WO2023024018A1 - 一种分段扫描傅里叶变换光谱仪 - Google Patents

一种分段扫描傅里叶变换光谱仪 Download PDF

Info

Publication number
WO2023024018A1
WO2023024018A1 PCT/CN2021/114733 CN2021114733W WO2023024018A1 WO 2023024018 A1 WO2023024018 A1 WO 2023024018A1 CN 2021114733 W CN2021114733 W CN 2021114733W WO 2023024018 A1 WO2023024018 A1 WO 2023024018A1
Authority
WO
WIPO (PCT)
Prior art keywords
mirror
retroreflector
reflector
fourier transform
plane
Prior art date
Application number
PCT/CN2021/114733
Other languages
English (en)
French (fr)
Inventor
陈波
许辉杰
杨志泉
温俊华
Original Assignee
江苏旭海光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏旭海光电科技有限公司 filed Critical 江苏旭海光电科技有限公司
Priority to PCT/CN2021/114733 priority Critical patent/WO2023024018A1/zh
Priority to CN202180002437.7A priority patent/CN113853512A/zh
Publication of WO2023024018A1 publication Critical patent/WO2023024018A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/255Details, e.g. use of specially adapted sources, lighting or optical systems

Definitions

  • the present application belongs to the technical field of Fourier transform spectrometer (Fourier Transform Spectrometer, FTS), and in particular relates to a segmented scanning Fourier transform spectrometer.
  • FTS Fourier Transform Spectrometer
  • the Fourier transform spectrometer has the advantages of high resolution, wide spectrum analysis, and high light flux. It has broad application prospects in the fields of solid-liquid analysis, gas analysis, and atmospheric remote sensing.
  • the core component of the Fourier transform spectrometer is the Michelson interferometer.
  • the Michelson interferometer includes a moving mirror (that is, a movable mirror).
  • the moving range of the moving mirror is relatively large relative to the wavelength of the optical signal, on the order of centimeters.
  • One of the purposes of the embodiments of the present application is to provide a segmented scanning Fourier transform spectrometer to solve the problem that the existing Michelson interferometer is difficult to achieve stable interference when the moving mirror has a large range of motion.
  • An embodiment of the present application provides a segmented scanning Fourier transform spectrometer, including:
  • a light source for outputting a probe beam and a reference beam
  • a first beam splitter the probe beam is split into a first probe beam and a second probe beam by the first beam splitter, and the reference beam is split into a first reference beam by the first beam splitter and a second reference beam;
  • the first detection beam and the first reference beam are reflected back to the first beam splitter by the first mirror;
  • the second mirror, the second detection beam and the second reference beam are reflected back to the first beam splitter through the second mirror, and the first detection beam and the second detection beam are passed through the
  • the first beam splitter is combined into a target detection beam, and the first reference beam and the second reference beam are combined into a target reference beam through the first beam splitter;
  • a first photodetector configured to sample the target detection beam and convert it into a first electrical signal
  • a first plane reflector used to take out the target reference beam from the optical path
  • the second beam splitter, the target reference beam is reflected to the second beam splitter by the first plane mirror, and is split into the first target reference beam and the second target by the second beam splitter reference beam;
  • a phase shifter arranged in the transmission optical path of the first reference beam or the second reference beam, so that the phase difference of the interference fringes of the first target reference beam and the second target reference beam is 90 degrees;
  • a second photodetector configured to sample the first target reference beam and convert it into a second electrical signal
  • a third photodetector configured to sample the second target reference beam and convert it into a third electrical signal
  • a first movement mechanism mechanically connected to the first reflector, and used to drive the first reflector to move;
  • the second movement mechanism is mechanically connected with the second reflection mirror, and is used to drive the movement of the second reflection mirror, the movement speed of the first movement mechanism is greater than the movement speed of the second movement mechanism, and the first movement mechanism the stroke of the kinematic mechanism is smaller than the stroke of the second kinematic mechanism;
  • a processor electrically connected to the first photodetector, the second photodetector, the third photodetector, the first motion mechanism, and the second motion mechanism, for:
  • the first movement mechanism is specifically used to drive the first mirror to reciprocate.
  • the second motion mechanism is specifically used to drive the second mirror to step motion or slow continuous motion, and the step motion includes a motion state or a static state;
  • the step distance of the second motion mechanism is smaller than the stroke of the first motion mechanism
  • the processor is specifically used for:
  • the first photodetector, the second photodetector and the third photodetector are controlled to continuously sample.
  • the first reflector comprises a second planar reflector or a first retroreflective reflector
  • the second mirror includes:
  • the second probe beam is reflected back to the first beam splitter by the second retroreflective mirror;
  • the second reference beam is reflected back to the first beam splitter by the third retroreflective mirror.
  • the first retroreflector, the second retroreflector, and the third retroreflector are any of a transmissive retroreflector, a reflective retroreflector, and a corner cone reflector, respectively.
  • the transmissive retroreflector includes a focusing lens and a fourth plane reflector
  • the reflective retroreflector includes a fifth plane reflector and a concave reflector.
  • the second retroreflective mirror is the reflective retroreflective mirror
  • the third retrospective reflective mirror is the transmissive retroreflective mirror
  • the fourth planar reflector is the fifth The plane mirrors are combined to form a double-sided plane mirror.
  • the first reflector comprises a second planar reflector
  • the segmented scanning Fourier transform spectrometer comprises:
  • the second retroreflection mirror, the first detection beam and the first reference beam are first reflected by the second plane mirror to the second retroreflector, and then reflected back to the second retroreflector by the second retroreflector. the second plane mirror, and finally reflect back to the first beam splitter through the second plane mirror;
  • the third retroreflective mirror, the second detection beam and the second reference beam are first reflected by the third plane reflector to the third retroreflective mirror, and then reflected back to the third retroreflective mirror by the third retroreflective mirror. the third plane mirror, and finally reflect back to the first beam splitter through the third plane mirror;
  • the second reflector includes one of the third plane reflector, the second retroreflector, and the third retroreflector, or the second reflector includes the second retroreflector mirror and the third retroreflective mirror.
  • the second retroreflector and the third retroreflector are respectively any one of a transmissive retroreflector, a reflective retroreflector and a corner cone reflector;
  • the transmissive retroreflector includes a focusing lens and a fourth plane reflector
  • the reflective retroreflector includes a fifth plane reflector and a concave reflector.
  • the second reflective mirror includes the second retroactive reflector and the third retroactive reflector, the second retroactive reflector is the reflective retroreflective mirror, and the third retroactive reflector
  • the reflector is the transmissive retroreflector, and the combination of the fourth plane reflector and the fifth plane reflector constitutes a double-sided plane reflector.
  • the first mirror is a second plane mirror, which is mechanically connected to the first movement mechanism
  • the segmented scanning Fourier transform spectrometer comprises:
  • the second retroreflection mirror, the first detection beam and the first reference beam are first reflected by the second plane mirror to the second retroreflector, and then reflected back to the second retroreflector by the second retroreflector. the second plane mirror, and finally reflect back to the first beam splitter through the second plane mirror;
  • the second probe beam and the second reference beam are reflected back to the first beam splitter by the third retroreflective mirror;
  • the second reflector includes the second retroreflector or the third retroreflector.
  • the second retroreflector and the third retroreflector are respectively any one of a transmissive retroreflector, a reflective retroreflector and a corner cone reflector;
  • the transmissive retroreflector includes a focusing lens and a fourth plane reflector
  • the reflective retroreflector includes a fifth plane reflector and a concave reflector.
  • the first movement mechanism includes:
  • a first piezoelectric ceramic driver or a micro-electromechanical system driver electrically connected to the first motor and the processor;
  • the second motion mechanism includes:
  • the second piezoelectric ceramic driver, the voice coil motor driver or the stepper motor driver are respectively electrically connected to the second motor and the processor.
  • the stroke of the second kinematic mechanism is greater than twice the stroke of the first kinematic mechanism.
  • the stroke of the first motion mechanism ranges from 0.05 mm to 0.2 mm
  • the stroke of the second motion mechanism ranges from 10 mm to 100 mm.
  • the second beam splitter is a polarization beam splitter
  • the phase shifter is a double-pass 1/8 wave plate or a single-pass 1/4 wave plate.
  • the segmented scanning Fourier transform spectrometer further includes an optical path compensator disposed between the light source and the first beam splitter.
