WO2012058865A1 - 信号周期伸缩及超快速串并/并串变换的方法与器件 - Google Patents

信号周期伸缩及超快速串并/并串变换的方法与器件 Download PDF

Info

Publication number
WO2012058865A1
WO2012058865A1 PCT/CN2011/001849 CN2011001849W WO2012058865A1 WO 2012058865 A1 WO2012058865 A1 WO 2012058865A1 CN 2011001849 W CN2011001849 W CN 2011001849W WO 2012058865 A1 WO2012058865 A1 WO 2012058865A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
target
target signal
period
control signal
Prior art date
Application number
PCT/CN2011/001849
Other languages
English (en)
French (fr)
Inventor
董仕
Original Assignee
Dong Shi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dong Shi filed Critical Dong Shi
Priority to US13/515,995 priority Critical patent/US10031998B2/en
Priority to CN201180052874.6A priority patent/CN103250070B/zh
Publication of WO2012058865A1 publication Critical patent/WO2012058865A1/zh

Links

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16ZINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS, NOT OTHERWISE PROVIDED FOR
    • G16Z99/00Subject matter not provided for in other main groups of this subclass
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M9/00Parallel/series conversion or vice versa
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00

Definitions

  • the invention belongs to the field of analysis and measurement control technology, in particular to a fast signal processing method (Time stretch), and also relates to high-rate data transmission in the field of communication engineering, and optical and nuclear engineering. Background technique
  • time stretching technology Time stretch is based on the application of time stretching technology.
  • the more common one is the fast sampling technology based on narrow pulse control signal, which is mainly used in the field of rapid physics research such as blasting, nuclear electronics and elementary particle motion characteristics.
  • the photoelectric signal sampling oscilloscope the sampling technique itself is constrained by the sampling time and becomes the limit of its time resolution. For more details than this sampling time, it is incapable of distinguishing, and these details will be processed by this technique.
  • Sampling technology is one of the most important tools in the field of rapid physics. Commonly used are high-speed photography technology and photoelectric sampling oscilloscope. The former is mainly used to take pictures of fast moving objects, and the sampling time interval is relatively large, generally for flat image information (for typical application research, see: Li Jingzhen, “Time Amplification Technology for Atomic Time Resolution”, Chinese Science E Series, “Chinese Science and Technology” Science, Vol. 39, No.
  • ISSN 1006-9275
  • the latter is mainly used for optoelectronic engineering signal testing, with relatively small sampling intervals (generally approximated as continuous signals), consisting of single or several Channel composition (for typical application research see: Zhou Xuan, Li Jinlin, Bao Bingqian, “Capture and Recording of High-Speed Electro-Optical Signals, One-Piesecond Light Sampling and High-Speed Photography”, Electronic Measurement Technology, 1984, 02, ISSN: 1002-7300.0.1984-02-000) .
  • Time conversion techniques are commonly found in time-to-digital converters (TDC), vernier scale timers, time-amplitude converters (TAC), delay line coding techniques, and interpolation techniques based on pulse interval measurements. among them,
  • the interpolation technique is based on the inherent delay time constant of the device itself plus and minus the time interval of the signal itself. After increasing the time interval, it is supplemented by logic operation and capacitor charging and discharging to delay amplification, and finally realize the time interval. The effect of zooming in. It can also be called time interval replication technology. The proportional amplification of the pulse interval is still realized by the asymmetry of the signal path. This technique does not directly amplify the time interval of the original signal. Multiple conversions, except for measurements that can be used for a single time interval signal, cannot be used in other applications.
  • the delay line coding technique is realized based on the state in which the inherent time difference of the signal transmission line reaches the gate circuit and the synchronous clock latch signal reaches the respective gate circuits. This technique is only a measure to reduce the count clock frequency. It does not extend the time interval of the signal under test. Instead, it relies on the shorter response time of the gate to improve the time interval resolution.
  • the time-amplitude conversion technique is an indirect measurement method that utilizes the characteristics of the signal amplitude as a function of time, by measuring the amplitude and/or phase and then estimating the time interval, which is also the basis of the time-to-digital converter. Since it is not a direct measurement of the time interval itself, it depends on the continuity and stability of the signal amplitude variation on the device, and the strict correlation of the time interval-amplitude.
  • the time-to-digital converter is based on time-amplitude conversion and then converted by amplitude-to-digital conversion.
  • the front end of the telescoping process such as the Wilkinson type time-to-digital converter (TDC), which scales the time interval, but because it is still not directly amplifying the time interval, it relies on the accumulation of charge on the capacitor.
  • TDC Wilkinson type time-to-digital converter
  • the electrical characteristics exhibited during the release process are indirectly amplified by the time interval, so there are strict requirements on the capacitor and the charge and discharge circuit, and the anti-interference force is poor.
  • this form of time-sigma amplification technique has a time dead zone, cannot effectively process multiple targets (one or more time interval signals), and cannot process continuously varying analog signals.
  • the object of the present invention is to directly perform periodic stretching or periodic compression, a period of being stretched, or shortening the period of the target signal after leaving the signal source, which is still the target signal itself, and the signal period of elongation or shortening includes both
  • the target signal continuously exists in time, and also includes the time interval in which the target signal is discontinuous in time.
  • the essence of realizing the stretched or compressed signal period is to change the target signal through the target signal transmission or the displacement reflection target signal.
  • the rate of interaction with the observer/receiver, the rate at which the target signal interacts with the observer/receiver is based on the manner in which the transmission can change the target signal propagation velocity or shift the reflected target signal to produce a Doppler shift, where
  • the manner in which the transmission can change the target signal propagation speed includes changing the distance between the head and the tail of the target signal using the varying acceleration field, and changing the properties of the medium such that the target signal propagates at different speeds within the same medium. Since the physical properties and characteristics of the signal may change after the spectrum changes, a scheme with a given period scaling ratio may have to be some combination of the first three basic implementations: for example, converting the electromagnetic wave in the infrared band to the one hundred megahertz frequency.
  • the former frequency is the frequency band in which the electronic component cannot work, and the latter will make the non-electronic component solution too large to be put into practical product application, but if the Doppler frequency shift or controlled medium is used as the signal period stretching
  • the processing front end supplemented by the electromagnetic wave-electric signal conversion device, and finally the tube is periodically stretched, then it can be a complete and practical signal cycle stretching scheme. Therefore, in the sense that the three basic schemes are only the components that realize the period expansion, which depends on the requirements of the specific application system to determine the specific combination of devices (groups) required for a given period scaling ratio. .
  • the present invention three basic implementation schemes are listed according to different types of signals that can interact with other objects, the first being a target signal that can be reflected; the second being a target signal that can be transmitted through the medium; A target signal that can be accelerated by the acceleration field. Since the target signal we are dealing with may be a signal with a long life cycle or an indeterminate arrival time, it is difficult to meet the needs of the first three basic implementation schemes. Therefore, the present invention also provides the use of the first three parties.
  • the combined scheme of the case that is, the work is in different time intervals and the loops are adjacent (the loop adjacent refers to the time when the forward work of the last channel is completed, the positive work of the first channel has started or immediately started, and
  • the forward process is a state in which a predetermined process is performed, ⁇ compression or stretching>, and a reverse process is an opposite execution state ⁇ stretching or compression>, and the target signal is uninterrupted.
  • Cycle stretching, and segmenting the target signal of the serialized input in time relationship in multiple parallel outputs, or cyclically compressing the target signals of multiple parallel inputs, and serializing and interleaving to focus and collimate The method of outputting the same channel, that is, the periodic stretching device group with ultra-fast row and column transformation.
  • the present invention uses a method of implementing a displacement reflection target signal for a target signal that can be reflected.
  • the basic principle of this implementation method is to assume that the velocity of the original reflector surface interacts with the target signal is that we move the reflector along the direction of signal propagation at a speed of v 2 (vo), so that the target signal is shifted in time.
  • the distance to the surface of the reflector is farther and more time-consuming than when the reflector is not moving, and the portion that is reflected later will be further away from its previous portion, thereby giving the observer/receiver of the signal a reflected signal.
  • the rate of action is lower than when the reflector is not moving (the rate of action of the reflector and the target signal is also reduced relative to its rest), which can be used to stretch the period of the signal; if we spread the reflector along the signal
  • the direction opposite to the direction moves at a speed of v 2 (vo)
  • the portion of the target signal that reaches the surface of the reflector in time is closer to the surface of the reflector than the reflector, and the time is less, and the portion that is reflected later is reflected.
  • the rate of action of the reflector and the target signal is also increased relative to its standstill), which can be used to compress the signal period. (That is, depending on the natural law of Doppler shift, the target signal can generate Doppler shift and achieve the frequency shift value that meets our expectations through a specific implementation.
  • This application is different. In the past, only the results of Doppler shift were used to judge the velocity of the object motion or to understand the motion shape of the object. The known emission spectrum and the obtained reflection spectrum were used to solve the motion characteristics of the object.
  • the present invention uses the reflector.
  • the motion velocity, the azimuth and the obtained reflection spectrum are used as known quantities to solve the content of the original target signal, and the application focus and purpose are not only to solve the content of the original target signal, but also to obtain the actual result of the spectrum change itself:
  • a device that is otherwise inoperable in the target signal spectrum has the ability to observe, transmit, and resolve the content of the original target signal; or to intentionally obtain a spectrum-changing signal, especially when the spectrum changes are very large, there are many application values, such as Mutual transformation of infrared and red light, mutual conversion of infrared and radio waves.).
  • the present invention changes the characteristics of the medium during the propagation of the target signal in the medium, and changes the speed of the target signal, so that the speed at which the target signal leaves the medium is relatively faster than the speed at which it enters the medium.
  • the time it takes for the target signal to leave the medium changes relative to the time it takes to enter the medium, thereby achieving scaling of the target signal period.
  • the wavelength after leaving the medium is the same.
  • the propagation velocity characteristics of the controlled medium are continuously changed during or after the signal enters the medium, a varying periodic scaling ratio can be obtained.
  • the distribution density and distribution structure of the electron cloud will change due to the influence of control signals and environmental noise on the medium, even if a fixed cycle expansion ratio is required.
  • the control signal is changed as the signal enters or leaves, in order to correct for the non-linear effects of those factors.
  • the acceleration field control signal is gradually strengthened or gradually weakened, so that the target signals flowing through the acceleration field have different transit speeds, and the gradually enhanced acceleration field control signal will
  • the backward target signal object has a faster transit speed than the previous target signal object to catch up with the previous target signal object (this is the compression signal period), and the gradually weakened acceleration field control signal will cause the backward target signal.
  • the object has a slower transit speed than its previous target signal object, making it more lagging behind the previous target signal object (this is the extended signal period), thereby achieving the purpose of the telescopic signal period.
  • Its key components include: an accelerator that has a force on the target signal, a flow control signal generator, and an acceleration signal generator, wherein the accelerator includes a target signal introduction hole, a flow control electrode, an acceleration pole, an extraction hole, or a flow detection/reception.
  • the device, and the target signal flow detection and correction unit, and a set of devices that carry/fix the components of the foregoing components are used as the device for signal period expansion and contraction: wherein the base body is also the origin of the displacement reference of other parts.
  • Flow control pole and flow control signal generator The output signal is connected, the acceleration pole is connected to the output signal of the acceleration signal generator, and the target signal passes through the accelerator in the following order: from the introduction hole, first through the flow control electrode, and its flow rate is proportional to the magnitude of the control signal, And proportional to the flow rate of the original target signal, the target signal after the suppressed flow, will enter the acceleration field generated by the signal on the acceleration pole, and the target signal after acceleration through the acceleration field is taken out through the lead-out hole or by the detector/receiver Absorption, the force of the acceleration field on the target signal is proportional to the strength of the acceleration signal.
  • the flow control signal generated by the flow control signal generator suppresses the target signal flow entering the acceleration field, and the target signal after the suppressed flow rate enters.
  • Acceleration field if the acceleration control signal is gradually enhanced, the backward signal object has a faster transit speed than the previous signal object to catch up with the previous signal object, so that the period of the target signal is shortened;
  • the control signal is gradually weakened, and the shifted signal object has a slower transit speed than the preceding signal object, making it more lagging behind the previous signal object, causing the period of the target signal to be elongated.
  • the present invention does not use a reverse speed accelerator that uses the secondary speed collimation, and is based on the present invention for the case where the flow rate is the signal size.
  • the spatial density of the target signal caused by linear acceleration (or deceleration) is reduced (or increased).
  • the complementary offset does not cause a nonlinear change in the flow (to satisfy the conservation of the total amount of matter). Reduced hardware implementation and manufacturing costs.
  • the speed difference method although the external dimensions are no longer completely constrained, the signal objects based on the quantum principle or the mutual repulsive force (such as electron flow) of the signal object itself are not likely to be unrestrictedly compressed on the spatial scale.
  • the present invention is directed to a method of cyclically operating different time intervals of serialized signals for signals having a long life cycle or uncertain time of arrival, and the signals processed by the plurality of signal period stretching embodiments are subjected to A method of parallel output (or serial output) after delay synchronization (or serialization interleaving delay), that is, the ultra-fast serial/parallel conversion method of the present invention.
