JP2003021000A - Exhaust gas re-circulating device of engine - Google Patents

Exhaust gas re-circulating device of engine

Info

Publication number
JP2003021000A
JP2003021000A JP2001203282A JP2001203282A JP2003021000A JP 2003021000 A JP2003021000 A JP 2003021000A JP 2001203282 A JP2001203282 A JP 2001203282A JP 2001203282 A JP2001203282 A JP 2001203282A JP 2003021000 A JP2003021000 A JP 2003021000A
Authority
JP
Japan
Prior art keywords
sensor
target
intake
egr valve
egr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001203282A
Other languages
Japanese (ja)
Inventor
Noboru Uchida
登 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP2001203282A priority Critical patent/JP2003021000A/en
Publication of JP2003021000A publication Critical patent/JP2003021000A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

PROBLEM TO BE SOLVED: To control an EGR valve and a stationary blade rotating means properly while executing the operation responsively during the transient operation of an engine. SOLUTION: The engine has a turbocharger 11, an EGR device 21, and a controller 46 for controlling the EGR valve 21b and the stationary blade rotating means lid by a rotation sensor 43 and a load sensor 44. The engine also has an intake quantity sensor 22, an intake pressure sensor 23, and an intake temperature sensor 24. The controller 46 has a target value setting means 46b for setting the target air quantity and the target supercharged pressure based on the detected output of each sensor and a deviation setting means 46c for setting the EGR valve deviation quantity and the VGT deviation quantity based on each detected output, target air quantity and target supercharged pressure. The controller controls the EGR valve by the proportional integral correction of the steady EGR opening based on the EGR valve deviation quantity, and controls the stationary blade rotating means by the proportional integral correction of the steady target VGT opening based on the VGT deviation quantity.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、可変翼型のターボ
過給機を有するエンジンにおいて、排ガスの一部を吸気
通路又はシリンダに還流させて再循環する装置に関する
ものである。 【0002】 【従来の技術】従来、ディーゼルエンジンの排気ガスを
吸気通路内に還流させるEGR通路と、このEGR通路
に設けられた上記排気ガスの還流量を調節するEGRバ
ルブを有するEGR装置が知られている。このEGR装
置では、ディーゼルエンジンの排気中に含まれる黒煙や
未燃焼燃料等のパティキュレート成分及びNOx成分を
低減するため、排気ガスの目標空気過剰率と実空気過剰
率との偏差をなくすようにEGRバルブを制御すること
が行われている。 【0003】即ち、エンジンの回転センサと負荷センサ
により検出されたエンジンの運転状態に対応する目標空
気過剰率を設定するとともに、排気通路に設けられたリ
ニア空燃比センサにより、排気通路を流通する排気ガス
の実空気過剰率を検出し、この実空気過剰率が上記目標
空気過剰率よりも大きくなると、EGRバルブを開いて
排気還流量を増加させることにより、実空気過剰率を小
さくし、逆に実空気過剰率が目標空気過剰率よりも小さ
くなると、上記EGRバルブを閉じて排気還流量を低下
させ、或いはカットすることにより、実空気過剰率を大
きくする制御を実行して、過剰な排気還流による黒煙の
発生等を伴わずに排気ガス中のNOx成分を低減できる
ようにすることが行われている。 【0004】 【発明が解決しようとする課題】しかし、リニア空燃比
センサは、高価である上に検出遅れが生じる。例えば、
センサの検出応答時定数は1/10秒から数秒のオーダ
ーである。このため、目標空気過剰率と実空気過剰率が
最もずれる加速初期や変速初期に燃料噴射圧力の補正が
遅れる。つまり、実空気過剰率の応答遅れのタイミング
に合わせて燃料噴射圧力の補正量を与えなければならな
いのに、センサの検出遅れにより実空気過剰率の目標空
気過剰率からの誤差が最も大きいときに燃料噴射圧力が
変化せず、実空気過剰率の誤差が減ってきたときに燃料
噴射圧力が変化するのでは、黒煙がかえって発生した
り、ディーゼルエンジンにノック音が出たりしてしまう
不具合がある。 【0005】また、エンジンが可変翼型のターボ過給機
を備えている場合には、定常の運転状態を想定したマッ
プにより可変翼の制御とEGRバルブの制御がそれぞれ
独立して行われているため、加速時や変速中におけるい
わゆるターボラグにより実過給圧の応答遅れによる実排
気還流量の変化が大きく影響して実空気過剰率と目標空
気過剰率の誤差及び実EGR率と目標EGR率の誤差が
更に拡大し、排気ガス中のパティキュレート成分と、N
Ox成分との両方を適正に低減できる値に設定された目
標空気過剰率及びEGR率に、実空気過剰率及び実EG
R率をそれぞれ一致させることが困難であるという問題
があった。 【0006】本発明の目的は、エンジンの過渡運転時に
おいても応答よく演算しつつ、EGRバルブ及び静翼回
転手段をそれぞれ適正に制御して、排気中に含まれる黒
煙やパティキュレート成分及びNOx成分を十分に低減
し得るエンジンの排ガス再循環装置を提供することにあ
る。 【0007】 【課題を解決するための手段】請求項1に係る発明は、
図1及び図2に示すように、静翼回転手段11dを有す
るターボ過給機11と、EGRバルブ21bを有するE
GR装置21と、エンジン12の回転速度を検出する回
転センサ43とエンジン12の負荷を検出する負荷セン
サ44の各検出出力に基づいて定められる定常EGR開
度及び定常VGT開度に従ってEGRバルブ21b及び
静翼回転手段11dをそれぞれ制御するコントローラ4
6とを備えたエンジンの排ガス再循環装置の改良であ
る。 【0008】その特徴ある構成は、エンジン12の吸気
通路17の吸気流量を検出する吸気量センサ22と、吸
気圧力を検出する吸気圧センサ23と、吸気温度を検出
する吸気温度センサ24とを備え、回転センサ43と負
荷センサ44と吸気量センサ22と吸気温度センサ24
との各検出出力に基づいて目標空気量及び目標過給圧を
それぞれ設定する目標値設定手段46bと、吸気量セン
サ22と吸気圧センサ23の各検出出力及び目標空気量
並びに目標過給圧に基づいてEGRバルブ偏差量及びV
GT偏差量をそれぞれ設定する偏差値設定手段46cと
がコントローラ46に設けられ、コントローラ46は、
EGRバルブ偏差量に基づいて定常EGR開度を比例積
分補正した目標EGR開度に従ってEGRバルブ21b
を制御しかつVGT偏差量に基づいて定常目標VGT開
度を比例積分補正した目標VGT開度に従って静翼回転
手段11dを協調して制御するように構成されたところ
にある。 【0009】この請求項1に記載されたエンジンの排ガ
ス再循環装置では、従来用いられているリニア空燃比セ
ンサに代えて、比較的安価な吸気量センサ22と吸気圧
センサ23と吸気温度センサ24を用いるので、従来の
装置に比較して安価なものにすることができる。 【0010】また、これら吸気量センサ22と吸気圧セ
ンサ23と吸気温度センサ24をエンジン12の吸気通
路にそれぞれ設け、これらセンサの検出出力に基づいて
コントローラ46が制御するので、従来の排気通路に設
けられたリニア空燃比センサの検出出力に基づいてコン
トローラが制御する場合に比較して、エンジン12が運
転し得る環境の変化や加速初期や変速初期に対する応答
性を高めることができる。 【0011】更に、コントローラ46の偏差値設定手段
46cは、吸気量センサ22と吸気圧センサ23の各検
出出力の値と目標空気量及び目標過給圧との差の相互の
関係においてEGRバルブ偏差量及びVGT偏差量をそ
れぞれ設定し、コントローラ46がターボ過給機11に
おける可変翼の制御とEGRバルブ21bの制御を協調
して行うので、可変翼の制御とEGRバルブの制御をそ
れぞれの独立して設定されたマップに従って行っていた
従来の制御に比較して、EGRバルブ21b及び静翼回
転手段11dをそれぞれ適正に制御することが可能にな
る。 【0012】 【発明の実施の形態】次に本発明の第1の実施の形態を
図面に基づいて説明する。図1に可変翼型のターボ過給
機11が設けられたディーゼルエンジン12を示す。エ
ンジン12の吸気ポート14には吸気通路15、即ち吸
気マニホルド15aを介して吸気管15bが接続され、
排気ポート16には排気通路17、即ち排気マニホルド
17aを介して排気管17bが接続される。ターボ過給
機11は吸気管15bに設けられコンプレッサ羽根車
(図示せず)を回転可能に収容するコンプレッサハウジ
ング11aと、排気管17bに設けられタービン羽根車
(図示せず)を回転可能に収容するタービンハウジング
11bとを有する。タービンハウジング11b及びコン
プレッサハウジング11aはシャフト(図示せず)の中
央を回転可能に保持する接続部11cにより接続され、
このシャフトの両端に上記タービン羽根車及びコンプレ
ッサ羽根車がそれぞれ嵌着される。 【0013】一方、タービンハウジング11bの外面に
は多段式のエアシリンダ又はサーボモータ等により作動
される静翼回転手段11dが取付けられ、タービンハウ
ジング11bの内部にはこの静翼回転手段11dにより
回転してノズル面積を変更可能な図示しない静翼が設け
られる。即ち、このターボ過給機11は、静翼回転手段
11dにより図示しない可変静翼の角度を可変とするこ
とでターボ効率を制御できるように構成されたVGT
(バリアブルジオメトリーターボ)である。コンプレッ
サハウジング11a及び吸気マニホルド15a間の吸気
管15bには吸気を冷却するインタクーラ19が設けら
れる。 【0014】またエンジン12には排気マニホルド17
a内の排ガスの一部をEGRパイプ21aを通って吸気
マニホルド15aに還流するEGR装置21が設けられ
る。EGR装置21は、一端が排気マニホルド17aに
接続されエンジン12をバイパスして他端が吸気マニホ
ルド15aに接続された上記EGRパイプ21aと、E
GRパイプ21aに設けられ排気マニホルド17aから
EGRパイプ21aを通って吸気マニホルド15aに還
流される排ガスの流量を調整可能なEGRバルブ21b
とを有する。EGRバルブ21bは図示しないがアクチ
ュエータにより弁体を駆動してバルブ本体の開度を調節
する。なおEGRバルブとして電動弁ではなくエア駆動
型弁等を用いてもよい。EGRパイプ21aには吸気マ
ニホルド15aに還流される排ガス(EGRガス)を冷
却するEGRクーラ21cが設けられる。 【0015】また、エンジン12にはクランク軸の回転
速度を検出する回転センサ43と、アクセルペダルの踏
込み量を検出する、即ちエンジン12の負荷を検出する
負荷センサ44とが設けられる。回転センサ43及び負
荷センサ44の各検出出力はコントローラ46の制御入