  • the segmented scanning Fourier transform spectrometer includes a light source, a first beam splitter, a first reflector, a second reflector, a first light detector, a first plane reflector, and a second beam splitter device, a phase shifter, a second photodetector, a third photodetector, a first motion mechanism, a second motion mechanism and a processor; the detection beam and the reference beam output by the light source are respectively split into two beams by the first beam splitter One detection beam and two reference beams, one detection beam and reference beam are reflected back to the first beam splitter by the first mirror, and the other detection beam and reference beam are reflected back to the first beam splitter by the second mirror Finally, the two detection beams are combined to form the target detection beam, and the two reference beams are combined to form the target reference beam.
  • the first movement mechanism drives the first reflector to perform a short-stroke rapid movement
  • the second movement mechanism drives the second reflector to move quickly.
  • Long-distance stepping motion or slow continuous motion the first photodetector samples the target detection beam and converts it into a first electrical signal
  • the target reference beam is reflected by the first plane reflector to the second beam splitter and split into Two target reference beams, any one of the two reference beams is delayed by the phase shifter for two mutually perpendicular polarization states during transmission, so that the phase difference of the interference fringes of the two target reference beams finally obtained is 90 degrees
  • the second photodetector and the third photodetector respectively sample the two target reference beams and convert them into the second electrical signal and the third electrical signal
  • the processor obtains the time series interference data according to the first electrical signal, and according to the second
  • the electrical signal and the third electrical signal obtain the optical path difference independent of the moving direction of the moving mirror, and perform Fourier transformation on the time series interference data according to the optical path difference
  • Fig. 1 is the first structural representation of the segmented scanning Fourier transform spectrometer provided by the embodiment of the present application;
  • Fig. 2 is the second structural schematic diagram of the segmented scanning Fourier transform spectrometer provided by the embodiment of the present application;
  • Fig. 3 is the third structural diagram of the segmented scanning Fourier transform spectrometer provided by the embodiment of the present application.
  • Fig. 4 is the fourth structural schematic diagram of the segmented scanning Fourier transform spectrometer provided by the embodiment of the present application.
  • FIG. 5 is a schematic diagram of the fifth structure of the segmented scanning Fourier transform spectrometer provided in the embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a transmissive retroreflective mirror, a reflective retroreflective mirror, and a pyramidal reflector provided by an embodiment of the present application.
  • the segmented scanning Fourier transform spectrometer provided by the embodiment of the present application includes:
  • the first beam splitter 2 the probe beam 100 is split into a first probe beam and a second probe beam through the first beam splitter 2, and the reference beam 200 is split into a first reference beam and a second probe beam through the first beam splitter 2 reference beam;
  • the first reflector 3, the first detection beam and the first reference beam are reflected back to the first beam splitter 2 by the first reflector 3;
  • the second mirror 4, the second detection beam and the second reference beam are reflected back to the first beam splitter 2 by the second mirror 4, and the first detection beam and the second detection beam are combined into the target by the first beam splitter 2
  • the detection beam, the first reference beam and the second reference beam are combined into a target reference beam by the first beam splitter 2;
  • the first light detector 5 is used to sample the target detection beam and convert it into a first electrical signal
  • the first flat mirror 6 The first flat mirror 6;
  • the second beam splitter 7, the target reference beam is reflected to the second beam splitter 7 by the first plane mirror 6, and is split into a first target reference beam and a second target reference beam by the second beam splitter 7;
  • Phase shifter 8 in Fig. 1 exemplarily shows that phase shifter 8 is arranged on the transmission optical path of the first reference beam, in Fig. 2 ⁇ Fig. 5 exemplarily shows that phase shifter 8 is arranged on the transmission of the second reference beam An optical path, so that the phase difference of the interference fringes of the first target reference beam and the second target reference beam finally obtained is 90 degrees;
  • the second photodetector 9 is used to sample the first target reference beam and convert it into a second electrical signal
  • the third photodetector 10 is used to sample the second target reference beam and convert it into a third electrical signal
  • the first movement mechanism 11 is mechanically connected with the first mirror 3, and is used to drive the first mirror 3 to move at a first speed;
  • the second moving mechanism 12 is mechanically connected with the second reflecting mirror 4, and is used to drive the second reflecting mirror 4 to move at a second speed.
  • the moving speed of the first moving mechanism 11 is greater than the moving speed of the second moving mechanism 12.
  • the first moving mechanism The stroke of the motion mechanism 11 is smaller than the stroke of the second motion mechanism 12;
  • a processor (not shown in the figure), electrically connected to the first photodetector 5, the second photodetector 9, the third photodetector 10, the first motion mechanism 11 and the second motion mechanism 12, is used for:
  • optical path difference Fourier transform is performed on the time-series interference data to obtain spectral information.
  • the light source can be realized by a laser, or a laser and a collimating lens.
  • the first beam splitter may be implemented by a power beam splitter (Beam Splitter, BS), which is used to implement beam splitting and beam combining of incident beams.
  • Beam Splitter BS
  • An optical path compensator is provided between the light source and the first beam splitter to balance the optical path difference between the first detection beam and the second detection beam.
  • the first reflector can be realized by the second plane reflector or the first retroreflective reflector, and the first reflector can be realized by the second plane reflector, which can simplify the structure. Small, so that the first movement mechanism can drive the first mirror to achieve smooth and fast movement.
  • the second reflector may be implemented by one of the third plane reflector, the second retroreflector, and the third retroreflector, or may be implemented by the second retroreflector and the third retroreflector.
  • Fig. 1 exemplarily shows the first schematic structural view of a segmented scanning Fourier transform spectrometer; wherein, the first reflector 3 includes a second plane reflector, which is mechanically connected with the first motion mechanism 11;
  • the second reflector 4 includes:
  • the second retroreflective mirror 13 is mechanically connected to the second motion mechanism 12, and the second detection beam is reflected back to the first beam splitter 2 by the second retroreflective mirror 13;
  • the third retroreflective mirror 14 is mechanically connected with the second moving mechanism 12 , and the second reference beam is reflected back to the first beam splitter 2 by the third retroreflective mirror 14 .
  • Fig. 2 exemplarily shows a second schematic structural view of a segmented scanning Fourier transform spectrometer; wherein, the first reflector 3 includes a second plane reflector, which is mechanically connected with the first motion mechanism 11;
  • the segmented scanning Fourier transform spectrometer also includes a third flat mirror 15;
  • the second reflector 4 includes:
  • the second retroreflective mirror 13 is mechanically connected with the second motion mechanism 12.
  • the first probe beam and the first reference beam are first reflected by the second plane mirror to the second retroreflective mirror 13, and then reflected by the second retroreflective mirror 13. Back to the second plane mirror, and finally reflected back to the first beam splitter 2 through the second plane mirror;
  • the third retroreflective mirror 14 is mechanically connected with the second motion mechanism 12.
  • the second probe beam and the second reference beam are first reflected by the third plane mirror 15 to the third retroreflective mirror 14, and then passed through the third retroreflective mirror 14. reflected back to the third plane mirror 15, and finally reflected back to the first beam splitter 2 through the third plane mirror 15.
  • Fig. 3 exemplarily shows a third schematic structural view of a segmented scanning Fourier transform spectrometer; wherein, the first mirror 3 includes a second plane mirror, which is mechanically connected with the first motion mechanism 11;
  • the second reflector 4 includes:
  • the second retroreflective mirror 13 is mechanically connected with the second motion mechanism 12.
  • the first probe beam and the first reference beam are first reflected by the second plane mirror to the second retroreflective mirror 13, and then reflected by the second retroreflective mirror 13. Back to the second plane mirror, and finally reflected back to the first beam splitter 2 through the second plane mirror;
  • Segmented scanning Fourier transform spectrometer also includes:
  • the third flat mirror 15 is the third flat mirror 15;
  • the third retroreflector 14, the second probe beam and the second reference beam are first reflected to the third retroreflector 14 by the third plane reflector 15, and then reflected back to the third plane reflector 15 by the third retroreflector 14, Finally, it is reflected back to the first beam splitter 2 by the third plane mirror 15 .
  • Fig. 4 exemplarily shows a fourth structural schematic diagram of a segmented scanning Fourier transform spectrometer; wherein, the first reflector 3 includes a second plane reflector, mechanically connected with the first motion mechanism 11;
  • Segmented scanning Fourier transform spectrometer also includes:
  • the third flat mirror 15 is the third flat mirror 15;