  • the ultra-fast serial-to-parallel conversion method is specifically: First, the target signal is divided into completely identical multi-path signals by means of transmission diffusion or reflection diffusion, and each separated target signal is delayed or delayed by each signal period separately.
  • the control signal of the telescopic device is such that the input forward working time intervals of the respective signal periodic stretching devices are adjacent or intersected and meet the cyclic neighboring, and the plurality of signal period stretching devices are used to correspond to each of the separated targets.
  • the signal is subjected to an uninterrupted periodic stretching process, and the target signal serialized input in time relationship is segmented and output in parallel.
  • the ultra-fast parallel-to-serial conversion method specifically: periodically compresses a target signal input in parallel through a plurality of signal period stretching devices corresponding to the number of channels thereof, and delays each target signal separately, or has not yet been in the target signal period. Before the compression, directly delay the control signal of each signal cycle expansion device (if the target signal is an analog signal input in parallel, the delay is also required, and the delay amount is the same as the delay amount of the channel control signal)
  • the compressed target signals are adjacent to each other in front of and behind the space or before and after the time; then, the signals are collected in the same transmission channel for output by means of transmission focusing or reflection focusing and then path collimation. .
  • the periodic retracting device of the displacement reflection signal the key components include: the base body (the base body is also the origin of the displacement reference of other parts), the base body contains a resonant cavity, two reflectors, and two transducers (when the control signal is direct When the reflecting plate generates a displacement signal, the transducer is not necessary.)
  • Two control signal connectors, and two holes are formed in the substrate as the target signal introducing hole and the target signal extracting hole; the arrangement order in the resonant cavity From left to right, the left control signal connector, the left transducer, the left reflector, the resonator, the right reflector, the right transducer, and the right control signal connector; in addition, the device needs a control during operation.
  • the signal generator and the connection line connecting the control signals, the control signal generator is connected to the two control signal connectors in the base body through the control signal connection line.
  • the control signal generator is capable of outputting a control signal for causing the reflector to generate a predetermined displacement when the target signal is about to reach the surface of the reflector.
  • the output causes the reflector to generate a control signal that is displaced in the forward direction (the direction in which the target signal propagates); when the period of the target signal needs to be compressed, the output causes the reflector to be reversed (with the target)
  • the control signal of the displacement in the opposite direction of the signal propagation when the period of the target signal needs to be stretched.
  • the slope of the strong-weak change of the control signal is determined according to the ratio of the change of the vector in unit time to the ratio of the elongation/shortening target signal period; in order to simplify the analytical recovery of the subsequent signal spectrum, the final of the signal generator and the transducer
  • the result of the action should be exactly the state in which the reflector moves uniformly at the time of the telescopic target signal period.
  • the orientation of the substrate is adjusted in advance so that the target signal can reach the surface of the reflector, and when the reflector is relatively displaced, there can be a vector change in the direction of propagation of the target signal.
  • a corresponding control signal is generated by the control signal generator of the device, and the transducer converts the control signal into a displacement of the reflector, and the direction of propagation of the target signal through the reflector
  • the effect of the vector-changed displacement on the target signal causes the period of the target signal to be elongated or shortened.
  • the specific steps for the target signal source to emit the target signal to achieve the signal period expansion function in the device are as follows:
  • the target signal enters the resonant cavity from the target signal introduction hole
  • the periodic stretching device of the displacement reflection signal does not necessarily need to include a control signal generator.
  • the control signal generator When the control signal generator is not included, the device needs to be externally connected to the control signal generator.
  • the medium controlled signal period expansion device its key components include: the base body II, the base body II contains two reflecting plates and a resonant cavity, and there is a velocity proportional to the propagation of the target signal in the middle of the resonant cavity or
  • the left and right end faces of the controlled medium are used to transmit the target signal, and the upper and lower end faces are provided with two transducers for controlling the output signal of the control signal generator.
  • the physical quantity such as value/flux/flow size is converted into the physical quantity of control of the medium, and two connectors; two holes are opened in the substrate for the target signal introduction hole II and the target signal extraction hole II ; in addition, the device is working.
  • a control signal generator II and two control signal connections are also required, and the control signal connection line is used to output a control signal to the connector of the transducer.
  • the control signal generator is capable of outputting a signal intensity that causes the medium to produce a predetermined property change, and causing the target signal to propagate within the medium to a different speed than before before the target signal enters the controlled medium but has not left. Wherein, when the period of the target signal needs to be stretched, the control signal slows down the speed at which the medium propagates the target signal; when the period of the target signal needs to be compressed, the control signal speeds up the propagation of the target signal by the medium.
  • the magnitude of the strong-weak change of the control signal is determined by the ratio of the speed of the target signal as it enters the medium to the time of exiting the medium, proportional to the ratio of the elongation/shortening target signal period.
  • the target signal source II sends the target signal.
  • the specific steps of implementing the periodic signal scaling function in the device are as follows:
  • the target signal enters the resonant cavity from the target signal introduction hole II;
  • t e the velocity of the target signal outside the controlled medium
  • t m the time the target signal passes through the controlled medium (the longest period of the target signal must not be greater than t m , the control signal
  • the fundamental period is equal to the time it takes for the target signal to pass through the medium again after leaving the medium to reflect back.
  • the transducer when the medium is the control signal, or the medium can directly respond to the control signal, the transducer is not necessary, and the control signal output from the control signal generator is introduced into the device through the connector without the need of the transducer.
  • the connector refers to the control signal outputted by the control signal generator to the internal or surface connection of the controlled medium and the pad, and the docking process enables the controlled medium to respond.
  • the control signal for the field signal, the connector can transmit the control signal to the vicinity of the medium so that the medium can receive the control signal without actually contacting the medium.
  • the periodic telescopic device of the controlled medium does not have to include the control signal generator II. When the control signal generator II is not included, the control signal generator II is externally connected when the device operates.
  • Electron gun type signal period stretching device its components include: high voltage power supply and sawtooth signal generator (equivalent to acceleration signal generator), electronic flow detection and correction and synchronization circuit (equivalent to flow control signal generator and Target signal flow detection correction unit), an electronic vacuum tube (equivalent to an accelerator), wherein: one end of the target signal source III is connected to the cathode of the electronic vacuum tube at the other end of the common ground (corresponding to the target signal introduction hole); the high voltage power supply and the sawtooth wave signal occur One end of the device is connected to the common ground, and the output acceleration signal G2 is connected to the electron vacuum tube accelerating pole, the output high voltage signal HV is connected to the high voltage anode, and the synchronous signal line is also connected with the electronic flow detecting and correcting and synchronizing circuit; the electronic flow detecting and correcting And one end of the synchronous circuit is connected to the common ground, and the output flow control signal G1 is connected to the electronic vacuum tube gate (corresponding to the flow control electrode), and one signal connection line is connected with the target of
  • the target of the electron tube is used to absorb from the cathode To the emitted electrons, the electron current and synchronous detection and correction circuit is further drawn two signal lines, all the way to the synchronizing signal line, the other way to the telescopic target signal output line;
  • the target signal generated by the target signal source III is connected to the cathode of the electron vacuum tube through a signal connection line, and an electron beam flow from the cathode to the target is formed under the attraction of the high voltage of the anode of the electron tube, and the electron is affected by the cathode-gate bias.
  • the size of the beam will be proportional to the strength of the gate voltage in addition to the original flow size;
  • the voltage of the accelerating pole is gradually increased or gradually decreased, so that electrons entering the accelerating field at different times obtain different transit speeds.
  • the signal parasitic in the electron beam is stretched and contracted, and is detected and corrected by the electron flow detection and correction and synchronization circuit, and then outputted from the target signal output signal line.
  • Ultra-fast serial/parallel-to-serial conversion device includes several validity selectors (this selector can be implemented by subsequent circuits, not necessary components of the device for this ultra-fast serial/parallel-serial conversion), several of the aforementioned signal periods Telescopic device, several signal delays (if the external control signal generator directly delays each control signal so that the start and stop times of each cyclic expansion device work differently, no target signal delay is needed), the target signal string and/and a string conversion device (for example, a target signal focusing/diffusion and collimating lens) and an external control signal generator, wherein the validity selector, the signal period stretching device, the signal delay device are connected in series, and then connected in series in the same form After the device group is connected in parallel, the target signal string and / parallel-serial conversion device are connected, and the external control signal generator is connected to the validity selector and the signal period expansion device.
  • the target signal that is elongated or shortened by the period directly signals the source and the receiver with the signal and the lifetime signal. It is completely consistent, and the observer/receiver itself is not sure whether the acquired signal is a stretched signal or whether the signal source emits this spectrum/cycle signal;
  • All the schemes of the present invention can easily implement inverse transform by changing the timing or slope change relationship of the control signal; all use analog technology without loss of signal details, and have the same scaling processing function for time-interval signals of discontinuous signals.
  • the first and second solutions can also effectively solve their own response time problems (depending on the material's molecular level, atomic level, or elementary particle level), thus completely isolating the front-end signal and back-end device response time. Match and constraint issues.
  • Direct expansion of the original signal can also be used for changes in the nature of the spectrum (for example, compressing microwaves into infrared rays, compressing violet light into ultraviolet rays, etc., or inverse transformation thereof); ultra-fast serial-to-parallel conversion technique of the present invention
  • the signal change rate of the parallel output can still reach the limit rate of the existing optoelectronic device; the ultra-fast parallel-to-serial conversion technique of the present invention can further compress the signal which is already the limit rate of the optoelectronic device to generate a higher density. signal.
  • the present invention can be applied to time measurement to improve the time resolution of the chronograph; can be used to achieve ultra-fast measurement analysis; can be used to make spectrum transfer lenses or spectrum transfer lenses, such as infrared visible glasses, red shift /Blueshift lens and other products; Precision measurement system based on signal detail feature; greatly improve the bandwidth of existing communication systems; and high-speed signal sampling technology (such as probes for sampling oscilloscopes) and high-speed photography, which can capture poles in nuclear physics research
  • the dynamic motion characteristics of electrons, protons or other microscopic particles at high speed provide a feasible technical approach. And the case where the response time of the optoelectronic device is not as good as the rate of change of the target signal.
  • Figure 1 is a double-sided displacement reflection embodiment of the present invention
  • Figure 2 is a controlled embodiment of a transmission medium of the present invention
  • Figure 3 is an embodiment of an electron gun of the present invention.
  • Figure 4 is an embodiment of the ultra fast serial/parallel conversion of the present invention.
  • Figure 5 is a basic specification parameter of the double-sided displacement reflection embodiment
  • Figure 6 is a working timing state 1 of the double-sided displacement reflection embodiment
  • Figure 7 is a working timing state 2 of the double-sided displacement reflection embodiment
  • Figure 8 is a working timing state 3 of the double-sided displacement reflection embodiment
  • Figure 9 is a working timing state 4 of the double-sided displacement reflection embodiment
  • Figure 10 is a working timing state 1 of a controlled embodiment of a transmissive medium
  • Figure 11 is a second operational timing state of a controlled embodiment of a transmission medium
  • Figure 12 is a working timing state 3 of a controlled embodiment of a transmissive medium
  • Figure 13 is an operational timing state four of a controlled embodiment of a transmissive medium
  • Figure 14 is a timing chart showing the operation timing of the electron gun embodiment
  • Figure 15 is a timing chart showing the operation of the ultra fast parallel and string conversion embodiment
  • Figure 16 is a timing diagram showing the operation of the ultra fast serial-to-parallel conversion embodiment.
  • Fig. 3 41-target signal source III; 42-target signal connection line; 43-acceleration signal connection line; 44-electron vacuum tube accelerating pole; 45-electron vacuum tube grid; 46-electron vacuum tube cathode; 47-electron vacuum tube; 48-high voltage anode; 49-electron absorption target; 50-anode high voltage connection line; 51-target current output signal line; 52-gate control signal connection line; 53-target signal output line; 54-synchronization signal line; 55-common ground; 56-electron flow detection and correction and synchronization circuit; 57-synchronous signal line II; 58-high voltage power supply and sawtooth signal generator;
  • Figure 4 61-target signal output line or target signal input line; 62, 63-target signal focus/diffusion and collimating lens; 64-first channel signal time four; 65-second channel signal time four; 66- Third channel signal time four; 67-delay I; 68-first channel signal time three; 69-signal period stretching device I; 70-first channel signal time two; 71- validity selector I; 72-first channel signal time one; 73-second channel signal time one; 74-validity selector II; 75-second channel signal time two; 76-signal period stretching device II; 77-second channel signal time three; 78-timer II; 79-timer III; 80-third channel signal time three; 81-signal period stretching device III; 82-third channel signal time two; 83-effective selector III; 84-third channel signal time one; 85-synchronous signal controller.
  • the control signal generator 1 generates a motion control signal for outputting a control signal for causing the left reflection plate 4 or the right reflection plate 11 to generate a predetermined displacement when the target signal is to reach the surface of the reflection plate.
  • the output causes the left reflector 4 or the right reflector 11 to generate a control signal that is displaced from the target signal propagation direction; when the period of the target signal needs to be compressed, the output is left to the left reflector 4 or right.
