WO2012057380A1 - System for reforming biogas using waste heat, and method for reforming biogas using same - Google Patents

System for reforming biogas using waste heat, and method for reforming biogas using same Download PDF

Info

Publication number
WO2012057380A1
WO2012057380A1 PCT/KR2010/007532 KR2010007532W WO2012057380A1 WO 2012057380 A1 WO2012057380 A1 WO 2012057380A1 KR 2010007532 W KR2010007532 W KR 2010007532W WO 2012057380 A1 WO2012057380 A1 WO 2012057380A1
Authority
WO
WIPO (PCT)
Prior art keywords
reforming
biogas
type
catalyst
gas
Prior art date
Application number
PCT/KR2010/007532
Other languages
French (fr)
Korean (ko)
Inventor
송순호
김태수
차효석
Original Assignee
연세대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 연세대학교 산학협력단 filed Critical 연세대학교 산학협력단
Publication of WO2012057380A1 publication Critical patent/WO2012057380A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/10Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding acetylene, non-waterborne hydrogen, non-airborne oxygen, or ozone
    • F02M25/12Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding acetylene, non-waterborne hydrogen, non-airborne oxygen, or ozone the apparatus having means for generating such gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0203Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels characterised by the type of gaseous fuel
    • F02M21/0215Mixtures of gaseous fuels; Natural gas; Biogas; Mine gas; Landfill gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy
    • F01N5/02Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy the devices using heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B43/00Engines characterised by operating on gaseous fuels; Plants including such engines
    • F02B43/10Engines or plants characterised by use of other specific gases, e.g. acetylene, oxyhydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • F02G5/02Profiting from waste heat of exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/0227Means to treat or clean gaseous fuels or fuel systems, e.g. removal of tar, cracking, reforming or enriching
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M27/00Apparatus for treating combustion-air, fuel, or fuel-air mixture, by catalysts, electric means, magnetism, rays, sound waves, or the like
    • F02M27/02Apparatus for treating combustion-air, fuel, or fuel-air mixture, by catalysts, electric means, magnetism, rays, sound waves, or the like by catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M31/00Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture
    • F02M31/02Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating
    • F02M31/04Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating combustion-air or fuel-air mixture
    • F02M31/06Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating combustion-air or fuel-air mixture by hot gases, e.g. by mixing cold and hot air
    • F02M31/08Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating combustion-air or fuel-air mixture by hot gases, e.g. by mixing cold and hot air the gases being exhaust gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the present invention relates to a biogas reforming system using waste heat and a biogas reforming method using the same. Specifically, 1) a gas engine using biogas as a main fuel, and 2) recovering heat from exhaust gas of the biogas engine. A heat exchanger for raising the temperature of the biogas for use, and 3) catalytic reforming the reformed biogas heated through the heat exchanger into a synthesis gas containing hydrogen, and then introducing the reformed gas into the biogas engine.
  • the present invention relates to a biogas reforming system and a reforming method using waste heat including a reformer.
  • a distributed power source using a gas engine is highly durable and easy to miniaturize, and since it has advantages in terms of cost, it can be commercialized relatively easily.
  • distributed power generation using a gas engine can recover waste heat and improve work loss to improve thermal efficiency, and there is no great difficulty in producing electric power using renewable energy such as biogas along with fossil fuel such as natural gas. It has advantages.
  • Ilbas et al., 2006 measured the laminar flame rates of hydrogen-air and hydrogen-methane-air mixed gases and reported that combustion rates and flammability increased with increasing hydrogen concentration (Ilbas M, Crayford AP, Yilmaz I, Bowen PJ, Syred N. Laminarburning velocities of hydrogen-ir and hydrogen-methane-air mixture: an experimental study.Int J Hydrogen Energy 2006; 31: 1768--79). In the case of gaseous fuels such as methane, hydrogenation has been found to have a significant effect on engine power.
  • the present invention has developed a biogas fuel reforming technology for an on-board type small gas engine generator which does not need to separately supply hydrogen for addition while improving the thermal efficiency of the small gas engine generator.
  • the present invention is to provide a system and method for reforming the waste heat of the exhaust gas to maintain the active temperature of the reforming catalyst, using the same to produce a reformed gas containing hydrogen to enable smooth hydrogen addition to the biogas.
  • the purpose is to provide a system and method for reforming the waste heat of the exhaust gas to maintain the active temperature of the reforming catalyst, using the same to produce a reformed gas containing hydrogen to enable smooth hydrogen addition to the biogas.
  • the present invention provides a heat exchanger for improving the temperature of the reforming biogas and reforming catalyst by recovering heat from the exhaust gas of the biogas engine.
  • a heat exchanger, and 3) waste heat including a reformer for reforming the reformed biogas heated through the heat exchanger into a synthesis gas containing hydrogen and introducing the reformed gas into a biogas engine. It provides a biogas reforming system using.
  • the present invention 1) recovering the exhaust heat of the biogas engine to heat the reforming biogas and reforming catalyst, ii) the hydrogen by using the catalyst as a heated biogas It provides a biogas reforming method using waste heat comprising the step of reforming the synthesis gas included, and iii) introducing the generated reformed gas into the biogas engine.
  • the reforming system and reforming method may use a burner for supplying additional energy required for the reforming reaction if the recovered exhaust heat is not sufficient to cause the reforming reaction, which burner is a gas burner that burns biogas. , An electric heater or a plasma burner.
  • non-fixed (fixed type), fixed (fixed type), U-type (U-type), cylindrical coil (shell and coil type), so that the exhaust gas and the reforming biogas can be exchanged without mixing Plate type or double pipe type heat exchangers may be used.
  • the flow rate of the biogas reformed by the reformer is determined according to the amount of hydrogen gas required by the biogas engine and the reforming efficiency of the catalyst, and the type and size of the heat exchanger is adjusted according to the determined flow rate of the reforming biogas. desirable.
  • the reforming catalyst may be monolith, pellet, or powder type, and the volume of the reforming catalyst may be determined according to the flow rate of biogas introduced into the catalyst for the reforming reaction.
  • Reforming catalyst reaction of the reformer may be a mixture of carbon dioxide reforming reaction (CO 2 reforming), and the reaction is preferred, the carbon dioxide reforming (CO 2 reforming), and partial oxidation reforming (partial oxidation reforming) to increase the efficiency.
  • CO 2 reforming carbon dioxide reforming reaction
  • partial oxidation reforming partial oxidation reforming
  • the reforming catalyst is preferably a precious metal such as platinum (Pt), rhodium (Rh), palladium (Pd), ruthenium (Ru).
  • the thermal efficiency of the small gas engine generator can be improved, and the biogas fuel reforming for the small gas engine generator of the on-board type, which does not need to separately supply hydrogen for addition. You can implement the system.
  • FIG. 1 is an overall configuration diagram of a biogas reforming system of the present invention.
  • FIG. 2 is a cross-sectional view showing an embodiment of a heat exchanger and a reformer constituting the biogas reforming system of the present invention.
  • FIG 3 is a cross-sectional view of a floating type heat exchanger used in the biogas reforming system of the present invention.
  • FIG. 4 is a cross-sectional view of a fixed type heat exchanger used in the biogas reforming system of the present invention.
  • FIG. 5 is a cross-sectional view of a U-type heat exchanger used in the biogas reforming system of the present invention.
  • FIG. 6 is a cross-sectional view of a shell and coil type heat exchanger used in the biogas reforming system of the present invention.
  • FIG. 7 is a cross-sectional view of a plate type heat exchanger used in the biogas reforming system of the present invention.
  • FIG. 8 is a cross-sectional view of a double pipe type heat exchanger used in the biogas reforming system of the present invention.
  • a gas engine containing biogas as a main fuel and 2) recovering heat from exhaust gas of the biogas engine to increase the temperature of the reforming biogas.
  • biogas reforming method using the system 1) recovering the exhaust heat of the biogas engine to heat the reforming biogas, ii) reforming the heated biogas into a synthesis gas containing hydrogen using a catalyst And iii) introducing the generated reformed gas into a biogas engine.
  • biogas In the case of a gas engine generator using biogas as a fuel, carbon dioxide contained in biogas interferes with combustion, resulting in lower overall thermal efficiency and combustion rate than conventional fossil fuels, but adding hydrogen gas having a fast reaction rate to the biogas. This can improve the overall combustion efficiency of the biogas engine.
  • catalyst activation temperature is so high as about 400 °C to 800 °C because a lot of energy input is required, but in the system of the present invention heat exchange to obtain energy for maintaining the catalyst activation temperature from the waste heat of the exhaust gas from the engine Install the machine.
  • the biogas flowing into the gas engine is discharged to the outside through the exhaust pipe in the form of high temperature exhaust gas after combustion reaction inside the cylinder of the engine. This can then be fed back into the gas engine, which in turn improves the overall thermal efficiency of the biogas engine.
  • the heat exchanger may be used in a variety of forms, preferably as shown in Figures 3 to 8, so that the exhaust gas and the reforming biogas is not mixed with each other, floating type (floating type)
  • floating type floating type
  • a fixed type, U-type, shell and coil type, plate type or double pipe type heat exchanger may be used.
  • the biogas supplied with heat from the exhaust gas through the heat exchanger is reformed into a synthesis gas including hydrogen gas through a catalytic reforming reaction in the reformer, and the apparatus including the heat exchanger is installed at a point close to the engine for effective heat recovery. It is preferable.
  • the temperature of the biogas after the heat exchanger is changed according to the flow rate.
  • the flow rate of the biogas required for the reforming reaction is determined according to the required amount of hydrogen reforming gas and the reforming efficiency of the catalyst, and the type and dimensions of the heat exchanger are also affected by the determined flow rate of the biogas.
  • the reformer is a device that supports the reforming catalyst and serves to transfer waste heat of the exhaust gas to the catalyst as well as the heat exchanger.
  • the type of catalyst filled in the reformer may vary depending on the type of fuel and reforming, but can be largely divided into a metal catalyst and a noble metal catalyst, and the temperature and reforming efficiency at which the reforming reaction is activated vary for each catalyst.
  • a metal catalyst to be commonly used may include nickel (Ni), platinum (Pt) as a noble metal catalyst, Rhodium (Rh), palladium (Pd), ruthenium (Ru) and the like can be used.
  • the catalyst activation temperature is relatively low and the active area of the catalyst due to carbon deposition is reduced.
  • the first is a steam reforming method currently used commercially to obtain high purity hydrogen.
  • the steam reforming method is mainly used in steam reforming reaction using natural gas, methane (CH 4 ), carbon dioxide (CO 2 ), carbon monoxide (CO), hydrogen (H 2 ), water (H 2 O), carbon (C Components such as) may be present in the reaction. Reactions that may occur from the steam reforming reaction are as follows.
  • the steam reforming process is a unit reaction process that primarily produces high concentrations of hydrogen by reforming natural gas from which sulfur is removed, and has a higher yield of hydrogen production per mole of methane than the partial oxidation and autothermal reforming processes. It can be called a method.
  • the process size should be large and the response characteristics to the steady state to the load fluctuations are slow.
  • the forward reaction is advantageous only at high temperature and low pressure conditions.
  • the second reforming process is a partial oxidation reforming method, in which a synthesis gas is obtained by supplying oxygen of less than the stoichiometry required for complete combustion with fuel at the same time, accompanied by a weak exothermic reaction by the partial oxidation reaction. .
  • the partial oxidation reforming process does not necessarily require an external heat source, so the reactor is relatively small in size and has excellent initial start-up and load response characteristics.
  • the hydrogen production efficiency is relatively low compared to other processes. Has its drawbacks.
  • the general partial oxidation scheme is as follows.
  • CO 2 reforming process is being actively conducted as part of an effort to chemically convert global warming gas carbon dioxide into a more useful compound, which is a synthesis gas containing a higher concentration of carbon monoxide than a conventional steam reforming reaction. Can be obtained.
  • a general carbon dioxide reaction is as follows.
  • the catalyst can be used in various forms such as monolith, pellet, powder type.
  • the size and volume of the catalyst may be determined in consideration of the flow rate of the biogas flowing into the catalyst for the reforming reaction, in which case the concept of Gas Hourly Space Velocity (GHSV) may be used.
  • GHSV Gas Hourly Space Velocity
  • the equation of gas space velocity is:
  • a separate burner may be installed to supply energy.
  • the position of the gas burner is determined in consideration of effective heat transfer, and may be formed to heat the heat exchanger and the reformer as shown in FIG. 1, or may be formed directly on an exhaust gas line entering the heat exchanger as shown in FIG. 2. have.
  • the burner may be a gas burner that heats exhaust gas, heat exchanger, reformer, etc. with heat released by mixing and burning biogas, oxygen, and air,
  • burners such as an electric heater and a plasma burner may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