  • the second retroreflection mirror 13, the first probe beam and the first reference beam are first reflected to the second retroreflector 13 by the second plane reflector, then reflected back to the second plane reflector by the second retroreflector 13, and finally passed through the second retroreflector 13.
  • the second plane mirror reflects back to the first beam splitter 2;
  • the second reflector 4 includes:
  • the third retroreflective mirror 14 is mechanically connected with the second motion mechanism 12.
  • the second probe beam and the second reference beam are first reflected by the third plane mirror 15 to the third retroreflective mirror 14, and then passed through the third retroreflective mirror 14. reflected back to the third plane mirror 15, and finally reflected back to the first beam splitter 2 through the third plane mirror 15.
  • Fig. 5 exemplarily shows a fifth structural schematic diagram of a segmented scanning Fourier transform spectrometer; wherein, the first reflector 3 includes a second plane reflector, mechanically connected with the first motion mechanism 11;
  • Segmented scanning Fourier transform spectrometer also includes:
  • the second retroreflection mirror 13, the first probe beam and the first reference beam are first reflected to the second retroreflector 13 by the second plane reflector, then reflected back to the second plane reflector by the second retroreflector 13, and finally passed through the second retroreflector 13.
  • the second flat mirror reflects back to the first beam splitter 2 .
  • the second mirror 4 includes a third retroreflective mirror 14 , which is mechanically connected to the second moving mechanism 12 , and the second detection beam and the second reference beam are reflected back to the first beam splitter 2 by the third retroreflective mirror.
  • retroreflectors include three types, namely transmissive retroreflectors, reflective retroreflectors and corner cone reflectors.
  • the first retroreflector, the second retroreflector and the third retroreflector can be any one of a transmissive retroreflector, a reflective retroreflector and a corner cone reflector according to actual needs.
  • FIG. 6 it is an exemplary structural representation of a transmissive retroreflector, a reflective retroreflector, and a pyramid reflector; wherein, the transmissive retroreflector includes a focusing lens and a fourth plane reflector, and Type retroreflectors include fifth flat mirrors and concave mirrors.
  • the second retroreflection mirror 13 is a reflective retroreflector
  • the 3rd retroreflector 14 is a transmissive retroreflector
  • the fourth plane reflector and the fifth plane reflector are combined to form a double-sided plane Reflector.
  • the volume can be reduced, the stability of the device can be improved, and the assembly can be facilitated.
  • both the second retroreflective mirror 13 and the third retroreflective mirror 14 are corner reflectors.
  • the second beam splitter may be realized by a polarization beam splitter (Polarization Beam Splitter, PBS), which is used to realize polarization splitting of the reference beam.
  • the phase shifter can be realized by mechanical phase shifter, airfoil phase shifter, polarization phase shifter, metal film phase shifter, etc., wherein the polarization phase shifter can be achieved by a single-pass 1/4 wave plate or a double-pass 1/8 Wave plate implementation, Figures 1 to 6 exemplarily show that the phase shifter 8 is a two-way 1/8 wave plate, that is, the phase shifter is a 1/8 wave plate relative to the reference laser, and the phase shifter passes twice back and forth The final effect is a 1/4 wave plate, which produces a 90-degree phase shift for the polarization states of two mutually perpendicular reference beams.
  • the implementation manner of the second beam splitter is determined by the specific type and setting position of the phase delayer.
  • the phase shifter can be arranged in the transmission optical path of the first reference beam or the second reference beam, so as to make the finally obtained interference fringes of the first target reference beam and the second target reference beam have a phase difference of 90 degrees.
  • the movement speed of the first movement mechanism should be greater than the movement speed of the second movement mechanism, so as to drive the first reflector to move quickly, the second reflector to move in steps or to move slowly continuously, for example, the second movement speed can be Is 1/100 of the first movement speed.
  • the stroke of the first motion mechanism should be smaller than the stroke of the second motion mechanism, so that the optical path difference generated by the second motion mechanism (that is, the optical path difference between the first target reference beam and the second target reference beam) is the first
  • the optical path difference produced by the moving mechanism is more than twice or more than one hundred times.
  • the stroke of the first moving mechanism can be set to any value within the range of 0.05mm ⁇ 0.2mm according to actual needs
  • the stroke of the second moving mechanism can be set according to In fact, it needs to be set to any value within the range of 10mm ⁇ 100mm, so as to drive the second mirror to perform long-stroke movement at the second speed.
  • the first motion mechanism is specifically used to drive the first mirror to reciprocate.
  • the first motion mechanism capable of reciprocating motion, multiple reciprocating motions within its travel range can realize multiple reciprocating motions for each position point. samples to improve the signal-to-noise ratio.
  • a driving method without friction can be used.
  • the first motion mechanism can be driven by the first motor and the first piezoelectric ceramics that are electrically connected to the first motor and the processor. driver or MEMS driver etc. implementation.
  • the second motion mechanism needs to perform long-distance motion to increase the optical path difference and improve the spectral resolution of the segmented scanning Fourier transform spectrometer.
  • a connected second piezo driver, voice coil motor driver or stepper motor driver is implemented.
  • the second movement mechanism is specifically used to drive the second mirror to move in steps or in slow continuous motion
  • the second motion mechanism When the second motion mechanism is used to drive the second mirror to move step by step, it includes a motion state or a static state.
  • the specific motion mode is motion ⁇ stop ⁇ ... ⁇ motion ⁇ stop.
  • the stroke difference between two adjacent motion states is called Stepping pitch; the stepping pitch of the second kinematic mechanism is smaller than the stroke of the first kinematic mechanism, and the processor is specifically used for:
  • the first photodetector, the second photodetector and the third photodetector are controlled to continuously sample.
  • the above scheme significantly reduces the requirements for smoothness and stability of the movement of the moving mirror (that is, the second reflecting mirror), and solves the contradiction between long optical path difference and smoothness and stability of movement.
  • the first photodetector, the second photodetector and the third photodetector can be implemented by photoelectric conversion devices such as photodiodes and photomultiplier tubes.
  • the processor is used to control the working status of the components connected to it.
  • the light source can work independently without being controlled by the processor, or can be electrically connected with the processor and work under the control of the processor.
  • the processor can be processed by a central processing unit (Central Processing Unit, CPU), other general-purpose processors, a digital signal processor (Digital Signal Processor, DSP), an application-specific integrated circuit (Application Specific Integrated Circuit, ASIC), off-the-shelf programmable gate array (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components and other implementations.
  • a general purpose processor may be a microprocessor or any conventional processor or the like.
  • the light source may be an infrared light source
  • the segmented scanning Fourier transform spectrometer may be a Fourier transform infrared (Fourier Transform Infrared, FTIR) spectrometer.
  • FTIR Fourier Transform Infrared
  • the segmented scanning Fourier transform spectrometer may include but not limited to the above components.
  • the illustration is only an example of the segmented scanning Fourier transform spectrometer, and does not constitute a limitation to the segmented scanning Fourier transform spectrometer, and may include more or less components than those shown in the illustration, Or combine certain components, or different components, for example, may also include storage, input and output devices, network access devices, and the like.
  • the segmented scanning Fourier transform spectrometer may also include a memory electrically connected to the processor for storing a computer program executable by the processor. The control of the working status of each component.
  • the memory may be an internal storage unit of the segmented scanning Fourier transform spectrometer, for example, a hard disk or memory of the segmented scanning Fourier transform spectrometer, specifically, the memory of a photoelectric processor or a data processing module.
  • the memory can also be an external storage device of the segmented scanning Fourier transform spectrometer, for example, a plug-in hard disk equipped on the segmented scanning Fourier transform spectrometer, a smart memory card (Smart Media Card, SMC ), Secure Digital (Secure Digital, SD) card, flash memory card (Flash Card), etc.
  • the memory may also include both an internal storage unit of the segmented scanning Fourier transform spectrometer and an external storage device.
  • the memory is used to store operating systems, application programs, boot loaders (BootLoader), data, and other programs, such as program codes of computer programs.
  • the memory can also be used to temporarily store data that has been output or will be output.
  • the disclosed device may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of units is only a logical function division.
  • there may be other division methods for example, multiple devices may be combined or integrated.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