  • the reflection plate 11 generates a control signal that is displaced in the opposite direction to the propagation direction of the target signal; the magnitude of the change in the vector per unit time is proportional to the ratio of the expected stretch/compression target signal period to determine the strength of the control signal generator 1 output control signal -
  • the weak change slope, in order to make the target signal have a small nonlinear spectrum shift, the final action result of the control signal generator 1 and the left transducer 6 and the right transducer 10 should be just to make the left reflector 4 or the right reflection
  • the board 11 produces a state of uniform motion during the period of the telescopic signal.
  • the signals on the left control signal connection line 5 and the right control signal connection line 12 do not require complete symmetry, but the period of the control signal fundamental wave needs to coincide with the time that the target signal header has to reach the opposite reflector, so that after several reflections The same operation is still performed on the target signal (always compressed or always stretched).
  • the functions of the left transducer 6 and the right transducer 10 are to convert the control signal output from the control signal generator 1 into a component of the actual physical movement of the left reflector 4 or the right reflector 11, or may directly occur in the control signal and Between the reflectors, such as the effect of the electric field signal on the plasma, the left transducer 6 and the right transducer 10 can proportionally control the strength of the control signal to push the left reflector 4 or the right reflector 11 to produce a corresponding displacement.
  • the orientation of the reflector should be such that the angle of the incident wave and the normal of the reflector, that is, the incident angle ct, is 0° ⁇ ct ⁇ 90°, so as to prevent the signal signal from being returned by the original path or unable to be stretched or compressed multiple times. If many reflections are needed (not too large, the translation direction of the reflected wave from the normal must be gradually approaching the direction of the target signal extraction hole 8 so that the reflected target signal gradually approaches the target signal extraction hole 8 and reaches the target signal. When the hole 8 is taken out, it is completely derived without causing the signal to always reflect, absorb or interfere in the resonator.
  • the parameter determining step of this embodiment is as follows (taking the stretching signal period as an example):
  • the implementation goal of the embodiment is to proportionally stretch or compress the period of the target signal, then the ratio of stretching or compressing the target signal period (that is, the basic requirement of the application system for the embodiment) is set to be a known amount.
  • N represents The number of times the target signal is reflected, which is determined by the speed of the reflector and the expected ratio of expansion and contraction.
  • the speed of movement of the reflector is in turn dependent on the quality of the reflector and the response time and force conversion capability F of the transducer, both of which have been determined by the particular material and transducer.
  • the propagation speed of the target signal be a fixed speed U, and the left reflector 4 or the right reflector 11 make a radially symmetric reciprocating motion in the normal direction of the incident wave (the amplitude versus time is a triangular wave, but not limited to only The triangular wave; the shorter the back-time, the longer the period in which the device can process the target signal, but the longer the time it takes for the target signal to pass the minimum distance of the two reflectors (when the signal period is stretched), the relative base The speed of 13 is v, and the signal is first introduced from the target signal introduction hole 3.
  • the right reflection plate 11 When the right reflection plate 11 is to be reached, the right reflection plate 11 should be at the position of R R L , and the signal head of the period T reaches the surface of the reflection plate at the time point. At this time, if the reflector does not move, the time point t 2 after the elapse of time T will be the time point when the tail of the signal reaches the right reflector 11, and here the right reflector 11 has a forward displacement in the direction of signal propagation, then the tail of the signal The time to actually reach the right reflector 11 will be t 3 (t 3 > t 2 ); when the signal header reflected by the right reflector 11 is about to reach the left reflector 4, the left reflection 4 should be at 1 ⁇ , then this The first signal portion from the right reflecting plate 11 reaches the reflecting plate 4 through the left time T u min is:
  • the left reflector 4 should move to the RLL after the signal reaches the left reflector 4 during the stretching signal period, and the time when the tail of the signal reaches the left reflector 4 from the right reflector 11 will be T+. 2 (t 3 -t 2 re-reflecting from the left reflector 4 to the right reflector 11 will be T+3(t 3 -t 2 )... until after N reflections cos(a)Udt At this point, the target signal must be pulled out or the reflector should be stopped. Otherwise, the error will occur due to the overlap of the stretched/compressed state (the boundary will be reversed). That is, it must be satisfied under symmetric reciprocating vibration conditions.
  • —cos(a)Udt means that the distance of the vibrating plate can determine the maximum period length T max of the specific operating mode and the specific speed target signal (the stretching signal period is the maximum period length of the output signal, and the compression signal period is the input signal Maximum period Length); If you want to make the two vibrating plates at a certain distance stretch the signal for a longer period, in addition to increasing the forward duty cycle, there is also a way to reduce the speed of the target signal. Generally, we can use a high refractive index medium to achieve this. . This relationship applies only to the propagation path of the target signal each time having the same physical properties.
  • the length of the target signal period to be processed can also determine the left reflector 4 to the right reflection.
  • the above parameter establishment process is only for the typical algorithm and deduction step of the tensile signal period.
  • the process of parameter establishment in actual engineering application is not unique; the parameter establishment process is only for fixed scaling ratio, if it is still limited by material or environment. In terms of the impact, it is also necessary to further refine the limited range of known quantities to determine the optimal range of engineering parameters of the present embodiment.
  • the parameter establishment process of the compressed signal period is similar to this, and the parameter establishment is the inverse transformation of this embodiment, and will not be described in detail in this section.
  • the time during which the target signal propagates in the controlled medium 34 is one-half the product of the propagation speed of the target signal outside the controlled medium 34 (the path through which the reflector passes before and after the reflection, the physical properties of which are identical) Next, otherwise it should be the product of the whole path), the propagation speed of the signal outside the controlled medium is v e , and the time of the target signal passing through the medium is t m , then
  • the wavelength of the signal outside the controlled medium be Vm in the medium
  • the thickness of the medium is d
  • the distance between the two reflecting surfaces is L.
  • the fundamental period of the control signal of this embodiment must be t M + (L -dy Ve , so that after several reflections, the same operation is performed on the target signal (always compressed or always stretched).
  • Lower Vm , Ve facilitates processing of longer-period target signals, but is limited by The density of the resident medium, the density of the medium, the distribution structure of the electron cloud, and other factors often cannot have too low V m .
  • the thickness d of the medium and the gap between the two sides need to be increased (L
  • the target signal source 22 emits a signal at a certain time
  • the target signal propagated at a velocity of Ve at a wavelength of ⁇ ⁇ after the target signal is introduced into the aperture 23 reaches the left surface of the controlled medium 34 at time t Q if the target signal source 22 is issued.
  • the control signal generator ⁇ 21 of the set of devices When the time of the signal is known or controllable, the control signal generator ⁇ 21 of the set of devices generates a control signal of a specific physical quantity (such as amplitude, flux, flow rate, etc.), and the actual size of the signal is affected by
  • the conversion rate of the control medium 34 and the range in which it needs to be expanded and contracted are determined, and transmitted to the upper control signal connector 27 and the lower control signal connector 29 via the upper control signal connection line 25 and the lower control signal connection line 32, the upper transducer 26
  • the lower transducer 30 will convert its energy form to the propagation velocity characteristic of the controlled medium 34 at this signal; when the tail of the target signal is also completely entering the medium (the velocity propagated in the controlled medium 34 at this time is v m )
  • the wavelength is D, and the control signal generator ⁇ 21 of the device generates another control signal different from the previous strength and remains unchanged when the target signal leaves the medium.
  • the reflector mentioned above may be a piezoelectric ceramic coated with silver on one side (for reflection function), and the controllable medium may be, but not limited to, plasma or lithium niobate, and the transducer may be controlled
  • the electrical signal is converted into a displacement change or the control electrical signal is converted into an electromagnetic force or an electrostatic field force to affect the characteristics of the medium.
  • the device of the above-mentioned controlled medium signal period expansion and contraction may be combined with the device of the displacement reflection signal period stretching device, specifically: the signal period expansion and contraction of the controlled medium
  • the control signal generator 1 and the left and right connection lines 5 and 12 for connecting the control signals are added to the device.
  • the control signal generator 1 is connected to the left control signal connector 7 through the left control signal connection line 5, and is connected by the right control signal.
  • the line 12 is connected to the right control signal connector 9; the left and right transducers 6, 10 are used to proportionalize the control signals on the left and right control signal connectors 7, 9 by magnitude/flux/flow size
  • the transformation is a signal that controls the amount of displacement of the reflector.
  • the periodic stretching device in this embodiment does not necessarily need to include the control signal generator I and the control signal generator II.
  • the control signal generator is not included, the device needs to be externally connected to the control signal generator.
  • this embodiment is a specific implementation application of the speed difference method, and is based on the interaction between electrons and an electric field as the basis for the implementation of the scheme.
  • " ⁇ and the transit time t L / v will also be different.
  • the voltage is gradually increased, Then the electrons emitted later will catch the previous electrons because of the higher speed, so that the period of the whole signal is compressed.
  • the ultra-fast serial/parallel-type periodic stretching device group includes a target signal string and/parallel-serial conversion device, and the target signal string/parallel-serial conversion device is sequentially set in the direction of each parallel target signal.
  • One signal period stretching device one end of multiple signal period stretching devices is used as a target signal interface for parallel input/output targets The signal, the other end is connected in parallel to the target signal string and / parallel to the conversion device.
  • Ultra-fast serial/parallel conversion must implement serialized interleaving of each channel's working time interval. It can use delay transmission synchronization (serialized interleaving), direct adjustment of control signal phase difference, etc.
  • This embodiment uses A method of delaying the control signal of each signal period by each signal period, but the implementation is not limited to using only this method.
  • This embodiment uses a combination mode of three channels (CH1 ⁇ CH2 ⁇ CH3), each of which occupies 1/3 of the duty cycle and is cyclically adjacent. Regardless of the use of several channels, to complete the uninterrupted scaling of the signal, it is necessary to make the effective working time intervals of the respective channels adjacent or intersect (the period of the output signal cannot be intersected when the signal is compressed) until the end of the task.
  • This embodiment is in a symmetrical working state and is absolutely adjacent only to facilitate the description of its working process. It is not limited to the working mode of the combined mode. It can work in incomplete symmetry, effective working time interval intersection, and different positive paths according to actual conditions. Reversal ratio and other states.
  • the working principle of the ultra-fast serial/parallel cyclic expansion device group is introduced.
  • the target signal distribution is not segmented.
  • the segmentation is assigned to each channel, and the same target signal is separated by the target signal string and/parallel conversion device into a plurality of identical target signals for output to each signal period stretching device, and the external control signal generator is stretched to each signal cycle.
  • the device provides control signals with different delays, so that each signal periodic stretching device stretches the target signals in different time intervals, because the forward working intervals of the various signal periodic stretching devices are adjacent or intersecting and satisfying The loops are adjacent, so the target signal period can be stretched without interruption.
  • each channel has two types of combined signals that are compressed and stretched.
  • the inverse transformation referred to here is only used as a virtual transformation for value operations or analysis, and the physical inverse transformation is due to spectral restoration (but if the period of the signal itself is used as a relative time reference, the signal variation curve and the relative spectrum are If there is no change, the operating speed of the ordinary device is not up to standard; if the spectrum is not restored, it will take longer to output the entire original signal because the signal period is stretched. All the information. Therefore, using segmented parallel output can save time in signal output.
  • the target signal is compressed and delayed by each signal period expansion device, and the target signals of different channels are collected by the target signal string and/parallel conversion device.
  • the delay of each delay device should satisfy that the target signals of different channels are not aliased after being collected in the same transmission path, and the target signals of different channels are collected without high-speed devices (optical focusing is used in this embodiment)
  • a collimated approach to serializing the signal arrangement, while such a structure can also spread the serial signal to the multiple signal path Function) Directly participate in the synthesis control of the signal. The purpose of using this combination not only satisfies the utilization problem of the wave sequence at a lower frequency, but also satisfies the control problem of the wave sequence at a higher frequency, thereby greatly increasing the data transmission rate of the single channel.
  • the target signal string/parallel conversion device may use a lens or a curved mirror when the target signal is an electromagnetic wave, and an electron lens may be used when the target signal is electron.
  • the delay device may be glass but not limited to glass when the target signal is light.
  • the transmission line may be used for path delay (ie, the propagation distances are not equal).
  • the selector may be a dichroic mirror or a beam splitter when the target signal is a light wave, and use a low pass filter or directly utilize the shortest response time of the device when the target signal is electronic.
  • the signals of the embodiments and their expressions in the present specification are not intended to be limitations and limitations on the signals generally referred to in the present invention, but the maximum frequency component of the target signal for the present invention is greater than 100 MHz or the signal is in vacuum/air.
  • the target signal having a speed greater than 10 km/sec; the signal referred to in the present invention may be an optical signal, may be an electrical signal, may be an electric field force signal, may be other fundamental force signals, may be a signal parasitic to any physical particles In the form of existence, it may be a periodic signal, may be a non-periodic signal, may be a continuously changing signal, may be a discrete signal, etc., the cross section of the transmission path may be a single signal in a point shape, or may be infinite
  • the planar signal or the strip signal of the road; etc.; the control signal of the present invention is not only an electrical signal, but also other types of signals such as electromagnetic force; the field of application of the present invention is not specifically limited to and limited to signal processing and transmission