The present invention relates to a system for reforming biogas using waste heat and to a method for reforming biogas using the system. In detail, the system for reforming biogas includes: 1) a gas engine using biogas as a main fuel; 2) a heat exchanger recovering heat from the exhaust gas of the biogas engine in order to increase the temperature of the reforming biogas; and 3) a reformer feeding the reforming biogas into the biogas engine after the reforming biogas heated by means of the heat exchanger is catalytically reformed using a synthesis gas containing hydrogen.

Description

[규칙 제26조에 의한 보정 18.11.2010] 폐열을 이용한 바이오가스 개질 시스템 및 바이오가스 개질 방법[Correction 18.11.2010] under Rule 26. 규칙 Biogas reforming system and waste gas reforming method using waste heat
본 발명은 폐열을 이용한 바이오가스 개질 시스템 및 이를 이용한 바이오가스 개질 방법에 관한 것으로서, 자세하게는 1) 바이오가스를 주연료로 하는 가스엔진, 2) 상기 바이오가스 엔진의 배기가스로부터 열을 회수하여 개질용 바이오가스의 온도를 높이는 열교환기(heat exchanger), 및 3) 상기 열교환기를 통하여 가열된 개질용 바이오가스를 수소가 포함된 합성가스로 촉매 개질한 후, 상기 개질 가스를 바이오가스 엔진으로 유입시키는 리포머(reformer)를 포함하는 폐열을 이용한 바이오가스 개질 시스템 및 개질 방법에 대한 것이다. The present invention relates to a biogas reforming system using waste heat and a biogas reforming method using the same. Specifically, 1) a gas engine using biogas as a main fuel, and 2) recovering heat from exhaust gas of the biogas engine. A heat exchanger for raising the temperature of the biogas for use, and 3) catalytic reforming the reformed biogas heated through the heat exchanger into a synthesis gas containing hydrogen, and then introducing the reformed gas into the biogas engine. The present invention relates to a biogas reforming system and a reforming method using waste heat including a reformer.
상기 시스템과 방법을 통하여, 소형 가스엔진 발전기의 열적 효율을 개선할 수 있으며, 첨가용 수소를 별도로 공급할 필요가 없는 On-board 형태의 소형 가스엔진 발전기용 바이오가스 연료개질 시스템을 구현할 수 있다. Through the above system and method, it is possible to improve the thermal efficiency of the small gas engine generator, it is possible to implement a biogas fuel reforming system for a small gas engine generator of the on-board type that does not need to supply additional hydrogen for addition.
현재의 전기 생산을 위한 화력이나 원자력, 수력 등의 대규모 발전소는 규모의 경제 측면에서 이점이 있지만, 온실가스를 대량 배출하고 소비자와 멀리 떨어져 있어 송전 손실이 발생하게 되며 송전 및 변전 설비 등이 기피 시설로 인식되는 등 사회적, 환경적인 부정적 요인이 존재한다. Large-scale power plants such as thermal power, nuclear power, and hydroelectric power for current electricity generation have advantages in terms of economies of scale, but they generate large amounts of greenhouse gases and are far from consumers, causing transmission losses, and avoiding transmission and substation facilities. Social and environmental negative factors exist.
분산 전원은 이러한 문제점들을 해결하기 위하여 에너지 실수요자 근처 혹은 건물 내부에 소형 발전 설비를 설치하여 에너지 손실과 송전 및 배전 설비를 줄이려는 노력에서 출발하였으며, 현재는 통신 기술 발전과 더불어 원격 자동운전 등을 통해 경제성 있는 규모로도 분산 전원 구현이 가능해졌다. 특히, 최근에는 태양광, 마이크로 가스터빈, 가스엔진 등 다양한 신재생 에너지 개발과 그 적용이 분산전원의 대표적인 형태로 간주되고 있다. In order to solve these problems, distributed power supply has started from efforts to reduce energy loss, transmission and distribution facilities by installing small power generation facilities near energy consumers or inside buildings. Distributed power generation is possible even at an economical scale. In particular, in recent years, the development and application of a variety of renewable energy, such as solar, micro gas turbine, gas engine has been considered as a representative type of distributed power generation.
태양광 분산 전원의 경우 에너지 실수요자 근처에 설치 가능하나, 단위전력당 생산단가가 상대적으로 높고 효율이 낮으며 인버터로 인한 고주파가 발생한다는 문제점이 있으며, 마이크로 가스터빈을 이용한 분산발전은 규모가 작고 소음이 적으며 친환경적이라는 장점이 있으나, 고속으로 회전하는 터빈 블레이드의 내구성 문제와 가스엔진에 비해 생산전력 당 높은 설치 및 유지비용이 소요되기 때문에 상용화에 한계가 있다. In the case of solar distributed power sources, it can be installed near energy consumers, but the production cost per unit power is relatively high, the efficiency is low, and high frequency is generated by inverter. Distributed power generation using micro gas turbine is small in size and noise. Although it has the advantage of being less and environmentally friendly, there is a limit to commercialization because of the durability problem of the turbine blade rotating at high speed and high installation and maintenance cost per production power compared to the gas engine.
이에 비하여 가스엔진을 이용한 분산전원은 내구성이 높고 소형화가 용이할 뿐만 아니라, 비용적 측면에서도 이점이 존재하므로 비교적 쉽게 상용화할 수 있다. 또한 가스엔진을 이용한 분산발전은 열효율 개선을 위한 폐열 회수와 일 손실 개선 등이 가능하며, 천연가스와 같은 화석 연료와 더불어 바이오가스와 같은 신재생 에너지를 이용하여 전력을 생산하는데에도 큰 어려움이 없다는 장점을 지니고 있다.On the other hand, a distributed power source using a gas engine is highly durable and easy to miniaturize, and since it has advantages in terms of cost, it can be commercialized relatively easily. In addition, distributed power generation using a gas engine can recover waste heat and improve work loss to improve thermal efficiency, and there is no great difficulty in producing electric power using renewable energy such as biogas along with fossil fuel such as natural gas. It has advantages.
한편, 바이오가스는 폐자원 활용 측면에서 주목받고 있으며, 이를 활용하는 방안에 대하여 국내 및 국외에서 많은 기술 개발과 연구가 진행되고 있다. 이와 관련된 연구의 일환으로 최근 국내에서는 축산분뇨로부터 생산된 바이오가스를 가스엔진에 적용하여 전력을 생산하는 분산발전 시스템 실증사업이 진행되고 있다. On the other hand, biogas is attracting attention in terms of waste resource utilization, and many technologies are being developed and researched in domestic and foreign countries on how to utilize it. As part of related research, a demonstration project for distributed power generation system is being developed in Korea to apply electric gas produced from livestock manure to a gas engine.
그러나, 바이오가스를 연료로 이용한 가스엔진 발전기의 경우에는 천연가스와 같은 기존 화석연료를 이용한 경우보다 전체적으로 낮은 열효율과 연소 속도를 보이는데, 이는 하기 표 1에서 볼 수 있듯이, 바이오가스에 포함되어 있는 이산화탄소가 연소를 방해하기 때문이다.However, a gas engine generator using biogas as a fuel shows lower overall thermal efficiency and combustion rate than conventional fossil fuels such as natural gas, which can be seen in Table 1 below. Because it interferes with combustion.