一种分段扫描傅里叶变换光谱仪,包括光源(1)、第一分束器(2)、第一反射镜(3)、第二反射镜(4)、第一光探测器(5)、第一平面反射镜(6)、第二分束器(7)、移相器(8)、第二光探测器(9)、第三光探测器(10)、第一运动机构(11)、第二运动机构(12)和处理器;通过采用两个行程不同的运动机构协同工作,可以在动镜的运动范围较大的情况下实现稳定的干涉。

Description

一种分段扫描傅里叶变换光谱仪 技术领域
本申请属于傅里叶变换光谱仪(Fourier Transform Spectrometer,FTS)技术领域,尤其涉及一种分段扫描傅里叶变换光谱仪。
背景技术
傅里叶变换光谱仪具有分辨率高、能分析宽光谱、通光量高等优点,在固液分析、气体分析、大气遥感等领域,具有广泛的应用前景。傅里叶变换光谱仪的核心部件是迈克尔逊干涉仪,迈克尔逊干涉仪包括一个动镜(也即可运动的反射镜),动镜的运动范围相对光信号的波长很大,为厘米量级,在动镜的运动过程中,需使相干涉的两路光信号保持良好的相位关系,相位差需在亚波长量级,对迈克尔逊干涉仪的稳定性要求极高。然而,现有的迈克尔逊干涉仪在动镜运动范围较大的情况下难以实现稳定干涉。
技术问题
本申请实施例的目的之一在于:提供一种分段扫描傅里叶变换光谱仪,以解决现有的迈克尔逊干涉仪在动镜运动范围较大的情况下难以实现稳定干涉的问题。
技术解决方案
为了解决上述技术问题,本申请实施例采用的技术方案是:
本申请实施例提供一种分段扫描傅里叶变换光谱仪,包括:
光源,用于输出探测光束和参考光束;
第一分束器,所述探测光束经所述第一分束器分束为第一探测光束和第二探测光束,所述参考光束经所述第一分束器分束为第一参考光束和第二参考光束;
第一反射镜,所述第一探测光束和所述第一参考光束经所述第一反射镜反射回所述第一分束器;
第二反射镜,所述第二探测光束和所述第二参考光束经所述第二反射镜反射回所述第一分束器,所述第一探测光束和所述第二探测光束经所述第一分束器合束为目标探测光束,所述第一参考光束和所述第二参考光束经所述第一分束器合束为目标参考光束;
第一光探测器,用于对所述目标探测光束进行采样并转换为第一电信号;
第一平面反射镜,用于从光路中取出所述目标参考光束;
第二分束器,所述目标参考光束经所述第一平面反射镜反射至所述第二分束器,并经所述第二分束器分束为第一目标参考光束和第二目标参考光束;
移相器,设置于所述第一参考光束或所述第二参考光束的传输光路,使得所述第一目标参考光束和所述第二目标参考光束的干涉条纹的相位差为90度;
第二光探测器,用于对所述第一目标参考光束进行采样并转换为第二电信号;
第三光探测器,用于对所述第二目标参考光束进行采样并转换为第三电信号;
第一运动机构,与所述第一反射镜机械连接,用于驱动所述第一反射镜运动;
第二运动机构,与所述第二反射镜机械连接,用于驱动所述第二反射镜运动,所述第一运动机构的运动速度大于所述第二运动机构的运动速度,所述第一运动机构的行程小于所述第二运动机构的行程;
处理器,分别与所述第一光探测器、所述第二光探测器、所述第三光探测器、所述第一运动机构和所述第二运动机构电连接,用于:
根据所述第一电信号获得所述目标探测光束的时序干涉数据;
根据所述第二电信号和所述第三电信号获得所述第一探测光束和所述第二探测光束的光程差;
根据所述光程差对所述时序干涉数据进行傅里叶变换,获得光谱信息。
在一个实施例中,所述第一运动机构具体用于驱动所述第一反射镜往复运动。
在一个实施例中,所述第二运动机构具体用于驱动所述第二反射镜步进运动或慢速连续运动,所述步进运动包括运动状态或静止状态;
所述第二运动机构用于驱动所述第二反射镜步进运动时,所述第二运动机构的步进间距小于所述第一运动机构的行程,所述处理器具体用于:
在所述第二反射镜处于运动状态时,控制所述第二光探测器和所述第三光探测器持续采样以及所述第一光探测器停止采样;
在所述第二反射镜处于静止状态时,控制所述第二光探测器和所述第三光探测器持续采样以及所述第一光探测器开始采样;
在所述第二反射镜慢速连续运动时,控制所述第一光探测器、所述第二光探测器和所述第三光探测器持续采样。
在一个实施例中,所述第一反射镜包括第二平面反射镜或第一回溯反射镜;
所述第二反射镜,包括:
第二回溯反射镜,所述第二探测光束经所述第二回溯反射镜反射回所述第一分束器;
第三回溯反射镜,所述第二参考光束经所述第三回溯反射镜反射回所述第一分束器。
在一个实施例中,所述第一回溯反射镜、所述第二回溯反射镜和所述第三回溯反射镜分别为透射型回溯反射镜、反射型回溯反射镜和角锥反射镜中的任一种;
所述透射型回溯反射镜包括聚焦透镜和第四平面反射镜;
所述反射型回溯反射镜包括第五平面反射镜和凹面反射镜。
在一个实施例中,所述第二回溯反射镜为所述反射型回溯反射镜,所述第三回溯反射镜为所述透射型回溯反射镜,所述第四平面反射镜和所述第五平面反射镜组合构成双面平面反射镜。
在一个实施例中,所述第一反射镜包括第二平面反射镜;
所述分段扫描傅里叶变换光谱仪包括:
第二回溯反射镜,所述第一探测光束和所述第一参考光束先经所述第二平面反射镜反射至所述第二回溯反射镜、再经所述第二回溯反射镜反射回所述第二平面反射镜、最后经所述第二平面反射镜反射回所述第一分束器;
第三平面反射镜;
第三回溯反射镜,所述第二探测光束和所述第二参考光束先经所述第三平面反射镜反射至所述第三回溯反射镜、再经所述第三回溯反射镜反射回所述第三平面反射镜、最后经所述第三平面反射镜反射回所述第一分束器;
其中,所述第二反射镜包括所述第三平面反射镜、所述第二回溯反射镜、所述第三回溯反射镜中一个,或者,所述第二反射镜包括所述第二回溯反射镜和所述第三回溯反射镜。
在一个实施例中,所述第二回溯反射镜和所述第三回溯反射镜分别为透射型回溯反射镜、反射型回溯反射镜和角锥反射镜中的任一种;
所述透射型回溯反射镜包括聚焦透镜和第四平面反射镜;
所述反射型回溯反射镜包括第五平面反射镜和凹面反射镜。
在一个实施例中,所述第二反射镜包括所述第二回溯反射镜和所述第三回溯反射镜,所述第二回溯反射镜为所述反射型回溯反射镜,所述第三回溯反射镜为所述透射型回溯反射镜,所述第四平面反射镜和所述第五平面反射镜组合构成双面平面反射镜。
在一个实施例中,所述第一反射镜为第二平面反射镜,与所述第一运动机构机械连接;
所述分段扫描傅里叶变换光谱仪包括:
第二回溯反射镜,所述第一探测光束和所述第一参考光束先经所述第二平面反射镜反射至所述第二回溯反射镜、再经所述第二回溯反射镜反射回所述第二平面反射镜、最后经所述第二平面反射镜反射回所述第一分束器;
第三回溯反射镜,所述第二探测光束和所述第二参考光束经所述第三回溯反射镜反射回所述第一分束器;
其中,所述第二反射镜包括所述第二回溯反射镜或所述第三回溯反射镜。
在一个实施例中,所述第二回溯反射镜和所述第三回溯反射镜分别为透射型回溯反射镜、反射型回溯反射镜和角锥反射镜中的任一种;
所述透射型回溯反射镜包括聚焦透镜和第四平面反射镜;
所述反射型回溯反射镜包括第五平面反射镜和凹面反射镜。
在一个实施例中,所述第一运动机构包括:
第一电机;
第一压电陶瓷驱动器或微电机系统驱动器,分别与所述第一电机和所述处理器电连接;
所述第二运动机构包括:
第二电机;
第二压电陶瓷驱动器、音圈电机驱动器或步进电机驱动器,分别与所述第二电机和所述处理器电连接。
在一个实施例中,所述第二运动机构的行程大于所述第一运动机构的行程的两倍。
在一个实施例中,所述第一运动机构的行程的取值范围为0.05毫米~0.2毫米,所述第二运动机构的行程的取值范围为10毫米~100毫米。
在一个实施例中,所述第二分束器为偏振分束器,所述移相器为双程1/8波片或者单程1/4波片。