Abstract

本发明公开了信号周期伸缩及超快速串并/并串变换的方法与器件,涉及分析及测量控制技术领域。该方法通过改变目标信号传播速度或位移反射目标信号实现拉伸或压缩此信号的周期。位移反射是通过反射板的位移与目标信号的相互作用产生多普勒频移达到周期伸缩的目的;对于可以透过介质的信号则通过改变介质的性质改变目标信号传播速度来实现周期伸缩;对于依附于电子流的信号则通过一个变化的加速场使电子束前后有不同的移动速度,实现周期伸缩。利用目标信号聚焦/扩散及准直透镜、同步信号控制器和多个周期伸缩的器件实现信号超快速串并/并串变换。使原本无法工作于目标信号频谱下的器件有能力观测、传输、和解析原目标信号的内容。

Description

信号周期伸缩及超快速串并 /并串变换的方法与器件 技术领域
本发明属于分析及测量控制技术领域、特别涉及快速信号的处理方法(局部时间伸 縮技术, Time stretch),也涉及到通信工程领域高速率数据传输, 以及光学和原子核工程。 背景技术
在我们日常生活或科学技术研究探索中,经常需要将缓慢变化的过程加快以便我们 迅速了解该过程总体上发生了什么变化、或者将快速变化的过程减慢以便我们了解过程 中的具体变化细节, 这就是时间伸縮技术(Time stretch 基于对时间伸縮技术的应用, 比较常见的有基于窄脉冲控制信号的快速取样技术, 主要用于研究爆破、 核电子学、 基 本粒子运动特征等快速物理研究领域, 以及光电信号取样示波器。 然而, 取样技术本身 受到取样时间的约束, 成为其时间分辨率的极限, 对于小于此取样时间的更多细节则无 力分辨、 而且这些细节信息通过这种技术处理后也将大大衰减、 湮没。 除了信息取样技 术外, 还有用于时间间隔测量的测时技术, 也有用到时间伸縮技术以便达到更高的时间 分辨力, 目前常用的方法是基于被测信号所具有的特征进行时间量到其它物理量的转 换、 或依赖信号建立和释放的不对称性进行间接的时间放大, 前者仍然受到转换器件的 响应时间限制且不直接针对源信号、而后者则不能对多个对象和更多细节作进一步的解 析。
为了进一步说明这些时间伸縮技术存在的问题,我们再具体深入几种常见技术手段 加以分析。
取样技术是目前研究快速物理领域的重要手段之一, 常见的有高速摄影技术和光电 取样示波器。 前者主要用于给快速运动物体拍照, 取样时间间隔相对较大, 一般为平面 图像信息 (典型应用研究参见: 李景镇 《迈向原子时间分辨的时间放大技术》, 中国科 学 E 辑, 《中国科学 技术科学》 2009 年 第 39 卷 第 12 期: 1887 〜 1904 ISSN:1006-9275 ); 后者主要用于光电子工程信号测试, 取样时间间隔相对较小(一般近 似为连续信号), 由单条或数条通道构成(典型应用研究参见: 周旋 李锦林鲍秉乾《高 速电光信号的捕捉和记录一微微秒光取样和高速摄影》, 《电子测量技术》 1984年 02 期 ISSN:1002-7300.0.1984-02-000)。
这两种应用必须使用时间周期很短的窄脉冲信号,它也是被测信号时间分辨力的极 限。即便这样做能够实现将快速变化的物理过程缓慢显示出来以便我们了解其细节的目 的, 但因为它须要比被观测对象更短周期的取样信号或响应时间, 从而限制了我们对高 速变化对象的观测, 即便被测对象的周期和取样信号 (或响应时间) 的周期一致、 我们 也无法得到被测对象的细节。因此我们也可以说基于取样技术的时间伸縮技术并不是真 正的对 (局部) 时间进行了伸縮, 因为它必须依赖周期更短的窄脉冲信号, 而被观测对 象的变化速率对观测者 /接收者而言始终没有变, 另外, 这种技术是不可逆的, 只能用于 获取细节内容而不能实现信息压縮。
时间转换技术常见于基于脉冲时隔测量的时间 -数字转换器(TDC)、游标尺计时器、 时间 -幅值转换器 (TAC)、 延迟线编码技术和插补技术。 其中,
( 1 ) 插补技术是基于器件本身的固有延迟时间常数分别加上和减去信号本身的时 间间隔, 加大时间间隔后再辅以逻辑运算及电容充放电对其延缓放大, 最终实现时间间 隔放大的效果。 它也可以被称之为时间间隔复制技术, 脉冲时隔的比例放大任然是利用 信号路径的不对称性来实现的, 这种技术并不是直接对原信号进行的时间间隔放大, 中 间作了多次转换, 除了可用于单个时间间隔信号的测量外, 并不能用于其它场合。
(2) 延迟线编码技术是基于信号传输线路固有时差到达门电路、 再利用同步时钟 锁存信号到达各门电路的状态来实现的。这种技术只是针对降低计数时钟频率而采取的 措施, 本身并没有展宽被测信号的时间间隔, 而是依靠门电路较短的响应时间来提高时 间间隔分辨力。
(3 )时间-幅值转换技术是利用信号幅值随时间变化的特性, 通过测量幅值和 /或相 位然后再估算时间间隔的一种间接测量方法, 它也是时间-数字转换器的基础。 由于其 本身不是直接对时间间隔的测量, 依赖器件上信号幅值变化的连续性和稳定性、 以及时 间间隔-幅值的严格关联性才得以成立。
(4) 时间-数字转换器是以时间 -幅值转换为基础、 再通过幅值 -数字转换完成的, 除了前述方法的综合应用外,还有可能利用信号建立和释放的不对称性作为时间伸縮处 理的前端, 如 Wilkinson型时间 -数字转换器 (TDC), 这种方法可以将时间间隔得到比 例放大, 但由于其本身仍然不是对时隔进行直接放大, 而是依赖电荷在电容上的累积和 释放过程中表现出的电特性而间接得到时间间隔放大,所以对电容及充放电电路有严格 的要求, 抗干扰力差。 而且这种形式的时间时隔放大技术存在时间死区, 不能对多目标 进行有效处理 (一个以上的时间间隔信号), 也不能对连续变化的模拟信号进行处理。
与时间-数字转换器相近似的还有数字视频、 电影、 语音解码器等也经常用到时间 伸縮技术, 但一方面这些信息只是对原信号的一种记载、 并不代表原信号的真实内容。 在更为基础的层面, 这些信息在被保存时是以原信号作为控制量、 去影响其它物质的状 态、 并由其它物质的状态来反应原信号的特征; 另一方面它们通常使用的是将数字编码 按不同速率进行收发的方法, 数字编码 (取样技术)后信号的细节部分已经丢失(受取 样脉冲频率所限)。 因此, 它们都不能真正体现原信号执行时间伸縮处理后的实际结果。
综上所述的各种时间伸縮技术都不能在直接处理、无响应时间约束、面向模拟信号、 面向同一通道的多个时间间隔对象、 可逆变换、 不损失更小的信号细节方面达成很好的 兼容性, 多数方案并没有真正改变被观测对象与观测者 /接收者的局部时间。 发明内容
本发明的目的是对离开信号源以后的目标信号直接进行周期拉伸或周期压縮、 被 伸长了周期或縮短了周期的信号任然是目标信号本身,伸长或縮短的信号周期既包括了 在时间上连续存在的目标信号、 也包括了在时间上不连续存在目标信号的时间间隔, 实 现拉伸或压縮信号周期的本质是通过目标信号变速器或位移反射目标信号、去改变目标 信号与观测者 /接收者之间作用的速率, 改变目标信号与观测者 /接收者之间作用的速率 是基于变速器能改变目标信号传播速度或位移反射目标信号产生多普勒频移的方式,其 中变速器能改变目标信号传播速度的方式又包括使用变化的加速场改变目标信号首尾 的距离、和改变介质的性质使目标信号在同一介质内以不同的速度传播。 因信号在频谱 变化以后其物理性质和特性可能会发生转变,一个既定周期伸縮比的方案可能必须是前 面三种基本实现方式的某种结合: 比如将红外线波段的电磁波转变为百兆级频率的电信 号, 前者的频率是电子元件无法工作的频段、 而后者将会使非电子元件方案的体积大得 无法投入实际产品应用, 但如果以多普勒频移或受控介质作为信号周期拉伸的处理前 端、 再辅以电磁波 -电信号转换装置、 最后再由电子管进行周期拉伸, 那么就可以成为 一个完整而实用的信号周期拉伸方案。 因此, 三种基本方案在某种意义上来说又仅仅是 实现周期伸縮的组成单元, 这要视具体应用系统的要求来决定、 实现一个既定周期伸縮 比的器件 (组) 所需的具体组合形式。
实现原理如下:
在本发明中根据信号能与其它物体发生作用的类型不同罗列了三种基本实现方案, 第一种为可被反射的目标信号; 第二种为可透射于介质的目标信号; 第三种为可被加速 场加速的目标信号。 由于我们要处理的目标信号可能是生命周期很长或到达时间不确定 的信号, 采用前三种基本实现方案难以满足其需要, 为此本发明还提供了利用前三种方 案的组合方案, 即采用工作在不同时间区间且循环相邻(循环相邻是指时间安排在最后 一个通道的正程工作完成时、第一个通道的正程工作已经或立即开始, 且本说明书中约 定正程为执行预定处理的状态<压縮或拉伸 >, 逆程为其相反执行状态<拉伸或压縮 >。 ) 的多个信号周期伸縮器件, 对目标信号进行无间断的周期伸縮, 并将在时间关系上串行 化输入的目标信号分段在多路并行输出, 或将多路并行输入的目标信号进行周期压縮、 以及串行化交错安排后聚焦及准直在同一个通道进行输出的方法, 即带有超快速行列变 换的周期伸縮器件组。
1.针对可被反射的目标信号, 本发明使用了位移反射目标信号的实现方法。 这种实 现方法的基本原理是假设原来反射板表面与目标信号作用的速率为 我们将反射板 沿着信号传播的方向以 v2 (v o)的速度移动, 使目标信号在时间上越偏后的部分到达 反射板表面的距离相对反射板没有移动时越远、耗时更多, 则偏后被反射的部分将更加 远离它之前的部分,从而使该信号的观测者 /接收者得到的反射信号的速率比反射板没有 移动时的作用速率要低 (反射板与目标信号的作用速率相对其静止时也降低了), 这可 被用来拉伸信号的周期; 若我们将反射板沿着信号传播方向相反的方向以 v2 (v o)的 速度移动,则目标信号在时间上越偏后的部分到达反射板表面的距离相对反射板没有移 动时越近、 耗时更少, 偏后被反射的部分将更加接近它之前的部分, 从而使该信号的观 测者 /接收者得到的反射信号的速率比反射板没有移动时的作用速率要高 (反射板与目标 信号的作用速率相对其静止时也升高了), 这可被用来压縮信号周期。 (即, 依赖于多普 勒频移这一自然规律, 通过特定的实现手段, 使目标信号能够产生多普勒频移、 并使其 频移的值达到我们预期的要求。这种应用有别于以往仅通过多普勒频移的的结果去判断 物体运动的速度或了解物体的运动形态一使用已知的发射频谱和得到的反射频谱去 求解物体的运动特征; 而本发明是利用反射板的运动速度、 方位和得到的反射频谱作为 已知量, 去求解原目标信号的内容, 而应用的重点和目的又不仅在于求解原目标信号的 内容, 还在于得到频谱变化这一实际结果本身: 使本来无法工作于目标信号频谱下的器 件有能力观测、 传输、 和解析原目标信号的内容; 或有意得到频谱变化了的信号, 尤其 是频谱变化非常大时会有很多方面的应用价值, 比如红外线与红光的互变换、 红外线与 无线电波的互变换。)。
2.针对可透射于介质的目标信号, 本发明是通过目标信号在介质内传播的过程中改 变介质的特性、使目标信号传播速度发生改变, 使得目标信号离开介质的速度相对其进 入介质的速度不相等,使该目标信号离开介质所耗费的时间相对其进入该介质所耗费的 时间发生改变, 从而实现目标信号周期的伸縮。 设在介质外周期为 T、 传播速度为 Ve的信号, 其在介质外的波长为
λ6 = \e x T
设该信号在介质中的传播速率为 Vm, 则进入介质时波长 为
Figure imgf000006_0001
离开介质后的波长 为