표 1
Composition of biogas
Methane (CH4) 55-65%
Carbon dioxide (CO2) 35-45%
Hydrogen sulfide (H2S) 0-1ppm
Nitrogen (N2) 0-3ppm
Hydrogen (H2) 0-1ppm
Oxygen (O2) 0-2ppm
Ammonia (NH3) 0-1ppm
Table 1
Composition of biogas
Methane (CH 4 ) 55-65%
Carbon dioxide (CO 2 ) 35-45%
Hydrogen sulfide (H 2 S) 0-1ppm
Nitrogen (N 2 ) 0-3ppm
Hydrogen (H 2 ) 0-1ppm
Oxygen (O 2 ) 0-2ppm
Ammonia (NH 3 ) 0-1ppm
이를 개선하기 위한 연구가 다양하게 진행되고 있으며, 그 중 연소속도가 빠른 수소를 바이오가스에 첨가하여 전체적인 연소 효율을 개선시키는 연구가 활발하게 진행되고 있다. In order to improve this, various researches have been conducted, and among them, a study of improving the overall combustion efficiency by adding hydrogen having a fast combustion rate to biogas has been actively conducted.
Ilbas et al.은 2006년에 수소-공기와 수소-메탄-공기 혼합 가스의 층류 화염속도를 측정하여, 수소 농도가 증가할수록 연소 속도와 가연성이 증가한다는 사실을 발표하였으며(Ilbas M, Crayford AP, Yilmaz I, Bowen PJ, Syred N. Laminarburning velocities of hydrogen-ir and hydrogen-methane-air mixture:an experimental study. Int J Hydrogen Energy 2006;31:1768~79), 그 이후로 많은 연구들에서 천연가스와 메탄가스와 같은 가스 연료의 경우, 수소 첨가가 엔진 출력에 큰 영향을 미친다는 사실이 확인되었다. Ilbas et al., 2006, measured the laminar flame rates of hydrogen-air and hydrogen-methane-air mixed gases and reported that combustion rates and flammability increased with increasing hydrogen concentration (Ilbas M, Crayford AP, Yilmaz I, Bowen PJ, Syred N. Laminarburning velocities of hydrogen-ir and hydrogen-methane-air mixture: an experimental study.Int J Hydrogen Energy 2006; 31: 1768--79). In the case of gaseous fuels such as methane, hydrogenation has been found to have a significant effect on engine power.
그러나 현재까지 수소 첨가 연구에 사용되는 수소는 모두 외부에서 공급해주고 있으며, 수소의 제조보다는 수소 첨가 시 바이오가스 연소 특성에 초점을 맞추어 연구를 진행해왔기 때문에 바이오가스에 첨가할 수소 생성 방법에 대한 연구는 미비하였다. However, until now, all hydrogen used for hydrogenation research has been supplied from the outside, and since the research has focused on the biogas combustion characteristics when hydrogen is added rather than the production of hydrogen, research on the hydrogen generation method to be added to biogas is It was incomplete.
이에, 본 발명은 소형 가스엔진 발전기의 열적 효율(thermal efficiency)을 개선하면서도 첨가용 수소를 별도로 공급할 필요가 없는 On-board 형태의 소형 가스엔진 발전기용 바이오가스 연료 개질 기술을 개발하였다. Accordingly, the present invention has developed a biogas fuel reforming technology for an on-board type small gas engine generator which does not need to separately supply hydrogen for addition while improving the thermal efficiency of the small gas engine generator.
본 발명은 배기가스의 폐열을 회수하여 개질 촉매의 활성 온도 유지에 이용하고, 이를 이용하여 수소가 포함된 개질 가스를 제조함으로써 바이오가스에 원활한 수소 첨가를 가능하게 하는 시스템 및 개질 방법을 제공하는 것을 목적으로 한다. The present invention is to provide a system and method for reforming the waste heat of the exhaust gas to maintain the active temperature of the reforming catalyst, using the same to produce a reformed gas containing hydrogen to enable smooth hydrogen addition to the biogas. The purpose.
상술한 바와 같은 목적 달성을 위하여, 본 발명은 1) 바이오가스를 주연료로 하는 가스엔진, 2) 상기 바이오가스 엔진의 배기가스로부터 열을 회수하여 개질용 바이오가스와 개질 촉매의 온도를 높이는 열교환기(heat exchanger), 및 3) 상기 열교환기를 통하여 가열된 개질용 바이오가스를 수소가 포함된 합성가스로 촉매 개질한 후, 상기 개질 가스를 바이오가스 엔진으로 유입시키는 리포머(reformer)를 포함하는 폐열을 이용한 바이오가스 개질 시스템을 제공한다. In order to achieve the object as described above, the present invention provides a heat exchanger for improving the temperature of the reforming biogas and reforming catalyst by recovering heat from the exhaust gas of the biogas engine. A heat exchanger, and 3) waste heat including a reformer for reforming the reformed biogas heated through the heat exchanger into a synthesis gas containing hydrogen and introducing the reformed gas into a biogas engine. It provides a biogas reforming system using.
한편, 상술한 바와 같은 목적 달성을 위하여, 본 발명은 1) 바이오가스 엔진의 배기열을 회수하여 개질용 바이오가스와 개질 촉매를 가열시키는 단계, ii) 상기 가열된 바이오가스를 촉매를 이용하여 수소가 포함된 합성가스로 개질하는 단계, 및 iii) 상기 생성된 개질 가스를 바이오가스 엔진에 유입시키는 단계를 포함하는 폐열을 이용한 바이오가스 개질 방법을 제공한다. On the other hand, in order to achieve the above object, the present invention 1) recovering the exhaust heat of the biogas engine to heat the reforming biogas and reforming catalyst, ii) the hydrogen by using the catalyst as a heated biogas It provides a biogas reforming method using waste heat comprising the step of reforming the synthesis gas included, and iii) introducing the generated reformed gas into the biogas engine.
상기 개질 시스템과 개질 방법은 회수된 배기열이 개질 반응을 일으키기에 충분하지 않은 경우, 개질 반응에 필요한 추가적인 에너지를 공급하기 위한 버너(burner)를 이용할 수 있으며, 상기 버너는 바이오가스를 연소시키는 가스 버너, 전기 히터 또는 플라즈마 버너일 수 있다. The reforming system and reforming method may use a burner for supplying additional energy required for the reforming reaction if the recovered exhaust heat is not sufficient to cause the reforming reaction, which burner is a gas burner that burns biogas. , An electric heater or a plasma burner.
또한, 상기 배기가스와 개질용 바이오가스가 혼합되지 않고 열교환할 수 있도록, 비고정식(floating type), 고정식(fixed type), U자형(U-type), 원통코일식(shell and coil type), 평판식(plate type) 또는 이중 파이프식(double pipe type) 열교환기가 사용될 수 있다. In addition, the non-fixed (fixed type), fixed (fixed type), U-type (U-type), cylindrical coil (shell and coil type), so that the exhaust gas and the reforming biogas can be exchanged without mixing Plate type or double pipe type heat exchangers may be used.
상기 리포머에서 개질되는 바이오가스의 유량은 바이오가스 엔진에서 필요로 하는 수소 가스의 양과 촉매의 개질 효율에 따라 결정되고, 상기 결정된 개질용 바이오가스의 유량에 따라 열교환기의 종류 및 크기가 조절되는 것이 바람직하다. The flow rate of the biogas reformed by the reformer is determined according to the amount of hydrogen gas required by the biogas engine and the reforming efficiency of the catalyst, and the type and size of the heat exchanger is adjusted according to the determined flow rate of the reforming biogas. desirable.