在一个实施例中,所述分段扫描傅里叶变换光谱仪还包括光程补偿器,设置于所述光源和所述第一分束器之间。
有益效果
本申请实施例提供的分段扫描傅里叶变换光谱仪,包括光源、第一分束器、第一反射镜、第二反射镜、第一光探测器、第一平面反射镜、第二分束器、移相器、第二光探测器、第三光探测器、第一运动机构、第二运动机构和处理器;光源输出的探测光束和参考光束分别经第一分束器分束为两束探测光束和两束参考光束,其中一束探测光束和参考光束经第一反射镜反射回第一分束器、另一束探测光束和参考光束经第二反射镜反射回第一分束器后,两束探测光束合束为目标探测光束、两束参考光束合束为目标参考光束,第一运动机构驱动第一反射镜进行短行程的快速运动,第二运动机构驱动第二反射镜进行长行程的步进运动或慢速连续运动,第一光探测器采样目标探测光束并转换为第一电信号,目标参考光束经第一平面反射镜反射至第二分束器并被分束为两束目标参考光束,两束参考光束中的任一光束在传输过程中经移相器对两个相互垂直的偏振态延迟相位,以使得最终得到的两束目标参考光束干涉条纹的相位差为90度,经第二光探测器和第三光探测器分别采样两束目标参考光束并转换为第二电信号和第三电信号,处理器根据第一电信号获得时序干涉数据,根据第二电信号和第三电信号获得与动镜运动方向无关的光程差,并根据光程差对时序干涉数据进行傅里叶变换,获得光谱信息;通过采用两个行程不同的运动机构协同工作,可以在动镜(也即第二反射镜)的运动范围较大的情况下实现稳定的干涉。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的分段扫描傅里叶变换光谱仪的第一种结构示意图;
图2是本申请实施例提供的分段扫描傅里叶变换光谱仪的第二种结构示意图;
图3是本申请实施例提供的分段扫描傅里叶变换光谱仪的第三种结构示意图;
图4是本申请实施例提供的分段扫描傅里叶变换光谱仪的第四种结构示意图;
图5是本申请实施例提供的分段扫描傅里叶变换光谱仪的第五种结构示意图;
图6是本申请实施例提供的透射型回溯反射镜、反射型回溯反射镜和角锥反射镜的结构示意图。
本发明的实施方式
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分的实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本申请保护的范围。
本申请的说明书和权利要求书及上述附图中的术语“包括”以及它们任何变形,意图在于覆盖不排他的包含。例如包含一系列步骤或单元的过程、方法或系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。此外,术语“第一”、“第二”和“第三”等是用于区别不同对象,而非用于描述特定顺序。
如图1~图5任一附图所示,本申请实施例提供的分段扫描傅里叶变换光谱仪,包括:
光源1,用于输出探测光束100和参考光束200;
第一分束器2,探测光束100经第一分束器2分束为第一探测光束和第二探测光束,参考光束200经第一分束器2分束为第一参考光束和第二参考光束;
第一反射镜3,第一探测光束和第一参考光束经第一反射镜3反射回第一分束器2;
第二反射镜4,第二探测光束和第二参考光束经第二反射镜4反射回第一分束器2,第一探测光束和第二探测光束经第一分束器2合束为目标探测光束,第一参考光束和第二参考光束经第一分束器2合束为目标参考光束;
第一光探测器5,用于对目标探测光束进行采样并转换为第一电信号;
第一平面反射镜6;
第二分束器7,目标参考光束经第一平面反射镜6反射至第二分束器7,并经第二分束器7分束为第一目标参考光束和第二目标参考光束;
移相器8,图1中示例性的示出移相器8设置于第一参考光束的传输光路,图2~图5中示例性的示出移相器8设置于第二参考光束的传输光路,以使得最终获得的第一目标参考光束和第二目标参考光束干涉条纹的相位差为90度;
第二光探测器9,用于对第一目标参考光束进行采样并转换为第二电信号;
第三光探测器10,用于对第二目标参考光束进行采样并转换为第三电信号;
第一运动机构11,与第一反射镜3机械连接,用于驱动第一反射镜3以第一速度进行运动;
第二运动机构12,与第二反射镜4机械连接,用于驱动第二反射镜4以第二速度进行运动,第一运动机构11的运动速度大于第二运动机构12的运动速度,第一运动机构11的行程小于第二运动机构12的行程;
处理器(图中未示出),分别与第一光探测器5、第二光探测器9、第三光探测器10、第一运动机构11和第二运动机构12电连接,用于:
根据第一电信号获得目标探测光束的时序干涉数据;
根据第二电信号和第三电信号获得第一探测光束和第二探测光束的光程差;
根据光程差对时序干涉数据进行傅里叶变换,获得光谱信息。
在应用中,光源可以通过激光器,或者,激光器和准直透镜实现。
在应用中,第一分束器可以通过功率分束器(Beam Splitter,BS)实现,用于实现对入射光束的分束和合束。光源和第一分束器之间还有设置光程补偿器,用来平衡第一探测光束和第二探测光束的光程差。
在应用中,第一反射镜可以通过第二平面反射镜或第一回溯反射镜实现,通过第二平面反射镜来实现第一反射镜,可以简化结构,同时由于平面反射镜较为轻薄、惯性质量小,使得第一运动机构可以驱动第一反射镜实现平滑、快速的运动。第二反射镜可以通过第三平面反射镜、第二回溯反射镜和第三回溯反射镜中的一个实现,或者,通过第二回溯反射镜和第三回溯反射镜实现。
图1中示例性的示出了分段扫描傅里叶变换光谱仪的第一种结构示意图;其中,第一反射镜3包括第二平面反射镜,与第一运动机构11机械连接;
第二反射镜4,包括:
第二回溯反射镜13,与第二运动机构12机械连接,第二探测光束经第二回溯反射镜13反射回第一分束器2;
第三回溯反射镜14,与第二运动机构12机械连接,第二参考光束经第三回溯反射镜14反射回第一分束器2。
图2中示例性的示出了分段扫描傅里叶变换光谱仪的第二种结构示意图;其中,第一反射镜3包括第二平面反射镜,与第一运动机构11机械连接;
分段扫描傅里叶变换光谱仪还包括第三平面反射镜15;
第二反射镜4,包括:
第二回溯反射镜13,与第二运动机构12机械连接,第一探测光束和第一参考光束先经第二平面反射镜反射至第二回溯反射镜13、再经第二回溯反射镜13反射回第二平面反射镜、最后经第二平面反射镜反射回第一分束器2;
第三回溯反射镜14,与第二运动机构12机械连接,第二探测光束和第二参考光束先经第三平面反射镜15反射至第三回溯反射镜14、再经第三回溯反射镜14反射回第三平面反射镜15、最后经第三平面反射镜15反射回第一分束器2。
图3中示例性的示出了分段扫描傅里叶变换光谱仪的第三种结构示意图;其中,第一反射镜3包括第二平面反射镜,与第一运动机构11机械连接;
第二反射镜4,包括:
第二回溯反射镜13,与第二运动机构12机械连接,第一探测光束和第一参考光束先经第二平面反射镜反射至第二回溯反射镜13、再经第二回溯反射镜13反射回第二平面反射镜、最后经第二平面反射镜反射回第一分束器2;
分段扫描傅里叶变换光谱仪还包括:
第三平面反射镜15;
第三回溯反射镜14,第二探测光束和第二参考光束先经第三平面反射镜15反射至第三回溯反射镜14、再经第三回溯反射镜14反射回第三平面反射镜15、最后经第三平面反射镜15反射回第一分束器2。
图4中示例性的示出了分段扫描傅里叶变换光谱仪的第四种结构示意图;其中,第一反射镜3包括第二平面反射镜,与第一运动机构11机械连接;
分段扫描傅里叶变换光谱仪还包括:
第三平面反射镜15;
