rate deviation integrated value ΣΔRegr are stored.
 次いで、ステップ16において、ステップ13で算出された過給圧偏差ΔPimとステップ14で算出された過給圧偏差積算値ΣΔPimとを利用して上式1から目標ベーン操作量Mvが算出されると共に、ステップ13で算出されたEGR率偏差ΔRegrとステップ14で算出されたEGR率偏差積算値ΣΔRegrとを利用して上式2から目標EGR制御弁操作量Megrが算出され、ルーチンが終了する。 Next, at step 16, the target vane operation amount Mv is calculated from the above equation 1 using the boost pressure deviation ΔPim calculated at step 13 and the boost pressure deviation integrated value ΣΔPim calculated at step 14. Using the EGR rate deviation ΔRegr calculated in step 13 and the EGR rate deviation integrated value ΣΔRegr calculated in step 14, the target EGR control valve operation amount Megr is calculated from the above equation 2, and the routine ends.
 次に、第1実施形態に従ったベーン操作量比例ゲインおよびEGR制御弁操作量比例ゲインの補正を実行するルーチンの一例について説明する。このルーチンは、図5および図6に示されており、所定時間間隔毎に実行される。 Next, an example of a routine for correcting the vane operation amount proportional gain and the EGR control valve operation amount proportional gain according to the first embodiment will be described. This routine is shown in FIGS. 5 and 6, and is executed at predetermined time intervals.
 図5および図6のルーチンが開始されると、始めに、ステップ100において、図4のステップ15で保存された現在の過給圧偏差積算値ΣΔPim(k)と現在のEGR率偏差積算値ΣΔRegr(k)とが取得される。次いで、ステップ101において、ステップ100で取得された現在の過給圧偏差積算値ΣΔPim(k)がその基準値THpimよりも大きく(ΣΔPim(k)>THpim)且つステップ100で取得された現在のEGR率偏差積算値ΣΔRegr(k)がその下限値(すなわち、その基準値THegrから所定値αを差し引いた値)(THegr-α)よりも小さい(ΣΔRegr(k)<THegr-α)か否かが判別される。ここで、ΣΔPim(k)>THpimであって且つΣΔRegr(k)<THegr-αであると判別されたときには、ルーチンはステップ102に進む。一方、ΣΔPim(k)>THpimであって且つΣΔRegr(k)<THegr-αではないと判別されたときには、ルーチンはステップ104に進む。 When the routines of FIGS. 5 and 6 are started, first, at step 100, the current supercharging pressure deviation integrated value ΣΔPim (k) stored at step 15 of FIG. 4 and the current EGR rate deviation integrated value ΣΔRegr are stored. (K) is acquired. Next, in step 101, the current supercharging pressure deviation integrated value ΣΔPim (k) acquired in step 100 is larger than the reference value THpim (ΣΔPim (k)> THpim) and the current EGR acquired in step 100. Whether the rate deviation integrated value ΣΔRegr (k) is smaller than the lower limit value (that is, the value obtained by subtracting the predetermined value α from the reference value THegr) (THegr−α) (ΣΔRegr (k) <THegr−α). Determined. Here, when it is determined that ΣΔPim (k)> THpim and ΣΔRegr (k) <THegr−α, the routine proceeds to step 102. On the other hand, if it is determined that ΣΔPim (k)> THpim and ΣΔRegr (k) <THegr−α is not established, the routine proceeds to step 104.
 なお、ステップ101において現在のEGR率偏差積算値ΣΔRegr(k)と比較される下限値として、EGR率偏差積算値の基準値THegrから所定値αを差し引いた値が用いられているのは、後述する図6のステップ107において現在のEGR率偏差積算値ΣΔRegr(k)がその基準値THegrに略等しいか否かを判別するためにEGR率偏差積算値の基準値THegrから所定値αを差し引いた値が用いられているからである。また、下限値が現在のEGR率偏差積算値ΣΔRegr(k)がその基準値に略等しいか否かを判別するために用いられることから、所定値αは極めて小さい値に設定されている。 Note that the value obtained by subtracting the predetermined value α from the reference value THegr of the EGR rate deviation integrated value is used as the lower limit value compared with the current EGR rate deviation integrated value ΣΔRegr (k) in step 101. In step 107 of FIG. 6, in order to determine whether the current EGR rate deviation integrated value ΣΔRegr (k) is substantially equal to the reference value THegr, a predetermined value α is subtracted from the reference value THegr of the EGR rate deviation integrated value. This is because the value is used. Further, since the lower limit value is used to determine whether or not the current EGR rate deviation integrated value ΣΔRegr (k) is substantially equal to the reference value, the predetermined value α is set to an extremely small value.
 ステップ101においてΣΔPim(k)>THpimであって且つΣΔRegr(k)<THegr-αであると判別され、ルーチンがステップ102に進むと、現在のベーン操作量比例ゲインGPp(k)と現在のEGR制御弁操作量比例ゲインGEp(k)とが取得される。次いで、ステップ103において、ステップ102で取得された現在のベーン操作量比例ゲインGPp(k)に第1補正値K1が加算されて得られる値(GPp(k)+K1)が新たなベーン操作量比例ゲインGPp(k+1)に設定されると共に、ステップ102で取得された現在のEGR制御弁操作量比例ゲインGEp(k)から第1補正値K1が減算されて得られる値(GEp(k)-K1)が新たなEGR制御弁操作量比例ゲインGEp(k+1)に設定され、ルーチンが終了する。なお、この場合、図4のステップ16では、ステップ103で設定された新たなベーン操作量比例ゲインGPp(k+1)を利用して上式1から目標ベーン操作量Mvが算出されると共に、ステップ103で設定された新たなEGR制御弁操作量比例ゲインGEp(k+1)を利用して上式2から目標EGR制御弁操作量Megrが算出されることになる。 When it is determined in step 101 that ΣΔPim (k)> THpim and ΣΔRegr (k) <THegr−α, and the routine proceeds to step 102, the current vane manipulated variable proportional gain GPp (k) and the current EGR The control valve operation amount proportional gain GEp (k) is acquired. Next, in step 103, a value (GPp (k) + K1) obtained by adding the first correction value K1 to the current vane operation amount proportional gain GPp (k) acquired in step 102 is a new vane operation amount proportional. A value obtained by subtracting the first correction value K1 from the current EGR control valve operation amount proportional gain GEp (k) acquired in step 102 and being set to the gain GPp (k + 1) (GEp (k) −K1) ) Is set to a new EGR control valve operation amount proportional gain GEp (k + 1), and the routine ends. In this case, in step 16 of FIG. 4, the target vane operation amount Mv is calculated from the above equation 1 using the new vane operation amount proportional gain GPp (k + 1) set in step 103, and step 103 The target EGR control valve operation amount Megr is calculated from the above equation 2 using the new EGR control valve operation amount proportional gain GEp (k + 1) set in (1).
 一方、ステップ101においてΣΔPim(k)>THpimであって且つΣΔRegr(k)<THegr-αではないと判別され、ルーチンがステップ104に進むと、ステップ100で取得された現在の過給圧偏差積算値ΣΔPim(k)がその基準値THpimよりも大きく(ΣΔPim(k)>THpim)且つステップ100で取得された現在のEGR率偏差積算値ΣΔRegr(k)がその上限値(すなわち、その基準値THegrに所定値αを加えた値)(THegr+α)よりも大きい(ΣΔRegr(k)>THegr+α)か否かが判別される。ここで、ΣΔPim(k)>THpimであって且つΣΔRegr(k)>THegr+αであると判別されたときには、ルーチンはステップ105に進む。一方、ΣΔPim(k)>THpimであって且つΣΔRegr(k)>THegr+αではないと判別されたときには、ルーチンは図6のステップ107に進む。 On the other hand, when it is determined in step 101 that ΣΔPim (k)> THpim and ΣΔRegr (k) <THegr−α are not satisfied, and the routine proceeds to step 104, the current supercharging pressure deviation accumulated in step 100 is obtained. The value ΣΔPim (k) is larger than its reference value THpim (ΣΔPim (k)> THpim), and the current EGR rate deviation integrated value ΣΔRegr (k) acquired in step 100 is its upper limit value (that is, its reference value THegr). It is determined whether or not (ΣΔRegr (k)> THegr + α) is greater than (THegr + α), which is a value obtained by adding a predetermined value α to. Here, when it is determined that ΣΔPim (k)> THpim and ΣΔRegr (k)> THegr + α, the routine proceeds to step 105. On the other hand, if it is determined that ΣΔPim (k)> THpim and ΣΔRegr (k)> THegr + α is not established, the routine proceeds to step 107 in FIG.
 なお、ステップ104において現在のEGR率偏差積算値ΣΔRegr(k)と比較される上限値として、EGR率偏差積算値の基準値THegrに所定値αを加えた値が用いられているのは、後述する図6のステップ107において現在のEGR率偏差積算値ΣΔRegr(k)がその基準値THegrに略等しいか否かを判別するためにEGR率偏差積算値の基準値THegrに所定値αを加えた値が用いられているからである。また、上限値が現在のEGR率偏差積算値ΣΔRegr(k)がその基準値に略等しいか否かを判別するために用いられることから、上述したように、所定値αは極めて小さい値に設定されている。 Note that the value obtained by adding the predetermined value α to the reference value THegr of the EGR rate deviation integrated value is used as the upper limit value compared with the current EGR rate deviation integrated value ΣΔRegr (k) in step 104. In step 107 of FIG. 6, a predetermined value α is added to the reference value THegr of the EGR rate deviation integrated value to determine whether or not the current EGR rate deviation integrated value ΣΔRegr (k) is substantially equal to the reference value THegr. This is because the value is used. Further, since the upper limit value is used to determine whether or not the current EGR rate deviation integrated value ΣΔRegr (k) is substantially equal to the reference value, as described above, the predetermined value α is set to a very small value. Has been.
 ステップ104においてΣΔPim(k)>THpimであって且つΣΔRegr(k)>THegr+αであると判別され、ルーチンがステップ105に進むと、現在のベーン操作量比例ゲインGPp(k)と現在のEGR制御弁操作量比例ゲインGEp(k)とが取得される。次いで、ステップ106において、ステップ105で取得された現在のベーン操作量比例ゲインGPp(k)に第2補正値K2が乗算されて得られる値(GPp(k)×K2)が新たなベーン操作量比例ゲインGPp(k+1)に設定されると共に、ステップ105で取得された現在のEGR制御弁操作量比例ゲインGEp(k)に第2補正値K2が乗算されて得られる値(GEp(k)×K2)が新たなEGR制御弁操作量比例ゲインGEp(k+1)に設定され、ルーチンが終了する。なお、この場合、図4のステップ16では、ステップ106で設定された新たなベーン操作量比例ゲインGPp(k+1)を利用して上式1から目標ベーン操作量Mvが算出されると共に、ステップ106で設定された新たなEGR制御弁操作量比例ゲインGEp(k+1)を利用して上式2から目標EGR制御弁操作量Megrが算出されることになる。 When it is determined in step 104 that ΣΔPim (k)> THpim and ΣΔRegr (k)> THegr + α, and the routine proceeds to step 105, the current vane operation amount proportional gain GPp (k) and the current EGR control valve The manipulated variable proportional gain GEp (k) is acquired. Next, in step 106, a value (GPp (k) × K2) obtained by multiplying the current vane operation amount proportional gain GPp (k) acquired in step 105 by the second correction value K2 is a new vane operation amount. A value obtained by multiplying the current EGR control valve operation amount proportional gain GEp (k) acquired in step 105 by the second correction value K2 while being set to the proportional gain GPp (k + 1) (GEp (k) × K2) is set to a new EGR control valve operation amount proportional gain GEp (k + 1), and the routine ends. In this case, in step 16 of FIG. 4, the target vane operation amount Mv is calculated from the above equation 1 using the new vane operation amount proportional gain GPp (k + 1) set in step 106, and step 106 The target EGR control valve operation amount Megr is calculated from the above equation 2 using the new EGR control valve operation amount proportional gain GEp (k + 1) set in (1).
 一方、ステップ104においてΣΔPim(k)>THpimであって且つΣΔRegr(k)>THegr+αではないと判別され、ルーチンが図6のステップ107に進むと、ステップ100で取得された現在の過給圧偏差積算値ΣΔPim(k)がその基準値THpimよりも大きく(ΣΔPim(k)>THpim)且つステップ100で取得された現在のEGR率偏差積算値ΣΔRegr(k)がその基準値THegrに略等しい、すなわち、ステップ100で取得された現在のEGR率偏差積算値ΣΔRegr(k)がその下限値(THegr-α)以上であって且つその上限値(THegr+α)以下である(THegr-α≦ΣΔRegr(k)≦THegr+α)か否かが判別される。ここで、ΣΔPim(k)>THpimであって且つTHegr-α≦ΣΔRegr(k)≦THegr+αであると判別されたときには、ルーチンはステップ108に進む。一方、ΣΔPim(k)>THpimであって且つTHegr-α≦ΣΔRegr(k)≦THegr+αではないと判別されたときには、ルーチンはそのまま終了する。なお、この場合、図4のステップ16では、現在のベーン操作量比例ゲインGPp(k)を利用して上式1から目標ベーン操作量Mvが算出されると共に、現在のEGR制御弁操作量比例ゲインGEp(k)を利用して上式2から目標EGR制御弁操作量Megrが算出されることになる。 On the other hand, if it is determined in step 104 that ΣΔPim (k)> THpim and ΣΔRegr (k)> THegr + α is not established and the routine proceeds to step 107 in FIG. 6, the current boost pressure deviation obtained in step 100 is determined. The integrated value ΣΔPim (k) is larger than the reference value THpim (ΣΔPim (k)> THpim), and the current EGR rate deviation integrated value ΣΔRegr (k) acquired in step 100 is substantially equal to the reference value THegr, that is, The current EGR rate deviation integrated value ΣΔRegr (k) acquired in step 100 is not less than the lower limit value (THegr−α) and not more than the upper limit value (THegr + α) (THegr−α ≦ ΣΔRegr (k)). It is determined whether or not ≦ THegr + α). Here, when it is determined that ΣΔPim (k)> THpim and THegr−α ≦ ΣΔRegr (k) ≦ THegr + α, the routine proceeds to step 108. On the other hand, when it is determined that ΣΔPim (k)> THpim and that THegr−α ≦ ΣΔRegr (k) ≦ THegr + α is not established, the routine ends. In this case, in step 16 of FIG. 4, the target vane operation amount Mv is calculated from the above equation 1 using the current vane operation amount proportional gain GPp (k), and the current EGR control valve operation amount is proportional. The target EGR control valve operation amount Megr is calculated from the above equation 2 using the gain GEp (k).
 ステップ107においてΣΔPim(k)>THpimであって且つTHegr-α≦ΣΔRegr(k)≦THegr+αであると判別され、ルーチンがステップ108に進むと、現在のベーン操作量比例ゲインGPp(k)と現在のEGR制御弁操作量比例ゲインGEp(k)とが取得される。次いで、ステップ109において、ステップ108で取得された現在のベーン操作量比例ゲインGPp(k)に第3補正値K3が乗算されて得られる値(GPp(k)×K3)が新たなベーン操作量比例ゲインGPp(k+1)に設定されると共に、ステップ108で取得された現在のEGR制御弁操作量比例ゲインGEp(k)に第3補正値K3が乗算されて得られる値(GEp(k)×K3)が新たなEGR制御弁操作量比例ゲインGEp(k+1)に設定され、ルーチンが終了する。なお、この場合、図4のステップ16では、ステップ108で設定された新たなベーン操作量比例ゲインGPp(k+1)を利用して上式1から目標ベーン操作量Mvが算出されると共に、ステップ108で設定された新たなEGR制御弁操作量比例ゲインGEp(k+1)を利用して上式2から目標EGR制御弁操作量Megrが算出されることになる。 In step 107, it is determined that ΣΔPim (k)> THpim and THegr−α ≦ ΣΔRegr (k) ≦ THegr + α. When the routine proceeds to step 108, the current vane operation amount proportional gain GPp (k) and the current EGR control valve operation amount proportional gain GEp (k) is acquired. Next, in step 109, a value (GPp (k) × K3) obtained by multiplying the current vane operation amount proportional gain GPp (k) acquired in step 108 by the third correction value K3 is a new vane operation amount. A value obtained by multiplying the current EGR control valve operation amount proportional gain GEp (k) acquired in step 108 by the third correction value K3, while being set to the proportional gain GPp (k + 1) (GEp (k) × K3) is set to a new EGR control valve operation amount proportional gain GEp (k + 1), and the routine ends. In this case, in step 16 of FIG. 4, the target vane operation amount Mv is calculated from the above equation 1 using the new vane operation amount proportional gain GPp (k + 1) set in step 108, and step 108. The target EGR control valve operation amount Megr is calculated from the above equation 2 using the new EGR control valve operation amount proportional gain GEp (k + 1) set in (1).
 次に、本発明の第2実施形態について説明する。上述したように、第1実施形態では、実過給圧を目標過給圧にすると共にEGR率を目標EGR率にするための目標ベーン操作量と目標EGR制御弁操作量とがそれぞれ上式1および上式2を利用して算出され、この算出された目標ベーン操作量に相当する操作量がベーン35Dに入力されると共に上記算出された目標EGR制御弁操作量に相当する操作量がEGR制御弁52に入力され、これによって、実過給圧が目標過給圧に制御されると共に実EGR率が目標EGR率に制御される。これに対し、第2実施形態では、こうした第1実施形態の実過給圧および実EGR率の制御とは異なる制御でもって実過給圧が目標過給圧に制御されると共に実EGR率が目標EGR率に制御される。 Next, a second embodiment of the present invention will be described. As described above, in the first embodiment, the target vane operation amount and the target EGR control valve operation amount for setting the actual supercharging pressure to the target supercharging pressure and the EGR rate to the target EGR rate are expressed by the above equation 1 respectively. The operation amount corresponding to the calculated target vane operation amount is input to the vane 35D, and the operation amount corresponding to the calculated target EGR control valve operation amount is calculated using the EGR control. This is input to the valve 52, whereby the actual supercharging pressure is controlled to the target supercharging pressure and the actual EGR rate is controlled to the target EGR rate. On the other hand, in the second embodiment, the actual supercharging pressure is controlled to the target supercharging pressure by the control different from the control of the actual supercharging pressure and the actual EGR rate in the first embodiment, and the actual EGR rate is reduced. Controlled to the target EGR rate.
 すなわち、第2実施形態では、実過給圧を目標過給圧にすると共に実EGR率を目標EGR率にするために目標とするべきベーン開度の変化量が目標ベーン開度変化量として算出される(すなわち、設定される)と共に目標とするべきEGR制御弁開度の変化量が目標EGR制御弁開度変化量として算出される。そして、目標ベーン開度変化量変換式(すなわち、目標ベーン開度変化量に対応する目標ベーン操作量を目標ベーン開度変化量から算出するために予め定められている変換式)を利用して上記算出された目標ベーン開度変化量から目標ベーン操作量が算出されると共に、目標EGR制御弁開度変化量に対応する目標EGR制御弁操作量を目標EGR制御弁開度変化量から算出するために予め定められている変換式)を利用して上記算出された目標EGR制御弁開度変化量から目標EGR制御弁操作量が算出される。そして、上記算出された目標ベーン操作量に相当する操作量が電子制御装置60からベーン35Dに入力されると共に、上記算出された目標EGR制御弁操作量に相当する操作量が電子制御装置60からEGR制御弁52に入力される。これによって、実過給圧が目標過給圧に制御されると共に実EGR率が目標EGR率に制御される。 That is, in the second embodiment, the amount of change in the vane opening that should be the target in order to set the actual supercharging pressure to the target supercharging pressure and the actual EGR rate to the target EGR rate is calculated as the target vane opening change amount. The amount of change in the opening degree of the EGR control valve to be targeted is calculated as the target amount of change in the opening degree of the EGR control valve. Then, using a target vane opening change amount conversion formula (that is, a conversion formula determined in advance to calculate the target vane opening change amount corresponding to the target vane opening change amount from the target vane opening change amount). A target vane operation amount is calculated from the calculated target vane opening change amount, and a target EGR control valve operation amount corresponding to the target EGR control valve opening change amount is calculated from the target EGR control valve opening change amount. Therefore, the target EGR control valve operation amount is calculated from the calculated target EGR control valve opening change amount using a predetermined conversion equation). An operation amount corresponding to the calculated target vane operation amount is input from the electronic control device 60 to the vane 35D, and an operation amount corresponding to the calculated target EGR control valve operation amount is input from the electronic control device 60. Input to the EGR control valve 52. As a result, the actual boost pressure is controlled to the target boost pressure, and the actual EGR rate is controlled to the target EGR rate.
 次に、第2実施形態に従った目標ベーン開度変化量の設定について説明する。第2実施形態では、過給圧偏差を利用したPID制御が目標ベーン開度変化量の設定に利用される。具体的には、機関運転中に実過給圧が取得され、目標過給圧に対するこの取得された実過給圧の偏差(すなわち、過給圧偏差)が算出される。そして、斯くして算出される過給圧偏差を積算することによって過給圧偏差積算値が算出される。 Next, setting of the target vane opening change amount according to the second embodiment will be described. In the second embodiment, PID control using the supercharging pressure deviation is used for setting the target vane opening change amount. Specifically, the actual supercharging pressure is acquired during engine operation, and a deviation (that is, a supercharging pressure deviation) of the acquired actual supercharging pressure with respect to the target supercharging pressure is calculated. Then, the supercharging pressure deviation integrated value is calculated by integrating the supercharging pressure deviation thus calculated.
 そして、上述したように算出される過給圧偏差を「ΔPim」で表し、上述したように算出される過給圧偏差積算値を「ΣΔPim」で表し、目標ベーン開度変化量を「TDv」で表し、PID制御における比例ゲインを「GPp」で表し、PID制御における積分ゲインを「GPi」で表し、PID制御における微分ゲインを「GPd」で表したとき、次式3に従って目標ベーン開度変化量TDvが算出される(すなわち、設定される)。
  TDv=GPp×ΔPim+GPi×ΣΔPim+GPd×d(ΔPim)/dt  …(3)
The supercharging pressure deviation calculated as described above is represented by “ΔPim”, the supercharging pressure deviation integrated value calculated as described above is represented by “ΣΔPim”, and the target vane opening change amount is represented by “TDv”. When the proportional gain in PID control is represented by “GPp”, the integral gain in PID control is represented by “GPi”, and the differential gain in PID control is represented by “GPd”, the change in target vane opening according to the following equation 3 A quantity TDv is calculated (ie set).
TDv = GPp × ΔPim + GPi × ΣΔPim + GPd × d (ΔPim) / dt (3)
 なお、上述したように、第2実施形態では、上式3から算出される目標ベーン開度変化量に対応する目標ベーン操作量が目標ベーン開度変化量変換式から算出され、この算出された目標ベーン操作量に相当する操作量が電子制御装置60からベーン35Dに入力される。 As described above, in the second embodiment, the target vane opening change amount corresponding to the target vane opening change amount calculated from the above equation 3 is calculated from the target vane opening change amount conversion formula, and this calculation is performed. An operation amount corresponding to the target vane operation amount is input from the electronic control device 60 to the vane 35D.
 次に、第2実施形態に従った目標EGR制御弁開度変化量の設定について説明する。第2実施形態では、EGR率偏差を利用したPID制御が目標EGR制御弁開度変化量の設定に利用される。具体的には、機関運転中に実EGR率が取得され、目標EGR率に対するこの取得された実EGR率の偏差(すなわち、EGR率偏差)が算出される。そして、斯くして算出されるEGR率偏差を積算することによってEGR率偏差積算値が算出される。 Next, the setting of the target EGR control valve opening change amount according to the second embodiment will be described. In the second embodiment, PID control using the EGR rate deviation is used for setting the target EGR control valve opening change amount. Specifically, the actual EGR rate is acquired during engine operation, and a deviation (that is, EGR rate deviation) of the acquired actual EGR rate with respect to the target EGR rate is calculated. Then, the EGR rate deviation integrated value is calculated by integrating the EGR rate deviation thus calculated.
 そして、上述したように算出されるEGR率偏差を「ΔRegr」で表し、上述したように算出されるEGR率偏差積算値を「ΣΔRegr」で表し、目標EGR制御弁開度変化量を「TDegr」で表し、PID制御における比例ゲインを「GEp」で表し、PID制御における積分ゲインを「GEi」で表し、PID制御における微分ゲインを「GEd」で表したとき、次式4に従って目標EGR制御弁開度変化量TDegrが算出される。
  TDegr=GPp×ΔRegr+GPi×ΣΔRegr+GPd×d(ΔRegr)/dt  …(4)
The EGR rate deviation calculated as described above is represented by “ΔRegr”, the EGR rate deviation integrated value calculated as described above is represented by “ΣΔRegr”, and the target EGR control valve opening change amount is represented by “TDegr”. When the proportional gain in PID control is represented by “GEp”, the integral gain in PID control is represented by “GEi”, and the differential gain in PID control is represented by “GEd”, the target EGR control valve is opened according to the following equation 4. A degree change amount TDegr is calculated.
TDegr = GPp × ΔRegr + GPi × ΣΔRegr + GPd × d (ΔRegr) / dt (4)
 なお、上述したように、第2実施形態では、上式4から算出される目標EGR制御弁開度変化量に対応する目標EGR制御弁操作量が目標EGR制御弁開度変化量変換式から算出され、この算出された目標EGR制御弁操作量に相当する操作量が電子制御装置60からEGR制御弁52に入力される。 As described above, in the second embodiment, the target EGR control valve operation amount corresponding to the target EGR control valve opening change amount calculated from the above equation 4 is calculated from the target EGR control valve opening change amount conversion equation. Then, an operation amount corresponding to the calculated target EGR control valve operation amount is input from the electronic control device 60 to the EGR control valve 52.
 ところで、第2実施形態では、実過給圧を目標過給圧に所定の追従性でもって制御すると共に実EGR率を目標EGR率に所定の追従性でもって制御するために、目標ベーン開度変化量の設定に利用される上式3の比例ゲイン(以下このゲインを「ベーン開度比例ゲイン」という)と目標EGR開度変化量の設定に利用される上式4の比例ゲイン(以下このゲインを「EGR制御弁開度比例ゲイン」という)とが過給圧偏差積算値とEGR率偏差積算値とに基づいて補正され、この補正されたベーン開度比例ゲインが上式3の比例ゲインとして利用されて目標ベーン開度変化量が設定されると共に、上記補正されたEGR制御弁開度比例ゲインが上式4の比例ゲインとして利用されて目標EGR制御弁変化量が設定される。云い方を換えれば、第2実施形態では、ベーン開度比例ゲインとEGR制御弁開度比例ゲインとが過給圧偏差積算値とEGR率偏差積算値とに基づいて学習され、これら学習されたベーン開度比例ゲインおよびEGR制御弁比例ゲインが目標ベーン開度変化量の設定および目標EGR制御弁開度変化量の設定に利用される。 By the way, in the second embodiment, in order to control the actual supercharging pressure with the target supercharging pressure with a predetermined followability and to control the actual EGR rate with the predetermined followability with the target EGR rate, The proportional gain of Equation 3 used for setting the change amount (hereinafter, this gain is referred to as “vane opening proportional gain”) and the proportional gain of Equation 4 used for setting the target EGR opening change amount (hereinafter referred to as this gain). The gain is referred to as “EGR control valve opening proportional gain”) is corrected based on the supercharging pressure deviation integrated value and the EGR rate deviation integrated value, and the corrected vane opening proportional gain is the proportional gain of Equation 3 above. Is used to set the target vane opening change amount, and the corrected EGR control valve opening proportional gain is used as the proportional gain of Equation 4 to set the target EGR control valve change amount. In other words, in the second embodiment, the vane opening proportional gain and the EGR control valve opening proportional gain are learned based on the boost pressure deviation integrated value and the EGR rate deviation integrated value, and these are learned. The vane opening proportional gain and the EGR control valve proportional gain are used for setting the target vane opening change amount and setting the target EGR control valve opening change amount.
 次に、過給圧偏差積算値およびEGR率偏差積算値に基づくベーン開度比例ゲインおよびEGR制御弁開度比例ゲインの補正について説明する。 Next, correction of the vane opening proportional gain and the EGR control valve opening proportional gain based on the supercharging pressure deviation integrated value and the EGR rate deviation integrated value will be described.
 第2実施形態では、機関運転中に算出される過給圧偏差積算値が或る基準となる値(すなわち、その基準値)と比較されると共に、機関運転中に算出されるEGR率偏差積算値が或る基準となる値(すなわち、その基準値)と比較される。 In the second embodiment, the supercharging pressure deviation integrated value calculated during engine operation is compared with a reference value (that is, the reference value), and the EGR rate deviation integrated value calculated during engine operation. The value is compared with a certain reference value (ie its reference value).
 ここで、過給圧偏差積算値がその基準値よりも大きく且つEGR率偏差積算値がその基準値よりも小さい場合には、ベーン開度比例ゲインが大きくなるように所定の値(以下この値を「第1補正値」という)がベーン開度比例ゲインに加算されることによって同ゲインが補正されると共にEGR制御弁開度比例ゲインが小さくなるように第1補正値がEGR制御弁開度比例ゲインから減算されることによって同ゲインが補正される。 Here, when the supercharging pressure deviation integrated value is larger than the reference value and the EGR rate deviation integrated value is smaller than the reference value, a predetermined value (hereinafter referred to as this value) is set so that the vane opening proportional gain is increased. Is added to the vane opening proportional gain, the gain is corrected and the EGR control valve opening is adjusted so that the EGR control valve opening proportional gain is reduced. By subtracting from the proportional gain, the gain is corrected.
 また、過給圧偏差積算値がその基準値よりも大きく且つEGR率偏差積算値がその基準値よりも大きい場合には、EGR制御弁開度比例ゲインが大きくなるように1よりも大きい所定の値(以下この値を「第2補正値」という)がEGR制御弁開度比例ゲインに乗算されることによって同ゲインが補正されると共にベーン開度比例ゲインが大きくなるように第2補正値がベーン開度比例ゲインに乗算されることによって同ゲインが補正される。 Further, when the supercharging pressure deviation integrated value is larger than the reference value and the EGR rate deviation integrated value is larger than the reference value, a predetermined value larger than 1 is set so that the EGR control valve opening proportional gain is increased. By multiplying the value (hereinafter referred to as “second correction value”) by the EGR control valve opening proportional gain, the second correction value is set so that the gain is corrected and the vane opening proportional gain is increased. The gain is corrected by multiplying the vane opening proportional gain.
 また、過給圧偏差積算値がその基準値よりも大きく且つEGR率偏差積算値がその基準値に略等しい(或いは、その基準値に等しい)場合には、ベーン開度比例ゲインが大きくなるように1よりも大きい所定の値(以下この値を「第3補正値」という)がベーン開度比例ゲインに乗算されることによって同ゲインが補正されると共にEGR制御弁開度比例ゲインが大きくなるように第3補正値がEGR制御弁開度比例ゲインに乗算されることによって同ゲインが補正される。 Further, when the supercharging pressure deviation integrated value is larger than the reference value and the EGR rate deviation integrated value is substantially equal to (or equal to) the reference value, the vane opening proportional gain is increased. The gain is corrected by multiplying the vane opening proportional gain by a predetermined value greater than 1 (hereinafter, this value is referred to as a “third correction value”) and the EGR control valve opening proportional gain is increased. As described above, the gain is corrected by multiplying the EGR control valve opening proportional gain by the third correction value.
 また、基準値に対する過給圧偏差積算値の関係と基準値に対するEGR率偏差積算値の関係とが上で挙げた関係以外の関係にある場合には、ベーン開度比例ゲインもEGR制御弁開度比例ゲインも補正されない。 Further, when the relationship between the supercharging pressure deviation integrated value with respect to the reference value and the relationship between the EGR rate deviation integrated value with respect to the reference value is other than the relationship mentioned above, the vane opening proportional gain is also set to open the EGR control valve. The degree proportional gain is not corrected.
 なお、第2実施形態においても、例えば、ベーンの応答が最も高く且つEGR制御弁の応答が最も高いときにとり得る過給圧偏差積算値およびEGR率偏差積算値を実験等によって予め求め、この求められた値がそれぞれ過給圧偏差積算値の基準値およびEGR率偏差積算値の基準値とされる。 Also in the second embodiment, for example, the supercharging pressure deviation integrated value and the EGR rate deviation integrated value that can be taken when the response of the vane is the highest and the response of the EGR control valve is the highest are obtained in advance through experiments or the like. The obtained values are used as a reference value for the supercharging pressure deviation integrated value and a reference value for the EGR rate deviation integrated value, respectively.
 以上のようにベーン開度比例ゲインおよびEGR制御弁開度比例ゲインが補正され、これら補正されたゲインがそれぞれ目標ベーン開度変化量の設定および目標EGR制御弁開度変化量の設定に利用されると、過給圧を目標過給圧に所定の追従性でもって制御することができると共にEGR率を目標EGR率に所定の追従性でもって制御することができるという効果、或いは、実過給圧と実EGR率とをそれぞれ目標過給圧と目標EGR率とに対してバランス良く制御することができるという効果が得られる。 As described above, the vane opening proportional gain and the EGR control valve opening proportional gain are corrected, and these corrected gains are used for setting the target vane opening change amount and setting the target EGR control valve opening change amount, respectively. Then, the supercharging pressure can be controlled to the target supercharging pressure with a predetermined followability and the EGR rate can be controlled to the target EGR rate with a predetermined followability, or the actual supercharging. An effect is obtained that the pressure and the actual EGR rate can be controlled in a balanced manner with respect to the target supercharging pressure and the target EGR rate, respectively.
 すなわち、第1実施形態に関連して説明したように、過給圧とEGR率とは互いに影響し合う制御量である。したがって、過給機35によって過給圧を制御する場合において過給圧を目標過給圧に所定の追従性でもって制御しようとするときに、過給圧に対する過給機35による同過給圧の制御の影響を考慮するだけでなく、過給圧に対するEGR装置50によるEGR率の制御の影響を考慮することには、過給圧をより精度高く目標過給圧に制御するという観点から利点がある。また、EGR装置50によってEGR率を制御する場合においてEGR率を目標EGR率に所定の追従性でもって制御しようとするときに、EGR率に対するEGR装置50による同EGR率の制御の影響を考慮するだけでなく、EGR率に対する過給機35による過給圧の制御の影響を考慮することには、EGR率をより精度高く目標EGR率に制御するという観点から利点がある。 That is, as described in relation to the first embodiment, the supercharging pressure and the EGR rate are control amounts that influence each other. Therefore, when the supercharging pressure is controlled by the supercharger 35, when the supercharging pressure is controlled with a predetermined followability to the target supercharging pressure, the same supercharging pressure by the supercharger 35 with respect to the supercharging pressure. Considering the influence of the control of the EGR rate by the EGR device 50 on the supercharging pressure as well as the influence of the control of the supercharging pressure is advantageous from the viewpoint of controlling the supercharging pressure to the target supercharging pressure with higher accuracy. There is. Further, when the EGR rate is controlled by the EGR device 50, the control of the EGR rate by the EGR device 50 on the EGR rate is taken into account when the EGR rate is to be controlled with a predetermined followability to the target EGR rate. In addition, considering the influence of the supercharging pressure control by the supercharger 35 on the EGR rate is advantageous from the viewpoint of controlling the EGR rate to the target EGR rate with higher accuracy.
 ここで、一般的には、上式3の比例ゲイン、積分ゲイン、および、微分ゲインは、上式3から算出される目標ベーン開度変化量TDvから目標ベーン開度変化量変換式に従って算出される操作量がベーンに入力されたときに過給圧が目標過給圧に所定の追従性でもって適切に制御されるような目標ベーン開度変化量が上式3から算出されるような値として予め実験等によって求められる。これに関し、上述したように、過給圧がEGR率の影響を受けることから、予め実験等によって求められた比例ゲイン、積分ゲイン、および、微分ゲイン(以下これらゲインをそれぞれ「基準比例ゲイン」「基準積分ゲイン」および「基準微分ゲイン」ともいう)は、EGR率が目標EGR率に所定の追従性でもって適切に制御されることを前提とした値になっているとも言える。したがって、基準比例ゲイン、基準積分ゲイン、および、基準微分ゲインを採用した上式3から算出される目標ベーン開度変化量は、過給圧が目標過給圧に所定の追従性でもって制御されると共にEGR率が目標EGR率に所定の追従性でもって制御されることを前提に設定されていることになる。したがって、基準比例ゲイン、基準積分ゲイン、および、基準微分ゲインを採用した上式3から算出される目標ベーン開度変化量に基づいて算出される操作量がベーンに入力された場合、過給圧が目標過給圧に所定の追従性でもって制御され且つEGR率が目標EGR率に所定の追従性でもって制御される限りにおいては、過給圧が目標過給圧に所定の追従性でもって制御される。 Here, in general, the proportional gain, integral gain, and differential gain of Equation 3 are calculated from the target vane opening change amount TDv calculated from Equation 3 according to the target vane opening change amount conversion equation. A value such that a target vane opening change amount is calculated from the above equation 3 so that the supercharging pressure is appropriately controlled with a predetermined followability to the target supercharging pressure when an operation amount is input to the vane. It is calculated | required by experiment etc. previously. In this regard, as described above, since the supercharging pressure is affected by the EGR rate, a proportional gain, an integral gain, and a derivative gain (hereinafter referred to as “reference proportional gain”, “ It can be said that the “reference integral gain” and the “reference differential gain” are values based on the premise that the EGR rate is appropriately controlled with a predetermined followability to the target EGR rate. Therefore, the target vane opening change amount calculated from the above equation 3 that employs the reference proportional gain, the reference integral gain, and the reference differential gain is controlled with a predetermined followability of the supercharging pressure to the target supercharging pressure. The EGR rate is set on the assumption that the target EGR rate is controlled with a predetermined followability. Therefore, when the operation amount calculated based on the target vane opening change amount calculated from the above equation 3 using the reference proportional gain, the reference integral gain, and the reference differential gain is input to the vane, the boost pressure As long as the EGR rate is controlled with a predetermined followability to the target supercharging pressure and the EGR rate is controlled with a predetermined followability to the target EGR rate, the supercharging pressure has a predetermined followability to the target supercharging pressure. Be controlled.
 云い方を換えれば、過給圧が目標過給圧に所定の追従性でもって制御されない場合、基準比例ゲイン、基準積分ゲイン、および、基準微分ゲインを採用した上式3から算出される目標ベーン開度変化量に基づいて算出される操作量がベーンに入力されたとしても、当然のことながら、過給圧は目標過給圧に所定の追従性でもって制御されない。また、EGR率が目標EGR率に所定の追従性でもって制御されない場合にも、基準比例ゲイン、基準積分ゲイン、および、基準微分ゲインを採用した上式3から算出される目標ベーン開度変化量に基づいて算出される操作量がベーンに入力されたとしても、過給圧は目標過給圧に所定の追従性でもって制御されない。 In other words, when the supercharging pressure is not controlled with a predetermined followability to the target supercharging pressure, the target vane calculated from the above equation 3 adopting the reference proportional gain, the reference integral gain, and the reference differential gain. Even if an operation amount calculated based on the amount of change in opening is input to the vane, it is natural that the supercharging pressure is not controlled with a predetermined followability to the target supercharging pressure. Further, even when the EGR rate is not controlled with a predetermined followability to the target EGR rate, the target vane opening change amount calculated from the above equation 3 that employs the reference proportional gain, the reference integral gain, and the reference differential gain. Even if the operation amount calculated based on the above is input to the vane, the supercharging pressure is not controlled with a predetermined followability to the target supercharging pressure.
 同様に、一般的には、上式4の比例ゲイン、積分ゲイン、および、微分ゲインは、上式4から算出される目標EGR制御弁開度変化量TDegrから目標EGR制御弁開度変化量変換式に従って算出される操作量がEGR制御弁に入力されたときにEGR率が目標EGR率に所定の追従性でもって適切に制御されるような目標EGR制御弁開度変化量が上式4から算出されるような値として予め実験等によって求められる。これに関し、上述したように、EGR率が過給圧の影響を受けることから、予め実験等によって求められた比例ゲイン、積分ゲイン、および、微分ゲイン(以下これらゲインをそれぞれ「基準比例ゲイン」「基準積分ゲイン」および「基準微分ゲイン」ともいう)は、過給圧が目標過給圧に所定の追従性でもって適切に制御されることを前提とした値になっているとも言える。したがって、これら基準比例ゲイン、基準積分ゲイン、および、基準微分ゲインを採用した上式4から算出される目標EGR制御弁開度変化量は、EGR率が目標EGR率に所定の追従性でもって制御されると共に過給圧が目標過給圧に所定の追従性でもって制御されることを前提に設定されていることになる。したがって、基準比例ゲイン、基準積分ゲイン、および、基準微分ゲインを採用した上式4から算出される目標EGR制御弁開度変化量に基づいて算出される操作量がEGR制御弁に入力された場合、EGR率が目標EGR率に所定の追従性でもって制御され且つ過給圧が目標過給圧に所定の追従性でもって制御される限りにおいては、EGR率が目標EGR率に所定の追従性でもって制御される。 Similarly, in general, the proportional gain, integral gain, and differential gain of the above equation 4 are converted from the target EGR control valve opening change amount TDegr calculated from the above equation 4 to the target EGR control valve opening change amount. The target EGR control valve opening change amount that the EGR rate is appropriately controlled with a predetermined followability to the target EGR rate when the operation amount calculated according to the equation is input to the EGR control valve from the above equation 4. As a value to be calculated, it is obtained in advance by experiments or the like. In this regard, since the EGR rate is affected by the supercharging pressure as described above, the proportional gain, integral gain, and derivative gain (hereinafter referred to as “reference proportional gain”, “ It can also be said that the “reference integral gain” and “reference differential gain” are values based on the premise that the supercharging pressure is appropriately controlled with a predetermined followability to the target supercharging pressure. Accordingly, the target EGR control valve opening change amount calculated from the above equation 4 that employs the reference proportional gain, the reference integral gain, and the reference differential gain is controlled by the EGR rate with a predetermined followability to the target EGR rate. In addition, the supercharging pressure is set on the premise that the supercharging pressure is controlled with a predetermined followability to the target supercharging pressure. Therefore, when the operation amount calculated based on the target EGR control valve opening change amount calculated from the above equation 4 adopting the reference proportional gain, the reference integral gain, and the reference differential gain is input to the EGR control valve. As long as the EGR rate is controlled with a predetermined followability to the target EGR rate and the supercharging pressure is controlled with a predetermined followability to the target supercharging pressure, the EGR rate has a predetermined followability to the target EGR rate. So it is controlled.
 云い方を換えれば、EGR率が目標EGR率に所定の追従性でもって制御されない場合、基準比例ゲイン、基準積分ゲイン、および、基準微分ゲインを採用した上式4から算出される目標EGR制御弁開度変化量に基づいて算出される操作量がEGR制御弁に入力されたとしても、当然のことながら、EGR率は目標EGR率に所定の追従性でもって制御されない。また、過給圧が目標過給圧に所定の追従性でもって制御されない場合にも、基準比例ゲイン、基準積分ゲイン、および、基準微分ゲインを採用した上式4から算出される目標EGR制御弁開度変化量に基づいて算出される操作量がEGR制御弁に入力されたとしても、EGR率は目標EGR率に所定の追従性でもって制御されない。 In other words, when the EGR rate is not controlled with a predetermined followability to the target EGR rate, the target EGR control valve calculated from the above equation 4 adopting the reference proportional gain, the reference integral gain, and the reference differential gain. Even if the operation amount calculated based on the amount of change in opening is input to the EGR control valve, it is natural that the EGR rate is not controlled with a predetermined followability to the target EGR rate. Further, even when the supercharging pressure is not controlled with a predetermined followability to the target supercharging pressure, the target EGR control valve calculated from the above equation 4 that employs the reference proportional gain, the reference integral gain, and the reference differential gain. Even if the operation amount calculated based on the opening change amount is input to the EGR control valve, the EGR rate is not controlled with a predetermined followability to the target EGR rate.
 そして、過給圧が目標過給圧に所定の追従性でもって制御されず或いはEGR率が目標EGR率に所定の追従性でもって制御されない場合、過給圧が目標過給圧に所定の追従性でもって制御され且つEGR率が目標EGR率に所定の追従性でもって制御されていれば得られるはずの所期の内燃機関の特性が得られないことにもなる。 If the supercharging pressure is not controlled with the target supercharging pressure with a predetermined followability, or the EGR rate is not controlled with the target EGR rate with a predetermined followability, the supercharging pressure follows the target supercharging pressure with a predetermined followability. Therefore, if the EGR rate is controlled with the predetermined EGR rate and the target EGR rate is controlled with a predetermined followability, the desired internal combustion engine characteristics cannot be obtained.
 ここで、第1実施形態に関連して説明したように、EGR制御弁の応答が所期の応答であるにも係わらずベーンの応答が所期の応答よりも遅くなっている場合、過給圧偏差積算値がその基準値よりも大きく且つEGR率偏差積算値がその基準値よりも小さくなる。 Here, as explained in relation to the first embodiment, when the response of the vane is slower than the intended response although the response of the EGR control valve is the intended response, supercharging The pressure deviation integrated value is larger than the reference value, and the EGR rate deviation integrated value is smaller than the reference value.
 ここで、ベーン操作量が大きくされれば、ベーンの応答が速くなる。したがって、過給圧偏差積算値がその基準値よりも大きく且つEGR率偏差積算値がその基準値よりも小さい場合に、ベーン操作量が大きくされれば、ベーンの応答が速くなり、その結果、実過給圧の変化速度(すなわち、実過給圧を上昇させるときの実過給圧の上昇速度、または、実過給圧を低下させるときの実過給圧の低下速度)が所期の速度に近づくことになる。そこで、第2実施形態では、この場合には、ベーン開度比例ゲインが大きくなるようにベーン開度比例ゲインに第1補正値が加算されるのである。このようにベーン開度比例ゲインが大きくされれば、設定される目標ベーン開度変化量が大きくなり、したがって、目標ベーン開度変化量に基づいて算出される目標ベーン操作量も大きくなる。これによれば、ベーンの応答が速くなり、その結果、実過給圧の変化速度が速くなって所期の速度に近づく。そして、こうしたベーン開度比例ゲインの補正が繰り返されれば、最終的には、実過給圧の変化速度が所期の速度に到達する。したがって、実過給圧が目標過給圧に所定の追従性でもって制御されることになる。 Here, if the amount of vane operation is increased, the response of the vanes becomes faster. Therefore, when the supercharging pressure deviation integrated value is larger than the reference value and the EGR rate deviation integrated value is smaller than the reference value, if the vane operation amount is increased, the response of the vane becomes faster. The actual turbocharging pressure change speed (that is, the actual turbocharging pressure increasing speed when increasing the actual turbocharging pressure, or the actual turbocharging pressure decreasing speed when decreasing the actual turbocharging pressure) It will approach speed. Therefore, in the second embodiment, in this case, the first correction value is added to the vane opening proportional gain so that the vane opening proportional gain is increased. When the vane opening proportional gain is increased in this way, the set target vane opening change amount increases, and therefore the target vane operation amount calculated based on the target vane opening change amount also increases. According to this, the response of the vane becomes faster, and as a result, the change speed of the actual supercharging pressure becomes faster and approaches the intended speed. If the correction of the vane opening proportional gain is repeated, the change speed of the actual supercharging pressure finally reaches the desired speed. Therefore, the actual supercharging pressure is controlled with a predetermined followability to the target supercharging pressure.
 一方、EGR制御弁操作量が小さくされれば、EGR制御弁の応答が遅くなる。したがって、過給圧偏差積算値がその基準値よりも大きく且つEGR率偏差積算値がその基準値よりも小さい場合に、EGR制御弁操作量が小さくされれば、EGR制御弁の応答が遅くなり、その結果、実EGR率の変化速度(すなわち、実EGR率を低下させるときの実EGR率の低下速度、または、実EGR率を上昇させるときの実EGR率の上昇速度)が所期の速度に近づくことになる。そこで、第2実施形態では、この場合には、EGR制御弁開度比例ゲインが小さくなるようにEGR制御弁開度比例ゲインから第1補正値が減算されるのである。このようにEGR制御弁開度比例ゲインが小さくされれば、設定される目標EGR制御弁開度変化量が小さくなり、したがって、目標EGR制御弁開度変化量に基づいて算出される目標EGR制御弁操作量も小さくなる。これによれば、EGR制御弁の応答が遅くなり、その結果、実EGR率の変化速度が遅くなって所期の速度に近づく。そして、こうしたEGR制御弁開度比例ゲインの補正が繰り返されれば、最終的には、実EGR率の変化速度が所期の速度に到達する。したがって、実EGR率が目標EGR率に所定の追従性でもって制御されることになる。 On the other hand, if the operation amount of the EGR control valve is reduced, the response of the EGR control valve is delayed. Therefore, when the supercharging pressure deviation integrated value is larger than the reference value and the EGR rate deviation integrated value is smaller than the reference value, if the EGR control valve operation amount is reduced, the response of the EGR control valve is delayed. As a result, the change rate of the actual EGR rate (that is, the decrease rate of the actual EGR rate when the actual EGR rate is decreased or the increase rate of the actual EGR rate when the actual EGR rate is increased) is an intended rate. Will approach. Therefore, in the second embodiment, in this case, the first correction value is subtracted from the EGR control valve opening proportional gain so that the EGR control valve opening proportional gain becomes small. If the EGR control valve opening proportional gain is reduced in this way, the set target EGR control valve opening change amount becomes small, and therefore, the target EGR control calculated based on the target EGR control valve opening change amount. The valve operation amount is also reduced. According to this, the response of the EGR control valve becomes slow, and as a result, the change speed of the actual EGR rate becomes slow and approaches the intended speed. If the correction of the EGR control valve opening proportional gain is repeated, finally, the actual EGR rate change speed reaches the desired speed. Therefore, the actual EGR rate is controlled with a predetermined followability to the target EGR rate.
 なお、上述した第1補正値を用いたベーン開度比例ゲインの補正によれば、ベーンの応答が速くなることから、ベーン開度の変化に起因するEGRガス量の変化の速度が速くなる。このことからも、実EGR率の変化速度が遅くなって所期の速度に近づく。したがって、より早期に、実EGR率が目標EGR率に所定の追従性でもって制御されるようになる。 In addition, according to the correction of the vane opening proportional gain using the first correction value described above, the response of the vane becomes faster, so that the rate of change in the EGR gas amount due to the change in the vane opening becomes faster. Also from this, the rate of change of the actual EGR rate becomes slow and approaches the intended rate. Therefore, the actual EGR rate is controlled with a predetermined followability to the target EGR rate earlier.