또한, 상기 개질 촉매는 모노리스(monolith), 펠렛(pellet), 또는 파우더(powder) 타입일 수 있고, 상기 개질 촉매의 체적은 개질 반응을 위해 촉매로 유입되는 바이오가스의 유량에 따라 결정될 수 있다. In addition, the reforming catalyst may be monolith, pellet, or powder type, and the volume of the reforming catalyst may be determined according to the flow rate of biogas introduced into the catalyst for the reforming reaction.
상기 리포머의 개질 촉매 반응은 이산화탄소 개질(CO2 reforming) 반응인 것이 바람직하며, 효율을 높이기 위하여 이산화탄소 개질(CO2 reforming)과 부분산화 개질(partial oxidation reforming)의 혼합 반응일 수도 있다. Reforming catalyst reaction of the reformer may be a mixture of carbon dioxide reforming reaction (CO 2 reforming), and the reaction is preferred, the carbon dioxide reforming (CO 2 reforming), and partial oxidation reforming (partial oxidation reforming) to increase the efficiency.
또한, 상기 개질 촉매는 백금(Pt), 로듐(Rh), 팔라듐(Pd), 루테늄(Ru)과 같은 귀금속이 사용되는 것이 바람직하다. In addition, the reforming catalyst is preferably a precious metal such as platinum (Pt), rhodium (Rh), palladium (Pd), ruthenium (Ru).
본 발명의 폐열을 이용한 바이오가스 개질 시스템을 이용함으로써, 소형 가스엔진 발전기의 열적 효율을 개선할 수 있으며, 첨가용 수소를 별도로 공급할 필요가 없는 On-board 형태의 소형 가스엔진 발전기용 바이오가스 연료개질 시스템을 구현할 수 있다. By using the biogas reforming system using the waste heat of the present invention, the thermal efficiency of the small gas engine generator can be improved, and the biogas fuel reforming for the small gas engine generator of the on-board type, which does not need to separately supply hydrogen for addition. You can implement the system.
도 1은 본 발명의 바이오가스 개질 시스템의 전체 구성도이다. 1 is an overall configuration diagram of a biogas reforming system of the present invention.
도 2은 본 발명의 바이오가스 개질 시스템을 구성하는 열교환기와 리포머의 일실시예를 보여주는 단면도이다. 2 is a cross-sectional view showing an embodiment of a heat exchanger and a reformer constituting the biogas reforming system of the present invention.
도 3은 본 발명의 바이오가스 개질 시스템에 사용되는 비고정식(floating type) 열교환기의 단면도이다. 3 is a cross-sectional view of a floating type heat exchanger used in the biogas reforming system of the present invention.
도 4는 본 발명의 바이오가스 개질 시스템에 사용되는 고정식(fixed type) 열교환기의 단면도이다. 4 is a cross-sectional view of a fixed type heat exchanger used in the biogas reforming system of the present invention.
도 5는 본 발명의 바이오가스 개질 시스템에 사용되는 U자형(U-type) 열교환기의 단면도이다. 5 is a cross-sectional view of a U-type heat exchanger used in the biogas reforming system of the present invention.
도 6은 본 발명의 바이오가스 개질 시스템에 사용되는 원통코일식(shell and coil type) 열교환기의 단면도이다. 6 is a cross-sectional view of a shell and coil type heat exchanger used in the biogas reforming system of the present invention.
도 7은 본 발명의 바이오가스 개질 시스템에 사용되는 평판식(plate type) 열교환기의 단면도이다. 7 is a cross-sectional view of a plate type heat exchanger used in the biogas reforming system of the present invention.
도 8은 본 발명의 바이오가스 개질 시스템에 사용되는 이중 파이프식(double pipe type) 열교환기의 단면도이다. 8 is a cross-sectional view of a double pipe type heat exchanger used in the biogas reforming system of the present invention.
본 발명에 따른 바이오가스 개질 시스템은, 도 1에서 보는 바와 같이 1) 바이오가스를 주연료로 하는 가스엔진, 2) 상기 바이오가스 엔진의 배기가스로부터 열을 회수하여 개질용 바이오가스의 온도를 높이는 열교환기(heat exchanger), 및 3) 상기 열교환기를 통하여 가열된 개질용 바이오가스를 수소가 포함된 합성가스로 촉매 개질한 후, 상기 개질 가스를 바이오가스 엔진으로 유입시키는 리포머(reformer)로 구성된다. In the biogas reforming system according to the present invention, as shown in FIG. 1, 1) a gas engine containing biogas as a main fuel, and 2) recovering heat from exhaust gas of the biogas engine to increase the temperature of the reforming biogas. A heat exchanger, and 3) a reformer for catalytically reforming the reformed biogas heated through the heat exchanger into a synthesis gas containing hydrogen, and then introducing the reformed gas into the biogas engine. .
또한, 상기 시스템을 이용한 바이오가스 개질 방법은 1) 바이오가스 엔진의 배기열을 회수하여 개질용 바이오가스를 가열시키는 단계, ii) 상기 가열된 바이오가스를 촉매를 이용하여 수소가 포함된 합성가스로 개질하는 단계, 및 iii) 상기 생성된 개질 가스를 바이오가스 엔진에 유입시키는 단계로 이루어진다. In addition, the biogas reforming method using the system 1) recovering the exhaust heat of the biogas engine to heat the reforming biogas, ii) reforming the heated biogas into a synthesis gas containing hydrogen using a catalyst And iii) introducing the generated reformed gas into a biogas engine.
바이오가스를 연료로 이용한 가스엔진 발전기의 경우 바이오가스에 포함되어 있는 이산화탄소가 연소를 방해하기 때문에 기존 화석연료보다 전체적으로 낮은 열효율과 연소속도를 보이게 되지만, 빠른 반응 속도를 가지는 수소가스를 바이오가스에 첨가하면 바이오가스 엔진의 전체적인 연소 효율을 향상시킬 수 있다. In the case of a gas engine generator using biogas as a fuel, carbon dioxide contained in biogas interferes with combustion, resulting in lower overall thermal efficiency and combustion rate than conventional fossil fuels, but adding hydrogen gas having a fast reaction rate to the biogas. This can improve the overall combustion efficiency of the biogas engine.
바이오가스를 개질하여 수소를 포함하는 합성 가스를 생성하기 위해서는 개질 반응에 적합한 촉매가 필요할 뿐만 아니라, 상기 촉매가 개질용 바이오가스와 반응하여 개질 반응이 일으킬 수 있도록 활성화 온도를 유지시켜 주어야 한다. In order to reform the biogas to generate a synthesis gas including hydrogen, not only a catalyst suitable for the reforming reaction is required, but also the activation temperature must be maintained so that the catalyst reacts with the reforming biogas to cause the reforming reaction.
대부분의 촉매 활성화 온도는 약 400℃에서 800℃에 이를 만큼 고온이기 때문에 많은 에너지 투입이 요구되지만, 본 발명의 시스템에서는 촉매 활성화 온도 유지를 위한 에너지를 엔진에서 배출되는 배기가스의 폐열로부터 얻기 위해 열교환기를 설치한다. Most of the catalyst activation temperature is so high as about 400 ℃ to 800 ℃ because a lot of energy input is required, but in the system of the present invention heat exchange to obtain energy for maintaining the catalyst activation temperature from the waste heat of the exhaust gas from the engine Install the machine.
즉, 가스엔진으로 유입되는 바이오가스는 엔진의 실린더 내부에서 연소반응 후 고온의 배기가스 형태로 배기관을 통해 외부로 배출되게 되는데, 이렇게 배출되는 고온의 배기가스로부터 열을 회수하여 수소 가스를 생성한 후 이를 다시 가스 엔진으로 유입시켜 결과적으로 바이오가스 엔진의 전체적인 열효율을 향상시킬 수 있다.In other words, the biogas flowing into the gas engine is discharged to the outside through the exhaust pipe in the form of high temperature exhaust gas after combustion reaction inside the cylinder of the engine. This can then be fed back into the gas engine, which in turn improves the overall thermal efficiency of the biogas engine.