第二回溯反射镜13,第一探测光束和第一参考光束先经第二平面反射镜反射至第二回溯反射镜13、再经第二回溯反射镜13反射回第二平面反射镜、最后经第二平面反射镜反射回第一分束器2;
第二反射镜4,包括:
第三回溯反射镜14,与第二运动机构12机械连接,第二探测光束和第二参考光束先经第三平面反射镜15反射至第三回溯反射镜14、再经第三回溯反射镜14反射回第三平面反射镜15、最后经第三平面反射镜15反射回第一分束器2。
图5中示例性的示出了分段扫描傅里叶变换光谱仪的第五种结构示意图;其中,第一反射镜3包括第二平面反射镜,与第一运动机构11机械连接;
分段扫描傅里叶变换光谱仪还包括:
第二回溯反射镜13,第一探测光束和第一参考光束先经第二平面反射镜反射至第二回溯反射镜13、再经第二回溯反射镜13反射回第二平面反射镜、最后经第二平面反射镜反射回第一分束器2。
第二反射镜4包括第三回溯反射镜14,与第二运动机构12机械连接,第二探测光束和第二参考光束经第三回溯反射镜反射回第一分束器2。
在应用中,回溯反射镜包括三种类型,分别为透射型回溯反射镜、反射型回溯反射镜和角锥反射镜。第一回溯反射镜、第二回溯反射镜和第三回溯反射镜可以根据实际需要选择透射型回溯反射镜、反射型回溯反射镜和角锥反射镜中的任一种。
如图6所示,示例性的示出了透射型回溯反射镜、反射型回溯反射镜和角锥反射镜的结构示意图;其中,透射型回溯反射镜包括聚焦透镜和第四平面反射镜,反射型回溯反射镜包括第五平面反射镜和凹面反射镜。
图1中示例性的示出第二回溯反射镜13为反射型回溯反射镜,第三回溯反射镜14为透射型回溯反射镜,第四平面反射镜和第五平面反射镜组合构成双面平面反射镜。
在应用中,通过将第四平面反射镜和第五平面反射镜组合构成双面平面反射镜,相比于采用两个相互独立的平面反射镜,可以缩小体积、提高器件稳定性且利于装配。
图2~图5中示例性的示出第二回溯反射镜13和第三回溯反射镜14都为角锥反射镜。
在应用中,第二分束器可以通过偏振分束器(Polarization Beam Splitter,PBS)实现,用于实现对参考光束的偏振分束。移相器可以通过机械移相器、翼型板移相器、偏振移相器、金属膜移相器等实现,其中,偏振移相器可以通过单程1/4波片或双程1/8波片实现,图1~图6中示例性的示出移相器8为双程1/8波片,即移相器是一个相对参考激光的1/8波片,来回两次通过移相器,最终效果为1/4波片,对两个互相垂直的参考光束偏振态产生90度相移。第二分束器的实现方式由相位延时器的具体类型和设置位置决定。移相器可以设置于第一参考光束或第二参考光束的传输光路,为了使得最终获得的第一目标参考光束和第二目标参考光束干涉条纹之间具有90度的相位差。
在应用中,第一运动机构的运动速度应当大于第二运动机构的运动速度,以驱动第一反射镜快速运动、第二反射镜步进运动或慢速连续运动,例如,第二运动速度可以是第一运动速度的1/100。第一运动机构的行程应当小于第二运动机构的行程,以使得第二运动机构产生的光程差(也即第一目标参考光束和第二目标参考光束之间的光程差)为第一运动机构产生的光程差的两倍以上或一百倍以上,例如,第一运动机构的行程可以根据实际需要设置为0.05mm~0.2mm范围内的任意值,第二运动机构的行程可以根据实际需要设置为10mm~100mm范围内的任意值,以驱动第二反射镜以第二速度进行长行程运动。
在应用中,第一运动机构具体用于驱动第一反射镜往复运动,通过使得第一运动机构具有往复运动能力,在其行程范围内多次往复运动,可以实现对每个位置点的多次采样,从而提高信噪比。由于第一运动机构不需要进行长行程运动,因此,可以采用不具有摩擦力的驱动方式,第一运动机构可以通过第一电机以及分别与第一电机和处理器电连接的第一压电陶瓷驱动器或微电机系统驱动器等实现。第二运动机构需要进行长行程运动,以增大光程差,提高分段扫描傅里叶变换光谱仪的光谱分辨率,第二运动机构可以通过第二电机以及分别与第二电机和处理器电连接的第二压电陶瓷驱动器、音圈电机驱动器或步进电机驱动器实现。
在一个实施例中,第二运动机构具体用于驱动第二反射镜步进运动或慢速连续运动;
第二运动机构用于驱动第二反射镜步进运动时,包括运动状态或静止状态,具体运动方式为运动→停止→…→运动→停止,相邻两个运动状态之间的行程差称为步进间距;第二运动机构的步进间距小于第一运动机构的行程,处理器具体用于:
在第二反射镜处于运动状态时,控制第二光探测器和第三光探测器持续采样以及第一光探测器停止采样;
在第二反射镜处于静止状态时,控制第二光探测器和第三光探测器持续采样以及第一光探测器开始采样。
在第二反射镜进行不间断的慢速连续运动时,控制第一光探测器、第二光探测器和第三光探测器持续采样。
上述方案对动镜(也即第二反射镜)运动的平滑性和稳定性要求显著降低,解决了长光程差与运动的平滑性和稳定性之间的矛盾。
在应用中,第一光探测器、第二光探测器和第三光探测器可以通过光电二极管、光电倍增管等光电转换器件实现。
在应用中,处理器用于控制与其连接的各部件的工作状态。光源可以不受处理器控制而独立工作,也可以与处理器电连接,在处理器的控制下工作。处理器可以通过中央处理单元(Central Processing Unit,CPU)、其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等实现。通用处理器可以是微处理器或者任何常规的处理器等。
在应用中,光源可以是红外光源,相应的,分段扫描傅里叶变换光谱仪可以是傅里叶变换红外(Fourier Transform Infrared,FTIR)光谱仪。
在应用中,分段扫描傅里叶变换光谱仪可包括但不仅限于上述部件。本领域技术人员可以理解,图示仅仅是分段扫描傅里叶变换光谱仪的举例,并不构成对分段扫描傅里叶变换光谱仪的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件,例如还可以包括储存器、输入输出设备、网络接入设备等。
在应用中,分段扫描傅里叶变换光谱仪还可以包括与处理器电连接的存储器,用于存储可被处理器执行的计算机程序,处理器在执行该计算机程序时,实现对于处理器电连接的各部件的工作状态的控制。存储器在一些实施例中可以是分段扫描傅里叶变换光谱仪的内部存储单元,例如,分段扫描傅里叶变换光谱仪的硬盘或内存,具体可是光电处理器或数据处理模块的内存。存储器在另一些实施例中也可以是分段扫描傅里叶变换光谱仪的外部存储设备,例如,分段扫描傅里叶变换光谱仪上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进一步地,存储器还可以既包括分段扫描傅里叶变换光谱仪的内部存储单元也包括外部存储设备。存储器用于存储操作系统、应用程序、引导装载程序(BootLoader)、数据以及其他程序等,例如计算机程序的程序代码等。存储器还可以用于暂时地存储已经输出或者将要输出的数据。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述或记载的部分,可以参见其它实施例的相关描述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的器件,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的实施例中,应该理解到,所揭露的装置,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个器件可以结合或者可以集成。
以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围,均应包含在本申请的保护范围之内。