XE = ^- ve x T -^ = ve x T
V e V m
··· = A
即穿过介质不会影响信号原有的波长。 但, 如果传播信号的介质是受控的、 且其传 播信号的速度受控制信号的幅值 /通量 /流量等物理量的大小而对应变化。 那么当信号在 受控介质中的传播速度瞬变为^'(^ „)时,则该信号离开受控介质后的波长为 λβ
Figure imgf000006_0002
即再次回到原来的环境时信号周期已发生改变 ( V Vm≠V m'
•••vm÷vm'≠l)。
如果在信号进入介质过程中或离开介质过程中连续变化受控介质的传播速度特性, 则可以得到变化的周期伸縮比。在实际应用中对于很多介质而言, 目标信号通过介质传 播时会因为控制信号、环境噪声等因素对介质的影响导致电子云分布密度及分布结构发 生变化, 即便要获得固定的周期伸縮比也需要在信号进入或离开时改变控制信号、 以便 修正那些因素带来的非线性影响。
3. 针对可被加速场加速的目标信号, 是通过逐渐加强或逐渐减弱的加速场控制信 号, 使得先后流经加速场的目标信号有不同的渡越速度, 逐渐加强的加速场控制信号会 使偏后的目标信号对象比其前面的目标信号对象有更快的渡越速度去追赶前面的目标 信号对象 (此为压縮信号周期), 逐渐减弱的加速场控制信号会使偏后的目标信号对象比 其前面的目标信号对象有更慢的渡越速度使其更加滞后于前面的目标信号对象 (此为延 伸信号周期), 从而实现伸縮信号周期的目的。 它的关键部件包括: 对目标信号具有作 用力的加速器、 流量控制信号发生器、 加速信号发生器, 其中加速器又包含有目标信号 引入孔、流量控制极、加速极、 引出孔或流量检测 /接收器、 以及目标信号流量检测修正 单元、 和承载 /固定前述几种部件的基体所组成的一套装置来作为信号周期伸縮的器件: 其中, 基体也是计量其它部分位移参考的原点。 流量控制极与流量控制信号发生器的输 出信号相连接、加速极与加速信号发生器的输出信号相连接, 目标信号按以下顺序通过 加速器: 自引入孔进入, 先通过流量控制极、 其流量与该控制信号的幅值大小成比例、 且正比于原始目标信号的流量大小, 被抑制流量之后的目标信号、 将进入到由加速极上 信号产生的加速场中,经过加速场加速后的目标信号通过引出孔引出或由检测 /接收器吸 收, 加速场对目标信号的作用力正比于加速信号的强弱。
当以流量形式体现的目标信号以某种初速度自引入孔进入时, 由流量控制信号发生 器产生的流量控制信号比例抑制进入到加速场的目标信号流量,被抑制流量后的目标信 号将进入加速场, 此时若加速控制信号是逐渐增强的, 则偏后的信号对象比其前面的信 号对象有更快的渡越速度去追赶前面的信号对象, 使目标信号的周期被縮短; 若加速控 制信号是逐渐减弱的,则偏后的信号对象比其前面的信号对象有更慢的渡越速度使其更 加滞后于前面的信号对象, 使目标信号的周期被伸长。
目标信号先后不同的部分虽然曾被不同程度的增速(或减速),但本发明没有使用二 次速度准直的反向加速器, 是基于本发明针对以流量为信号大小体现方式的情形, 而线 性增速 (或减速) 引起的目标信号空间分布密度縮小 (或增大) 正好与速度增加 (或减 小) 互补抵消并不会引起流量非线性变化 (满足物质总量的守恒), 同时也降低了硬件 实现难度和制造成本。
4.虽然前面三种技术方案均能对各自适应的信号具有周期伸縮的能力, 但在信号周 期很长、 或信号到达时刻不确定的情况下, 则单个实施例就有难以完成的技术难题或实 用性很低, 从而限制其适用范围。 比如 1)在位移反射法中, 设位移反射器的在信号传 播方向上的矢量变化为 -1000米 /秒, 让其压縮周期为 1秒的光信号, 则使用单个实施例 就要求反射器的位移距离至少不低于 -1000米 /秒 X I秒 = -1000米,这在现实中不仅难以 实现, 就算实现其实用价值也已不大; 另外, 如果再有信号到达时刻的不确定性因素在 里面, 就算反射器可以移动 1000米而此时信号正好刚到达, 那么反射器还得继续按此 方向移动, 而实际上我们根本就不能确定信号什么时候到达, 那么就势必要求反射器一 直按此方向移动。很显然这是不现实的,而且在信号源与观测者 /接收者距离有限的情况 下会因为两者相遇而无法再做相向移动。 2) 在介质受控法中, 如果介质受控的最大速 度为 107米 /秒、 最小速度 106米 /秒, 要对周期为 1毫秒的信号进行 10倍周期延伸, 当 介质受控响应时间为 0的情况下介质的厚度也不得小于 106米 /秒 x lO—3秒 = 1000米,同 样存在难以实现或实用意义不大的情况。 3 ) 在速度差法中, 虽然外形尺寸上不再受到 完全的约束, 但基于量子学原理或信号对象本身的互斥力 (如电子流)信号对象也不可 能在空间尺度上无限制的压縮, 另外, 还依赖加速场的加速信号变化范围 (它的范围往 往也不会很大)。 为此, 本发明针对生存周期很长或到达时刻不确定的信号, 使用多个 实施例循环工作在串行化信号不同时间区间的方法,且将多个信号周期伸縮实施例处理 后的信号经过延时同步 (或串行化交错延时)后并行输出 (或串行输出) 的方法, 即本 发明的超快速串并 /并串变换方法。
超快速串并变换方法具体是: 首先, 将目标信号通过透射扩散或反射扩散的方式分 为完全相同的多路信号,将分离后的每一路目标信号分别延时或分别延时每一路信号周 期伸縮器件的控制信号、使各路信号周期伸縮器件的输入正程工作时间区间两两相邻或 相交并满足循环相邻,采用多个信号周期伸縮器件一一对应所述分离后的每一路目标信 号进行无间断的周期拉伸处理, 并将在时间关系上串行化输入的目标信号分段在各路并 行输出。
超快速并串变换方法具体是:将并行输入的目标信号通过对应其通道数的多个信号 周期伸縮器件进行周期压縮处理, 再将各路目标信号分别延时、 或在目标信号周期还没 有压縮以前直接延时各路信号周期伸縮器件的控制信号(如果目标信号是并行输入的模 拟信号, 则也需对其延时, 延时量与该通道控制信号的延时量相同), 使各路被压縮后 的目标信号在空间前后上或时间前后上两两相邻; 然后通过透射聚焦或反射聚焦、 再进 行路径准直的方式将各路信号汇集在同一个传输通道中进行输出。
基于发明的上述技术原理, 本发明采用了如下的技术实施方案:
1.位移反射信号的周期伸縮器件, 关键部件包括: 基体 (基体也是计量其它部分位移 参考的原点), 基体内含一个谐振腔、 两个反射板、 两个换能器 (当控制信号是直接作用 反射板产生位移的信号时换能器不是必须的)、 两个控制信号连接头, 在基体上开有两 个孔分别为目标信号引入孔和目标信号引出孔;在谐振腔内的安排顺序从左到右顺次为 左控制信号连接头、 左换能器、 左反射板、 谐振腔、 右反射板、 右换能器、 右控制信号 连接头; 另外本器件在工作时还需一个控制信号发生器和连接控制信号的连接线, 控制 信号发生器通过控制信号连接线与基体内的两个控制信号连接头连接。控制信号发生器 能够在目标信号将要到达反射板表面时, 正好输出使反射板产生预定位移的控制信号。 其中, 当需要拉伸目标信号的周期时, 输出让反射板产生顺向 (同目标信号传播方向) 位移的控制信号; 当需要压縮目标信号的周期时, 输出让反射板产生逆向 (与目标信号 传播方向相反)位移的控制信号。根据单位时间内该矢量的变化大小正比于伸长 /縮短目 标信号周期的比例来决定控制信号强-弱变化的斜率; 为了简化后续信号频谱的解析复 原工作, 信号发生器与换能器的最终作用结果、 应正好是使反射板在伸縮目标信号周期 时产生匀速运动的状态。 针对处理目标信号的需要,事先调整好基体的方位以便目标信号能够到达反射板表 面、 且当反射板产生相对位移时能有目标信号传播方向上的矢量变化。 当目标信号将要 到达反射板表面时、 由该套装置的控制信号发生器产生相应的控制信号, 并由换能器把 这个控制信号转换成反射板的位移量,通过反射板在目标信号传播方向上有矢量变化的 位移对目标信号的作用, 使目标信号的周期被伸长或縮短。
目标信号源发出目标信号在本装置内实现信号周期伸縮功能的具体步骤如下:
( 1 ) 目标信号从目标信号引入孔进入谐振腔;
(2) 在本装置的谐振腔内利用两个反射板位移反射目标信号的方式改变目标信号 的周期长度;
(3 ) 经过多次位移反射后得到周期已经伸长或縮短的目标信号, 从目标信号引出 孔引出。
需要说明的是, 本位移反射信号的周期伸縮器件并非必须包含控制信号发生器, 在 不包含控制信号发生器时本器件工作需外接该控制信号发生器。
2.介质受控的信号周期伸縮的器件, 它的关键部件包括:基体 II, 所述基体 II内含两 个反射板和一个谐振腔,在谐振腔的中间还有一传播目标信号的速度正比或反比于外加 控制信号幅值 /通量 /流量等物理量大小的介质, 受控介质左右端面用于透射目标信号、 上下端面安装有两个换能器用于将控制信号发生器输出的控制信号按幅值 /通量 /流量大 小等物理量转变为对介质的控制物理量, 和两个连接头; 在基体上开有两个孔分别为目 标信号引入孔 II和目标信号引出孔 II ; 另外本器件在工作时还需一个控制信号发生器 II 和两路控制信号连接线, 控制信号连接线用于将控制信号输出到换能器的连接头上。 控 制信号发生器能够在目标信号进入受控介质但还未离开前,输出使介质产生预定性质变 化的信号强度、 使目标信号在介质内传播变为与之前不同的速度。 其中, 当需要拉伸目 标信号的周期时, 控制信号使介质传播目标信号的速度减慢; 当需要压縮目标信号的周 期时, 控制信号使介质传播目标信号的速度加快。 根据目标信号在进入介质时与离开介 质时速度的比值正比于伸长 /縮短目标信号周期的比例来决定控制信号强 -弱变化的幅 值。
目标信号源 II发出目标信号在本装置内实现周期信号伸縮功能的具体步骤如下:
( 1 ) 目标信号从目标信号引入孔 II进入谐振腔;
(2) 适时的改变目标信号所透过的受控介质的性质,使目标信号每次穿越介质时被 拉伸或縮短, 从而实现改变目标信号周期的目的;
(3) 经过多次拉伸或压縮的目标信号, 从目标信号引出孔 II (28) 引出。 所述受控介质的出射与入射界面与两反射板的反射面互相保持平行,受控介质到两 反射板的距离分别为 L2, 其中
= L2≥ j"。 t 式中 Ve为在受控介质外目标信号的速度, tm为目标信号穿过受控介质的时间(目标 信号最长的周期不得大于 tm,控制信号的基波周期等于目标信号从离开介质到反射回来 后再次穿过介质所消耗的时间)。
需要特别说明的是: 当介质就是控制信号、 或介质能够直接响应控制信号时换能器 不是必须的,在不需要换能器的情况下控制信号发生器输出的控制信号通过连接器引入 到所述介质上即可,所述连接器对于电信号而言是指将控制信号发生器输出的控制信号 送达受控介质内部或表面连接线头和焊盘、 其驳接工艺能够使受控介质响应控制信号; 而对于场信号而言此连接器只要能够传递控制信号到介质附近、使介质能够接收到控制 信号即可, 不必与介质有实际接触。 本受控介质的周期伸縮器件并非必须包含控制信号 发生器 II, 在不包含控制信号发生器 II时在本器件工作时外接该控制信号发生器 II即 可。
3.电子枪式的信号周期伸縮的器件, 其部件构成包括: 高压电源及锯齿波信号发生 器 (相当于加速信号发生器)、 电子流检测与修正及同步电路 (相当于流量控制信号发 生器及目标信号流量检测修正单元)、 电子真空管 (相当于加速器), 其中: 目标信号源 III的一端接公共地另一端连接电子真空管的阴极 (相当于目标信号引入孔); 高压电源 及锯齿波信号发生器一端接公共地, 另输出加速信号 G2连接到电子真空管加速极、 输 出高压信号 HV连接到高压阳极, 其同步信号线还与所述电子流检测与修正及同步电路 连接; 电子流检测与修正及同步电路一端接公共地, 另输出流量控制信号 G1连接到电 子真空管栅极 (相当于流量控制极), 还有一路信号连接线与电子管的靶极 (相当于流 量检测 /接收器)连接, 电子管的靶极用于吸收从阴极发射出来的电子, 所述电子流检测 与修正及同步电路还引出两路信号线, 一路为同步信号线, 另一路为被伸縮的目标信号 输出线;
其具体工作步骤如下:
( 1 ) 目标信号源 III产生的目标信号通过信号连接线连接到电子真空管的阴极, 在 电子管阳极高压的吸引作用下形成自阴极流向靶极的电子束流, 受阴-栅偏压的影响电 子束流的大小除了与原始流量大小成比例外还将正比于于栅极电压的的强弱;
(2) 自阴极开始发射包含信号的电子束流以后, 逐渐升高或逐渐降低加速极的电 压, 使得不同时间进入加速场的电子获得不同的渡越速度。 (3 ) 电子束流抵达阳极时因获得了足够的动量, 将穿越阳极的中心孔到达靶极;
(4) 电子束流到达靶极以后, 寄生于该电子束流内的信号已被伸縮, 经由电子流 检测与修正及同步电路检测及修正后, 由目标信号输出信号线输出。
4.超快速串并 /并串变换的器件包括若干个有效性选择器 (该选择器可由后续电路 实现, 不是本超快速串并 /并串变换的器件必要部件) , 若干个前述的信号周期伸縮器 件, 若干个信号延时器(如果通过外部控制信号发生器直接延迟每一路控制信号使各路 周期伸縮器件工作的起止时间不同、 则无需目标信号延时器), 目标信号串并 /并串变换 装置(例如, 目标信号聚焦 /扩散及准直透镜)和外部控制信号发生器, 其中所述有效性 选择器、 信号周期伸縮的器件、信号延时器串联, 再与以相同形式串联的器件组并联后 连接目标信号串并 /并串变换装置,外部控制信号发生器连接有效性选择器和信号周期伸 縮的器件。
有益效果及应用领域:
由于本发明改变了目标信号与观测者 /接收者之间作用的速率,被伸长或縮短了周期 的目标信号对于观测者 /接收者而言同信号源直接发出这一速率和生命周期的信号是完 全一致的,而观测者 /接收者本身并不能确定获取的信号是被伸縮了的信号还是信号源发 出了这一频谱 /周期的信号;
本发明的所有方案均可通过改变控制信号时序或斜率变化关系就能轻易的实现逆 变换; 均使用模拟技术, 不损失信号细节, 对于不连续存在信号的时间间隔信号也具有 同样的伸縮处理功能; 第一套和第二套方案还能有效解决自身的响应时间问题(仅依赖 于材质分子级、 原子级、 或基本粒子级的特性), 从而完全隔离了前端信号与后端器件 响应时间的匹配和约束问题。针对原始信号直接进行周期伸縮还可用于频谱发生性质变 化的场合(例如, 将微波压縮为红外线、 将紫光压縮为紫外线等, 或者它们的逆变换); 本发明的超快速串并变换技术,可以使并行输出的信号变化速率仍然达到现有光电 子器件的极限速率; 本发明的超快速并串变换技术, 可把已经是光电子器件极限速率的 信号进一步压縮, 用以产生更高密度的信号。 基于本发明的这些特性, 可应用于测时学 提高测时器的时间分辨力; 可用于实现超快速的测量分析; 可用于制作频谱转移镜头或 频谱转移镜片, 如红外可视眼镜、红移 /蓝移镜头等产品; 基于信号细节特征应用的精密 测量系统; 大大提高现有通信系统的带宽; 以及高速信号取样技术(如取样示波器的探 头)及高速摄影, 可为核物理研究领域捕获极高速运动的电子、 质子或其它微观粒子的 动态运动特征等方面提供了可行的技术途径。 以及光电子器件的响应时间不及目标信号 变化速率的场合等。 附图说明
图 1是本发明的双面位移反射实施例;
图 2是本发明的透射介质受控实施例;
图 3是本发明的电子枪实施例;
图 4是本发明的超快速串并 /并串变换实施例;
图 5是双面位移反射实施例的基本规格参量;
图 6是双面位移反射实施例的工作时序状态一;
图 7是双面位移反射实施例的工作时序状态二;
图 8是双面位移反射实施例的工作时序状态三;
图 9是双面位移反射实施例的工作时序状态四;
图 10是透射介质受控实施例的工作时序状态一;
图 11是透射介质受控实施例的工作时序状态二;
图 12是透射介质受控实施例的工作时序状态三;
图 13是透射介质受控实施例的工作时序状态四;
图 14是电子枪实施例的工作时序状态图;
图 15是超快速并串变换实施例的工作时序状态图;
图 16是超快速串并变换实施例的工作时序状态图。
图 1 中: 1-控制信号发生器; 2-目标信号源; 3-目标信号引入孔; 4-左反射板; 5- 左控制信号连接线; 6-左换能器; 7-左控制信号连接头; 8-目标信号引出孔; 9-右控制 信号连接头; 10-右换能器; 11-右反射板; 12-右控制信号连接线; 13-基体; 14-谐振腔; 图 2中: 21-控制信号发生器 Π ; 22-目标信号源 Π ; 23-目标信号引入孔 Π ; 24-左 反射板 II; 25 -上控制信号连接线; 26-上换能器; 27-上控制信号连接头; 28-目标信号 引出孔 Π ; 29-下控制信号连接头; 30-下换能器 31-右反射板 II; 32-下控制信号连接线; 33-基体 II; 34-受控介质;
图 3中: 41-目标信号源 III; 42-目标信号连接线; 43-加速信号连接线; 44-电子真 空管加速极; 45-电子真空管栅极; 46-电子真空管阴极; 47-电子真空管; 48-高压阳极; 49-电子吸收靶极; 50-阳极高压连接线; 51-靶极电流输出信号线; 52-栅极控制信号连 接线; 53-目标信号输出线; 54-同步信号线; 55-公共地; 56-电子流检测与修正及同步 电路; 57-同步信号线 II; 58-高压电源及锯齿波信号发生器;
图 4中; 61-目标信号输出线或目标信号输入线; 62、 63-目标信号聚焦 /扩散及准 直透镜; 64-第一信道信号时刻四; 65-第二信道信号时刻四; 66-第三信道信号时刻四; 67-延时器 I ; 68-第一信道信号时刻三; 69-信号周期伸縮器件 I; 70-第一信道信号时 刻二; 71-有效性选择器 I; 72-第一信道信号时刻一; 73-第二信道信号时刻一; 74-有 效性选择器 II; 75-第二信道信号时刻二; 76-信号周期伸縮器件 II; 77-第二信道信号时 刻三; 78-延时器 II; 79-延时器 III; 80-第三信道信号时刻三; 81-信号周期伸縮器件 III; 82-第三信道信号时刻二; 83-有效性选择器 III; 84-第三信道信号时刻一; 85-同步信号 控制器。
具体实施方式
下面结合附图做进一步说明。
参见图 1, 控制信号发生器 1产生一个运动控制信号, 使目标信号将要到达反射板 表面时, 正好输出使左反射板 4或右反射板 11产生预定位移的控制信号。 当需要拉伸 目标信号的周期时, 输出让左反射板 4或右反射板 11产生同目标信号传播方向位移的 控制信号; 当需要压縮目标信号的周期时, 输出让左反射板 4或右反射板 11产生与目 标信号传播方向相反位移的控制信号;根据单位时间内该矢量的变化大小正比于预期拉 伸 /压縮目标信号周期的比例来决定控制信号发生器 1输出控制信号的强-弱变化斜率, 为了使目标信号有较小的非线性频谱转移,控制信号发生器 1与左换能器 6和右换能器 10的最终作用结果、 应正好是使左反射板 4或右反射板 11在伸縮信号周期时产生匀速 运动的状态。左控制信号连接线 5和右控制信号连接线 12上的信号并不要求完全对称, 但控制信号基波的周期需要与目标信号首部到达对立面反射板所要经过的时间一致、 以 便经过数次反射后仍然是对目标信号的执行相同操作 (始终压縮或始终拉伸)。 左换能 器 6和右换能器 10的作用是将控制信号发生器 1输出的控制信号转换为左反射板 4或 右反射板 11 实际物理运动的部件, 也可以是直接发生在控制信号与反射板之间, 如电 场信号对等离子体的作用, 左换能器 6和右换能器 10能够成比例的对应控制信号强弱 推动左反射板 4或右反射板 11产生相应位移。 且反射板的方位应使得入射波与反射板 法线的角度即入射角 ct, 取值为 0°<ct<90°, 以免信号信号被原路返回或不能进行多次拉 伸或压縮, 如果需要很多次反射则 ( 不能太大, 反射波偏离法线的平移方向必须是逐渐 接近目标信号引出孔 8的方向, 以便经过反射后的目标信号逐渐靠近目标信号引出孔 8 并在到达目标信号引出孔 8时完全导出、 而不会使信号始终在谐振器里面反射、 吸收或 发生干涉作用。
参见图 5, 对本实施例的参数确定步骤如下 (以拉伸信号周期为例):
本实施例的实现目标是比例拉伸或压縮目标信号的周期,那么拉伸或压縮目标信号 周期的比例 (也就是应用系统对本实施例的基本要求) 为已知量设其为^,其中 N表示 目标信号被反射次数, 该量的确立是由反射板的运动速度和预期伸縮比决定的。 反射板 的运动速度又取决于反射板的质量和换能器的响应时间和力转换能力 F, 设这两者已经 被具体的材料和换能器确定。
设目标信号的传播速度为固定不变的速度 U, 左反射板 4或右反射板 11在入射波 的法线方向作径向对称往复式运动(振幅与时间的关系为三角波,但不限于仅为三角波; 逆程时间越短则本器件能处理目标信号的周期越长、但不会超过目标信号经过两反射板 最小距离 (拉伸信号周期时) 的两倍所花的时间)、 相对基体 13的速度为 v, 信号首次 从目标信号引入孔 3引入, 将要抵达右反射板 11时, 右反射板 11应在 RRL的位置, 周 期为 T 的信号首部在 ^时间点抵达反射板表面, 此时若反射板不动, 那么经过时间 T 后的时间点 t2将是信号尾部抵达右反射板 11的时间点, 而这里右反射板 11在信号传播 方向有顺向位移, 那么信号尾部实际到达右反射板 11 的时间将是 t3 (t3>t2) ;在经过右 反射板 11反射后的信号首部将要抵达左反射板 4时, 左反射 4应在 1 ^的位置, 那么 此时信号首部自右反射板 11到达左反射板 4经过的时间 Tu min为:
按实现原理的要求, 在拉伸信号周期过程中自信号抵达左反射板 4以后左反射板 4 应该向 RLL移动,那么此信号尾部从右反射板 11抵达左反射板 4的时间将为 T+2(t3-t2 再次反射从左反射板 4到右反射板 11时间将会是 T+3(t3-t2) ......直到经过 N次反射后 cos(a)Udt 此时则必须引出目标信号或停止反射板运动,否则会因为拉伸\压縮状态交叠而出错 (边界将被反向处理) .即, 在对称往复式振动条件下必须满足
Τ 、 Γ
J0 cos(a)Udt 在非对称往复式振动条件下, 正程所占一个控制信号周期的比例会使这一关系发生 变化, 设正程占空比为 k,则必须满足
τ 、 r 1
—cos(a)Udt 也就是说振动板的距离能够决定特定工作模式、特定速度目标信号的最大周期长度 Tmax (拉伸信号周期为输出信号的最大周期长度, 压縮信号周期为输入信号的最大周期 长度); 如果要使特定距离的两振动板伸縮更长周期的信号, 除了提高正程占空比以外, 还有降低目标信号的速度的办法, 一般我们可以使用高折光率的介质来实现这一目的。 本关系式仅适用于目标信号每一次的传播路径具有同样的物理性质。
以图 1而言的信号周期伸縮比
_ v cos(a) N
½ = (丄 H ― ) I 0<α<90 由此关系式我们可以根据反射板可以移动的速度和入射角 (哪一个受限制更大再来 决定另外一个参量的范围。 由于目标信号的速度 U的改变涉及到推动介质运动,将不作 为首选, 除非 U 的改变不影响换能器、 反射板的振动性能和干扰目标信号。 入射角 a 和反射板引入孔到引出孔的平移距离 (H) 还能决定反射的次数 N
N = H
UT sm(«) 其中 1^„^为目标信号的最大周期(拉伸信号周期时为输出周期,压縮信号周期时为 输入周期), 所以调整入射角的时候必须一并决定引入孔距离引出孔的位置和反射的次 数
( 、 H
= (1 I V C0S{ ) ^ Tm sm(a) 确定了入射角、 目标信号的最大周期和反射板的移动速度后, 待处理的目标信号周期长 度也可以决定左反射板 4到右反射板 11的距离, 其中左反射板 4到右反射板 11的最小 距离 nin 最大距离
eKNT
cos(a)Udt 一般而言, 在拉伸信号周期的情况下, 无论信号的首部是否真的存在目标信号, 但它的 时刻将作为本实施例的初相位参考量, 并由它决定本实施例左反射板 4到右反射板 11 的最小距离、 以及控制信号的基波周期 Tc
― d ― 以上参数确立过程仅针对拉伸信号周期的典型算法和推演步骤, 实际工程应用中参 数确立的过程并不是唯一的; 参数确立过程仅针对固定的伸縮比值而言, 如果还受限于 材料或环境方面的影响,还需要进一步细化已知量的受限范围来确定本实施例的工程参 数最佳范围。 压縮信号周期的参数确立过程与此类似, 参数确立是本实施例的逆变换, 本节不再赘述。
参见图 2, 受控介质 34的两个透射界面需要与左反射板 Π 24和右反射板 Π 31的反 射面相互保持平行、 且距离 (I^、 L2 且 L1=L2) 应大于目标信号在受控介质 34中传播 的时间与目标信号在受控介质 34外传播速度之积的二分之一 (被反射板反射前和反射 后所经过的路径、 其物理性质完全相同的情况下, 否则应为全程路径之积), 设在受控 介质外信号的传播速度为 ve, 目标信号穿过介质的时间为 tm, 则
设受控介质外信号的波长为 , 在介质中传播的速度为 Vm、 波长为 介质厚度为 d, 两反射面的距离为 L, 则该实施例控制信号基波周期必须是 tM +(L-dy Ve, 以便经过数次 反射后仍然是对目标信号的执行相同操作 (始终压縮或始终拉伸)。 较低的 VmVe有利 于处理更长周期的目标信号, 但却受限于受控介质驻留信号的密度、 介质密度、 电子云 分布结构等因素往往不能有太低的 Vm,此时则需要加大介质厚度 d以及两边的间隙 (L
L2)。
当目标信号源 22某一时刻发出信号, 通过目标信号引入孔 Π 23后波长为 λεVe 的速度传播的目标信号在 tQ时刻抵达受控介质 34左表面时,如果目标信号源 22发出信 号的时间可知或可控的情况下, 由该套装置的控制信号发生器 Π 21产生指定物理量(如 幅值、 通量、 流量等) 特定强弱的控制信号, 该信号的实际大小由受控介质 34的转变 率以及与其需要伸縮的范围决定, 并经过上控制信号连接线 25、 下控制信号连接线 32 传输给上控制信号连接头 27和下控制信号连接头 29, 上换能器 26和下换能器 30在此 信号下将转变其能量形式为受控介质 34的传播速度特性; 当 时刻目标信号尾部也完 全进入介质时 (此时在受控介质 34中传播的速度为 vm、 波长为 D、 再由该套装置的 控制信号发生器 Π 21产生与之前强弱不同的另一控制信号、并在目标信号离开介质时保 持不变, 使得这一目标信号离开介质时的速度为 vm, 在拉伸信号周期过程中 vm <vm 因此其离开介质所花的时间 tm。=;^/ Vm将大于进入介质所花的时间 tml= /
Figure imgf000016_0001
Vm, 则 离开介质后原信号波长将为 = ve x T --^
° V 那么, 多次穿越受控介质并受同样控制状态的周期伸縮比 = (^r。
V
上述提到的反射板可以为一面镀银 (作为反射功能之用) 的压电陶瓷, 所述的可控 介质可以但不限于是等离子体或者铌酸锂,所述换能器可以为将控制电信号转化为位移 变化或者将控制电信号转化为电磁力或静电场力去影响介质的特性。
为了进一步增强对目标信号周期压縮 /拉伸的效果,可以将上述受控介质的信号周期 伸縮的器件与位移反射信号周期伸縮器件的器件结合起来, 具体是: 在受控介质的信号 周期伸縮的器件基础上增设控制信号发生器 1和连接控制信号的左、 右连接线 5、 12, 控制信号发生器 1通过左控制信号连接线 5与左控制信号连接头 7连接、通过右控制信 号连接线 12与右控制信号连接头 9连接; 所述左、 右换能器 6、 10用于将左、 右控制 信号连接头 7、 9上的控制信号按幅值 /通量 /流量大小成比例的转变为控制反射板位移量 的信号。
需要说明的是,本实施例中的周期伸縮器件并非必须包含控制信号发生器 I及控制 信号发生器 II, 在不包含所述控制信号发生器时本器件工作需外接所述控制信号发生 器。
参见图 3, 本实施例是速度差法的具体实施应用, 是基于电子与电场的相互作用作 为本方案实施的基础依据。
设阴极到靶极的距离为 L, 给定加速极的电压是逐渐减弱的, 则电子所受之加速度 a=qU/mD (D为加速极到阴极间的距离, m为电子质量)将是变化的, 先后从阴极发射 的电子经过同样时间的加速、 获得的实际速度 ν = |" α 和渡越时间 t=L/v也将不同。 当 我们给定加速极的电压是逐渐增强的,则偏后发射的电子会因为得到更大的速度去追赶 前面的电子而使整个信号的周期被压縮; 当我们给定加速极的电压是逐渐减弱的, 则偏 后发射的电子会因为更低的速度而进一步落后于前面的电子而使整个信号的周期被拉 伸。 设最初发射的电子获得的速度是 vstart, 最后发射的电子获得的速度是 vend, 最初发 射的电子距最后发射的电子的时间间隔为 TQ,则其获得线性加速或线性减速电后的时间 增益为
_L L_
τ— τ。 在对电子束流作线性(递增量或递减量)加速时, 虽然电子束流前后的电子具有的 速度不同, 但因为加速 (减速) 会使电子空间分布密度降低 (升高), 两者互补因此也 无需再做电子束流速度准直修正, 简化了系统结构和总体硬件开销。
参见图 4, 超快速串并 /并串的周期伸縮器件组, 包括一个目标信号串并 /并串变换 装置,目标信号串并 /并串变换装置之后在沿各路并行目标信号方向均顺序设置一个信号 周期伸縮器件,多个信号周期伸縮器件的一端作为目标信号接口用于并行输入 /输出目标 信号, 另一端并行连接到目标信号串并 /并串变换装置。
超快速串并 /并串变换必须要实现各通道工作时间区间的串行化交错安排,可使用延 时传输同步 (串行化交错)、 直接调节控制信号相位差等方法, 本实施例采用了延时各 路信号周期伸縮器件控制信号的方法,但实现方式并不限于仅使用此方法。本实施例使用 了三个通道 (CH1\CH2\CH3 ) 的组合模式, 每个通道各占 1/3的工作周期且循环相邻。 无论使用几个通道, 要完成对信号的不间断伸縮处理, 就必需使各个通道的有效工作时 间区间相邻或相交 (压縮信号时输出信号的周期不能相交)、 直到任务结束。 本实施例 处于对称工作状态且绝对相邻仅仅是为了便于简化描述其工作过程, 并不作为组合模式 的工作限定, 可根据实际情况工作于不完全对称、 有效工作时间区间相交、 不同的正程 逆程比等状态。
现以目标信号延伸为例介绍超快速串并 /并串的周期伸縮器件组的工作原理:超快速 串并 /并串的周期伸縮器件组工作在串并模式时,目标信号分配并不是分段分割分配给每 个通道,而是把同一目标信号经过目标信号串并 /并串变换装置分离为若干完全相同的目 标信号输出给各个信号周期拉伸器件,外部控制信号发生器向各信号周期伸縮器件提供 不同时延的控制信号,使各路信号周期伸縮器件对不同时间区间的目标信号进行拉伸处 理, 由于各路信号周期伸縮器件的正程工作区间又是两两相邻或相交并满足循环相邻 的, 因此可以无间断的拉伸目标信号周期, 拉伸处理后各个通道都有被压縮和被拉伸的 两种类型组合信号,我们这里可以使用选择器或低通滤波器选择出被拉伸的那部分信号 作为输出信号, 由于这些信号是在原始信号分段分配的、 且已被拉伸, 因此它们的总周 期是大于原信号的, 并行输出只是为了实现普通电子器件的传输或测量, 信号内容的原 始频谱和时序信息还需要对分段分配并行传输的信号进行频谱和时序逆变换,这里所指 的逆变换只作为值运算或分析用的虚拟变换, 而物理逆变换因为要进行频谱还原(但若 以信号本身的周期作为相对时间参考量则信号变化曲线和相对频谱是没有任何变化 的), 而还原了频谱则普通器件的工作速度是达不到要求的; 而如果不进行频谱还原, 那么由于信号周期被拉伸, 那么将需要更长的时间才能输出整个原信号的所有信息。 所 以使用分段并行输出可以节省信号输出的时间。
超快速串并 /并串的周期伸縮器件组工作在并串模式时,目标信号经过各个信号周期 伸縮器件压縮、延时后,不同通道的目标信号通过目标信号串并 /并串变换装置汇集在同 一传输路径中,各个延时器的延时应该满足不同通道的目标信号汇集在同一传输路径后 不会混叠, 且不同通道的目标信号汇集并没有高速器件(本实施例采用光学聚焦及准直 的办法进行串行化信号排列, 同时这样的结构也能实现扩散串行信号到多路信号通道的 功能)直接参与信号的合成控制。 使用这种组合的目的, 既满足了较低频率下波序列的 利用率问题, 又满足了较高频率下波序列的控制问题, 从而使单通道的数据传输速率大 大提高。
所述目标信号串并 /并串变换装置当目标信号为电磁波时,聚焦及准直可使用透镜或 曲面反射镜, 当目标信号为电子时,可使用电子透镜。所述延时器当目标信号为光波时, 可以是玻璃但不限于是玻璃, 当目标信号为电子或电信号时, 可以使用传输线进行路径 延时(即传播距离不相等)。 所述选择器当目标信号为光波时, 可以是分色镜或分光镜, 当目标信号为电子时, 使用低通滤波器或直接利用器件最短响应时间的办法。
本说明书中所举实施例的信号及其表达的形式不代表是对本发明所泛指的信号的 约束和限制, 但本发明所针对目标信号的最高频率成分是大于 100MHZ或信号在真空 \ 空气中的速度大于 10千米 /秒的目标信号; 本发明所指的信号可以是光信号、 可以是电 信号、 可以是电场力信号、 可以是其它基本力信号、 可以是寄生于任何实物粒子的信号 等; 在存在形式上可以是周期信号、 可以是非周期信号、 可以是连续变化的信号、 可以 是离散存在的信号等, 在传输路径的截面可以是点状的单路信号、 也可以是无穷多路的 面状信号或条状信号等; 本发明的控制信号也不单指电信号, 它也可以是诸如电磁力等 其它类型的信号; 本发明的应用领域也不特指和限于信号处理和传输, 它也包括本说明 书中没有举例说明的核物理研究、 信号取样技术、 高速摄像机、 雷达、 粒子物理研究、 新物质的人工合成、 光速研究、 频谱转移镜头或影像变速镜片、 信号合成、 高能射线的 人工合成等所有基于对源信号直接进行频谱变换后应用的所有领域;本说明书所举的具 体实施方式也不作为对本发明实现手段的约束和限制,本发明的实现手段可以扩展到基 于本说明书中发明原理构思的任何组成和实施方式,在信号周期伸縮器件之间的连接关 系也可以是并联、 可以是串联、 可以是不同种类的信号周期伸縮器件进行连接。

Claims

1、 信号周期伸縮的方法, 其特征在于: 直接对外部信号源发出的目标信号进行周 期拉伸或周期压縮、被伸长了周期或縮短了周期的信号就是目标信号本身; 伸长或縮短 信号的周期既包括了在时间上连续存在的目标信号、也包括了在时间上不连续存在目标 信号的时间间隔; 通过改变目标信号与观测者 /接收者之间作用的速率使观测者 /接收者 得到的目标信号的频谱 /周期与信号源发出的目标信号的频谱 /周期不同。
2、 根据权利要求 1所述的信号周期伸縮的方法, 其特征在于, 通过使用一组包含 有: 控制信号发生器、 能反射目标信号的反射板、 将控制信号发生器输出的控制信号按 幅值 /通量 /流量大小成比例的转变为反射板位移量的换能器、 和承载 /固定前述几种部件 的基体所组成的一套装置作为信号周期伸縮的器件; 其中, 基体也是计量其它部分位移 的原点;
在目标信号将要到达反射板表面时, 由控制信号发生器产生相应的控制信号, 并由 换能器把此控制信号转换成反射板的位移量, 使所述反射板产生预定位移量, 通过反射 板在目标信号传播方向上有矢量变化的位移对目标信号的作用、使目标信号的周期被拉 伸或压縮; 根据单位时间内反射板在目标信号传播方向上的矢量变化大小正比于伸长 / 縮短信号周期的比例, 来决定控制信号的强弱变化斜率; 反射板的方位应使得目标信号 能到达反射板表面、 且当反射板产生相对位移时能有目标信号传播方向上的矢量变化。
3、 根据权利要求 1所述的信号周期伸縮的方法, 其特征在于, 通过使用一组包含 有: 控制信号发生器、 传播目标信号的速度正比或反比于外加控制信号幅值 /通量 /流量 大小的介质、将控制信号发生器输出的控制信号引入到前述介质的连接器、和承载 /固定 前述几种部件的基体所组成一套装置来作为信号周期伸縮的器件:
在目标信号进入介质过程中或离开介质过程中, 由控制信号发生器产生变化的控制 信号, 并由连接器把这个控制信号引入到介质中, 使该目标信号离开介质所花费的时间 与进入介质所花费的时间不相等;
或在目标信号进入介质中传播还没有离开介质前,由控制信号发生器改变控制信号 强度,控制信号强度的强弱正比于预期伸长 /縮短信号周期的比例,并在目标信号离开介 质过程中保持不变, 并由连接器把这个控制信号引入到介质中, 使该目标信号离开介质 所花费的时间与进入介质所花费的时间不相等。
4、 根据权利要求 1所述的信号周期伸縮的方法, 其特征在于, 通过使用一组包含 有: 对目标信号具有作用力的加速器、 流量控制信号发生器、 加速信号发生器, 其中加 速器又包含有目标信号引入孔、流量控制极、加速极、 引出孔或流量检测 /接收器、 以及 目标信号流量检测修正单元、和承载 /固定前述几种部件的基体所组成的一套装置来作为 信号周期伸縮的器件: 其中, 基体也是计量其它部分位移参考的原点, 流量控制极与流 量控制信号发生器的输出信号相连接、加速极与加速信号发生器的输出信号相连接, 目 标信号按以下顺序通过加速器: 自引入孔进入, 先通过流量控制极, 穿过流量控制极的 目标信号其流量与该控制信号的幅值大小成比例、 且正比于原始目标信号的流量大小, 被抑制流量之后的目标信号进入到由加速极上信号产生的加速场中, 目标信号进入加速 场和通过加速场以后的速度正比于其通过加速场期间加速场的强弱,经过加速场加速后 的目标信号直接通过引出孔引出或由检测 /接收器吸收,加速场对目标信号的作用力正比 于加速信号的幅值大小;
当以流量形式体现的目标信号以某种初速度自引入孔进入时, 由流量控制信号发生 器产生的流量控制信号比例抑制进入到加速场的目标信号流量,被抑制流量后的目标信 号将进入加速场,此时逐渐增强 \减弱加速控制信号强度,使偏后的信号对象比其前面的 信号对象有更快\慢的渡越速度追赶 \滞后前面的信号对象、 使目标信号的周期被縮短 \拉 伸。
5、 根据权利要求 4所述的信号周期伸縮的方法, 其特征在于, 使用一组包含: 高 压电源及锯齿波信号发生器(58)、电子流检测与修正及同步电路(56)、电子真空管(47) 的装置作为信号周期伸縮实现装置; 其中: 高压电源及锯齿波信号发生器 (58)—端接 公共地, 另输出加速信号连接到电子真空管加速极 (44)、 高压电源及锯齿波信号发生 器 (58) 还输出高压信号连接到电子真空管高压阳极 (48 ), 其同步信号线还与所述电 子流检测与修正及同步电路 (56)连接; 电子流检测与修正及同步电路 (56) —端接公 共地, 另输出流量控制信号连接到电子真空管栅极 (45 ), 还有一路信号连接线与电子 管的靶极(49)连接, 电子管的靶极用于吸收从阴极发射出来的电子, 所述电子流检测 与修正及同步电路 (56) 还引出两路信号线, 一路为同步信号线 (54), 另一路为被伸 縮的目标信号的输出线 (53 );
把外部目标信号引入到所述周期伸縮的实现装置, 是通过目标信号连接线 (42)连 接到电子真空管的阴极 (46), 在电子真空管高压阳极 (48) 上的高压的吸引作用下形 成自阴极流向靶极的电子束流, 受阴-栅偏压的影响, 电子束流的大小将正比于目标信 号的强弱、 且反比于阴-栅之间的电压; 自阴极开始发射包含目标信号的电子以后, 逐 渐升高或逐渐降低电子真空管中加速极(44) 的电压, 使得不同时间进入加速场的电子 获得不同的渡越速度、 电子束的前后距离被拉大或縮小、 从而使寄生在电子束流内的目 标信号的周期也被拉伸或压縮; 电子束流抵达阳极(48) 时穿越阳极的中心孔到达靶极 (49); 电子束流到达靶极以后, 寄生于该电子束流内被伸縮的电子流量信号将被还原 为目标信号, 经靶极电流输出信号线 (51 )抵达电子流检测与修正及同步电路检测及修 正后, 由其目标信号输出线 (53 ) 输出。
6、 信号周期伸縮的器件, 其特征在于, 包含: 基体, 基体内含一个谐振腔、 左反 射板、右反射板、 在谐振腔的中间有一传播目标信号的速度正比或反比于外加控制信号 幅值 /通量 /流量大小的受控介质, 在基体上开有两个孔分别为目标信号引入孔和目标信 号引出孔; 其安排顺序从左到右顺次为左反射板、谐振腔左部、受控介质、谐振腔右部、 右反射板; 受控介质左右端面用于透射目标信号, 受控介质上下端面安装有上控制信号 连接头和下控制信号连接头、 用于引入外部控制信号发生器输出的介质控制信号。
7、 根据权利要求 6所述的信号周期伸縮的器件, 其特征在于, 还包含左换能器、 右换能器、 左控制信号连接头、 右控制信号连接头; 其安排顺序从左到右顺次为左控制 信号连接头、左换能器、左反射板、谐振腔、右反射板、右换能器、右控制信号连接头; 所述左、 右控制信号连接头用于引入外部控制信号发生器输出的反射板位移控制信号; 所述左、 右换能器用于将左、 右控制信号连接头上的反射板位移控制信号按幅值 /通量 / 流量大小成比例的转变为控制反射板位移量的信号。
8、 根据权利要求 6或 Ί所述的信号周期伸縮的器件, 其特征在于, 还包括上换能 器、 下换能器; 上换能器、 下换能器分别用于将上控制信号连接头和下控制信号连接头 上的介质控制信号按其幅值 /通量 /流量大小成比例的转变为可以控制介质传播目标信号 速度特性的信号。
9、 超快速串并 /并串变换的方法, 其特征在于: 首先, 将目标信号通过透射扩散或 反射扩散的方式分为完全相同的多路信号,采用多个权利要求 5或权利要求 6或权利要 求 7或权利要求 8中所述的信号周期伸縮器件一一对应所述分离后的每一路目标信号进 行无间断的周期拉伸处理, 并将在时间关系上串行化输入的目标信号分段在各路并行输 出;在将目标信号进行周期拉伸处理之前需要将分离后的每一路目标信号分别延时或分 别延时每一路信号周期伸縮器件的控制信号,使各路信号周期伸縮器件的输入正程工作 时间区间两两相邻或相交并满足循环相邻;
或者将各路并行输入的目标信号分别通过一个权利要求 5或权利要求 6或权利要求 7或权利要求 8中所述的信号周期伸縮器件进行周期压縮处理, 再将各路目标信号分别 延时、 或在还没有压縮目标信号周期以前直接延时各路信号周期伸縮器件的控制信号, 使各路被压縮后的目标信号在空间前后上或时间前后上两两相邻;然后通过透射聚焦或 反射聚焦, 再进行路径准直的方式将各路信号汇集在同一个传输通道中进行输出。
10、超快速串并 /并串变换的周期伸縮器件组, 其特征在于, 包括一个用于将目标信 号进行串并 /并串变换的装置,多个权利要求 5或权利要求 6或权利要求 Ί或权利要求 8 中所述的信号周期伸縮器件;所述多个信号周期伸縮器件的一端作为目标信号接口用于 输入 /输出并行的目标信号, 多个信号周期伸縮器件的另一端并行连接到目标信号串并 / 并串变换装置;
所述各路上的信号周期伸縮器件用于:串并变换时接收所述串并 /并串变换装置输出 的各路目标信号, 并拉伸目标信号周期进行输出; 或者并串变换时, 压縮并行输入的各 路目标信号周期,并将周期压縮后的各路目标信号输出给所述串并 /并串变换装置进行输 出;
所述各路上的信号周期伸縮器件由外部控制信号发生器提供不同时延的控制信号, 使各路信号周期伸縮器件对不同时间区间的目标信号进行拉伸或压縮处理,各路信号周 期伸縮器件的正程工作时间区间是两两相邻或相交并满足循环相邻。
PCT/CN2011/001849 2010-11-04 2011-11-02 信号周期伸缩及超快速串并/并串变换的方法与器件 WO2012058865A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/515,995 US10031998B2 (en) 2010-11-04 2011-11-02 Method and device for signal period stretch and ultra-fast serial-to-parallel/parallel-to-serial conversion
CN201180052874.6A CN103250070B (zh) 2010-11-04 2011-11-02 信号周期伸缩及超快串并/并串变换的方法与器件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2010105316958A CN102098094A (zh) 2010-11-04 2010-11-04 信号周期伸缩及超快速行列变换的方法与器件
CN201010531695.8 2010-11-04

Publications (1)

Publication Number Publication Date
WO2012058865A1 true WO2012058865A1 (zh) 2012-05-10

Family

ID=44130979

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/001849 WO2012058865A1 (zh) 2010-11-04 2011-11-02 信号周期伸缩及超快速串并/并串变换的方法与器件

Country Status (3)

Country Link
US (1) US10031998B2 (zh)
CN (2) CN102098094A (zh)
WO (1) WO2012058865A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102098094A (zh) * 2010-11-04 2011-06-15 董仕 信号周期伸缩及超快速行列变换的方法与器件
FR3042307B1 (fr) * 2015-10-07 2017-11-03 Thales Sa Equilibrage d'un tube a sortie inductive multifaisceau
CN110924908B (zh) * 2019-11-08 2021-10-08 中国石油大学(华东) 一种水驱油藏注采参数确定方法及计算机可读存储介质
JP2023521027A (ja) * 2020-04-03 2023-05-23 ホアウェイ・テクノロジーズ・カンパニー・リミテッド サイクルベースのロードバランシングのためのネットワークデバイス、システム、および方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1118932A (zh) * 1994-04-01 1996-03-20 三星电管株式会社 彩色阴极射线管的电子枪
CN1547672A (zh) * 2002-04-23 2004-11-17 马特尔公司 超声多普勒效应测速装置
CN102098094A (zh) * 2010-11-04 2011-06-15 董仕 信号周期伸缩及超快速行列变换的方法与器件

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE484981A (zh) * 1947-09-27
US4035760A (en) * 1951-09-18 1977-07-12 The United States Of America As Represented By The Secretary Of The Navy Object detecting system
US3483387A (en) * 1967-07-25 1969-12-09 Raytheon Co Ultrasonic optical modulator for time compression of chirp signals
US4389590A (en) * 1981-08-26 1983-06-21 The United States Of America As Represented By The Secretary Of The Navy System for recording waveforms using spatial dispersion
FR2705468B1 (fr) * 1993-05-18 1995-07-21 Thomson Csf Ligne à retard optique dispersive et son utilisation pour la compression/extension d'impulsions laser.
CN1129279C (zh) * 1999-12-24 2003-11-26 华为技术有限公司 可变码速的复用分路器及复用分路方法
JP3554929B2 (ja) * 2000-05-09 2004-08-18 韓国科学技術院 多方向反射体を用いたハードディスクドライブスライダーの6自由度運動の測定のためのスイングアーム光学系
ATE530113T1 (de) * 2005-02-14 2011-11-15 Digital Signal Corp Laserradarsystem sowie verfahren zur bereitstellung von gechirpter elektromagnetischer strahlung
US7653092B2 (en) * 2005-09-28 2010-01-26 Electronics And Telecommunications Research Institute Time-division multiplexing/demultiplexing system and method
JP2008172541A (ja) * 2007-01-11 2008-07-24 Matsushita Electric Ind Co Ltd 基地局装置、通信端末装置、通信システム及び通信方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1118932A (zh) * 1994-04-01 1996-03-20 三星电管株式会社 彩色阴极射线管的电子枪
CN1547672A (zh) * 2002-04-23 2004-11-17 马特尔公司 超声多普勒效应测速装置
CN102098094A (zh) * 2010-11-04 2011-06-15 董仕 信号周期伸缩及超快速行列变换的方法与器件

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI GUANGZHONG: "Research and practice on the ultrasonic Doppler effect experimental system based on digital storage oscilloscope", COLLEGE PHYSICS, vol. 28, no. 12, 31 December 2009 (2009-12-31), pages 33 - 35 *

Also Published As

Publication number Publication date
CN103250070A (zh) 2013-08-14
US10031998B2 (en) 2018-07-24
CN103250070B (zh) 2015-11-25
CN102098094A (zh) 2011-06-15
US20130211789A1 (en) 2013-08-15

Similar Documents

Publication Publication Date Title
WO2012058865A1 (zh) 信号周期伸缩及超快速串并/并串变换的方法与器件
CN103616696A (zh) 一种激光成像雷达装置及其测距的方法
CN102141772A (zh) 一种光子序列到达时间的连续测量装置及方法
Esposito Universal photonic tunneling time
CN108680265A (zh) 高重频阿秒脉冲光电子和离子能谱测量系统及方法
CN112824930B (zh) 一种基于里德堡原子的微波激光双向相干转换装置
CN108254087A (zh) 一种单光子探测器系统及控制方法
CN110118989A (zh) 基于光学渡越辐射的皮秒级脉冲电子束测量装置和方法
CN111527656A (zh) 用于生成在空间上定位的高强度激光束的系统和方法
CN102322949A (zh) 一种超高时间分辨固态全光探测器
CN1858566A (zh) 超短脉冲精确实时测量装置
CN201926878U (zh) 一种光子序列到达时间的连续测量装置
Steffen et al. The GammeV suite of experimental searches for axion-like particles
CN103760135A (zh) V型能级结构原子的速度转移激光光谱测量装置及方法
Klein-Bösing Production of Neutral pions and direct photons in ultra-relativistic Au+ Au collisions
Wang et al. A high precision time-to-digital converter based on multi-chain interpolation with a low cost artix-7 FPGA
Borysenko et al. Electron bunch shape measurements using electro-optical spectral decoding
WO2023024018A1 (zh) 一种分段扫描傅里叶变换光谱仪
CN208270089U (zh) 高重频阿秒脉冲光电子和离子能谱测量系统
Lee et al. Microwave transitions from pairs of Rb n d 5/2 n d 5/2 atoms
Marteau et al. Implementation of sub-nanoseconds TDC in FPGA: applications to time-of-flight analysis in muon radiography
Redman Bitstream Photon Counting Chirped AM Lidar with a Digital Logic Local Oscillator
Horii TOP detector for particle identification at the Belle II experiment
CN111478729B (zh) 光模数转换系统中解复用模块性能的测试方法
CN203630039U (zh) V型能级结构原子的速度转移激光光谱测量装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11837395

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13515995

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11837395

Country of ref document: EP

Kind code of ref document: A1