 斯くして、第2実施形態によれば、過給圧偏差積算値がその基準値よりも大きく且つEGR率偏差積算値がその基準値よりも小さく、したがって、EGR制御弁の応答が所期の応答であるにも係わらずベーンの応答が所期の応答よりも遅い場合においても、実過給圧を目標過給圧に所定の追従性でもって制御することができると共に実EGR率を目標EGR率に所定の追従性でもって制御することができ、或いは、実過給圧と実EGR率とをそれぞれ目標過給圧と目標EGR率とに対してバランス良く制御することができるのである。 Thus, according to the second embodiment, the supercharging pressure deviation integrated value is larger than the reference value and the EGR rate deviation integrated value is smaller than the reference value, and therefore the response of the EGR control valve is expected. Even when the response of the vane is slower than the intended response, the actual supercharging pressure can be controlled to the target supercharging pressure with a predetermined followability and the actual EGR rate can be set to the target EGR. The rate can be controlled with a predetermined followability, or the actual boost pressure and the actual EGR rate can be controlled in a balanced manner with respect to the target boost pressure and the target EGR rate, respectively.
 なお、ベーン開度比例ゲインおよびEGR制御弁開度比例ゲインを補正するために利用される第1補正値は、第1実施形態の第1補正値の設定に関する考え方と同様の考え方でもって設定される。 The first correction value used for correcting the vane opening proportional gain and the EGR control valve opening proportional gain is set based on the same concept as that for setting the first correction value in the first embodiment. The
 また、第1実施形態に関連して説明したように、ベーンの応答が所期の応答であるにも係わらずEGR制御弁の応答が所期の応答よりも遅くなっている場合、過給圧偏差積算値がその基準値よりも大きく且つEGR率偏差積算値がその基準値よりも大きくなる。 Further, as described in relation to the first embodiment, when the response of the EGR control valve is slower than the intended response although the vane response is the intended response, the boost pressure The integrated deviation value is larger than the reference value, and the EGR rate deviation integrated value is larger than the reference value.
 ここで、EGR制御弁操作量が大きくされれば、EGR制御弁の応答が速くなる。したがって、過給圧偏差積算値がその基準値よりも大きく且つEGR率偏差積算値がその基準値よりも大きい場合に、EGR制御弁操作量が大きくされれば、EGR制御弁の応答が速くなり、その結果、実EGR率の偏差速度が所期の速度に近づくことになる。そこで、第2実施形態では、この場合には、EGR制御弁開度比例ゲインが大きくなるようにEGR制御弁開度比例ゲインに第2補正値が乗算されるのである。このようにEGR制御弁開度比例ゲインが大きくされれば、設定される目標EGR制御弁開度変化量が大きくなり、したがって、目標EGR制御弁開度変化量に基づいて算出される目標EGR制御弁操作量も大きくなる。これによれば、EGR制御弁の応答が速くなり、その結果、実EGRの変化速度が速くなって所期の速度に近づく。そして、こうしたEGR制御弁開度比例ゲインの補正が繰り返されれば、最終的には、実EGR率の変化速度が所期の速度に到達する。したがって、実EGR率が目標EGR率に所定の追従性でもって制御されることになる。 Here, if the operation amount of the EGR control valve is increased, the response of the EGR control valve becomes faster. Therefore, when the boost pressure deviation integrated value is larger than the reference value and the EGR rate deviation integrated value is larger than the reference value, if the EGR control valve operation amount is increased, the response of the EGR control valve becomes faster. As a result, the deviation speed of the actual EGR rate approaches the intended speed. Therefore, in the second embodiment, in this case, the EGR control valve opening proportional gain is multiplied by the second correction value so that the EGR control valve opening proportional gain is increased. Thus, if the EGR control valve opening proportional gain is increased, the set target EGR control valve opening change amount is increased, and therefore the target EGR control calculated based on the target EGR control valve opening change amount is increased. The valve operation amount is also increased. According to this, the response of the EGR control valve becomes faster, and as a result, the change speed of the actual EGR becomes faster and approaches the intended speed. If the correction of the EGR control valve opening proportional gain is repeated, finally, the actual EGR rate change speed reaches the desired speed. Therefore, the actual EGR rate is controlled with a predetermined followability to the target EGR rate.
 一方、ベーン操作量が大きくされれば、ベーンの応答が速くなる。したがって、過給圧偏差積算値がその基準値よりも大きく且つEGR率偏差積算値がその基準値よりも大きい場合に、ベーン操作量が大きくされれば、ベーンの応答が速くなり、その結果、実過給圧の変化速度が所期の速度に近づくことになる。そこで、第2実施形態では、この場合には、ベーン開度比例ゲインが大きくなるようにベーン開度比例ゲインに第2補正値が乗算されるのである。このようにベーン開度比例ゲインが大きくされれば、設定される目標ベーン開度変化量が大きくなり、したがって、目標ベーン開度変化量に基づいて算出される目標ベーン操作量も大きくなる。これによれば、ベーンの応答が速くなり、その結果、実過給圧の変化速度が速くなって所期の速度に近づく。そして、こうしたベーン開度ゲインの補正が繰り返されれば、最終的には、実過給圧の変化速度が所期の速度に到達する。したがって、実過給圧が目標過給圧に所定の追従性でもって制御されることになる。 On the other hand, if the vane operation amount is increased, the response of the vanes becomes faster. Therefore, when the supercharging pressure deviation integrated value is larger than the reference value and the EGR rate deviation integrated value is larger than the reference value, if the vane operation amount is increased, the response of the vane becomes faster. The change speed of the actual supercharging pressure approaches the intended speed. Therefore, in the second embodiment, in this case, the vane opening proportional gain is multiplied by the second correction value so that the vane opening proportional gain is increased. If the vane opening proportional gain is increased in this way, the set target vane opening change amount increases, and therefore the target vane operation amount calculated based on the target vane opening change amount also increases. According to this, the response of the vanes becomes faster, and as a result, the change speed of the actual supercharging pressure becomes faster and approaches the intended speed. If the correction of the vane opening gain is repeated, finally, the change speed of the actual supercharging pressure reaches the intended speed. Therefore, the actual supercharging pressure is controlled with a predetermined followability to the target supercharging pressure.
 なお、上述した第2補正値を用いたEGR制御弁開度比例ゲインの補正によれば、EGR制御弁の応答が速くなることから、EGR制御弁開度の変化に起因する排気圧の変化の速度が遅くなる。このことからも、実過給圧の変化速度が速くなって所期の速度に近づく。したがって、より早期に、実過給圧が目標過給圧に所定の追従性でもって制御されるようになる。 In addition, according to the correction of the EGR control valve opening proportional gain using the second correction value described above, the response of the EGR control valve becomes faster, so that the change in the exhaust pressure due to the change in the EGR control valve opening is reduced. The speed is slow. Also from this, the change speed of the actual supercharging pressure increases and approaches the expected speed. Therefore, the actual supercharging pressure is controlled with a predetermined followability to the target supercharging pressure earlier.
 斯くして、第2実施形態によれば、過給圧偏差積算値がその基準値よりも大きく且つEGR率偏差積算値がその基準値よりも大きく、したがって、ベーンの応答が所期の応答であるにも係わらずEGR制御弁の応答が所期の応答よりも遅い場合においても、実過給圧を目標過給圧に所定の追従性でもって制御することができると共に実EGR率を目標EGR率に所定の追従性でもって制御することができ、或いは、実過給圧と実EGR率とをそれぞれ目標過給圧と目標EGR率とに対してバランス良く制御することができるのである。 Thus, according to the second embodiment, the supercharging pressure deviation integrated value is larger than the reference value and the EGR rate deviation integrated value is larger than the reference value, and therefore the vane response is the expected response. Even when the response of the EGR control valve is slower than the intended response, the actual supercharging pressure can be controlled with a predetermined followability to the target supercharging pressure and the actual EGR rate can be set to the target EGR. The rate can be controlled with a predetermined followability, or the actual boost pressure and the actual EGR rate can be controlled in a balanced manner with respect to the target boost pressure and the target EGR rate, respectively.
 なお、ベーン開度比例ゲインおよびEGR制御弁開度比例ゲインを補正するために利用される第2補正値は、第1実施形態の第2補正値の設定に関する考え方と同様の考え方でもって設定される。 The second correction value used for correcting the vane opening proportional gain and the EGR control valve opening proportional gain is set based on the same concept as that for setting the second correction value in the first embodiment. The
 また、第1実施形態に関連して説明したように、ベーンの応答が所期の応答よりも遅く且つEGR制御弁の応答も所期の応答よりも遅くなっている場合、過給圧偏差積算値がその基準値よりも大きく(詳細には、ベーンの応答が所期の応答になっているにも係わらずEGR制御弁の応答が所期の応答よりも遅くなっている場合の過給圧偏差積算値よりも大きく)且つEGR率偏差積算値がその基準値に略等しくなる(或いは、場合によっては、その基準値に等しくなる)。 Further, as described in connection with the first embodiment, when the response of the vane is slower than the intended response and the response of the EGR control valve is also slower than the intended response, the boost pressure deviation integration is performed. Value is larger than the reference value (specifically, the supercharging pressure when the response of the EGR control valve is slower than the intended response although the vane response is the intended response) The EGR rate deviation integrated value becomes substantially equal to the reference value (or, in some cases, becomes equal to the reference value).
 ここで、ベーン操作量が大きくされれば、ベーンの応答が速くなる。したがって、過給圧偏差積算値がその基準値よりも大きく且つEGR率偏差積算値がその基準値に略等しい場合に、ベーン操作量が大きくされれば、ベーンの応答が速くなり、その結果、実過給圧の変化速度が所期の速度に近づくことになる。そこで、第2実施形態では、この場合には、ベーン開度比例ゲインが大きくなるようにベーン開度比例ゲインに第3補正値が乗算されるのである。このようにベーン開度比例ゲインが大きくされれば、設定される目標ベーン開度変化量が大きくなり、したがって、目標ベーン開度変化量に基づいて算出される目標ベーン操作量も大きくなる。これによれば、ベーンの応答が速くなり、その結果、実過給圧の変化速度が速くなって所期の速度に近づく。そして、こうしたベーン開度比例ゲインの補正が繰り返されれば、最終的には、実過給圧の変化速度が所期の速度に到達する。したがって、実過給圧が目標過給圧に所定の追従性でもって制御されることになる。 Here, if the amount of vane operation is increased, the response of the vanes becomes faster. Therefore, when the supercharging pressure deviation integrated value is larger than the reference value and the EGR rate deviation integrated value is substantially equal to the reference value, if the vane operation amount is increased, the response of the vane becomes faster. The change speed of the actual supercharging pressure approaches the intended speed. Therefore, in the second embodiment, in this case, the vane opening proportional gain is multiplied by the third correction value so that the vane opening proportional gain is increased. When the vane opening proportional gain is increased in this way, the set target vane opening change amount increases, and therefore the target vane operation amount calculated based on the target vane opening change amount also increases. According to this, the response of the vane becomes faster, and as a result, the change speed of the actual supercharging pressure becomes faster and approaches the intended speed. If the correction of the vane opening proportional gain is repeated, the change speed of the actual supercharging pressure finally reaches the desired speed. Therefore, the actual supercharging pressure is controlled with a predetermined followability to the target supercharging pressure.
 一方、過給圧偏差積算値がその基準値よりも大きく且つEGR率偏差積算値がその基準値に略等しい場合、実EGR率は所定の追従性でもって目標EGR率に制御されていると見ることができる。しかしながら、上述したように、この場合、ベーン開度比例ゲインが大きくされ、ベーンの応答が速くされることから、ベーン開度の変化(すなわち、ベーン開度の増大または減少)に起因するEGRガス量の変化速度(すなわち、EGRガス量の減少速度または増大速度)が速くなる。この場合、目標EGR率追従性が所定の追従性よりも低くなってしまう。一方、EGR制御弁操作量が大きくされれば、EGR制御弁の応答が速くなることから、目標EGR率追従性が所定の追従性よりも低くなることを抑制することができる。そこで、第2実施形態では、過給圧偏差積算値がその基準値よりも大きく且つEGR率偏差積算値がその基準値に略等しい場合には、EGR制御弁開度比例ゲインが大きくなるようにEGR制御弁開度比例ゲインに第3補正値が乗算されるのである。このようにEGR制御弁開度比例ゲインが大きくされれば、設定される目標EGR制御弁変化量が大きくなり、したがって、目標EGR制御弁変化量に基づいて算出される目標EGR制御弁操作量が大きくなる。このため、目標EGR率追従性が所定の追従性よりも低くなることを抑制することができる。したがって、実EGR率が目標EGR率に所定の追従性でもって制御されることになる。 On the other hand, when the supercharging pressure deviation integrated value is larger than the reference value and the EGR rate deviation integrated value is substantially equal to the reference value, it is considered that the actual EGR rate is controlled to the target EGR rate with a predetermined followability. be able to. However, as described above, in this case, since the vane opening proportional gain is increased and the response of the vane is accelerated, the amount of EGR gas caused by the change in the vane opening (that is, the increase or decrease in the vane opening). Change rate (that is, the rate of decrease or increase of the EGR gas amount) becomes faster. In this case, the target EGR rate followability becomes lower than the predetermined followability. On the other hand, if the EGR control valve operation amount is increased, the response of the EGR control valve becomes faster, so that it is possible to suppress the target EGR rate tracking performance from becoming lower than the predetermined tracking performance. Therefore, in the second embodiment, when the boost pressure deviation integrated value is larger than the reference value and the EGR rate deviation integrated value is substantially equal to the reference value, the EGR control valve opening proportional gain is increased. The EGR control valve opening proportional gain is multiplied by the third correction value. Thus, if the EGR control valve opening proportional gain is increased, the set target EGR control valve change amount becomes large, and therefore, the target EGR control valve operation amount calculated based on the target EGR control valve change amount becomes smaller. growing. For this reason, it can suppress that target EGR rate followability becomes lower than predetermined followability. Therefore, the actual EGR rate is controlled with a predetermined followability to the target EGR rate.
 なお、上述した第3補正値を用いたEGR制御弁開度比例ゲインの補正によれば、EGR制御弁の応答が速くなることから、EGR制御弁開度の変化に起因する排気圧の変化の速度が速くなる。このことからも、実過給圧の変化速度が速くなって所期の速度に近づく。したがって、より早期に、実過給圧が目標過給圧に所定の追従性でもって制御されるようになる。 According to the correction of the EGR control valve opening proportional gain using the third correction value described above, the response of the EGR control valve becomes faster. Increases speed. Also from this, the change speed of the actual supercharging pressure becomes faster and approaches the expected speed. Thus, at an earlier stage, so that the actual boost pressure is controlled with a predetermined follow-up property to the target supercharging pressure.
 斯くして、第2実施形態によれば、過給圧偏差積算値がその基準値よりも大きく且つEGR率偏差積算値がその基準値に略等しく、したがって、ベーンの応答もEGR制御弁の応答も所期の応答よりも遅い場合においても、実過給圧を目標過給圧に所定の追従性でもって制御することができると共に実EGR率を目標EGR率に所定の追従性でもって制御することができ、或いは、実過給圧と実EGR率とをそれぞれ目標過給圧と目標EGR率とに対してバランス良く制御することができるのである。 Thus, according to the second embodiment, the supercharging pressure deviation integrated value is larger than the reference value and the EGR rate deviation integrated value is substantially equal to the reference value, and therefore the vane response is also the response of the EGR control valve. Even when the response is slower than the intended response, the actual supercharging pressure can be controlled to the target supercharging pressure with a predetermined followability, and the actual EGR rate can be controlled to the target EGR rate with a predetermined followability. Alternatively, the actual boost pressure and the actual EGR rate can be controlled in a balanced manner with respect to the target boost pressure and the target EGR rate, respectively.
 なお、ベーン開度比例ゲインおよびEGR制御弁開度比例ゲインを補正するために利用される第3補正値は、第1実施形態の第3補正値の設定に関する考え方と同様の考え方でもって設定される。 Note that the third correction value used for correcting the vane opening proportional gain and the EGR control valve opening proportional gain is set based on the same concept as that for setting the third correction value in the first embodiment. The
 なお、第2実施形態では、基準値に対する過給圧偏差積算値のズレと基準値に対するEGR率偏差積算値のズレとに基づいてベーン開度比例ゲインおよびEGR制御弁開度比例ゲインが補正される。したがって、第2実施形態は、過給圧偏差積算値がその基準値に一致すると共にEGR率偏差積算値がその基準値に一致するように目標ベーン開度変化量および目標EGR制御弁開度変化量を補正するものであるとも言える。 In the second embodiment, the vane opening proportional gain and the EGR control valve opening proportional gain are corrected based on the deviation of the boost pressure deviation integrated value with respect to the reference value and the deviation of the EGR rate deviation integrated value with respect to the reference value. The Therefore, in the second embodiment, the target vane opening change amount and the target EGR control valve opening change so that the supercharging pressure deviation integrated value matches the reference value and the EGR rate deviation integrated value matches the reference value. It can be said that it corrects the amount.
 なお、第2実施形態では、過給圧偏差積算値とEGR率偏差積算値とに基づいてベーン開度比例ゲインおよびEGR制御弁開度比例ゲインが補正されるが、ベーン開度比例ゲインの補正に代えて或いは加えて、上式3の積分ゲイン、または、微分ゲイン、または、積分ゲインと微分ゲインを補正してもよく、また、EGR制御弁開度比例ゲインの補正に代えて或いは加えて、上式4の積分ゲイン、または、微分ゲイン、または、積分ゲインと微分ゲインを補正してもよい。 In the second embodiment, the vane opening proportional gain and the EGR control valve opening proportional gain are corrected based on the supercharging pressure deviation integrated value and the EGR rate deviation integrated value, but the vane opening proportional gain is corrected. Instead of or in addition to the above, the integral gain, differential gain, or integral gain and differential gain of the above equation 3 may be corrected, and instead of or in addition to the correction of the EGR control valve opening proportional gain. The integral gain or differential gain of the above equation 4 or the integral gain and the differential gain may be corrected.
 また、第2実施形態の第1補正値~第3補正値は、それぞれ、第1実施形態の第1補正値~第3補正値と必ずしも同じ値であるとは限らない。 In addition, the first correction value to the third correction value in the second embodiment are not necessarily the same values as the first correction value to the third correction value in the first embodiment, respectively.
 また、第2実施形態は、過給圧を制御する過給圧とEGR率を制御するEGR装置を備えた内燃機関において、過給圧とEGR率とを目標過給圧と目標EGR率とに所定の追従性でもって制御するため、或いは、過給圧とEGR率とを目標過給圧と目標EGR率とに対してバランス良く制御する場合に本発明を適用した実施形態である。しかしながら、第1実施形態に関連して説明した本発明の思想は、互いに影響し合う2つの制御量をそれぞれ制御する制御対象を備えた内燃機関において、これら2つの制御量をそれぞれ目標制御量に所定の追従性でもって制御するため、或いは、これら2つの制御量をそれぞれ目標制御量に対してバランス良く制御する場合にも適用可能である。 In the second embodiment, in the internal combustion engine including the supercharging pressure for controlling the supercharging pressure and the EGR device for controlling the EGR rate, the supercharging pressure and the EGR rate are changed to the target supercharging pressure and the target EGR rate. This embodiment is an embodiment to which the present invention is applied in order to control with a predetermined followability or when the supercharging pressure and the EGR rate are controlled with good balance with respect to the target supercharging pressure and the target EGR rate. However, the idea of the present invention described in relation to the first embodiment is that, in an internal combustion engine provided with a control object that controls two control amounts that affect each other, these two control amounts are set as target control amounts, respectively. The present invention can also be applied to control with a predetermined followability, or to control these two control amounts in a balanced manner with respect to the target control amount.
 以上のことを考慮すれば、第2実施形態に関連して説明した本発明の内燃機関の制御装置は、互いに影響し合う2つの制御量の1つである第1制御量(例えば、第2実施形態の過給圧)を制御する第1制御対象(例えば、第2実施形態のベーン)と、上記互いに影響し合う2つの制御量の残りの1つである第2制御量(例えば、第2実施形態のEGR率)を制御する第2制御対象(例えば、第2実施形態のEGR制御弁)とを備えた内燃機関の制御装置において、目標とするべき第1制御量を目標第1制御量(例えば、第2実施形態の目標過給圧)として設定すると共に目標とするべき第2制御量を目標第2制御量(例えば、第2実施形態の目標EGR率)として設定し、第1制御量を目標第1制御量に到達させ且つ第2制御量を目標第2制御量に到達させるために目標とするべき第1制御対象の動作状態(例えば、第2実施形態のベーン開度)を目標第1動作状態(例えば、第2実施形態の目標ベーン開度)として設定すると共に目標とするべき第2制御対象の動作状態(例えば、第2実施形態のEGR制御弁開度)を目標第2動作状態(例えば、第2実施形態の目標EGR制御弁開度)として設定し、第1制御対象の動作状態が目標第1動作状態になるように第1制御対象の動作状態を制御すると共に第2制御対象の動作状態が目標第2動作状態になるように第2制御対象の動作状態を制御することによって第1制御量を目標第1制御量に制御すると共に第2制御量を目標第2制御量に制御する制御装置であって、機関運転中に目標第1制御量に対する実際の第1制御量の偏差の積算値を第1制御量偏差積算値(例えば、第2実施形態の過給圧偏差積算値)として算出すると共に目標第2制御量に対する実際の第2制御量の偏差の積算値を第2制御量偏差積算値として算出し、上記第1制御量偏差積算値と上記第2制御量偏差積算値とに基づいて目標第1動作状態と目標第2動作状態とを補正する制御装置であると言える。 In view of the above, the control device for an internal combustion engine of the present invention described in relation to the second embodiment has a first control amount (for example, a second control amount) that is one of two control amounts that influence each other. The first control target (for example, the vane of the second embodiment) that controls the supercharging pressure of the embodiment and the second control amount (for example, the first control amount that is the remaining one of the two control amounts that affect each other). In a control device for an internal combustion engine that includes a second control target (for example, an EGR control valve according to the second embodiment) that controls the EGR rate of the second embodiment, the target first control amount is a target first control amount. Set as the amount (for example, the target boost pressure of the second embodiment) and the second control amount to be targeted is set as the target second control amount (for example, the target EGR rate of the second embodiment), and the first The control amount is made to reach the target first control amount, and the second control amount is set to the target second. The operation state (for example, the vane opening degree of the second embodiment) of the first control object to be targeted in order to reach the control amount is set as the target first operation state (for example, the target vane opening degree of the second embodiment). The operation state (for example, the EGR control valve opening degree of the second embodiment) to be set and set as the target is set as the target second operation state (for example, the target EGR control valve opening degree of the second embodiment). The second control is performed so that the operation state of the first control object is controlled so that the operation state of the first control object becomes the target first operation state and the operation state of the second control object becomes the target second operation state. A control device that controls a first control amount to a target first control amount by controlling an operation state of a control target, and controls a second control amount to a target second control amount. Deviation of actual first controlled variable from controlled variable Is calculated as the first control amount deviation integrated value (for example, the boost pressure deviation integrated value of the second embodiment), and the integrated value of the actual second control amount deviation with respect to the target second control amount is calculated as the second integrated value. A control device that calculates the control amount deviation integrated value and corrects the target first operation state and the target second operation state based on the first control amount deviation integrated value and the second control amount deviation integrated value. I can say that.
 また、第1実施形態に関連して説明した理由と同じ理由から、第2実施形態によれば、内燃機関から排出されるエミッションが確実に低いレベルに維持される。 Also, for the same reason as described in relation to the first embodiment, according to the second embodiment, the emission discharged from the internal combustion engine is reliably maintained at a low level.
 また、第2実施形態では、過給圧偏差積算値がその基準値よりも大きく且つEGR率偏差積算値がその基準値よりも小さい場合、EGR制御弁の応答が所期の応答であって目標EGR率追従性が所定の追従性よりも高いにも係わらずEGR制御弁開度比例ゲインを小さくすることによってEGR制御弁の応答が遅くされる。これによれば、一時的にせよ、目標EGR率追従性が所定の追従性よりも低くなる可能性もある。しかしながら、このようにEGR制御弁の応答が遅くされるのは、目標過給圧追従性を所定の追従性にまで向上させるためにはEGR制御弁の応答を遅くすることが適当であると判断されたからである。云い換えれば、目標EGR率追従性を高く維持することよりも目標過給圧追従性を向上させることが優先されたとも言える。すなわち、第2実施形態によれば、目標過給圧追従性と目標EGR率追従性とのいずれを優先させるかを決定することができるとも言える。 In the second embodiment, when the supercharging pressure deviation integrated value is larger than the reference value and the EGR rate deviation integrated value is smaller than the reference value, the response of the EGR control valve is an intended response and the target Although the EGR rate followability is higher than the predetermined followability, the response of the EGR control valve is delayed by reducing the EGR control valve opening proportional gain. According to this, even if temporarily, the target EGR rate followability may be lower than the predetermined followability. However, the reason why the response of the EGR control valve is delayed in this way is determined that it is appropriate to delay the response of the EGR control valve in order to improve the target boost pressure tracking performance to a predetermined tracking performance. Because it was done. In other words, it can be said that priority was given to improving the target boost pressure followability rather than maintaining the target EGR rate followability high. That is, according to the second embodiment, it can be said that it is possible to determine which of the target boost pressure followability and the target EGR rate followability is prioritized.
 次に、第2実施形態に従った目標ベーン操作量および目標EGR制御弁操作量の設定を実行するルーチンの一例について説明する。このルーチンは、図7に示されており、所定時間間隔毎に実行される。なお、図7のステップ20~ステップ25は、それぞれ、図4のステップ10~ステップ15と同じであるので、これらステップの説明は省略する。 Next, an example of a routine for setting the target vane operation amount and the target EGR control valve operation amount according to the second embodiment will be described. This routine is shown in FIG. 7, and is executed at predetermined time intervals. Note that steps 20 to 25 in FIG. 7 are the same as steps 10 to 15 in FIG. 4, respectively, and thus description of these steps is omitted.
 図7のルーチンでは、ルーチンがステップ25からステップ26に進むと、ステップ23で算出された過給圧偏差ΔPimとステップ24で算出された過給圧偏差積算値ΣΔPimとを利用して上式3から目標ベーン開度変化量TDvが算出されると共に、ステップ23で算出されたEGR率偏差ΔRegrとステップ24で算出されたEGR率偏差積算値ΣΔRegrとを利用して上式4から目標EGR制御弁開度変化量TDegrが算出される。次いで、ステップ27において、ステップ26で算出された目標ベーン開度変化量TDvに一定の変換係数を乗算することによって目標ベーン操作量Mvが算出されると共に、ステップ26で算出された目標EGR制御弁開度変化量TDegrに一定の変換係数を乗算することによって目標EGR制御弁操作量Megrが算出され、ルーチンが終了する。 In the routine of FIG. 7, when the routine proceeds from step 25 to step 26, the above equation 3 is obtained using the boost pressure deviation ΔPim calculated in step 23 and the boost pressure deviation integrated value ΣΔPim calculated in step 24. The target vane opening change amount TDv is calculated from the above equation 4, and the target EGR control valve is calculated from the above equation 4 using the EGR rate deviation ΔRegr calculated in step 23 and the EGR rate deviation integrated value ΣΔRegr calculated in step 24. An opening change amount TDegr is calculated. Next, in step 27, the target vane opening amount TDv calculated in step 26 is multiplied by a constant conversion coefficient to calculate the target vane operation amount Mv, and the target EGR control valve calculated in step 26 is calculated. The target EGR control valve operation amount Megr is calculated by multiplying the opening change amount TDegr by a constant conversion coefficient, and the routine ends.
 なお、第2実施形態に従ったベーン開度比例ゲインおよびEGR制御弁開度比例ゲインの補正を実行するルーチンの一例としては、図5および図6のルーチンのステップ102、ステップ103、ステップ105、ステップ106、ステップ108、および、ステップ109を以下のように修正したルーチンを挙げることができる。 As an example of a routine for executing the correction of the vane opening proportional gain and the EGR control valve opening proportional gain according to the second embodiment, step 102, step 103, step 105 of the routine of FIGS. The routine which modified step 106, step 108, and step 109 as follows can be mentioned.
 すなわち、図5および図6のルーチンを第2実施形態に従ったベーン開度比例ゲインおよびEGR制御弁開度比例ゲインの補正を実行するルーチンとして利用する場合には、ステップ102において、現在のベーン開度比例ゲインGPp(k)と現在のEGR制御弁開度比例ゲインGEp(k)とが取得される。そして、ステップ103において、ステップ102で取得された現在のベーン開度比例ゲインGPp(k)に第1補正値K1が加算されて得られる値(GPp(k)+K1)が新たなベーン開度比例ゲインGPp(k+1)に設定されると共に、ステップ102で取得された現在のEGR制御弁開度比例ゲインGEp(k)から第1補正値K1が減算されて得られる値(GEp(k)-K1)が新たなEGR制御弁開度比例ゲインGEp(k+1)に設定され、ルーチンが終了する。なお、この場合、図7のステップ26において、ステップ103で設定された新たなベーン開度比例ゲインGPp(k+1)を利用して上式3から目標ベーン開度変化量TDvが算出されると共に、ステップ103で設定された新たなEGR制御弁開度比例ゲインGEp(k+1)を利用して上式4から目標EGR制御弁開度変化量TDegrが算出されることになる。 That is, when the routines of FIGS. 5 and 6 are used as routines for correcting the vane opening proportional gain and the EGR control valve opening proportional gain according to the second embodiment, in step 102, the current vane is calculated. The opening proportional gain GPp (k) and the current EGR control valve opening proportional gain GEp (k) are acquired. In step 103, a value (GPp (k) + K1) obtained by adding the first correction value K1 to the current vane opening proportional gain GPp (k) acquired in step 102 is a new vane opening proportional. A value obtained by subtracting the first correction value K1 from the current EGR control valve opening proportional gain GEp (k) acquired in step 102 and being set to the gain GPp (k + 1) (GEp (k) −K1) ) Is set to a new EGR control valve opening proportional gain GEp (k + 1), and the routine ends. In this case, in step 26 of FIG. 7, the target vane opening change amount TDv is calculated from the above equation 3 using the new vane opening proportional gain GPp (k + 1) set in step 103, and Using the new EGR control valve opening proportional gain GEp (k + 1) set in step 103, the target EGR control valve opening change amount TDegr is calculated from the above equation 4.
 また、ステップ105において、現在のベーン開度比例ゲインGPp(k)と現在のEGR制御弁開度比例ゲインGEp(k)とが取得される。そして、ステップ106において、ステップ105で取得された現在のベーン開度比例ゲインGPp(k)に第2補正値K2が乗算されて得られる値(GPp(k)×K2)が新たなベーン開度比例ゲインGPp(k+1)に設定されると共に、ステップ105で取得された現在のEGR制御弁開度比例ゲインGEp(k)に第2補正値K2が乗算されて値(GEp(k)×K2)が新たなEGR制御弁開度比例ゲインGEp(k+1)に設定され、ルーチンが終了する。なお、この場合、図7のステップ26において、ステップ106で設定された新たなベーン開度比例ゲインGPp(k+1)を利用して上式3から目標ベーン開度変化量TDvが算出されると共に、ステップ106で設定された新たなEGR制御弁開度比例ゲインGEp(k+1)を利用して上式4から目標EGR制御弁開度変化量TDegrが算出されることになる。 In step 105, the current vane opening proportional gain GPp (k) and the current EGR control valve opening proportional gain GEp (k) are acquired. In step 106, a value (GPp (k) × K2) obtained by multiplying the current vane opening proportional gain GPp (k) acquired in step 105 by the second correction value K2 is a new vane opening. The proportional gain GPp (k + 1) is set, and the current EGR control valve opening proportional gain GEp (k) acquired in step 105 is multiplied by the second correction value K2 to obtain a value (GEp (k) × K2). Is set to a new EGR control valve opening proportional gain GEp (k + 1), and the routine ends. In this case, in step 26 of FIG. 7, the target vane opening change amount TDv is calculated from the above equation 3 using the new vane opening proportional gain GPp (k + 1) set in step 106, and Using the new EGR control valve opening proportional gain GEp (k + 1) set in step 106, the target EGR control valve opening change amount TDegr is calculated from the above equation 4.
 また、ステップ108において、現在のベーン開度比例ゲインGPp(k)と現在のEGR制御弁開度比例ゲインGEp(k)とが取得される。そして、ステップ109において、ステップ108で取得された現在のベーン開度比例ゲインGPp(k)に第3補正値K3が乗算されて得られる値(GPp(k)×K2)が新たなベーン開度比例ゲインGPp(k+1)に設定されると共に、ステップ108で取得された現在のEGR制御弁開度比例ゲインGEp(k)に第3補正値K3が乗算されて得られる値(GEp(k)×K3)が新たなEGR制御弁開度比例ゲインGEp(k+1)に設定され、ルーチンが終了する。なお、この場合、図7のステップ26において、ステップ109で設定された新たなベーン開度比例ゲインGPp(k+1)を利用して上式3から目標ベーン開度変化量TDvが算出されると共に、ステップ109で設定された新たなEGR制御弁開度比例ゲインGEp(k+1)を利用して上式4から目標EGR制御弁開度変化量TDegrが算出されることになる。 In step 108, the current vane opening proportional gain GPp (k) and the current EGR control valve opening proportional gain GEp (k) are acquired. In step 109, a value (GPp (k) × K2) obtained by multiplying the current vane opening proportional gain GPp (k) acquired in step 108 by the third correction value K3 is a new vane opening. A value obtained by multiplying the current EGR control valve opening proportional gain GEp (k) acquired in step 108 by the third correction value K3 is set to the proportional gain GPp (k + 1) (GEp (k) × K3) is set to a new EGR control valve opening proportional gain GEp (k + 1), and the routine ends. In this case, in step 26 of FIG. 7, the target vane opening change amount TDv is calculated from the above equation 3 using the new vane opening proportional gain GPp (k + 1) set in step 109, and Using the new EGR control valve opening proportional gain GEp (k + 1) set in step 109, the target EGR control valve opening change amount TDegr is calculated from the above equation 4.
 次に、本発明の第3実施形態について説明する。上述したように、第1実施形態では、機関運転状態に無関係に過給圧偏差積算値とその基準値とが比較されると共にEGR率偏差積算値とその基準値とが比較され、その比較の結果に応じて、ベーン操作量比例ゲインを補正するか否か、或いは、EGR制御弁操作量比例ゲインを補正するか否かが判断される。一方、アクセルペダル開度が大きくなり、機関運転状態が加速運転状態になった場合、目標過給圧および目標EGR率が大きく変更されることから、過給圧偏差積算値もEGR率偏差積算値も大きくなる。したがって、ベーンの応答が所期の応答よりも遅い場合またはEGR制御弁が所期の応答よりも遅い場合には、基準値からの過給圧偏差積算値のズレや基準値からのEGR率偏差積算値のズレが大きくなる。このため、過給圧偏差積算値とその基準値とが比較され或いはEGR率偏差積算値とその基準値とが比較されたときに、その比較の結果に基づいて、ベーンの応答が所期の応答よりも遅いこと或いはEGR制御弁の応答が所期の応答よりも遅いことを精度良く判定することができる。そこで、第3実施形態では、以下のように実過給圧および実EGR率が制御される。 Next, a third embodiment of the present invention will be described. As described above, in the first embodiment, the supercharging pressure deviation integrated value and its reference value are compared regardless of the engine operating state, and the EGR rate deviation integrated value and its reference value are compared. Based on the result, it is determined whether or not to correct the vane operation amount proportional gain or whether to correct the EGR control valve operation amount proportional gain. On the other hand, when the accelerator pedal opening increases and the engine operating state becomes the acceleration operating state, the target boost pressure and the target EGR rate are greatly changed. Therefore, the boost pressure deviation integrated value is also the EGR rate deviation integrated value. Also grows. Therefore, when the response of the vane is slower than the intended response or when the EGR control valve is slower than the intended response, the supercharging pressure deviation integrated value deviation from the reference value or the EGR rate deviation from the reference value The deviation of the integrated value increases. Therefore, when the supercharging pressure deviation integrated value is compared with the reference value or when the EGR rate deviation integrated value is compared with the reference value, the response of the vane is based on the result of the comparison. It is possible to accurately determine that the response is slower than the response or that the response of the EGR control valve is slower than the intended response. Therefore, in the third embodiment, the actual boost pressure and the actual EGR rate are controlled as follows.
 すなわち、第3実施形態では、機関運転中、機関回転数と機関負荷とが保存され、これら保存された機関回転数と機関負荷とに基づいて機関運転状態の加速状態が把握される。ここで、機関運転状態の加速状態が所定の加速状態であったと判断されたときに、第1実施形態と同様に、過給圧偏差積算値とその基準値とが比較されると共にEGR率偏差積算値とその基準値とが比較される。 That is, in the third embodiment, the engine speed and the engine load are stored during engine operation, and the acceleration state of the engine operation state is grasped based on the stored engine speed and engine load. Here, when it is determined that the acceleration state of the engine operation state is the predetermined acceleration state, the supercharging pressure deviation integrated value and the reference value thereof are compared and the EGR rate deviation as in the first embodiment. The integrated value is compared with its reference value.
 そして、その比較の結果に応じて、第1実施形態と同様に、ベーン操作量比例ゲインとEGR制御弁操作量比例ゲインとが補正される。もちろん、この場合において、第1実施形態と同様に、ベーン操作量比例ゲインもEGR制御弁操作量比例ゲインも補正されないこともある。 Then, according to the comparison result, the vane operation amount proportional gain and the EGR control valve operation amount proportional gain are corrected in the same manner as in the first embodiment. Of course, in this case, as in the first embodiment, neither the vane operation amount proportional gain nor the EGR control valve operation amount proportional gain may be corrected.
 もちろん、第3実施形態において、機関運転状態の加速状態が所定の加速状態であったと判断されたときに、第2実施形態と同様に、過給圧偏差積算値とその基準値とが比較されると共にEGR率偏差積算値とその基準値とが比較され、その比較の結果に応じて、第2実施形態と同様に、ベーン開度比例ゲインとEGR制御弁開度比例ゲインとが補正されてもよい。もちろん、この場合においても、第2実施形態と同様に、ベーン開度比例ゲインもEGR制御弁開度比例ゲインも補正されないこともある。 Of course, in the third embodiment, when it is determined that the acceleration state in the engine operating state is the predetermined acceleration state, the boost pressure deviation integrated value and the reference value thereof are compared as in the second embodiment. At the same time, the EGR rate deviation integrated value is compared with the reference value, and the vane opening proportional gain and the EGR control valve opening proportional gain are corrected according to the comparison result, as in the second embodiment. Also good. Of course, in this case as well, as in the second embodiment, neither the vane opening proportional gain nor the EGR control valve opening proportional gain may be corrected.
 なお、第3実施形態に従った目標ベーン操作量および目標EGR制御弁操作量の設定を実行するルーチンとしては、例えば、図4と同じルーチンが挙げられる。また、第3実施形態に従ったベーン操作量比例ゲインおよびEGR制御弁操作量比例ゲインの補正を実行するルーチンとしては、例えば、図8および図9のルーチンが挙げられる。 As a routine for executing the setting of the target vane operation amount and the target EGR control valve operation amount according to the third embodiment, for example, the same routine as that shown in FIG. Further, examples of routines for correcting the vane operation amount proportional gain and the EGR control valve operation amount proportional gain according to the third embodiment include the routines of FIGS. 8 and 9.
 次に、図8および図9のルーチンについて説明する。なお、このルーチンは、所定時間間隔毎に実行される。 Next, the routines of FIGS. 8 and 9 will be described. This routine is executed at predetermined time intervals.
 図8および図9のルーチンが開始されると、始めに、図8のステップ200Aにおいて、現在の機関回転数Nと現在の機関負荷Lとが取得される。次いで、ステップ200Bにおいて、ステップ200Aで取得された現在の機関回転数Nと現在の機関負荷Lとが保存される。次いで、ステップ200Cにおいて、ステップ200Aで取得された現在の機関回転数Nと現在の機関負荷Lと今回の本ルーチンの実行時よりも前の本ルーチンのステップ200Bで保存された機関回転数Nと機関負荷Lとに基づいて、現在までの機関運転状態が所定の加速運転状態にあったか否かが判別される。ここで、現在までの機関運転状態が所定の加速状態にあったと判別されたときには、ルーチンはステップ200に進む。一方、現在までの機関運転状態が所定の加速状態にはなかったと判別されたときには、ルーチンはそのまま終了する。なお、この場合、図4のステップ16において、現在のベーン操作量比例ゲインGPp(k)を利用して上式1から目標ベーン操作量Mvが算出されると共に、現在のEGR制御弁操作量比例ゲインGEp(k)を利用して上式2から目標EGR制御弁操作量Megrが算出されることになる。 When the routines of FIGS. 8 and 9 are started, first, the current engine speed N and the current engine load L are acquired in step 200A of FIG. Next, at step 200B, the current engine speed N and the current engine load L acquired at step 200A are stored. Next, at step 200C, the current engine speed N, the current engine load L acquired at step 200A, and the engine speed N stored at step 200B of this routine prior to the execution of this routine. Based on the engine load L, it is determined whether or not the engine operation state up to the present is a predetermined acceleration operation state. Here, when it is determined that the engine operating state up to now has been in a predetermined acceleration state, the routine proceeds to step 200. On the other hand, when it is determined that the engine operating state up to the present is not in the predetermined acceleration state, the routine ends as it is. In this case, in step 16 of FIG. 4, the target vane operation amount Mv is calculated from the above equation 1 using the current vane operation amount proportional gain GPp (k), and the current EGR control valve operation amount is proportional. The target EGR control valve operation amount Megr is calculated from the above equation 2 using the gain GEp (k).
 なお、図8および図9のステップ200~ステップ209は、それぞれ、図5および図6のステップ100~ステップ109と同じであるので、これらステップの説明は省略する。 Note that steps 200 to 209 in FIGS. 8 and 9 are the same as steps 100 to 109 in FIGS. 5 and 6, respectively, and thus description of these steps is omitted.
 次に、本発明の第4実施形態について説明する。上述したように、第1実施形態では、ベーンの応答が最も高く且つEGR制御弁の応答が最も高いときにとり得る過給圧偏差積算値およびEGR率偏差積算値を実験等によって予め求め、この求められた値がそれぞれ過給圧偏差積算値の基準値およびEGR率偏差積算値の基準値とされる。しかしながら、過給圧偏差積算値の基準値およびEGR率偏差積算値の基準値として、ベーンの応答が比較的高く且つEGR制御弁の応答が比較的高いときにとり得る過給圧偏差積算値およびEGR率偏差積算値を採用した方が好ましいこともあり得る。 Next, a fourth embodiment of the present invention will be described. As described above, in the first embodiment, the supercharging pressure deviation integrated value and the EGR rate deviation integrated value that can be taken when the response of the vane is the highest and the response of the EGR control valve is the highest are obtained in advance by experiments or the like. The obtained values are used as a reference value for the integrated value of supercharging pressure deviation and a reference value for the integrated value of EGR rate deviation. However, as the reference value of the supercharging pressure deviation integrated value and the reference value of the EGR rate deviation integrated value, the supercharging pressure deviation integrated value and EGR that can be taken when the response of the vane is relatively high and the response of the EGR control valve is relatively high. It may be preferable to adopt the rate deviation integrated value.
 そこで、第4実施形態では、過給圧偏差積算値の基準値およびEGR率偏差積算値の基準値として、ベーンの応答が最も高く且つEGR制御弁の応答が最も高いときにとり得る過給圧偏差積算値およびEGR率偏差積算値の代わりに、ベーンの応答が比較的高く且つEGR制御弁の応答が比較的高いときにとり得る過給圧偏差積算値およびEGR率偏差積算値が採用される。そして、この場合、以下のように実過給圧および実EGR率が制御される。 Therefore, in the fourth embodiment, the supercharging pressure deviation that can be taken when the response of the vane is the highest and the response of the EGR control valve is the highest as the reference value of the supercharging pressure deviation integrated value and the reference value of the EGR rate deviation integrated value. Instead of the integrated value and the EGR rate deviation integrated value, a supercharging pressure deviation integrated value and an EGR rate deviation integrated value that can be taken when the response of the vane is relatively high and the response of the EGR control valve is relatively high are adopted. In this case, the actual supercharging pressure and the actual EGR rate are controlled as follows.
 すなわち、第4実施形態では、機関運転中に算出される過給圧偏差積算値がその基準値と比較されると共に、機関運転中に算出されるEGR率偏差積算値がその基準値と比較される。 That is, in the fourth embodiment, the boost pressure deviation integrated value calculated during engine operation is compared with the reference value, and the EGR rate deviation integrated value calculated during engine operation is compared with the reference value. The
 ここで、過給圧偏差積算値がその基準値よりも大きく且つEGR率偏差積算値がその基準値よりも小さい場合には、ベーン操作量比例ゲインが大きくなるように所定の値(以下この値を「第1補正値」という)がベーン操作量比例ゲインに加算されることによって同ゲインが補正されると共にEGR制御弁操作量比例ゲインが小さくなるように第1補正値がEGR制御弁操作量比例ゲインから減算されることによって同ゲインが補正される。 Here, when the supercharging pressure deviation integrated value is larger than the reference value and the EGR rate deviation integrated value is smaller than the reference value, a predetermined value (hereinafter referred to as this value) is set so that the vane operation amount proportional gain is increased. (The first correction value) is added to the vane operation amount proportional gain so that the gain is corrected and the EGR control valve operation amount is reduced so that the EGR control valve operation amount proportional gain becomes small. By subtracting from the proportional gain, the gain is corrected.
 また、過給圧偏差積算値がその基準値よりも大きく且つEGR率偏差積算値がその基準値よりも大きい場合には、EGR制御弁操作量比例ゲインが大きくなるように1よりも大きい所定の値(以下この値を「第2補正値」という)がEGR制御弁操作量比例ゲインに乗算されることによって同ゲインが補正されると共にベーン操作量比例ゲインが大きくなるように第2補正値がベーン操作量比例ゲインに乗算されることによって同ゲインが補正される。 Further, when the supercharging pressure deviation integrated value is larger than the reference value and the EGR rate deviation integrated value is larger than the reference value, a predetermined value larger than 1 is set so that the EGR control valve operation amount proportional gain becomes large. By multiplying the value (hereinafter referred to as “second correction value”) by the EGR control valve operation amount proportional gain, the second correction value is adjusted so that the gain is corrected and the vane operation amount proportional gain is increased. The gain is corrected by multiplying the vane manipulated variable proportional gain.
 また、過給圧偏差積算値がその基準値よりも大きく且つEGR率偏差積算値がその基準値に略等しい(或いは、その基準値に等しい)場合には、ベーン操作量比例ゲインが大きくなるように所定の値(以下この値を「第3補正値」という)がベーン操作量比例ゲインに乗算されることによって同ゲインが補正されると共にEGR制御弁操作量比例ゲインが大きくなるように第3補正値がEGR制御弁操作量比例ゲインに乗算されることによって同ゲインが補正される。 Further, when the supercharging pressure deviation integrated value is larger than the reference value and the EGR rate deviation integrated value is substantially equal to (or equal to) the reference value, the vane operation amount proportional gain is increased. By multiplying the vane operation amount proportional gain by a predetermined value (hereinafter referred to as “third correction value”), the gain is corrected and the EGR control valve operation amount proportional gain is increased. The gain is corrected by multiplying the correction value by the EGR control valve operation amount proportional gain.
 また、過給圧偏差積算値がその基準値に略等しく(或いは、その基準値に等しく)且つEGR率偏差積算値がその基準値よりも小さい場合には、ベーン操作量比例ゲインが大きくなるように所定の値(以下この値を「第4補正値」という)がベーン操作量比例ゲインが加算されることによって同ゲインが補正されると共にEGR制御弁操作量比例ゲインが小さくなるように第4補正値がEGR制御弁操作量比例ゲインから減算されることによって同ゲインが補正される。 Further, when the boost pressure deviation integrated value is substantially equal to (or equal to) the reference value and the EGR rate deviation integrated value is smaller than the reference value, the vane operation amount proportional gain is increased. A predetermined value (hereinafter referred to as a “fourth correction value”) is added to the vane manipulated variable proportional gain, so that the gain is corrected and the EGR control valve manipulated variable proportional gain is decreased. The gain is corrected by subtracting the correction value from the EGR control valve operation amount proportional gain.
 また、過給圧偏差積算値がその基準値に略等しく(或いは、その基準値に等しく)且つEGR率偏差積算値がその基準値よりも大きい場合には、ベーン操作量比例ゲインが小さくなるように所定の値(以下この値を「第5補正値」という)がベーン操作量比例ゲインから減算されることによって同ゲインが補正されると共にEGR制御弁操作量比例ゲインが大きくなるように第5補正値がEGR制御弁操作量比例ゲインに加算されることによって同ゲインが補正される。 Further, when the supercharging pressure deviation integrated value is substantially equal to (or equal to) the reference value and the EGR rate deviation integrated value is larger than the reference value, the vane operation amount proportional gain is decreased. A predetermined value (hereinafter referred to as “fifth correction value”) is subtracted from the vane manipulated variable proportional gain, thereby correcting the gain and increasing the EGR control valve manipulated variable proportional gain. The gain is corrected by adding the correction value to the EGR control valve operation amount proportional gain.
 また、過給圧偏差積算値がその基準値よりも小さく且つEGR率偏差積算値がその基準値よりも小さい場合には、ベーン操作量比例ゲインが小さくなるように1よりも小さい所定の値(以下この値を「第6補正値」という)がベーン操作量比例ゲインに乗算されることによって同ゲインが補正されると共にEGR制御弁操作量比例ゲインが小さくなるように第6補正値がEGR制御弁操作量比例ゲインに乗算されることによって同ゲインが補正される。 Further, when the supercharging pressure deviation integrated value is smaller than the reference value and the EGR rate deviation integrated value is smaller than the reference value, a predetermined value (less than 1) is set so that the vane operation amount proportional gain becomes small. This value is hereinafter referred to as a “sixth correction value” and multiplied by the vane operation amount proportional gain so that the gain is corrected and the sixth correction value is EGR controlled so that the EGR control valve operation amount proportional gain becomes small. The gain is corrected by multiplying the valve operation amount proportional gain.
 また、過給圧偏差積算値がその基準値よりも小さく且つEGR率偏差積算値がその基準値よりも大きい場合には、ベーン操作量比例ゲインが小さくなるように所定の値(以下この値を「第7補正値」という)がベーン操作量比例ゲインから減算されることによって同ゲインが補正されると共にEGR制御弁操作量比例ゲインが大きくなるように第7補正値がEGR制御弁操作量比例ゲインに加算されることによって同ゲインが補正される。 Further, when the supercharging pressure deviation integrated value is smaller than the reference value and the EGR rate deviation integrated value is larger than the reference value, a predetermined value (hereinafter referred to as this value) is set so that the vane operation amount proportional gain becomes small. The seventh correction value is proportional to the EGR control valve operation amount so that the gain is corrected by subtracting the "seventh correction value" from the vane operation amount proportional gain and the EGR control valve operation amount proportional gain is increased. The gain is corrected by being added to the gain.
 また、過給圧偏差積算値がその基準値よりも小さく且つEGR率偏差積算値がその基準値に略等しく(或いは、その基準値に等しい)場合には、ベーン操作量比例ゲインが小さくなるように1よりも小さい所定の値(以下この値を「第8補正値」という)がベーン操作量比例ゲインに乗算されることによって同ゲインが補正されると共にEGR制御弁操作量比例ゲインが小さくなるように第8補正値がEGR制御弁操作量比例ゲインに乗算されることによって同ゲインが補正される。 Further, when the supercharging pressure deviation integrated value is smaller than the reference value and the EGR rate deviation integrated value is substantially equal to (or equal to) the reference value, the vane operation amount proportional gain is reduced. The gain is corrected by multiplying the vane manipulated variable proportional gain by a predetermined value smaller than 1 (hereinafter referred to as “eighth correction value”), and the EGR control valve manipulated variable proportional gain is reduced. Thus, the gain is corrected by multiplying the EGR control valve operation amount proportional gain by the eighth correction value.
 また、基準値に対する過給圧偏差積算値の関係と基準値に対するEGR率偏差積算値の関係とが上で挙げた関係以外にある場合には、ベーン操作量比例ゲインもEGR制御弁操作量比例ゲインも補正されない。 Further, when the relationship between the supercharging pressure deviation integrated value with respect to the reference value and the relationship between the EGR rate deviation integrated value with respect to the reference value is other than the relationship mentioned above, the vane operation amount proportional gain is also proportional to the EGR control valve operation amount. Gain is not corrected.
 以上のようにベーン操作量比例ゲインおよびEGR制御弁操作量比例ゲインが補正され、これら補正されたゲインがそれぞれ目標ベーン操作量の設定および目標EGR制御弁操作量の設定に利用されると、過給圧を目標過給圧に所定の追従性でもって制御することができると共にEGR率を目標EGR率に所定の追従性でもって制御することができるという効果、或いは、実過給圧と実EGR率とをそれぞれ目標過給圧と目標EGR率とに対してバランス良く制御することができるという効果が得られる。 As described above, when the vane operation amount proportional gain and the EGR control valve operation amount proportional gain are corrected, and these corrected gains are used for setting the target vane operation amount and the target EGR control valve operation amount, respectively, The effect that the supply pressure can be controlled to the target boost pressure with a predetermined followability and the EGR rate can be controlled to the target EGR rate with the predetermined followability, or the actual boost pressure and the actual EGR The rate can be controlled in a balanced manner with respect to the target boost pressure and the target EGR rate, respectively.
 すなわち、第1実施形態に関連して説明したように、過給圧とEGR率とは互いに影響し合う制御量である。したがって、過給機35によって過給圧を制御する場合において過給圧を目標過給圧に所定の追従性でもって制御しようとするときに、過給圧に対する過給機35による同過給圧の制御の影響を考慮するだけでなく、過給圧に対するEGR装置50によるEGR率の制御の影響を考慮することには、過給圧をより精度高く目標過給圧に制御するという観点から利点がある。また、EGR装置50によってEGR率を制御する場合においてEGR率を目標EGR率に所定の追従性でもって制御しようとするときに、EGR率に対するEGR装置50による同EGR率の制御の影響を考慮するだけでなく、EGR率に対する過給機35による過給圧の制御の影響を考慮することには、EGR率をより精度高く目標EGR率に制御するという観点から利点がある。 That is, as described in relation to the first embodiment, the supercharging pressure and the EGR rate are control amounts that influence each other. Accordingly, when the supercharging pressure is controlled by the supercharger 35, the supercharging pressure by the supercharger 35 with respect to the supercharging pressure when the supercharging pressure is to be controlled with the target supercharging pressure with a predetermined followability. Considering the influence of the control of the EGR rate by the EGR device 50 on the supercharging pressure as well as the influence of the control of the supercharging pressure is advantageous from the viewpoint of controlling the supercharging pressure to the target supercharging pressure with higher accuracy. There is. Further, when the EGR rate is controlled by the EGR device 50, the control of the EGR rate by the EGR device 50 with respect to the EGR rate is taken into account when the EGR rate is controlled with a predetermined followability to the target EGR rate. In addition, considering the effect of supercharging pressure control by the supercharger 35 on the EGR rate is advantageous from the viewpoint of controlling the EGR rate to the target EGR rate with higher accuracy.
 ここで、第1実施形態に関連して説明したように、EGR制御弁の応答が所期の応答であるにも係わらずベーンの応答が所期の応答よりも遅くなっている場合、過給圧偏差積算値がその基準値よりも大きく且つEGR率偏差積算値がその基準値よりも小さくなる。 Here, as explained in relation to the first embodiment, when the response of the vane is slower than the intended response although the response of the EGR control valve is the intended response, supercharging The pressure deviation integrated value is larger than the reference value, and the EGR rate deviation integrated value is smaller than the reference value.
 このとき、第4実施形態では、ベーン操作量比例ゲインが大きくなるようにベーン操作量比例ゲインに第1補正値が加算されると共に、EGR制御弁操作量比例ゲインが小さくなるようにEGR制御弁操作量比例ゲインから第1補正値が減算される。これによれば、第1実施形態に関連して説明した理由と同じ理由から、実過給圧が目標過給圧に所定の追従性でもって制御されると共に実EGR率が目標EGR率に所定の追従性でもって制御されることになる。 At this time, in the fourth embodiment, the first correction value is added to the vane operation amount proportional gain so that the vane operation amount proportional gain is increased, and the EGR control valve operation amount proportional gain is decreased. The first correction value is subtracted from the manipulated variable proportional gain. According to this, for the same reason as described in relation to the first embodiment, the actual supercharging pressure is controlled with a predetermined followability to the target supercharging pressure, and the actual EGR rate is predetermined to the target EGR rate. It is controlled with the following ability.
 なお、比例ゲインを補正するために利用される第1補正値は、第1実施形態の第1補正値の設定に関する考え方と同じ考え方でもって設定される。 It should be noted that the first correction value used for correcting the proportional gain is set based on the same concept as that for setting the first correction value in the first embodiment.
 また、第1実施形態に関連して説明したように、ベーンの応答が所期の応答であるにも係わらずEGR制御弁の応答が所期の応答よりも遅くなっている場合、過給圧偏差積算値がその基準値よりも大きく且つEGR率偏差積算値がその基準値よりも大きくなる。 Further, as described in relation to the first embodiment, when the response of the EGR control valve is slower than the intended response although the vane response is the intended response, the boost pressure The integrated deviation value is larger than the reference value, and the EGR rate deviation integrated value is larger than the reference value.
 このとき、第4実施形態では、ベーン操作量比例ゲインが大きくなるようにベーン操作量比例ゲインに第2補正値が乗算されると共に、EGR制御弁操作量比例ゲインが大きくなるようにEGR制御弁操作量比例ゲインに第2補正値が乗算される。これによれば、第1実施形態に関連して説明した理由と同じ理由から、実過給圧が目標過給圧に所定の追従性でもって制御されると共に実EGR率が目標EGR率に所定の追従性でもって制御されることになる。 At this time, in the fourth embodiment, the second correction value is multiplied by the vane operation amount proportional gain so that the vane operation amount proportional gain is increased, and the EGR control valve operation amount proportional gain is increased. The operation amount proportional gain is multiplied by the second correction value. According to this, for the same reason as described in relation to the first embodiment, the actual supercharging pressure is controlled with a predetermined followability to the target supercharging pressure, and the actual EGR rate is predetermined to the target EGR rate. It is controlled with the following ability.
 なお、比例ゲインを補正するために利用される第2補正値は、第1実施形態の第2補正値の設定に関する考え方と同じ考え方でもって設定される。 It should be noted that the second correction value used for correcting the proportional gain is set based on the same concept as that for setting the second correction value in the first embodiment.
 また、第1実施形態に関連して説明したように、ベーンの応答が所期の応答よりも遅く且つEGR制御弁の応答も所期の応答よりも遅くなっている場合、過給圧偏差積算値がその基準値よりも大きく且つEGR率偏差積算値がその基準値に略等しくなる(或いは、場合によっては、その基準値に等しくなる)。 Further, as described in connection with the first embodiment, when the response of the vane is slower than the intended response and the response of the EGR control valve is also slower than the intended response, the boost pressure deviation integration is performed. The value is larger than the reference value, and the EGR rate deviation integrated value becomes substantially equal to the reference value (or, in some cases, becomes equal to the reference value).
 このとき、第4実施形態では、ベーン操作量比例ゲインが大きくなるようにベーン操作量比例ゲインに第3補正値が乗算されると共に、EGR制御弁操作量比例ゲインが大きくなるようにEGR制御弁操作量比例ゲインに第3補正値が乗算される。これによれば、第1実施形態に関連して説明した理由と同じ慰留から、実過給圧が目標過給圧に所定の追従性でもって制御されると共に実EGR率が目標EGR率に所定の追従性でもって制御されることになる。 At this time, in the fourth embodiment, the third correction value is multiplied by the vane operation amount proportional gain so that the vane operation amount proportional gain is increased, and the EGR control valve operation amount proportional gain is increased. The operation amount proportional gain is multiplied by the third correction value. According to this, the actual supercharging pressure is controlled with a predetermined followability to the target supercharging pressure and the actual EGR rate is predetermined to the target EGR rate from the same reason as described in relation to the first embodiment. It is controlled with the following ability.
 なお、比例ゲインを補正するために利用される第3補正値は、第1実施形態の第3補正値の設定に関する考え方と同じ考え方でもって設定される。 It should be noted that the third correction value used for correcting the proportional gain is set based on the same concept as that for setting the third correction value in the first embodiment.
 また、ベーンの応答が所期の応答よりも遅く且つEGR制御弁の応答が所期の応答よりも速くなっている場合、過給圧偏差積算値がその基準値に略等しく(或いは、その基準値に等しく)且つEGR率偏差積算値がその基準値よりも小さくなる。次に、このことについて説明する。 Further, when the response of the vane is slower than the intended response and the response of the EGR control valve is faster than the intended response, the boost pressure deviation integrated value is substantially equal to the reference value (or the reference value). The EGR rate deviation integrated value becomes smaller than the reference value. Next, this will be described.
 すなわち、目標過給圧が上昇せしめられると目標EGR率は低下せしめられる。したがって、このときには、実過給圧を目標過給圧に向かって上昇させるためにベーン開度が小さくされると同時に、実EGR率を目標EGR率に向かって低下させるためにEGR制御弁開度が小さくされる。 That is, when the target supercharging pressure is increased, the target EGR rate is decreased. Therefore, at this time, the vane opening is made small in order to increase the actual supercharging pressure toward the target supercharging pressure, and at the same time, the EGR control valve opening is used to decrease the actual EGR rate toward the target EGR rate. Is reduced.
 ここで、上述したように、ベーン開度とEGR制御弁開度とが同時に小さくされると、ベーン開度の減少に起因する排気圧の上昇とEGR制御弁開度の減少に起因する排気圧の上昇とによって過給圧が上昇せしめられることになる。ここで、ベーンの応答が所期の応答よりも遅い場合、ベーン開度の減少に起因する排気圧の上昇速度が所期の速度よりも遅くなる。一方、EGR制御弁の応答が所期の応答よりも速い場合、EGR制御弁開度の減少に起因する排気圧の上昇速度が所期の速度よりも速くなる。このため、ベーン開度の減少に起因する排気圧の上昇速度の減少とEGR制御弁開度の減少に起因する排気圧の上昇速度の増大とが互いに相殺され、結果的に、全体としては、過給圧の上昇速度は、略所期の速度となり、場合によっては、所期の速度となる。したがって、ベーンの応答が所期の応答よりも遅く且つEGR制御弁の応答が所期の応答よりも速くなっている場合において実過給圧を上昇させようとしたときには、過給圧偏差積算値はその基準値に略等しくなる(或いは、場合によっては、その基準値に等しくなる)。 Here, as described above, when the vane opening and the EGR control valve opening are simultaneously reduced, the exhaust pressure increases due to the decrease in the vane opening and the exhaust pressure due to the decrease in the EGR control valve opening. As a result, the boost pressure is increased. Here, when the response of the vane is slower than the intended response, the exhaust pressure increase rate due to the decrease in the vane opening becomes slower than the intended rate. On the other hand, when the response of the EGR control valve is faster than the intended response, the exhaust pressure increase rate due to the decrease in the EGR control valve opening becomes faster than the intended rate. For this reason, the decrease in the exhaust pressure increase rate due to the decrease in the vane opening and the increase in the exhaust pressure increase rate due to the decrease in the EGR control valve opening cancel each other. As a result, as a whole, The increase speed of the supercharging pressure is substantially the expected speed, and in some cases, the expected speed. Therefore, when the actual boost pressure is to be increased when the response of the vane is slower than the expected response and the response of the EGR control valve is faster than the expected response, the boost pressure deviation integrated value Is approximately equal to the reference value (or, in some cases, is equal to the reference value).
 一方、上述したように、ベーン開度とEGR制御弁開度とが同時に小さくされると、ベーン開度の減少に起因するEGRガス量の増大とEGR制御弁開度の減少に起因するEGRガス量の減少とが同時に発生する。ここで、ベーンの応答が所期の応答よりも遅い場合、ベーン開度の減少に起因するEGRガス量の増大速度が所期の速度よりも遅くなる。一方、EGR制御弁の応答が所期の応答よりも速い場合、EGR制御弁開度の減少に起因するEGRガス量の減少速度が所期の速度よりも速くなる。このため、全体としては、EGRガス量の減少速度が所期の速度よりも速くなる。したがって、ベーンの応答が所期の応答よりも遅く且つEGR制御弁の応答が所期の応答よりも速くなっている場合において実EGR率を低下させようとしたときには、EGR率偏差積算値はその基準値よりも小さくなる。 On the other hand, as described above, when the vane opening and the EGR control valve opening are simultaneously reduced, the EGR gas amount increases due to the decrease in the vane opening and the EGR gas due to the decrease in the EGR control valve opening. A decrease in volume occurs at the same time. Here, when the response of the vane is slower than the intended response, the increasing rate of the EGR gas amount due to the decrease in the vane opening becomes slower than the intended rate. On the other hand, when the response of the EGR control valve is faster than the intended response, the rate of decrease in the EGR gas amount due to the decrease in the EGR control valve opening becomes faster than the intended rate. For this reason, as a whole, the rate of decrease of the EGR gas amount becomes faster than the intended rate. Therefore, if the actual EGR rate is to be reduced when the vane response is slower than the intended response and the EGR control valve response is faster than the intended response, the integrated EGR rate deviation value is It becomes smaller than the reference value.
 また、目標過給圧が低下せしめられると目標EGR率は上昇せしめられる。したがって、このときには、実過給圧を目標過給圧に向かって低下させるためにベーン開度が大きくされると同時に、実EGR率を目標EGR率に向かって上昇させるためにEGR制御弁開度が大きくされる。 Also, when the target supercharging pressure is lowered, the target EGR rate is raised. Therefore, at this time, the vane opening is increased in order to decrease the actual supercharging pressure toward the target supercharging pressure, and at the same time, the EGR control valve opening is increased in order to increase the actual EGR rate toward the target EGR rate. Is increased.
 ここで、上述したように、ベーン開度とEGR制御弁開度とが同時に大きくされると、ベーン開度の増大に起因する排気圧の低下とEGR制御弁開度の増大に起因する排気圧の低下とによって過給圧が低下せしめられることになる。ここで、ベーンの応答が所期の応答よりも遅い場合、ベーン開度の増大に起因する排気圧の低下速度が所期の速度よりも遅くなる。一方、EGR制御弁の応答が所期の応答よりも速い場合、EGR制御弁開度の増大に起因する排気圧の低下速度が所期の速度よりも速くなる。このため、ベーン開度の増大に起因する排気圧の低下速度の減少とEGR制御弁開度の増大に起因する排気圧の低下速度の増大とが互いに相殺され、結果的に、全体としては、過給圧の低下速度は、略所期の速度となり、場合によっては、所期の速度となる。したがって、ベーンの応答が所期の応答よりも遅く且つEGR制御弁の応答が所期の応答よりも速くなっている場合において実過給圧を低下させようとしたときには、過給圧偏差積算値はその基準値に略等しくなる(或いは、場合によっては、その基準値に等しくなる)。 Here, as described above, when the vane opening and the EGR control valve opening are simultaneously increased, the exhaust pressure decreases due to the increase in the vane opening and the exhaust pressure due to the increase in the EGR control valve opening. As a result, the supercharging pressure is reduced. Here, when the response of the vane is slower than the intended response, the exhaust pressure decrease rate due to the increase in the vane opening becomes slower than the intended rate. On the other hand, when the response of the EGR control valve is faster than the intended response, the exhaust pressure decreasing rate due to the increase in the EGR control valve opening becomes faster than the intended rate. For this reason, the decrease in the exhaust pressure decrease rate due to the increase in the vane opening and the increase in the exhaust pressure decrease rate due to the increase in the EGR control valve opening cancel each other. As a result, as a whole, The decreasing speed of the supercharging pressure is substantially the expected speed, and in some cases, the expected speed. Therefore, when the actual supercharging pressure is to be reduced when the response of the vane is slower than the intended response and the response of the EGR control valve is faster than the intended response, the supercharging pressure deviation integrated value Is approximately equal to the reference value (or, in some cases, is equal to the reference value).
 一方、上述したように、ベーン開度とEGR制御弁開度とが同時に大きくされると、ベーン開度の増大に起因するEGRガス量の減少とEGR制御弁開度の増大に起因するEGRガス量の増大とが同時に発生する。ここで、ベーンの応答が所期の応答よりも遅い場合、ベーン開度の増大に起因するEGRガス量の減少速度が所期の速度よりも遅くなる。一方、EGR制御弁の応答が所期の応答よりも速い場合、EGR制御弁開度の増大に起因するEGRガス量の増大速度が所期の速度よりも速くなる。このため、全体としては、EGRガス量の増大速度が所期の速度よりも速くなる。したがって、ベーンの応答が所期の応答よりも遅く且つEGR制御弁の応答が所期の応答よりも速くなっている場合において実EGR率を上昇させようとしたときにも、EGR率偏差積算値はその基準値よりも小さくなる。 On the other hand, as described above, when the vane opening and the EGR control valve opening are simultaneously increased, the EGR gas is decreased due to the increase in the vane opening and the EGR gas is increased due to the increase in the EGR control valve opening. An increase in quantity occurs simultaneously. Here, when the response of the vane is slower than the intended response, the rate of decrease in the EGR gas amount due to the increase in the vane opening becomes slower than the intended rate. On the other hand, when the response of the EGR control valve is faster than the intended response, the increasing speed of the EGR gas amount due to the increase in the EGR control valve opening degree becomes faster than the intended speed. For this reason, as a whole, the increasing rate of the EGR gas amount becomes faster than the intended rate. Therefore, the EGR rate deviation integrated value is also obtained when the actual EGR rate is increased when the response of the vane is slower than the intended response and the response of the EGR control valve is faster than the intended response. Becomes smaller than the reference value.
 このように、ベーンの応答が所期の応答よりも遅く且つEGR制御弁の応答が所期の応答よりも速くなっている場合、過給圧偏差積算値がその基準値に略等しく(或いは、その基準値に等しく)且つEGR率偏差積算値がその基準値よりも小さくなるのである。 Thus, when the response of the vane is slower than the intended response and the response of the EGR control valve is faster than the intended response, the boost pressure deviation integrated value is substantially equal to the reference value (or The EGR rate deviation integrated value becomes smaller than the reference value).
 ここで、EGR制御弁操作量が小さくされれば、EGR制御弁の応答が遅くなる。したがって、過給圧偏差積算値がその基準値に略等しく(或いは、その基準値に等しく)且つEGR率偏差積算値がその基準値よりも小さい場合に、EGR制御弁操作量が小さくされれば、EGR制御弁の応答が遅くなり、その結果、実EGR率の変化速度が所期の速度に近づくことになる。そこで、第4実施形態では、この場合には、EGR制御弁操作量比例ゲインが小さくなるようにEGR制御弁操作量比例ゲインから第4補正値が減算されるのである。このようにEGR制御弁操作量比例ゲインが小さくされれば、設定される目標EGR制御弁操作量が小さくなる。これによれば、EGR制御弁の応答が遅くなり、その結果、実EGR率の変化速度が遅くなって所期の速度に近づく。そして、こうしたEGR制御弁操作量比例ゲインの補正が繰り返されれば、最終的には、実EGR率の変化速度が所期の速度に到達する。したがって、実EGR率が目標EGR率に所定の追従性でもって制御されることになる。 Here, if the operation amount of the EGR control valve is reduced, the response of the EGR control valve is delayed. Therefore, when the supercharging pressure deviation integrated value is substantially equal to (or equal to) the reference value and the EGR rate deviation integrated value is smaller than the reference value, the EGR control valve operation amount is reduced. As a result, the response of the EGR control valve becomes slow, and as a result, the rate of change of the actual EGR rate approaches the intended rate. Therefore, in the fourth embodiment, in this case, the fourth correction value is subtracted from the EGR control valve operation amount proportional gain so that the EGR control valve operation amount proportional gain becomes smaller. Thus, if the EGR control valve operation amount proportional gain is decreased, the set target EGR control valve operation amount is decreased. According to this, the response of the EGR control valve becomes slow, and as a result, the change speed of the actual EGR rate becomes slow and approaches the intended speed. Then, if the correction of the EGR control valve operation amount proportional gain is repeated, the actual EGR rate change speed finally reaches the intended speed. Therefore, the actual EGR rate is controlled with a predetermined followability to the target EGR rate.
 一方、過給圧偏差積算値がその基準値に略等しく(或いは、その基準値に等しく)且つEGR率偏差積算値がその基準値よりも小さい場合、実過給圧は所定の追従性でもって目標過給圧に制御されていると見ることができる。しかしながら、上述したように、この場合、EGR制御弁操作量比例ゲインが小さくされ、EGR制御弁の応答が遅くされることから、EGR制御弁の変化に起因する排気圧の変化速度が遅くなる。この場合、目標過給圧追従性が所定の追従性よりも低くなってしまう。一方、ベーン操作量が大きくされれば、ベーンの応答が速くなることから、目標過給圧追従性が所定の追従性よりも低くなることを抑制することができる。そこで、第4実施形態では、過給圧偏差積算値がその基準値に略等しく(或いは、その基準値に等しく)且つEGR率偏差積算値がその基準値よりも小さい場合には、ベーン操作量比例ゲインが大きくなるようにベーン操作量比例ゲインに第4補正値が加算されるのである。このようにベーン操作量比例ゲインが大きくされれば、設定される目標ベーン操作量が大きくなる。このため、目標過給圧追従性が所定の追従性よりも低くなることを抑制することができる。したがって、実過給圧が目標過給圧に所定の追従性でもって制御されることになる。 On the other hand, when the supercharging pressure deviation integrated value is approximately equal to (or equal to) the reference value and the EGR rate deviation integrated value is smaller than the reference value, the actual supercharging pressure has a predetermined followability. It can be seen that the target boost pressure is controlled. However, as described above, in this case, since the EGR control valve operation amount proportional gain is reduced and the response of the EGR control valve is delayed, the rate of change of the exhaust pressure due to the change of the EGR control valve becomes slow. In this case, the target supercharging pressure followability becomes lower than the predetermined followability. On the other hand, if the vane operation amount is increased, the response of the vanes becomes faster, so that it is possible to suppress the target boost pressure followability from becoming lower than the predetermined followability. Therefore, in the fourth embodiment, when the boost pressure deviation integrated value is substantially equal to (or equal to) the reference value, and the EGR rate deviation integrated value is smaller than the reference value, the vane operation amount The fourth correction value is added to the vane operation amount proportional gain so as to increase the proportional gain. Thus, if the vane operation amount proportional gain is increased, the set target vane operation amount is increased. For this reason, it can suppress that target supercharging pressure followability becomes lower than predetermined followability. Therefore, the actual supercharging pressure is controlled with a predetermined followability to the target supercharging pressure.
 斯くして、第4実施形態によれば、過給圧偏差積算値がその基準値に略等しく(或いは、その基準値に等しく)且つEGR率偏差積算値がその基準値よりも小さく、したがって、ベーンの応答が所定の応答よりも遅く且つEGR制御弁の応答が所定の応答よりも速い場合においても、実過給圧を目標過給圧に所定の追従性でもって制御することができると共に実EGR率を目標EGR率に所定の追従性でもって制御することができ、或いは、実過給圧と実EGR率とをそれぞれ目標過給圧と目標EGR率とに対してバランス良く制御することができるのである。 Thus, according to the fourth embodiment, the supercharging pressure deviation integrated value is substantially equal to (or equal to) the reference value, and the EGR rate deviation integrated value is smaller than the reference value. Even when the response of the vane is slower than the predetermined response and the response of the EGR control valve is faster than the predetermined response, the actual supercharging pressure can be controlled to the target supercharging pressure with a predetermined follow-up performance. The EGR rate can be controlled with a predetermined followability to the target EGR rate, or the actual boost pressure and the actual EGR rate can be controlled in a balanced manner with respect to the target boost pressure and the target EGR rate, respectively. It can be done.
 なお、比例ゲインを補正するために利用される第4補正値は、過給圧偏差積算値がその基準値に略等しく(或いは、その基準値に等しく)且つEGR率偏差積算値がその基準値よりも小さい場合において目標過給圧追従性を可能な限り早期に所定の追従性に到達させることができ且つ目標EGR率追従性を所定の追従性よりも低くしない値に設定される。 The fourth correction value used for correcting the proportional gain is that the boost pressure deviation integrated value is substantially equal to (or equal to) the reference value, and the EGR rate deviation integrated value is the reference value. Is set to a value that allows the target boost pressure followability to reach the predetermined followability as early as possible and does not lower the target EGR rate followability below the predetermined followability.
 また、第4補正値を利用した比例ゲインの補正は、過給圧偏差積算値がその基準値に略等しく(或いは、その基準値に等しい)且つEGR率偏差積算値がその基準値よりも小さいことをもって、すなわち、ベーンの応答が所定の応答よりも遅く且つEGR制御弁の応答が所定の応答よりも速いことを行われる。云い換えれば、ベーンの応答およびEGR制御弁の応答が所定の応答からどの程度ずれているかが考慮されずに、ベーン操作量比例ゲインおよびEGR制御弁操作量比例ゲインが補正される。したがって、第4補正値は、1回のベーン操作量比例ゲインおよびEGR制御弁操作量比例ゲインの補正によって目標過給圧追従性が所定の追従性を大きく越えて高くならず且つ目標EGR率追従性が所定の追従性を大きく越えて低くならない程度に小さい値に設定されることが好ましいと考えられる。 Further, in the correction of the proportional gain using the fourth correction value, the boost pressure deviation integrated value is substantially equal to (or equal to) the reference value, and the EGR rate deviation integrated value is smaller than the reference value. In other words, the response of the vane is slower than the predetermined response and the response of the EGR control valve is faster than the predetermined response. In other words, the vane operation amount proportional gain and the EGR control valve operation amount proportional gain are corrected without considering how much the vane response and the EGR control valve response deviate from the predetermined responses. Accordingly, the fourth correction value is obtained by correcting the target boost pressure follow-up significantly beyond the predetermined follow-up by the correction of the one-time vane operation amount proportional gain and the EGR control valve operation amount proportional gain, and the target EGR rate follow-up. It is considered that it is preferable to set the value to such a small value that the performance does not greatly exceed the predetermined followability.
 また、第4実施形態では、ベーン操作量比例ゲインおよびEGR制御弁操作量比例ゲインの補正を簡便なものにすると共にこれら比例ゲインをバランス良く補正するという観点から、これら比例ゲインを補正するための補正値として同じ第4補正値を利用している。しかしながら、必要があれば、各比例ゲインを補正するための補正値を互いに異なる値としてもよい。 In the fourth embodiment, correction of the proportional gain is performed from the viewpoint of simplifying the correction of the vane operation amount proportional gain and the EGR control valve operation amount proportional gain and correcting the proportional gain in a well-balanced manner. The same fourth correction value is used as the correction value. However, if necessary, the correction values for correcting each proportional gain may be different from each other.
 また、第4実施形態では、第4補正値をベーン操作量比例ゲインに加算することによって同ゲインを補正しているが、必要に応じて、1よりも大きい特定の値をベーン操作量比例ゲインに乗算することによって同ゲインを補正するようにしてもよい。また、第4実施形態では、第4補正値をEGR制御弁操作量比例ゲインから減算することによって同ゲインを補正しているが、必要に応じて、1よりも小さい特定の値をEGR制御弁操作量比例ゲインに乗算することによって同ゲインを補正するようにしてもよい。なお、この場合、これら比例ゲインをバランス良く補正するという観点では、これら比例ゲインに乗算される特定の値は、それら特定の値の総和が一定の値になるように設定され、或いは、それらの特定の値の比が一定の値になるように設定されると好ましいと考えられる。 In the fourth embodiment, the gain is corrected by adding the fourth correction value to the vane operation amount proportional gain. However, if necessary, a specific value larger than 1 is set to a vane operation amount proportional gain. The gain may be corrected by multiplying by. In the fourth embodiment, the fourth correction value is corrected by subtracting the fourth correction value from the EGR control valve operation amount proportional gain. However, if necessary, a specific value smaller than 1 is set to an EGR control valve. The gain may be corrected by multiplying the manipulated variable proportional gain. In this case, in terms of correcting these proportional gains in a well-balanced manner, the specific values multiplied by these proportional gains are set so that the sum of the specific values becomes a constant value, or It is considered preferable that the ratio of specific values is set to be a constant value.
 また、ベーンの応答が所期の応答よりも速く且つEGR制御弁の応答が所期の応答よりも遅くなっている場合、過給圧偏差積算値がその基準値に略等しく(或いは、その基準値に等しく)且つEGR率偏差積算値がその基準値よりも大きくなる。次に、このことについて説明する。 In addition, when the response of the vane is faster than the intended response and the response of the EGR control valve is slower than the intended response, the boost pressure deviation integrated value is substantially equal to the reference value (or the reference value). The EGR rate deviation integrated value becomes larger than the reference value. Next, this will be described.
 すなわち、目標過給圧が上昇せしめられると目標EGR率は低下せしめられる。したがって、このときには、実過給圧を目標過給圧に向かって上昇させるためにベーン開度が小さくされると同時に、実EGR率を目標EGR率に向かって低下させるためにEGR制御弁開度が小さくされる。 That is, when the target supercharging pressure is increased, the target EGR rate is decreased. Therefore, at this time, the vane opening is made small in order to increase the actual supercharging pressure toward the target supercharging pressure, and at the same time, the EGR control valve opening is used to decrease the actual EGR rate toward the target EGR rate. Is reduced.
 ここで、上述したように、ベーン開度とEGR制御弁開度とが同時に小さくされると、ベーン開度の減少に起因する排気圧の上昇とEGR制御弁開度の減少に起因する排気圧の上昇とによって過給圧が上昇せしめられることになる。ここで、ベーンの応答が所期の応答よりも速い場合、ベーン開度の減少に起因する排気圧の上昇速度が所期の速度よりも速くなる。一方、EGR制御弁の応答が所期の応答よりも遅い場合、EGR制御弁開度の減少に起因する排気圧の上昇速度が所期の速度よりも遅くなる。このため、ベーン開度の減少に起因する排気圧の上昇速度の増大とEGR制御弁開度の減少に起因する排気圧の上昇速度の減少とが互いに相殺され、結果的に、全体としては、過給圧の上昇速度は、略所期の速度となり、場合によっては、所期の速度となる。したがって、ベーンの応答が所期の応答よりも速く且つEGR制御弁の応答が所期の応答よりも遅くなっている場合において実過給圧を上昇させようとしたときには、過給圧偏差積算値はその基準値に略等しくなる(或いは、場合によっては、その基準値に等しくなる)。 Here, as described above, when the vane opening and the EGR control valve opening are simultaneously reduced, the exhaust pressure increases due to the decrease in the vane opening and the exhaust pressure due to the decrease in the EGR control valve opening. As a result, the boost pressure is increased. Here, when the response of the vane is faster than the intended response, the exhaust pressure increase rate due to the decrease in the vane opening becomes faster than the intended rate. On the other hand, when the response of the EGR control valve is slower than the intended response, the exhaust pressure increase rate due to the decrease in the EGR control valve opening becomes slower than the intended rate. For this reason, the increase in the exhaust pressure increase rate due to the decrease in the vane opening and the decrease in the exhaust pressure increase rate due to the decrease in the EGR control valve opening cancel each other. As a result, as a whole, The increase speed of the supercharging pressure is substantially the expected speed, and in some cases, the expected speed. Therefore, when an attempt is made to increase the actual boost pressure when the response of the vane is faster than the expected response and the response of the EGR control valve is slower than the expected response, the supercharging pressure deviation integrated value Is approximately equal to the reference value (or, in some cases, is equal to the reference value).
 一方、上述したように、ベーン開度とEGR制御弁開度とが同時に小さくされると、ベーン開度の減少に起因するEGRガス量の増大とEGR制御弁開度の減少に起因するEGRガス量の減少とが同時に発生する。ここで、ベーンの応答が所期の応答よりも速い場合、ベーン開度の減少に起因するEGRガス量の増大速度が所期の速度よりも速くなる。一方、EGR制御弁の応答が所期の応答よりも遅い場合、EGR制御弁開度の減少に起因するEGRガス量の減少速度が所期の速度よりも遅くなる。このため、全体としては、EGRガス量の減少速度が所期の速度よりも遅くなる。したがって、ベーンの応答が所期の応答よりも速く且つEGR制御弁の応答が所期の応答よりも遅い場合において実EGR率を低下させようとしたときには、EGR率偏差積算値はその基準値よりも大きくなる。 On the other hand, as described above, when the vane opening and the EGR control valve opening are simultaneously reduced, the EGR gas increases due to the decrease in the vane opening and the EGR gas due to the decrease in the EGR control valve opening. A decrease in volume occurs at the same time. Here, when the response of the vane is faster than the intended response, the increasing speed of the EGR gas amount due to the decrease in the vane opening becomes faster than the intended speed. On the other hand, when the response of the EGR control valve is slower than the intended response, the rate of decrease in the EGR gas amount due to the decrease in the EGR control valve opening becomes slower than the intended rate. For this reason, as a whole, the rate of decrease in the amount of EGR gas becomes slower than the intended rate. Accordingly, when the actual EGR rate is to be reduced when the vane response is faster than the intended response and the EGR control valve response is slower than the intended response, the EGR rate deviation integrated value is less than the reference value. Also grows.
 また、目標過給圧が低下せしめられると目標EGR率は上昇せしめられる。したがって、このときには、実過給圧を目標過給圧に向かって低下させるためにベーン開度が大きくされると同時に、実EGR率を目標EGR率に向かって上昇させるためにEGR制御弁開度が大きくされる。 Also, when the target supercharging pressure is lowered, the target EGR rate is raised. Accordingly, at this time, the vane opening is increased in order to decrease the actual supercharging pressure toward the target supercharging pressure, and at the same time, the EGR control valve opening is increased in order to increase the actual EGR rate toward the target EGR rate. Is increased.
 ここで、上述したように、ベーン開度とEGR制御弁開度とが同時に大きくされると、ベーン開度の増大に起因する排気圧の低下とEGR制御弁開度の増大に起因する排気圧の低下とによって過給圧が低下せしめられることになる。ここで、ベーンの応答が所期の応答よりも速い場合、ベーン開度の増大に起因する排気圧の低下速度が所期の速度よりも速くなる。一方、EGR制御弁の応答が所期の応答よりも遅い場合、EGR制御弁開度の増大に起因する排気圧の低下速度が所期の速度よりも遅くなる。このため、ベーン開度の増大に起因する排気圧の低下速度の増大とEGR制御弁開度の増大に起因する排気圧の低下速度の減少とが互いに相殺され、結果的に、全体としては、過給圧の低下速度は、略所期の速度となり、場合によっては、所期の速度となる。したがって、ベーンの応答が所期の応答よりも速く且つEGR制御弁の応答が所期の応答よりも遅くなっている場合において実過給圧を低下させようとしたときには、過給圧偏差積算値はその基準値に略等しくなる(或いは、場合によっては、その基準値に等しくなる)。 Here, as described above, when the vane opening and the EGR control valve opening are simultaneously increased, the exhaust pressure decreases due to the increase in the vane opening and the exhaust pressure due to the increase in the EGR control valve opening. As a result, the supercharging pressure is reduced. Here, when the response of the vane is faster than the intended response, the exhaust pressure lowering rate due to the increase in the vane opening becomes faster than the intended rate. On the other hand, when the response of the EGR control valve is slower than the intended response, the exhaust pressure decrease rate due to the increase in the EGR control valve opening becomes slower than the intended rate. For this reason, the increase in the exhaust pressure decrease rate due to the increase in the vane opening and the decrease in the exhaust pressure decrease rate due to the increase in the EGR control valve opening cancel each other. As a result, as a whole, The decreasing speed of the supercharging pressure is substantially the expected speed, and in some cases, the expected speed. Therefore, when the actual supercharging pressure is to be reduced when the response of the vane is faster than the intended response and the response of the EGR control valve is slower than the intended response, the supercharging pressure deviation integrated value Is approximately equal to the reference value (or, in some cases, is equal to the reference value).
 一方、上述したように、ベーン開度とEGR制御弁開度とが同時に大きくされると、ベーン開度の増大に起因するEGRガス量の減少とEGR制御弁開度の増大に起因するEGRガス量の増大とが同時に発生する。ここで、ベーンの応答が所期の応答よりも遅い場合、ベーン開度の増大に起因するEGRガス量の減少速度が所期の速度よりも遅くなる。一方、EGR制御弁の応答が所期の応答よりも速い場合、EGR制御弁開度の増大に起因するEGRガス量の増大速度が所期の速度よりも速くなる。このため、全体としては、EGRガス量の増大速度が所期の速度よりも速くなる。したがって、ベーンの応答が所期の応答よりも遅く且つEGR制御弁の応答が所期の応答よりも速くなっている場合において実EGR率を上昇させようとしたときにも、EGR率偏差積算値はその基準値よりも小さくなる。 On the other hand, as described above, when the vane opening and the EGR control valve opening are simultaneously increased, the EGR gas is decreased due to the increase in the vane opening and the EGR gas is increased due to the increase in the EGR control valve opening. An increase in quantity occurs simultaneously. Here, when the response of the vane is slower than the intended response, the rate of decrease in the EGR gas amount due to the increase in the vane opening becomes slower than the intended rate. On the other hand, when the response of the EGR control valve is faster than the intended response, the increasing speed of the EGR gas amount due to the increase in the EGR control valve opening degree becomes faster than the intended speed. For this reason, as a whole, the increasing rate of the EGR gas amount becomes faster than the intended rate. Therefore, the EGR rate deviation integrated value is also obtained when the actual EGR rate is increased when the response of the vane is slower than the intended response and the response of the EGR control valve is faster than the intended response. Becomes smaller than the reference value.
 このように、ベーンの応答が所期の応答よりも速く且つEGR制御弁の応答が所期の応答よりも遅くなっている場合、過給圧偏差積算値がその基準値に略等しく(或いは、その基準値に等しく)且つEGR率偏差積算値がその基準値よりも大きくなるのである。 Thus, when the response of the vane is faster than the intended response and the response of the EGR control valve is slower than the intended response, the boost pressure deviation integrated value is approximately equal to the reference value (or The EGR rate deviation integrated value becomes larger than the reference value.
 ここで、EGR制御弁操作量が大きくされれば、EGR制御弁の応答が速くなる。したがって、過給圧偏差積算値がその基準値に略等しく(或いは、その基準値に等しく)且つEGR率偏差積算値がその基準値よりも大きい場合に、EGR制御弁操作量が大きくされれば、EGR制御弁の応答が速くなり、その結果、実EGR率の変化速度が所期の速度に近づくことになる。そこで、第4実施形態では、この場合には、EGR制御弁操作量比例ゲインが大きくなるようにEGR制御弁操作量比例ゲインに第5補正値が加算されるのである。このようにEGR制御弁操作量比例ゲインが大きくされれば、設定される目標EGR制御弁操作量が大きくなる。これによれば、EGR制御弁の応答が速くなり、その結果、実EGR率の変化速度が速くなって所期の速度に近づく。そして、こうしたEGR制御弁操作量比例ゲインの補正が繰り返されれば、最終的には、実EGR率の変化速度が所期の速度に到達する。したがって、実EGR率が目標EGR率に所定の追従性でもって制御されることになる。 Here, if the operation amount of the EGR control valve is increased, the response of the EGR control valve becomes faster. Therefore, when the supercharging pressure deviation integrated value is substantially equal to (or equal to) the reference value and the EGR rate deviation integrated value is larger than the reference value, the EGR control valve operation amount is increased. As a result, the response of the EGR control valve becomes faster, and as a result, the change rate of the actual EGR rate approaches the intended speed. Therefore, in the fourth embodiment, in this case, the fifth correction value is added to the EGR control valve operation amount proportional gain so that the EGR control valve operation amount proportional gain is increased. Thus, if the EGR control valve operation amount proportional gain is increased, the set target EGR control valve operation amount is increased. According to this, the response of the EGR control valve becomes faster, and as a result, the change speed of the actual EGR rate becomes faster and approaches the intended speed. Then, if the correction of the EGR control valve operation amount proportional gain is repeated, the actual EGR rate change speed finally reaches the intended speed. Therefore, the actual EGR rate is controlled with a predetermined followability to the target EGR rate.
 一方、過給圧偏差積算値がその基準値に略等しく(或いは、その基準値に等しく)且つEGR率偏差積算値がその基準値よりも大きい場合、実過給圧は所定の追従性でもって目標過給圧に制御されていると見ることができる。しかしながら、上述したように、この場合、EGR制御弁操作量比例ゲインが大きくされ、EGR制御弁の応答が速くされることから、EGR制御弁の変化に起因する排気圧の変化速度が速くなる。この場合、目標過給圧追従性が所定の追従性よりも高くなってしまう。一方、ベーン操作量が小さくされれば、ベーンの応答が遅くなることから、目標過給圧追従性が所定の追従性よりも高くなることを抑制することができる。そこで、第4実施形態では、過給圧偏差積算値がその基準値に略等しく(或いは、その基準値に等しく)且つEGR率偏差積算値がその基準値よりも大きい場合には、ベーン操作量比例ゲインが小さくなるようにベーン操作量比例ゲインから第5補正値が減算されるのである。このようにベーン操作量比例ゲインが小さくされれば、設定される目標ベーン操作量が小さくなる。このため、目標過給圧追従性が所定の追従性よりも高くなることを抑制することができる。したがって、実過給圧が目標過給圧に所定の追従性でもって制御されることになる。 On the other hand, when the supercharging pressure deviation integrated value is substantially equal to (or equal to) the reference value and the EGR rate deviation integrated value is larger than the reference value, the actual supercharging pressure has a predetermined followability. It can be seen that the target boost pressure is controlled. However, as described above, in this case, the EGR control valve operation amount proportional gain is increased, and the response of the EGR control valve is increased, so that the exhaust pressure change rate due to the change of the EGR control valve is increased. In this case, the target boost pressure followability is higher than the predetermined followability. On the other hand, if the vane operation amount is reduced, the response of the vane is delayed, so that the target boost pressure followability can be suppressed from becoming higher than the predetermined followability. Therefore, in the fourth embodiment, when the supercharging pressure deviation integrated value is substantially equal to (or equal to) the reference value and the EGR rate deviation integrated value is larger than the reference value, the vane operation amount The fifth correction value is subtracted from the vane operation amount proportional gain so that the proportional gain becomes smaller. Thus, if the vane operation amount proportional gain is reduced, the set target vane operation amount is reduced. For this reason, it can suppress that target supercharging pressure followability becomes higher than predetermined followability. Therefore, the actual supercharging pressure is controlled with a predetermined followability to the target supercharging pressure.
 斯くして、第4実施形態によれば、過給圧偏差積算値がその基準値に略等しく(或いは、その基準値に等しく)且つEGR率偏差積算値がその基準値よりも大きく、したがって、ベーンの応答が所定の応答よりも速く且つEGR制御弁の応答が所定の応答よりも遅い場合においても、実過給圧を目標過給圧に所定の追従性でもって制御することができると共に実EGR率を目標EGR率に所定の追従性でもって制御することができ、或いは、実過給圧と実EGR率とをそれぞれ目標過給圧と目標EGR率とに対してバランス良く制御することができるのである。 Thus, according to the fourth embodiment, the boost pressure deviation integrated value is substantially equal to (or equal to) the reference value, and the EGR rate deviation integrated value is larger than the reference value. Even when the response of the vane is faster than the predetermined response and the response of the EGR control valve is slower than the predetermined response, the actual supercharging pressure can be controlled to the target supercharging pressure with a predetermined follow-up performance. The EGR rate can be controlled with a predetermined followability to the target EGR rate, or the actual boost pressure and the actual EGR rate can be controlled in a balanced manner with respect to the target boost pressure and the target EGR rate, respectively. It can be done.
 なお、比例ゲインを補正するために利用される第5補正値は、過給圧偏差積算値がその基準値に略等しく(或いは、その基準値に等しく)且つEGR率偏差積算値がその基準値よりも大きい場合において目標過給圧追従性を可能な限り早期に所定の追従性に到達させることができ且つ目標EGR率追従性を所定の追従性よりも低くしない値に設定される。 The fifth correction value used for correcting the proportional gain is that the boost pressure deviation integrated value is substantially equal to (or equal to) the reference value and the EGR rate deviation integrated value is the reference value. Is set to a value that allows the target boost pressure followability to reach the predetermined followability as early as possible and does not lower the target EGR rate followability below the predetermined followability.
 また、第5補正値を利用した比例ゲインの補正は、過給圧偏差積算値がその基準値に略等しく(或いは、その基準値に等しい)且つEGR率偏差積算値がその基準値よりも大きいことをもって、すなわち、ベーンの応答が所定の応答よりも速く且つEGR制御弁の応答が所定の応答よりも遅いことを行われる。云い換えれば、ベーンの応答およびEGR制御弁の応答が所定の応答からどの程度ずれているかが考慮されずに、ベーン操作量比例ゲインおよびEGR制御弁操作量比例ゲインが補正される。したがって、第5補正値は、1回のベーン操作量比例ゲインおよびEGR制御弁操作量比例ゲインの補正によって目標過給圧追従性が所定の追従性を大きく越えて低くならず且つ目標EGR率追従性が所定の追従性を大きく越えて高くならない程度に小さい値に設定されることが好ましいと考えられる。 Further, in the correction of the proportional gain using the fifth correction value, the boost pressure deviation integrated value is substantially equal to (or equal to) the reference value, and the EGR rate deviation integrated value is larger than the reference value. In other words, the vane response is faster than the predetermined response and the EGR control valve response is slower than the predetermined response. In other words, the vane operation amount proportional gain and the EGR control valve operation amount proportional gain are corrected without considering how much the vane response and the EGR control valve response deviate from the predetermined responses. Therefore, the fifth correction value is obtained by making the target boost pressure follow-up performance not significantly lower than the predetermined follow-up performance and correcting the target EGR rate follow-up by correcting the vane operation amount proportional gain and the EGR control valve operation amount proportional gain once. It is considered that it is preferable to set the value to such a small value that the performance does not greatly exceed the predetermined followability.
 また、第4実施形態では、ベーン操作量比例ゲインおよびEGR制御弁操作量比例ゲインの補正を簡便なものにすると共にこれら比例ゲインをバランス良く補正するという観点から、これら比例ゲインを補正するための補正値として同じ第5補正値を利用している。しかしながら、必要があれば、各比例ゲインを補正するための補正値を互いに異なる値としてもよい。 In the fourth embodiment, correction of the proportional gain is performed from the viewpoint of simplifying the correction of the vane operation amount proportional gain and the EGR control valve operation amount proportional gain and correcting the proportional gain in a well-balanced manner. The same fifth correction value is used as the correction value. However, if necessary, the correction values for correcting each proportional gain may be different from each other.
 また、第4実施形態では、第5補正値をベーン操作量比例ゲインから減算することによって同ゲインを補正しているが、必要に応じて、1よりも小さい特定の値をベーン操作量比例ゲインに乗算することによって同ゲインを補正するようにしてもよい。また、第4実施形態では、第5補正値をEGR制御弁操作量比例ゲインに加算することによって同ゲインを補正しているが、必要に応じて、1よりも大きい特定の値をEGR制御弁操作量比例ゲインに乗算することによって同ゲインを補正するようにしてもよい。なお、この場合、これら比例ゲインをバランス良く補正するという観点では、これら比例ゲインに乗算される特定の値は、それら特定の値の総和が一定の値になるように設定され、或いは、それらの特定の値の比が一定の値になるように設定されると好ましいと考えられる。 In the fourth embodiment, the fifth correction value is corrected by subtracting the fifth correction value from the vane operation amount proportional gain. However, if necessary, a specific value smaller than 1 is set to a vane operation amount proportional gain. The gain may be corrected by multiplying by. In the fourth embodiment, the fifth correction value is corrected by adding the fifth correction value to the EGR control valve operation amount proportional gain. However, if necessary, a specific value greater than 1 is set to an EGR control valve. The gain may be corrected by multiplying the manipulated variable proportional gain. In this case, in terms of correcting these proportional gains in a well-balanced manner, the specific values multiplied by these proportional gains are set so that the sum of the specific values becomes a constant value, or It is considered preferable that the ratio of specific values is set to be a constant value.
 また、ベーンの応答が所期の応答であり且つEGR制御弁の応答が所期の速度よりも速くなっている場合、過給圧偏差積算値がその基準値よりも小さく且つEGR率偏差積算値がその基準値よりも小さくなる。次に、このことについて説明する。 Further, when the response of the vane is the intended response and the response of the EGR control valve is faster than the intended speed, the supercharging pressure deviation integrated value is smaller than the reference value and the EGR rate deviation integrated value. Becomes smaller than the reference value. Next, this will be described.
 すなわち、目標過給圧が上昇せしめられると目標EGR率は低下せしめられる。したがって、このときには、実過給圧を目標過給圧に向かって上昇させるためにベーン開度が小さくされると同時に、実EGR率を目標EGR率に向かって低下させるためにEGR制御弁開度が小さくされる。 That is, when the target supercharging pressure is increased, the target EGR rate is decreased. Therefore, at this time, the vane opening is made small in order to increase the actual supercharging pressure toward the target supercharging pressure, and at the same time, the EGR control valve opening is used to decrease the actual EGR rate toward the target EGR rate. Is reduced.
 ここで、上述したように、ベーン開度とEGR制御弁開度とが同時に小さくされると、ベーン開度の減少に起因する排気圧の上昇とEGR制御弁開度の減少に起因する排気圧の上昇とによって過給圧が上昇せしめられることになる。ここで、ベーンの応答が所期の応答である場合、ベーン開度の減少に起因する排気圧の上昇速度が所期の速度になる。一方、EGR制御弁の応答が所期の応答よりも速い場合、EGR制御弁開度の減少に起因する排気圧の上昇速度が所期の速度よりも速くなる。このため、全体としては、過給圧の上昇速度が所期の速度よりも速くなる。したがって、ベーンの応答が所期の応答であり且つEGR制御弁の応答が所期の応答よりも速くなっている場合において実過給圧を上昇させようとしたときには、過給圧偏差積算値はその基準値よりも小さくなる。 Here, as described above, when the vane opening and the EGR control valve opening are simultaneously reduced, the exhaust pressure increases due to the decrease in the vane opening and the exhaust pressure due to the decrease in the EGR control valve opening. As a result, the boost pressure is increased. Here, when the response of the vane is an intended response, the exhaust pressure increasing speed resulting from the decrease in the vane opening becomes the intended speed. On the other hand, when the response of the EGR control valve is faster than the intended response, the exhaust pressure increase rate due to the decrease in the EGR control valve opening becomes faster than the intended rate. For this reason, as a whole, the increase speed of the supercharging pressure becomes faster than the intended speed. Therefore, when the actual boost pressure is to be increased when the vane response is the desired response and the EGR control valve response is faster than the expected response, the boost pressure deviation integrated value is It becomes smaller than the reference value.
 一方、上述したように、ベーン開度とEGR制御弁開度とが同時に小さくされると、ベーン開度の減少に起因するEGRガス量の増大とEGR制御弁開度の減少に起因するEGRガス量の減少とが同時に発生する。ここで、ベーンの応答が所期の応答である場合、ベーン開度の減少に起因するEGRガス量の増大速度が所期の速度になる。一方、EGR制御弁の応答が所期の応答よりも速い場合、EGR制御弁開度の減少に起因するEGRガス量の減少速度が所期の速度よりも速くなる。このため、全体としては、EGRガス量の減少速度が所期の速度よりも速くなる。したがって、ベーンの応答が所期の応答であり且つEGR制御弁の応答が所期の応答よりも速い場合において実EGR率を低下させようとしたときには、EGR率偏差積算値はその基準値よりも小さくなる。 On the other hand, as described above, when the vane opening and the EGR control valve opening are simultaneously reduced, the EGR gas amount increases due to the decrease in the vane opening and the EGR gas due to the decrease in the EGR control valve opening. A decrease in volume occurs at the same time. Here, when the response of the vane is an intended response, the increase rate of the EGR gas amount due to the decrease in the vane opening becomes the intended rate. On the other hand, when the response of the EGR control valve is faster than the intended response, the rate of decrease in the EGR gas amount due to the decrease in the EGR control valve opening becomes faster than the intended rate. For this reason, as a whole, the rate of decrease of the EGR gas amount becomes faster than the intended rate. Therefore, when the actual EGR rate is to be reduced when the vane response is the intended response and the EGR control valve response is faster than the intended response, the EGR rate deviation integrated value is less than the reference value. Get smaller.
 また、目標過給圧が低下せしめられると目標EGR率は上昇せしめられる。したがって、このときには、実過給圧を目標過給圧に向かって低下させるためにベーン開度が大きくされると同時に、実EGR率を目標EGR率に向かって上昇させるためにEGR制御弁開度が大きくされる。 Also, when the target supercharging pressure is lowered, the target EGR rate is raised. Accordingly, at this time, the vane opening is increased in order to decrease the actual supercharging pressure toward the target supercharging pressure, and at the same time, the EGR control valve opening is increased in order to increase the actual EGR rate toward the target EGR rate. Is increased.
 ここで、上述したように、ベーン開度とEGR制御弁開度とが同時に大きくされると、ベーン開度の増大に起因する排気圧の低下とEGR制御弁開度の増大に起因する排気圧の低下とによって過給圧が低下せしめられることになる。ここで、ベーンの応答が所期の応答である場合、ベーン開度の増大に起因する排気圧の低下速度が所期の速度になる。一方、EGR制御弁の応答が所期の応答よりも速い場合、EGR制御弁開度の増大に起因する排気圧の低下速度が所期の速度よりも速くなる。このため、全体としては、過給圧の低下速度が所期の速度よりも速くなる。したがって、ベーンの応答が所期の応答であり且つEGR制御弁の応答が所期の応答よりも速くなっている場合において実過給圧を低下させようとしたときには、過給圧偏差積算値はその基準値よりも小さくなる。 Here, as described above, when the vane opening and the EGR control valve opening are simultaneously increased, the exhaust pressure decreases due to the increase in the vane opening and the exhaust pressure due to the increase in the EGR control valve opening. As a result, the supercharging pressure is reduced. Here, when the response of the vane is an intended response, the exhaust pressure lowering speed resulting from the increase in the vane opening becomes the intended speed. On the other hand, when the response of the EGR control valve is faster than the intended response, the exhaust pressure decreasing rate due to the increase in the EGR control valve opening becomes faster than the intended rate. For this reason, as a whole, the reduction speed of the supercharging pressure becomes faster than the intended speed. Therefore, when the actual boost pressure is to be reduced when the vane response is the desired response and the EGR control valve response is faster than the expected response, the boost pressure deviation integrated value is It becomes smaller than the reference value.
 一方、上述したように、ベーン開度とEGR制御弁開度とが同時に大きくされると、ベーン開度の増大に起因するEGRガス量の減少とEGR制御弁開度の増大に起因するEGRガス量の増大とが同時に発生する。ここで、ベーンの応答が所期の応答である場合、ベーン開度の増大に起因するEGRガス量の減少速度が所期の速度になる。一方、EGR制御弁の応答が所期の応答よりも速い場合、EGR制御弁開度の増大に起因するEGRガス量の増大速度が所期の速度よりも速くなる。このため、全体としては、EGRガス量の増大速度が所期の速度よりも速くなる。したがって、ベーンの応答が所期の応答であり且つEGR制御弁の応答が所期の応答よりも速い場合において実EGR率を上昇させようとしたときには、EGR率偏差積算値はその基準値よりも小さくなる。 On the other hand, as described above, when the vane opening and the EGR control valve opening are simultaneously increased, the EGR gas caused by the decrease in the EGR gas amount due to the increase in the vane opening and the increase in the EGR control valve opening. An increase in quantity occurs simultaneously. Here, when the response of the vane is an intended response, the rate of decrease in the EGR gas amount due to the increase in the vane opening becomes the intended rate. On the other hand, when the response of the EGR control valve is faster than the intended response, the increasing speed of the EGR gas amount due to the increase in the EGR control valve opening degree becomes faster than the intended speed. For this reason, as a whole, the rate of increase in the amount of EGR gas is faster than the intended rate. Accordingly, when the actual EGR rate is to be increased when the vane response is the intended response and the EGR control valve response is faster than the intended response, the EGR rate deviation integrated value is less than the reference value. Get smaller.
 このように、ベーンの応答が所期の応答であり且つEGR制御弁の応答が所期の速度よりも速くなっている場合、過給圧偏差積算値がその基準値よりも小さく且つEGR率偏差積算値がその基準値よりも小さくなるのである。 Thus, when the response of the vane is the intended response and the response of the EGR control valve is faster than the intended speed, the supercharging pressure deviation integrated value is smaller than the reference value and the EGR rate deviation The integrated value becomes smaller than the reference value.
 ここで、EGR制御弁操作量が小さくされれば、EGR制御弁の応答が遅くなる。したがって、過給圧偏差積算値がその基準値よりも小さく且つEGR率偏差積算値がその基準値よりも小さい場合に、EGR制御弁操作量が小さくされれば、EGR制御弁の応答が遅くなり、その結果、実EGR率の偏差速度が所期の速度に近づくことになる。そこで、第4実施形態では、この場合には、EGR制御弁操作量比例ゲインが小さくなるようにEGR制御弁操作量比例ゲインに第6補正値が乗算されるのである。このようにEGR制御弁操作量比例ゲインが小さくされれば、設定される目標EGR制御弁操作量が小さくなる。これによれば、EGR制御弁の応答が遅くなり、その結果、実EGR率の変化速度が遅くなって所期の速度に近づく。そして、こうしたEGR制御弁操作量比例ゲインの補正が繰り返されれば、最終的には、実EGR率の変化速度が所期の速度に到達する。したがって、実EGR率が目標EGR率に所定の追従性でもって制御されることになる。 Here, if the operation amount of the EGR control valve is reduced, the response of the EGR control valve is delayed. Therefore, if the supercharging pressure deviation integrated value is smaller than the reference value and the EGR rate deviation integrated value is smaller than the reference value, the response of the EGR control valve is delayed if the EGR control valve operation amount is reduced. As a result, the deviation speed of the actual EGR rate approaches the intended speed. Therefore, in the fourth embodiment, in this case, the EGR control valve operation amount proportional gain is multiplied by the sixth correction value so that the EGR control valve operation amount proportional gain becomes smaller. Thus, if the EGR control valve operation amount proportional gain is decreased, the set target EGR control valve operation amount is decreased. According to this, the response of the EGR control valve becomes slow, and as a result, the change speed of the actual EGR rate becomes slow and approaches the intended speed. Then, if the correction of the EGR control valve operation amount proportional gain is repeated, the actual EGR rate changing speed finally reaches the intended speed. Therefore, the actual EGR rate is controlled with a predetermined followability to the target EGR rate.
 一方、ベーン操作量が小さくされれば、ベーンの応答が遅くなる。したがって、過給圧偏差積算値がその基準値よりも小さく且つEGR率偏差積算値がその基準値よりも小さい場合に、ベーン操作量が小さくされれば、ベーンの応答が遅くなり、その結果、実過給圧の変化速度が所期の速度に近づくことになる。そこで、第4実施形態では、この場合には、ベーン操作量比例ゲインが小さくなるようにベーン操作量比例ゲインに第2補正値が乗算されるのである。このようにベーン操作量比例ゲインが小さくされれば、設定される目標ベーン操作量が小さくなる。これによれば、ベーンの応答が遅くなり、その結果、実過給圧の変化速度が遅くなって所期の速度に近づく。そして、こうしたベーン操作量ゲインの補正が繰り返されれば、最終的には、実過給圧の変化速度が所期の速度に到達する。したがって、実過給圧が目標過給圧に所定の追従性でもって制御されることになる。 On the other hand, if the amount of vane operation is reduced, the response of the vane becomes slow. Therefore, when the supercharging pressure deviation integrated value is smaller than the reference value and the EGR rate deviation integrated value is smaller than the reference value, if the vane operation amount is reduced, the response of the vane is delayed. The change speed of the actual supercharging pressure approaches the expected speed. Therefore, in the fourth embodiment, in this case, the vane operation amount proportional gain is multiplied by the second correction value so that the vane operation amount proportional gain becomes small. Thus, if the vane operation amount proportional gain is reduced, the set target vane operation amount is reduced. According to this, the response of the vane becomes slow, and as a result, the change speed of the actual supercharging pressure becomes slow and approaches the intended speed. If the correction of the vane operation amount gain is repeated, the change speed of the actual supercharging pressure finally reaches the intended speed. Therefore, the actual supercharging pressure is controlled with a predetermined followability to the target supercharging pressure.
 なお、上述した第6補正値を用いたEGR制御弁操作量比例ゲインの補正によれば、EGR制御弁の応答が遅くなることから、EGR制御弁開度の変化に起因する排気圧の変化の速度が遅くなる。このことからも、実過給圧の変化速度が遅くなって所期の速度に近づく。したがって、より早期に、実過給圧が目標過給圧に所定の追従性でもって制御されるようになる。 In addition, according to the correction of the EGR control valve operation amount proportional gain using the sixth correction value described above, the response of the EGR control valve becomes slow, so that the change of the exhaust pressure due to the change of the EGR control valve opening degree is reduced. The speed is slow. Also from this, the change speed of the actual supercharging pressure becomes slow and approaches the intended speed. Thus, at an earlier stage, so that the actual boost pressure is controlled with a predetermined follow-up property to the target supercharging pressure.
 斯くして、第4実施形態によれば、過給圧偏差積算値がその基準値よりも小さく且つEGR率偏差積算値がその基準値よりも小さく、したがって、ベーンの応答が所期の応答であるにも係わらずEGR制御弁の応答が所期の応答よりも速い場合においても、実過給圧を目標過給圧に所定の追従性でもって制御することができると共に実EGR率を目標EGR率に所定の追従性でもって制御することができ、或いは、実過給圧と実EGR率とをそれぞれ目標過給圧と目標EGR率とに対してバランス良く制御することができるのである。 Thus, according to the fourth embodiment, the supercharging pressure deviation integrated value is smaller than the reference value and the EGR rate deviation integrated value is smaller than the reference value, and therefore the vane response is the desired response. Nevertheless, even when the response of the EGR control valve is faster than the intended response, the actual boost pressure can be controlled with a predetermined follow-up to the target boost pressure and the actual EGR rate can be set to the target EGR rate. The rate can be controlled with a predetermined followability, or the actual boost pressure and the actual EGR rate can be controlled in a balanced manner with respect to the target boost pressure and the target EGR rate, respectively.
 なお、比例ゲインを補正するために利用される第6補正値は、過給圧偏差積算値がその基準値よりも小さく且つEGR率偏差積算値がその基準値よりも小さい場合において目標過給圧追従性を可能な限り早期に所定の追従性に到達させることができ且つ目標EGR率追従性を可能な限り早期に所定の追従性に到達させることができる値に設定される。 The sixth correction value used to correct the proportional gain is the target boost pressure when the boost pressure deviation integrated value is smaller than the reference value and the EGR rate deviation integrated value is smaller than the reference value. The followability can be set to a value that can reach the predetermined followability as early as possible and the target EGR rate followability can reach the predetermined followability as early as possible.
 また、第6補正値を利用した比例ゲインの補正は、過給圧偏差積算値がその基準値よりも小さく且つEGR率偏差積算値がその基準値よりも小さいことをもって、すなわち、ベーンの応答が所定の応答であって且つEGR制御弁の応答が所定の応答よりも速いことをもって行われる。云い換えれば、過給圧偏差積算値およびEGR率偏差積算値がそれらの基準値からどの程度ずれているかが考慮されずに、ベーン操作量比例ゲインおよびEGR制御弁操作量比例ゲインが補正される。したがって、第6補正値は、1回のベーン操作量比例ゲインおよびEGR制御弁操作量比例ゲインの補正によって目標過給圧追従性および目標EGR率追従性が所定の追従性を大きく越えて低くならない程度に小さい値に設定されることが好ましいと考えられる。 Further, the correction of the proportional gain using the sixth correction value is performed when the supercharging pressure deviation integrated value is smaller than the reference value and the EGR rate deviation integrated value is smaller than the reference value. This is performed with a predetermined response and that the response of the EGR control valve is faster than the predetermined response. In other words, the vane manipulated variable proportional gain and the EGR control valve manipulated variable proportional gain are corrected without considering how much the boost pressure deviation accumulated value and the EGR rate deviation accumulated value deviate from their reference values. . Accordingly, the sixth correction value does not decrease the target boost pressure follow-up performance and the target EGR rate follow-up performance greatly beyond the predetermined follow-up performance by correcting the vane operation amount proportional gain and the EGR control valve operation amount proportional gain once. It is considered preferable to set a value as small as possible.
 また、第4実施形態では、ベーン操作量比例ゲインおよびEGR制御弁操作量比例ゲインの補正を簡便なものにすると共にこれら比例ゲインをバランス良く補正するという観点から、これら比例ゲインを補正するための補正値として同じ第2補正値を利用している。しかしながら、必要があれば、各比例ゲインを補正するための補正値を互いに異なる値としてもよい。 In the fourth embodiment, correction of the proportional gain is performed from the viewpoint of simplifying the correction of the vane operation amount proportional gain and the EGR control valve operation amount proportional gain and correcting the proportional gain in a well-balanced manner. The same second correction value is used as the correction value. However, if necessary, the correction values for correcting each proportional gain may be different from each other.
 また、第4実施形態では、第6補正値をベーン操作量比例ゲインに乗算することによって同ゲインを補正しているが、必要に応じて、ベーン操作量比例ゲインが小さくなるように特定の値をベーン操作量比例ゲインから減算することによって同ゲインを補正するようにしてもよい。また、第4実施形態では、第6補正値をEGR制御弁操作量比例ゲインに乗算することによって同ゲインを補正しているが、必要に応じて、EGR制御弁操作量比例ゲインが小さくなるように特定の値をEGR制御弁操作量比例ゲインから減算することによって同ゲインを補正するようにしてもよい。なお、この場合、これら比例ゲインをバランス良く補正するという観点では、これら比例ゲインに加算される特定の値が互いに同じ値に設定されると好ましいと考えられる。 Further, in the fourth embodiment, the gain is corrected by multiplying the vane operation amount proportional gain by the sixth correction value, but if necessary, a specific value is set so that the vane operation amount proportional gain is reduced. May be corrected from the vane manipulated variable proportional gain. In the fourth embodiment, the EGR control valve operation amount proportional gain is corrected by multiplying the sixth correction value by the EGR control valve operation amount proportional gain. However, if necessary, the EGR control valve operation amount proportional gain is reduced. Alternatively, the gain may be corrected by subtracting a specific value from the EGR control valve operation amount proportional gain. In this case, from the viewpoint of correcting these proportional gains in a well-balanced manner, it is considered preferable that specific values added to these proportional gains are set to the same value.
 また、ベーンの応答が所期の応答よりも速く且つEGR制御弁の応答が所期の応答になっている場合、過給圧偏差積算値がその基準値よりも小さく且つEGR率偏差積算値がその基準値よりも大きくなる。次に、このことについて説明する。 Further, when the response of the vane is faster than the intended response and the response of the EGR control valve is the intended response, the supercharging pressure deviation integrated value is smaller than the reference value and the EGR rate deviation integrated value is It becomes larger than the reference value. Next, this will be described.
 すなわち、目標過給圧が上昇せしめられると目標EGR率は低下せしめられる。したがって、このときには、実過給圧を目標過給圧に向かって上昇させるためにベーン開度が小さくされると同時に、実EGR率を目標EGR率に向かって低下させるためにEGR制御弁開度が小さくされる。 That is, when the target supercharging pressure is increased, the target EGR rate is decreased. Therefore, at this time, the vane opening is made small in order to increase the actual supercharging pressure toward the target supercharging pressure, and at the same time, the EGR control valve opening is used to decrease the actual EGR rate toward the target EGR rate. Is reduced.
 ここで、上述したように、ベーン開度とEGR制御弁開度とが同時に小さくされると、ベーン開度の減少に起因する排気圧の上昇とEGR制御弁開度の減少に起因する排気圧の上昇とによって過給圧が上昇せしめられることになる。ここで、ベーンの応答が所期の応答よりも速い場合、ベーン開度の減少に起因する排気圧の上昇速度が所期の速度よりも速くなる。一方、EGR制御弁の応答が所期の応答である場合、EGR制御弁開度の減少に起因する排気圧の上昇速度が所期の速度になる。このため、全体としては、過給圧の上昇速度が所期の速度よりも速くなる。したがって、ベーンの応答が所期の応答よりも速く且つEGR制御弁の応答が所期の応答になっている場合において実過給圧を上昇させようとしたときには、過給圧偏差積算値はその基準値よりも小さくなる。 Here, as described above, when the vane opening and the EGR control valve opening are simultaneously reduced, the exhaust pressure increases due to the decrease in the vane opening and the exhaust pressure due to the decrease in the EGR control valve opening. As a result, the boost pressure is increased. Here, when the response of the vane is faster than the intended response, the exhaust pressure increase rate due to the decrease in the vane opening becomes faster than the intended rate. On the other hand, when the response of the EGR control valve is an intended response, the rising speed of the exhaust pressure due to the decrease in the EGR control valve opening becomes the intended speed. For this reason, as a whole, the increase speed of the supercharging pressure becomes faster than the intended speed. Therefore, when the actual boost pressure is to be increased when the response of the vane is faster than the expected response and the response of the EGR control valve is the expected response, the boost pressure deviation integrated value is It becomes smaller than the reference value.
 一方、上述したように、ベーン開度とEGR制御弁開度とが同時に小さくされると、ベーン開度の減少に起因するEGRガス量の増大とEGR制御弁開度の減少に起因するEGRガス量の減少とが同時に発生する。ここで、ベーンの応答が所期の応答よりも速い場合、ベーン開度の減少に起因するEGRガス量の増大速度が所期の速度よりも速くなる。一方、EGR制御弁の応答が所期の応答である場合、EGR制御弁開度の減少に起因するEGRガス量の減少速度が所期の速度になる。このため、全体としては、EGRガス量の減少速度が所期の速度よりも遅くなる。したがって、ベーンの応答が所期の応答よりも速く且つEGR制御弁の応答が所期の応答である場合において実EGR率を低下させようとしたときには、EGR率偏差積算値はその基準値よりも大きくなる。 On the other hand, as described above, when the vane opening and the EGR control valve opening are simultaneously reduced, the EGR gas amount increases due to the decrease in the vane opening and the EGR gas due to the decrease in the EGR control valve opening. A decrease in volume occurs at the same time. Here, when the response of the vane is faster than the intended response, the increasing speed of the EGR gas amount due to the decrease in the vane opening becomes faster than the intended speed. On the other hand, when the response of the EGR control valve is an intended response, the rate of decrease of the EGR gas amount resulting from the decrease in the EGR control valve opening becomes the intended rate. For this reason, as a whole, the rate of decrease of the EGR gas amount becomes slower than the intended rate. Accordingly, when the actual EGR rate is to be reduced when the response of the vane is faster than the intended response and the response of the EGR control valve is the intended response, the EGR rate deviation integrated value is less than the reference value. growing.
 また、目標過給圧が低下せしめられると目標EGR率は上昇せしめられる。したがって、このときには、実過給圧を目標過給圧に向かって低下させるためにベーン開度が大きくされると同時に、実EGR率を目標EGR率に向かって上昇させるためにEGR制御弁開度が大きくされる。 Also, when the target supercharging pressure is lowered, the target EGR rate is raised. Therefore, at this time, the vane opening is increased in order to decrease the actual supercharging pressure toward the target supercharging pressure, and at the same time, the EGR control valve opening is increased in order to increase the actual EGR rate toward the target EGR rate. Is increased.
 ここで、上述したように、ベーン開度とEGR制御弁開度とが同時に大きくされると、ベーン開度の増大に起因する排気圧の低下とEGR制御弁開度の増大に起因する排気圧の低下とによって過給圧が低下せしめられることになる。ここで、ベーンの応答が所期の応答よりも速い場合、ベーン開度の増大に起因する排気圧の低下速度が所期の速度よりも速くなる。一方、EGR制御弁の応答が所期の応答である場合、EGR制御弁開度の増大に起因する排気圧の低下速度が所期の速度になる。このため、全体としては、過給圧の低下速度が所期の速度よりも速くなる。したがって、ベーンの応答が所期の応答よりも速く且つEGR制御弁の応答が所期の応答になっている場合において実過給圧を上昇させようとしたときには、過給圧偏差積算値はその基準値よりも小さくなる。 Here, as described above, when the vane opening and the EGR control valve opening are simultaneously increased, the exhaust pressure decreases due to the increase in the vane opening and the exhaust pressure due to the increase in the EGR control valve opening. As a result, the supercharging pressure is reduced. Here, when the response of the vane is faster than the intended response, the exhaust pressure decrease rate due to the increase in the vane opening becomes faster than the intended rate. On the other hand, when the response of the EGR control valve is the intended response, the exhaust pressure decrease rate due to the increase in the EGR control valve opening becomes the intended rate. For this reason, as a whole, the reduction speed of the supercharging pressure becomes faster than the intended speed. Therefore, when the actual boost pressure is to be increased when the response of the vane is faster than the expected response and the response of the EGR control valve is the expected response, the boost pressure deviation integrated value is It becomes smaller than the reference value.
 一方、上述したように、ベーン開度とEGR制御弁開度とが同時に大きくされると、ベーン開度の増大に起因するEGRガス量の減少とEGR制御弁開度の増大に起因するEGRガス量の増大とが同時に発生する。ここで、ベーンの応答が所期の応答よりも速い場合、ベーン開度の増大に起因するEGRガス量の減少速度が所期の速度よりも速くなる。一方、EGR制御弁の応答が所期の応答である場合、EGR制御弁開度の増大に起因するEGRガス量の増大速度が所期の速度になる。このため、全体としては、EGRガス量の増大速度が所期の速度よりも遅くなる。したがって、ベーンの応答が所期の応答よりも速く且つEGR制御弁の応答が所期の応答である場合において実EGR率を低下させようとしたときには、EGR率偏差積算値はその基準値よりも大きくなる。 On the other hand, as described above, when the vane opening and the EGR control valve opening are simultaneously increased, the EGR gas caused by the decrease in the EGR gas amount due to the increase in the vane opening and the increase in the EGR control valve opening. An increase in quantity occurs simultaneously. Here, when the response of the vane is faster than the intended response, the rate of decrease of the EGR gas amount due to the increase in the vane opening becomes faster than the intended rate. On the other hand, when the response of the EGR control valve is a desired response, the increasing speed of the EGR gas amount resulting from the increase in the EGR control valve opening becomes the intended speed. For this reason, as a whole, the increase rate of the EGR gas amount becomes slower than the intended rate. Accordingly, when the actual EGR rate is to be reduced when the response of the vane is faster than the intended response and the response of the EGR control valve is the intended response, the EGR rate deviation integrated value is less than the reference value. growing.
 このように、ベーンの応答が所期の応答よりも遅く且つEGR制御弁の応答が所期の応答よりも速くなっている場合、過給圧偏差積算値がその基準値に略等しく(或いは、その基準値に等しく)且つEGR率偏差積算値がその基準値よりも小さくなるのである。 Thus, when the response of the vane is slower than the intended response and the response of the EGR control valve is faster than the intended response, the boost pressure deviation integrated value is substantially equal to the reference value (or The EGR rate deviation integrated value becomes smaller than the reference value).
 ここで、ベーン操作量が小さくされれば、ベーンの応答が遅くなる。したがって、過給圧偏差積算値がその基準値よりも小さく且つEGR率偏差積算値がその基準値よりも大きい場合に、ベーン操作量が小さくされれば、ベーンの応答が遅くなり、その結果、実過給圧の変化速度が所期の速度に近づくことになる。そこで、第4実施形態では、この場合には、ベーン操作量比例ゲインが小さくなるようにベーン操作量比例ゲインから第7補正値が減算されるのである。このようにベーン操作量比例ゲインが小さくされれば、設定される目標ベーン操作量が小さくなる。これによれば、ベーンの応答が遅くなり、その結果、実過給圧の変化速度が遅くなって所期の速度に近づく。そして、こうしたベーン操作量比例ゲインの補正が繰り返されれば、最終的には、実過給圧の変化速度が所期の速度に到達する。したがって、実過給圧が目標過給圧に所定の追従性でもって制御されることになる。 Here, if the amount of vane operation is reduced, the response of the vane becomes slow. Therefore, when the supercharging pressure deviation integrated value is smaller than the reference value and the EGR rate deviation integrated value is larger than the reference value, if the vane operation amount is reduced, the response of the vane is delayed. The change speed of the actual supercharging pressure approaches the intended speed. Therefore, in the fourth embodiment, in this case, the seventh correction value is subtracted from the vane operation amount proportional gain so that the vane operation amount proportional gain becomes smaller. Thus, if the vane operation amount proportional gain is reduced, the set target vane operation amount is reduced. According to this, the response of the vane becomes slow, and as a result, the change speed of the actual supercharging pressure becomes slow and approaches the intended speed. If the correction of the vane operation amount proportional gain is repeated, finally, the change speed of the actual supercharging pressure reaches the intended speed. Therefore, the actual supercharging pressure is controlled with a predetermined followability to the target supercharging pressure.
 一方、EGR制御弁操作量が大きくされれば、EGR制御弁の応答が速くなる。したがって、過給圧偏差積算値がその基準値よりも小さく且つEGR率偏差積算値がその基準値よりも大きい場合に、EGR制御弁操作量が大きくされれば、EGR制御弁の応答が速くなり、その結果、実EGR率の変化速度が所期の速度に近づくことになる。そこで、第4実施形態では、この場合には、EGR制御弁操作量比例ゲインが大きくなるようにEGR制御弁操作量比例ゲインに第7補正値が加算されるのである。このようにEGR制御弁操作量比例ゲインが大きくされれば、設定される目標EGR制御弁操作量が大きくなる。これによれば、EGR制御弁の応答が速くなり、その結果、実EGR率の変化速度が速くなって所期の速度に近づく。そして、こうしたEGR制御弁操作量比例ゲインの補正が繰り返されれば、最終的には、実EGR率の変化速度が所期の速度に到達する。したがって、実EGR率が目標EGR率に所定の追従性でもって制御されることになる。 On the other hand, if the EGR control valve operation amount is increased, the response of the EGR control valve becomes faster. Therefore, when the supercharging pressure deviation integrated value is smaller than the reference value and the EGR rate deviation integrated value is larger than the reference value, if the EGR control valve operation amount is increased, the response of the EGR control valve becomes faster. As a result, the actual EGR rate change speed approaches the intended speed. Therefore, in the fourth embodiment, in this case, the seventh correction value is added to the EGR control valve operation amount proportional gain so that the EGR control valve operation amount proportional gain is increased. Thus, if the EGR control valve operation amount proportional gain is increased, the set target EGR control valve operation amount is increased. According to this, the response of the EGR control valve becomes faster, and as a result, the change speed of the actual EGR rate becomes faster and approaches the intended speed. Then, if the correction of the EGR control valve operation amount proportional gain is repeated, the actual EGR rate changing speed finally reaches the intended speed. Therefore, the actual EGR rate is controlled with a predetermined followability to the target EGR rate.
 なお、上述した第7補正値を用いたベーン操作量比例ゲインの補正によれば、ベーンの応答が遅くなることから、ベーン開度の変化に起因するEGRガス量の変化の速度が遅くなる。このことからも、実EGR率の変化速度が速くなって所期の速度に近づく。したがって、より早期に、実EGR率が目標EGR率に所定の追従性でもって制御されるようになる。 In addition, according to the correction | amendment of the vane operation amount proportional gain using the 7th correction value mentioned above, since the response of a vane becomes slow, the speed of the change of the EGR gas amount resulting from the change of a vane opening degree becomes slow. Also from this, the rate of change of the actual EGR rate increases and approaches the expected rate. Therefore, the actual EGR rate is controlled with a predetermined followability to the target EGR rate earlier.
 斯くして、第4実施形態によれば、過給圧偏差積算値がその基準値よりも小さく且つEGR率偏差積算値がその基準値よりも大きく、したがって、EGR制御弁の応答が所期の応答であるにも係わらずベーンの応答が所期の応答よりも速い場合においても、実過給圧を目標過給圧に所定の追従性でもって制御することができると共に実EGR率を目標EGR率に所定の追従性でもって制御することができ、或いは、実過給圧と実EGR率とをそれぞれ目標過給圧と目標EGR率とに対してバランス良く制御することができるのである。 Thus, according to the fourth embodiment, the supercharging pressure deviation integrated value is smaller than the reference value and the EGR rate deviation integrated value is larger than the reference value. Therefore, the response of the EGR control valve is expected. Even when the response of the vane is faster than the intended response, the actual supercharging pressure can be controlled to the target supercharging pressure with a predetermined followability, and the actual EGR rate can be set to the target EGR. The rate can be controlled with a predetermined followability, or the actual boost pressure and the actual EGR rate can be controlled in a balanced manner with respect to the target boost pressure and the target EGR rate, respectively.
 なお、比例ゲインを補正するために利用される第7補正値は、過給圧偏差積算値がその基準値よりも小さく且つEGR率偏差積算値がその基準値よりも大きい場合において目標過給圧追従性を可能な限り早期に所定の追従性に到達させることができ且つ目標EGR率追従性を所定の追従性よりも低くしない値に設定される。 The seventh correction value used for correcting the proportional gain is the target boost pressure when the boost pressure deviation integrated value is smaller than the reference value and the EGR rate deviation integrated value is larger than the reference value. The followability can be set to a value that can reach the predetermined followability as early as possible and that the target EGR rate followability is not lower than the predetermined followability.
 また、第7補正値を利用した比例ゲインの補正は、過給圧偏差積算値がその基準値よりも小さく且つEGR率偏差積算値がその基準値よりも大きいことをもって、すなわち、ベーンの応答が所期の応答よりも速く且つEGR制御弁の応答が所期の応答であることを行われる。云い換えれば、過給圧偏差積算値およびEGR率偏差積算値がそれらの基準値からどの程度ずれているかが考慮されずに、ベーン操作量比例ゲインおよびEGR制御弁操作量比例ゲインが補正される。したがって、第7補正値は、1回のベーン操作量比例ゲインおよびEGR制御弁操作量比例ゲインの補正によって目標過給圧追従性が所定の追従性を大きく越えて低くならず且つ目標EGR率追従性が所定の追従性を大きく越えて高くならない程度に小さい値に設定されることが好ましいと考えられる。 Further, the correction of the proportional gain using the seventh correction value is performed when the supercharging pressure deviation integrated value is smaller than the reference value and the EGR rate deviation integrated value is larger than the reference value. It is performed that the response of the EGR control valve is the intended response faster than the intended response. In other words, the vane manipulated variable proportional gain and the EGR control valve manipulated variable proportional gain are corrected without considering how much the boost pressure deviation accumulated value and the EGR rate deviation accumulated value deviate from their reference values. . Accordingly, the seventh correction value is obtained by making the target boost pressure follow-up performance not significantly lower than the predetermined follow-up performance and the target EGR rate follow-up by correcting the vane operation amount proportional gain and the EGR control valve operation amount proportional gain once. It is considered that it is preferable to set the value to such a small value that the performance does not greatly exceed the predetermined followability.
 また、第4実施形態では、ベーン操作量比例ゲインおよびEGR制御弁操作量比例ゲインの補正を簡便なものにすると共にこれら比例ゲインをバランス良く補正するという観点から、これら比例ゲインを補正するための補正値として同じ第7補正値を利用している。しかしながら、必要があれば、各比例ゲインを補正するための補正値を互いに異なる値としてもよい。 In the fourth embodiment, correction of the proportional gain is performed from the viewpoint of simplifying the correction of the vane operation amount proportional gain and the EGR control valve operation amount proportional gain and correcting the proportional gain in a well-balanced manner. The same seventh correction value is used as the correction value. However, if necessary, the correction values for correcting each proportional gain may be different from each other.
 また、第4実施形態では、第7補正値をベーン操作量比例ゲインから減算することによって同ゲインを補正しているが、必要に応じて、1よりも小さい特定の値をベーン操作量比例ゲインに乗算することによって同ゲインを補正するようにしてもよい。また、第4実施形態では、第7補正値をEGR制御弁操作量比例ゲインに加算することによって同ゲインを補正しているが、必要に応じて、1よりも大きい特定の値をEGR制御弁操作量比例ゲインに乗算することによって同ゲインを補正するようにしてもよい。なお、この場合、これら比例ゲインをバランス良く補正するという観点では、これら比例ゲインに乗算される特定の値は、それら特定の値の総和が一定の値になるように設定され、或いは、それら特定の値の比が一定の値になるように設定されると好ましいと考えられる。 Further, in the fourth embodiment, the gain is corrected by subtracting the seventh correction value from the vane operation amount proportional gain. However, if necessary, a specific value smaller than 1 is set to a vane operation amount proportional gain. The gain may be corrected by multiplying by. In the fourth embodiment, the gain is corrected by adding the seventh correction value to the EGR control valve operation amount proportional gain. However, if necessary, a specific value larger than 1 is set to an EGR control valve. The gain may be corrected by multiplying the manipulated variable proportional gain. In this case, in terms of correcting these proportional gains in a well-balanced manner, the specific values multiplied by these proportional gains are set such that the sum of the specific values becomes a constant value, or It is considered preferable that the ratio of the values is set to a constant value.
 また、ベーンの応答が所期の応答よりも速く且つEGR制御弁の応答も所期の応答よりも速くなっている場合、過給圧偏差積算値がその基準値よりも小さく(詳細には、ベーンの応答が所期の応答になっているにも係わらずEGR制御弁の応答が所期の応答よりも速くなっている場合の過給圧偏差積算値よりも小さく)且つEGR率偏差積算値がその基準値に略等しくなる(或いは、場合によっては、その基準値に等しくなる)。次に、このことについて説明する。 Further, when the response of the vane is faster than the intended response and the response of the EGR control valve is also faster than the intended response, the supercharging pressure deviation integrated value is smaller than the reference value (in detail, The EGR rate deviation integrated value is smaller than the supercharging pressure deviation integrated value when the response of the EGR control valve is faster than the intended response although the vane response is the expected response). Is approximately equal to the reference value (or, in some cases, is equal to the reference value). Next, this will be described.
  すなわち、目標過給圧が上昇せしめられると目標EGR率は低下せしめられる。したがって、このときには、実過給圧を目標過給圧に向かって上昇させるためにベーン開度が小さくされると同時に、実EGR率を目標EGR率に向かって低下させるためにEGR制御弁開度も小さくされる。 That is, when the target supercharging pressure is increased, the target EGR rate is decreased. Therefore, at this time, the vane opening is made small in order to increase the actual supercharging pressure toward the target supercharging pressure, and at the same time, the EGR control valve opening is used to decrease the actual EGR rate toward the target EGR rate. Is also made smaller.
 ここで、上述したように、ベーン開度とEGR制御弁開度とが同時に小さくされると、ベーン開度の減少に起因する排気圧の上昇とEGR制御弁開度の減少に起因する排気圧の上昇とによって過給圧が上昇せしめられることになる。ここで、ベーンの応答もEGR制御弁の応答も所期の応答よりも速い場合、ベーン開度の減少に起因する排気圧の上昇速度もEGR制御弁開度の減少に起因する排気圧の上昇速度も所期の速度よりも速くなる。このため、過給圧の上昇速度が所期の速度よりも大幅に速くなる。したがって、ベーンの応答もEGR制御弁の応答も所期の応答よりも速い場合において実過給圧を上昇させようとしたときには、過給圧偏差積算値はその基準値よりも大幅に小さくなる。 Here, as described above, when the vane opening and the EGR control valve opening are simultaneously reduced, the exhaust pressure increases due to the decrease in the vane opening and the exhaust pressure due to the decrease in the EGR control valve opening. As a result, the boost pressure is increased. Here, when the response of the vane and the response of the EGR control valve are faster than the intended response, the exhaust pressure increase rate due to the decrease in the vane opening degree also increases the exhaust pressure due to the decrease in the EGR control valve opening degree. The speed is also faster than the intended speed. For this reason, the increasing speed of the supercharging pressure is significantly faster than the intended speed. Therefore, when the actual supercharging pressure is increased when both the vane response and the EGR control valve response are faster than the intended response, the supercharging pressure deviation integrated value becomes significantly smaller than the reference value.
 一方、上述したように、ベーン開度とEGR制御弁開度とが同時に小さくされると、ベーン開度の減少に起因するEGRガス量の増大とEGR制御弁開度の減少に起因するEGRガス量の減少とが同時に発生する。ここで、ベーンの応答もEGR制御弁の応答も所期の応答よりも速い場合、ベーン開度の減少に起因するEGRガス量の増大速度もEGR制御弁開度の減少に起因するEGRガス量の減少速度も所期の速度よりも速くなる。このため、ベーン開度の減少に起因するEGRガス量の増大速度の増大とEGR制御弁開度の減少に起因するEGRガス量の減少速度の増大とが互いに相殺され、結果的に、全体としては、EGR率の低下速度は、略所期の速度となり、場合によっては、所期の速度となる。したがって、ベーンの応答もEGR制御弁の応答も所期の応答よりも速い場合において実EGR率を低下させようとしたときには、EGR率偏差積算値はその基準値に略等しくなる(或いは、場合によっては、その基準値に等しくなる)。 On the other hand, as described above, when the vane opening and the EGR control valve opening are simultaneously reduced, the EGR gas increases due to the decrease in the vane opening and the EGR gas due to the decrease in the EGR control valve opening. A decrease in volume occurs at the same time. Here, when both the response of the vane and the response of the EGR control valve are faster than the intended response, the increase rate of the EGR gas amount due to the decrease in the vane opening is also the EGR gas amount due to the decrease in the EGR control valve opening. The rate of decrease of is also faster than the expected rate. For this reason, the increase in the increase rate of the EGR gas amount due to the decrease in the vane opening degree and the increase in the decrease rate of the EGR gas amount due to the decrease in the EGR control valve opening amount cancel each other. The rate of decrease in the EGR rate is approximately the expected rate, and in some cases, the expected rate. Therefore, if the actual EGR rate is to be reduced when both the vane response and the EGR control valve response are faster than the intended response, the EGR rate deviation integrated value becomes substantially equal to the reference value (or depending on circumstances) Is equal to its reference value).
 また、目標過給圧が低下せしめられると目標EGR率は上昇せしめられる。したがって、このときには、実過給圧を目標過給圧に向かって低下させるためにベーン開度が大きくされると同時に、実EGR率を目標EGR率に向かって上昇させるためにEGR制御弁開度も大きくされる。 Also, when the target supercharging pressure is lowered, the target EGR rate is raised. Accordingly, at this time, the vane opening is increased in order to decrease the actual supercharging pressure toward the target supercharging pressure, and at the same time, the EGR control valve opening is increased in order to increase the actual EGR rate toward the target EGR rate. Is also enlarged.
 ここで、上述したように、ベーン開度とEGR制御弁開度とが同時に大きくされると、ベーン開度の増大に起因する排気圧の低下とEGR制御弁開度の増大に起因する排気圧の低下とによって過給圧が低下せしめられることになる。ここで、ベーンの応答もEGR制御弁の応答も所期の応答よりも速い場合、ベーン開度の増大に起因する排気圧の低下速度もEGR制御弁開度の増大に起因する排気圧の低下速度も所期の速度よりも速くなる。このため、全体としては、過給圧の低下速度が所期の速度よりも大幅に速くなる。したがって、ベーンの応答もEGR制御弁の応答も所期の応答よりも速い場合において実過給圧を低下させようとしたときには、過給圧偏差積算値はその基準値よりも大幅に小さく。 Here, as described above, when the vane opening and the EGR control valve opening are simultaneously increased, the exhaust pressure decreases due to the increase in the vane opening and the exhaust pressure due to the increase in the EGR control valve opening. As a result, the supercharging pressure is reduced. Here, when the response of the vane and the response of the EGR control valve are faster than the intended response, the exhaust pressure decrease rate due to the increase in the vane opening degree also decreases the exhaust pressure due to the increase in the EGR control valve opening degree. The speed is also faster than the intended speed. For this reason, as a whole, the supercharging pressure decreasing rate is significantly faster than the intended rate. Therefore, when the actual supercharging pressure is to be reduced when both the vane response and the EGR control valve response are faster than the intended response, the supercharging pressure deviation integrated value is significantly smaller than the reference value.
 一方、上述したように、ベーン開度とEGR制御弁開度とが同時に大きくされると、ベーン開度の増大に起因するEGRガス量の減少とEGR制御弁開度の増大に起因するEGRガス量の増大とが同時に発生する。ここで、ベーンの応答もEGR制御弁の応答も所期の応答よりも速い場合、ベーン開度の増大に起因するEGRガス量の減少速度もEGR制御弁開度の増大に起因するEGRガス量の増大速度も所期の速度よりも速くなる。このため、ベーン開度の増大に起因するEGRガス量の減少速度の増大とEGR制御弁開度の増大に起因するEGRガス量の増大速度の増大とが相殺され、結果的に、全体としては、EGR率の低下速度は、略所期の速度となり、場合によっては、所期の速度となる。したがって、ベーンの応答もEGR制御弁の応答も所期の応答よりも速い場合において実EGR率を低下させようとしたときには、EGR率偏差積算値はその基準値に略等しくなる(或いは、場合によっては、その基準値に等しくなる)。 On the other hand, as described above, when the vane opening and the EGR control valve opening are simultaneously increased, the EGR gas is decreased due to the increase in the vane opening and the EGR gas is increased due to the increase in the EGR control valve opening. An increase in quantity occurs simultaneously. Here, when the response of the vane and the response of the EGR control valve are faster than the intended response, the rate of decrease in the EGR gas amount due to the increase in the vane opening is also the amount of EGR gas due to the increase in the EGR control valve opening. The rate of increase of this is also faster than the intended rate. For this reason, the increase in the decrease rate of the EGR gas amount due to the increase in the vane opening degree and the increase in the increase rate of the EGR gas amount due to the increase in the EGR control valve opening amount are offset, and as a result, as a whole The rate of decrease in the EGR rate is substantially the expected speed, and in some cases, the expected speed. Therefore, if the actual EGR rate is to be reduced when both the vane response and the EGR control valve response are faster than the intended response, the EGR rate deviation integrated value becomes substantially equal to the reference value (or depending on circumstances) Is equal to its reference value).
 このように、ベーンの応答もEGR制御弁の応答も所期の応答よりも速くなっている場合、過給圧偏差積算値がその基準値よりも小さく且つEGR率偏差積算値がその基準値に略等しく(或いは、その基準値に等しく)なるのである。 Thus, when the response of the vane and the response of the EGR control valve are faster than the intended response, the supercharging pressure deviation integrated value is smaller than the reference value, and the EGR rate deviation integrated value becomes the reference value. It becomes substantially equal (or equal to the reference value).
 ここで、ベーン操作量が小さくされれば、ベーンの応答が遅くなる。したがって、過給圧偏差積算値がその基準値よりも小さく且つEGR率偏差積算値がその基準値に略等しい場合に、ベーン操作量が小さくされれば、ベーンの応答が遅くなり、その結果、実過給圧の変化速度が所期の速度に近づくことになる。そこで、第4実施形態では、この場合には、ベーン操作量比例ゲインが小さくなるようにベーン操作量比例ゲインに第8補正値が乗算されるのである。このようにベーン操作量比例ゲインが小さくされれば、設定される目標ベーン操作量が小さくなる。これによれば、ベーンの応答が遅くなり、その結果、実過給圧の変化速度が遅くなって所期の速度に近づく。そして、こうしたベーン操作量比例ゲインの補正が繰り返されれば、最終的には、実過給圧の変化速度が所期の速度に到達する。したがって、実過給圧が目標過給圧に所定の追従性でもって制御されることになる。 Here, if the amount of vane operation is reduced, the response of the vane becomes slow. Therefore, when the supercharging pressure deviation integrated value is smaller than the reference value and the EGR rate deviation integrated value is substantially equal to the reference value, if the vane operation amount is reduced, the response of the vane is delayed. The change speed of the actual supercharging pressure approaches the intended speed. Therefore, in the fourth embodiment, in this case, the vane operation amount proportional gain is multiplied by the eighth correction value so that the vane operation amount proportional gain becomes small. Thus, if the vane operation amount proportional gain is reduced, the set target vane operation amount is reduced. According to this, the response of the vane becomes slow, and as a result, the change speed of the actual supercharging pressure becomes slow and approaches the intended speed. Then, if the correction of the vane operation amount proportional gain is repeated, the change speed of the actual supercharging pressure finally reaches the intended speed. Therefore, the actual supercharging pressure is controlled with a predetermined followability to the target supercharging pressure.
 一方、過給圧偏差積算値がその基準値よりも小さく且つEGR率偏差積算値がその基準値に略等しい場合、実EGR率は所定の追従性でもって目標EGR率に制御されていると見ることができる。しかしながら、上述したように、この場合、ベーン操作量比例ゲインが小さくされ、ベーンの応答が遅くされることから、ベーン開度の変化に起因するEGRガス量の変化速度が遅くなる。この場合、目標EGR率追従性が所定の追従性よりも高くなってしまう。一方、EGR制御弁操作量が小さくされれば、EGR制御弁の応答が遅くなることから、目標EGR率追従性が所定の追従性よりも高くなることを抑制することができる。そこで、第4実施形態では、過給圧偏差積算値がその基準値よりも小さく且つEGR率偏差積算値がその基準値に略等しい場合には、EGR制御弁操作量比例ゲインが小さくなるようにEGR制御弁操作量比例ゲインに第8補正値が乗算されるのである。このようにEGR制御弁操作量比例ゲインが小さくされれば、設定される目標EGR制御弁操作量が小さくなる。このため、目標EGR率追従性が所定の追従性よりも高くなることを抑制することができる。したがって、実EGR率が目標EGR率に所定の追従性でもって制御されることになる。 On the other hand, when the supercharging pressure deviation integrated value is smaller than the reference value and the EGR rate deviation integrated value is substantially equal to the reference value, it is considered that the actual EGR rate is controlled to the target EGR rate with a predetermined followability. be able to. However, as described above, in this case, since the vane operation amount proportional gain is reduced and the response of the vane is delayed, the rate of change in the EGR gas amount due to the change in the vane opening is delayed. In this case, the target EGR rate followability becomes higher than the predetermined followability. On the other hand, if the EGR control valve operation amount is reduced, the response of the EGR control valve is delayed, so that it is possible to suppress the target EGR rate tracking performance from becoming higher than the predetermined tracking performance. Therefore, in the fourth embodiment, when the boost pressure deviation integrated value is smaller than the reference value and the EGR rate deviation integrated value is substantially equal to the reference value, the EGR control valve operation amount proportional gain is reduced. The eighth correction value is multiplied by the EGR control valve operation amount proportional gain. Thus, if the EGR control valve operation amount proportional gain is decreased, the set target EGR control valve operation amount is decreased. For this reason, it can suppress that target EGR rate followability becomes higher than predetermined followability. Therefore, the actual EGR rate is controlled with a predetermined followability to the target EGR rate.
 なお、上述した第8補正値を用いたEGR制御弁操作量比例ゲインの補正によれば、EGR制御弁の応答が遅くなることから、EGR制御弁開度の変化に起因する排気圧の変化の速度が遅くなる。このことからも、実過給圧の変化速度が遅くなって所期の速度に近づく。したがって、より早期に、実過給圧が目標過給圧に所定の追従性でもって制御されるようになる。 In addition, according to the correction of the EGR control valve operation amount proportional gain using the above-described eighth correction value, the response of the EGR control valve becomes slow, so that the change in the exhaust pressure caused by the change in the EGR control valve opening degree is reduced. The speed is slow. Also from this, the change speed of the actual supercharging pressure becomes slow and approaches the intended speed. Therefore, the actual supercharging pressure is controlled with a predetermined followability to the target supercharging pressure earlier.
 斯くして、第4実施形態によれば、過給圧偏差積算値がその基準値よりも小さく且つEGR率偏差積算値がその基準値に略等しく、したがって、ベーンの応答もEGR制御弁の応答も所期の応答よりも速い場合においても、実過給圧を目標過給圧に所定の追従性でもって制御することができると共に実EGR率を目標EGR率に所定の追従性でもって制御することができ、或いは、実過給圧と実EGR率とをそれぞれ目標過給圧と目標EGR率とに対してバランス良く制御することができるのである。 Thus, according to the fourth embodiment, the supercharging pressure deviation integrated value is smaller than the reference value and the EGR rate deviation integrated value is substantially equal to the reference value. Therefore, the vane response is also the response of the EGR control valve. Even when the response is faster than the intended response, the actual supercharging pressure can be controlled to the target supercharging pressure with a predetermined followability, and the actual EGR rate can be controlled to the target EGR rate with a predetermined followability. Alternatively, the actual boost pressure and the actual EGR rate can be controlled in a balanced manner with respect to the target boost pressure and the target EGR rate, respectively.
 なお、比例ゲインを補正するために利用される第8補正値は、過給圧偏差積算値がその基準値よりも大きく且つEGR率偏差積算値がその基準値に略等しい場合において目標過給圧追従性を可能な限り早期に所定の追従性に到達させることができ且つ目標EGR率追従性を可能な限り早期に所定の追従性に到達させることができる値に設定される。 The eighth correction value used for correcting the proportional gain is the target boost pressure when the boost pressure deviation integrated value is larger than the reference value and the EGR rate deviation integrated value is substantially equal to the reference value. The followability can be set to a value that can reach the predetermined followability as early as possible and the target EGR rate followability can reach the predetermined followability as early as possible.
 また、第8補正値を利用した比例ゲインの補正は、過給圧偏差積算値がその基準値よりも小さく且つEGR率偏差積算値がその基準値に略等しいことをもって、すなわち、ベーンの応答が所定の応答よりも速く且つEGR制御弁の応答が所定の応答よりも速いことをもって行われる。云い換えれば、過給圧偏差積算値がその基準値からどの程度ずれているかが考慮されずに、ベーン操作量比例ゲインおよびEGR制御弁操作量比例ゲインが補正される。したがって、第8補正値は、1回のベーン操作量比例ゲインおよびEGR制御弁操作量比例ゲインの補正によって目標過給圧追従性および目標EGR率追従性が所定の追従性を大きく越えて低くならない程度に小さい値に設定されることが好ましいと考えられる。 Further, the correction of the proportional gain using the eighth correction value is based on the fact that the supercharging pressure deviation integrated value is smaller than the reference value and the EGR rate deviation integrated value is substantially equal to the reference value. This is done with a faster than predetermined response and a faster response of the EGR control valve than the predetermined response. In other words, the vane operation amount proportional gain and the EGR control valve operation amount proportional gain are corrected without considering how much the accumulated value of the supercharging pressure deviation deviates from the reference value. Therefore, the eighth correction value does not decrease the target boost pressure follow-up performance and the target EGR rate follow-up performance greatly beyond the predetermined follow-up performance by correcting the vane operation amount proportional gain and the EGR control valve operation amount proportional gain once. It is considered preferable to set a value as small as possible.
 また、第4実施形態では、ベーン操作量比例ゲインおよびEGR制御弁操作量比例ゲインの補正を簡便なものにすると共にこれら比例ゲインをバランス良く補正するという観点から、これら比例ゲインを補正するための補正値が同じ第8補正値とされている。しかしながら、必要があれば、各比例ゲインを補正するための補正値を互いに異なる値としてもよい。 In the fourth embodiment, correction of the proportional gain is performed from the viewpoint of simplifying the correction of the vane operation amount proportional gain and the EGR control valve operation amount proportional gain and correcting the proportional gain in a well-balanced manner. The correction value is the same as the eighth correction value. However, if necessary, the correction values for correcting each proportional gain may be different from each other.
 また、第4実施形態では、第8補正値をベーン操作量比例ゲインに乗算することによって同ゲインを補正しているが、必要に応じて、ベーン操作量比例ゲインが小さくなるように特定の値をベーン操作量比例ゲインから減算することによって同ゲインを補正するようにしてもよい。また、第4実施形態では、第8補正値をEGR制御弁操作量比例ゲインに乗算することによって同ゲインを補正しているが、必要に応じて、EGR制御弁操作量比例ゲインが小さくなるように特定の値をEGR制御弁操作量比例ゲインから減算することによって同ゲインを補正するようにしてもよい。なお、この場合、これら比例ゲインをバランス良く補正するという観点では、これら比例ゲインに加算される特定の値が互いに同じ値に設定されると好ましいと考えられる。 In the fourth embodiment, the gain is corrected by multiplying the vane operation amount proportional gain by the eighth correction value. However, if necessary, a specific value is set so that the vane operation amount proportional gain is reduced. May be corrected from the vane manipulated variable proportional gain. In the fourth embodiment, the EGR control valve operation amount proportional gain is corrected by multiplying the eighth correction value by the EGR control valve operation amount proportional gain. However, if necessary, the EGR control valve operation amount proportional gain is reduced. Alternatively, the gain may be corrected by subtracting a specific value from the EGR control valve operation amount proportional gain. In this case, from the viewpoint of correcting these proportional gains in a well-balanced manner, it is considered preferable that specific values added to these proportional gains are set to the same value.
 なお、第4実施形態では、基準値に対する過給圧偏差積算値のズレと基準値に対するEGR率偏差積算値のズレとに基づいてベーン操作量比例ゲインおよびEGR制御弁操作量比例ゲインが補正される。したがって、第4実施形態は、過給圧偏差積算値がその基準値に一致すると共にEGR率偏差積算値がその基準値に一致するように目標ベーン操作量および目標EGR制御弁操作量を補正するものであるとも言える。 In the fourth embodiment, the vane operation amount proportional gain and the EGR control valve operation amount proportional gain are corrected based on the deviation of the boost pressure deviation integrated value with respect to the reference value and the deviation of the EGR rate deviation integrated value with respect to the reference value. The Therefore, in the fourth embodiment, the target vane operation amount and the target EGR control valve operation amount are corrected so that the supercharging pressure deviation integrated value matches the reference value and the EGR rate deviation integrated value matches the reference value. It can be said that it is a thing.
 また、第4実施形態のベーン操作量比例ゲインおよびEGR制御弁操作量比例ゲインの補正に関する考え方は、第2実施形態および第3実施形態にも適宜適用可能である。 Further, the concept regarding the correction of the vane operation amount proportional gain and the EGR control valve operation amount proportional gain of the fourth embodiment can be appropriately applied to the second embodiment and the third embodiment.
 なお、第4実施形態に従った目標ベーン操作量および目標EGR制御弁操作量の設定を実行するルーチンとしては、例えば、図4と同じルーチンが挙げられる。また、第4実施形態に従ったベーン操作量比例ゲインおよびEGR制御弁操作量比例ゲインの補正を実行するルーチンとしては、例えば、図10~図13のルーチンが挙げられる。 As a routine for executing the setting of the target vane operation amount and the target EGR control valve operation amount according to the fourth embodiment, for example, the same routine as that shown in FIG. Further, examples of routines for correcting the vane operation amount proportional gain and the EGR control valve operation amount proportional gain according to the fourth embodiment include the routines shown in FIGS.
 次に、図10~図13のルーチンについて説明する。なお、このルーチンは、所定時間間隔毎に実行される。 Next, the routines of FIGS. 10 to 13 will be described. This routine is executed at predetermined time intervals.
 図10~図13のルーチンが開始されると、始めに、ステップ400において、図4のステップ15で保存された現在の過給圧偏差積算値ΣΔPim(k)と現在のEGR率偏差積算値ΣΔRegr(k)とが取得される。次いで、ステップ401において、ステップ400で取得された現在の過給圧偏差積算値ΣΔPim(k)がその上限値(すなわち、その基準値THpimに所定値βを加えた値)(THpim+β)よりも大きく(ΣΔPim(k)>THpim+β)且つステップ400で取得された現在のEGR率偏差積算値ΣΔRegr(k)がその下限値(すなわち、その基準値THegrから所定値αを差し引いた値)(THegr-α)よりも小さい(ΣΔRegr(k)<THegr-α)か否かが判別される。ここで、ΣΔPim(k)>THpim+βであって且つΣΔRegr(k)<THegr-αであると判別されたときには、ルーチンはステップ402に進む。一方、ΣΔPim(k)>THpim+βであって且つΣΔRegr(k)<THegr-αではないと判別されたときには、ルーチンはステップ404に進む。 When the routines of FIGS. 10 to 13 are started, first, at step 400, the current supercharging pressure deviation integrated value ΣΔPim (k) stored at step 15 of FIG. 4 and the current EGR rate deviation integrated value ΣΔRegr are stored. (K) is acquired. Next, at step 401, the current supercharging pressure deviation integrated value ΣΔPim (k) acquired at step 400 is larger than its upper limit value (that is, a value obtained by adding a predetermined value β to the reference value THpim) (THpim + β). (ΣΔPim (k)> THpim + β) and the current EGR rate deviation integrated value ΣΔRegr (k) acquired in step 400 is a lower limit value thereof (that is, a value obtained by subtracting the predetermined value α from the reference value THegr) (THegr−α Is smaller than (ΣΔRegr (k) <THegr−α). Here, if it is determined that ΣΔPim (k)> THpim + β and ΣΔRegr (k) <THegr−α, the routine proceeds to step 402. On the other hand, when it is determined that ΣΔPim (k)> THpim + β and ΣΔRegr (k) <THegr−α is not established, the routine proceeds to step 404.
 なお、ステップ401において現在のEGR率偏差積算値ΣΔRegr(k)と比較される下限値として、EGR率偏差積算値の基準値THegrから所定値αを差し引いた値が用いられているのは、後述する図11のステップ407および図13のステップ422において現在のEGR率偏差積算値ΣΔRegr(k)がその基準値THegrに略等しいか否かを判別するためにEGR率偏差積算値の基準値THegrから所定値αを差し引いた値が用いられているからである。また、この下限値が現在のEGR率偏差積算値ΣΔRegr(k)がその基準値に略等しいか否かを判別するために用いられることから、所定値αは極めて小さい値に設定されている。 The value obtained by subtracting the predetermined value α from the reference value THegr of the EGR rate deviation integrated value is used as the lower limit value to be compared with the current EGR rate deviation integrated value ΣΔRegr (k) in Step 401. In step 407 in FIG. 11 and step 422 in FIG. 13, in order to determine whether or not the current EGR rate deviation integrated value ΣΔRegr (k) is substantially equal to the reference value THegr, the reference value THegr of the EGR rate deviation integrated value is used. This is because a value obtained by subtracting the predetermined value α is used. Since the lower limit value is used to determine whether or not the current EGR rate deviation integrated value ΣΔRegr (k) is substantially equal to the reference value, the predetermined value α is set to a very small value.
 また、ステップ401において現在の過給圧偏差積算値ΣΔPim(k)と比較される上限値として、過給圧偏差積算値の基準値THpimに所定値βを加えた値が用いられているのは、後述する図11のステップ410および図12のステップ413において現在の過給圧偏差積算値ΣΔPim(k)がその基準値THpimに略等しいか否かを判別するために過給圧偏差積算値の基準値THpimに所定値βを加えた値が用いられているからである。また、この上限値が現在の過給圧偏差積算値ΣΔPim(k)がその基準値に略等しいか否かを判別するために用いられることから、所定値βは極めて小さい値に設定されている。 Also, as the upper limit value compared with the current boost pressure deviation integrated value ΣΔPim (k) in step 401, a value obtained by adding a predetermined value β to the reference value THpim of the boost pressure deviation integrated value is used. In step 410 in FIG. 11 and step 413 in FIG. 12, which will be described later, in order to determine whether or not the current boost pressure deviation integrated value ΣΔPim (k) is substantially equal to the reference value THpim, This is because a value obtained by adding a predetermined value β to the reference value THpim is used. Further, since this upper limit value is used to determine whether or not the current boost pressure deviation integrated value ΣΔPim (k) is substantially equal to the reference value, the predetermined value β is set to an extremely small value. .
 ステップ401においてΣΔPim(k)>THpim+βであって且つΣΔRegr(k)<THegr-αであると判別され、ルーチンがステップ402に進むと、現在のベーン操作量比例ゲインGPp(k)と現在のEGR制御弁操作量比例ゲインGEp(k)とが取得される。次いで、ステップ403において、ステップ402で取得された現在のベーン操作量比例ゲインGPp(k)に第1補正値K1が加算されて得られる値(GPp(k)+K1)が新たなベーン操作量比例ゲインGPp(k+1)に設定されると共に、ステップ402で取得された現在のEGR制御弁操作量比例ゲインGEp(k)から第1補正値K1が減算されて得られる値(GEp(k)-K1)が新たなEGR制御弁操作量比例ゲインGEp(k+1)に設定され、ルーチンが終了する。なお、この場合、図4のステップ16では、ステップ403で設定された新たなベーン操作量比例ゲインGPp(k+1)を利用して上式1から目標ベーン操作量Mvが算出されると共に、ステップ403で設定された新たなEGR制御弁操作量比例ゲインGEp(k+1)を利用して上式2から目標EGR制御弁操作量Megrが算出されることになる。 In step 401, it is determined that ΣΔPim (k)> THpim + β and ΣΔRegr (k) <THegr−α, and when the routine proceeds to step 402, the current vane operation amount proportional gain GPp (k) and the current EGR are obtained. The control valve operation amount proportional gain GEp (k) is acquired. Next, in step 403, a value (GPp (k) + K1) obtained by adding the first correction value K1 to the current vane operation amount proportional gain GPp (k) acquired in step 402 is a new vane operation amount proportional. A value obtained by subtracting the first correction value K1 from the current EGR control valve operation amount proportional gain GEp (k) acquired in step 402 and set to the gain GPp (k + 1) (GEp (k) −K1) ) Is set to a new EGR control valve operation amount proportional gain GEp (k + 1), and the routine ends. In this case, in step 16 of FIG. 4, the target vane operation amount Mv is calculated from the above equation 1 using the new vane operation amount proportional gain GPp (k + 1) set in step 403, and step 403. The target EGR control valve operation amount Megr is calculated from the above equation 2 using the new EGR control valve operation amount proportional gain GEp (k + 1) set in (1).
 一方、ステップ401においてΣΔPim(k)>THpim+βであって且つΣΔRegr(k)<THegr-αではないと判別され、ルーチンがステップ404に進むと、ステップ400で取得された現在の過給圧偏差積算値ΣΔPim(k)がその上限値(THpim+β)よりも大きく(ΣΔPim(k)>THpim+β)且つステップ400で取得された現在のEGR率偏差積算値ΣΔRegr(k)がその上限値(すなわち、その基準値THegrに所定値αを加えた値)(THegr+α)よりも大きい(ΣΔRegr(k)>THegr+α)か否かが判別される。ここで、ΣΔPim(k)>THpim+βであって且つΣΔRegr(k)>THegr+αであると判別されたときには、ルーチンはステップ405に進む。一方、ΣΔPim(k)>THpim+βであって且つΣΔRegr(k)>THegr+αではないと判別されたときには、ルーチンは図11のステップ407に進む。 On the other hand, when it is determined in step 401 that ΣΔPim (k)> THpim + β and ΣΔRegr (k) <THegr−α is not satisfied and the routine proceeds to step 404, the current boost pressure deviation integration obtained in step 400 is performed. The value ΣΔPim (k) is larger than the upper limit value (THpim + β) (ΣΔPim (k)> THpim + β) and the current EGR rate deviation integrated value ΣΔRegr (k) acquired in step 400 is the upper limit value (that is, its reference It is determined whether or not the value THegr is greater than (THegr + α) (ΣΔRegr (k)> THegr + α). If it is determined that ΣΔPim (k)> THpim + β and ΣΔRegr (k)> THegr + α, the routine proceeds to step 405. On the other hand, if it is determined that ΣΔPim (k)> THpim + β and ΣΔRegr (k)> THegr + α is not established, the routine proceeds to step 407 in FIG.
 なお、ステップ404において現在のEGR率偏差積算値ΣΔRegr(k)と比較される上限値として、EGR率偏差積算値の基準値THegrに所定値αを加えた値が用いられているのは、後述する図11のステップ407および図13のステップ422において現在のEGR率偏差積算値ΣΔRegr(k)がその基準値THegrに略等しいか否かを判別するためにEGR率偏差積算値の基準値THegrに所定値αを加えた値が用いられているからである。また、上限値が現在のEGR率偏差積算値ΣΔRegr(k)がその基準値に略等しいか否かを判別するために用いられることから、上述したように、所定値αは極めて小さい値に設定されている。 Note that the value obtained by adding the predetermined value α to the reference value THegr of the EGR rate deviation integrated value is used as the upper limit value compared with the current EGR rate deviation integrated value ΣΔRegr (k) in step 404. In step 407 in FIG. 11 and step 422 in FIG. 13, in order to determine whether or not the current EGR rate deviation integrated value ΣΔRegr (k) is substantially equal to the reference value THegr, the reference value THegr of the EGR rate deviation integrated value is set. This is because a value obtained by adding the predetermined value α is used. Further, since the upper limit value is used to determine whether or not the current EGR rate deviation integrated value ΣΔRegr (k) is substantially equal to the reference value, as described above, the predetermined value α is set to a very small value. Has been.
 ステップ404においてΣΔPim(k)>THpim+βであって且つΣΔRegr(k)>THegr+αであると判別され、ルーチンがステップ405に進むと、現在のベーン操作量比例ゲインGPp(k)と現在のEGR制御弁操作量比例ゲインGEp(k)とが取得される。次いで、ステップ406において、ステップ405で取得された現在のベーン操作量比例ゲインGPp(k)に第2補正値K2が乗算されて得られる値(GPp(k)×K2)が新たなベーン操作量比例ゲインGPp(k+1)に設定されると共に、ステップ405で取得された現在のEGR制御弁操作量比例ゲインGEp(k)に第2補正値K2が乗算されて得られる値(GEp(k)×K2)が新たなEGR制御弁操作量比例ゲインGEp(k+1)に設定され、ルーチンが終了する。なお、この場合、図4のステップ16では、ステップ406で設定された新たなベーン操作量比例ゲインGPp(k+1)を利用して上式1から目標ベーン操作量Mvが算出されると共に、ステップ406で設定された新たなEGR制御弁操作量比例ゲインGEp(k+1)を利用して上式2から目標EGR制御弁操作量Megrが算出されることになる。 When it is determined in step 404 that ΣΔPim (k)> THpim + β and ΣΔRegr (k)> THegr + α, and the routine proceeds to step 405, the current vane operation amount proportional gain GPp (k) and the current EGR control valve The manipulated variable proportional gain GEp (k) is acquired. Next, in step 406, a value (GPp (k) × K2) obtained by multiplying the current vane operation amount proportional gain GPp (k) acquired in step 405 by the second correction value K2 is a new vane operation amount. A value obtained by multiplying the current EGR control valve operation amount proportional gain GEp (k) acquired in step 405 by the second correction value K2 while being set to the proportional gain GPp (k + 1) (GEp (k) × K2) is set to a new EGR control valve operation amount proportional gain GEp (k + 1), and the routine ends. In this case, in step 16 of FIG. 4, the target vane operation amount Mv is calculated from the above equation 1 using the new vane operation amount proportional gain GPp (k + 1) set in step 406, and step 406 is performed. The target EGR control valve operation amount Megr is calculated from the above equation 2 using the new EGR control valve operation amount proportional gain GEp (k + 1) set in (1).
 一方、ステップ404においてΣΔPim(k)>THpim+βであって且つΣΔRegr(k)>THegr+αではないと判別され、ルーチンが図11のステップ407に進むと、ステップ400で取得された現在の過給圧偏差積算値ΣΔPim(k)がその上限値(THpim+β)よりも大きく(ΣΔPim(k)>THpim+β)且つステップ400で取得された現在のEGR率偏差積算値ΣΔRegr(k)がその基準値THegrに略等しい、すなわち、ステップ400で取得された現在のEGR率偏差積算値ΣΔRegr(k)がその下限値(THegr-α)以上であって且つその上限値(THegr+α)以下である(THegr-α≦ΣΔRegr(k)≦THegr+α)か否かが判別される。ここで、ΣΔPim(k)>THpim+βであって且つTHegr-α≦ΣΔRegr(k)≦THegr+αであると判別されたときには、ルーチンはステップ408に進む。一方、ΣΔPim(k)>THpimであって且つTHegr-α≦ΣΔRegr(k)≦THegr+αではないと判別されたときには、ルーチンはステップ410に進む。 On the other hand, when it is determined in step 404 that ΣΔPim (k)> THpim + β and ΣΔRegr (k)> THegr + α are not satisfied and the routine proceeds to step 407 in FIG. 11, the current boost pressure deviation obtained in step 400 is determined. The integrated value ΣΔPim (k) is larger than the upper limit value (THpim + β) (ΣΔPim (k)> THpim + β), and the current EGR rate deviation integrated value ΣΔRegr (k) acquired in step 400 is substantially equal to the reference value THegr. That is, the current EGR rate deviation integrated value ΣΔRegr (k) acquired in step 400 is not less than the lower limit value (THegr−α) and not more than the upper limit value (THegr + α) (THegr−α ≦ ΣΔRegr ( k) ≦ THegr + α) is determined. If it is determined that ΣΔPim (k)> THpim + β and THegr−α ≦ ΣΔRegr (k) ≦ THegr + α, the routine proceeds to step 408. On the other hand, if it is determined that ΣΔPim (k)> THpim and that THegr−α ≦ ΣΔRegr (k) ≦ THegr + α is not established, the routine proceeds to step 410.
 ステップ407においてΣΔPim(k)>THpimであって且つTHegr-α≦ΣΔRegr(k)≦THegr+αであると判別され、ルーチンがステップ408に進むと、現在のベーン操作量比例ゲインGPp(k)と現在のEGR制御弁操作量比例ゲインGEp(k)とが取得される。次いで、ステップ409において、ステップ408で取得された現在のベーン操作量比例ゲインGPp(k)に第3補正値K3が乗算されて得られる値(GPp(k)×K3)が新たなベーン操作量比例ゲインGPp(k+1)に設定されると共に、ステップ408で取得された現在のEGR制御弁操作量比例ゲインGEp(k)に第3補正値K3が乗算されて得られる値(GEp(k)×K3)が新たなEGR制御弁操作量比例ゲインGEp(k+1)に設定され、ルーチンが終了する。なお、この場合、図4のステップ16では、ステップ408で設定された新たなベーン操作量比例ゲインGPp(k+1)を利用して上式1から目標ベーン操作量Mvが算出されると共に、ステップ408で設定された新たなEGR制御弁操作量比例ゲインGEp(k+1)を利用して上式2から目標EGR制御弁操作量Megrが算出されることになる。 In step 407, it is determined that ΣΔPim (k)> THpim and THegr−α ≦ ΣΔRegr (k) ≦ THegr + α. When the routine proceeds to step 408, the current vane operation amount proportional gain GPp (k) and the current EGR control valve operation amount proportional gain GEp (k) is acquired. Next, in step 409, a value (GPp (k) × K3) obtained by multiplying the current vane operation amount proportional gain GPp (k) acquired in step 408 by the third correction value K3 is a new vane operation amount. A value obtained by multiplying the current EGR control valve operation amount proportional gain GEp (k) acquired in step 408 by the third correction value K3, and being set to the proportional gain GPp (k + 1) (GEp (k) × K3) is set to a new EGR control valve operation amount proportional gain GEp (k + 1), and the routine ends. In this case, in step 16 of FIG. 4, the target vane operation amount Mv is calculated from the above equation 1 using the new vane operation amount proportional gain GPp (k + 1) set in step 408, and step 408 is performed. The target EGR control valve operation amount Megr is calculated from the above equation 2 using the new EGR control valve operation amount proportional gain GEp (k + 1) set in (1).
 一方、ステップ407においてΣΔPim(k)>THpim+βであって且つTHegr-α≦ΣΔRegr(k)≦THegr+αではないと判別され、ルーチンがステップ410に進むと、ステップ400で取得された現在の過給圧偏差積算値ΣΔPim(k)がその基準値THpimに略等しい、すなわち、ステップ400で取得された現在の過給圧偏差積算値ΣΔPim(k)がその下限値(すなわち、その基準値THpimから所定値βを差し引いた値)(THpim-β)以上であって且つその上限値(THpim+β)以下である(THpim-β≦ΣΔPim(k)≦THpim+β)であって且つステップ400で取得された現在のEGR率偏差積算値ΣΔRegr(k)がその下限値(THegr-α)よりも小さい(ΣΔRegr(k)<THegr-α)か否かが判別される。ここで、THpim-β≦ΣΔPim(k)≦THpim+βであって且つΣΔRegr(k)<THegr-αであると判別されたときには、ルーチンはステップ411に進む。一方、THpim-β≦ΣΔPim(k)≦THpim+βであって且つΣΔRegr(k)<THegr-αではないと判別されたときには、ルーチンは図12のステップ413に進む。 On the other hand, when it is determined in step 407 that ΣΔPim (k)> THpim + β and THegr−α ≦ ΣΔRegr (k) ≦ THegr + α, and the routine proceeds to step 410, the current boost pressure acquired in step 400 is determined. Deviation integrated value ΣΔPim (k) is substantially equal to reference value THpim, that is, current boost pressure deviation integrated value ΣΔPim (k) acquired in step 400 is a lower limit value (that is, a predetermined value from reference value THpim). (the value obtained by subtracting β) which is equal to or greater than (THpim−β) and equal to or less than the upper limit value (THpim + β) (THpim−β ≦ ΣΔPim (k) ≦ THpim + β) and the current EGR acquired in step 400 The rate deviation integrated value ΣΔRegr (k) is smaller than the lower limit (THegr−α) (ΣΔRegr It is determined whether (k) <THegr-α). If it is determined that THpim−β ≦ ΣΔPim (k) ≦ THpim + β and ΣΔRegr (k) <THegr−α, the routine proceeds to step 411. On the other hand, if it is determined that THpim−β ≦ ΣΔPim (k) ≦ THpim + β and ΣΔRegr (k) <THegr−α, the routine proceeds to step 413 in FIG.
 なお、ステップ410において過給圧偏差積算値の下限値が現在の過給圧偏差積算値ΣΔPim(k)がその基準値に略等しいか否かを判別するために用いられることから、上述したように、所定値βは極めて小さい値に設定されている。 Since the lower limit value of the boost pressure deviation integrated value is used in step 410 to determine whether or not the current boost pressure deviation integrated value ΣΔPim (k) is substantially equal to the reference value, as described above. In addition, the predetermined value β is set to a very small value.
 ステップ410においてTHpim-β≦ΣΔPim(k)≦THpim+βであって且つΣΔRegr(k)<THegr-αであると判別され、ルーチンがステップ411に進むと、現在のベーン操作量比例ゲインGPp(k)と現在のEGR制御弁操作量比例ゲインGEp(k)とが取得される。次いで、ステップ412において、ステップ411で取得された現在のベーン操作量比例ゲインGPp(k)に第4補正値K4が加算されて得られる値(GPp(k)+K4)が新たなベーン操作量比例ゲインGPp(k+1)に設定されると共に、ステップ411で取得された現在のEGR制御弁操作量比例ゲインGEp(k)から第4補正値K4が減算されて得られる値(GEp(k)-K4)が新たなEGR制御弁操作量比例ゲインGEp(k+1)に設定され、ルーチンが終了する。なお、この場合、図4のステップ16では、ステップ412で設定された新たなベーン操作量比例ゲインGPp(k+1)を利用して上式1から目標ベーン操作量Mvが算出されると共に、ステップ412で設定された新たなEGR制御弁操作量比例ゲインGEp(k+1)を利用して上式2から目標EGR制御弁操作量Megrが算出されることになる。 In step 410, it is determined that THpim−β ≦ ΣΔPim (k) ≦ THpim + β and ΣΔRegr (k) <THegr−α, and when the routine proceeds to step 411, the current vane operation amount proportional gain GPp (k) And the current EGR control valve operation amount proportional gain GEp (k). Next, in step 412, a value (GPp (k) + K4) obtained by adding the fourth correction value K4 to the current vane operation amount proportional gain GPp (k) acquired in step 411 is a new vane operation amount proportional. A value obtained by subtracting the fourth correction value K4 from the current EGR control valve operation amount proportional gain GEp (k) acquired in step 411 and set to the gain GPp (k + 1) (GEp (k) −K4) ) Is set to a new EGR control valve operation amount proportional gain GEp (k + 1), and the routine ends. In this case, in step 16 of FIG. 4, the target vane operation amount Mv is calculated from the above equation 1 using the new vane operation amount proportional gain GPp (k + 1) set in step 412, and step 412. The target EGR control valve operation amount Megr is calculated from the above equation 2 using the new EGR control valve operation amount proportional gain GEp (k + 1) set in (1).
 一方、ステップ410においてTHpim-β≦ΣΔPim(k)≦THpim+βであって且つΣΔRegr(k)<THegr-αではないと判別され、ルーチンが図12のステップ413に進むと、ステップ400で取得された現在の過給圧偏差積算値ΣΔPim(k)がその基準値THpimに略等しい、すなわち、ステップ400で取得された現在の過給圧偏差積算値ΣΔPim(k)がその下限値(THpim-β)以上であって且つその上限値(THpim+β)以下である(THpim-β≦ΣΔPim(k)≦THpim+β)であって且つステップ400で取得された現在のEGR率偏差積算値ΣΔRegr(k)がその上限値(THegr-α)よりも大きい(ΣΔRegr(k)>THegr+α)か否かが判別される。ここで、THpim-β≦ΣΔPim(k)≦THpim+βであって且つΣΔRegr(k)>THegr+αであると判別されたときには、ルーチンはステップ414に進む。一方、THpim-β≦ΣΔPim(k)≦THpim+βであって且つΣΔRegr(k)>THegr+αではないと判別されたときには、ルーチンはステップ416進む。 On the other hand, in step 410, it is determined that THpim−β ≦ ΣΔPim (k) ≦ THpim + β and ΣΔRegr (k) <THegr−α, and when the routine proceeds to step 413 in FIG. The current supercharging pressure deviation integrated value ΣΔPim (k) is substantially equal to the reference value THpim, that is, the current supercharging pressure deviation integrated value ΣΔPim (k) acquired in step 400 is its lower limit value (THpim−β). The current EGR rate deviation integrated value ΣΔRegr (k), which is equal to or higher than (THpim−β ≦ ΣΔPim (k) ≦ THpim + β) and is equal to or lower than the upper limit value (THpim + β), is obtained in step 400. It is determined whether or not (ΣΔRegr (k)> THegr + α) is greater than the value (THegr−α). If it is determined that THpim−β ≦ ΣΔPim (k) ≦ THpim + β and ΣΔRegr (k)> THegr + α, the routine proceeds to step 414. On the other hand, if it is determined that THpim−β ≦ ΣΔPim (k) ≦ THpim + β and ΣΔRegr (k)> THegr + α, the routine proceeds to step 416.
 ステップ413においてTHpim-β≦ΣΔPim(k)≦THpim+βであって且つΣΔRegr(k)>THegr+αであると判別され、ルーチンがステップ414に進むと、現在のベーン操作量比例ゲインGPp(k)と現在のEGR制御弁操作量比例ゲインGEp(k)とが取得される。次いで、ステップ415において、ステップ414で取得された現在のベーン操作量比例ゲインGPp(k)から第5補正値K5が減算されて得られる値(GPp(k)-K5)が新たなベーン操作量比例ゲインGPp(k+1)に設定されると共に、ステップ414で取得された現在のEGR制御弁操作量比例ゲインGEp(k)に第5補正値K5が加算されて得られる値(GEp(k)+K5)が新たなEGR制御弁操作量比例ゲインGEp(k+1)に設定され、ルーチンが終了する。なお、この場合、図4のステップ16では、ステップ415で設定された新たなベーン操作量比例ゲインGPp(k+1)を利用して上式1から目標ベーン操作量Mvが算出されると共に、ステップ415で設定された新たなEGR制御弁操作量比例ゲインGEp(k+1)を利用して上式2から目標EGR制御弁操作量Megrが算出されることになる。 In step 413, it is determined that THpim−β ≦ ΣΔPim (k) ≦ THpim + β and ΣΔRegr (k)> THegr + α. When the routine proceeds to step 414, the current vane operation amount proportional gain GPp (k) and the current EGR control valve operation amount proportional gain GEp (k) is acquired. Next, in step 415, a value (GPp (k) −K5) obtained by subtracting the fifth correction value K5 from the current vane operation amount proportional gain GPp (k) acquired in step 414 is a new vane operation amount. A value obtained by adding the fifth correction value K5 to the current EGR control valve operation amount proportional gain GEp (k) acquired in step 414, and being set to the proportional gain GPp (k + 1) (GEp (k) + K5 ) Is set to a new EGR control valve operation amount proportional gain GEp (k + 1), and the routine ends. In this case, in step 16 of FIG. 4, the target vane operation amount Mv is calculated from the above equation 1 using the new vane operation amount proportional gain GPp (k + 1) set in step 415, and step 415. The target EGR control valve operation amount Megr is calculated from the above equation 2 using the new EGR control valve operation amount proportional gain GEp (k + 1) set in (1).
 一方、ステップ413においてTHpim-β≦ΣΔPim(k)≦THpim+βであって且つΣΔRegr(k)>THegr+αではないと判別され、ルーチンがステップ416進むと、ステップ400で取得された現在の過給圧偏差積算値ΣΔPim(k)がその下限値(THpim-β)よりも小さく(ΣΔPim(k)<THpim-β)且つステップ400で取得された現在のEGR率偏差積算値ΣΔRegr(k)がその下限値(THegr-α)よりも小さい(ΣΔRegr(k)<THegr-α)か否かが判別される。ここで、ΣΔPim(k)<THpim-βであって且つΣΔRegr(k)<THegr-αであると判別されたときには、ルーチンはステップ417に進む。一方、ΣΔPim(k)<THpim-βであって且つΣΔRegr(k)<THegr-αではないと判別されたときには、ルーチンは図13のステップ419に進む。 On the other hand, if it is determined in step 413 that THpim−β ≦ ΣΔPim (k) ≦ THpim + β and ΣΔRegr (k)> THegr + α, and the routine proceeds to step 416, the current boost pressure deviation acquired in step 400 is determined. The integrated value ΣΔPim (k) is smaller than the lower limit value (THpim−β) (ΣΔPim (k) <THpim−β), and the current EGR rate deviation integrated value ΣΔRegr (k) acquired in step 400 is the lower limit value. It is determined whether or not (ΣΔRegr (k) <THegr−α) is smaller than (THegr−α). If it is determined that ΣΔPim (k) <THpim−β and ΣΔRegr (k) <THegr−α, the routine proceeds to step 417. On the other hand, if it is determined that ΣΔPim (k) <THpim−β and ΣΔRegr (k) <THegr−α is not established, the routine proceeds to step 419 in FIG.
 ステップ416においてΣΔPim(k)<THpim-βであって且つΣΔRegr(k)<THegr-αであると判別され、ルーチンがステップ417に進むと、現在のベーン操作量比例ゲインGPp(k)と現在のEGR制御弁操作量比例ゲインGEp(k)とが取得される。次いで、ステップ418において、ステップ417で取得された現在のベーン操作量比例ゲインGPp(k)に第6補正値K6が乗算されて得られる値(GPp(k)×K6)が新たなベーン操作量比例ゲインGPp(k+1)に設定されると共に、ステップ417で取得された現在のEGR制御弁操作量比例ゲインGEp(k)に第6補正値K6が乗算されて得られる値(GEp(k)×K6)が新たなEGR制御弁操作量比例ゲインGEp(k+1)に設定され、ルーチンが終了する。なお、この場合、図4のステップ16では、ステップ418で設定された新たなベーン操作量比例ゲインGPp(k+1)を利用して上式1から目標ベーン操作量Mvが算出されると共に、ステップ418で設定された新たなEGR制御弁操作量比例ゲインGEp(k+1)を利用して上式2から目標EGR制御弁操作量Megrが算出されることになる。 In step 416, it is determined that ΣΔPim (k) <THpim−β and ΣΔRegr (k) <THegr−α, and when the routine proceeds to step 417, the current vane operation amount proportional gain GPp (k) and the current EGR control valve operation amount proportional gain GEp (k) is acquired. Next, in step 418, a value (GPp (k) × K6) obtained by multiplying the current vane operation amount proportional gain GPp (k) acquired in step 417 by the sixth correction value K6 is a new vane operation amount. A value obtained by multiplying the current EGR control valve operation amount proportional gain GEp (k) acquired in step 417 by the sixth correction value K6, and being set to the proportional gain GPp (k + 1) (GEp (k) × K6) is set to a new EGR control valve operation amount proportional gain GEp (k + 1), and the routine ends. In this case, in step 16 of FIG. 4, the target vane operation amount Mv is calculated from the above equation 1 using the new vane operation amount proportional gain GPp (k + 1) set in step 418, and step 418. The target EGR control valve operation amount Megr is calculated from the above equation 2 using the new EGR control valve operation amount proportional gain GEp (k + 1) set in (1).
 一方、ステップ416においてΣΔPim(k)<THpim-βであって且つΣΔRegr(k)<THegr-αではないと判別され、ルーチンが図13のステップ419に進むと、ステップ400で取得された現在の過給圧偏差積算値ΣΔPim(k)がその下限値(THpim-β)よりも小さく(ΣΔPim(k)<THpim-β)且つステップ400で取得された現在のEGR率偏差積算値ΣΔRegr(k)がその上限値(THegr+α)よりも大きい(ΣΔRegr(k)>THegr+α)か否かが判別される。ここで、ΣΔPim(k)<THpim-βであって且つΣΔRegr(k)>THegr+αであると判別されたときには、ルーチンはステップ420に進む。一方、ΣΔPim(k)<THpim-βであって且つΣΔRegr(k)>THegr+αではないと判別されたときには、ルーチンはステップ422に進む。 On the other hand, if it is determined in step 416 that ΣΔPim (k) <THpim−β and ΣΔRegr (k) <THegr−α is not satisfied, and the routine proceeds to step 419 in FIG. The supercharging pressure deviation integrated value ΣΔPim (k) is smaller than the lower limit value (THpim−β) (ΣΔPim (k) <THpim−β) and the current EGR rate deviation integrated value ΣΔRegr (k) acquired in step 400 Is larger than the upper limit value (THegr + α) (ΣΔRegr (k)> THegr + α). If it is determined that ΣΔPim (k) <THpim−β and ΣΔRegr (k)> THegr + α, the routine proceeds to step 420. On the other hand, when it is determined that ΣΔPim (k) <THpim−β and ΣΔRegr (k)> THegr + α is not established, the routine proceeds to step 422.
 ステップ419においてΣΔPim(k)<THpim-βであって且つΣΔRegr(k)>THegr+αであると判別され、ルーチンがステップ420に進むと、現在のベーン操作量比例ゲインGPp(k)と現在のEGR制御弁操作量比例ゲインGEp(k)とが取得される。次いで、ステップ421において、ステップ420で取得された現在のベーン操作量比例ゲインGPp(k)から第7補正値K7が減算されて得られる値(GPp(k)-K7)が新たなベーン操作量比例ゲインGPp(k+1)に設定されると共に、ステップ420で取得された現在のEGR制御弁操作量比例ゲインGEp(k)に第7補正値K7が加算されて得られる値(GEp(k)+K7)が新たなEGR制御弁操作量比例ゲインGEp(k+1)に設定され、ルーチンが終了する。なお、この場合、図4のステップ16では、ステップ421で設定された新たなベーン操作量比例ゲインGPp(k+1)を利用して上式1から目標ベーン操作量Mvが算出されると共に、ステップ421で設定された新たなEGR制御弁操作量比例ゲインGEp(k+1)を利用して上式2から目標EGR制御弁操作量Megrが算出されることになる。 In step 419, it is determined that ΣΔPim (k) <THpim−β and ΣΔRegr (k)> THegr + α. When the routine proceeds to step 420, the current vane operation amount proportional gain GPp (k) and the current EGR are determined. The control valve operation amount proportional gain GEp (k) is acquired. Next, in step 421, a value (GPp (k) −K7) obtained by subtracting the seventh correction value K7 from the current vane operation amount proportional gain GPp (k) acquired in step 420 is a new vane operation amount. A value obtained by adding the seventh correction value K7 to the current EGR control valve operation amount proportional gain GEp (k) acquired in step 420 and being set to the proportional gain GPp (k + 1) (GEp (k) + K7) ) Is set to a new EGR control valve operation amount proportional gain GEp (k + 1), and the routine ends. In this case, in step 16 of FIG. 4, the target vane operation amount Mv is calculated from the above equation 1 using the new vane operation amount proportional gain GPp (k + 1) set in step 421, and step 421. The target EGR control valve operation amount Megr is calculated from the above equation 2 using the new EGR control valve operation amount proportional gain GEp (k + 1) set in (1).
 一方、ステップ419においてΣΔPim(k)<THpim-βであって且つΣΔRegr(k)>THegr+αではないと判別され、ルーチンがステップ422に進むと、ステップ400で取得された現在の過給圧偏差積算値ΣΔPim(k)がその下限値(THpim-β)よりも小さく(ΣΔPim(k)<THpim-β)且つステップ400で取得された現在のEGR率偏差積算値ΣΔRegr(k)がその基準値THegrに略等しい、すなわち、ステップ400で取得された現在のEGR率偏差積算値ΣΔRegr(k)がその下限値(THegr-α)以上であって且つその上限値(THegr+α)以下である(THegr-α≦ΣΔRegr(k)≦THegr+α)か否かが判別される。ここで、ΣΔPim(k)<THpim-βであって且つTHegr-α≦ΣΔRegr(k)≦THegr+αであると判別されたときには、ルーチンはステップ423に進む。一方、ΣΔPim(k)>THpimであって且つTHegr-α≦ΣΔRegr(k)≦THegr+αではないと判別されたときには、ルーチンはそのまま終了する。なお、この場合、図4のステップ16では、現在のベーン操作量比例ゲインGPp(k)を利用して上式1から目標ベーン操作量Mvが算出されると共に、現在のEGR制御弁操作量比例ゲインGEp(k)を利用して上式2から目標EGR制御弁操作量Megrが算出されることになる。 On the other hand, if it is determined in step 419 that ΣΔPim (k) <THpim−β and ΣΔRegr (k)> THegr + α is not established, and the routine proceeds to step 422, the current boost pressure deviation integration obtained in step 400 is performed. The value ΣΔPim (k) is smaller than the lower limit value (THpim−β) (ΣΔPim (k) <THpim−β), and the current EGR rate deviation integrated value ΣΔRegr (k) acquired in step 400 is the reference value THegr. That is, the current EGR rate deviation integrated value ΣΔRegr (k) acquired in step 400 is equal to or higher than the lower limit (THegr−α) and equal to or lower than the upper limit (THegr + α) (THegr−α). It is determined whether or not ≦ ΣΔRegr (k) ≦ THegr + α). If it is determined that ΣΔPim (k) <THpim−β and THegr−α ≦ ΣΔRegr (k) ≦ THegr + α, the routine proceeds to step 423. On the other hand, when it is determined that ΣΔPim (k)> THpim and that THegr−α ≦ ΣΔRegr (k) ≦ THegr + α is not established, the routine ends. In this case, in step 16 of FIG. 4, the target vane operation amount Mv is calculated from the above equation 1 using the current vane operation amount proportional gain GPp (k), and the current EGR control valve operation amount is proportional. The target EGR control valve operation amount Megr is calculated from the above equation 2 using the gain GEp (k).
 ステップ422においてΣΔPim(k)<THpim-βであって且つTHegr-α≦ΣΔRegr(k)≦THegr+αであると判別され、ルーチンがステップ423に進むと、現在のベーン操作量比例ゲインGPp(k)と現在のEGR制御弁操作量比例ゲインGEp(k)とが取得される。次いで、ステップ424において、ステップ423で取得された現在のベーン操作量比例ゲインGPp(k)に第8補正値K8が乗算されて得られる値(GPp(k)×K8)が新たなベーン操作量比例ゲインGPp(k+1)に設定されると共に、ステップ423で取得された現在のEGR制御弁操作量比例ゲインGEp(k)に第8補正値K8が乗算されて得られる値(GEp(k)×K8)が新たなEGR制御弁操作量比例ゲインGEp(k+1)に設定され、ルーチンが終了する。なお、この場合、図4のステップ16では、ステップ424で設定された新たなベーン操作量比例ゲインGPp(k+1)を利用して上式1から目標ベーン操作量Mvが算出されると共に、ステップ424で設定された新たなEGR制御弁操作量比例ゲインGEp(k+1)を利用して上式2から目標EGR制御弁操作量Megrが算出されることになる。 In step 422, it is determined that ΣΔPim (k) <THpim−β and THegr−α ≦ ΣΔRegr (k) ≦ THegr + α. When the routine proceeds to step 423, the current vane operation amount proportional gain GPp (k) And the current EGR control valve operation amount proportional gain GEp (k). Next, in step 424, a value (GPp (k) × K8) obtained by multiplying the current vane operation amount proportional gain GPp (k) acquired in step 423 by the eighth correction value K8 is a new vane operation amount. A value obtained by multiplying the current EGR control valve operation amount proportional gain GEp (k) acquired in step 423 by the eighth correction value K8, and being set to the proportional gain GPp (k + 1) (GEp (k) × K8) is set to a new EGR control valve operation amount proportional gain GEp (k + 1), and the routine ends. In this case, in step 16 of FIG. 4, the target vane operation amount Mv is calculated from the above equation 1 using the new vane operation amount proportional gain GPp (k + 1) set in step 424, and step 424. The target EGR control valve operation amount Megr is calculated from the above equation 2 using the new EGR control valve operation amount proportional gain GEp (k + 1) set in (1).
 なお、上述した実施形態では、過給圧を直接的に制御する制御対象として、過給機35が採用されている。しかしながら、上述した実施形態において、過給圧を制御する制御対象として、過給機35に加えてスロットル弁33が採用されてもよい。 In the above-described embodiment, the supercharger 35 is employed as a control target for directly controlling the supercharging pressure. However, in the above-described embodiment, the throttle valve 33 may be employed in addition to the supercharger 35 as a control target for controlling the supercharging pressure.
  すなわち、スロットル弁33は、その開度が制御されることによって燃焼室に吸入されるガス(以下このガスを「吸入ガス」という)の量を可変に制御することができる。ここで、スロットル弁開度の制御によって吸入ガス量を増大させるためには、スロットル弁開度が増大せしめられる。ここで、スロットル弁開度が増大せしめられると、その分だけ、スロットル弁33をガスが通過しやすくなり、その結果、過給圧が上昇する。そして、過給圧が上昇すると、その分だけ、過給圧と排気圧との差圧が小さくなり、その結果、EGRガス量が減少する。すなわち、スロットル弁開度が増大せしめられると、過給圧が上昇すると共にEGRガス量が減少する。一方、スロットル弁開度の制御によって吸入ガス量を減少させるためには、スロットル弁開度が減少せしめられる。ここで、スロットル弁開度が減少せしめられると、その分だけ、スロットル弁33をガスが通過しづらくなり、その結果、過給圧が低下する。そして、過給圧が低下すると、その分だけ、過給圧と排気圧との差圧が大きくなり、その結果、EGRガス量が増大する。すなわち、スロットル弁開度が減少せしめられると、過給圧が低下すると共にEGRガス量が増大する。すなわち、スロットル弁33による吸入ガス量の制御がEGRガス量(結果的には、EGR率)と過給圧とに影響する。こうした理由から、上述した実施形態では、スロットル弁も制御対象として採用されているのである。 That is, the throttle valve 33 can variably control the amount of gas sucked into the combustion chamber (hereinafter, this gas is referred to as “intake gas”) by controlling its opening degree. Here, in order to increase the intake gas amount by controlling the throttle valve opening, the throttle valve opening is increased. Here, when the throttle valve opening is increased, the gas easily passes through the throttle valve 33 correspondingly, and as a result, the supercharging pressure increases. When the supercharging pressure increases, the differential pressure between the supercharging pressure and the exhaust pressure decreases accordingly, and as a result, the EGR gas amount decreases. That is, when the throttle valve opening is increased, the supercharging pressure increases and the EGR gas amount decreases. On the other hand, in order to reduce the intake gas amount by controlling the throttle valve opening, the throttle valve opening is decreased. Here, if the throttle valve opening is reduced, the gas is less likely to pass through the throttle valve 33, and as a result, the supercharging pressure is lowered. When the supercharging pressure decreases, the differential pressure between the supercharging pressure and the exhaust pressure increases accordingly, and as a result, the amount of EGR gas increases. That is, when the throttle valve opening is decreased, the supercharging pressure is lowered and the EGR gas amount is increased. That is, the control of the intake gas amount by the throttle valve 33 affects the EGR gas amount (as a result, the EGR rate) and the supercharging pressure. For these reasons, in the above-described embodiment, the throttle valve is also adopted as a control target.
 なお、この場合、上述した実施形態において基準値に対する過給圧偏差積算値の関係と基準値に対するEGR率偏差積算値の関係とに基づいて、ベーンの応答が所期の応答よりも遅いと判断されるときにはスロットル弁の応答も所期の応答よりも遅いと判断され、ベーンの応答が所期の応答であると判断されるときにはスロットル弁の応答も所期の応答であると判断され、ベーンの応答が所期の応答よりも速いと判断されるときにはスロットル弁の応答も所期の応答よりも速いと判断される。そして、上述した実施形態において基準値に対する過給圧偏差積算値の関係と基準値に対するEGR率偏差積算値の関係とに基づいてベーン操作量比例ゲインが補正される場合において、ベーン操作量比例ゲインが大きくなるように同ゲインが補正されるときにはスロットル弁操作量比例ゲイン(すなわち、過給圧偏差に基づくスロットル弁に入力される操作量のPID制御における比例ゲイン)が大きくなるように同ゲインが補正され、ベーン操作量比例ゲインが小さくなるように同ゲインが補正されるときにはスロットル弁操作量比例ゲインが小さくなるように同ゲインが補正される。一方、上述した実施形態において基準値に対する過給圧偏差積算値の関係と基準値に対するEGR率偏差積算値の関係とに基づいてベーン開度比例ゲインが補正される場合において、ベーン開度比例ゲインが大きくなるように同ゲインが補正されるときにはスロットル弁開度比例ゲイン(すなわち、過給圧偏差に基づくスロットル弁開度のPID制御における比例ゲイン)が大きくなるように同ゲインが補正され、ベーン開度比例ゲインが小さくなるように同ゲインが補正されるときにはスロットル弁開度比例ゲインが小さくなるように同ゲインが補正される。 In this case, in the above-described embodiment, it is determined that the vane response is slower than the intended response based on the relationship between the boost pressure deviation integrated value with respect to the reference value and the relationship between the EGR rate deviation integrated value with respect to the reference value. When it is determined that the response of the throttle valve is slower than the intended response, and when the response of the vane is determined to be the intended response, the response of the throttle valve is also determined to be the intended response. Is determined to be faster than the intended response, the throttle valve response is also determined to be faster than the intended response. In the above-described embodiment, when the vane operation amount proportional gain is corrected based on the relationship between the supercharging pressure deviation integrated value with respect to the reference value and the relationship between the EGR rate deviation integrated value with respect to the reference value, the vane operation amount proportional gain is corrected. When the gain is corrected so as to increase, the throttle valve operation amount proportional gain (that is, the proportional gain in PID control of the operation amount input to the throttle valve based on the boost pressure deviation) increases. When the gain is corrected so that the vane operation amount proportional gain becomes smaller, the gain is corrected so that the throttle valve operation amount proportional gain becomes smaller. On the other hand, when the vane opening proportional gain is corrected based on the relationship between the supercharging pressure deviation integrated value with respect to the reference value and the relationship between the EGR rate deviation integrated value with respect to the reference value in the embodiment described above, When the gain is corrected so as to increase, the throttle valve opening proportional gain (that is, the proportional gain in the PID control of the throttle valve opening based on the boost pressure deviation) is corrected, and the vane When the gain is corrected so that the opening proportional gain becomes small, the gain is corrected so that the throttle valve opening proportional gain becomes small.
 次に、本発明の第5実施形態について説明する。上述したように、第2実施形態では、PID制御によって目標ベーン開度変化量と目標EGR制御弁開度変化量とが設定され、目標ベーン開度変化量変換式(すなわち、目標ベーン開度変化量からそれに対応する目標ベーン操作量を算出するために予め定められている変換式)を利用して目標ベーン開度変化量から目標ベーン操作量が算出されると共に、目標EGR制御弁開度変化量変換式(すなわち、目標EGR制御弁開度変化量からそれに対応する目標EGR制御弁操作量を算出するために予め定められている変換式)を利用して目標EGR制御弁開度変化量から目標EGR制御弁操作量が算出され、目標ベーン操作量に相当する操作量がベーンに入力されると共に目標EGR制御弁操作量に相当する操作量がEGR制御弁に入力され、これによって、過給圧が目標過給圧に制御されると共にEGR率が目標EGR率に制御される。 Next, a fifth embodiment of the present invention will be described. As described above, in the second embodiment, the target vane opening change amount and the target EGR control valve opening change amount are set by the PID control, and the target vane opening change amount conversion formula (that is, the target vane opening change) is set. The target vane operation amount is calculated from the target vane opening change amount using a predetermined conversion formula for calculating the target vane operation amount corresponding to the amount, and the target EGR control valve opening change From the target EGR control valve opening change amount using a quantity conversion equation (that is, a conversion equation determined in advance to calculate the target EGR control valve operation amount corresponding to the target EGR control valve opening change amount). A target EGR control valve operation amount is calculated, an operation amount corresponding to the target vane operation amount is input to the vane, and an operation amount corresponding to the target EGR control valve operation amount is input to the EGR control valve, By Le, the EGR rate is controlled to the target EGR rate with the boost pressure is controlled to the target boost pressure.
 これに対し、第5実施形態では、PID制御に代えて、いわゆるスライディングモード制御によって目標スロットル弁開度変化量と目標EGR制御弁開度得変化量と目標ベーン開度変化量とが設定される。そして、目標スロットル弁開度変化量変換式(すなわち、目標スロットル弁開度からそれに対応する目標スロットル弁操作量を算出するために予め定められている変換式)を利用して目標スロットル弁操作量が算出され、目標EGR制御弁開度変化量変換式を利用して目標EGR制御弁操作量が算出され、目標ベーン開度変化量変換式を利用して目標ベーン操作量が算出される。そして、目標スロットル弁操作量に相当する操作量がスロットル弁に入力され、目標EGR制御弁操作量に相当する操作量がEGR制御弁に入力され、目標ベーン操作量に相当する操作量がベーンに入力され、これによって、過給圧が目標過給圧に制御されると共にEGR率が目標EGR率に制御される。 On the other hand, in the fifth embodiment, the target throttle valve opening change amount, the target EGR control valve opening change amount, and the target vane opening change amount are set by so-called sliding mode control instead of PID control. . Then, the target throttle valve operation amount is converted using a target throttle valve opening change amount conversion formula (that is, a conversion formula determined in advance for calculating the target throttle valve operation amount corresponding to the target throttle valve opening). Is calculated, a target EGR control valve operation amount is calculated using the target EGR control valve opening change amount conversion equation, and a target vane operation amount is calculated using the target vane opening change amount conversion equation. Then, an operation amount corresponding to the target throttle valve operation amount is input to the throttle valve, an operation amount corresponding to the target EGR control valve operation amount is input to the EGR control valve, and an operation amount corresponding to the target vane operation amount is input to the vane. Thus, the supercharging pressure is controlled to the target supercharging pressure, and the EGR rate is controlled to the target EGR rate.
 次に、第5実施形態のスライディングモードを利用した過給圧およびEGR率の制御について説明する。なお、第5実施形態では、過給圧を制御する制御対象として過給機に加えてスロットル弁も採用されている。 Next, supercharging pressure and EGR rate control using the sliding mode of the fifth embodiment will be described. In the fifth embodiment, a throttle valve is also employed in addition to the supercharger as a control target for controlling the supercharging pressure.
 ところで、第5実施形態では、以下のように変数が設定されている。すなわち、算出されるべき目標スロットル弁開度変化量を「TDth」で表し、算出されるべき目標EGR制御弁開度変化量を「TDegr」で表し、算出されるべき目標ベーン開度変化量を「TDv」で表し、これら目標スロットル弁開度変化量と目標EGR制御弁開度変化量と目標ベーン開度変化量とを要素とする行列Uを次式5で定義する。
Figure JPOXMLDOC01-appb-M000001
By the way, in the fifth embodiment, variables are set as follows. That is, the target throttle valve opening change amount to be calculated is expressed by “TDth”, the target EGR control valve opening change amount to be calculated is expressed by “TDegr”, and the target vane opening change amount to be calculated is A matrix U expressed by “TDv” and having these target throttle valve opening change amount, target EGR control valve opening change amount, and target vane opening change amount as elements is defined by the following equation (5).
Figure JPOXMLDOC01-appb-M000001
 また、スロットル弁に関する線形項を「UL1」で表し、EGR制御弁に関する線形項を「UL2」で表し、ベーンに関する線形項を「UL3」で表し、これら線形項を要素とする行列ULを次式6で定義する。
Figure JPOXMLDOC01-appb-M000002
A linear term related to the throttle valve is represented by “UL1”, a linear term related to the EGR control valve is represented by “UL2”, a linear term related to the vane is represented by “UL3”, and a matrix UL having these linear terms as elements is expressed by the following equation: This is defined in 6.
Figure JPOXMLDOC01-appb-M000002
 また、スロットル弁に関する非線形項を「UNL1」で表し、EGR制御弁に関する非線形項を「UNL2」で表し、ベーンに関する非線形項を「UNL3」で表し、これら非線形項を要素とする行列UNFを次式7で定義する。
Figure JPOXMLDOC01-appb-M000003
Further, a nonlinear term related to the throttle valve is expressed by “UNL1”, a nonlinear term related to the EGR control valve is expressed by “UNL2”, a nonlinear term related to the vane is expressed by “UNL3”, and a matrix UNF having these nonlinear terms as elements is expressed by the following equation: 7 to define.
Figure JPOXMLDOC01-appb-M000003
 また、スロットル弁に関する適応項を「Umap1」で表し、EGR制御弁に関する適応項を「Umap2」で表し、ベーンに関する適応項を「Umap3」で表し、これら適応項を要素とする行列Umapを次式8で定義する。
Figure JPOXMLDOC01-appb-M000004
Also, the adaptation term for the throttle valve is represented by “Umap1”, the adaptation term for the EGR control valve is represented by “Umap2”, the adaptation term for the vane is represented by “Umap3”, and a matrix Umap having these adaptation terms as elements is expressed by the following equation: 8 is defined.
Figure JPOXMLDOC01-appb-M000004
 そして、上式5~上式8で定義した行列の間には次式9の関係が成立する。
Figure JPOXMLDOC01-appb-M000005
The relationship of the following equation 9 is established between the matrices defined by the above equations 5 to 8.
Figure JPOXMLDOC01-appb-M000005
 また、ノミナルモデル(すなわち、スロットル弁、EGR制御弁、および、ベーンに関する状態方程式を利用してこれらスロットル弁、EGR制御弁、および、ベーンの動作状態を制御したときの過給圧およびEGR率の挙動を現したモデル)から算出される重み行列Sを次式10で定義し、ノミナルモデルの入力行列の拡大系Beを次式11で定義し、ノミナルモデルのシステム行列の拡大系Aeを次式12で定義する。なお、重み行列Sはスライディングモードの滑り面を表し、これを超平面という。
Figure JPOXMLDOC01-appb-M000006
Further, the nominal model (that is, the supercharging pressure and the EGR rate when the operation state of the throttle valve, the EGR control valve, and the vane is controlled by using the state equation regarding the throttle valve, the EGR control valve, and the vane). The weight matrix S calculated from the model representing the behavior is defined by the following equation 10, the expanded system Be of the nominal model input matrix is defined by the following equation 11, and the expanded system Ae of the system matrix of the nominal model is defined by the following equation: 12 to define. The weight matrix S represents a sliding surface in the sliding mode, and this is called a hyperplane.
Figure JPOXMLDOC01-appb-M000006
 また、重みゲインにEGR率偏差を乗算した値の積算値を「Xe1」で表し、重みゲインに過給圧偏差を乗算した値の積算値を「Xe2」で表し、EGR率を「Xe3」で表し、過給圧を「Xe4」で表し、これら積算値とEGR率と過給圧とを要素とする行列Xeを次式13で定義する。
Figure JPOXMLDOC01-appb-M000007
Further, the integrated value of the value obtained by multiplying the weight gain by the EGR rate deviation is represented by “Xe1”, the integrated value of the value obtained by multiplying the weight gain by the supercharging pressure deviation is represented by “Xe2”, and the EGR rate is represented by “Xe3”. The supercharging pressure is expressed by “Xe4”, and a matrix Xe whose elements are the integrated value, the EGR rate, and the supercharging pressure is defined by the following equation (13).
Figure JPOXMLDOC01-appb-M000007
 また、単位行列の拡大系Eeを次式14で定義する。
Figure JPOXMLDOC01-appb-M000008
The unit matrix expansion system Ee is defined by the following equation (14).
Figure JPOXMLDOC01-appb-M000008
 また、目標EGR率を「TRegr」で表し、目標過給圧を「TPim」で表し、これら目標EGR率と目標過給圧とを要素とする行列Rを次式15で定義する。
Figure JPOXMLDOC01-appb-M000009
Further, the target EGR rate is represented by “TRegr”, the target supercharging pressure is represented by “TPim”, and a matrix R having these target EGR rate and target supercharging pressure as elements is defined by the following equation (15).
Figure JPOXMLDOC01-appb-M000009
 そして、上式12~上式15の行列を用いると、上式9の行列ULは次式16で表される。
Figure JPOXMLDOC01-appb-M000010
Then, using the matrixes of the above equations 12 to 15, the matrix UL of the above equation 9 is expressed by the following equation 16.
Figure JPOXMLDOC01-appb-M000010
 また、スロットル弁に関する非線形項のゲイン割合を「J1」で表し、EGR制御弁に関する非線形項のゲイン割合を「J2」で表し、ベーンに関する非線形項のゲイン割合を「J3」で表し、これらゲイン割合を要素とする行列Jを次式17で定義する。
Figure JPOXMLDOC01-appb-M000011
Further, the gain ratio of the nonlinear term related to the throttle valve is represented by “J1”, the gain ratio of the nonlinear term related to the EGR control valve is represented by “J2”, and the gain ratio of the nonlinear term related to the vane is represented by “J3”. A matrix J is defined by the following Expression 17.
Figure JPOXMLDOC01-appb-M000011
 また、スロットル弁に関する超平面からの距離を「σ1」で表し、EGR制御弁に関する超平面からの距離を「σ2」で表し、ベーンに関する超平面からの距離を「σ3」で表し、これら距離を要素とする行列(すなわち、切替関数)σを次式18で定義する。なお、上記超平面からの距離は、過給圧偏差積算値およびEGR率偏差積算値に応じて変化し、過給圧偏差積算値が大きいほど或いはEGR率偏差積算値が大きいほど大きくなる。
Figure JPOXMLDOC01-appb-M000012
Further, the distance from the hyperplane related to the throttle valve is represented by “σ1”, the distance from the hyperplane related to the EGR control valve is represented by “σ2”, the distance from the hyperplane related to the vane is represented by “σ3”, and these distances are expressed as A matrix (that is, a switching function) σ as an element is defined by the following equation 18. The distance from the hyperplane changes according to the supercharging pressure deviation integrated value and the EGR rate deviation integrated value, and increases as the supercharging pressure deviation integrated value increases or the EGR rate deviation integrated value increases.
Figure JPOXMLDOC01-appb-M000012
 そして、各非線形項に関するゲイン係数を要素とする行列を「Jk」で表したとき、上式10、上式11、上式17、および、上式18の行列を用いると、上式9の行列UNLは次式19で表される。なお、ノミナルからの距離σ1~σ3は過給圧偏差積算値が大きいほど或いはEGR率偏差積算値が大きいほど大きくなることから、次式19から判るように、非線形項UNLも過給圧偏差積算値が大きいほど或いはEGR率偏差積算値が大きいほど大きくなる。
Figure JPOXMLDOC01-appb-M000013
When the matrix having the gain coefficient for each nonlinear term as an element is represented by “Jk”, the matrix of the above equation 9 is obtained by using the matrix of the above equation 10, the above equation 11, the above equation 17, and the above equation 18. UNL is expressed by the following equation 19. Since the distances σ1 to σ3 from the nominal increase as the supercharging pressure deviation integrated value increases or as the EGR rate deviation integrated value increases, the nonlinear term UNL also increases the supercharging pressure deviation integrated as can be seen from the following equation 19. The larger the value or the larger the EGR rate deviation integrated value, the larger the value.
Figure JPOXMLDOC01-appb-M000013
 したがって、上式16および上式19を用いると、上式9は次式20で表される。
Figure JPOXMLDOC01-appb-M000014
Therefore, when the above equation 16 and the above equation 19 are used, the above equation 9 is expressed by the following equation 20.
Figure JPOXMLDOC01-appb-M000014
 第5実施形態では、上式20を用いて目標スロットル弁開度変化量、目標EGR制御弁開度変化量、および、目標ベーン開度変化量が算出され(すなわち、設定され)、これら算出された目標スロットル開度変化量、目標EGR制御弁開度変化量、および、目標ベーン開度変化量に基づいて目標スロットル弁操作量、目標EGR制御弁操作量、および、目標ベーン操作量が算出され、これら算出された目標スロットル弁操作量、目標EGR制御弁操作量、および、目標ベーン操作量がそれぞれスロットル弁、EGR制御弁、および、ベーンに入力される。これによって、過給圧およびEGR率がそれぞれ目標過給圧および目標EGR率に制御される。 In the fifth embodiment, the target throttle valve opening change amount, the target EGR control valve opening change amount, and the target vane opening change amount are calculated (that is, set) using the above equation 20, and these are calculated. The target throttle valve operation amount, the target EGR control valve operation amount, and the target vane operation amount are calculated based on the target throttle opening change amount, the target EGR control valve opening change amount, and the target vane opening change amount. The calculated target throttle valve operation amount, target EGR control valve operation amount, and target vane operation amount are input to the throttle valve, EGR control valve, and vane, respectively. Thereby, the supercharging pressure and the EGR rate are controlled to the target supercharging pressure and the target EGR rate, respectively.
 さて、第5実施形態では、上述したEGR率偏差が乗算される重みゲイン(以下このゲインを「EGR率重みゲイン」という)GEと上述した過給圧偏差が乗算される重みゲイン(以下このゲインを「過給圧重みゲイン」という)GPとが過給圧偏差積算値およびEGR率偏差積算値に基づいて補正されるべきゲインである。 In the fifth embodiment, a weight gain (hereinafter, this gain is referred to as “EGR rate weight gain”) GE multiplied by the above-described EGR rate deviation and a weight gain (hereinafter, this gain) that is multiplied by the above-described supercharging pressure deviation. Is a gain to be corrected based on the supercharging pressure deviation integrated value and the EGR rate deviation integrated value.
 すなわち、第5実施形態では、第1実施形態と同様に、機関運転中に算出される過給圧偏差積算値がその基準値と比較されると共に、機関運転中に算出されるEGR率偏差積算値がその基準値と比較される。 That is, in the fifth embodiment, as in the first embodiment, the boost pressure deviation integrated value calculated during engine operation is compared with the reference value, and the EGR rate deviation integrated value calculated during engine operation is compared. The value is compared with its reference value.
 ここで、過給圧偏差積算値がその基準値よりも大きく且つEGR率偏差積算値がその基準値よりも小さい場合には、過給圧重みゲインGPが大きくなるように所定の値(以下この値を「第1補正値」という)が過給圧重みゲインGPに加算されることによって同ゲインが補正されると共にEGR率重みゲインGEが小さくなるように第1補正値がEGR率重みゲインGEから減算されることによって同ゲインが補正される。 Here, when the supercharging pressure deviation integrated value is larger than the reference value and the EGR rate deviation integrated value is smaller than the reference value, a predetermined value (hereinafter referred to as this value) is set so that the supercharging pressure weight gain GP becomes large. The first correction value is set to the EGR rate weight gain GE so that the gain is corrected and the EGR rate weight gain GE is reduced by adding the value to the supercharging pressure weight gain GP. The same gain is corrected by subtracting from.
 また、過給圧偏差積算値がその基準値よりも大きく且つEGR率偏差積算値がその基準値よりも大きい場合には、EGR率重みゲインGEが大きくなるように1よりも大きい所定の値(以下この値を「第2補正値」という)がEGR率重みゲインGEに乗算されることによって同ゲインが補正されると共に過給圧重みゲインGPが大きくなるように第2補正値が過給圧重みゲインGPから乗算されることによって同ゲインが補正される。 Further, when the supercharging pressure deviation integrated value is larger than the reference value and the EGR rate deviation integrated value is larger than the reference value, a predetermined value larger than 1 so that the EGR rate weight gain GE is increased ( By multiplying the EGR rate weight gain GE by this value (hereinafter referred to as “second correction value”), the gain is corrected and the second correction value is set to the boost pressure so that the boost pressure weight gain GP is increased. The gain is corrected by multiplying by the weight gain GP.
 また、過給圧偏差積算値がその基準値よりも大きく且つEGR率偏差積算値がその基準値に略等しい(或いは、その基準値に等しい)場合には、過給圧重みゲインGPが大きくなるように1よりも大きい所定の値(以下この値を「第3補正値」という)が過給圧重みゲインGPに乗算されることによって同ゲインが補正されると共にEGR率重みゲインGEが大きくなるように第3補正値がEGR率重みゲインGEに乗算されることによって同ゲインが補正される。 Further, when the boost pressure deviation integrated value is larger than the reference value and the EGR rate deviation integrated value is substantially equal to (or equal to) the reference value, the boost pressure weight gain GP is increased. By multiplying the boost pressure gain gain GP by a predetermined value larger than 1 (hereinafter referred to as “third correction value”), the gain is corrected and the EGR rate weight gain GE is increased. In this way, the third correction value is multiplied by the EGR rate weight gain GE to correct the gain.
 また、基準値に対する過給圧偏差積算値の関係と基準値に対するEGR率偏差積算値の関係とが上で挙げた関係以外の関係にある場合には、過給圧重みゲインもEGR率重みゲインも補正されない。 In addition, when the relationship between the supercharging pressure deviation integrated value with respect to the reference value and the relationship between the EGR rate deviation integrated value with respect to the reference value is other than the relationship mentioned above, the supercharging pressure weight gain is also the EGR rate weight gain. Is not corrected.
 以上のように過給圧重みゲインおよびEGR率重みゲインが補正され、これら補正されたゲインがそれぞれ目標スロットル弁開度変化量、目標EGR制御弁開度変化量、および、目標ベーン開度変化量の設定に利用されると、第1実施形態に関連して説明した理由と同じ理由から、過給圧を目標過給圧に所定の追従性でもって制御することができると共にEGR率を目標EGR率に所定の追従性でもって制御することができるとう効果、或いは、実過給圧と実EGR率とをそれぞれ目標過給圧と目標EGR率とに対してバランス良く制御することができるという効果が得られる。 As described above, the supercharging pressure weight gain and the EGR rate weight gain are corrected, and these corrected gains are the target throttle valve opening change amount, the target EGR control valve opening change amount, and the target vane opening change amount, respectively. For the same reason as described in relation to the first embodiment, the supercharging pressure can be controlled to the target supercharging pressure with a predetermined followability and the EGR rate can be set to the target EGR. The effect of being able to control the rate with predetermined followability, or the effect of being able to control the actual boost pressure and the actual EGR rate in a balanced manner with respect to the target boost pressure and the target EGR rate, respectively. Is obtained.
 なお、第5実施形態では、基準値に対する過給圧偏差積算値のズレと基準値に対するEGR率偏差積算値のズレとに基づいて過給圧重みゲインおよびEGR率重みゲインが補正される。したがって、結果的には、第5実施形態は、過給圧偏差積算値がその基準値に一致すると共にEGR率偏差積算値がその基準値に一致するように目標ベーン開度変化量および目標EGR制御弁開度変化量を補正するものであるとも言える。 In the fifth embodiment, the supercharging pressure weight gain and the EGR rate weight gain are corrected based on the deviation of the supercharging pressure deviation integrated value with respect to the reference value and the deviation of the EGR rate deviation integrated value with respect to the reference value. Therefore, as a result, in the fifth embodiment, the target vane opening change amount and the target EGR are set such that the supercharging pressure deviation integrated value matches the reference value and the EGR rate deviation integrated value matches the reference value. It can also be said that the amount of change in the control valve opening is corrected.
 また、第5実施形態の過給圧重みゲインおよびEGR率重みゲインに対する補正に第2実施形態~第4実施形態の比例ゲインに対する補正の考え方を適用してもよい。 Further, the concept of correction for the proportional gain of the second to fourth embodiments may be applied to the correction for the supercharging pressure weight gain and the EGR rate weight gain of the fifth embodiment.
 次に、第5実施形態に従った目標ベーン操作量、目標EGR制御弁操作量、および、目標スロットル弁操作量の設定を実行するルーチンの一例について説明する。このルーチンは、図14に示されており、所定時間間隔毎に実行される。また、図14のステップ50~ステップ55は、それぞれ、図4のステップ10~ステップ15と同じであるので、これらステップの説明は省略する。 Next, an example of a routine for setting the target vane operation amount, the target EGR control valve operation amount, and the target throttle valve operation amount according to the fifth embodiment will be described. This routine is shown in FIG. 14 and is executed at predetermined time intervals. Further, Step 50 to Step 55 in FIG. 14 are the same as Step 10 to Step 15 in FIG. 4, respectively, and description of these steps will be omitted.
 図14のルーチンでは、ステップ56において、上式20を用いて目標ベーン開度変化量TDvと目標EGR制御弁開度変化量TDegrと目標スロットル弁開度変化量TDthとが算出される。次いで、ステップ57において、ステップ56で算出された目標ベーン開度変化量TDv、目標EGR制御弁開度変化量TDegr、および、目標スロットル弁開度変化量TDthに基づいて目標ベーン操作量Mv、目標EGR制御弁操作量Megr、および、目標スロットル弁操作量Mthがそれぞれ算出され、ルーチンが終了する。 In the routine of FIG. 14, in step 56, the target vane opening change amount TDv, the target EGR control valve opening change amount TDegr, and the target throttle valve opening change amount TDth are calculated using the above equation 20. Next, at step 57, based on the target vane opening change amount TDv, the target EGR control valve opening change amount TDegr, and the target throttle valve opening change amount TDth calculated at step 56, the target vane operation amount Mv, the target The EGR control valve operation amount Megr and the target throttle valve operation amount Mth are calculated, and the routine ends.
 また、第5実施形態に従った過給圧重みゲインおよびEGR率重みゲインの補正を実行するルーチンとしては、図15および図16に示されているルーチンを挙げることができる。なお、図15および図16のステップ500、ステップ501、ステップ504、および、ステップ507は、それぞれ、図5および図6のステップ100、ステップ101、ステップ104、および、ステップ107と同じであるので、これらステップの説明は省略する。また、図15および図16の残りのステップは、図5および図6の残りのステップにおけるベーン操作量比例ゲインGPpおよび現在のEGR制御弁操作量比例ゲインGEpがそれぞれ過給圧重みゲインGPおよびEGR率重みゲインGEに変更されたステップであるので、これらステップの説明も省略する。 Further, as routines for executing correction of the supercharging pressure weight gain and the EGR rate weight gain according to the fifth embodiment, the routines shown in FIGS. 15 and 16 can be exemplified. Note that step 500, step 501, step 504, and step 507 in FIGS. 15 and 16 are the same as step 100, step 101, step 104, and step 107 in FIGS. 5 and 6, respectively. Description of these steps is omitted. The remaining steps of FIGS. 15 and 16 are the same as the supercharging pressure weight gains GP and EGR, respectively, in which the vane operation amount proportional gain GPp and the current EGR control valve operation amount proportional gain GEp in the remaining steps of FIGS. Since these steps are changed to the rate weight gain GE, description of these steps is also omitted.
 なお、上述した実施形態では、過給圧偏差積算値がその基準値に一致すると共にEGR率偏差積算値がその基準値に一致するように、ベーン操作量比例ゲインおよびEGR制御弁操作量比例ゲインが補正され、或いは、ベーン開度比例ゲインおよびEGR制御弁開度比例ゲインが補正され、或いは、過給圧重みゲインおよびEGR率重みゲインが補正される。しかしながら、上述した実施形態において、過給圧偏差積算値とEGR率偏差積算値との比が過給圧偏差積算値の基準値とEGR率偏差積算値との比に一致するように、ベーン操作量比例ゲインおよびEGR制御弁操作量比例ゲインが補正され、或いは、ベーン開度比例ゲインおよびEGR制御弁開度比例ゲインが補正され、或いは、過給圧重みゲインおよびEGR率重みゲインが補正されてもよい。 In the above-described embodiment, the vane operation amount proportional gain and the EGR control valve operation amount proportional gain are set so that the supercharging pressure deviation integrated value matches the reference value and the EGR rate deviation integrated value matches the reference value. Is corrected, the vane opening proportional gain and the EGR control valve opening proportional gain are corrected, or the supercharging pressure weight gain and the EGR rate weight gain are corrected. However, in the above-described embodiment, the vane operation is performed so that the ratio between the supercharging pressure deviation integrated value and the EGR rate deviation integrated value coincides with the ratio between the reference value of the supercharging pressure deviation integrated value and the EGR rate deviation integrated value. The amount proportional gain and the EGR control valve operation amount proportional gain are corrected, the vane opening proportional gain and the EGR control valve opening proportional gain are corrected, or the boost pressure weight gain and the EGR rate weight gain are corrected. Also good.
 次に、過給圧偏差積算値とEGR率偏差積算値との比が過給圧偏差積算値の基準値とEGR率偏差積算値との比に一致するように、ベーン操作量比例ゲインおよびEGR制御弁操作量比例ゲインを補正し、或いは、ベーン開度比例ゲインおよびEGR制御弁開度比例ゲインを補正し、或いは、過給圧重みゲインおよびEGR率重みゲインを補正する実施形態の1つを第6実施形態として説明する。 Next, the vane operation amount proportional gain and the EGR are set so that the ratio of the supercharging pressure deviation integrated value and the EGR rate deviation integrated value matches the ratio of the reference value of the supercharging pressure deviation integrated value and the EGR rate deviation integrated value. One of the embodiments in which the control valve operation amount proportional gain is corrected, the vane opening proportional gain and the EGR control valve opening proportional gain are corrected, or the supercharging pressure weight gain and the EGR rate weight gain are corrected. This will be described as a sixth embodiment.
 第6実施形態では、第1実施形態と同様に、過給圧偏差積算値がその基準値よりも大きく且つEGR率偏差積算値がその基準値よりも小さい場合には、ベーン操作量比例ゲインが大きくなるように所定の値(以下この値を「第1補正値」という)がベーン操作量比例ゲインに加算されることによって同ゲインが補正されると共にEGR制御弁操作量比例ゲインが小さくなるように第1補正値がEGR制御弁操作量比例ゲインから減算されることによって同ゲインが補正される。そして、このとき、補正後のベーン操作量比例ゲインおよび補正後のEGR制御弁操作量比例ゲインを利用して上式1および上式2から算出される目標ベーン操作量および目標EGR制御弁操作量がそれぞれベーンおよびEGR制御弁に入力されることによって過給圧およびEGR率が制御されたときに過給圧偏差積算値とEGR率偏差積算値との比(以下この比を「偏差積算値比」という)が過給圧偏差積算値の基準値とEGR率偏差積算値の基準値との比(以下この比を「基準値比」という)と同じ比になるように(或いは、偏差積算値比が基準値比に近づくように)、第1補正値が設定される。 In the sixth embodiment, similarly to the first embodiment, when the supercharging pressure deviation integrated value is larger than the reference value and the EGR rate deviation integrated value is smaller than the reference value, the vane operation amount proportional gain is increased. By adding a predetermined value (hereinafter referred to as “first correction value”) to the vane operation amount proportional gain so as to increase, the gain is corrected and the EGR control valve operation amount proportional gain is decreased. The first correction value is subtracted from the EGR control valve operation amount proportional gain to correct the gain. At this time, the target vane operation amount and the target EGR control valve operation amount calculated from the above equations 1 and 2 using the corrected vane operation amount proportional gain and the corrected EGR control valve operation amount proportional gain. Is inputted to the vane and the EGR control valve, respectively, and the supercharging pressure deviation integrated value and the EGR rate deviation integrated value when the supercharging pressure and the EGR rate are controlled (hereinafter, this ratio is referred to as “deviation integrated value ratio”). (Referred to as the “reference value ratio”) (or the deviation integrated value) so that the ratio of the reference value of the supercharging pressure deviation integrated value and the reference value of the EGR rate deviation integrated value (hereinafter referred to as “reference value ratio”) The first correction value is set so that the ratio approaches the reference value ratio.
 また、第6実施形態では、第1実施形態と同様に、過給圧偏差積算値がその基準値よりも大きく且つEGR率偏差積算値がその基準値よりも大きい場合には、EGR制御弁操作量比例ゲインが大きくなるように1よりも大きい所定の値(以下この値を「第2補正値」という)がEGR制御弁操作量比例ゲインに乗算されることによって同ゲインが補正されると共にベーン操作量比例ゲインが大きくなるように第2補正値がベーン操作量比例ゲインに乗算されることによって同ゲインが補正される。そして、このとき、補正後のベーン操作量比例ゲインおよび補正後のEGR制御弁操作量比例ゲインを利用して上式1および上式2から算出される目標ベーン操作量および目標EGR制御弁操作量がそれぞれベーンおよびEGR制御弁に入力されることによって過給圧およびEGR率が制御されたときに偏差積算値比が基準値比と同じ比になるように(或いは、偏差積算値比が基準値比に近づくように)、第2補正値が設定される。 Further, in the sixth embodiment, as in the first embodiment, when the supercharging pressure deviation integrated value is larger than the reference value and the EGR rate deviation integrated value is larger than the reference value, the EGR control valve operation is performed. The gain is corrected and the vane is corrected by multiplying the EGR control valve operation amount proportional gain by a predetermined value larger than 1 (hereinafter referred to as “second correction value”) so that the amount proportional gain becomes large. The gain is corrected by multiplying the vane manipulated variable proportional gain by the second correction value so that the manipulated variable proportional gain is increased. At this time, the target vane operation amount and the target EGR control valve operation amount calculated from the above equations 1 and 2 using the corrected vane operation amount proportional gain and the corrected EGR control valve operation amount proportional gain. Are input to the vane and EGR control valves, respectively, so that the deviation integrated value ratio becomes the same as the reference value ratio when the supercharging pressure and the EGR rate are controlled (or the deviation integrated value ratio is the reference value). The second correction value is set so as to approach the ratio.
 また、第6実施形態では、第1実施形態と同様に、過給圧偏差積算値がその基準値よりも大きく且つEGR率偏差積算値がその基準値に略等しい(或いは、その基準値に等しい)場合には、ベーン操作量比例ゲインが大きくなるように1よりも大きい所定の値(以下この値を「第3補正値」という)がベーン操作量比例ゲインに乗算されることによって同ゲインが補正されると共にEGR制御弁操作量比例ゲインが大きくなるように第3補正値がEGR制御弁操作量比例ゲインに乗算されることによって同ゲインが補正される。そして、このとき、補正後のベーン操作量比例ゲインおよび補正後のEGR制御弁操作量比例ゲインを利用して上式1および上式2から算出される目標ベーン操作量および目標EGR制御弁操作量がそれぞれベーンおよびEGR制御弁に入力されることによって過給圧およびEGR率が制御されたときに偏差積算値比が基準値比と同じ比になるように(或いは、偏差積算値比が基準値比に近づくように)、第3補正値が設定される。 In the sixth embodiment, similarly to the first embodiment, the supercharging pressure deviation integrated value is larger than the reference value and the EGR rate deviation integrated value is substantially equal to the reference value (or equal to the reference value). ), The vane manipulated variable proportional gain is multiplied by a predetermined value larger than 1 (hereinafter referred to as “third correction value”) so that the vane manipulated variable proportional gain is increased. The gain is corrected by multiplying the EGR control valve operation amount proportional gain by the third correction value so that the EGR control valve operation amount proportional gain is increased. At this time, the target vane operation amount and the target EGR control valve operation amount calculated from the above equations 1 and 2 using the corrected vane operation amount proportional gain and the corrected EGR control valve operation amount proportional gain. Is input to the vane and the EGR control valve, respectively, so that the deviation integrated value ratio becomes the same as the reference value ratio when the supercharging pressure and the EGR rate are controlled (or the deviation integrated value ratio is the reference value). The third correction value is set so as to approach the ratio.
 また、第6実施形態では、第1実施形態と同様に、基準値に対する過給圧偏差積算値の関係と基準値に対するEGR率偏差積算値の関係とが上で挙げた関係以外にある場合には、ベーン操作量比例ゲインもEGR制御弁操作量比例ゲインも補正されない。 Further, in the sixth embodiment, similarly to the first embodiment, when the relationship between the supercharging pressure deviation integrated value with respect to the reference value and the relationship between the EGR rate deviation integrated value with respect to the reference value is other than the relationship mentioned above. Neither the vane operation amount proportional gain nor the EGR control valve operation amount proportional gain is corrected.
 第6実施形態によれば、偏差積算値比が基準値比に一致するように目標ベーン操作量および目標EGR制御弁操作量が補正される。ここで、偏差積算値比が基準値比に一致していれば、少なくとも、目標過給圧追従性と目標EGR率追従性との関係が所期の関係(すなわち、ベーンの応答もEGR制御弁の応答も所期の応答であるときの目標過給圧追従性と目標EGR率追従性との関係)に近い関係に維持される。したがって、目標過給圧追従性と目標EGR率追従性とがバランス良く補正されることになる。 According to the sixth embodiment, the target vane operation amount and the target EGR control valve operation amount are corrected so that the deviation integrated value ratio matches the reference value ratio. Here, if the deviation integrated value ratio matches the reference value ratio, at least the relationship between the target boost pressure tracking capability and the target EGR rate tracking capability is the desired relationship (that is, the vane response is also the EGR control valve). Is also close to the relationship between the target boost pressure follow-up property and the target EGR rate follow-up property when the response is an intended response. Therefore, the target boost pressure followability and the target EGR rate followability are corrected with a good balance.
 なお、第6実施形態に従った目標ベーン操作量および目標EGR制御弁操作量の設定を実行するルーチンとしては、例えば、図4と同じルーチンが挙げられる。また、第6実施形態に従ったベーン操作量比例ゲインおよびEGR制御弁操作量比例ゲインの補正を実行するルーチンとしては、例えば、図17および図18のルーチンが挙げられる。 As a routine for executing the setting of the target vane operation amount and the target EGR control valve operation amount according to the sixth embodiment, for example, the same routine as that shown in FIG. Examples of routines for correcting the vane operation amount proportional gain and the EGR control valve operation amount proportional gain according to the sixth embodiment include the routines shown in FIGS. 17 and 18.
 次に、図17および図18のルーチンについて説明する。なお、このルーチンは、所定時間間隔毎に実行される。また、図17および図18のルーチンのステップ600、601、602~604、605~607、608、および、609は、それぞれ、図5および図6のルーチンのステップ100、101、102~104、105~107、108、および、109と同じであるので、これらステップの説明は省略する。 Next, the routines of FIGS. 17 and 18 will be described. This routine is executed at predetermined time intervals. Also, steps 600, 601, 602 to 604, 605 to 607, 608, and 609 of the routines of FIGS. Since these steps are the same as 107 to 108 and 109, description of these steps is omitted.
 図17および図18のルーチンでは、ステップ601においてステップ600で取得された過給圧偏差積算値ΣΔPim(k)がその基準値THpimよりも大きく(ΣΔPim(k)>THpim)且つステップ600で取得された現在のEGR率偏差積算値ΣΔRegr(k)がその下限値(すなわち、その基準値THegrから所定値αを差し引いた値)(THegr-α)よりも小さい(ΣΔRegr(k)<THegr-α)と判別され、ルーチンがステップ601Aに進むと、偏差積算値比(すなわち、ステップ600で取得されたEGR率偏差積算値ΣΔRegr(k)に対するステップ600で取得された過給圧偏差積算値ΣΔPim(k)の比)ΣΔPim(k)/ΣΔRegr(k)が算出される。次いで、ステップ601Bにおいて、後のステップ603で補正されたベーン操作量比例ゲインGPpおよびEGR制御弁操作量比例ゲインGEpがベーン操作量およびEGR制御弁操作量の設定に利用された場合に偏差積算値比を基準値比(すなわち、EGR率偏差積算値の基準値に対する過給圧偏差積算値の基準値の比)に一致させる(或いは、偏差積算値比を基準値比に近づける)ことができる第1補正値K1がステップ601Aで算出された偏差積算値比ΣΔPim(k)/ΣΔRegr(k)に基づいて設定される。この場合、ステップ603において、ステップ602で取得された現在のベーン操作量比例ゲインGPp(k)にステップ601Bで設定された第1補正値K1が加算されることによって同ゲインが補正されると共にステップ602で取得された現在のEGR制御弁操作量比例ゲインGEp(k)からステップ601Bで設定された第1補正値K1が減算されることによって同ゲインが補正される。 In the routines of FIGS. 17 and 18, the supercharging pressure deviation integrated value ΣΔPim (k) acquired in step 600 in step 601 is larger than the reference value THpim (ΣΔPim (k)> THpim) and acquired in step 600. Further, the current EGR rate deviation integrated value ΣΔRegr (k) is smaller than the lower limit value (that is, the value obtained by subtracting the predetermined value α from the reference value THegr) (THegr−α) (ΣΔRegr (k) <THegr−α). When the routine proceeds to step 601A, the deviation integrated value ratio (that is, the supercharging pressure deviation integrated value ΣΔPim (k) acquired in step 600 with respect to the EGR rate deviation integrated value ΣΔRegr (k) acquired in step 600). ))) ΣΔPim (k) / ΣΔRegr (k) is calculated. Next, in step 601B, when the vane operation amount proportional gain GPp and the EGR control valve operation amount proportional gain GEp corrected in the subsequent step 603 are used for setting the vane operation amount and the EGR control valve operation amount, the deviation integrated value. The ratio can be matched with the reference value ratio (that is, the ratio of the reference value of the boost pressure deviation integrated value to the reference value of the EGR rate deviation integrated value) (or the deviation integrated value ratio can be made closer to the reference value ratio). One correction value K1 is set based on the deviation integrated value ratio ΣΔPim (k) / ΣΔRegr (k) calculated in step 601A. In this case, in step 603, the gain is corrected by adding the first correction value K1 set in step 601B to the current vane operation amount proportional gain GPp (k) acquired in step 602. By subtracting the first correction value K1 set in step 601B from the current EGR control valve operation amount proportional gain GEp (k) acquired in 602, the gain is corrected.
 また、図17および図18のルーチンでは、ステップ604においてステップ600で取得された現在の過給圧偏差積算値ΣΔPim(k)がその基準値THpimよりも大きく(ΣΔPim(k)>THpim)且つステップ600で取得された現在のEGR率偏差積算値ΣΔRegr(k)がその上限値(すなわち、その基準値THegrに所定値αを加えた値)(THegr+α)よりも大きい(ΣΔRegr(k)>THegr+α)と判別され、ルーチンがステップ604Aに進むと、偏差積算値比(すなわち、ステップ600で取得されたEGR率偏差積算値ΣΔRegr(k)に対するステップ600で取得された過給圧偏差積算値ΣΔPim(k)の比)ΣΔPim(k)/ΣΔRegr(k)が算出される。次いで、ステップ604Bにおいて、後のステップ606で補正されたベーン操作量比例ゲインGPpおよびEGR制御弁操作量比例ゲインGEpがベーン操作量およびEGR制御弁操作量の設定に利用された場合に偏差積算値比を基準値比(すなわち、EGR率偏差積算値の基準値に対する過給圧偏差積算値の基準値の比)に一致させる(或いは、偏差積算値比を基準値比に近づける)ことができる第2補正値K2がステップ604Aで算出された偏差積算値比ΣΔPim(k)/ΣΔRegr(k)に基づいて設定される。この場合、ステップ606において、ステップ605で取得された現在のベーン操作量比例ゲインGPp(k)にステップ604Bで設定された第2補正値K2が乗算されることによって同ゲインが補正されると共にステップ605で取得された現在のEGR制御弁操作量比例ゲインGEp(k)にステップ604Bで設定された第2補正値K2が乗算されることによって同ゲインが補正される。 In the routines of FIGS. 17 and 18, the current boost pressure deviation integrated value ΣΔPim (k) acquired in step 600 in step 604 is larger than the reference value THpim (ΣΔPim (k)> THpim) and step The current EGR rate deviation integrated value ΣΔRegr (k) acquired at 600 is larger than its upper limit value (that is, a value obtained by adding a predetermined value α to the reference value THegr) (THegr + α) (ΣΔRegr (k)> THegr + α). When the routine proceeds to step 604A, the deviation integrated value ratio (that is, the supercharging pressure deviation integrated value ΣΔPim (k) acquired in step 600 with respect to the EGR rate deviation integrated value ΣΔRegr (k) acquired in step 600). ))) ΣΔPim (k) / ΣΔRegr (k) is calculated. Next, in step 604B, when the vane operation amount proportional gain GPp and the EGR control valve operation amount proportional gain GEp corrected in the subsequent step 606 are used for setting the vane operation amount and the EGR control valve operation amount, the deviation integrated value. The ratio can be matched with the reference value ratio (that is, the ratio of the reference value of the boost pressure deviation integrated value to the reference value of the EGR rate deviation integrated value) (or the deviation integrated value ratio can be made closer to the reference value ratio). 2 correction value K2 is set based on the deviation integrated value ratio ΣΔPim (k) / ΣΔRegr (k) calculated in step 604A. In this case, in step 606, the current vane operation amount proportional gain GPp (k) acquired in step 605 is multiplied by the second correction value K2 set in step 604B, thereby correcting the gain. The current EGR control valve operation amount proportional gain GEp (k) acquired in 605 is multiplied by the second correction value K2 set in step 604B to correct the gain.
 また、図17および図18のルーチンでは、ステップ607において、ステップ600で取得された現在の過給圧偏差積算値ΣΔPim(k)がその基準値THpimよりも大きく(ΣΔPim(k)>THpim)且つステップ600で取得された現在のEGR率偏差積算値ΣΔRegr(k)がその基準値THegrに略等しい、すなわち、ステップ600で取得された現在のEGR率偏差積算値ΣΔRegr(k)がその下限値(THegr-α)以上であって且つその上限値(THegr+α)以下である(THegr-α≦ΣΔRegr(k)≦THegr+α)と判別され、ルーチンがステップ607Aに進むと、偏差積算値比(すなわち、ステップ600で取得されたEGR率偏差積算値ΣΔRegr(k)に対するステップ600で取得された過給圧偏差積算値ΣΔPim(k)の比)ΣΔPim(k)/ΣΔRegr(k)が算出される。次いで、ステップ607Bにおいて、後のステップ609で補正されたベーン操作量比例ゲインGPpおよびEGR制御弁操作量比例ゲインGEpがベーン操作量およびEGR制御弁操作量の設定に利用された場合に偏差積算値比を基準値比(すなわち、EGR率偏差積算値の基準値に対する過給圧偏差積算値の基準値の比)に一致させる(或いは、偏差積算値比を基準値比に近づける)ことができる第3補正値K3がステップ607Aで算出された偏差積算値比ΣΔPim(k)/ΣΔRegr(k)に基づいて設定される。この場合、ステップ609において、ステップ608で取得された現在のベーン操作量比例ゲインGPp(k)にステップ607Bで設定された第3補正値K3が乗算されることによって同ゲインが補正されると共にステップ608で取得された現在のEGR制御弁操作量比例ゲインGEp(k)にステップ607Bで設定された第3補正値K3が乗算されることによって同ゲインが補正される。 In the routines shown in FIGS. 17 and 18, in step 607, the current supercharging pressure deviation integrated value ΣΔPim (k) acquired in step 600 is larger than the reference value THpim (ΣΔPim (k)> THpim) and The current EGR rate deviation integrated value ΣΔRegr (k) acquired in step 600 is substantially equal to the reference value THegr, that is, the current EGR rate deviation integrated value ΣΔRegr (k) acquired in step 600 is its lower limit value ( When it is determined that (THegr−α ≦ ΣΔRegr (k) ≦ THegr + α) which is equal to or higher than THegr−α) and equal to or lower than the upper limit value (THegr + α) and the routine proceeds to Step 607A, the deviation integrated value ratio (ie, Step In step 600 for the EGR rate deviation integrated value ΣΔRegr (k) acquired in step 600 Obtained by the ratio of supercharging pressure deviation integrated value ΣΔPim (k)) ΣΔPim (k) / ΣΔRegr (k) is calculated. Next, in step 607B, the deviation integrated value when the vane operation amount proportional gain GPp and the EGR control valve operation amount proportional gain GEp corrected in the subsequent step 609 are used for setting the vane operation amount and the EGR control valve operation amount. The ratio can be matched with the reference value ratio (that is, the ratio of the reference value of the boost pressure deviation integrated value to the reference value of the EGR rate deviation integrated value) (or the deviation integrated value ratio can be made closer to the reference value ratio). 3 correction value K3 is set based on deviation integrated value ratio ΣΔPim (k) / ΣΔRegr (k) calculated in step 607A. In this case, in step 609, the current vane manipulated variable proportional gain GPp (k) acquired in step 608 is multiplied by the third correction value K3 set in step 607B, thereby correcting the gain. The current EGR control valve operation amount proportional gain GEp (k) acquired in 608 is multiplied by the third correction value K3 set in step 607B to correct the gain.
 また、上述した実施形態は、圧縮自着火式の内燃機関(いわゆる、ディーゼルエンジン)に本発明を適用した場合の実施形態である。しかしながら、本発明の制御装置は、火花点火式の内燃機関(いわゆる、ガソリンエンジン)にも適用可能である。 The above-described embodiment is an embodiment when the present invention is applied to a compression self-ignition internal combustion engine (so-called diesel engine). However, the control device of the present invention is also applicable to a spark ignition type internal combustion engine (so-called gasoline engine).

Claims (7)

  1.  互いに影響し合う2つの制御量の1つである第1制御量を制御する第1制御対象と、前記互いに影響し合う2つの制御量の残りの1つである第2制御量を制御する第2制御対象とを備えた内燃機関の制御装置であって、目標とするべき第1制御量を目標第1制御量として設定すると共に目標とするべき第2制御量を目標第2制御量として設定し、第1制御量を目標第1制御量に到達させ且つ第2制御量を目標第2制御量に到達させるために第1制御対象に入力するべき操作量を目標第1操作量として設定すると共に第2制御対象に入力するべき操作量を目標第2操作量として設定し、目標第1操作量に相当する操作量を第1制御対象に入力すると共に目標第2操作量に相当する操作量を第2制御対象に入力することによって第1制御量を目標第1制御量に制御すると共に第2制御量を目標第2制御量に制御する制御装置において、
     内燃機関の運転中に目標第1制御量に対する実際の第1制御量の偏差の積算値が第1制御量偏差積算値として算出されると共に目標第2制御量に対する実際の第2制御量の偏差の積算値が第2制御量偏差積算値として算出され、前記第1制御量偏差積算値と前記第2制御量偏差積算値とに基づいて目標第1操作量と目標第2操作量とが補正される内燃機関の制御装置。
    A first control target that controls a first control amount that is one of two control amounts that affect each other, and a second control amount that controls a second control amount that is the remaining one of the two control amounts that affect each other. A control apparatus for an internal combustion engine having two control targets, wherein a first control amount to be targeted is set as a target first control amount and a second control amount to be targeted is set as a target second control amount Then, an operation amount to be input to the first control target in order to make the first control amount reach the target first control amount and make the second control amount reach the target second control amount is set as the target first operation amount. The operation amount to be input to the second control object is set as the target second operation amount, and the operation amount corresponding to the target first operation amount is input to the first control object and the operation amount corresponding to the target second operation amount. Is input to the second control target to target the first control amount. A control apparatus for controlling the target second controlled variable of the second control quantity to control the first control amount,
    During the operation of the internal combustion engine, the integrated value of the deviation of the actual first control amount with respect to the target first control amount is calculated as the first control amount deviation integrated value, and the deviation of the actual second control amount with respect to the target second control amount Is calculated as the second controlled variable deviation integrated value, and the target first manipulated variable and target second manipulated variable are corrected based on the first controlled variable deviation integrated value and the second controlled variable deviation integrated value. Control device for an internal combustion engine.
  2.  前記第1制御量偏差積算値と比較されるべき第1制御量偏差積算値が第1閾値として用意されると共に、前記第2制御量偏差積算値と比較されるべき第2制御量偏差積算値が第2閾値として用意され、前記第1制御量偏差積算値と前記第2制御量偏差積算値とに基づいて目標第1操作量と目標第2操作量とが補正される場合、前記第1制御量偏差積算値が前記第1閾値と比較されると共に、前記第2制御量偏差積算値が前記第2閾値と比較され、前記第1閾値に対する前記第1制御量偏差積算値の比較結果と前記第2閾値に対する前記第2制御量偏差積算値の比較結果とに基づいて目標第1操作量と目標第2操作量とが補正される請求項1に記載の内燃機関の制御装置。 A first controlled variable deviation integrated value to be compared with the first controlled variable deviation integrated value is prepared as a first threshold value, and a second controlled variable deviation integrated value to be compared with the second controlled variable deviation integrated value Is prepared as the second threshold value, and when the target first operation amount and the target second operation amount are corrected based on the first control amount deviation integrated value and the second control amount deviation integrated value, The control amount deviation integrated value is compared with the first threshold value, the second control amount deviation integrated value is compared with the second threshold value, and the comparison result of the first control amount deviation integrated value with respect to the first threshold value is 2. The control device for an internal combustion engine according to claim 1, wherein the target first operation amount and the target second operation amount are corrected based on a comparison result of the second control amount deviation integrated value with respect to the second threshold value.
  3.  前記第1閾値に対する前記第1制御量偏差積算値の比較結果と前記第2閾値に対する前記第2制御量偏差積算値の比較結果とに基づいて目標第1操作量と目標第2操作量とが補正される場合、前記第1制御量偏差積算値が前記第1閾値に一致すると共に前記第2制御量偏差積算値が前記第2閾値に一致するように、或いは、前記第1制御量偏差積算値と前記第2制御量偏差積算値との比が前記第1閾値と前記第2閾値との比に一致するように、目標第1操作量と目標第2操作量とが補正される請求項2に記載の内燃機関の制御装置。 Based on the comparison result of the first control amount deviation integrated value with respect to the first threshold value and the comparison result of the second control amount deviation integrated value with respect to the second threshold value, the target first operation amount and the target second operation amount are obtained. When the correction is made, the first control amount deviation integrated value coincides with the first threshold value and the second control amount deviation integrated value coincides with the second threshold value, or the first control amount deviation integrated value. The target first manipulated variable and the target second manipulated variable are corrected so that a ratio between the value and the second control amount deviation integrated value matches a ratio between the first threshold and the second threshold. 3. The control device for an internal combustion engine according to 2.
  4.  互いに影響し合う2つの制御量の1つである第1制御量を制御する第1制御対象と、前記互いに影響し合う2つの制御量の残りの1つである第2制御量を制御する第2制御対象とを備えた内燃機関の制御装置であって、第1制御量として目標とするべき制御量を目標第1制御量として設定すると共に第2制御量として目標とするべき制御量を目標第2制御量として設定し、第1制御量を目標第1制御量に到達させ且つ第2制御量を目標第2制御量に到達させるために目標とするべき第1制御対象の動作状態を目標第1動作状態として設定すると共に目標とするべき第2制御対象の動作状態を目標第2動作状態として設定し、第1制御対象の動作状態が目標第1動作状態になるように第1制御対象の動作状態を制御すると共に第2制御対象の動作状態が目標第2動作状態になるように第2制御対象の動作状態を制御することによって第1制御量を目標第1制御量に制御すると共に第2制御量を目標第2制御量に制御する制御装置において、内燃機関の運転中に目標第1制御量に対する実際の第1制御量の偏差の積算値が第1制御量偏差積算値として算出されると共に目標第2制御量に対する実際の第2制御量の偏差の積算値が第2制御量偏差積算値として算出され、前記第1制御量偏差積算値と前記第2制御量偏差積算値とに基づいて目標第1動作状態と目標第2動作状態とが補正される内燃機関の制御装置。 A first control target that controls a first control amount that is one of two control amounts that affect each other, and a second control amount that controls a second control amount that is the remaining one of the two control amounts that affect each other. A control device for an internal combustion engine having two control targets, wherein a control amount to be targeted as a first control amount is set as a target first control amount and a control amount to be targeted as a second control amount is set as a target Set as the second control amount, and target the operating state of the first control target that should be the target in order to make the first control amount reach the target first control amount and make the second control amount reach the target second control amount. The first controlled object is set as the first operating state, the operating state of the second controlled object to be targeted is set as the target second operating state, and the operating state of the first controlled object becomes the target first operating state. And controlling the operation state of the second controlled object The first control amount is controlled to the target first control amount and the second control amount is controlled to the target second control amount by controlling the operation state of the second control target so that the operation state becomes the target second operation state. In the control device, during operation of the internal combustion engine, the integrated value of the deviation of the actual first control amount with respect to the target first control amount is calculated as the first control amount deviation integrated value, and the actual first control amount with respect to the target second control amount is calculated. The integrated value of the deviations of the two controlled variables is calculated as the second controlled variable deviation integrated value. Based on the first controlled variable deviation integrated value and the second controlled variable deviation integrated value, the target first operating state and the target second A control device for an internal combustion engine in which the operating state is corrected.
  5.  前記第1制御量偏差積算値と比較されるべき第1制御量偏差積算値が第1閾値として用意されると共に、前記第2制御量偏差積算値と比較されるべき第2制御量偏差積算値が第2閾値として用意され、前記第1制御量偏差積算値と前記第2制御量偏差積算値とに基づいて目標第1動作状態と目標第2動作状態とが補正される場合、前記第1制御量偏差積算値が前記第1閾値と比較されると共に、前記第2制御量偏差積算値が前記第2閾値と比較され、前記第1閾値に対する前記第1制御量偏差積算値の比較結果と前記第2閾値に対する前記第2制御量偏差積算値の比較結果とに基づいて目標第1動作状態と目標第2動作状態とが補正される請求項4に記載の内燃機関の制御装置。 A first controlled variable deviation integrated value to be compared with the first controlled variable deviation integrated value is prepared as a first threshold value, and a second controlled variable deviation integrated value to be compared with the second controlled variable deviation integrated value Is prepared as the second threshold value, and when the target first operation state and the target second operation state are corrected based on the first control amount deviation integrated value and the second control amount deviation integrated value, The control amount deviation integrated value is compared with the first threshold value, the second control amount deviation integrated value is compared with the second threshold value, and the comparison result of the first control amount deviation integrated value with respect to the first threshold value is The control apparatus for an internal combustion engine according to claim 4, wherein the target first operation state and the target second operation state are corrected based on a comparison result of the second control amount deviation integrated value with respect to the second threshold value.
  6.  前記第1閾値に対する前記第1制御量偏差積算値の比較結果と前記第2閾値に対する前記第2制御量偏差積算値の比較結果とに基づいて目標第1動作状態と目標第2動作状態とが補正される場合、前記第1制御量偏差積算値が前記第1閾値に一致すると共に前記第2制御量偏差積算値が前記第2閾値に一致するように、或いは、前記第1制御量偏差積算値と前記第2制御量偏差積算値との比が前記第1閾値と前記第2閾値との比に一致するように、目標第1動作状態と目標第2動作状態とが補正される請求項5に記載の内燃機関の制御装置。 Based on the comparison result of the first control amount deviation integrated value with respect to the first threshold and the comparison result of the second control amount deviation integrated value with respect to the second threshold, the target first operation state and the target second operation state are determined. When the correction is made, the first control amount deviation integrated value coincides with the first threshold value and the second control amount deviation integrated value coincides with the second threshold value, or the first control amount deviation integrated value. The target first operation state and the target second operation state are corrected so that a ratio between the value and the second control amount deviation integrated value matches a ratio between the first threshold value and the second threshold value. 5. A control device for an internal combustion engine according to 5.
  7.  前記第1閾値と前記第2閾値とが第1制御対象の応答が所定の応答であって且つ第2制御対象の応答が所定の応答であるときにとり得る値に設定されている請求項2、3、5、および、6のいずれか1つに記載の内燃機関の制御装置。 The first threshold value and the second threshold value are set to values that can be taken when the response of the first control target is a predetermined response and the response of the second control target is a predetermined response. The control apparatus for an internal combustion engine according to any one of 3, 5, and 6.
PCT/JP2010/069706 2010-11-05 2010-11-05 Control device of internal combustion engine WO2012060012A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2010/069706 WO2012060012A1 (en) 2010-11-05 2010-11-05 Control device of internal combustion engine
JP2012541696A JP5429401B2 (en) 2010-11-05 2010-11-05 Control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/069706 WO2012060012A1 (en) 2010-11-05 2010-11-05 Control device of internal combustion engine

Publications (1)

Publication Number Publication Date
WO2012060012A1 true WO2012060012A1 (en) 2012-05-10

Family

ID=46024142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/069706 WO2012060012A1 (en) 2010-11-05 2010-11-05 Control device of internal combustion engine

Country Status (2)

Country Link
JP (1) JP5429401B2 (en)
WO (1) WO2012060012A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015224557A (en) * 2014-05-26 2015-12-14 株式会社豊田自動織機 Internal combustion engine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000356158A (en) * 1999-06-15 2000-12-26 Nissan Motor Co Ltd Control device for engine
JP2004060601A (en) * 2002-07-31 2004-02-26 Denso Corp Control device of internal combustion engine
JP2005207234A (en) * 2004-01-20 2005-08-04 Denso Corp Engine control system
JP2005351199A (en) * 2004-06-11 2005-12-22 Denso Corp Engine control system
JP2010249057A (en) * 2009-04-16 2010-11-04 Isuzu Motors Ltd Control method and control device for internal combustion engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000356158A (en) * 1999-06-15 2000-12-26 Nissan Motor Co Ltd Control device for engine
JP2004060601A (en) * 2002-07-31 2004-02-26 Denso Corp Control device of internal combustion engine
JP2005207234A (en) * 2004-01-20 2005-08-04 Denso Corp Engine control system
JP2005351199A (en) * 2004-06-11 2005-12-22 Denso Corp Engine control system
JP2010249057A (en) * 2009-04-16 2010-11-04 Isuzu Motors Ltd Control method and control device for internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015224557A (en) * 2014-05-26 2015-12-14 株式会社豊田自動織機 Internal combustion engine

Also Published As

Publication number Publication date
JP5429401B2 (en) 2014-02-26
JPWO2012060012A1 (en) 2014-05-12

Similar Documents

Publication Publication Date Title
US7219002B2 (en) Control apparatus for internal combustion engine
JP2005233033A (en) Control device of diesel engine
US10309298B2 (en) Control device of an engine
JPWO2007055094A1 (en) Control device for internal combustion engine
RU2614050C1 (en) Control device for internal combustion engine
WO2011086708A1 (en) Control device for internal combustion engine
JP4228953B2 (en) Control device for internal combustion engine
JP5429401B2 (en) Control device for internal combustion engine
JP2003021000A (en) Exhaust gas re-circulating device of engine
JP4103264B2 (en) Control device for compression ignition engine
EP2189647B1 (en) Boost pressure controller for internal combustion engine
JP5556891B2 (en) Control device for internal combustion engine
WO2012032618A1 (en) Control device for internal combustion engine
JP5549457B2 (en) Control device for internal combustion engine
JP3929712B2 (en) EGR valve control method and apparatus
WO2013008295A1 (en) Control device for internal combustion engine
JP2019152122A (en) Internal combustion engine system
JP2012036851A (en) Control device for internal combustion engine
JP5704250B2 (en) Control device for internal combustion engine
JP3603685B2 (en) Control unit for diesel engine
JP5494307B2 (en) Supercharging pressure control device for internal combustion engine
JP6437085B1 (en) Control device for internal combustion engine
JP4228577B2 (en) Engine air-fuel ratio control device
JPS62225719A (en) Control device for variable capacity turbocharger
JP6330749B2 (en) Engine control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10859268

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012541696

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10859268

Country of ref document: EP

Kind code of ref document: A1