Claims (16)

  1. 一种分段扫描傅里叶变换光谱仪,其特征在于,包括:
    光源,用于输出探测光束和参考光束;
    第一分束器,所述探测光束经所述第一分束器分束为第一探测光束和第二探测光束,所述参考光束经所述第一分束器分束为第一参考光束和第二参考光束;
    第一反射镜,所述第一探测光束和所述第一参考光束经所述第一反射镜反射回所述第一分束器;
    第二反射镜,所述第二探测光束和所述第二参考光束经所述第二反射镜反射回所述第一分束器,所述第一探测光束和所述第二探测光束经所述第一分束器合束为目标探测光束,所述第一参考光束和所述第二参考光束经所述第一分束器合束为目标参考光束;
    第一光探测器,用于对所述目标探测光束进行采样并转换为第一电信号;
    第一平面反射镜,用于从光路中取出所述目标参考光束;
    第二分束器,所述目标参考光束经所述第一平面反射镜反射至所述第二分束器,并经所述第二分束器分束为第一目标参考光束和第二目标参考光束;
    移相器,设置于所述第一参考光束或所述第二参考光束的传输光路,使得所述第一目标参考光束和所述第二目标参考光束的干涉条纹的相位差为90度;
    第二光探测器,用于对所述第一目标参考光束进行采样并转换为第二电信号;
    第三光探测器,用于对所述第二目标参考光束进行采样并转换为第三电信号;
    第一运动机构,与所述第一反射镜机械连接,用于驱动所述第一反射镜运动;
    第二运动机构,与所述第二反射镜机械连接,用于驱动所述第二反射镜运动,所述第一运动机构的运动速度大于所述第二运动机构的运动速度,所述第一运动机构的行程小于所述第二运动机构的行程;
    处理器,分别与所述第一光探测器、所述第二光探测器、所述第三光探测器、所述第一运动机构和所述第二运动机构电连接,用于:
    根据所述第一电信号获得所述目标探测光束的时序干涉数据;
    根据所述第二电信号和所述第三电信号获得所述第一探测光束和所述第二探测光束的光程差;
    根据所述光程差对所述时序干涉数据进行傅里叶变换,获得光谱信息。
  2. 如权利要求1所述的分段扫描傅里叶变换光谱仪,其特征在于,所述第一运动机构具体用于驱动所述第一反射镜往复运动。
  3. 如权利要求1所述的分段扫描傅里叶变换光谱仪,其特征在于,所述第二运动机构具体用于驱动所述第二反射镜步进运动或慢速连续运动,所述步进运动包括运动状态或静止状态;
    所述第二运动机构用于驱动所述第二反射镜步进运动时,所述第二运动机构的步进间距小于所述第一运动机构的行程,所述处理器具体用于:
    在所述第二反射镜处于运动状态时,控制所述第二光探测器和所述第三光探测器持续采样以及所述第一光探测器停止采样;
    在所述第二反射镜处于静止状态时,控制所述第二光探测器和所述第三光探测器持续采样以及所述第一光探测器开始采样;
    在所述第二反射镜慢速连续运动时,控制所述第一光探测器、所述第二光探测器和所述第三光探测器持续采样。
  4. 如权利要求1~3任一项所述的分段扫描傅里叶变换光谱仪,其特征在于,所述第一反射镜包括第二平面反射镜或第一回溯反射镜;
    所述第二反射镜,包括:
    第二回溯反射镜,所述第二探测光束经所述第二回溯反射镜反射回所述第一分束器;
    第三回溯反射镜,所述第二参考光束经所述第三回溯反射镜反射回所述第一分束器。
  5. 如权利要求4所述的分段扫描傅里叶变换光谱仪,其特征在于,所述第一回溯反射镜、所述第二回溯反射镜和所述第三回溯反射镜分别为透射型回溯反射镜、反射型回溯反射镜和角锥反射镜中的任一种;
    所述透射型回溯反射镜包括聚焦透镜和第四平面反射镜;
    所述反射型回溯反射镜包括第五平面反射镜和凹面反射镜。
  6. 如权利要求5所述的分段扫描傅里叶变换光谱仪,其特征在于,所述第二回溯反射镜为所述反射型回溯反射镜,所述第三回溯反射镜为所述透射型回溯反射镜,所述第四平面反射镜和所述第五平面反射镜组合构成双面平面反射镜。
  7. 如权利要求1~3任一项所述的分段扫描傅里叶变换光谱仪,其特征在于,所述第一反射镜包括第二平面反射镜;
    所述分段扫描傅里叶变换光谱仪包括:
    第二回溯反射镜,所述第一探测光束和所述第一参考光束先经所述第二平面反射镜反射至所述第二回溯反射镜、再经所述第二回溯反射镜反射回所述第二平面反射镜、最后经所述第二平面反射镜反射回所述第一分束器;
    第三平面反射镜;
    第三回溯反射镜,所述第二探测光束和所述第二参考光束先经所述第三平面反射镜反射至所述第三回溯反射镜、再经所述第三回溯反射镜反射回所述第三平面反射镜、最后经所述第三平面反射镜反射回所述第一分束器;
    其中,所述第二反射镜包括所述第三平面反射镜、所述第二回溯反射镜、所述第三回溯反射镜中一个,或者,所述第二反射镜包括所述第二回溯反射镜和所述第三回溯反射镜。
  8. 如权利要求7所述的分段扫描傅里叶变换光谱仪,其特征在于,所述第二回溯反射镜和所述第三回溯反射镜分别为透射型回溯反射镜、反射型回溯反射镜和角锥反射镜中的任一种;
    所述透射型回溯反射镜包括聚焦透镜和第四平面反射镜;
    所述反射型回溯反射镜包括第五平面反射镜和凹面反射镜。
  9. 如权利要求8所述的分段扫描傅里叶变换光谱仪,其特征在于,所述第二反射镜包括所述第二回溯反射镜和所述第三回溯反射镜,所述第二回溯反射镜为所述反射型回溯反射镜,所述第三回溯反射镜为所述透射型回溯反射镜,所述第四平面反射镜和所述第五平面反射镜组合构成双面平面反射镜。
  10. 如权利要求1~3任一项所述的分段扫描傅里叶变换光谱仪,其特征在于,所述第一反射镜为第二平面反射镜,与所述第一运动机构机械连接;
    所述分段扫描傅里叶变换光谱仪包括:
    第二回溯反射镜,所述第一探测光束和所述第一参考光束先经所述第二平面反射镜反射至所述第二回溯反射镜、再经所述第二回溯反射镜反射回所述第二平面反射镜、最后经所述第二平面反射镜反射回所述第一分束器;
    第三回溯反射镜,所述第二探测光束和所述第二参考光束经所述第三回溯反射镜反射回所述第一分束器;
    其中,所述第二反射镜包括所述第二回溯反射镜或所述第三回溯反射镜。
  11. 如权利要求10所述的分段扫描傅里叶变换光谱仪,其特征在于,所述第二回溯反射镜和所述第三回溯反射镜分别为透射型回溯反射镜、反射型回溯反射镜和角锥反射镜中的任一种;
    所述透射型回溯反射镜包括聚焦透镜和第四平面反射镜;
    所述反射型回溯反射镜包括第五平面反射镜和凹面反射镜。
  12. 如权利要求1~3任一项所述的分段扫描傅里叶变换光谱仪,其特征在于,所述第一运动机构包括:
    第一电机;
    第一压电陶瓷驱动器或微电机系统驱动器,分别与所述第一电机和所述处理器电连接;
    所述第二运动机构包括:
    第二电机;
    第二压电陶瓷驱动器、音圈电机驱动器或步进电机驱动器,分别与所述第二电机和所述处理器电连接。
  13. 如权利要求1~3任一项所述的分段扫描傅里叶变换光谱仪,其特征在于,所述第二运动机构的行程大于所述第一运动机构的行程的两倍。
  14. 如权利要求1~3任一项所述的分段扫描傅里叶变换光谱仪,其特征在于,所述第一运动机构的行程的取值范围为0.05毫米~0.2毫米,所述第二运动机构的行程的取值范围为10毫米~100毫米。
  15. 如权利要求1~3任一项所述的分段扫描傅里叶变换光谱仪,其特征在于,所述第二分束器为偏振分束器,所述移相器为双程1/8波片或者单程1/4波片。
  16. 如权利要求1~3任一项所述的分段扫描傅里叶变换光谱仪,其特征在于,所述分段扫描傅里叶变换光谱仪还包括光程补偿器,设置于所述光源和所述第一分束器之间。
PCT/CN2021/114733 2021-08-26 2021-08-26 一种分段扫描傅里叶变换光谱仪 WO2023024018A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/114733 WO2023024018A1 (zh) 2021-08-26 2021-08-26 一种分段扫描傅里叶变换光谱仪
CN202180002437.7A CN113853512A (zh) 2021-08-26 2021-08-26 一种分段扫描傅里叶变换光谱仪