이때, 상기 열교환기는 다양한 형식이 사용될 수 있으며, 바람직하게는 상기 배기가스와 개질용 바이오가스가 서로 혼합되지 않고 열교환할 수 있도록, 도 3 내지 도 8에 도시된 바와 같이, 비고정식(floating type), 고정식(fixed type), U자형(U-type), 원통코일식(shell and coil type), 평판식(plate type) 또는 이중 파이프식(double pipe type)의 열교환기가 사용될 수 있다. At this time, the heat exchanger may be used in a variety of forms, preferably as shown in Figures 3 to 8, so that the exhaust gas and the reforming biogas is not mixed with each other, floating type (floating type) A fixed type, U-type, shell and coil type, plate type or double pipe type heat exchanger may be used.
상기 열교환기를 통하여 배기가스로부터 열을 공급받은 바이오가스는 리포머에서 촉매 개질 반응을 통해 수소 가스를 포함한 합성가스로 개질되게 되며, 이때 효과적인 열 회수를 위해 열교환기를 포함한 장치는 엔진으로부터 근접한 지점에 설치하는 것이 바람직하다. The biogas supplied with heat from the exhaust gas through the heat exchanger is reformed into a synthesis gas including hydrogen gas through a catalytic reforming reaction in the reformer, and the apparatus including the heat exchanger is installed at a point close to the engine for effective heat recovery. It is preferable.
또한, 열교환기 내 바이오가스의 유량에 따라 바이오가스가 열교환기 내에 머무는 시간이 변하기 때문에 열교환기를 거친 후의 바이오가스의 온도는 유량에 따라 변하게 된다. In addition, since the time the biogas stays in the heat exchanger is changed according to the flow rate of the biogas in the heat exchanger, the temperature of the biogas after the heat exchanger is changed according to the flow rate.
따라서, 요구되는 수소 개질 가스의 양과 촉매의 개질 효율에 따라 개질 반응에 필요한 바이오가스의 유량이 결정되게 되며, 상기 결정된 바이오가스의 유량에 따라 열교환기의 종류 및 치수 또한 영향을 받게 된다.Therefore, the flow rate of the biogas required for the reforming reaction is determined according to the required amount of hydrogen reforming gas and the reforming efficiency of the catalyst, and the type and dimensions of the heat exchanger are also affected by the determined flow rate of the biogas.
한편, 바이오가스로부터 합성가스를 생성하기 위해서는 개질 촉매의 존재가 필수적이며, 상기 개질 촉매를 지지함과 동시에 열교환기와 더불어 배기가스의 폐열을 촉매로 전달해주는 역할을 하는 장치가 리포머이다.On the other hand, in order to generate the synthesis gas from the biogas, the presence of the reforming catalyst is essential, and the reformer is a device that supports the reforming catalyst and serves to transfer waste heat of the exhaust gas to the catalyst as well as the heat exchanger.
이때 상기 리포머 내부에 채워지는 촉매의 종류는 연료와 개질의 종류에 따라 다양하지만 크게 금속 촉매와 귀금속 촉매로 구분할 수 있으며, 촉매마다 개질 반응이 활성화되는 온도와 개질 효율이 달라지게 된다. At this time, the type of catalyst filled in the reformer may vary depending on the type of fuel and reforming, but can be largely divided into a metal catalyst and a noble metal catalyst, and the temperature and reforming efficiency at which the reforming reaction is activated vary for each catalyst.
예를 들어, 주로 메탄과 이산화탄소로 구성된 바이오가스를 이산화탄소 개질(CO2 reforming) 반응으로 개질하는 경우, 주로 사용되는 금속 촉매로는 니켈(Ni)등이 있으며, 귀금속 촉매로는 백금(Pt), 로듐(Rh), 팔라듐(Pd), 루테늄(Ru) 등이 사용될 수 있다. For example, if the modified primarily to the biogas carbon dioxide reforming (CO 2 reforming) reaction consisting of methane and carbon dioxide, of a metal catalyst to be commonly used may include nickel (Ni), platinum (Pt) as a noble metal catalyst, Rhodium (Rh), palladium (Pd), ruthenium (Ru) and the like can be used.
일반적으로 금속 촉매를 이용한 개질 반응에 비해 귀금속 촉매를 이용할 경우, 촉매 활성화 온도가 상대적으로 낮고 탄소 침착(carbon deposition)으로 인한 촉매의 활성 영역 감소 현상이 적게 나타난다.In general, when the noble metal catalyst is used compared to the reforming reaction using the metal catalyst, the catalyst activation temperature is relatively low and the active area of the catalyst due to carbon deposition is reduced.
촉매를 이용한 연료 개질의 유형은 크게 세가지로 분류할 수 있는데, 첫 번째 유형은 고순도 수소를 얻기 위하여 현재 상업적으로 사용되고 있는 수증기 개질(steam reforming) 방법이다. There are three major types of fuel reforming using catalysts. The first is a steam reforming method currently used commercially to obtain high purity hydrogen.
상기 수증기 개질 방법은 천연가스를 이용한 수증기 개질 반응에서 주로 사용되며, 메탄(CH4), 이산화탄소(CO2), 일산화탄소(CO), 수소(H2), 물(H2O), 탄소(C)와 같은 성분들이 반응 과정에서 존재할 수 있다. 상기 수증기 개질 반응으로부터 일어날 수 있는 반응들은 다음과 같다. The steam reforming method is mainly used in steam reforming reaction using natural gas, methane (CH 4 ), carbon dioxide (CO 2 ), carbon monoxide (CO), hydrogen (H 2 ), water (H 2 O), carbon (C Components such as) may be present in the reaction. Reactions that may occur from the steam reforming reaction are as follows.
표 2
반응식 반응열
(1) CH4 + H2O ↔ CO + 3H2 ΔH = 49.2 kcal/mol
(2) CO + H2O ↔ CO2 + H2 ΔH = -9.8 kcal/mol
(3) CH4 + 2H2O ↔ CO2 + 4H2 ΔH = 39.4 kcal/mol
(4) CH4 + CO2 ↔ 2CO + 2H2 ΔH = 59.0 kcal/mol
(5) CH4 + 3CO2 ↔ 4CO + 2H2O ΔH = 78.8 kcal/mol
(6) CH4 ↔ C + 2H2 ΔH = 17.9 kcal/mol
(7) 2CO ↔ C +CO2 ΔH = -41.4 kcal/mol
(8) CO + H2 ↔ C + H2O ΔH = -31.3 kcal/mol
(9) CO2 + 2H2 ↔ C + 2H2O ΔH = -21.5 kcal/mol
(10) CH4 + 2CO ↔ 3C + 2H2 ΔH = -44.8 kcal/mol
(11) CH4 + CO2 ↔ 2C + 2H2O ΔH = -3.7 kcal/mol
TABLE 2
Scheme Reaction heat
(1) CH 4 + H 2 O ↔ CO + 3H 2 ΔH = 49.2 kcal / mol
(2) CO + H 2 O ↔ CO 2 + H 2 ΔH = -9.8 kcal / mol
(3) CH 4 + 2H 2 O ↔ CO 2 + 4H 2 ΔH = 39.4 kcal / mol
(4) CH 4 + CO 2 ↔ 2CO + 2H 2 ΔH = 59.0 kcal / mol
(5) CH 4 + 3CO 2 ↔ 4CO + 2H 2 O ΔH = 78.8 kcal / mol
(6) CH 4 ↔ C + 2H 2 ΔH = 17.9 kcal / mol
(7) 2CO ↔ C + CO 2 ΔH = -41.4 kcal / mol
(8) CO + H 2 ↔ C + H 2 O ΔH = -31.3 kcal / mol
(9) CO 2 + 2H 2 ↔ C + 2H 2 O ΔH = -21.5 kcal / mol
(10) CH 4 + 2CO ↔ 3C + 2H 2 ΔH = -44.8 kcal / mol
(11) CH 4 + CO 2 ↔ 2C + 2H 2 O ΔH = -3.7 kcal / mol
최근의 연구결과들을 통하여 위 반응들 중 실제로 수증기 개질 반응 조건에서 일어날 수 있는 것은 (1)~(3) 반응임이 보고되었는데, (1)과 (3)은 흡열 반응이고, (2)는 발열반응이다.Recent studies have reported that (1) to (3) are endothermic reactions (1) and (3), and that exothermic reactions can occur under steam reforming conditions. to be.
수증기 개질 공정은 주로 황 성분이 제거된 천연가스를 개질시킴으로써 고농도의 수소를 일차적으로 생산하게 되는 단위 반응공정으로서 부분산화 및 자열개질 공정에 비하여 메탄 1몰 당 수소생산 수율이 높기 때문에 경제적인 수소생산 방법이라 할 수 있다. The steam reforming process is a unit reaction process that primarily produces high concentrations of hydrogen by reforming natural gas from which sulfur is removed, and has a higher yield of hydrogen production per mole of methane than the partial oxidation and autothermal reforming processes. It can be called a method.
그러나 평형 반응에 의한 반응속도가 느리므로 공정규모가 커야 함과 동시에 부하변동에 대한 정상상태로의 응답특성이 느리며, 강한 흡열 반응으로서 고온 및 저압 조건에서만 정반응의 진행이 유리하다는 단점이 있다.However, due to the slow reaction speed due to the equilibrium reaction, the process size should be large and the response characteristics to the steady state to the load fluctuations are slow. As a strong endothermic reaction, the forward reaction is advantageous only at high temperature and low pressure conditions.
두 번째 개질 공정은 부분산화 개질(partial oxidation reforming) 방법으로, 완전연소에 필요한 양론 이하의 산소를 제한적으로 연료와 동시에 공급함으로써 합성가스를 얻는 공정이며, 부분산화 반응에 의한 약한 발열반응이 동반된다. The second reforming process is a partial oxidation reforming method, in which a synthesis gas is obtained by supplying oxygen of less than the stoichiometry required for complete combustion with fuel at the same time, accompanied by a weak exothermic reaction by the partial oxidation reaction. .
따라서, 부분 산화 개질 공정은 수증기 개질 공정과 달리 외부 열원이 반드시 필요하지 않기 때문에 반응기의 규모가 비교적 작고 초기 시동 및 부하 응답 특성이 우수하다는 장점이 있으나, 타 공정에 비하여 상대적으로 수소 생산 효율이 낮다는 단점이 있다. 일반적인 부분산화 반응식은 다음과 같다.Therefore, unlike the steam reforming process, the partial oxidation reforming process does not necessarily require an external heat source, so the reactor is relatively small in size and has excellent initial start-up and load response characteristics. However, the hydrogen production efficiency is relatively low compared to other processes. Has its drawbacks. The general partial oxidation scheme is as follows.
CH4 + 1/2O2 → CO + 2H2 ΔH = -9 kcal/mol CH 4 + 1 / 2O 2 → CO + 2H 2 ΔH = -9 kcal / mol
마지막으로 이산화탄소 개질(CO2 reforming) 공정은 지구 온난화 기체인 이산화탄소를 보다 유용한 화합물로 화학적 전화하고자 하는 노력의 일환으로 활발히 진행되고 있는 방법으로, 기존의 수증기 개질 반응에 비해 고농도 일산화탄소가 함유된 합성가스를 얻을 수 있다. 일반적인 이산화탄소 반응식은 다음과 같다.Finally, the CO 2 reforming process is being actively conducted as part of an effort to chemically convert global warming gas carbon dioxide into a more useful compound, which is a synthesis gas containing a higher concentration of carbon monoxide than a conventional steam reforming reaction. Can be obtained. A general carbon dioxide reaction is as follows.
CH4 + CO2 → 2CO + 2H2 ΔH = 59 kcal/mol CH 4 + CO 2 → 2CO + 2H 2 ΔH = 59 kcal / mol
바이오가스의 경우에는 이산화탄소가 이미 가스 내에 포함되어 있기 때문에 이산화탄소 개질 반응을 유도하는 것이 용이하다. 그러나, 상기 이산화탄소 개질 반응이 강한 흡열 반응이며 사용되는 촉매의 활성화 온도가 비교적 고온이므로 부분 산화 개질 반응과 같은 다른 개질 반응을 선택적으로 함께 진행시킬 수도 있다. In the case of biogas, since carbon dioxide is already contained in the gas, it is easy to induce a carbon dioxide reforming reaction. However, since the carbon dioxide reforming reaction is a strong endothermic reaction and the activation temperature of the catalyst used is relatively high, other reforming reactions, such as partial oxidation reforming reactions, may be selectively carried out together.
촉매의 형태는 모노리스(monolith), 펠렛(pellet), 파우더(powder) 유형 등다양한 형태의 사용이 가능하다. 또한, 촉매의 크기 및 체적은 개질 반응을 위해 촉매로 유입되는 바이오가스의 유량을 고려하여 결정될 수 있으며, 이때 기체 공간 속도(Gas Hourly Space Velocity, GHSV)의 개념을 사용할 수 있다. 기체 공간 속도의 식은 다음과 같다.The catalyst can be used in various forms such as monolith, pellet, powder type. In addition, the size and volume of the catalyst may be determined in consideration of the flow rate of the biogas flowing into the catalyst for the reforming reaction, in which case the concept of Gas Hourly Space Velocity (GHSV) may be used. The equation of gas space velocity is:
GHSV = Fv/Vr [L/hr] (Vr: 촉매의 체적, Fv: 바이오가스의 체적공급속도)GHSV = F v / V r [L / hr] (V r : volume of catalyst, F v : volume feed rate of biogas)
한편, 엔진에서 배출되는 고온의 배기가스로부터 폐열을 회수하여 바이오가스 개질 반응에 적용할 때, 추가적인 에너지 공급이 필요한 경우 별도의 버너를 설치하여 에너지를 공급할 수 있다. 상기 가스 버너의 위치는 효과적인 열전달을 고려하여 결정하게 되며, 도 1에서와 같이 열교환기와 리포머 전체를 가열할 수 있도록 형성되거나, 도 2에서와 같이 열교환기 내로 들어가는 배기가스 라인에 직접적으로 형성될 수도 있다. On the other hand, when the waste heat is recovered from the high-temperature exhaust gas discharged from the engine and applied to the biogas reforming reaction, when additional energy supply is required, a separate burner may be installed to supply energy. The position of the gas burner is determined in consideration of effective heat transfer, and may be formed to heat the heat exchanger and the reformer as shown in FIG. 1, or may be formed directly on an exhaust gas line entering the heat exchanger as shown in FIG. 2. have.
상기 버너는 바이오가스와 산소 및 공기를 혼합하여 연소함으로써 방출된 열로 배기가스, 열교환기, 리포머 등을 가열하는 가스 버너일 수 있으며,  The burner may be a gas burner that heats exhaust gas, heat exchanger, reformer, etc. with heat released by mixing and burning biogas, oxygen, and air,
또한, 가스 버너 이외에도 전기 히터 및 플라즈마 버너 등 다양한 형태의 버너가 사용될 수 있다. In addition to the gas burner, various types of burners such as an electric heater and a plasma burner may be used.
상기에서 설명한 구성을 가진 바이오가스 개질 시스템을 이용함으로써, 소형 바이오가스 엔진의 열적 효율을 개선할 수 있으며, 첨가용 수소를 별도로 공급할 필요가 없는 On-board 형태의 소형 바이오가스 연료 개질 시스템을 구현할 수 있다. By using the biogas reforming system having the above-described configuration, it is possible to improve the thermal efficiency of the small biogas engine, and to implement the on-board compact biogas fuel reforming system, which does not need to separately supply hydrogen for addition. have.
본 발명은 상술한 특정의 실시예 및 설명에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형 실시가 가능하며, 그와 같은 변형은 본 발명의 보호 범위 내에 있게 된다.The present invention is not limited to the above specific embodiments and descriptions, and various modifications can be made by those skilled in the art without departing from the gist of the invention as claimed in the claims. Such variations are within the protection scope of the present invention.

Claims (18)

1) 바이오가스를 주연료로 하는 가스엔진, 2) 상기 바이오가스 엔진의 배기가스로부터 열을 회수하여 개질용 바이오가스의 온도를 높이는 열교환기(heat exchanger), 및 3) 상기 열교환기를 통하여 가열된 개질용 바이오가스를 수소가 포함된 합성가스로 촉매 개질한 후, 상기 개질 가스를 바이오가스 엔진으로 유입시키는 리포머(reformer)를 포함하는 폐열을 이용한 바이오가스 개질 시스템.1) a gas engine using biogas as the main fuel, 2) a heat exchanger for recovering heat from exhaust gas of the biogas engine to raise the temperature of the reforming biogas, and 3) heated through the heat exchanger. A biogas reforming system using waste heat including a reformer for reforming the reforming biogas into a synthesis gas containing hydrogen and introducing the reformed gas into a biogas engine.
제1항에 있어서, 상기 열교환기를 통하여 회수된 배기열이 개질 반응을 일으키기에 충분하지 않은 경우, 개질 반응에 필요한 추가적인 에너지를 공급하기 위한 버너(burner)를 포함하는 것을 특징으로 하는 폐열을 이용한 바이오가스 개질 시스템.The biogas using waste heat according to claim 1, further comprising a burner for supplying additional energy required for the reforming reaction when the exhaust heat recovered through the heat exchanger is not sufficient to cause the reforming reaction. Reforming system.
제2항에 있어서, 상기 버너가 바이오가스를 연소시키는 가스 버너, 전기 히터 또는 플라즈마 버너인 것을 특징으로 하는 폐열을 이용한 바이오가스 개질 시스템.The biogas reforming system using waste heat according to claim 2, wherein the burner is a gas burner, an electric heater or a plasma burner for burning the biogas.
제1항에 있어서, 상기 배기가스와 개질용 바이오가스가 혼합되지 않고 열교환할 수 있도록, 상기 열교환기가 비고정식(floating type), 고정식(fixed type), U자형(U-type), 원통코일식(shell and coil type), 평판식(plate type) 또는 이중 파이프식(double pipe type)인 것을 특징으로 하는 폐열을 이용한 바이오가스 개질 시스템.The heat exchanger of claim 1, wherein the heat exchanger is a floating type, a fixed type, a U-type, or a cylindrical coil type so that the exhaust gas and the reforming biogas are not mixed. Biogas reforming system using waste heat, characterized in that (shell and coil type), plate type (double type) or double pipe type (double pipe type).
제1항에 있어서, 바이오가스 엔진에서 필요로 하는 수소 가스의 양과 촉매의 개질 효율에 따라 상기 리포머로 유입되는 개질용 바이오가스의 유량이 결정되는 것을 특징으로 하는 폐열을 이용한 바이오가스 개질 시스템.The biogas reforming system using waste heat according to claim 1, wherein the flow rate of reforming biogas flowing into the reformer is determined according to the amount of hydrogen gas required in the biogas engine and the reforming efficiency of the catalyst.
제5항에 있어서, 상기 결정된 개질용 바이오가스의 유량에 따라 열교환기의 종류 및 크기가 조절되는 것을 특징으로 하는 폐열을 이용한 바이오가스 개질 시스템.The biogas reforming system using waste heat according to claim 5, wherein the type and size of the heat exchanger are adjusted according to the determined flow rate of the reforming biogas.
제1항에 있어서, 상기 개질 촉매가 모노리스(monolith), 펠렛(pellet), 또는 파우더(powder) 타입이며, 상기 개질 촉매의 체적이 개질 반응을 위해 촉매로 유입되는 바이오가스의 유량에 따라 결정되는 것을 특징으로 하는 폐열을 이용한 바이오가스 개질 시스템.The reforming catalyst of claim 1, wherein the reforming catalyst is of a monolith, pellet, or powder type, and the volume of the reforming catalyst is determined according to the flow rate of biogas introduced into the catalyst for the reforming reaction. Biogas reforming system using waste heat, characterized in that.
제1항에 있어서, 상기 리포머에서 이루어지는 개질 반응이 이산화탄소 개질(CO2 reforming) 반응 또는 이산화탄소 개질(CO2 reforming)과 부분산화 개질(partial oxidation reforming)의 혼합 반응인 것을 특징으로 하는 폐열을 이용한 바이오가스 개질 시스템.According to claim 1, wherein the reforming reaction takes place in the reformer the carbon dioxide reforming (CO 2 reforming) reaction or a carbon dioxide reforming bio using the waste heat, characterized in that mixing the reaction of (CO 2 reforming), and partial oxidation reforming (partial oxidation reforming) Gas reforming system.
제1항에 있어서, 상기 개질 촉매가 백금(Pt), 로듐(Rh), 팔라듐(Pd), 루테늄(Ru)과 같은 귀금속인 것을 특징으로 하는 폐열을 이용한 바이오가스 개질 통합 시스템.The biogas reforming integrated system using waste heat according to claim 1, wherein the reforming catalyst is a precious metal such as platinum (Pt), rhodium (Rh), palladium (Pd), ruthenium (Ru).
1) 바이오가스 엔진의 배기열을 회수하여 개질용 바이오가스를 가열시키는 단계;1) recovering the exhaust heat of the biogas engine to heat the reforming biogas;
ii) 상기 가열된 바이오가스를 개질 촉매를 이용하여 수소가 포함된 합성가스로 개질하는 단계; 및ii) reforming the heated biogas into a synthesis gas containing hydrogen using a reforming catalyst; And
iii) 상기 생성된 개질 가스를 바이오가스 엔진에 유입시키는 단계;iii) introducing the generated reformed gas into a biogas engine;
를 포함하는 폐열을 이용한 바이오가스 개질 방법.Biogas reforming method using waste heat comprising a.
제10항에 있어서, 상기 바이오가스 엔진으로부터 회수된 배기열이 개질 반응을 일으키기에 충분하지 않은 경우, 상기 개질용 바이오가스 또는 개질 촉매에 버너(burner)를 통하여 개질 반응에 필요한 추가적인 에너지를 공급하는 것을 특징으로 하는 폐열을 이용한 바이오가스 개질 방법.The method according to claim 10, wherein if the exhaust heat recovered from the biogas engine is not sufficient to cause a reforming reaction, supplying additional energy for the reforming reaction through a burner to the reforming biogas or reforming catalyst. Biogas reforming method using waste heat characterized in that.
제11항에 있어서, 상기 버너가 바이오가스를 연소시키는 가스 버너, 전기 히터 또는 플라즈마 버너인 것을 특징으로 하는 폐열을 이용한 바이오가스 개질 방법.12. The method of claim 11, wherein the burner is a gas burner, an electric heater or a plasma burner for burning the biogas.
제10항에 있어서, 상기 배기가스를 이용한 개질용 바이오가스의 가열이 비고정식(floating type), 고정식(fixed type), U자형(U-type), 원통코일식(shell and coil type), 평판식(plate type) 또는 이중 파이프식(double pipe type) 열교환기에 의하여 서로 혼합되지 않고 이루어지는 것을 특징으로 하는 폐열을 이용한 바이오가스 개질 방법.11. The method of claim 10, wherein the heating of the reforming biogas using the exhaust gas is floating (fixed type), fixed (fixed type), U-type (U-type), cylindrical coil type (shell and coil type), flat plate A biogas reforming method using waste heat, characterized in that it is not mixed with each other by a plate type or a double pipe type heat exchanger.
제10항에 있어서, 상기 개질용 바이오가스의 유량이 바이오가스 엔진에서 필요로 하는 수소 가스의 양과 촉매의 개질 효율에 따라 조절되는 것을 특징으로 하는 폐열을 이용한 바이오가스 개질 방법.The method of claim 10, wherein the flow rate of the reforming biogas is adjusted according to the amount of hydrogen gas required by the biogas engine and the reforming efficiency of the catalyst.
제14항에 있어서, 상기 결정된 개질용 바이오가스의 유량에 따라 열교환기의 종류 및 크기가 조절되는 것을 특징으로 하는 폐열을 이용한 바이오가스 개질 방법.15. The method of claim 14, wherein the type and size of the heat exchanger is adjusted according to the determined flow rate of the reforming biogas.
제10항에 있어서, 상기 개질 촉매가 모노리스(monolith), 펠렛(pellet), 또는 파우더(powder) 타입이며, 상기 개질 촉매의 체적이 개질 반응을 위해 촉매로 유입되는 바이오가스의 유량에 따라 결정되는 것을 특징으로 하는 폐열을 이용한 바이오가스 개질 방법.The reforming catalyst of claim 10, wherein the reforming catalyst is of a monolith, pellet, or powder type, and the volume of the reforming catalyst is determined according to the flow rate of the biogas introduced into the catalyst for the reforming reaction. Biogas reforming method using waste heat, characterized in that.
제10항에 있어서, 상기 촉매를 이용한 바이오가스의 개질 반응이 이산화탄소 개질(CO2 reforming) 반응 또는 이산화탄소 개질(CO2 reforming)과 부분산화 개질(partial oxidation reforming)의 혼합 반응인을 특징으로 하는 폐열을 이용한 바이오가스 개질 방법.The method of claim 10 wherein reforming the reforming reaction of the bio-gas carbon dioxide using the above catalyst (CO 2 reforming) reaction or a carbon dioxide reforming (CO 2 reforming), and the partial oxidation reforming heat characterized by mixing the reaction of the (partial oxidation reforming) Biogas reforming method using.
제10항에 있어서, 상기 개질 촉매가 백금(Pt), 로듐(Rh), 팔라듐(Pd), 루테늄(Ru)과 같은 귀금속인 것을 특징으로 하는 폐열을 이용한 바이오가스 개질 방법.The method of claim 10, wherein the reforming catalyst is a precious metal such as platinum (Pt), rhodium (Rh), palladium (Pd), ruthenium (Ru).
PCT/KR2010/007532 2010-10-29 2010-10-29 System for reforming biogas using waste heat, and method for reforming biogas using same WO2012057380A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020100106697A KR101136234B1 (en) 2010-10-29 2010-10-29 Biogas reforming system using waste heat, and biogas reforming method using the same
KR10-2010-0106697 2010-10-29

Publications (1)

Publication Number Publication Date
WO2012057380A1 true WO2012057380A1 (en) 2012-05-03

Family

ID=45994076

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/007532 WO2012057380A1 (en) 2010-10-29 2010-10-29 System for reforming biogas using waste heat, and method for reforming biogas using same

Country Status (2)

Country Link
KR (1) KR101136234B1 (en)
WO (1) WO2012057380A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101480801B1 (en) 2013-05-08 2015-01-12 한국화학연구원 Monolith type reforming catalyst, preparation method thereof and process for syn gas
KR102435378B1 (en) 2020-08-21 2022-08-22 조선대학교산학협력단 Solar fuel production system based on plasma-matrix burner partial oxidation reformer
KR102483101B1 (en) * 2020-12-28 2023-01-02 한국에너지기술연구원 Combustion system using ammonia decomposition reaction

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005214013A (en) * 2004-01-27 2005-08-11 Mitsubishi Heavy Ind Ltd Power generation system using methane-containing gas as supply gas
JP2009185625A (en) * 2008-02-04 2009-08-20 Nissan Motor Co Ltd Device for fuel reforming and waste heat recovery for internal combustion engine and method for fuel reforming and waste heat recovery
KR20100000543A (en) * 2008-06-25 2010-01-06 한국기계연구원 Treatment gas supply system of engine
JP2010025031A (en) * 2008-07-22 2010-02-04 Toyota Motor Corp Fuel reforming apparatus
KR20100079282A (en) * 2008-12-31 2010-07-08 연세대학교 산학협력단 Apparatus for engine-emission reduction using reformer, reformer used therefor and apparatus for engine-emission reduction using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005214013A (en) * 2004-01-27 2005-08-11 Mitsubishi Heavy Ind Ltd Power generation system using methane-containing gas as supply gas
JP2009185625A (en) * 2008-02-04 2009-08-20 Nissan Motor Co Ltd Device for fuel reforming and waste heat recovery for internal combustion engine and method for fuel reforming and waste heat recovery
KR20100000543A (en) * 2008-06-25 2010-01-06 한국기계연구원 Treatment gas supply system of engine
JP2010025031A (en) * 2008-07-22 2010-02-04 Toyota Motor Corp Fuel reforming apparatus
KR20100079282A (en) * 2008-12-31 2010-07-08 연세대학교 산학협력단 Apparatus for engine-emission reduction using reformer, reformer used therefor and apparatus for engine-emission reduction using the same

Also Published As

Publication number Publication date
KR101136234B1 (en) 2012-04-17

Similar Documents

Publication Publication Date Title
JP4187851B2 (en) Biomass-based carbon production equipment
CN106898794B (en) A kind of electricity-generating method and power generator based on methanol steam reforming system
CA2109655A1 (en) Combined reformer and shift reactor
US7537750B2 (en) Method for producing hydrogen gas by steam methane reforming using solar energy
JP2015536894A (en) An integrated carbon dioxide conversion system that links pure oxygen combustion and catalytic conversion processes
JP2009179541A (en) Solid oxide type fuel cell-hydrogen manufacturing system
JP2003503295A (en) Ethanol reforming catalyst, reforming method, and fuel cell system using them
WO2012057380A1 (en) System for reforming biogas using waste heat, and method for reforming biogas using same
Chen et al. Methanol partial oxidation accompanied by heat recirculation in a Swiss-roll reactor
CN1321136A (en) Apparatus for producing hydrogen gas and fuel cell system using same
JP2007246369A (en) Apparatus, system and method for producing hydrogen
KR101243767B1 (en) Hydrogen production system for pemfc
JP3297246B2 (en) Cogeneration method
WO2008105793A2 (en) Integrated catalytic and turbine system and process for the generation of electricity
CN205944261U (en) Methanol reforming reactor and small -size fuel cell power generation system
JP4008051B2 (en) Power generation method
WO2024018169A1 (en) Process for producing power in a gas turbine
JPS5826002A (en) Steam reforming method and reaction tube for steam reforming
CN110177880A (en) Method and apparatus for preparing organic compound from biogas
JP2021195316A (en) Co2 methanation reaction device having co selective oxidation catalyst and removal method of co in gas
JP2005214013A (en) Power generation system using methane-containing gas as supply gas
JP3453218B2 (en) Power generation method
JP2005019245A (en) Hydrogen generating device
CA3229598A1 (en) Reforming units for hydrogen production
JPS63110557A (en) Operating method for solid electrolyte fuel cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10858994

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10858994

Country of ref document: EP

Kind code of ref document: A1