力に接続され、コントローラ46の制御出力はEGRバ
ルブ21b及び静翼回転手段11dにそれぞれ接続され
る。コントローラ46にはメモリ46aが設けられ、こ
のメモリ46aにはエンジン12の定常運転状態におけ
る回転速度及びエンジン12の負荷に基づいて定められ
た定常EGR開度と定常VGT開度がマップとして記憶
され、並びにその運転状況に応じた目標空気過剰率及び
目標EGR率もマップとして記憶される。 【0016】また、コンプレッサハウジング11aより
上流側の吸気管15bには吸気マニホルド15aへの吸
気流量を検出する吸気量センサ22が設けられ、コンプ
レッサハウジング11aより下流側の吸気管15bには
吸気マニホルド15a内部の吸気圧力を検出する吸気圧
センサ23が設けられる。そして吸気マニホルド15a
にはその吸気マニホルド15a内部の吸気温度を検出す
る吸気温度センサ24が設けられる。吸気量センサ22
と吸気圧センサ23と吸気温度センサ24の各検出出力
はコントローラ46の制御入力に接続される。コントロ
ーラ46には、回転センサ43と負荷センサ44と吸気
量センサ22と吸気温度センサ24の各検出出力に基づ
いて目標空気量及び目標過給圧をそれぞれ設定する目標
値設定手段46bと、吸気量センサ22と吸気圧センサ
23の各検出出力に基づいて目標空気量及び目標過給圧
よりEGRバルブ偏差量及びVGT偏差量をそれぞれ設
定する偏差値設定手段46cとが設けられる。 【0017】このように構成された排ガス再循環装置の
動作を説明する。図2に示すように、エンジン12の運
転時に、コントローラ46は回転センサ43及び負荷セ
ンサ44の各検出出力を取込み、その各検出出力に基づ
いてメモリ46aに区分して記憶されたその運転状態に
おけるマップと比較して具体的な定常EGR開度及び定
常VGT開度を定める。 【0018】一方、コントローラ46の目標値設定手段
46bは、回転センサ43と負荷センサ44と吸気量セ
ンサ22と吸気温度センサ24の各検出出力に基づいて
目標空気量及び目標過給圧をそれぞれ設定する。具体的
に、目標値設定手段46bは、回転センサ43と負荷セ
ンサ44の検出出力によりメモリ46aに記憶されたマ
ップからその運転状況に応じた目標空気過剰率及び目標
EGR率を定める。そしてそれらの値と各センサの検出
出力により以下式及び式からの目標空気量及び目標
過給圧をそれぞれ設定する。 【0019】 目標空気量=目標空気過剰率×燃料噴射量……………………………………… 目標過給圧=吸気量センサの値×(1−目標EGR率)×気体定数 ×吸気温度センサの値/(シリンダ容積×エンジン容積効率)… 次に、コントローラ46の偏差値設定手段46cは、吸
気量センサ22と吸気圧センサ23の各検出出力の値か
ら上記の式及び式で得られた目標空気量及び目標過
給圧との差を求め、それらの差に回転センサ43及び負
荷センサ44の各検出出力に基づいて定められる定数を
行列式により乗じてEGRバルブ偏差量及びVGT偏差
量をそれぞれ設定する。即ち、偏差値設定手段は行列式
により与えられる以下式及び式に基づいてEGRバ
ルブ偏差量及びVGT偏差量をそれぞれ設定する。 【0020】 EGRバルブ偏差量=K11×(吸気量センサの値−目標空気量) +K12×(吸気圧センサの値−目標過給圧)……… VGT偏差量=K21×(吸気量センサの値−目標空気量) +K22×(吸気圧センサの値−目標過給圧)……………… ここで、K11,K12,K21及びK22は、回転センサ43
及び負荷センサ44の各検出出力に基づいて定められる
定数であり、この定数はエンジン12の運転状況におい
て変動し、この定数はコントローラ46のメモリ46a
に記憶される。 【0021】そしてコントローラ46は、偏差値設定手
段により得られたEGRバルブ偏差量に基づいて予め設
定されていた定常EGR開度を比例積分補正した目標E
GR開度に従ってEGRバルブ21bを制御するととも
に、VGT偏差量に基づいて定常目標VGT開度を比例
積分補正した目標VGT開度に従って静翼回転手段11
dを制御する。 【0022】このエンジンの排ガス再循環装置では、従
来用いられているリニア空燃比センサに代えて、比較的
安価な吸気量センサ22と吸気圧センサ23と吸気温度
センサ24を用いるので、従来の装置に比較して安価な
ものにすることができる。また、これら吸気量センサ2
2と吸気圧センサ23と吸気温度センサ24をエンジン
12の吸気側にそれぞれ設け、これらセンサの検出出力
に基づいてコントローラ46が制御するので、従来のリ
ニア空燃比センサを用いた場合に比較して、エンジン1
2が運転し得る環境の変化や加速初期や変速初期に対す
る応答性を高めることができる。 【0023】更に、コントローラ46の偏差値設定手段
46cは、吸気量センサ22と吸気圧センサ23の各検
出出力の値と目標空気量及び目標過給圧との差の相互の
関係においてEGRバルブ偏差量及びVGT偏差量をそ
れぞれ設定し、コントローラ46はターボ過給機11に
おける可変翼の制御とEGRバルブ21bの制御を協調
して行うので、可変翼の制御とEGRバルブの制御をそ
れぞれ独立して行っていた従来の制御に比較して、EG
Rバルブ21b及び静翼回転手段11dをそれぞれ適正
に制御することが可能になる。この結果、エンジン12
が加速初期や変速初期であるか否かに係わらずその運転
状況に応じた最適な量の吸気を確保しつつ最適な量の排
気ガスを吸気通路内に還流させることができ、ディーゼ
ルエンジン12の排気中に含まれる黒煙や未燃焼燃料等
のパティキュレート成分及びNOx成分を十分に低減す
ることができる。 【0024】 【発明の効果】以上述べたように、本発明によれば、従
来用いられている比較的高価なリニア空燃比センサに代
えて、エンジンの吸気通路の吸気流量を検出する吸気量
センサと、吸気圧力を検出する吸気圧センサと、吸気温
度を検出する吸気温度センサとを備えるので、従来の装
置に比較して安価なものにすることができる。また、こ
れら吸気量センサと吸気圧センサと吸気温度センサをエ
ンジンの吸気側にそれぞれ設け、これらセンサの検出出
力に基づいてコントローラが制御するように構成するの
で、従来のリニア空燃比センサを用いた場合に比較し
て、エンジンが運転し得る環境の変化や加速初期や変速
初期に対する応答性を高めることができる。 【0025】また、各センサとの各検出出力に基づいて
目標空気量及び目標過給圧をそれぞれ設定する目標値設
定手段と、それらセンサの各検出出力及び目標空気量並
びに目標過給圧に基づいてEGRバルブ偏差量及びVG
T偏差量をそれぞれ設定する偏差値設定手段とをコント
ローラに設け、コントローラがEGRバルブ偏差量に基
づいて定常EGR開度を比例積分補正した目標EGR開
度に従ってEGRバルブを制御しかつVGT偏差量に基
づいて定常目標VGT開度を比例積分補正した目標VG
T開度に従って静翼回転手段を制御するように構成した
ので、コントローラはターボ過給機における可変翼の制
御とEGRバルブの制御を協調して行うことになり、可
変翼の制御とEGRバルブの制御をそれぞれ独立して行
っていた従来の制御に比較して、EGRバルブ及び静翼
回転手段をそれぞれ適正に制御することが可能になる。
この結果、エンジンが加速初期や変速初期であるか否か
に係わらずその運転状況に応じた最適な量の吸気を確保
しつつ最適な量の排気ガスを吸気通路内に還流させるこ
とができ、ディーゼルエンジンの排気中に含まれる黒煙
や未燃焼燃料等のパティキュレート成分及びNOx成分
を十分に低減することが可能になる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an engine having a variable-blade type turbocharger, in which part of exhaust gas is recirculated to an intake passage or a cylinder and recirculated. It concerns the device. 2. Description of the Related Art Conventionally, there is known an EGR device having an EGR passage for recirculating exhaust gas of a diesel engine into an intake passage and an EGR valve provided in the EGR passage for adjusting the recirculation amount of the exhaust gas. Have been. In this EGR device, the deviation between the target excess air ratio and the actual excess air ratio of the exhaust gas is reduced in order to reduce particulate components and NOx components such as black smoke and unburned fuel contained in the exhaust of the diesel engine. The control of the EGR valve is performed. That is, a target excess air ratio corresponding to an operating state of the engine detected by an engine rotation sensor and a load sensor is set, and exhaust gas flowing through the exhaust passage is detected by a linear air-fuel ratio sensor provided in the exhaust passage. The actual excess air ratio of the gas is detected, and when the actual excess air ratio becomes larger than the target excess air ratio, the actual excess air ratio is reduced by opening the EGR valve and increasing the exhaust gas recirculation amount. When the actual excess air ratio becomes smaller than the target excess air ratio, the EGR valve is closed to reduce or cut the amount of exhaust gas recirculation, thereby executing control to increase the actual excess air ratio, thereby causing excessive exhaust gas recirculation. It is possible to reduce the NOx component in the exhaust gas without generating black smoke due to the above. However, the linear air-fuel ratio sensor is expensive and has a delay in detection. For example,
The detection response time constant of the sensor is on the order of 1/10 to several seconds. For this reason, the correction of the fuel injection pressure is delayed in the initial stage of acceleration or in the early stage of shifting when the target excess air ratio and the actual excess air ratio are most shifted. In other words, although the correction amount of the fuel injection pressure must be given in accordance with the response delay timing of the actual excess air ratio, when the error of the actual excess air ratio from the target excess air ratio is the largest due to the detection delay of the sensor, If the fuel injection pressure does not change and the error in the actual excess air ratio decreases, the fuel injection pressure will change, causing black smoke to occur and knocking noise to the diesel engine. is there. When the engine is equipped with a variable-blade type turbocharger, the control of the variable blade and the control of the EGR valve are independently performed by a map assuming a steady operating state. Therefore, a change in the actual exhaust gas recirculation amount due to a response delay of the actual supercharging pressure greatly affects a so-called turbo lag at the time of acceleration or a shift, thereby causing an error between the actual excess air ratio and the target excess air ratio and an error between the actual EGR ratio and the target EGR ratio. The error further increased, and the particulate components in the exhaust gas and N
The actual excess air ratio and the actual EG are added to the target excess air ratio and the EGR ratio set to values that can appropriately reduce both the Ox component and the Ox component.
There is a problem that it is difficult to make the R rates equal. SUMMARY OF THE INVENTION It is an object of the present invention to appropriately control an EGR valve and a stationary blade rotating means while performing a calculation with good response even during a transient operation of an engine so that black smoke, particulate components and NOx contained in exhaust gas are controlled. An object of the present invention is to provide an exhaust gas recirculation device for an engine capable of sufficiently reducing components. Means for Solving the Problems The invention according to claim 1 is:
As shown in FIGS. 1 and 2, a turbocharger 11 having stationary blade rotating means 11d and an E having an EGR valve 21b are provided.
The EGR valve 21b and the EGR valve 21b according to the steady-state EGR opening and the steady-state VGT opening that are determined based on each detection output of the GR device 21, a rotation sensor 43 that detects the rotation speed of the engine 12, and a load sensor 44 that detects the load of the engine 12. Controller 4 for controlling stationary blade rotating means 11d
6 is an improvement of the exhaust gas recirculation system for the engine provided with the above. The characteristic configuration includes an intake air amount sensor 22 for detecting an intake air flow rate in the intake passage 17 of the engine 12, an intake pressure sensor 23 for detecting intake pressure, and an intake temperature sensor 24 for detecting intake temperature. , Rotation sensor 43, load sensor 44, intake air amount sensor 22, and intake air temperature sensor 24.
And target value setting means 46b for setting the target air amount and the target supercharging pressure based on the respective detected outputs of the intake air amount sensor 22, the intake air pressure sensor 23, and the target air amount and the target supercharging pressure. EGR valve deviation amount and V
A deviation value setting means 46c for setting each GT deviation amount is provided in the controller 46.
The EGR valve 21b is operated in accordance with a target EGR opening obtained by proportionally integrating the steady EGR opening based on the EGR valve deviation amount.
And the stationary blade rotating means 11d is configured to cooperately control the stationary blade rotating means 11d in accordance with the target VGT opening obtained by correcting the steady-state target VGT opening by proportional integration based on the VGT deviation amount. In the exhaust gas recirculation system for an engine according to the present invention, the relatively inexpensive intake air amount sensor 22, intake pressure sensor 23, and intake air temperature sensor 24 are used instead of the conventionally used linear air-fuel ratio sensor. Is used, it can be inexpensive as compared with the conventional apparatus. Further, the intake air amount sensor 22, the intake pressure sensor 23, and the intake air temperature sensor 24 are provided in the intake passage of the engine 12, and are controlled by the controller 46 based on the detection outputs of these sensors. Compared to the case where the controller controls the output based on the detection output of the provided linear air-fuel ratio sensor, the responsiveness to a change in the environment in which the engine 12 can operate, the initial stage of acceleration, and the initial stage of shifting can be improved. Further, the deviation value setting means 46c of the controller 46 detects the EGR valve deviation based on the mutual relationship between the value of each detection output of the intake air amount sensor 22 and the intake air pressure sensor 23 and the difference between the target air amount and the target supercharging pressure. Since the controller 46 sets the variable blade amount and the VGT deviation amount, and the controller 46 performs control of the variable blade in the turbocharger 11 and control of the EGR valve 21b in a coordinated manner, control of the variable blade and control of the EGR valve are independent of each other. The EGR valve 21b and the stationary blade rotating means 11d can be appropriately controlled, respectively, as compared with the conventional control performed according to the set map. Next, a first embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows a diesel engine 12 provided with a variable-wing type turbocharger 11. An intake pipe 15b is connected to an intake port 14 of the engine 12 via an intake passage 15, that is, an intake manifold 15a.
An exhaust pipe 17b is connected to the exhaust port 16 via an exhaust passage 17, that is, an exhaust manifold 17a. The turbocharger 11 is provided in the intake pipe 15b and rotatably accommodates a compressor impeller (not shown), and the turbocharger 11 is provided in the exhaust pipe 17b and rotatably accommodates a turbine impeller (not shown). And a turbine housing 11b. The turbine housing 11b and the compressor housing 11a are connected by a connecting portion 11c that rotatably holds the center of a shaft (not shown),
The turbine impeller and the compressor impeller are respectively fitted to both ends of the shaft. On the other hand, stationary blade rotating means 11d operated by a multi-stage air cylinder or a servomotor is mounted on the outer surface of the turbine housing 11b, and is rotated inside the turbine housing 11b by the stationary blade rotating means 11d. A stationary blade (not shown) that can change the nozzle area is provided. That is, the turbocharger 11 is configured such that the turbine efficiency can be controlled by making the angle of a variable vane (not shown) variable by the vane rotating means 11d.
(Variable Geometry Turbo). An intercooler 19 for cooling intake air is provided in an intake pipe 15b between the compressor housing 11a and the intake manifold 15a. The engine 12 has an exhaust manifold 17.
An EGR device 21 is provided that recirculates a part of the exhaust gas in a through the EGR pipe 21a to the intake manifold 15a. The EGR device 21 includes an EGR pipe 21a having one end connected to the exhaust manifold 17a, bypassing the engine 12, and having the other end connected to the intake manifold 15a;
An EGR valve 21b provided on the GR pipe 21a and capable of adjusting the flow rate of exhaust gas returned from the exhaust manifold 17a through the EGR pipe 21a to the intake manifold 15a.
And Although not shown, the EGR valve 21b drives the valve body by an actuator to adjust the opening degree of the valve body. Note that an air-driven valve or the like may be used instead of the electric valve as the EGR valve. The EGR pipe 21a is provided with an EGR cooler 21c for cooling exhaust gas (EGR gas) recirculated to the intake manifold 15a. The engine 12 is provided with a rotation sensor 43 for detecting the rotation speed of the crankshaft and a load sensor 44 for detecting the amount of depression of the accelerator pedal, that is, for detecting the load on the engine 12. The detection outputs of the rotation sensor 43 and the load sensor 44 are connected to the control input of the controller 46, and the control output of the controller 46 is connected to the EGR valve 21b and the stationary blade rotating means 11d, respectively. The controller 46 is provided with a memory 46a. The memory 46a stores a steady-state EGR opening degree and a steady-state VGT opening degree determined based on the rotation speed and the load of the engine 12 in a steady operation state of the engine 12, as a map. The target excess air ratio and the target EGR ratio according to the operation state are also stored as a map. The intake pipe 15b upstream of the compressor housing 11a is provided with an intake air quantity sensor 22 for detecting the flow rate of intake air to the intake manifold 15a, and the intake pipe 15b downstream of the compressor housing 11a is provided with an intake manifold 15a. An intake pressure sensor 23 for detecting an internal intake pressure is provided. And the intake manifold 15a
Is provided with an intake air temperature sensor 24 for detecting the intake air temperature inside the intake manifold 15a. Intake air amount sensor 22
The detection outputs of the intake pressure sensor 23 and the intake temperature sensor 24 are connected to control inputs of a controller 46. The controller 46 includes target value setting means 46b for setting a target air amount and a target supercharging pressure based on the respective detection outputs of the rotation sensor 43, the load sensor 44, the intake air amount sensor 22, and the intake air temperature sensor 24; A deviation value setting means 46c for setting an EGR valve deviation amount and a VGT deviation amount based on the target air amount and the target supercharging pressure based on the respective detection outputs of the sensor 22 and the intake pressure sensor 23 is provided. The operation of the thus configured exhaust gas recirculation apparatus will be described. As shown in FIG. 2, when the engine 12 is operating, the controller 46 takes in each detection output of the rotation sensor 43 and the load sensor 44, and in the operation state stored separately in the memory 46 a based on each detection output. A specific steady EGR opening and a steady VGT opening are determined in comparison with the map. On the other hand, a target value setting means 46b of the controller 46 sets a target air amount and a target supercharging pressure based on the respective detection outputs of the rotation sensor 43, the load sensor 44, the intake air amount sensor 22, and the intake air temperature sensor 24. I do. More specifically, the target value setting means 46b determines the target excess air ratio and the target EGR ratio according to the operation state from the map stored in the memory 46a based on the detection outputs of the rotation sensor 43 and the load sensor 44. Then, the target air amount and the target supercharging pressure are set from the following equations and the equations based on the values and the detection outputs of the respective sensors. Target air amount = Target excess air rate × Fuel injection amount ································································································································· Constant × value of intake air temperature sensor / (cylinder volume × engine volumetric efficiency) ... Next, the deviation value setting means 46c of the controller 46 calculates the above equation from the values of the respective detection outputs of the intake air amount sensor 22 and the intake pressure sensor 23. The difference between the target air amount and the target supercharging pressure obtained by the equation is obtained, and the difference is multiplied by a constant determined based on each detection output of the rotation sensor 43 and the load sensor 44 by a determinant to obtain the EGR valve deviation amount. And the amount of VGT deviation are set. That is, the deviation value setting means sets the EGR valve deviation amount and the VGT deviation amount based on the following equation and the equation given by the determinant. EGR valve deviation amount = K11 × (intake air amount sensor value−target air amount) + K12 × (intake air pressure sensor value−target supercharging pressure) VGT deviation amount = K21 × (intake air amount sensor value) −target air amount) + K22 × (value of intake pressure sensor−target supercharging pressure) where K11, K12, K21 and K22 are rotation sensors 43
And a constant determined based on each detection output of the load sensor 44. The constant fluctuates depending on the operating condition of the engine 12.
Is stored. The controller 46 performs a proportional-integral correction on a preset steady-state EGR opening based on the EGR valve deviation obtained by the deviation setting means.
The EGR valve 21b is controlled in accordance with the GR opening, and the stationary blade rotating means 11 is controlled in accordance with the target VGT opening in which the steady-state target VGT opening is proportionally integrated corrected based on the VGT deviation amount.
control d. In this exhaust gas recirculation system for an engine, a relatively inexpensive intake air amount sensor 22, intake pressure sensor 23, and intake air temperature sensor 24 are used in place of the conventionally used linear air-fuel ratio sensor. It can be cheaper than that of In addition, these intake air amount sensors 2
2, an intake pressure sensor 23, and an intake temperature sensor 24 are provided on the intake side of the engine 12, respectively, and are controlled by the controller 46 based on the detection outputs of these sensors. , Engine 1
The responsiveness to changes in the environment in which the vehicle 2 can operate, initial acceleration and initial shifting can be improved. Further, the deviation value setting means 46c of the controller 46 detects an EGR valve deviation based on the mutual relation between the value of each detection output of the intake air amount sensor 22 and the intake air pressure sensor 23 and the difference between the target air amount and the target supercharging pressure. Since the controller 46 sets the variable blade amount and the VGT deviation amount, and the controller 46 performs the control of the variable blade in the turbocharger 11 and the control of the EGR valve 21b in a coordinated manner, the control of the variable blade and the control of the EGR valve are independently performed. EG compared to the conventional control
The R valve 21b and the stationary blade rotating means 11d can be appropriately controlled. As a result, the engine 12
Irrespective of whether it is in the initial stage of acceleration or the initial stage of shifting, it is possible to recirculate the optimal amount of exhaust gas into the intake passage while securing the optimal amount of intake according to the operating condition. Particulate components such as black smoke and unburned fuel and NOx components contained in the exhaust gas can be sufficiently reduced. As described above, according to the present invention, an intake air amount sensor for detecting an intake air flow rate in an intake passage of an engine is used instead of a conventionally used relatively expensive linear air-fuel ratio sensor. And an intake air pressure sensor for detecting the intake air pressure and an intake air temperature sensor for detecting the intake air temperature. Further, since the intake air amount sensor, the intake air pressure sensor, and the intake air temperature sensor are provided on the intake side of the engine and are controlled by the controller based on the detection outputs of these sensors, a conventional linear air-fuel ratio sensor is used. As compared with the case, the responsiveness to a change in the environment in which the engine can operate, the initial stage of acceleration, and the initial stage of shifting can be improved. Further, target value setting means for setting a target air amount and a target supercharging pressure based on each detection output from each sensor, and based on each detection output, the target air amount and the target supercharging pressure of the sensors. EGR valve deviation and VG
The controller is provided with a deviation value setting means for setting each of the T deviation amounts, and the controller controls the EGR valve in accordance with the target EGR opening obtained by proportionally integrating the steady-state EGR opening based on the EGR valve deviation and controls the VGT deviation. VG obtained by correcting the steady-state target VGT opening by proportional integral based on the
Since the configuration is such that the stationary blade rotating means is controlled in accordance with the T opening, the controller performs control of the variable blade and control of the EGR valve in the turbocharger in coordination, and thus control of the variable blade and control of the EGR valve. The EGR valve and the stationary blade rotating means can be appropriately controlled, respectively, as compared with the conventional control in which the control is independently performed.
As a result, it is possible to recirculate the optimal amount of exhaust gas into the intake passage while securing the optimal amount of intake according to the operating state of the engine regardless of whether the engine is in the initial stage of acceleration or the initial stage of shifting. Particulate components such as black smoke and unburned fuel and NOx components contained in the exhaust gas of the diesel engine can be sufficiently reduced.

【図面の簡単な説明】 【図1】本発明の排ガス再循環装置を示す構成図。 【図2】そのコントローラの制御を示すシステム図。 【符号の説明】 11 ターボ過給機 11d 静翼回転手段 12 エンジン 15 吸気通路 15a 吸気マニホルド 17 排気通路 21 EGR装置 21a EGR通路 21b EGRバルブ 22 吸気量センサ 23 吸気圧センサ 24 吸気温度センサ 43 回転センサ 44 負荷センサ 46 コントローラ 46b 目標値設定手段 46c 偏差値設定手段[Brief description of the drawings] FIG. 1 is a configuration diagram showing an exhaust gas recirculation device of the present invention. FIG. 2 is a system diagram showing control of the controller. [Explanation of symbols] 11 Turbocharger 11d Stator blade rotating means 12 Engine 15 Intake passage 15a intake manifold 17 Exhaust passage 21 EGR device 21a EGR passage 21b EGR valve 22 Intake volume sensor 23 Intake pressure sensor 24 Intake air temperature sensor 43 Rotation sensor 44 Load sensor 46 Controller 46b Target value setting means 46c deviation value setting means

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F02D 21/08 301 F02D 23/00 K 23/00 41/18 F 41/18 43/00 301N 43/00 301 301R F02B 37/12 301Q Fターム(参考) 3G005 DA02 EA15 FA04 FA35 GA04 GB25 GD01 JA02 JA13 JA23 JA24 JA39 JA42 JA45 3G062 AA01 AA05 BA02 CA04 CA09 DA02 EA04 EA10 EB06 ED08 FA04 FA05 FA08 FA13 GA01 GA02 GA04 GA06 GA12 GA14 3G084 AA01 BA08 BA09 BA20 CA04 DA05 DA10 DA12 EB08 EB12 EC04 FA02 FA07 FA10 FA12 FA33 3G092 AA02 AA17 AA18 BA02 BA04 DB03 DC09 EA01 EA02 EA08 EA09 EB03 EC06 EC09 FA17 FA18 FA24 GA12 GB09 HA01Z HA04Z HA05Z HA06Z HA16X HD07X HE01Z 3G301 HA02 HA11 HA13 JA03 JA24 JA25 JA26 KA12 KA13 KA20 KB10 LC03 LC06 NA04 NA07 NA09 NC02 ND03 NE06 NE20 PA01Z PA07Z PA10Z PA11Z PA16Z PD15A PE01Z Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (reference) F02D 21/08 301 F02D 23/00 K 23/00 41/18 F 41/18 43/00 301N 43/00 301 301R F02B 37/12 301Q F term (reference) 3G005 DA02 EA15 FA04 FA35 GA04 GB25 GD01 JA02 JA13 JA23 JA24 JA39 JA42 JA45 3G062 AA01 AA05 BA02 CA04 CA09 DA02 EA04 EA10 EB06 ED08 FA04 FA05 FA08 FA13 GA01 GA02 GA04 GA06 BA09 GA08 BA08 CA04 DA05 DA10 DA12 EB08 EB12 EC04 FA02 FA07 FA10 FA12 FA33 3G092 AA02 AA17 AA18 BA02 BA04 DB03 DC09 EA01 EA02 EA08 EA09 EB03 EC06 EC09 FA17 FA18 FA24 GA12 GB09 HA01Z HA04Z HA05Z HA06Z HA16XHA13 HA13X3 KB10 LC03 LC06 NA04 NA07 NA09 NC02 ND03 NE06 NE20 PA01Z PA07Z PA10Z PA11Z PA16Z PD15A PE01Z

Claims (1)

【特許請求の範囲】 【請求項1】 静翼回転手段(11d)を有するターボ過給
機(11)と、EGRバルブ(21b)を有するEGR装置(21)
と、前記エンジン(12)の回転速度を検出する回転センサ
(43)と前記エンジン(12)の負荷を検出する負荷センサ(4
4)の各検出出力に基づいて定められる定常EGR開度及
び定常VGT開度に従って前記EGRバルブ(21b)及び
前記静翼回転手段(11d)をそれぞれ制御するコントロー
ラ(46)とを備えたエンジンの排ガス再循環装置におい
て、 前記吸気通路(15)の吸気流量を検出する吸気量センサ(2
2)と、吸気圧力を検出する吸気圧センサ(23)と、吸気温
度を検出する吸気温度センサ(24)とを備え、 前記回転センサ(43)と前記負荷センサ(44)と前記吸気量
センサ(22)と前記吸気温度センサ(24)との各検出出力に
基づいて目標空気量及び目標過給圧をそれぞれ設定する
目標値設定手段(46b)と、前記吸気量センサ(22)と前記
吸気圧センサ(23)の各検出出力及び前記目標空気量並び
に前記目標過給圧に基づいてEGRバルブ偏差量及びV
GT偏差量をそれぞれ設定する偏差値設定手段(46c)と
が前記コントローラ(46)に設けられ、 前記コントローラ(46)は、前記EGRバルブ偏差量に基
づいて前記定常EGR開度を比例積分補正した目標EG
R開度に従って前記EGRバルブ(21b)を制御しかつ前
記VGT偏差量に基づいて定常目標VGT開度を比例積
分補正した目標VGT開度に従って前記静翼回転手段(1
1d)を協調して制御するように構成されたことを特徴と
するエンジンの排ガス再循環装置。
Claims 1. A turbocharger (11) having a stationary blade rotating means (11d) and an EGR device (21) having an EGR valve (21b).
A rotation sensor for detecting a rotation speed of the engine (12)
(43) and a load sensor (4
4) a controller (46) for controlling the EGR valve (21b) and the stationary blade rotating means (11d) in accordance with the steady EGR opening and the steady VGT opening determined based on the respective detection outputs. In the exhaust gas recirculation device, an intake air amount sensor (2
2), an intake pressure sensor (23) for detecting intake pressure, and an intake temperature sensor (24) for detecting intake temperature, wherein the rotation sensor (43), the load sensor (44), and the intake amount sensor. (22) and target value setting means (46b) for setting a target air amount and a target supercharging pressure based on the respective detection outputs of the intake air temperature sensor (24), the intake air amount sensor (22) and the intake air sensor. The EGR valve deviation amount and V are determined based on each detection output of the air pressure sensor (23), the target air amount, and the target supercharging pressure.
A deviation value setting means (46c) for setting a GT deviation amount is provided in the controller (46). The controller (46) corrects the steady-state EGR opening proportionally and integrally based on the EGR valve deviation amount. Target EG
The stationary blade rotating means (1) is controlled in accordance with a target VGT opening obtained by controlling the EGR valve (21b) according to the R opening and correcting the steady-state target VGT opening by proportional integral integration based on the VGT deviation amount.
An exhaust gas recirculation device for an engine, which is configured to control 1d) in a coordinated manner.
JP2001203282A 2001-07-04 2001-07-04 Exhaust gas re-circulating device of engine Pending JP2003021000A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001203282A JP2003021000A (en) 2001-07-04 2001-07-04 Exhaust gas re-circulating device of engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001203282A JP2003021000A (en) 2001-07-04 2001-07-04 Exhaust gas re-circulating device of engine

Publications (1)

Publication Number Publication Date
JP2003021000A true JP2003021000A (en) 2003-01-24

Family

ID=19039948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001203282A Pending JP2003021000A (en) 2001-07-04 2001-07-04 Exhaust gas re-circulating device of engine

Country Status (1)

Country Link
JP (1) JP2003021000A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005233033A (en) * 2004-02-18 2005-09-02 Denso Corp Control device of diesel engine
US7219002B2 (en) 2005-05-30 2007-05-15 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion engine
JP2009024550A (en) * 2007-07-18 2009-02-05 Komatsu Ltd Control device for engine
WO2012032618A1 (en) 2010-09-08 2012-03-15 トヨタ自動車株式会社 Control device for internal combustion engine
JP2012067662A (en) * 2010-09-22 2012-04-05 Fujitsu Ltd Engine control program and device
WO2013001844A1 (en) 2011-06-28 2013-01-03 三菱重工業株式会社 Internal combustion engine control apparatus and method
WO2014068657A1 (en) * 2012-10-30 2014-05-08 三菱重工業株式会社 Control device and control method for internal combustion engine
DE102014101336A1 (en) 2013-02-05 2014-08-07 Denso Corporation Engine control device for controlling exhaust gas recirculation-regulator and charge regulator of diesel engine of vehicle, has calculation section to calculate deviation between desired value and actual value of fresh air quantity
US9334819B2 (en) 2013-06-17 2016-05-10 Hyundai Motor Company Method for diagnosing EGR system and method for controlling fuel injection using the same
CN113389644A (en) * 2021-07-15 2021-09-14 潍柴动力股份有限公司 Feedforward control method and device for opening of VGT valve

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4534514B2 (en) * 2004-02-18 2010-09-01 株式会社デンソー Diesel engine control device
JP2005233033A (en) * 2004-02-18 2005-09-02 Denso Corp Control device of diesel engine
US7219002B2 (en) 2005-05-30 2007-05-15 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion engine
JP2009024550A (en) * 2007-07-18 2009-02-05 Komatsu Ltd Control device for engine
US8855892B2 (en) 2010-09-08 2014-10-07 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
WO2012032618A1 (en) 2010-09-08 2012-03-15 トヨタ自動車株式会社 Control device for internal combustion engine
JP2012067662A (en) * 2010-09-22 2012-04-05 Fujitsu Ltd Engine control program and device
WO2013001844A1 (en) 2011-06-28 2013-01-03 三菱重工業株式会社 Internal combustion engine control apparatus and method
US9689348B2 (en) 2011-06-28 2017-06-27 Mitsubishi Heavy Industries, Ltd. Control apparatus and control method for internal combustion engine
US9551287B2 (en) 2012-10-30 2017-01-24 Mitsubishi Heavy Industries Ltd. Internal combustion engine control apparatus and control method thereof
JP5932052B2 (en) * 2012-10-30 2016-06-08 三菱重工業株式会社 Control device and control method for internal combustion engine
WO2014068657A1 (en) * 2012-10-30 2014-05-08 三菱重工業株式会社 Control device and control method for internal combustion engine
DE102014101336A1 (en) 2013-02-05 2014-08-07 Denso Corporation Engine control device for controlling exhaust gas recirculation-regulator and charge regulator of diesel engine of vehicle, has calculation section to calculate deviation between desired value and actual value of fresh air quantity
DE102014101336B4 (en) * 2013-02-05 2020-03-19 Denso Corporation Machine control device
US9334819B2 (en) 2013-06-17 2016-05-10 Hyundai Motor Company Method for diagnosing EGR system and method for controlling fuel injection using the same
CN113389644A (en) * 2021-07-15 2021-09-14 潍柴动力股份有限公司 Feedforward control method and device for opening of VGT valve

Similar Documents

Publication Publication Date Title
JP4583038B2 (en) Supercharging pressure estimation device for an internal combustion engine with a supercharger
US7735320B2 (en) Dual stage turbocharger control system
JP4306703B2 (en) Control device for an internal combustion engine with a supercharger
JP4534514B2 (en) Diesel engine control device
JP4300364B2 (en) Supercharging pressure regulator for variable supercharging system
US7140360B2 (en) System for controlling exhaust emissions produced by an internal combustion engine
US10634075B2 (en) Exhaust gas recirculation control method and exhaust gas recirculation control device
JP3733281B2 (en) Supercharging pressure control device and supercharging pressure control method for internal combustion engine
JP2003021000A (en) Exhaust gas re-circulating device of engine
JP2000087782A (en) Control system of intake air amount in internal combustion engine
CN109072823B (en) EGR control device and EGR control method for internal combustion engine
EP1876333B1 (en) Variable vane type turbo charger control device
JP5912240B2 (en) Exhaust gas recirculation device
JP2001214813A (en) Supercharged engine with egr device
JP6565109B2 (en) Control method and control apparatus for internal combustion engine
JP3493981B2 (en) Supercharging pressure control device for internal combustion engine with EGR control device
JP2006299892A (en) Internal combustion engine with supercharger
JP2007303380A (en) Exhaust gas control device for internal combustion engine
JP2005320937A (en) Supercharging pressure controller of internal combustion engine
JP2003328861A (en) Control device for internal combustion engine
JP4468874B2 (en) Supercharging pressure control device and supercharging pressure control method for internal combustion engine
JP2009191660A (en) Control device of internal combustion engine
JP5310954B2 (en) Control device for internal combustion engine
JP2001193573A (en) Control device for internal combustion engine
JP3929712B2 (en) EGR valve control method and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061017

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070403