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/114733 WO2023024018A1 (zh) 2021-08-26 2021-08-26 一种分段扫描傅里叶变换光谱仪

Publications (1)

Publication Number Publication Date
WO2023024018A1 true WO2023024018A1 (zh) 2023-03-02

Family

ID=78982713

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/114733 WO2023024018A1 (zh) 2021-08-26 2021-08-26 一种分段扫描傅里叶变换光谱仪

Country Status (2)

Country Link
CN (1) CN113853512A (zh)
WO (1) WO2023024018A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117490847A (zh) * 2024-01-02 2024-02-02 中国海洋大学 一种高通量高分辨率静态傅里叶变换光谱测量方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1837784A (zh) * 2006-04-13 2006-09-27 中山大学 一种基于动态稳定扫描技术的傅里叶光谱仪
CN101520342A (zh) * 2009-03-25 2009-09-02 中国科学院上海技术物理研究所 超高光谱分辨率红外傅里叶光谱探测仪
CN102095498A (zh) * 2010-11-12 2011-06-15 北京工业大学 一种扫描式高精度傅立叶变换测量光谱的方法
US20130222790A1 (en) * 2010-10-28 2013-08-29 Konica Minolta Inc Interferometer and fourier-transform spectroscopic analyzer
US20140152993A1 (en) * 2011-07-13 2014-06-05 Konica Minolta, Inc. Interferometer and spectrometer including same
CN108180997A (zh) * 2018-02-27 2018-06-19 无锡迅杰光远科技有限公司 一种基于dlp技术的傅里叶变换光谱仪
CN108593110A (zh) * 2018-05-08 2018-09-28 天津大学 基于pzt相位调制实时补偿的全光纤傅里叶变换光谱仪

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106153196A (zh) * 2016-06-16 2016-11-23 电子科技大学 基于无定镜迈克尔逊干涉仪的傅里叶变换光谱仪
CN211426263U (zh) * 2019-11-22 2020-09-04 光钙(上海)高科技有限公司 一种双摆臂结构傅里叶变换光谱仪

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1837784A (zh) * 2006-04-13 2006-09-27 中山大学 一种基于动态稳定扫描技术的傅里叶光谱仪
CN101520342A (zh) * 2009-03-25 2009-09-02 中国科学院上海技术物理研究所 超高光谱分辨率红外傅里叶光谱探测仪
US20130222790A1 (en) * 2010-10-28 2013-08-29 Konica Minolta Inc Interferometer and fourier-transform spectroscopic analyzer
CN102095498A (zh) * 2010-11-12 2011-06-15 北京工业大学 一种扫描式高精度傅立叶变换测量光谱的方法
US20140152993A1 (en) * 2011-07-13 2014-06-05 Konica Minolta, Inc. Interferometer and spectrometer including same
CN108180997A (zh) * 2018-02-27 2018-06-19 无锡迅杰光远科技有限公司 一种基于dlp技术的傅里叶变换光谱仪
CN108593110A (zh) * 2018-05-08 2018-09-28 天津大学 基于pzt相位调制实时补偿的全光纤傅里叶变换光谱仪

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117490847A (zh) * 2024-01-02 2024-02-02 中国海洋大学 一种高通量高分辨率静态傅里叶变换光谱测量方法
CN117490847B (zh) * 2024-01-02 2024-05-03 中国海洋大学 一种高通量高分辨率静态傅里叶变换光谱测量方法

Also Published As

Publication number Publication date
CN113853512A (zh) 2021-12-28

Similar Documents

Publication Publication Date Title
Smith et al. Single chip lidar with discrete beam steering by digital micromirror device
JP2023160825A (ja) 固体スペクトル走査を備えたlidarシステム
CN103674926B (zh) 光学装置
CN100538397C (zh) 双折射外腔回馈位移测量系统
CN113841062B (zh) 具有模场扩展器的lidar系统
US8390910B2 (en) Optical delay
CN105891958A (zh) 一种大行程高扫描频率光纤延迟线
CN102486408A (zh) 一种多光程干涉仪分光方法及应用该方法的多光程干涉仪
WO2023024018A1 (zh) 一种分段扫描傅里叶变换光谱仪
CN101320126A (zh) 双面反射动镜干涉仪
CN111158139A (zh) 一种用于实时太赫兹医学成像的超高速旋转棱镜光纤延迟线
Ataman et al. Compact Fourier transform spectrometers using FR4 platform
Sandner et al. Translatory MEMS actuators for optical path length modulation in miniaturized Fourier-transform infrared spectrometers
Zhan et al. Birefringent imaging spectrometer
CN117031769A (zh) 干涉仪镜组及位移测量系统
Lee et al. Design and construction of linear laser encoders that possess high tolerance of mechanical runout
Yang et al. Principle of the moving-mirror-pair interferometer and the tilt tolerance of the double moving mirror
CN103712691A (zh) 一种傅立叶变换光谱仪
CN201897569U (zh) 一种多光程干涉仪
CN1412538A (zh) 一种宽带光源信号检测方法及检测器
CN105674889A (zh) 基于光干涉的位移测量方法
CN101806624A (zh) 角反射体动镜干涉仪
CN201897660U (zh) 一种实现多光程的装置
CN216051337U (zh) 高效光程折叠器件及光程放大傅里叶变换光谱仪
CN101793553A (zh) 双面反射动镜干涉仪

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21954550

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE