WO2012057334A1 - Rice planting machine - Google Patents

Rice planting machine Download PDF

Info

Publication number
WO2012057334A1
WO2012057334A1 PCT/JP2011/074969 JP2011074969W WO2012057334A1 WO 2012057334 A1 WO2012057334 A1 WO 2012057334A1 JP 2011074969 W JP2011074969 W JP 2011074969W WO 2012057334 A1 WO2012057334 A1 WO 2012057334A1
Authority
WO
WIPO (PCT)
Prior art keywords
speed
rotation angle
fixed
maximum
rice transplanter
Prior art date
Application number
PCT/JP2011/074969
Other languages
French (fr)
Japanese (ja)
Inventor
疋田 康貴
Original Assignee
ヤンマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010244754A external-priority patent/JP5808903B2/en
Priority claimed from JP2011038880A external-priority patent/JP2012172668A/en
Priority claimed from JP2011052091A external-priority patent/JP5688803B2/en
Application filed by ヤンマー株式会社 filed Critical ヤンマー株式会社
Priority to CN201180051414.1A priority Critical patent/CN103188927B/en
Priority to KR1020137013735A priority patent/KR101485549B1/en
Publication of WO2012057334A1 publication Critical patent/WO2012057334A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01CPLANTING; SOWING; FERTILISING
    • A01C11/00Transplanting machines
    • A01C11/003Transplanting machines for aquatic plants; for planting underwater, e.g. rice
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01CPLANTING; SOWING; FERTILISING
    • A01C11/00Transplanting machines
    • A01C11/02Transplanting machines for seedlings

Definitions

  • the present invention relates to rice transplanter technology.
  • Patent Document 1 a technique for changing the vehicle speed of a rice transplanter has been publicly known (for example, Patent Document 1).
  • the target vehicle speed is always constant with respect to the depression amount of the shift pedal, which is a shift operation tool that moves forward and backward.
  • the conventional rice transplanter requires a small amount of control of the shift pedal. It was done. Thereby, it was difficult to drive the rice transplanter at a desired vehicle speed according to the scene.
  • the present invention eliminates the need for minute adjustments of the shift pedal according to the scene, such as movement, work, loading and unloading from the truck, and putting in the barn, and can easily realize traveling at a desired vehicle speed according to the scene. Provide a machine.
  • the rice transplanter of the present invention An actuator for changing the engine speed and / or the gear ratio of the HST; Transmission means that is an operating tool for changing the drive amount of the actuator; A control device that is connected to the actuator and the speed change means, and changes the vehicle speed by changing at least one of the rotational speed of the engine and the speed ratio of the HST by the actuator based on an operation amount of the speed change means; A maximum speed setting means that is connected to the control device and is an operating tool for changing a maximum speed that is a vehicle speed when the speed change means is operated up to a maximum operation amount; The controller is The target drive amount of the actuator is calculated based on the operation amount of the speed change means, and the actuator is driven so that the drive amount of the actuator becomes the target drive amount.
  • the maximum speed setting means can be rotated, and within the rotation range, the variable range for changing the maximum speed corresponding to the amount of change of the rotation angle, and the change of the rotation angle A constant speed region that maintains the maximum speed at a constant value.
  • the constant speed range has a minimum speed range, a maximum speed range, and a sparse recommended speed range provided between the minimum speed range and the maximum speed range
  • the variable range includes a first variable range provided between the minimum speed range and the recommended sparse planting speed range, and a second variable range provided between the recommended sparse planting speed range and the maximum speed.
  • An actuator for changing the engine speed and / or the gear ratio of the HST An actuator for changing the engine speed and / or the gear ratio of the HST; Transmission means that is an operating tool for changing the drive amount of the actuator; A control device that is connected to the actuator and the speed change means, and changes the vehicle speed by changing at least one of the rotational speed of the engine and the speed ratio of the HST by the actuator based on an operation amount of the speed change means; Maximum speed setting means that is connected to the control device and is an operating tool for changing a maximum speed that is a vehicle speed when the speed change means is operated to a maximum operation amount; A speed fixing means connected to the control device, and being an operating tool for fixing the vehicle speed to a constant value regardless of the operation of the speed change means; The controller changes the drive amount of the actuator based on the operation amount of the maximum speed setting means when the vehicle speed is fixed by the speed fixing means and the maximum speed setting means is operated. Thus, the vehicle speed fixed by the speed fixing means is changed to a size corresponding to the operation amount of the maximum speed
  • the control device When the vehicle speed is fixed by the speed fixing means and the vehicle speed after the change by the maximum speed setting means is a value less than a predetermined speed lower limit threshold, the control device performs the vehicle speed by the speed fixing means. Unpin.
  • the controller is When the vehicle speed is fixed by the speed fixing means, the speed fixing is performed when the operation amount of the speed change means decreases to less than a predetermined fixed release lower limit and then increases to the fixed release lower limit. Release the vehicle speed fixed by means, When the vehicle speed is fixed by the speed fixing means and the operation amount of the speed change means increases to a predetermined unlocking upper limit value, the vehicle speed fixing by the speed fixing means is released,
  • the fixed release lower limit value is a value smaller than a fixed storage position that is an operation amount of the transmission unit when the speed fixing unit is operated and vehicle speed is fixed.
  • the fixed release upper limit value is a value larger than the fixed storage position.
  • the control device When the vehicle speed is fixed by the speed fixing means and the maximum speed setting means is operated, the control device, when the maximum speed setting means is operated, the fixed release lower limit value and a fixed value according to the operation amount of the maximum speed setting means Change the cancellation upper limit.
  • the vehicle speed (maximum speed) required by the operator can be set by the maximum speed setting means, a small amount of the speed change means corresponding to the scene, such as movement, work, loading / unloading from the truck, and barn.
  • the maximum speed setting means a small amount of the speed change means corresponding to the scene, such as movement, work, loading / unloading from the truck, and barn.
  • the maximum speed setting means when setting the maximum speed by rotating the maximum speed setting means, if the maximum speed setting means is rotated within the constant speed range, the maximum speed is a constant value corresponding to the constant speed range. Therefore, it is possible to easily set the maximum speed.
  • the maximum speed corresponding to the minimum speed range, the maximum speed corresponding to the recommended sparse planting speed range, and the maximum speed range It is possible to easily set the corresponding maximum speed.
  • the maximum speed of the rice transplanter can be easily set to the maximum speed corresponding to the recommended sparse planting speed range, that is, the optimum maximum speed for sparse planting work, so that the planting accuracy is improved when performing sparse planting work. It is possible. Further, by providing a recommended vehicle speed setting area such as sparse planting, it is possible to prevent the planting rotor from being crushed.
  • the vehicle speed (maximum speed) required by the operator can be set by the maximum speed setting means, a small amount of the speed change means corresponding to the scene, such as movement, work, loading / unloading from the truck, and barn.
  • the vehicle speed (fixed vehicle speed) fixed by the speed fixing means can be changed only by operating the maximum speed setting means. Therefore, the increase / decrease adjustment of the fixed vehicle speed can be performed smoothly.
  • the speed fixing means when the vehicle speed is fixed by the speed fixing means in the low speed range, and the maximum speed setting means is operated to the low speed side (the side where the vehicle speed decreases), the speed of the rice transplanter is stopped. It is possible to prevent the vehicle speed fixed state from being maintained by the fixing means.
  • FIG. 1 Schematic when the rice transplanter shown in FIG. 1 is viewed from above.
  • the figure which shows the power transmission structure to a planting part in the rice transplanter shown in FIG. (A) is a figure which shows the dashboard periphery of the rice transplanter shown in FIG. 1, (b) The enlarged view of the highest speed setting dial.
  • the block diagram which shows the control apparatus of the rice transplanter shown in FIG. The figure which shows a 1st map.
  • Whole side view of rice transplanter The figure which shows the structure of the power transmission structure and control inside the mission case of a rice transplanter.
  • the rice transplanter is an eight-row planter, but this is not particularly limited, and a six-plant or ten-row planter may be used.
  • the rice transplanter 1 has a traveling unit 10 and a planting unit 40, so that the planting unit 40 can plant seedlings in the field while traveling by the traveling unit 10. Configured.
  • the planting part 40 is arrange
  • the engine 14 is provided at the front portion of the vehicle body frame 11 and is covered with a bonnet 15.
  • the transmission case 20 is supported by the front portion of the vehicle body frame 11 and is disposed behind the engine 14.
  • a hydraulic-mechanical continuously variable transmission (HMT) 21 a main transmission mechanism 22, a clutch 23, and a braking device 24 are mounted inside the mission case 20.
  • HMT hydraulic-mechanical continuously variable transmission
  • the HMT 21 is a hydraulic continuously variable transmission (HST) 21a capable of steplessly changing the power from the engine 14, and a planetary gear mechanism capable of combining the power from the engine 14 and the power from the HST 21a. 21b.
  • HST hydraulic continuously variable transmission
  • the main transmission mechanism 22 can change the power from the HMT 21 in a plurality of stages by changing the combination of gears to mesh with each other.
  • the clutch 23 switches whether power can be transmitted from the HMT 21 to the main transmission mechanism 22 by being disconnected or connected.
  • the braking device 24 can brake the rotation of the output shaft of the main transmission mechanism 22.
  • the front axle case 6 is supported on the front portion of the vehicle body frame 11, and the front wheels 12 are attached to the left and right sides of the front axle case 6.
  • the rear axle case 7 is supported on the rear portion of the vehicle body frame 11, and the rear wheels 13 are attached to both the left and right sides of the rear axle case 7.
  • the power of the engine 14 is transmitted to the mission case 20, and is transmitted to the left and right front wheels 12 and the left and right rear wheels 13 via the HMT 21 and the main transmission mechanism 22 inside the mission case 20, respectively. 12 and the rear wheel 13 are configured to rotate. Thereby, the traveling unit 10 can travel forward or backward.
  • a driving operation unit 60 is provided in the middle of the vehicle body 11 before and after.
  • a dashboard 61 is disposed in front of the driving operation unit 60.
  • a steering handle 64 is disposed at the center of the left and right of the dashboard 61, and a main transmission lever 65, a key switch 66 (see FIG. 5A), and the like are further disposed on the dashboard 61.
  • a driver's seat 62 is arranged behind the steering handle 64 at the rear of the driving operation unit 60.
  • a speed change pedal 67 for getting on and off
  • a brake pedal 68 for getting on and off
  • a vehicle body cover 63 having a part of the step for getting on and off
  • Operation tools such as levers and switches are arranged. With these operating tools, it is possible to perform appropriate operations on the traveling unit 10 and the planting unit 40. The detailed configuration of the operation tool will be described later.
  • the spare seedling stage 17 is attached to each mounting frame 16 erected from both the left and right sides of the front portion of the vehicle body frame 11, and is arranged on both the left and right sides of the bonnet 15. And a reserve seedling is mounted in the reserve seedling mounting stand 17, and the seedling supply to the planting part 40 is attained.
  • the planting mission case 50 is supported near the center of the lower part of the planting frame 49, and the transmission shaft 51 is connected to the planting mission case 50. It extends on both the left and right sides.
  • the four planting transmission cases 46 are respectively extended rearward from the transmission shaft 51 and arranged at appropriate intervals in the left-right direction.
  • a rotary case 44 is rotatably supported on the left and right sides of the rear end of each planting transmission case 46.
  • the number of the rotary cases 44 is the same as the number of planting strips, that is, eight in this embodiment. Then, the two planting claws 45 are attached to both sides of the rotary case 44 in the longitudinal direction so as to sandwich the rotation fulcrum of the rotary case 44.
  • a seedling stand 41 is disposed above the planting transmission case 46 in a front and rear inclined state, and is attached to the rear portion of the planting frame 49 so as to be reciprocally movable in the left and right directions via upper and lower guide rails (not shown). It is done.
  • the seedling table 41 can be reciprocated horizontally by the lateral feed mechanism 52.
  • the seedling mounting bases 41 having a plurality of (eight) seedling mat mounting parts are arranged in the left-right direction so that the respective lower ends face one rotary case 44. Then, the seedling mat is placed on each seedling stage 41, and one seedling can be cut from the seedling mat on the seedling stage 41 by the planting claws 45 when the rotary case 44 rotates.
  • a seedling vertical feed belt 47 corresponding to the number of strips is provided on the seedling mount 41.
  • the seedling vertical feed belt 47 can be operated so that the seedling mat on the seedling stage 41 is vertically fed by the vertical feeding mechanism 53 every time the seedling stage 41 reaches the stroke end of the left and right reciprocating horizontal feed. It is said.
  • the motive power of the engine 14 is transmitted to each rotary case 44 via the transmission case 20, the inter-company transmission case 54, the planting transmission case 50, etc., and the rotary case 44 is configured to rotate.
  • the two planting claws 45 can alternately take out the seedlings from the seedling mat on the seedling mount 41 and plant them in the field.
  • the power of the engine 14 is transmitted to the lateral feed mechanism 52 and the vertical feed mechanism 53 via the transmission case 20, the inter-strain shifting case 54, the planting mission case 50, etc. It is configured such that it is reciprocated horizontally and the seedling mat on the seedling table 41 is vertically fed downward by the vertical feed mechanism 53 via the seedling vertical feed belt 47 in accordance with the left and right reciprocating horizontal feed of the seedling table 41. Is done. Thereby, the seedling mat on the seedling placing table 41 is moved to an appropriate position with respect to the planting claws 45.
  • the drawing marker 48 is supported rotatably on the left and right sides of the planting frame 49.
  • Each of the left and right line drawing markers 48 is stored by being rotated upward with the base end side as a rotation fulcrum, and the tip side is left or left by being rotated downward from this stored state. It is configured so that it can be drawn to the field by protruding rightward.
  • the above-described lifting mechanism 30 is provided between the traveling unit 10 and the planting unit 40.
  • the top link 31 and the lower link 32 are installed between the traveling unit 10 and the planting unit 40, and the lifting cylinder is connected between the lower link 32 and the traveling unit 10.
  • the planting part 40 can be rotated to the up-down direction with respect to the traveling part 10, that is, can be raised or lowered, by the expansion and contraction operation of the lifting cylinder.
  • the power transmission mechanism for transmitting power from the engine 14 to the rotary case 44, the lateral feed mechanism 52, and the vertical feed mechanism 53 includes the planting clutch 55 shown in FIG. Accordingly, the power of the engine 14 is transmitted to the seedling vertical feed belt 47 and the rotary case 44 or is not transmitted.
  • the shift pedal 67 shown in FIGS. 2, 5 (a), and 6 is an operating tool for changing the vehicle speed of the rice transplanter 1. More specifically, the speed of the engine 14 and the gear ratio of the HMT 21 are changed. It is an operation tool for changing.
  • the transmission pedal 67 is disposed on the lower right side of the dashboard 61.
  • a pedal potentiometer (pedal operation amount detection device) 67a shown in FIG. 6 is for detecting the depression amount (rotation angle) of the shift pedal 67.
  • the pedal potentiometer 67a is connected to the shift pedal 67 via a link mechanism, and can detect the amount of depression of the shift pedal 67. More specifically, the detection shaft of the pedal potentiometer 67a is rotated according to the depression amount (rotation angle) of the shift pedal 67, and the rotation angle can be detected as the depression amount of the transmission pedal 67.
  • the pedal potentiometer 67a When the shift pedal 67 is depressed, the pedal potentiometer 67a outputs a pedal signal indicating the depression amount of the shift pedal 67.
  • the maximum speed setting dial 69 shown in FIGS. 5 (a), 5 (b) and 6 is an operating tool for changing the maximum speed, which is the vehicle speed when the shift pedal 67 is depressed to the limit.
  • the maximum speed setting dial 69 is disposed at a substantially central portion of the dashboard 61 (in front of the steering handle 64).
  • the maximum speed setting dial 69 can be rotated within a predetermined range (D0 degrees or more and D5 degrees or less).
  • D0 degrees or more and D5 degrees or less the region from D0 to D1 is the minimum speed range Da
  • D1 to D2 is the first variable region Db
  • D3 the region from D2 to D3 is the recommended sparse planting speed
  • Dd the region from D3 to D4 is the second variable region Dd
  • D4 to D5 is the maximum speed region De.
  • the maximum speed setting dial 69 By rotating the maximum speed setting dial 69, the maximum speed of the rice transplanter 1 is changed in the range of Vmax1 to Vmax3. Regarding the magnitude relationship between Vmax1 to Vmax3, Vmax1 ⁇ Vmax2 ⁇ Vmax3.
  • the main transmission lever 65 shown in FIGS. 2, 5 (a), and 6 is an operating tool for changing the gear position (transmission ratio) of the main transmission mechanism 22.
  • the main transmission lever 65 is disposed at the left end portion of the dashboard 61 (to the left of the steering handle 64).
  • the main transmission lever 65 is connected to the main transmission mechanism 22 in the mission case 20 via a link mechanism.
  • the main speed change lever 65 can be changed to a road running position, a planting position, a seeding position, a reverse position or a neutral position.
  • the gear position of the main transmission mechanism 22 is changed to high speed. In this case, the rice transplanter 1 can travel at high speed.
  • the gear position of the main transmission mechanism 22 is changed to a low speed. In this case, the rice transplanter 1 can travel at a lower speed than when the gear stage of the main transmission mechanism 22 is at a high speed.
  • the gear position of the main transmission mechanism 22 is changed to neutral. In this case, the rice transplanter 1 cannot travel.
  • the gear position of the main transmission mechanism 22 is changed to reverse rotation. In this case, the rice transplanter 1 can move backward.
  • the main transmission lever 65 is switched to the neutral position, the gear position of the main transmission mechanism 22 is changed to neutral. In this case, the rice transplanter 1 cannot travel.
  • the main transmission lever 65 includes an operation position detection switch 65a for detecting an operation position.
  • the key switch 66 shown in FIG. 2, FIG. 5 (a), and FIG. 6 is an operating tool for starting or stopping the engine 14.
  • the key switch 66 is disposed at the right rear end of the dashboard 61 (right rear of the steering handle 64).
  • a speed fixing lever 70 shown in FIG. 5A and FIG. 6 is an operating tool for fixing the vehicle speed of the rice transplanter 1 and releasing the vehicle speed fixing.
  • the speed fixing lever 70 is fixed to the shaft of the steering handle 64 and extends toward the right.
  • the speed fixing lever 70 is rotatable (switchable) to a fixed position, a release position, or a neutral position.
  • the fixed position is a position when the speed fixing lever 70 is rotated backward.
  • the release position is a position when the speed fixing lever 70 is rotated forward.
  • the neutral position is a position approximately between the fixed position and the release position. Even when the speed fixing lever 70 is operated to either the fixed position or the release position, the speed fixing lever 70 is always urged so as to return to the neutral position again.
  • the speed fixing lever 70 When the rice transplanter 1 is traveling, the speed fixing lever 70 is switched to the fixed position, so that the vehicle speed of the rice transplanter 1 at this time is fixed. From the state where the vehicle speed of the rice transplanter 1 is fixed, the speed fixing lever 70 is switched to the release position, whereby the vehicle speed fixation of the rice transplanter 1 is released. Further, when the brake pedal 68 is operated from the state where the vehicle speed of the rice transplanter 1 is fixed, the vehicle speed fixation of the rice transplanter 1 is released.
  • the rice transplanter 1 has a configuration for finely adjusting the fixed vehicle speed so that it can be changed after the vehicle speed is fixed when the vehicle speed is fixed (auto-cruise) by the speed fixing lever 70. .
  • a detailed description of such a configuration will be given later.
  • the rice transplanter 1 fixes the vehicle speed by the speed fixing lever 70 without operating the speed fixing lever 70 to the release position or operating the brake pedal 68. It has the structure for canceling. A detailed description of such a configuration will be given later.
  • the speed fixing switch 70a shown in FIG. 6 is for detecting that the speed fixing lever 70 has been operated to the fixed position.
  • a micro switch is used as the speed fixing switch 70a.
  • the speed fixing switch 70a can detect that the speed fixing lever 70 is operated to the fixed position by contacting the speed fixing lever 70 operated to the fixed position.
  • the speed fixing release switch 70b is for detecting that the speed fixing lever 70 has been operated to the release position.
  • a micro switch is used as the speed fixing release switch 70b.
  • the speed fixing release switch 70b can detect that the speed fixing lever 70 is operated to the release position by contacting the speed fixing lever 70 operated to the release position.
  • a brake pedal 68 shown in FIGS. 5A and 6 is an operating tool for braking the rice transplanter 1.
  • the brake pedal 68 is disposed on the lower right side of the dashboard 61 and on the left side of the speed change pedal 67.
  • the brake pedal 68 is connected to the braking device 24 via a link mechanism.
  • the brake pedal 68 is depressed, the braking device 24 is activated, and the rotation of the front wheels 12 and the rear wheels 13 of the rice transplanter 1 is braked. Note that the braking device 24 can generate a braking force that can maintain the stopped state of the rice transplanter 1 even on a slope.
  • the brake operation detection switch 68a shown in FIG. 6 is for detecting that the brake pedal 68 has been operated.
  • a micro switch is used as the brake operation detection switch 68a.
  • the brake operation detection switch 68a can detect that the brake pedal 68 has been depressed by contacting the brake pedal 68 that has been depressed.
  • the seedling end detection switch 49a shown in FIG. 6 detects that the seedling stage 41 has reached a predetermined position (the end position in the left-right direction).
  • a micro switch is used as the seedling end detection switch 49a.
  • the seedling end detection switch 49a is arranged on the planting frame 49 and can detect that the seedling mounting base 41 has reached a predetermined position by contacting a pressing portion provided on the seedling mounting base 41. it can.
  • a motor 71 shown in FIG. 4 is an actuator for changing the vehicle speed of the rice transplanter 1.
  • the motor 71 changes the rotational speed of the engine 14, changes the gear ratio of the HMT 21, switches the connection / disconnection of the clutch 23, and switches the operation of the braking device 24.
  • the motor 71 is connected to the engine 14, the HMT 21 (specifically, the HST 21a), the clutch 23, and the braking device 24 via a link mechanism.
  • the output shaft of the motor 71 is connected to the speed governor 14a of the engine 14 via a link mechanism.
  • the speed control device 14a is driven by the motor 71, and the rotation speed of the engine 14 can be changed.
  • the output shaft of the motor 71 is connected to the movable swash plate of the HST 21a through a link mechanism.
  • the inclination angle of the movable swash plate is changed by the motor 71, and the gear ratio of the HST 21a can be changed.
  • the output shaft of the motor 71 is connected to the clutch 23 via a link mechanism.
  • the clutch 71 is disconnected or connected by the motor 71.
  • the output shaft of the motor 71 is connected to the braking device 24 via a link mechanism.
  • the braking device 24 When the braking device 24 is operated by the motor 71, the power output to the front wheels 12 and the rear wheels 13 can be braked. Note that the braking device 24 can generate a braking force that can maintain the stopped state of the rice transplanter 1 even on a slope.
  • the motor potentiometer 71a is for detecting the rotation angle of the output shaft of the motor 71.
  • the motor potentiometer 71a is connected to the motor 71 via a link mechanism, and can detect the rotation angle of the output shaft of the motor 71. More specifically, the detection shaft of the motor potentiometer 71 a is rotated according to the rotation angle of the output shaft of the motor 71, and the rotation angle can be detected as the rotation angle of the output shaft of the motor 71.
  • the cell motor 72 is an actuator for starting the engine 14.
  • the meter panel 73 shown in FIG. 2, FIG. 5, and FIG. 6 is for displaying various information related to the operation of the rice transplanter 1, the engine, the abnormality alarm, and the like.
  • the meter panel 73 is disposed at the approximate center of the left and right of the dashboard 61 and in front of the steering handle 64.
  • the inter-strain shifting mechanism 75 changes the planting interval by shifting the planting speed with respect to the vehicle speed.
  • the inter-strain shifting mechanism 75 is configured to be capable of inconstant speed shifting that causes a change in the planting speed during the planting cycle. At the time of sparse planting, seedling dragging can be prevented by operating the inter-strain shifting lever 74 and setting the inter-strain shifting mechanism to a non-uniform speed shifting.
  • the inter-stock shift lever 74 is at the non-uniform speed shift position.
  • the inconstant speed shift position is the position of the inter-company shift lever 74 at which the inter-company transmission mechanism 75 is in an inconstant speed shift.
  • a micro switch is used as the unequal speed shift operation detection switch 74a.
  • the unequal speed shift operation detection switch 74a is disposed in the vicinity of the unequal speed shift position.
  • the non-uniform speed change operation detection switch 74a can detect that the inter-set speed change lever 74 is in the non-uniform speed shift position by contacting the inter-set speed change lever 74 operated to the non-uniform speed shift position.
  • the control device 80 inputs a detection signal, and transmits a control signal to the motor 71, the cell motor 72, the meter panel 73, and the like based on the input detection signal and program.
  • the control device 80 stores information related to various signals.
  • the control device 80 may be configured such that a CPU, a ROM, a RAM, an HDD, and the like are connected by a bus, or may be configured by a one-chip LSI or the like.
  • the control device 80 is connected to the pedal potentiometer 67a, and can obtain a detection signal (pedal signal) indicating the amount of depression of the shift pedal 67 by the pedal potentiometer 67a.
  • the control device 80 is connected to the maximum speed setting dial 69 and can acquire a detection signal (dial signal) indicating the rotation angle (operation amount) of the maximum speed setting dial 69.
  • the control device 80 is connected to the operation position detection switch 65a and can acquire a detection signal indicating the operation position of the main transmission lever 65 by the operation position detection switch 65a.
  • the control device 80 is connected to the key switch 66, and can acquire a detection signal (start signal) indicating that the start operation has been performed by the key switch 66 and a detection signal (stop signal) indicating that the stop operation has been performed. it can.
  • the control device 80 is connected to the speed fixing switch 70a, and can acquire a detection signal (fixed signal) indicating that the speed fixing lever 70 by the speed fixing switch 70a has been operated to the fixed position.
  • the control device 80 is connected to the speed fixing release switch 70b, and can acquire a detection signal (release signal) indicating that the speed fixing lever 70 by the speed fixing release switch 70b has been operated to the release position.
  • the control device 80 is connected to the brake operation detection switch 68a, and can acquire a detection signal indicating that the brake pedal 68 has been depressed by the brake operation detection switch 68a.
  • the control device 80 is connected to the seedling end detection switch 49a, and can acquire a detection signal indicating that the seedling stage 41 has reached a predetermined position by the seedling end detection switch 49a.
  • the control device 80 is connected to the motor 71 and can transmit a control signal to the motor 71 to rotate the motor 71.
  • the control device 80 is connected to the motor potentiometer 71a, and can acquire a detection signal of the rotation angle of the motor 71 by the motor potentiometer 71a.
  • the control device 80 can drive the motor 71 to a desired rotation angle by transmitting a control signal to the motor 71 until the detection signal from the motor potentiometer 71a reaches a desired rotation angle.
  • the control device 80 is connected to the cell motor 72 and can transmit a control signal to the cell motor 72 to drive the cell motor 72.
  • the control device 80 is connected to the meter panel 73, and can display the information when the operating state or abnormality of the engine or the work machine is detected.
  • the control device 80 is connected to the inconstant speed shift operation detection switch 74a, and can acquire a detection signal indicating that the stock shift lever 74 is operated to the inconstant speed shift position by the inequal speed shift operation detection switch 74a. .
  • the control device 80 limits the drive of the motor 71 so that the vehicle speed becomes low. That is, comparing the case where the control device 80 acquires the detection signal of the inconstant speed position with the case where the control device 80 does not acquire it, if the amount of depression of the shift pedal 67 is the same, the detection signal of the inconstant speed position is acquired. In this case, the motor 71 is rotated to the low speed side. Thereby, at the time of sparse planting work, it is possible to suppress working at high speed and reliably prevent seedling dragging.
  • control device 80 is configured to detect the position when the inter-shaft shift lever 74 is operated to the inconstant speed shift position, but the inter-shaft speed change mechanism 75 does not become inconstant speed, etc. It is also possible to adopt a configuration for detecting the position where the speed is changed. Furthermore, it is also possible to provide a microswitch or the like for each shift stage regardless of the constant speed shift or the non-uniform speed shift, and to limit the driving of the motor for each shift stage. Thereby, it is possible to work at a gear position of the inter-stock transmission mechanism 75, that is, at an optimum speed suitable for the inter-stock.
  • the control device 80 also includes a relationship between the depression amount ⁇ of the speed change pedal 67 and the rotation angle ⁇ of the motor 71 (more specifically, the rotation angle ⁇ of the detection shaft of the pedal potentiometer 67a and the motor potentiometer.
  • the first map showing the relationship with the rotation angle ⁇ of the detection shaft 71a) is stored.
  • FIG. 7 shows the first map.
  • the horizontal axis indicates the depression amount ⁇ of the speed change pedal 67
  • the vertical axis indicates the rotation angle ⁇ of the detection shaft of the motor potentiometer 71a.
  • the depression amount ⁇ of the speed change pedal 67 is configured to vary in the range of ⁇ 1 to ⁇ max.
  • ⁇ 1 is the depression amount of the shift pedal 67 when the shift pedal 67 is not depressed and is in a free state.
  • ⁇ max is the depression amount of the shift pedal 67 when the shift pedal 67 is depressed to the limit.
  • the region from ⁇ 1 to ⁇ max further includes a play region ( ⁇ 1 or more and less than ⁇ 2), a connection region ( ⁇ 2), a speed change region (greater than ⁇ 2 and less than ⁇ 3), and the highest speed holding. It is divided into regions ( ⁇ 3 or more and ⁇ max or less).
  • the rotation angle ⁇ of the motor 71 is held at a constant value ( ⁇ 1).
  • the rotation angle ⁇ of the motor 71 is held at a constant value ( ⁇ 2).
  • the rotation angle ⁇ of the motor 71 corresponds to ⁇ 3 from ⁇ 2 corresponding to ⁇ 2 as the depression amount ⁇ of the shift pedal 67 increases. Increases to ⁇ max.
  • the rotation angle ⁇ of the motor 71 is held at a constant value ( ⁇ max).
  • control device 80 stores a second map indicating the relationship between the rotation angle D of the maximum speed setting dial 69 and the correction ratio PA (corrected target rotation angle of the motor 71) of the motor 71.
  • FIG. 8 shows the second map.
  • the horizontal axis indicates the rotation angle D of the maximum speed setting dial 69
  • the vertical axis indicates the correction ratio PA (corrected target rotation angle of the motor 71) of the target rotation angle ⁇ max of the motor 71.
  • PA corrected target rotation angle of the motor 71
  • the controller 80 calculates the motor 71 calculated based on the first map.
  • the target rotation angle ⁇ max is corrected (corrected) based on the second map to calculate the corrected target rotation angle.
  • control apparatus 80 changes the maximum speed of the rice transplanter 1 to the magnitude
  • the procedure for calculating the corrected target rotation angle based on the second map will be described in detail in (2-4) described later, and the second map will be described below.
  • the vertical axis of the second map indicates the correction ratio PA of the target rotation angle ⁇ max of the motor 71.
  • the correction ratio PA indicates the ratio when the target rotation angle ⁇ max of the motor 71 calculated based on the first map is corrected (corrected) according to the rotation angle D of the maximum speed setting dial 69 in terms of a thousandths. It is a thing.
  • the area from D0 to D5 is further the minimum speed area Da (D0 or more and less than D1), first variable area Db (D1 or more and less than D2), and sparse vegetation recommendation It is divided into a speed range Dc (D2 or more and less than D3), a second variable range Dd (D3 or more and less than D4), and a maximum speed range De (D4 or more and D5 or less).
  • the correction ratio PA is held at a constant value (VRS ⁇ ).
  • the correction ratio PA is held at a constant value (VRM) ⁇ .
  • the rotational angle D of the maximum speed setting dial 69 increases, the rotational speed increases from (VRM ⁇ ) corresponding to the rotational angle D3 to (1000 ⁇ ) corresponding to the rotational angle D4.
  • the correction ratio PA is held at a constant value (1000 ⁇ ).
  • the slope of the second variable region (D3 or more and less than D4) is configured to be smaller than the slope of the first variable region (D1 or more and less than D2) ((1000 ⁇ VRM) / (D4-D3) ⁇ (VRM-VRS) / (D2-D1)). That is, the second variable region is configured such that the change amount of the correction ratio PA with respect to the rotation angle of the maximum speed setting dial 69 is smaller than that of the first variable region. Accordingly, when the maximum speed setting dial 69 is rotated, the correction ratio PA is finely adjusted when the maximum speed setting dial 69 is rotated within the second variable range, rather than when it is rotated within the first variable range. Is possible.
  • the control device 80 acquires the pedal signal indicating the depression amount of the speed change pedal 67
  • the control device 80 calculates a target rotation angle of the motor 71 based on the acquired pedal signal.
  • the control device 80 corrects (changes) the calculated target rotation angle based on the dial signal acquired from the maximum speed setting dial 69, thereby calculating the corrected target rotation angle.
  • the control device 80 rotates the motor 71 so that the calculated correction target rotation angle is obtained, thereby changing the rotation speed of the engine 14, changing the speed ratio of the HMT 21, switching the connection / disconnection of the clutch 23, Then, the operation of the braking device 24 is switched, and the vehicle speed of the rice transplanter 1 is changed.
  • the target rotation angle is calculated based on the depression amount of the speed change pedal 67 (the pedal signal). Regarding the target rotation angle, when the control device 80 acquires the pedal signal indicating the depression amount of the shift pedal 67, the motor corresponding to the acquired pedal signal (depression amount ⁇ of the shift pedal 67) in the first map. The rotation angle ⁇ of 71 is calculated, and the calculated rotation angle ⁇ is set as the corrected target rotation angle ⁇ .
  • the target rotation angle ⁇ has the following values (1-1) to (1-4) according to the magnitude of the pedal signal (depression amount ⁇ of the shift pedal 67) acquired by the control device 80. .
  • the target rotation angle ⁇ is ⁇ b corresponding to ⁇ b in the first map. ( ⁇ 2 or more and less than ⁇ max). Therefore, the target rotation angle ⁇ b in this case changes according to the value of the acquired pedal signal (rotation angle ⁇ b).
  • the correction target rotation angle is obtained by correcting the target rotation angle ⁇ calculated in the above (1-1) to (1-4) based on the rotation angle value of the maximum speed setting dial 69 (the dial signal) ( Change).
  • the corrected target rotation angle has the following values (2-1) to (2-4) according to the depression amount ⁇ of the shift pedal 67, that is, the magnitude of the pedal signal acquired by the control device 80.
  • the control device 80 sets the target number of times calculated in (1-4) above.
  • the moving angle ⁇ max is corrected based on the value of the rotation angle D (dial signal) of the maximum speed setting dial 69.
  • the control device 80 calculates the corrected value as a corrected target rotation angle.
  • the correction target rotation angle in this case is calculated using the second map shown in FIG. 8, and the following (2-) is calculated according to the rotation angle D of the maximum speed setting dial 69.
  • the values are as shown in (4-1) to (2-4-5).
  • the rotation angle (pedal rotation angle) ⁇ of the shift pedal 67 in this case is expressed as ⁇ 1 (degrees).
  • the rotation angle ⁇ of the detection shaft of the pedal potentiometer 67a (depression amount ⁇ of the transmission pedal 67) is ⁇ 1 (degrees).
  • the control device 80 corrects the rotation angle (rotation angle of the motor 71) ⁇ 1 (degree) of the detection shaft of the motor potentiometer 71a.
  • the rotation angle is calculated (see (2-1) above).
  • the control device 80 rotates the motor 71 so that the rotation angle ⁇ of the motor 71 becomes the corrected target rotation angle ⁇ 1.
  • the clutch 23 is disconnected via the link mechanism.
  • the power of the engine 14 is not transmitted to the front wheels 12 and the rear wheels 13, and the vehicle speed V of the rice transplanter 1 becomes 0 (m / sec).
  • the braking device 24 is operated via the link mechanism. Thereby, the front wheel 12 and the rear wheel 13 are braked, and the rice transplanter 1 can be prevented from moving forward or backward unexpectedly.
  • the rotational speed N of the engine 14 is set to N1 (rpm) via the link mechanism.
  • the inclination angle of the movable swash plate of the HST 21a is set to be maximum via the link mechanism.
  • the power of the engine 14 can be transmitted to the front wheels 12 and the rear wheels 13.
  • the rotation angle ⁇ of the motor 71 becomes ⁇ 2
  • the braking device 24 is released. Thereby, braking of the front wheel 12 and the rear wheel 13 is released, and the rice transplanter 1 can move forward or backward.
  • the control device 80 determines the depression amount of the shift pedal 67 from the corrected target rotation angle ⁇ 2 (see (2-2) above) corresponding to the rotation angle ⁇ of the motor 71 corresponding to the depression amount ⁇ 2 of the shift pedal 67.
  • the motor 71 is rotated so as to increase to the corrected target rotation angle ⁇ max3 (see (2-4-3) above) corresponding to ⁇ 3.
  • the rice transplanter 1 can increase (accelerate) the vehicle speed V of the rice transplanter 1 by depressing the shift pedal 67. Contrary to the above description, the vehicle speed V of the rice transplanter 1 can be reduced (decelerated) by returning the stepped-on shift pedal 67 to the original position.
  • the maximum speed setting dial 69 is operated within the (c) sparse planting recommended speed range Dc (D2 or more and less than D3).
  • Dc sparse planting recommended speed range
  • the rotation angle ⁇ of the motor 71, the rotational speed N of the engine 14, and the vehicle speed V of the rice transplanter 1 change as shown by the solid line in FIG. To do.
  • the rotation angle ⁇ of the motor 71 becomes ⁇ max3 (see (2-4-3) above).
  • the rotational speed N of the engine 14 becomes Nmax2 corresponding to the corrected target rotational angle ⁇ max3.
  • the vehicle speed V (maximum speed) of the rice transplanter 1 becomes Vmax2 corresponding to the rotational speed Nmax2 of the engine 14.
  • the maximum speed setting dial 69 when the maximum speed setting dial 69 is operated within (e) the maximum speed range De (D4 or more and D5 or less), the depression amount ⁇ of the shift pedal 67 is from ⁇ 2 to ⁇ max.
  • the rotation angle ⁇ of the motor 71, the rotational speed N of the engine 14, and the vehicle speed V of the rice transplanter 1 change as shown by the two-dot chain line in FIG.
  • the rotation angle ⁇ of the motor 71 becomes ⁇ max (see (2-4-5) above).
  • the rotational speed N of the engine 14 becomes Nmax3 corresponding to the corrected target rotational angle ⁇ max.
  • the vehicle speed V (maximum speed) of the rice transplanter 1 becomes Vmax3 corresponding to the rotational speed Nmax3 of the engine 14.
  • the speed change is performed as shown in (3-5) above.
  • the pedal 67 is depressed to the limit, the corrected target rotation angle ⁇ max2 changes corresponding to the value of the rotation angle D of the maximum speed setting dial 69 (see (2-4-2) above).
  • the rotational speed N of the engine 14 is changed in accordance with the value of the rotational angle D (corrected target rotational angle ⁇ max2) of the maximum speed setting dial 69, whereby the maximum speed of the rice transplanter 1 is changed to the rotational speed of the engine 14. It is changed corresponding to the change of N.
  • the rotational speed N of the engine 14 is changed in the range of Nmax1 to Nmax2, and the maximum speed of the rice transplanter 1 is changed in the range of Vmax1 to Vmax2. That is, when the rotation speed of the maximum speed setting dial 69 is (b) the first variable range Db (D1 or more and less than D2), the maximum speed of the rice transplanter 1 corresponds to the rotation angle value of the maximum speed setting dial 69. Thus, it is changed in the range of Vmax1 to Vmax2.
  • the rotational speed N of the engine 14 is changed in accordance with the value of the rotational angle D (corrected target rotational angle ⁇ max4) of the maximum speed setting dial 69, whereby the maximum speed of the rice transplanter 1 is changed to the rotational speed of the engine 14. It is changed corresponding to the change of N.
  • the rotational speed N of the engine 14 is changed in the range of Nmax2 to Nmax3, and the maximum speed of the rice transplanter 1 is changed in the range of Vmax2 to Vmax3. That is, when the rotation speed of the maximum speed setting dial 69 is (d) the second variable range Dd (D3 or more and less than D4), the maximum speed of the rice transplanter 1 corresponds to the rotation angle value of the maximum speed setting dial 69. Thus, it is changed within the range of Vmax2 to Vmax3.
  • the magnitude relationship between the engine speeds Nmax1 to Nmax3 is configured such that Nmax1 ⁇ Nmax2 ⁇ Nmax3.
  • the vehicle speed at this time is fixed (maintained).
  • the rotation angle ⁇ of the motor potentiometer 71a (the rotation angle ⁇ of the motor 71) is the fixed rotation angle ⁇ x
  • the vehicle speed of the rice transplanter 1 is the fixed vehicle speed Vx3.
  • the control device 80 switches the rotation angle ⁇ of the motor 71 to a fixed value, more specifically, the speed fixing lever 70 is switched to the fixed position regardless of the depression amount ⁇ of the speed change pedal 67.
  • the value at the time (fixed rotation angle ⁇ x) is maintained.
  • the control device 80 stores information related to the fixed storage position ⁇ x of the shift pedal 67 and information related to the fixed rotation angle ⁇ x of the motor 71.
  • the speed fixing lever 70 When the speed fixing lever 70 is switched to the release position with the vehicle speed of the rice transplanter 1 fixed at the fixed vehicle speed Vx3, that is, when the control device 80 acquires the release signal from the speed fixation release switch 70b, The device 80 releases the vehicle speed fixed by the speed fixing lever 70.
  • the control device 80 changes the vehicle speed V of the rice transplanter 1 to a magnitude corresponding to the depression amount ⁇ of the shift pedal 67 (see FIG. 9).
  • the control device 80 rotates the rotation speed of the maximum speed setting dial 69.
  • the adjustment target rotation angle is calculated by changing (adjusting) the fixed rotation angle ⁇ x of the motor 71 based on (the dial signal), and the motor 71 is rotated so that the calculated adjustment target rotation angle is obtained.
  • the fixed vehicle speed Vx3 of the rice transplanter 1 is changed (finely adjusted). Specifically, the fixed vehicle speed Vx3 is finely adjusted by the following procedures (4-1) to (4-2).
  • FIG. 10 shows the third map. 10, the horizontal axis indicates the rotation angle D of the maximum speed setting dial 69, and the vertical axis indicates the correction ratio PB of the fixed rotation angle ⁇ x of the motor 71. As shown in FIG.
  • the horizontal axis of the third map has the same configuration as the horizontal axis of the second map shown in FIG. 8, and a detailed description thereof will be omitted.
  • the vertical axis of the third map indicates the correction ratio PB of the fixed rotation angle ⁇ x of the motor 71.
  • the correction ratio PB indicates the ratio when the fixed rotation angle ⁇ x is corrected (corrected) according to the rotation angle D of the maximum speed setting dial 69 in terms of thousandths. In the lowest speed range Da (D0 or more and less than D1) in the third map, the correction ratio PB is held at a constant value (VRS ⁇ ).
  • the rotation speed increases from (VRS ⁇ ) corresponding to the rotation angle D1 to (VRM ⁇ ) corresponding to the rotation angle D2.
  • the correction ratio PB is held at a constant value (VRM ⁇ ).
  • the rotational angle D of the maximum speed setting dial 69 increases, the rotational speed increases from (VRM ⁇ ) corresponding to the rotational angle D3 to (1000 ⁇ ) corresponding to the rotational angle D4.
  • the correction ratio PB is held at a constant value (1000 ⁇ ).
  • the control device 80 determines the fixed rotation angle ⁇ x of the motor 71 based on the dial signal (the rotation angle D of the highest speed setting dial 69) acquired from the highest speed setting dial 69.
  • the adjustment target rotation angle is calculated by adjusting (changing) the moving angle ⁇ x.
  • the control device 80 changes (finely adjusts) the fixed vehicle speed Vx3 by rotating the motor 71 so that the calculated adjustment target rotation angle is obtained.
  • the adjustment target rotation angle is calculated using the third map, and according to the rotation angle D of the maximum speed setting dial 69, the following (4-2-1) to (4- 4-2-5).
  • the adjustment target rotation angle ( ⁇ x2) is ( ⁇ x ⁇ VRSM / 1000), and changes according to the value of the rotation angle D. (4-2-3)
  • the rotation angle D of the maximum speed setting dial 69 is (c) the sparse planting recommended speed range Dc (D2 or more and less than D3)
  • the adjustment target rotation angle ( ⁇ x3) at this time is In the third map, calculation is performed using a value (VRM ⁇ ) corresponding to the recommended sparse planting speed range Dc.
  • the adjustment target rotation angle ( ⁇ x4) at this time is In the third map, calculation is performed using a value (VRSH ⁇ ) corresponding to the second variable range Dd.
  • the adjustment target rotation angle ( ⁇ x4) is ( ⁇ x ⁇ VRSH / 1000), and changes according to the value of the rotation angle D.
  • the adjustment target rotation angle ( ⁇ x5) at this time is In the three maps, calculation is performed using a value (1000 ⁇ ) corresponding to the maximum speed range De.
  • the vehicle speed of the rice transplanter 1 remains unchanged at the fixed vehicle speed Vx3.
  • the adjustment target rotation angle becomes a constant value ( ⁇ x3).
  • the vehicle speed of the rice transplanter 1 remains unchanged (Vx2) corresponding to the adjustment target rotation angle ( ⁇ x3).
  • the adjustment target rotation angle ( ⁇ x2) is rotated from ( ⁇ x3) corresponding to the rotation angle D2 of the maximum speed setting dial 69. It decreases to ( ⁇ x1) corresponding to the moving angle D1.
  • the vehicle speed of the rice transplanter 1 decreases from (Vx2) corresponding to the adjustment target rotation angle ( ⁇ x3) to (Vx1) corresponding to the adjustment target rotation angle ( ⁇ x1).
  • the adjustment target rotation angle becomes a constant value ( ⁇ x1). Thereby, the vehicle speed of the rice transplanter 1 remains unchanged (Vx1) corresponding to the adjustment target rotation angle ( ⁇ x1).
  • the rice transplanter 1 can fix the fixed vehicle speed by rotating the maximum speed setting dial 69 while the speed fixing lever 70 is in the fixed position after the vehicle speed V is fixed to Vx3 by the speed fixing lever 70.
  • Vx3 can be changed (adjusted).
  • the control device 80 turns the motor 71 when the speed fixing lever 70 starts fixing the vehicle speed and the maximum speed setting dial 69 when the speed fixing lever 70 starts fixing the vehicle speed.
  • the rotation angle D of the dial 69) / (the rotation angle D of the maximum speed setting dial 69 when the speed fixing lever 70 starts to fix the speed) may be used.
  • the correction ratios PB (VRS ⁇ ), (VRSM ⁇ ), (VRM ⁇ ), and (VRSH ⁇ ) in the third map are the correction ratios PA (VRS ⁇ ), (VRSM ⁇ ) in the second map, (VRM ⁇ ) and (VRSH ⁇ ) are configured with the same values.
  • the motor 71 is configured to change the rotational speed of the engine 14 and the gear ratio of the HST 21a.
  • the present invention is not limited to this, and the motor 71 changes the rotational speed of the engine 14 or the gear ratio of the HST 21a. You may comprise.
  • the motor 71 may be configured by one motor, or the first motor that changes the rotational speed of the engine 14 and You may comprise with the 2nd motor which changes the gear ratio of HST21a.
  • the changed vehicle speed corresponds to the dial lower limit threshold value VRX.
  • the speed lower limit threshold (dial lower limit threshold) is a value that is appropriately determined by experiments or the like. Further, for example, the control device 80 determines whether or not the vehicle speed has become a value less than the speed lower limit threshold based on the rotation angle of the motor 71.
  • the value is smaller than ( ⁇ 1 ⁇ x1 ⁇ x), and is a value determined as appropriate by experiments or the like.
  • the release of the vehicle speed fixed by the operation of depressing the shift pedal 67 is performed when the depressing amount ⁇ of the shift pedal 67 is the fixed release lower limit ⁇ x1 in a state where the speed fixing lever 70 is in the fixed position. This is performed when the value decreases to less than ( ⁇ 1 ⁇ x1 ⁇ x) and then increases to the fixed release lower limit ⁇ x1.
  • the vehicle speed V of the rice transplanter 1 becomes slower than the fixed vehicle speed Vx3 when the vehicle speed fixation is released.
  • the control device 80 sets the fixed release upper limit ⁇ x2 in the third map.
  • the fixed release upper limit ⁇ x2 is a value ( ⁇ x ⁇ x2) larger than the fixed storage position ⁇ x corresponding to the fixed vehicle speed Vx3, and is a value that is appropriately determined by experiments or the like.
  • the release of the vehicle speed fixed by the operation of depressing the shift pedal 67 is performed when the depressing amount ⁇ of the shift pedal 67 is the fixed release upper limit ⁇ x2 ( Performed when ⁇ x ⁇ x2).
  • the vehicle speed V of the rice transplanter 1 becomes faster than the fixed vehicle speed Vx3 when the vehicle speed fixation is released.
  • the vehicle speed fixed release according to the first configuration is such that the depression amount ⁇ of the speed change pedal 67 decreases to less than the fixed release lower limit value ⁇ x1 in a state where the depression amount ⁇ is less than the fixed release upper limit value ⁇ x2, and the fixed release lower limit value ⁇ x1 (See FIG. 11A).
  • the release of the vehicle speed fixation by the second configuration is performed when the depression amount ⁇ of the speed change pedal 67 increases to the fixation release upper limit value ⁇ x2 in a state of being equal to or larger than the fixation release lower limit value ⁇ x1 ( (Refer FIG.11 (b)). Accordingly, by appropriately adjusting the depression amount of the shift pedal 67, when the vehicle speed fixed is released by the depression operation of the shift pedal 67, the vehicle speed V of the rice transplanter 1 is made slower than the fixed vehicle speed Vx3 (the first vehicle described above) It is possible to select whether to speed up (see the second configuration).
  • the maximum speed The fixed release lower limit ⁇ x1 and the fixed release upper limit ⁇ x2 may be changed according to the rotation angle of the setting dial 69. Specifically, when the maximum speed setting dial 69 is turned to the high speed side (the vehicle speed increases), the control device 80 increases the fixed release lower limit value ⁇ x1 and the fixed release upper limit value ⁇ x2g to larger values. change.
  • the control device 80 changes the fixed release lower limit value ⁇ x1 and the fixed release upper limit value ⁇ x2g to smaller values. .
  • the rice transplanter 1 A motor 71 that changes the rotational speed of the engine 14 and / or the gear ratio of the HST 21a; A shift pedal 67 which is an operating tool for changing the rotation angle of the motor 71; A control device 80 that is connected to the motor 71 and the speed change pedal 67, and that changes at least one of the rotational speed of the engine 14 and the speed ratio of the HST 21a by the motor 71 based on the depression amount of the speed change pedal 67 to change the vehicle speed; , A maximum speed setting dial 69 that is connected to the control device 80 and is an operating tool for changing the maximum speed that is the vehicle speed when the shift pedal 67 is depressed to the limit; The control device 80 The target rotation angle of the motor 71 is calculated based on the depression amount of the shift pedal 67, and the motor 71 is rotated so that the rotation angle of the motor 71 becomes the target rotation angle.
  • the maximum speed setting dial 69 can be rotated, and within the rotation range, the variable range for changing the maximum speed corresponding to the amount of change in the rotation angle, and the change in the rotation angle.
  • the maximum speed setting dial 69 when the maximum speed setting dial 69 is rotated to set the maximum speed, the maximum speed is a constant value corresponding to the constant speed range if the maximum speed setting dial 69 is rotated within the constant speed range. Therefore, it is possible to easily set the maximum speed.
  • the constant speed range has a minimum speed range, a maximum speed range, and a sparse recommended speed range provided between the minimum speed range and the maximum speed range
  • the variable range includes a first variable range provided between the minimum speed range and the recommended sparse planting speed range, and a second variable range provided between the recommended sparse planting speed range and the maximum speed.
  • the maximum speed setting dial 69 when the maximum speed setting dial 69 is rotated to set the maximum speed, the maximum speed Vmax1 corresponding to the minimum speed range, the maximum speed Vmax2 corresponding to the recommended sparse planting speed range, and the maximum speed range It is possible to easily set the maximum speed Vmax3 corresponding to.
  • the maximum speed of the rice transplanter 1 can be easily set to the maximum speed Vmax2 that is optimal for sparse planting work, it is possible to improve planting accuracy when performing sparse planting work. Further, by providing a recommended vehicle speed setting area such as sparse planting, it is possible to prevent the planting rotor from being crushed.
  • a motor 71 that changes the rotational speed of the engine 14 and / or the gear ratio of the HST 21a;
  • a shift pedal 67 which is an operating tool for changing the rotation angle of the motor 71;
  • a control device 80 that is connected to the motor 71 and the speed change pedal 67, and that changes at least one of the rotational speed of the engine 14 and the speed ratio of the HST 21a by the motor 71 based on the depression amount of the speed change pedal 67 to change the vehicle speed;
  • a maximum speed setting dial 69 that is connected to the control device 80 and is an operating tool for changing the maximum speed that is the vehicle speed when the shift pedal 67 is depressed to the limit;
  • a speed fixing lever 70 which is connected to the control device 80 and is an operating tool for fixing the vehicle speed to a constant value regardless of the depression operation of the shift pedal 67;
  • the control device 80 is used when the vehicle speed is fixed by the speed fixing lever 70, that is, when the speed fixing lever 70 is at the fixed position and the motor 71 does not rotate by the
  • the vehicle speed fixed by the speed fixing lever 70 can be increased or decreased by rotating the maximum speed setting dial 69 while the speed fixing lever 70 is at the fixed position. Accordingly, the vehicle speed fixed by the speed fixing lever 70 can be adjusted smoothly.
  • the speed fixing means when the vehicle speed of the rice transplanter is fixed to a constant value (fixed vehicle speed) by the speed fixing means, when the operator changes the fixed vehicle speed, the operator temporarily releases the vehicle speed fixed by the speed fixing means, Then, after the vehicle speed of the rice transplanter has been adjusted to increase or decrease to a desired vehicle speed by depressing the shift pedal, the vehicle speed must be fixed again by the speed fixing means. This requires complicated work.
  • the rice transplanter 1 can change the fixed vehicle speed Vx3 only by rotating the maximum speed setting dial 69. Therefore, the increase / decrease adjustment of the fixed vehicle speed Vx3 can be performed smoothly.
  • the control device 80 uses the speed fixing lever 70. Release the vehicle speed lock.
  • the vehicle speed is fixed by the speed fixing lever 70 in the low speed range, and the target rotation angle of the motor 71 is adjusted when the maximum speed setting dial 69 is rotated to the low speed side (the vehicle speed decreases). Becomes ⁇ 2 or less, and it is possible to prevent the vehicle speed fixed state by the speed fixing lever 70 from being maintained while the rice transplanter 1 has stopped traveling.
  • the control device 80 When the vehicle speed is fixed by the speed fixing lever 70, when the amount of depression of the speed change pedal 67 decreases to less than a predetermined fixed release lower limit value ⁇ x1, and then increases to the fixed release lower limit value ⁇ x1, Release the vehicle speed fixed by the fixing lever 70, When the vehicle speed is fixed by the speed fixing lever 70 and the amount of depression of the shift pedal 67 increases to the predetermined fixing release upper limit ⁇ x2, the vehicle speed fixing by the speed fixing lever 70 is released,
  • the unlocking lower limit ⁇ x1 is a value smaller than the fixed storage position ⁇ x, which is the depression amount of the shift pedal 67 when the speed fixing lever 70 is operated and the vehicle speed is fixed.
  • the fixed release upper limit ⁇ x2 is a value larger than the fixed storage position ⁇ x.
  • the control device 80 determines the fixed release lower limit ⁇ x1 according to the rotation angle of the maximum speed setting dial 69. , And the fixed release upper limit ⁇ x2.
  • a rice transplanter having a configuration in which power from an engine is shifted by a continuously variable transmission and transmitted to a traveling unit and a planting unit is known.
  • the shift pedal to change the gear ratio of the continuously variable transmission, the travel speed (work speed during work) It is set as the structure which changes.
  • the conventional rice transplanter has a configuration in which an operator operates the accelerator lever and the shift pedal separately to change the engine speed and the transmission gear ratio of the continuously variable transmission. It was. Further, the speed of the engine and the speed of the continuously variable transmission can be changed according to the traveling situation of the rice transplanter (for example, the situation of entering and exiting the field) and the working situation (for example, the situation of planting work in mud). There was also a problem that the ratio could not be changed appropriately.
  • a rice transplanter that has good operability and can appropriately change the engine speed and the transmission gear ratio of the continuously variable transmission according to the driving situation and working situation.
  • the rice transplanter includes an engine, a first actuator that changes a rotational speed of the engine, a continuously variable transmission that changes power from the engine, a second actuator that changes a transmission ratio of the continuously variable transmission, The first actuator and the second actuator are controlled based on a detected value of the speed change operation tool, an operation amount detection means for detecting an operation amount of the speed change operation tool, and an operation amount detection means.
  • a control device is configured to control the operation of the speed change operation tool.
  • the rice transplanter can change the traveling speed and work speed of the rice transplanter by controlling the first actuator and the second actuator based on the detection value of the operation amount detection means. Therefore, the operator can change the traveling speed and work speed of the rice transplanter with only the speed change operation tool, and the operability is improved. Further, the engine speed and the gear ratio of the continuously variable transmission can be appropriately changed in accordance with the traveling situation and work situation of the rice transplanter.
  • the control device includes a map related to the fuel efficiency of the engine, a map related to the gear shift efficiency of the continuously variable transmission, a map related to the exhaust gas emission rate of the engine, and a load factor of the engine. At least one of the maps is stored, and the control device controls the first actuator and the second actuator based on the stored map and the detection value of the operation amount detection means.
  • the control device can improve the fuel efficiency by controlling the first actuator and the second actuator based on the map related to the fuel efficiency. Further, by controlling the first actuator and the second actuator based on the map related to the shift efficiency, the shift efficiency can be improved in the entire speed range. Further, the exhaust gas can be reduced by controlling the first actuator and the second actuator based on the map related to the exhaust gas emission rate. Further, by controlling the first actuator and the second actuator based on the map relating to the load factor of the engine, it is possible to travel reliably even when the engine is overloaded due to inclination or the like.
  • the rice transplanter 200 is an eight-planted rice transplanter, this is not particularly limited, and for example, a six-row or ten-row planter may be used.
  • the rice transplanter 200 has a traveling unit 210 and a planting unit 240, and is configured so that seedlings can be planted in the field by the planting unit 240 while traveling by the traveling unit 210.
  • the planting unit 240 is disposed behind the traveling unit 210 and is connected to the rear portion of the traveling unit 210 via an elevating mechanism 230 so as to be movable up and down.
  • the elevating mechanism 230 is provided between the traveling unit 210 and the planting unit 240.
  • the top link 231 and the lower link 232 are installed between the traveling unit 210 and the planting unit 240, and the lifting cylinder is connected between the lower link 232 and the traveling unit 210.
  • the planting part 240 can be rotated in the vertical direction with respect to the traveling part 210, that is, can be raised and lowered by the expansion and contraction operation of the lifting cylinder.
  • the engine 214 is provided at the front portion of the vehicle body frame 211 and is covered with a bonnet 215.
  • the mission case 100 is supported by the front portion of the vehicle body frame 211 and is disposed behind the engine 214.
  • the front axle case 216 is supported on the front portion of the vehicle body frame 211, and the front wheels 212 are attached to the left and right sides of the front axle case 216.
  • the rear axle case 217 is supported on the rear portion of the vehicle body frame 211, and the rear wheels 213 are attached to the left and right sides of the rear axle case 217.
  • a driving operation unit 220 is provided in the middle of the vehicle body 211 in the front and rear direction.
  • a dashboard 221 is disposed at the front of the driving operation unit 220
  • a steering handle 224 is disposed at the left and right center of the dashboard 221
  • a driver seat 222 is disposed behind the steering handle 224.
  • a plurality of operation tools including a main transmission lever 225 and a transmission pedal 226 are arranged, and it is possible to perform appropriate operations on the traveling unit 210 and the planting unit 240 with these operation tools. It is said.
  • the planting mission case 247 is supported near the lower center of the planting frame 249, and the transmission shaft extends from the planting mission case 247 to the left and right sides.
  • Four planting transmission cases 246 are respectively extended rearward from the transmission shaft, and are arranged at appropriate intervals in the left-right direction.
  • the rotary case 244 is rotatably supported on the left and right sides of the rear end of each planting transmission case 246.
  • the number of rotary cases 244 is the same as the number of planting strips, that is, eight.
  • the two planting claws 245 are attached to both sides of the rotary case 244 in the longitudinal direction so as to sandwich the rotation fulcrum of the rotary case 244.
  • the seedling mounting table 241 is arranged above the planting transmission case 246 in an inclined state with a front height and a low height.
  • the seedling mount 241 is attached to the rear portion of the planting frame 249 through a guide rail so as to be capable of reciprocating in the left-right direction.
  • the seedling table 241 can be reciprocated horizontally by a lateral feed mechanism.
  • the seedling mounting bases 241 provided with a plurality of (8) seedling mat mounting parts are arranged in the left-right direction so that the lower ends of the seedling mounting bases 241 face one rotary case 244. Then, the seedling mat is placed on each seedling mounting table 241, and one seedling can be cut from the seedling mat on the seedling mounting table 241 by the planting claws 245 when the rotary case 244 rotates.
  • a plurality of floats 242 that level the farm scene and a leveling rotor 243 that leveles the rough headland after turning are supported by the planting frame 249 so as to be movable up and down. Yes.
  • left and right drawing markers 248 for drawing on the field are rotatably supported on the left and right sides of the planting frame 249.
  • the power of the engine 214 is transmitted to the front wheel 212, the rear wheel 213, and the planting part 240 via a power transmission mechanism provided inside the mission case 100.
  • a hydraulic-mechanical continuously variable transmission (HMT) 110, a main clutch 130, a main transmission mechanism 140, and a braking device 150 are mounted inside the mission case 100.
  • the engine 214 is configured to be able to increase or decrease the power (the number of revolutions) by adjusting the fuel injection amount by the speed governor 214a.
  • the power of the engine 214 is transmitted to the input shaft 101 of the mission case 100 via a V-belt or a propeller shaft.
  • the HMT 110 is a continuously variable transmission, and includes a variable displacement hydraulic pump 111, a fixed displacement hydraulic motor 112, and a planetary gear mechanism 120.
  • the motive power input from the input shaft 101 of the mission case 100 drives the hydraulic pump 111 and feeds the hydraulic oil from the hydraulic pump 111 to the hydraulic motor 112 to rotate the motor shaft 113 of the hydraulic motor 112.
  • the movable swash plate 111a of the hydraulic pump 111 is linked to a transmission arm 100a provided in the transmission case 100, and the angle of the movable swash plate 111a can be changed by rotating the transmission arm 100a.
  • a transmission gear 115 is fixed to the pump output shaft 114 of the hydraulic pump 111, and power is transmitted to the charge pump 271 of the HMT 110 and the charge pump 272 of the elevating mechanism 230 at the end thereof.
  • a sun gear 121 is pivotally supported on the motor shaft 113 of the hydraulic motor 112, and a planetary carrier 122 is pivotally supported on a boss portion of the sun gear 121 so as to be freely rotatable, and three planetary gears 123 and 123 around the sun gear 121 are supported. -123 is rotatably provided. Further, a ring gear 124 is externally fitted to and engaged with the three planetary gears 123, 123, and 123.
  • the planetary gear mechanism 120 is formed by the sun gear 121, the planetary carrier 122, the three planetary gears 123, 123, 123, and the ring gear 124, and the power of the HST system and the power of the gear system are combined.
  • the planetary gear mechanism 120 combines the power of the sun gear 121 and the power of the planetary gears 123, 123, 123 so that the combined output shaft 102 rotates or stops at a speed corresponding to the position of the speed change arm 100a. Become. In this way, the gear ratio of the HMT 110 is changed.
  • the rotational speed of the combined output shaft 102 is a speed corresponding to the rotational speed of the engine 214 and the gear ratio of the HMT 110.
  • the main clutch 130 switches whether power can be transmitted from the HMT 110 to the composite output shaft 102.
  • the main clutch 130 is interposed between the ring gear 124 and the composite output shaft 102.
  • the ring gear 124 and the composite output shaft 102 are connected or disconnected as the clutch shifter 131 slides. In this way, the power of the ring gear 124 is transmitted to the composite output shaft 102. Or it is not transmitted.
  • the main transmission mechanism 140 shifts the power from the HMT 110 in multiple stages.
  • the main transmission mechanism 140 includes a reverse input gear 141, a forward gear 142, and a moving gear 143 that are sequentially fixed to the composite output shaft 102, a reverse output gear 144, and a reverse gear 145 that are fixed to the counter shaft 103, And a slider 146 slidably provided on the travel transmission shaft 104.
  • the reverse input gear 141 and the reverse output gear 144 are engaged with each other, and the power of the combined output shaft 102 is always transmitted to the counter shaft 103.
  • the slider 146 is formed with a small diameter gear 146a and a large diameter gear 146b.
  • the slider 146 slides on the traveling transmission shaft 104 by the operation of the main transmission lever 225, and the small-diameter gear 146a meshes with the forward gear 142 to advance, and the large-diameter gear 146b meshes with the moving gear 143.
  • the large-diameter gear 146b meshes with the reverse gear 145 to reversely move, and the small-diameter gear 146a and the large-diameter gear 146b switch to neutral when the gear does not mesh with any gear.
  • the braking device 150 brakes the rotation of the traveling transmission shaft 104 that is the output shaft of the main transmission mechanism 140.
  • the braking device 150 is provided at one end of the traveling transmission shaft 104.
  • the braking device 150 is configured such that the braking device 150 can be operated by rotating the brake arm.
  • a front side transmission gear 161 is fixed to the other end of the traveling transmission shaft 104, and the front side transmission gear 161 meshes with an input gear of the differential device 162.
  • the power of the travel transmission shaft 104 is transmitted to the left and right front output shafts 105 via the differential device 162, and the power transmitted to the left and right front output shafts 105 is transmitted to the transmission mechanism in the front axle case 216. Via the front wheel 212.
  • the differential device 162 can be locked by the front differential lock device 163.
  • a rear side first transmission gear 171 is fixed in the middle of the travel transmission shaft 104, and the rear side first transmission gear 171 is loosely fitted to one end of the transmission shaft 106.
  • the rear side second transmission gear 172 is meshed with a rear side third transmission gear 173 fixed to one end of the rear side transmission shaft 107.
  • a bevel gear 174 is fixed to the other end of the rear transmission shaft 107, and a bevel gear 175 that meshes with the bevel gear 174 is fixed to one end of the rear output shaft 108.
  • the power of the travel transmission shaft 104 is transmitted to the rear output shaft 108 via the rear side transmission shaft 107, and the power transmitted to the rear side transmission shaft 107 is transmitted via the transmission mechanism in the rear axle case 217. And transmitted to the rear wheel 213.
  • a PTO-side first transmission gear 181 is fixed to one end of the composite output shaft 102, and the PTO-side first transmission gear 181 is loosely fitted to the other end of the traveling transmission shaft 104. 182, and the PTO side second transmission gear 182 is engaged with a PTO side third transmission gear 183 fixed in the middle of the transmission shaft 106.
  • a bevel gear 184 is fixed to the other end of the transmission shaft 106, and a bevel gear 185 that meshes with the bevel gear 184 is fixed to one end of the PTO output shaft 109. Then, the power of the combined output shaft 102 is transmitted to the PTO output shaft 109 via the transmission shaft 106.
  • the motive power transmitted to the PTO output shaft 109 is shifted by an increase / decrease gear or a transmission mechanism built in the inter-stock transmission case 251, and the lateral feed mechanism and each rotary case via a planting clutch, a planting mission case 247, etc. 244.
  • the lateral feed mechanism is activated and the seedling stage 241 is slid in the left-right direction, and the rotary case 244 is rotated and the two planting claws 245 are alternately seedlings. It can be taken out from the seedling mat on 241 and planted in the field.
  • the shift pedal 226 is a shift operation tool for changing the working speed (traveling speed) of the rice transplanter 200.
  • the transmission pedal 226 is disposed on the lower right side of the dashboard 221.
  • the operation amount of the shift pedal 226 can be detected by a potentiometer 226a.
  • the potentiometer 226a is configured to detect a rotation angle of a detection shaft that rotates by operating the speed change pedal 226.
  • the potentiometer 226 a is connected to the control device 260 and transmits the detected value (the operation amount of the shift pedal 226) to the control device 260.
  • the mode selection switch 227 is an operation tool for selecting the control mode of the rice transplanter 200.
  • the mode selection switch 227 is provided on the dashboard 221.
  • the mode selection switch 227 is configured so that the rice transplanter 200 can be selected from five control modes of “fuel efficiency mode”, “shift efficiency mode”, “exhaust gas reduction mode”, “load mode”, and “automatic mode”. .
  • the mode selection switch 227 is connected to the control device 260 and transmits a signal corresponding to the selected control mode to the control device 260.
  • the control device 260 controls the first motor 261 and the second motor 262.
  • the control device 260 is provided at an arbitrary position of the traveling unit 210.
  • the control device 260 may be configured such that a CPU, a ROM, a RAM, an HDD, and the like are connected by a bus, or may be configured by a one-chip LSI or the like.
  • Various programs and maps for controlling the operations of the first motor 261 and the second motor 262 are stored in the control device 260 in advance.
  • the first motor 261 is an actuator for changing the rotational speed of the engine 214.
  • the first motor 261 is a brassless DC motor, a stepping motor, or the like.
  • the first motor 261 is connected to the control device 260 and is driven based on a signal transmitted from the control device 260.
  • the output shaft of the first motor 261 is connected to the speed governor 214a of the engine 214 via a link mechanism.
  • the first motor 261 drives the speed governor 214a and can change the rotational speed of the engine 214.
  • the speed governor 214a also serves as an output detection unit for detecting the output of the engine 214.
  • the second motor 262 is an actuator for changing the gear ratio of the HMT 110.
  • the second motor 262 is a brassless DC motor, a stepping motor, or the like.
  • the second motor 262 is connected to the control device 260 and is driven by a signal transmitted from the control device 260.
  • the output shaft of the second motor 262 is connected to the speed change arm 100a via a link mechanism.
  • the speed change arm 100a is rotated by the second motor 262, the inclination angle of the movable swash plate 111a of the hydraulic pump 111 is changed, and the speed change ratio of the HMT 110 can be changed.
  • the engine speed detecting means 263 detects the speed of the engine 214.
  • the engine speed detection means 263 is configured to detect, for example, the speed of the flywheel or crankshaft of the engine 214.
  • the engine speed detection means 263 is configured by a magnetic pickup coil, a rotary encoder, or the like.
  • the engine speed detection means 263 is connected to the control device 260 and transmits the detection signal to the control device 260.
  • the control device 260 controls the first motor 261 and the second motor 262 based on the detection value of the potentiometer 226a, thereby changing the traveling speed and work speed of the rice transplanter 200. can do. That is, the operability of the rice transplanter 200 is improved because the traveling speed and the working speed are changed by only one operating tool (shift pedal 226) instead of two operating tools as in the prior art.
  • the rotational speed of the engine 214 and the gear ratio of the HMT 110 can be appropriately changed according to the traveling state of the rice transplanter 200, for example, the state of entering / exiting the farm field, the state of entering / exiting the truck, and the like.
  • the working situation of the rice transplanter 200 for example, the situation where the plant 214 is planted with a large amount of fuel consumed by the engine 214, the situation where the plant 214 is planted while the exhaust gas emission rate of the engine 214 is high, The speed of the engine 214 and the gear ratio of the HMT 110 can be appropriately changed according to the situation in which the planting operation is performed in the above state.
  • FIG. 14 is a diagram showing the relationship between the rotational speed of the engine 214 and the net average effective pressure.
  • the control device 260 stores a map shown in FIG. 14 in advance.
  • the net average effective pressure refers to an average value of the pressure in the cylinder during one cycle of the engine 214.
  • the map shows the characteristics of the engine 214 and is derived in advance by a test or the like.
  • FIG. 14 is an example, and the characteristics of the engine 214 are not limited to this.
  • the solid line in FIG. 14 shows the iso-fuel consumption curve of the engine 214.
  • An equal fuel consumption curve is a measurement of fuel consumption per output of the engine 214 (hereinafter simply referred to as “fuel consumption”) for each engine speed and each net average effective pressure. Is connected.
  • fuel consumption fuel consumption per output of the engine 214
  • minimum fuel consumption area the area within the innermost fuel consumption curve
  • the fuel consumption increases toward the curve (fuel consumption is worse). That is, FIG. 14 is a map relating to fuel efficiency of the engine 214.
  • the control device 260 constantly calculates the net average effective pressure of the engine 214. That is, the control device 260 stores in advance a map indicating the relationship between the fuel injection pattern (for example, the fuel injection amount, the number of fuel injections, the fuel injection timing, etc.) of the governor 214a and the net average effective pressure. The net average effective pressure of the engine 214 is always calculated based on the map from the fuel injection pattern of the governor 214a.
  • the control device 260 sets the operation amount of the shift pedal 226 detected by the potentiometer 226a. Based on this, the first motor 261 and the second motor 262 are controlled to change the rotational speed of the engine 214 and the gear ratio of the HMT 110, and consequently change the working speed (traveling speed). At this time, the control device 260 grasps the position corresponding to the state of the engine 214 in FIG. 14 from the engine speed detected by the engine speed detecting means 263 and the calculated net average effective pressure. 14, the first motor 261 and the second motor 262 are controlled so that the position corresponding to the state of the engine 214 in the engine 14 is within the minimum fuel consumption region or close to the minimum fuel consumption region.
  • the control device 260 decreases the rotational speed of the engine 214 from N1 to N2 and increases the net average effective pressure from P1 to P2, thereby reducing X2 within the minimum fuel consumption region.
  • the first motor 261 and the second motor 262 are controlled so as to be positioned at the position.
  • the fuel consumption of the engine 214 can be achieved even at the same work speed. Can be suppressed, and fuel consumption can be improved.
  • FIG. 15 is a map relating to the speed change efficiency of the HMT 110, and more specifically, a map showing the relationship between the working speed of the rice transplanter 200 and the overall efficiency of the HMT 110.
  • the total efficiency of the HMT 110 is the sum of the effective power of the hydraulic transmission mechanism constituted by the hydraulic pump 111 and the hydraulic motor 112 shown in FIG. 13 and the effective power of the gear transmission mechanism constituted by the transmission gear 115 and the planetary carrier 122. It is said.
  • the map shows the characteristics of the HMT 110 and is derived in advance by a test or the like. Note that FIG. 15 is an example, and the characteristics of the HMT 110 are not limited thereto.
  • the control device 260 sets the operation amount of the speed change pedal 226 detected by the potentiometer 226a. Based on this, the first motor 261 and the second motor 262 are controlled to change the rotational speed of the engine 214, the gear ratio of the HMT 110, and the work speed. At this time, the control device 260 controls the first motor 261 and the second motor 262 so that the overall efficiency of the entire HMT 110 is increased, that is, the conversion efficiency of the HMT 110 is improved.
  • the control device 260 controls the second motor 262 so that the total efficiency E1 becomes the highest gear ratio, that is, the HMT 110 shifts only with the gear effective power. Then, the control device 260 calculates an appropriate number of revolutions of the engine 214 from the speed ratio at which the overall efficiency becomes the highest and the work speed V1 corresponding to the operation amount of the speed change pedal 226, and calculates the number of revolutions. Thus, the first motor 261 is controlled.
  • the control device 260 indicates the second motor 262 so that the overall efficiency E2 becomes the highest gear ratio as indicated by the white arrow, that is, the HMT 110 shifts only with the gear effective power as in the case of V1. Control. Then, the control device 260 controls the first motor 261 so that the rotational speed of the engine 214 corresponds to the speed ratio at which the overall efficiency becomes the highest and the work speed V2.
  • the overall efficiency in the HMT 110 is high in the entire work speed region. Work can be done. Note that when a small speed change is required on the low speed side, the ratio of the effective hydraulic power to the total efficiency can be increased.
  • FIG. 16 is a map relating to the exhaust gas emission rate of the engine 214, and more specifically, a map showing the relationship between the rotational speed of the engine 214 and the NOx concentration in the exhaust gas.
  • the control device 260 stores in advance a map shown in FIG.
  • the map shows the characteristics of the engine 214 and is derived in advance by a test or the like.
  • FIG. 16 is an example, and the characteristics of the engine 214 are not limited thereto.
  • concentration in waste gas may be sufficient.
  • the control device 260 sets the operation amount of the shift pedal 226 detected by the potentiometer 226a. Based on this, the first motor 261 and the second motor 262 are controlled to change the rotational speed of the engine 214 and the gear ratio of the HMT 110, thereby changing the working speed. At this time, the control device 260 controls the first motor 261 and the second motor 262 so that the NOx concentration in the exhaust gas decreases based on the map.
  • the control device 260 indicates that the rotational speed of the engine 214 is N3 as indicated by a white arrow.
  • the first motor 261 is controlled to increase from NO to N4, and the NOx concentration is decreased to C2.
  • the control device 260 calculates an appropriate gear ratio of the HMT 110 from the rotational speed N4 of the engine 214 and the work speed corresponding to the operation amount of the shift pedal 226, and the second gear ratio is set so as to be this gear ratio.
  • the motor 262 is controlled.
  • the NOx concentration is lowered even at the same work speed. This makes it possible to reduce exhaust gas.
  • FIG. 17 is a map relating to the load factor of the engine 214, and more specifically, a map showing the relationship between the rotational speed of the engine 214 and the output (load) of the engine 214.
  • the control device 260 stores a map shown in FIG. 17 in advance.
  • the solid line in FIG. 17 is an output curve connecting points that are the maximum output at each rotation speed.
  • the load factor of the engine 214 (the ratio of the actual output to the maximum output of the engine 214) is 100. %.
  • a lower region in the output curve in FIG. 17 is an operation region where the engine 214 operates, and an upper region is a stop region where the engine 214 stops.
  • the map shows the characteristics of the engine 214 and is derived in advance by a test or the like. Note that FIG. 17 is an example, and the characteristics of the engine 214 are not limited thereto.
  • the control device 260 constantly calculates the output of the engine 214. That is, the control device 260 stores in advance a map indicating the relationship between the fuel injection pattern (for example, the fuel injection amount, the number of fuel injections, the fuel injection timing, etc.) of the governor 214a and the engine output, Based on the map, the output of the engine 214 is constantly calculated from the fuel injection pattern of the governor 214a.
  • the fuel injection pattern for example, the fuel injection amount, the number of fuel injections, the fuel injection timing, etc.
  • the control device 260 when the shift pedal 226 is operated after the “load mode” is selected by the mode selection switch 227, the control device 260 is based on the operation amount of the shift pedal 226 detected by the potentiometer 226a. Then, the first motor 261 and the second motor 262 are controlled to change the rotational speed of the engine 214, the gear ratio of the HMT 110, and the work speed. At this time, even when an excessive load is applied to the engine 214 due to mud, grooves, inclination, etc., the control device 260 detects the engine speed detected by the engine speed detection means 263 and the calculated engine output. 17, the position corresponding to the state of the engine 214 in FIG. 17 is grasped, and the position corresponding to the state of the engine 214 in FIG. The motor 262 is controlled.
  • the rotational speed of the engine 214 is N5, the output of the engine 214 is W1, and the position corresponding to the state of the engine 214 is Y1.
  • the control device 260 operates the position corresponding to the state of the engine 214.
  • the rotational speed of the engine 214 is increased from N5 to N6 so as to be located at Y2 in the region (the two-dot chain arrow in FIG.
  • “automatic mode” is selected by the mode selection switch 227, among the four control modes (“fuel efficiency mode”, “transmission efficiency mode”, “exhaust gas reduction mode”, “load mode”), rice transplanting is performed.
  • An appropriate control mode is automatically selected according to the traveling state and working state of the machine 200. For example, during normal work, the work is performed in the “fuel efficiency mode”, and when the engine 214 is overloaded due to mud, grooves, inclination, etc., it is automatically switched to the “load mode”.
  • the rice transplanter 200 can be configured to serve as a plurality of control modes.
  • the fuel consumption can be further reduced by combining the “fuel efficiency mode” and the “conversion efficiency mode”.
  • the “exhaust gas efficiency mode” and the “load mode” it is possible to reliably perform work even when the engine 214 is overloaded due to inclination or the like while reducing exhaust gas.
  • the rice transplanter 200 can arbitrarily change the rotational speed of the engine 214 and the gear ratio of the HMT 110 by individually controlling the first motor 261 and the second motor 262, so that the engine does not pass through the HMT 110. It is also possible to configure so that power is transmitted to the PTO output shaft 109 by branching from 214. For example, as shown in FIG. 18, a bevel gear 191 is fixed to the pump output shaft 114 of the hydraulic pump 111, and a bevel gear 192 that meshes with the bevel gear 191 is fixed to one end of the PTO output shaft 109. Power is transmitted to the PTO output shaft 109 without being shifted by the HMT 110.
  • control device 260 can change the rotational speed of the PTO output shaft 109 to an arbitrary rotational speed by controlling the first motor 261 and changing the rotational speed of the engine 214. Therefore, an increase / decrease gear and a transmission mechanism built in the inter-stock transmission case 251 are not required, and the cost can be reduced. Note that the control device 260 controls the second motor 262 so that the speed ratio of the HMT 110 corresponding to the rotation speed of the engine 214 and the operation amount (working speed) of the speed change pedal 226 is obtained.
  • the engine 214 the first motor 261 serving as the first actuator for changing the rotational speed of the engine 214, and the continuously variable transmission for shifting the power from the engine 214 are provided.
  • HMT 110 a second motor 262 serving as a second actuator for changing a gear ratio of the HMT 110
  • a shift pedal 226 serving as a shift operating tool for changing a traveling speed
  • an operation amount for detecting an operation amount of the shift pedal 226 The rice transplanter 200 includes a potentiometer 226a serving as a detection unit, and a control device 260 that controls the first motor 261 and the second motor 262 based on a detection value of the potentiometer 226a.
  • the traveling speed and work speed of the rice transplanter 200 can be changed by controlling the first motor 261 and the second motor 262 based on the detection value of the potentiometer 226a. Therefore, the operator can change the traveling speed and work speed of the rice transplanter 200 with only the shift pedal 226, and the operability is improved. Further, the rotational speed of the engine 214 and the gear ratio of the HMT 110 can be appropriately changed according to the traveling situation and work situation of the rice transplanter.
  • control device 260 includes a map relating to fuel efficiency of the engine 214, a map relating to the shift efficiency of the HMT 110, a map relating to the exhaust gas emission rate of the engine 214, and a map relating to the load factor of the engine 214. At least one of them is stored, and the first motor 261 and the second motor 262 are controlled based on the stored map and the detected value of the potentiometer 226a. Thereby, fuel consumption can be improved by controlling the 1st motor 261 and the 2nd motor 262 based on the map concerning fuel consumption efficiency. Further, by controlling the first motor 261 and the second motor 262 based on the map related to the shift efficiency, the shift efficiency can be improved in the entire speed range.
  • exhaust gas can be reduced by controlling the 1st motor 261 and the 2nd motor 262 based on the map which concerns on an exhaust gas discharge rate. Further, by controlling the first motor 261 and the second motor 262 based on the map related to the load factor of the engine 214, it is possible to reliably travel even when the engine 214 is overloaded due to inclination or the like.

Abstract

A rice planting machine comprises: an actuator for changing the speed of the engine and/or the transmission ratio of the HST; a speed change means serving as the operation device for changing the amount of drive of the actuator; a control device connected to both the actuator and the speed change means and changing the speed of the vehicle by changing either the speed of the engine and/or the transmission ratio of the HST by means of the actuator on the basis of the amount of operation of the speed change means; and a maximum speed setting means connected to the control device and serving as the operation device for changing the maximum speed which is the speed of the vehicle when the speed change means is operated the maximum amount.

Description

田植機Rice transplanter
 本発明は、田植機の技術に関する。 The present invention relates to rice transplanter technology.
 従来、田植機に関して、その車速を変更する技術は公知となっている(例えば、特許文献1)。
 従来の田植機は、前後進させる変速操作具である変速ペダルの踏み込み量に対して、目標とする車速が常に一定であった。
 しかし、田植機をトラックに積み降ろしする場合や、田植機で圃場へ出入りする場合等の、田植機の微速走行が行われる際に、従来の田植機では、変速ペダルの微量なコントロールが必要とされた。これにより、シーンに応じた所望の車速で田植機を走行させることが困難あった。
Conventionally, a technique for changing the vehicle speed of a rice transplanter has been publicly known (for example, Patent Document 1).
In the conventional rice transplanter, the target vehicle speed is always constant with respect to the depression amount of the shift pedal, which is a shift operation tool that moves forward and backward.
However, when a rice transplanter is traveling at a low speed, such as when loading and unloading a rice transplanter on a truck, or when entering or leaving a farm, the conventional rice transplanter requires a small amount of control of the shift pedal. It was done. Thereby, it was difficult to drive the rice transplanter at a desired vehicle speed according to the scene.
特開2000-236714号公報JP 2000-236714 A
 本発明は、移動・作業・トラックから積み降ろし・納屋入れ等の、シーンに応じた変速ペダルの微量な調整が不要となり、シーンに応じた所望の車速で走行することが容易に実現可能な田植機を提供する。 The present invention eliminates the need for minute adjustments of the shift pedal according to the scene, such as movement, work, loading and unloading from the truck, and putting in the barn, and can easily realize traveling at a desired vehicle speed according to the scene. Provide a machine.
 本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段を説明する。 The problems to be solved by the present invention are as described above. Next, means for solving the problems will be described.
 即ち、本発明の田植機は、
 エンジンの回転数、および/またはHSTの変速比を変更するアクチュエータと、
 前記アクチュエータの駆動量を変更するための操作具である変速手段と、
 前記アクチュエータおよび変速手段に接続され、前記変速手段の操作量に基づいて前記アクチュエータにより前記エンジンの回転数およびHSTの変速比のうちの少なくとも一方を変更して、車速を変更する制御装置と、
 前記制御装置に接続され、前記変速手段が最大操作量まで操作されたときの車速である最高速度を変更するための操作具である最高速設定手段と、を備え、
 前記制御装置は、
 前記変速手段の操作量に基づいて前記アクチュエータの目標駆動量を算出して、前記アクチュエータの駆動量が前記目標駆動量になるように前記アクチュエータを駆動することにより、車速を前記アクチュエータの目標駆動量に対応した大きさに変更し、
 前記変速手段が最大操作量まで操作されたときの前記アクチュエータの目標駆動量を、前記最高速設定手段の操作量に対応した大きさに変更することにより、前記最高速度を前記最高速設定手段の操作量に対応した大きさに変更する。
That is, the rice transplanter of the present invention
An actuator for changing the engine speed and / or the gear ratio of the HST;
Transmission means that is an operating tool for changing the drive amount of the actuator;
A control device that is connected to the actuator and the speed change means, and changes the vehicle speed by changing at least one of the rotational speed of the engine and the speed ratio of the HST by the actuator based on an operation amount of the speed change means;
A maximum speed setting means that is connected to the control device and is an operating tool for changing a maximum speed that is a vehicle speed when the speed change means is operated up to a maximum operation amount;
The controller is
The target drive amount of the actuator is calculated based on the operation amount of the speed change means, and the actuator is driven so that the drive amount of the actuator becomes the target drive amount. Change the size to correspond to
By changing the target drive amount of the actuator when the speed change means is operated to the maximum operation amount to a size corresponding to the operation amount of the maximum speed setting means, the maximum speed is set to the maximum speed setting means. Change to a size corresponding to the amount of operation.
 本発明の田植機においては、
 前記最高速設定手段は、回動操作可能であり、その回動範囲内にて、回動角の変化量に対応して前記最高速度を変更する可変域と、回動角の変化に対して前記最高速度を一定の値に維持する定速域と、を有する。
In the rice transplanter of the present invention,
The maximum speed setting means can be rotated, and within the rotation range, the variable range for changing the maximum speed corresponding to the amount of change of the rotation angle, and the change of the rotation angle A constant speed region that maintains the maximum speed at a constant value.
 本発明の田植機においては、
 前記定速域は、最低速度域と、最高速度域と、前記最低速度域および最高速度域の間に設けられる疎植推奨速度域と、を有し、
 前記可変域は、前記最低速度域および疎植推奨速度域の間に設けられる第一可変域と、前記疎植推奨速度域および最高速度の間に設けられる第二可変域と、を有する。
In the rice transplanter of the present invention,
The constant speed range has a minimum speed range, a maximum speed range, and a sparse recommended speed range provided between the minimum speed range and the maximum speed range,
The variable range includes a first variable range provided between the minimum speed range and the recommended sparse planting speed range, and a second variable range provided between the recommended sparse planting speed range and the maximum speed.
 本発明の田植機においては、
 エンジンの回転数、および/またはHSTの変速比を変更するアクチュエータと、
 前記アクチュエータの駆動量を変更するための操作具である変速手段と、
 前記アクチュエータおよび変速手段に接続され、前記変速手段の操作量に基づいて前記アクチュエータにより前記エンジンの回転数およびHSTの変速比のうちの少なくとも一方を変更して、車速を変更する制御装置と、
 前記制御装置に接続され、前記変速手段が最大操作量まで操作されたときの車速である最高速度を変更するための操作具である最高速設定手段と、
 前記制御装置に接続され、車速を、前記変速手段の操作に関係なく一定値に固定するための操作具である速度固定手段と、を備え、
 前記制御装置は、前記速度固定手段による車速固定が行われている場合で、前記最高速設定手段が操作されるときに、前記最高速設定手段の操作量に基づいて前記アクチュエータの駆動量を変更することにより、前記速度固定手段により固定された車速を前記最高速設定手段の操作量に対応した大きさに変更する。
In the rice transplanter of the present invention,
An actuator for changing the engine speed and / or the gear ratio of the HST;
Transmission means that is an operating tool for changing the drive amount of the actuator;
A control device that is connected to the actuator and the speed change means, and changes the vehicle speed by changing at least one of the rotational speed of the engine and the speed ratio of the HST by the actuator based on an operation amount of the speed change means;
Maximum speed setting means that is connected to the control device and is an operating tool for changing a maximum speed that is a vehicle speed when the speed change means is operated to a maximum operation amount;
A speed fixing means connected to the control device, and being an operating tool for fixing the vehicle speed to a constant value regardless of the operation of the speed change means;
The controller changes the drive amount of the actuator based on the operation amount of the maximum speed setting means when the vehicle speed is fixed by the speed fixing means and the maximum speed setting means is operated. Thus, the vehicle speed fixed by the speed fixing means is changed to a size corresponding to the operation amount of the maximum speed setting means.
 本発明の田植機においては、
 前記制御装置は、前記速度固定手段による車速固定が行われている場合で、前記最高速設定手段による変更後の車速が所定の速度下限閾値未満の値になるときに、前記速度固定手段による車速固定を解除する。
In the rice transplanter of the present invention,
When the vehicle speed is fixed by the speed fixing means and the vehicle speed after the change by the maximum speed setting means is a value less than a predetermined speed lower limit threshold, the control device performs the vehicle speed by the speed fixing means. Unpin.
 本発明の田植機においては、
 前記制御装置は、
 前記速度固定手段による車速固定が行われている場合で、前記変速手段の操作量が、所定の固定解除下限値未満まで減少して、その後、前記固定解除下限値まで増加したときには、前記速度固定手段による車速固定を解除し、
 前記速度固定手段による車速固定が行われている場合で、前記変速手段の操作量が、所定の固定解除上限値まで増加したときには、前記速度固定手段による車速固定を解除し、
 前記固定解除下限値は、前記速度固定手段が操作されて車速固定が行われた時の前記変速手段の操作量である固定記憶位置よりも小さい値であり、
 前記固定解除上限値は、前記固定記憶位置よりも大きい値である。
In the rice transplanter of the present invention,
The controller is
When the vehicle speed is fixed by the speed fixing means, the speed fixing is performed when the operation amount of the speed change means decreases to less than a predetermined fixed release lower limit and then increases to the fixed release lower limit. Release the vehicle speed fixed by means,
When the vehicle speed is fixed by the speed fixing means and the operation amount of the speed change means increases to a predetermined unlocking upper limit value, the vehicle speed fixing by the speed fixing means is released,
The fixed release lower limit value is a value smaller than a fixed storage position that is an operation amount of the transmission unit when the speed fixing unit is operated and vehicle speed is fixed.
The fixed release upper limit value is a value larger than the fixed storage position.
 本発明の田植機においては、
 前記制御装置は、前記速度固定手段による車速固定が行われている場合で、前記最高速設定手段が操作されるとき、前記最高速設定手段の操作量に応じて前記固定解除下限値、および固定解除上限値を変更する。
In the rice transplanter of the present invention,
When the vehicle speed is fixed by the speed fixing means and the maximum speed setting means is operated, the control device, when the maximum speed setting means is operated, the fixed release lower limit value and a fixed value according to the operation amount of the maximum speed setting means Change the cancellation upper limit.
 本発明の効果として、以下に示すような効果を奏する。 As the effects of the present invention, the following effects are obtained.
 本発明においては、最高速設定手段によりオペレータが必要とする車速(最高速度)の設定が可能になるので、移動・作業・トラックから積み降ろし・納屋入れ等の、シーンに応じた変速手段の微量な操作が不要となり、田植機をシーンに応じた所望の車速で走行させることが容易に実現可能である。 In the present invention, since the vehicle speed (maximum speed) required by the operator can be set by the maximum speed setting means, a small amount of the speed change means corresponding to the scene, such as movement, work, loading / unloading from the truck, and barn. Thus, it is possible to easily implement the rice transplanter at a desired vehicle speed according to the scene.
 本発明においては、最高速設定手段を回動して最高速度を設定する際に、最高速設定手段を前記定速域内に回動すれば、最高速度が前記定速域に対応する一定の値に設定されるので、最高速度の設定を容易に行うことが可能である。 In the present invention, when setting the maximum speed by rotating the maximum speed setting means, if the maximum speed setting means is rotated within the constant speed range, the maximum speed is a constant value corresponding to the constant speed range. Therefore, it is possible to easily set the maximum speed.
 本発明においては、最高速設定手段を回動して最高速度を設定する際に、前記最低速度域に対応する最高速度、前記疎植推奨速度域に対応する最高速度、および前記最高速度域に対応する最高速度、の設定を容易に行うことが可能である。
 また、田植機の最高速度を、前記疎植推奨速度域に対応する最高速度、すなわち疎植作業に最適な最高速度に容易に設定可能なので、疎植作業をする際に植付精度を向上させることが可能である。
 また、疎植等の推薦車速の設定領域を設けることで、植え付けロータのシャクリを未然に防ぐことが可能である。
In the present invention, when setting the maximum speed by rotating the maximum speed setting means, the maximum speed corresponding to the minimum speed range, the maximum speed corresponding to the recommended sparse planting speed range, and the maximum speed range It is possible to easily set the corresponding maximum speed.
In addition, the maximum speed of the rice transplanter can be easily set to the maximum speed corresponding to the recommended sparse planting speed range, that is, the optimum maximum speed for sparse planting work, so that the planting accuracy is improved when performing sparse planting work. It is possible.
Further, by providing a recommended vehicle speed setting area such as sparse planting, it is possible to prevent the planting rotor from being crushed.
 本発明においては、最高速設定手段によりオペレータが必要とする車速(最高速度)の設定が可能になるので、移動・作業・トラックから積み降ろし・納屋入れ等の、シーンに応じた変速手段の微量な操作が不要となり、田植機をシーンに応じた所望の車速で走行させることが容易に実現可能である。
 また、速度固定手段により固定された車速(固定車速)を、最高速設定手段の操作のみで変更できる。したがって、固定車速の増減調整を円滑に行うことが可能となる。
In the present invention, since the vehicle speed (maximum speed) required by the operator can be set by the maximum speed setting means, a small amount of the speed change means corresponding to the scene, such as movement, work, loading / unloading from the truck, and barn. Thus, it is possible to easily implement the rice transplanter at a desired vehicle speed according to the scene.
Further, the vehicle speed (fixed vehicle speed) fixed by the speed fixing means can be changed only by operating the maximum speed setting means. Therefore, the increase / decrease adjustment of the fixed vehicle speed can be performed smoothly.
 本発明においては、低速域で速度固定手段による車速固定が行われ、さらに前記最高速設定手段が低速側(車速が遅くなる側)に操作された場合に、田植機が走行停止した状態で速度固定手段による車速固定状態が維持されることを防ぐことが可能である。 In the present invention, when the vehicle speed is fixed by the speed fixing means in the low speed range, and the maximum speed setting means is operated to the low speed side (the side where the vehicle speed decreases), the speed of the rice transplanter is stopped. It is possible to prevent the vehicle speed fixed state from being maintained by the fixing means.
 本発明においては、オペレータが前記変速手段の操作により車速固定を解除したときに、解除時の車速を遅くするか、または速くするかを選択可能となる。 In the present invention, when the operator releases the fixed vehicle speed by operating the speed change means, it is possible to select whether to slow down or speed up the vehicle speed at the time of release.
 本発明においては、前記変速手段の操作により車速固定が解除されたときに、田植機が急加速・急減速することを防ぐことが可能である。 In the present invention, it is possible to prevent the rice transplanter from suddenly accelerating or decelerating when the fixed vehicle speed is released by operating the speed change means.
本発明の一実施形態に係る田植機の全体側面図。The whole side view of the rice transplanter which concerns on one Embodiment of this invention. 図1に示す田植機を上方から見たときの概略図。Schematic when the rice transplanter shown in FIG. 1 is viewed from above. 図1に示す田植機において、前車輪および後車輪への動力伝達構造を示す図。The figure which shows the power transmission structure to a front wheel and a rear wheel in the rice transplanter shown in FIG. 図1に示す田植機において、植付部への動力伝達構造を示す図。The figure which shows the power transmission structure to a planting part in the rice transplanter shown in FIG. (a)は図1に示す田植機のダッシュボード周辺を示す図であり、(b)最高速設定ダイヤルの拡大図。(A) is a figure which shows the dashboard periphery of the rice transplanter shown in FIG. 1, (b) The enlarged view of the highest speed setting dial. 図1に示す田植機の制御装置を示すブロック図。The block diagram which shows the control apparatus of the rice transplanter shown in FIG. 第一マップを示す図。The figure which shows a 1st map. 第二マップを示す図。The figure which shows a 2nd map. 変速ペダルの回動角と、ペダル用ポテンショメータの検出軸の回動角と、モータ用ポテンショメータの検出軸の回動角と、エンジンの回転数と、田植機の車速と、の関係を示す図。The figure which shows the relationship between the rotation angle of a shift pedal, the rotation angle of the detection shaft of a pedal potentiometer, the rotation angle of the detection shaft of a motor potentiometer, the rotation speed of an engine, and the vehicle speed of a rice transplanter. 第三マップを示す図。The figure which shows a 3rd map. (a)固定解除下限値βx1を示す図、(b)固定解除上限値βx2を示す図。(A) The figure which shows fixed release lower limit βx1, (b) The figure which shows fixed release upper limit βx2. 田植機の全体側面図。Whole side view of rice transplanter. 田植機のミッションケース内部の動力伝達構造及び制御の構成を示す図。The figure which shows the structure of the power transmission structure and control inside the mission case of a rice transplanter. エンジンの回転数と正味平均有効圧力との関係を示すマップ。The map which shows the relationship between an engine speed and a net average effective pressure. 田植機の作業速度とHMTの全効率との関係を示すマップ。A map showing the relationship between the working speed of the rice transplanter and the overall efficiency of the HMT. エンジンの回転数とNOx濃度との関係を示すマップ。The map which shows the relationship between engine speed and NOx concentration. エンジンの回転数とエンジンの出力との関係を示すマップ。A map showing the relationship between engine speed and engine output. ミッションケース内部の動力伝達構造及び制御の構成の変形例を示す図。The figure which shows the modification of the power transmission structure inside a mission case, and the structure of control.
 1   田植機
 14  エンジン
 67  変速ペダル
 67a ペダル用ポテンショメータ
 69  最高速設定ダイヤル
 70  速度固定レバー
 71  モータ
 71a モータ用ポテンショメータ
 80 制御装置
1 Rice transplanter 14 Engine 67 Shift pedal 67a Pedal potentiometer 69 Maximum speed setting dial 70 Speed fixing lever 71 Motor 71a Motor potentiometer 80 Control device
(田植機の構成)
 まず、本発明の一実施形態に係る田植機1の全体構成について説明する。なお、本実施形態においては、田植機は八条植えの田植機とするが、これは特に限定するものではなく、例えば六条植えや十条植えの田植機であってもよい。
(Composition of rice transplanter)
First, the whole structure of the rice transplanter 1 which concerns on one Embodiment of this invention is demonstrated. In the present embodiment, the rice transplanter is an eight-row planter, but this is not particularly limited, and a six-plant or ten-row planter may be used.
 図1および図2に示すように、田植機1は、走行部10と植付部40とを有し、走行部10により走行しながら、植付部40により苗を圃場に植え付けることができるように構成される。植付部40は、走行部10の後方に配置されて、この走行部10の後部に昇降機構30を介して昇降可能に連結される。 As shown in FIG. 1 and FIG. 2, the rice transplanter 1 has a traveling unit 10 and a planting unit 40, so that the planting unit 40 can plant seedlings in the field while traveling by the traveling unit 10. Configured. The planting part 40 is arrange | positioned behind the traveling part 10, and is connected with the rear part of this traveling part 10 via the raising / lowering mechanism 30 so that raising / lowering is possible.
 走行部10においては、エンジン14が車体フレーム11の前部に設けられて、ボンネット15により被覆される。ミッションケース20が車体フレーム11の前部に支持されて、エンジン14の後方に配置される。図3に示すように、ミッションケース20の内部には、油圧-機械式無段変速機(HMT:HydroMechanicalTransmission)21、主変速機構22、クラッチ23、および制動装置24が搭載される。 In the traveling unit 10, the engine 14 is provided at the front portion of the vehicle body frame 11 and is covered with a bonnet 15. The transmission case 20 is supported by the front portion of the vehicle body frame 11 and is disposed behind the engine 14. As shown in FIG. 3, a hydraulic-mechanical continuously variable transmission (HMT) 21, a main transmission mechanism 22, a clutch 23, and a braking device 24 are mounted inside the mission case 20.
 HMT21は、エンジン14からの動力を無段階に変速可能な油圧式無段変速機(HST:HydroStaticTransmission)21aと、エンジン14からの動力とHST21aからの動力とを合成することが可能な遊星歯車機構21bと、を組み合わせたものである。 The HMT 21 is a hydraulic continuously variable transmission (HST) 21a capable of steplessly changing the power from the engine 14, and a planetary gear mechanism capable of combining the power from the engine 14 and the power from the HST 21a. 21b.
 主変速機構22は、歯合するギアの組み合わせを変更することにより、HMT21からの動力を複数段に変速可能なものである。 The main transmission mechanism 22 can change the power from the HMT 21 in a plurality of stages by changing the combination of gears to mesh with each other.
 クラッチ23は、切断又は接続されることにより、HMT21から主変速機構22への動力の伝達の可否を切り換えるものである。
 また、制動装置24は、主変速機構22の出力軸の回動を制動することができるものである。
The clutch 23 switches whether power can be transmitted from the HMT 21 to the main transmission mechanism 22 by being disconnected or connected.
The braking device 24 can brake the rotation of the output shaft of the main transmission mechanism 22.
 図1および図3に示すように、フロントアクスルケース6が車体フレーム11の前部に支持され、前車輪12が当該フロントアクスルケース6の左右両側に取り付けられる。リアアクスルケース7が車体フレーム11の後部に支持され、後車輪13が当該リアアクスルケース7の左右両側に取り付けられる。 1 and 3, the front axle case 6 is supported on the front portion of the vehicle body frame 11, and the front wheels 12 are attached to the left and right sides of the front axle case 6. The rear axle case 7 is supported on the rear portion of the vehicle body frame 11, and the rear wheels 13 are attached to both the left and right sides of the rear axle case 7.
 そして、エンジン14の動力がミッションケース20に伝達され、ミッションケース20の内部にあるHMT21および主変速機構22を介して左右の前車輪12と左右の後車輪13とにそれぞれ伝達されて、前車輪12および後車輪13が回転作動するように構成される。これにより、走行部10が前進または後進走行可能とされる。 The power of the engine 14 is transmitted to the mission case 20, and is transmitted to the left and right front wheels 12 and the left and right rear wheels 13 via the HMT 21 and the main transmission mechanism 22 inside the mission case 20, respectively. 12 and the rear wheel 13 are configured to rotate. Thereby, the traveling unit 10 can travel forward or backward.
 図1および図2に示すように、走行部10において、車体フレーム11の前後中途部に運転操作部60が設けられる。運転操作部60の前部には、ダッシュボード61が配置される。ダッシュボード61の左右中央部には操向ハンドル64が配置され、さらにダッシュボード61には主変速レバー65、キースイッチ66(図5(a)参照)などが配置される。運転操作部60の後部には、運転席62が操向ハンドル64の後方に位置するように配置される。 As shown in FIG. 1 and FIG. 2, in the traveling unit 10, a driving operation unit 60 is provided in the middle of the vehicle body 11 before and after. A dashboard 61 is disposed in front of the driving operation unit 60. A steering handle 64 is disposed at the center of the left and right of the dashboard 61, and a main transmission lever 65, a key switch 66 (see FIG. 5A), and the like are further disposed on the dashboard 61. A driver's seat 62 is arranged behind the steering handle 64 at the rear of the driving operation unit 60.
 また、運転操作部60の操向ハンドル64や運転席62の周りには、変速ペダル67、ブレーキペダル68(図5(a)参照)、一部を乗降用ステップとする車体カバー63、その他のレバーやスイッチ等の操作具が配置される。これらの操作具によって、走行部10および植付部40に対して適宜の操作を行うことが可能とされる。なお、操作具の詳細な構成については後述する。 Further, around the steering handle 64 and the driver's seat 62 of the driving operation unit 60, there are a speed change pedal 67, a brake pedal 68 (see FIG. 5 (a)), a vehicle body cover 63 having a part of the step for getting on and off, and other parts. Operation tools such as levers and switches are arranged. With these operating tools, it is possible to perform appropriate operations on the traveling unit 10 and the planting unit 40. The detailed configuration of the operation tool will be described later.
 走行部10において、予備苗載台17が車体フレーム11の前部の左右両側から立設された各取付フレーム16に取り付けられて、ボンネット15の左右両側方に配置される。そして、予備苗が予備苗載台17に載置されて、植付部40への苗補給が可能とされる。 In the traveling unit 10, the spare seedling stage 17 is attached to each mounting frame 16 erected from both the left and right sides of the front portion of the vehicle body frame 11, and is arranged on both the left and right sides of the bonnet 15. And a reserve seedling is mounted in the reserve seedling mounting stand 17, and the seedling supply to the planting part 40 is attained.
 図1、図2、および図4に示すように、植付部40においては、植付ミッションケース50が植付フレーム49の下部中央付近に支持され、伝動軸51が当該植付ミッションケース50から左右両側方に延設される。四つの植付伝動ケース46がそれぞれ伝動軸51から後方に延設されて、左右方向に適宜の間隔をとって配置される。 As shown in FIGS. 1, 2, and 4, in the planting unit 40, the planting mission case 50 is supported near the center of the lower part of the planting frame 49, and the transmission shaft 51 is connected to the planting mission case 50. It extends on both the left and right sides. The four planting transmission cases 46 are respectively extended rearward from the transmission shaft 51 and arranged at appropriate intervals in the left-right direction.
 ロータリケース44が各植付伝動ケース46の後端部左右両側に回動自在に支持される。ロータリケース44は植付条数と同数、即ち本実施形態では八つ備えられる。そして、二つの植付爪45が、ロータリケース44の回転支点を挟むように、このロータリケース44の長手方向両側にそれぞれ取り付けられる。 A rotary case 44 is rotatably supported on the left and right sides of the rear end of each planting transmission case 46. The number of the rotary cases 44 is the same as the number of planting strips, that is, eight in this embodiment. Then, the two planting claws 45 are attached to both sides of the rotary case 44 in the longitudinal direction so as to sandwich the rotation fulcrum of the rotary case 44.
 苗載台41が植付伝動ケース46の上方に前高後低の傾斜状態で配置されて、植付フレーム49の後部に上下の図示せぬガイドレールを介して左右方向に往復動可能に取り付けられる。苗載台41は、横送り機構52により左右往復横送り可能とされる。 A seedling stand 41 is disposed above the planting transmission case 46 in a front and rear inclined state, and is attached to the rear portion of the planting frame 49 so as to be reciprocally movable in the left and right directions via upper and lower guide rails (not shown). It is done. The seedling table 41 can be reciprocated horizontally by the lateral feed mechanism 52.
 複数条(8条)の苗マット載置部を備える苗載台41は、それぞれの下端側が一つのロータリケース44と対向するように、左右方向に並べられる。そして、苗マットが各苗載台41に載置されて、ロータリケース44の回転時に植付爪45により1株の苗が当該苗載台41上の苗マットから切り取り可能とされる。 The seedling mounting bases 41 having a plurality of (eight) seedling mat mounting parts are arranged in the left-right direction so that the respective lower ends face one rotary case 44. Then, the seedling mat is placed on each seedling stage 41, and one seedling can be cut from the seedling mat on the seedling stage 41 by the planting claws 45 when the rotary case 44 rotates.
 条数に合わせた苗縦送りベルト47が苗載台41に設けられる。苗縦送りベルト47は、苗載台41が左右往復横送りのストローク端に到達するごとに、縦送り機構53により苗載台41上の苗マットを下方へ向かって縦送りするように作動可能とされる。 A seedling vertical feed belt 47 corresponding to the number of strips is provided on the seedling mount 41. The seedling vertical feed belt 47 can be operated so that the seedling mat on the seedling stage 41 is vertically fed by the vertical feeding mechanism 53 every time the seedling stage 41 reaches the stroke end of the left and right reciprocating horizontal feed. It is said.
 そして、エンジン14の動力がミッションケース20、株間変速ケース54、植付ミッションケース50などを介して各ロータリケース44に伝達されて、このロータリケース44が回転作動するように構成される。これにより、ロータリケース44の回転作動にともなって、二つの植付爪45が交互に苗を苗載台41上の苗マットから取り出して圃場に植付可能とされる。 Then, the motive power of the engine 14 is transmitted to each rotary case 44 via the transmission case 20, the inter-company transmission case 54, the planting transmission case 50, etc., and the rotary case 44 is configured to rotate. Thereby, with the rotation operation of the rotary case 44, the two planting claws 45 can alternately take out the seedlings from the seedling mat on the seedling mount 41 and plant them in the field.
 同時に、エンジン14の動力がミッションケース20、株間変速ケース54、植付ミッションケース50などを介して横送り機構52および縦送り機構53に伝達されて、苗載台41が横送り機構52により左右往復横送りされ、苗載台41上の苗マットが苗載台41の左右往復横送りに応じて縦送り機構53により苗縦送りベルト47を介して下方へ向けて縦送りされるように構成される。これにより、苗載台41上の苗マットが植付爪45に対して適切な位置に移動される。 At the same time, the power of the engine 14 is transmitted to the lateral feed mechanism 52 and the vertical feed mechanism 53 via the transmission case 20, the inter-strain shifting case 54, the planting mission case 50, etc. It is configured such that it is reciprocated horizontally and the seedling mat on the seedling table 41 is vertically fed downward by the vertical feed mechanism 53 via the seedling vertical feed belt 47 in accordance with the left and right reciprocating horizontal feed of the seedling table 41. Is done. Thereby, the seedling mat on the seedling placing table 41 is moved to an appropriate position with respect to the planting claws 45.
 図1および図2に示すように、植付部40においては、また、線引きマーカ48が植付フレーム49の左右両側に回動可能に支持される。左右の各線引きマーカ48は、その基端側を回動支点として、上方へ向かって回動されることにより収納され、この収納状態から下方へ向かって回動されることにより先端側を左または右側方へ突出させて、圃場に線引きを行うことができるように構成される。 As shown in FIG. 1 and FIG. 2, in the planting part 40, the drawing marker 48 is supported rotatably on the left and right sides of the planting frame 49. Each of the left and right line drawing markers 48 is stored by being rotated upward with the base end side as a rotation fulcrum, and the tip side is left or left by being rotated downward from this stored state. It is configured so that it can be drawn to the field by protruding rightward.
 また、前述の昇降機構30が走行部10と植付部40との間に設けられる。具体的には、トップリンク31とロワリンク32とが走行部10と植付部40との間に架設され、昇降用シリンダがロワリンク32と走行部10との間に連結される。そして、この昇降用シリンダの伸縮動作によって、植付部40が走行部10に対して上下方向に回動可能、即ち昇降可能とされる。 Also, the above-described lifting mechanism 30 is provided between the traveling unit 10 and the planting unit 40. Specifically, the top link 31 and the lower link 32 are installed between the traveling unit 10 and the planting unit 40, and the lifting cylinder is connected between the lower link 32 and the traveling unit 10. And the planting part 40 can be rotated to the up-down direction with respect to the traveling part 10, that is, can be raised or lowered, by the expansion and contraction operation of the lifting cylinder.
 ここで、エンジン14からロータリケース44、横送り機構52および縦送り機構53に動力を伝達するための動力伝達機構は、図4に示す植付クラッチ55を含み、植付クラッチ55の断接に応じて、エンジン14の動力が苗縦送りベルト47とロータリケース44とに伝達され、または、伝達されないように構成される。 Here, the power transmission mechanism for transmitting power from the engine 14 to the rotary case 44, the lateral feed mechanism 52, and the vertical feed mechanism 53 includes the planting clutch 55 shown in FIG. Accordingly, the power of the engine 14 is transmitted to the seedling vertical feed belt 47 and the rotary case 44 or is not transmitted.
 次に、本実施形態に係る田植機1の制御に関する構成について説明する。 Next, the configuration related to the control of the rice transplanter 1 according to this embodiment will be described.
 図2、図5(a)、および図6に示す変速ペダル67は田植機1の車速を変更するための操作具であり、より詳細には、エンジン14の回転数、およびHMT21の変速比を変更するための操作具である。変速ペダル67はダッシュボード61の右下方に配置される。 The shift pedal 67 shown in FIGS. 2, 5 (a), and 6 is an operating tool for changing the vehicle speed of the rice transplanter 1. More specifically, the speed of the engine 14 and the gear ratio of the HMT 21 are changed. It is an operation tool for changing. The transmission pedal 67 is disposed on the lower right side of the dashboard 61.
 図6に示すペダル用ポテンショメータ(ペダル操作量検出装置)67aは変速ペダル67の踏み込み量(回動角)を検出するためのものである。ペダル用ポテンショメータ67aはリンク機構を介して変速ペダル67に連結され、当該変速ペダル67の踏み込み量を検出することができる。より詳細には、変速ペダル67の踏み込み量(回動角)に応じてペダル用ポテンショメータ67aの検出軸が回動され、当該回動角を変速ペダル67の踏み込み量として検出することができる。
 変速ペダル67が踏み込み操作されたとき、ペダル用ポテンショメータ67aが変速ペダル67の踏み込み量を示すペダル信号を出力する。
A pedal potentiometer (pedal operation amount detection device) 67a shown in FIG. 6 is for detecting the depression amount (rotation angle) of the shift pedal 67. The pedal potentiometer 67a is connected to the shift pedal 67 via a link mechanism, and can detect the amount of depression of the shift pedal 67. More specifically, the detection shaft of the pedal potentiometer 67a is rotated according to the depression amount (rotation angle) of the shift pedal 67, and the rotation angle can be detected as the depression amount of the transmission pedal 67.
When the shift pedal 67 is depressed, the pedal potentiometer 67a outputs a pedal signal indicating the depression amount of the shift pedal 67.
 図5(a)、図5(b)および図6に示す最高速設定ダイヤル69は、変速ペダル67が限界まで踏み込まれたときの車速である最高速度を変更するための操作具である。最高速設定ダイヤル69はダッシュボード61の略中央部(操向ハンドル64の前方)に配置される。 The maximum speed setting dial 69 shown in FIGS. 5 (a), 5 (b) and 6 is an operating tool for changing the maximum speed, which is the vehicle speed when the shift pedal 67 is depressed to the limit. The maximum speed setting dial 69 is disposed at a substantially central portion of the dashboard 61 (in front of the steering handle 64).
 図5(b)に示すように、最高速設定ダイヤル69は、所定範囲内(D0度以上D5度以下)で回動可能である。
 このうち、(a)D0以上D1未満の領域を最低速度域Daとし、(b)D1以上D2未満の領域を第一可変域Dbとし、(c)D2以上D3未満の領域を疎植推奨速度域Dcとし、(d)D3以上D4未満の領域を第二可変域Ddとし、(e)D4以上D5以下の領域を最高速度域Deとする。
As shown in FIG. 5B, the maximum speed setting dial 69 can be rotated within a predetermined range (D0 degrees or more and D5 degrees or less).
Of these, (a) the region from D0 to D1 is the minimum speed range Da, (b) the region from D1 to D2 is the first variable region Db, and (c) the region from D2 to D3 is the recommended sparse planting speed The region is Dc, (d) the region from D3 to D4 is the second variable region Dd, and (e) the region from D4 to D5 is the maximum speed region De.
 最高速設定ダイヤル69が回動されることにより、田植機1の最高速度が、Vmax1~Vmax3の範囲で変更される。
 Vmax1~Vmax3の大小関係については、Vmax1<Vmax2<Vmax3、になるように構成されている。
By rotating the maximum speed setting dial 69, the maximum speed of the rice transplanter 1 is changed in the range of Vmax1 to Vmax3.
Regarding the magnitude relationship between Vmax1 to Vmax3, Vmax1 <Vmax2 <Vmax3.
 (a)最高速設定ダイヤル69が上記最低速度域Da内で回動されるとき、田植機1の最高速度は、最高速設定ダイヤル69の回動角の値に関係なく、一定値Vmax1となる。
 Vmax1は、圃場へ出入りする場合や、田植機1を格納する(トラックに積み降ろしする)場合等、田植機1を低速走行するときの車速である(例えば、Vmax1=0.30m/s)。
(A) When the maximum speed setting dial 69 is rotated within the minimum speed range Da, the maximum speed of the rice transplanter 1 becomes a constant value Vmax1 regardless of the value of the rotation angle of the maximum speed setting dial 69. .
Vmax1 is a vehicle speed when the rice transplanter 1 travels at a low speed (for example, Vmax1 = 0.30 m / s), such as when entering or leaving the field or storing the rice transplanter 1 (loading and unloading on a truck).
 (b)最高速設定ダイヤル69が上記第一可変域Db内で回動されるとき、田植機1の最高速度は、最高速設定ダイヤル69の回動角の値に対応して変更され、Vmax1~Vmax2の範囲で変更される。 (B) When the highest speed setting dial 69 is rotated within the first variable range Db, the maximum speed of the rice transplanter 1 is changed according to the value of the rotation angle of the highest speed setting dial 69, and Vmax1. It is changed in the range of ~ Vmax2.
 (c)最高速設定ダイヤル69が上記疎植推奨速度域Dc内で回動されるとき、田植機1の最高速度は、最高速設定ダイヤル69の回動角の値に関係なく、一定値Vmax2となる。
 Vmax2は、疎植作業を行う場合等、田植機1を中速走行するときの車速である(例えば、Vmax2=1.4m/s)。
(C) When the highest speed setting dial 69 is rotated within the recommended sparse planting speed range Dc, the maximum speed of the rice transplanter 1 is a constant value Vmax2 regardless of the value of the rotation angle of the highest speed setting dial 69. It becomes.
Vmax2 is a vehicle speed when the rice transplanter 1 travels at a medium speed when performing sparse planting work (for example, Vmax2 = 1.4 m / s).
 (d)最高速設定ダイヤル69が上記第二可変域Dd内で回動されるとき、田植機1の最高速度は、最高速設定ダイヤル69の回動角の値に対応して変更され、Vmax2~Vmax3の範囲で変更される。 (D) When the maximum speed setting dial 69 is rotated within the second variable range Dd, the maximum speed of the rice transplanter 1 is changed according to the value of the rotation angle of the maximum speed setting dial 69, and Vmax2 It is changed within the range of ~ Vmax3.
 (e)最高速設定ダイヤル69が上記最高速度域De内で回動されるとき、田植機1の最高速度は、最高速設定ダイヤル69の回動角の値に関係なく、一定値Vmax3となる。
 Vmax3は、路上を走行する場合や、高速で植え付け作業を行う場合等、田植機1を高速走行するときの車速である(例えば、Vmax3=1.85m/s)。
(E) When the maximum speed setting dial 69 is rotated within the maximum speed range De, the maximum speed of the rice transplanter 1 becomes a constant value Vmax3 regardless of the value of the rotation angle of the maximum speed setting dial 69. .
Vmax3 is a vehicle speed when the rice transplanter 1 travels at a high speed such as when traveling on the road or when planting work is performed at a high speed (for example, Vmax3 = 1.85 m / s).
 最高速設定ダイヤル69は回動されるとき、最高速設定ダイヤル69の回動角(操作量)を示すダイヤル信号を出力する。 When the maximum speed setting dial 69 is rotated, a dial signal indicating the rotation angle (operation amount) of the maximum speed setting dial 69 is output.
 図2、図5(a)、および図6に示す主変速レバー65は主変速機構22の変速段(変速比)を変更するための操作具である。主変速レバー65はダッシュボード61の左端部(操向ハンドル64の左方)に配置される。主変速レバー65はリンク機構を介してミッションケース20内の主変速機構22に連結される。
 主変速レバー65は、路上走行位置、植付位置、苗継ぎ位置、後進位置または中立位置に変更可能である。
 主変速レバー65が路上走行位置に切り換えられた場合、主変速機構22の変速段が高速に変更される。この場合、田植機1は高速で走行することができる。
 主変速レバー65が植付位置に切り換えられた場合、主変速機構22の変速段が低速に変更される。この場合、田植機1は、主変速機構22の変速段が高速である場合に比べて低速で走行することができる。
 主変速レバー65が苗継ぎ位置に切り換えられた場合、主変速機構22の変速段が中立に変更される。この場合、田植機1は走行することができない。
 主変速レバー65が後進位置に切り換えられた場合、主変速機構22の変速段が逆転に変更される。この場合、田植機1は後進することができる。
 主変速レバー65が中立位置に切り換えられた場合、主変速機構22の変速段が中立に変更される。この場合、田植機1は走行することができない。
The main transmission lever 65 shown in FIGS. 2, 5 (a), and 6 is an operating tool for changing the gear position (transmission ratio) of the main transmission mechanism 22. The main transmission lever 65 is disposed at the left end portion of the dashboard 61 (to the left of the steering handle 64). The main transmission lever 65 is connected to the main transmission mechanism 22 in the mission case 20 via a link mechanism.
The main speed change lever 65 can be changed to a road running position, a planting position, a seeding position, a reverse position or a neutral position.
When the main transmission lever 65 is switched to the road traveling position, the gear position of the main transmission mechanism 22 is changed to high speed. In this case, the rice transplanter 1 can travel at high speed.
When the main transmission lever 65 is switched to the planting position, the gear position of the main transmission mechanism 22 is changed to a low speed. In this case, the rice transplanter 1 can travel at a lower speed than when the gear stage of the main transmission mechanism 22 is at a high speed.
When the main transmission lever 65 is switched to the seeding position, the gear position of the main transmission mechanism 22 is changed to neutral. In this case, the rice transplanter 1 cannot travel.
When the main transmission lever 65 is switched to the reverse position, the gear position of the main transmission mechanism 22 is changed to reverse rotation. In this case, the rice transplanter 1 can move backward.
When the main transmission lever 65 is switched to the neutral position, the gear position of the main transmission mechanism 22 is changed to neutral. In this case, the rice transplanter 1 cannot travel.
 また、主変速レバー65は、操作位置を検出する操作位置検出スイッチ65aを備える。 The main transmission lever 65 includes an operation position detection switch 65a for detecting an operation position.
 図2、図5(a)、および図6に示すキースイッチ66はエンジン14を始動または停止させるための操作具である。キースイッチ66はダッシュボード61の右後端部(操向ハンドル64の右後方)に配置される。 The key switch 66 shown in FIG. 2, FIG. 5 (a), and FIG. 6 is an operating tool for starting or stopping the engine 14. The key switch 66 is disposed at the right rear end of the dashboard 61 (right rear of the steering handle 64).
 図5(a)および図6に示す速度固定レバー70は田植機1の車速固定、および車速固定の解除を行うための操作具である。速度固定レバー70は操向ハンドル64の軸に固定され、右方に向けて延設される。
 速度固定レバー70は、固定位置、解除位置または中立位置に回動可能(切り換え可能)である。固定位置は、速度固定レバー70を後方に回動させた際の位置である。解除位置は、速度固定レバー70を前方に回動させた際の位置である。中立位置は、固定位置と解除位置の略中間の位置である。速度固定レバー70は、固定位置または解除位置のいずれかに操作された場合であっても、再び中立位置に復帰するように常時付勢されている。
 田植機1の走行時に、速度固定レバー70が固定位置に切り換えられることにより、このときの田植機1の車速が固定される。
 田植機1の車速が固定された状態から、速度固定レバー70が解除位置に切り換えられることにより、田植機1の車速固定が解除される。
 また、田植機1の車速が固定された状態から、ブレーキペダル68が操作されたときも、田植機1の車速固定が解除される。
A speed fixing lever 70 shown in FIG. 5A and FIG. 6 is an operating tool for fixing the vehicle speed of the rice transplanter 1 and releasing the vehicle speed fixing. The speed fixing lever 70 is fixed to the shaft of the steering handle 64 and extends toward the right.
The speed fixing lever 70 is rotatable (switchable) to a fixed position, a release position, or a neutral position. The fixed position is a position when the speed fixing lever 70 is rotated backward. The release position is a position when the speed fixing lever 70 is rotated forward. The neutral position is a position approximately between the fixed position and the release position. Even when the speed fixing lever 70 is operated to either the fixed position or the release position, the speed fixing lever 70 is always urged so as to return to the neutral position again.
When the rice transplanter 1 is traveling, the speed fixing lever 70 is switched to the fixed position, so that the vehicle speed of the rice transplanter 1 at this time is fixed.
From the state where the vehicle speed of the rice transplanter 1 is fixed, the speed fixing lever 70 is switched to the release position, whereby the vehicle speed fixation of the rice transplanter 1 is released.
Further, when the brake pedal 68 is operated from the state where the vehicle speed of the rice transplanter 1 is fixed, the vehicle speed fixation of the rice transplanter 1 is released.
 なお、田植機1は、速度固定レバー70による車速固定(オートクルーズ)が行われた場合において、車速固定後、固定された車速を微調整して変更可能とするための構成を有している。このような構成についての詳細な説明は後述する。 The rice transplanter 1 has a configuration for finely adjusting the fixed vehicle speed so that it can be changed after the vehicle speed is fixed when the vehicle speed is fixed (auto-cruise) by the speed fixing lever 70. . A detailed description of such a configuration will be given later.
 また、田植機1は、速度固定レバー70による車速固定が行われた場合において、速度固定レバー70を解除位置に操作したり、ブレーキペダル68を操作したりすることなく速度固定レバー70による車速固定を解除するための構成を有している。このような構成についての詳細な説明は後述する。 Further, when the vehicle speed is fixed by the speed fixing lever 70, the rice transplanter 1 fixes the vehicle speed by the speed fixing lever 70 without operating the speed fixing lever 70 to the release position or operating the brake pedal 68. It has the structure for canceling. A detailed description of such a configuration will be given later.
 図6に示す速度固定スイッチ70aは速度固定レバー70が固定位置に操作されたことを検出するためのものである。速度固定スイッチ70aとしてはマイクロスイッチが用いられる。速度固定スイッチ70aは固定位置に操作された速度固定レバー70と接触することで、当該速度固定レバー70が固定位置に操作されたことを検出することができる。 The speed fixing switch 70a shown in FIG. 6 is for detecting that the speed fixing lever 70 has been operated to the fixed position. A micro switch is used as the speed fixing switch 70a. The speed fixing switch 70a can detect that the speed fixing lever 70 is operated to the fixed position by contacting the speed fixing lever 70 operated to the fixed position.
 速度固定解除スイッチ70bは速度固定レバー70が解除位置に操作されたことを検出するためのものである。速度固定解除スイッチ70bとしてはマイクロスイッチが用いられる。速度固定解除スイッチ70bは解除位置に操作された速度固定レバー70と接触することで、当該速度固定レバー70が解除位置に操作されたことを検出することができる。 The speed fixing release switch 70b is for detecting that the speed fixing lever 70 has been operated to the release position. A micro switch is used as the speed fixing release switch 70b. The speed fixing release switch 70b can detect that the speed fixing lever 70 is operated to the release position by contacting the speed fixing lever 70 operated to the release position.
 図5(a)および図6に示すブレーキペダル68は田植機1を制動するための操作具である。ブレーキペダル68はダッシュボード61の右下方であって、変速ペダル67の左方に配置される。ブレーキペダル68はリンク機構を介して制動装置24に連結される。ブレーキペダル68が踏み込み操作された場合、制動装置24が作動し、田植機1の前車輪12および後車輪13の回動が制動される。なお、制動装置24は、坂道でも田植機1の停止状態を保持できる程度の制動力を発生可能である。 A brake pedal 68 shown in FIGS. 5A and 6 is an operating tool for braking the rice transplanter 1. The brake pedal 68 is disposed on the lower right side of the dashboard 61 and on the left side of the speed change pedal 67. The brake pedal 68 is connected to the braking device 24 via a link mechanism. When the brake pedal 68 is depressed, the braking device 24 is activated, and the rotation of the front wheels 12 and the rear wheels 13 of the rice transplanter 1 is braked. Note that the braking device 24 can generate a braking force that can maintain the stopped state of the rice transplanter 1 even on a slope.
 図6に示すブレーキ操作検出スイッチ68aはブレーキペダル68が操作されたことを検出するためのものである。ブレーキ操作検出スイッチ68aとしてはマイクロスイッチが用いられる。ブレーキ操作検出スイッチ68aは踏み込み操作されたブレーキペダル68と接触することで、当該ブレーキペダル68が踏み込み操作されたことを検出することができる。 The brake operation detection switch 68a shown in FIG. 6 is for detecting that the brake pedal 68 has been operated. A micro switch is used as the brake operation detection switch 68a. The brake operation detection switch 68a can detect that the brake pedal 68 has been depressed by contacting the brake pedal 68 that has been depressed.
 図6に示す苗台端検出スイッチ49aは苗載台41が所定の位置(左右方向の終端位置)に到達したことを検出するものである。苗台端検出スイッチ49aとしてはマイクロスイッチが用いられる。苗台端検出スイッチ49aは、植付フレーム49に配置されて、苗載台41に設けられた押圧部と接触することで、当該苗載台41が所定の位置に到達したことを検出することができる。 The seedling end detection switch 49a shown in FIG. 6 detects that the seedling stage 41 has reached a predetermined position (the end position in the left-right direction). A micro switch is used as the seedling end detection switch 49a. The seedling end detection switch 49a is arranged on the planting frame 49 and can detect that the seedling mounting base 41 has reached a predetermined position by contacting a pressing portion provided on the seedling mounting base 41. it can.
 図4に示すモータ71は田植機1の車速を変更するためのアクチュエータである。
 モータ71はエンジン14の回転数の変更、HMT21の変速比の変更、クラッチ23の断接の切り換え、および制動装置24の動作の切り換えを行う。モータ71はリンク機構を介してエンジン14、HMT21(詳細にはHST21a)、クラッチ23、および制動装置24に連結される。
A motor 71 shown in FIG. 4 is an actuator for changing the vehicle speed of the rice transplanter 1.
The motor 71 changes the rotational speed of the engine 14, changes the gear ratio of the HMT 21, switches the connection / disconnection of the clutch 23, and switches the operation of the braking device 24. The motor 71 is connected to the engine 14, the HMT 21 (specifically, the HST 21a), the clutch 23, and the braking device 24 via a link mechanism.
 より詳細には、モータ71の出力軸はリンク機構を介してエンジン14の調速装置14aに連結される。モータ71により調速装置14aが駆動され、エンジン14の回転数を変更することができる。
 モータ71の出力軸はリンク機構を介してHST21aの可動斜板に連結される。モータ71により当該可動斜板の傾斜角度が変更され、HST21aの変速比を変更することができる。
 モータ71の出力軸はリンク機構を介してクラッチ23に連結される。モータ71によりクラッチ23が切断または接続される。
 モータ71の出力軸はリンク機構を介して制動装置24に連結される。モータ71により制動装置24が作動されると、前車輪12および後車輪13へと出力される動力を制動することができる。なお、制動装置24は、坂道でも田植機1の停止状態を保持できる程度の制動力を発生可能である。
More specifically, the output shaft of the motor 71 is connected to the speed governor 14a of the engine 14 via a link mechanism. The speed control device 14a is driven by the motor 71, and the rotation speed of the engine 14 can be changed.
The output shaft of the motor 71 is connected to the movable swash plate of the HST 21a through a link mechanism. The inclination angle of the movable swash plate is changed by the motor 71, and the gear ratio of the HST 21a can be changed.
The output shaft of the motor 71 is connected to the clutch 23 via a link mechanism. The clutch 71 is disconnected or connected by the motor 71.
The output shaft of the motor 71 is connected to the braking device 24 via a link mechanism. When the braking device 24 is operated by the motor 71, the power output to the front wheels 12 and the rear wheels 13 can be braked. Note that the braking device 24 can generate a braking force that can maintain the stopped state of the rice transplanter 1 even on a slope.
 モータ用ポテンショメータ71aはモータ71の出力軸の回動角を検出するためのものである。モータ用ポテンショメータ71aはリンク機構を介してモータ71に連結され、当該モータ71の出力軸の回動角を検出することができる。より詳細には、モータ71の出力軸の回動角に応じてモータ用ポテンショメータ71aの検出軸が回動され、当該回動角をモータ71の出力軸の回動角として検出することができる。 The motor potentiometer 71a is for detecting the rotation angle of the output shaft of the motor 71. The motor potentiometer 71a is connected to the motor 71 via a link mechanism, and can detect the rotation angle of the output shaft of the motor 71. More specifically, the detection shaft of the motor potentiometer 71 a is rotated according to the rotation angle of the output shaft of the motor 71, and the rotation angle can be detected as the rotation angle of the output shaft of the motor 71.
 セルモータ72はエンジン14を始動させるためのアクチュエータである。 The cell motor 72 is an actuator for starting the engine 14.
 図2、図5、および図6に示すメータパネル73は田植機1の作動やエンジンや異常警報等に関する種々の情報を表示するためのものである。メータパネル73はダッシュボード61の左右略中央であって、操向ハンドル64の前方に配置される。 The meter panel 73 shown in FIG. 2, FIG. 5, and FIG. 6 is for displaying various information related to the operation of the rice transplanter 1, the engine, the abnormality alarm, and the like. The meter panel 73 is disposed at the approximate center of the left and right of the dashboard 61 and in front of the steering handle 64.
 図6に示す株間変速レバー74は、株間変速機構75(図4参照)の変速段を操作する操作具である。株間変速機構75は、車速に対する植付速度を変速して、苗の植付間隔を変更するものである。株間変速機構75は、植付周期中の植付速度に変化を生じさせる不等速変速が可能に構成される。疎植作業時には、株間変速レバー74を操作して、株間変速機構を不等速変速とすることで苗の引き摺りを防止することができる。 6 is an operating tool for operating the gear position of the inter-company transmission mechanism 75 (see FIG. 4). The inter-strain shifting mechanism 75 changes the planting interval by shifting the planting speed with respect to the vehicle speed. The inter-strain shifting mechanism 75 is configured to be capable of inconstant speed shifting that causes a change in the planting speed during the planting cycle. At the time of sparse planting, seedling dragging can be prevented by operating the inter-strain shifting lever 74 and setting the inter-strain shifting mechanism to a non-uniform speed shifting.
 図6に示す不等速変速操作検出スイッチ74aは、株間変速レバー74が不等速変速位置にあることを検出するためのものである。不等速変速位置とは、株間変速機構75が不等速変速となる株間変速レバー74の位置である。不等速変速操作検出スイッチ74aとしてはマイクロスイッチが用いられる。不等速変速操作検出スイッチ74aは不等速変速位置の近傍に配置される。不等速変速操作検出スイッチ74aは不等速変速位置に操作された株間変速レバー74と接触することで、当該株間変速レバー74が不等速変速位置にあることを検出することができる。 6 is used for detecting that the inter-stock shift lever 74 is at the non-uniform speed shift position. The inconstant speed shift position is the position of the inter-company shift lever 74 at which the inter-company transmission mechanism 75 is in an inconstant speed shift. A micro switch is used as the unequal speed shift operation detection switch 74a. The unequal speed shift operation detection switch 74a is disposed in the vicinity of the unequal speed shift position. The non-uniform speed change operation detection switch 74a can detect that the inter-set speed change lever 74 is in the non-uniform speed shift position by contacting the inter-set speed change lever 74 operated to the non-uniform speed shift position.
 制御装置80は検知信号を入力し、入力した検出信号およびプログラムに基づいて、モータ71、セルモータ72、およびメータパネル73等に制御信号を送信する。また、制御装置80は種々の信号に係る情報を記憶する。
 制御装置80は具体的にはCPU、ROM、RAM、HDD等がバスで接続される構成であってもよく、あるいはワンチップのLSI等からなる構成であってもよい。
The control device 80 inputs a detection signal, and transmits a control signal to the motor 71, the cell motor 72, the meter panel 73, and the like based on the input detection signal and program. In addition, the control device 80 stores information related to various signals.
Specifically, the control device 80 may be configured such that a CPU, a ROM, a RAM, an HDD, and the like are connected by a bus, or may be configured by a one-chip LSI or the like.
 制御装置80はペダル用ポテンショメータ67aに接続され、ペダル用ポテンショメータ67aによる変速ペダル67の踏み込み量を示す検出信号(ペダル信号)を取得することができる。
 制御装置80は最高速設定ダイヤル69に接続され、最高速設定ダイヤル69の回動角(操作量)を示す検出信号(ダイヤル信号)を取得することができる。
 制御装置80は操作位置検出スイッチ65aに接続され、操作位置検出スイッチ65aによる主変速レバー65の操作位置を示す検出信号を取得することができる。
 制御装置80はキースイッチ66に接続され、キースイッチ66により始動操作が行われた旨の検出信号(始動信号)、および停止操作が行われた旨の検出信号(停止信号)を取得することができる。
 制御装置80は速度固定スイッチ70aに接続され、速度固定スイッチ70aによる速度固定レバー70が固定位置に操作された旨の検出信号(固定信号)を取得することができる。
 制御装置80は速度固定解除スイッチ70bに接続され、速度固定解除スイッチ70bによる速度固定レバー70が解除位置に操作された旨の検出信号(解除信号)を取得することができる。
 制御装置80はブレーキ操作検出スイッチ68aに接続され、ブレーキ操作検出スイッチ68aによるブレーキペダル68が踏み込み操作された旨の検出信号を取得することができる。
 制御装置80は苗台端検出スイッチ49aに接続され、苗台端検出スイッチ49aによる苗載台41が所定の位置に到達した旨の検出信号を取得することができる。
The control device 80 is connected to the pedal potentiometer 67a, and can obtain a detection signal (pedal signal) indicating the amount of depression of the shift pedal 67 by the pedal potentiometer 67a.
The control device 80 is connected to the maximum speed setting dial 69 and can acquire a detection signal (dial signal) indicating the rotation angle (operation amount) of the maximum speed setting dial 69.
The control device 80 is connected to the operation position detection switch 65a and can acquire a detection signal indicating the operation position of the main transmission lever 65 by the operation position detection switch 65a.
The control device 80 is connected to the key switch 66, and can acquire a detection signal (start signal) indicating that the start operation has been performed by the key switch 66 and a detection signal (stop signal) indicating that the stop operation has been performed. it can.
The control device 80 is connected to the speed fixing switch 70a, and can acquire a detection signal (fixed signal) indicating that the speed fixing lever 70 by the speed fixing switch 70a has been operated to the fixed position.
The control device 80 is connected to the speed fixing release switch 70b, and can acquire a detection signal (release signal) indicating that the speed fixing lever 70 by the speed fixing release switch 70b has been operated to the release position.
The control device 80 is connected to the brake operation detection switch 68a, and can acquire a detection signal indicating that the brake pedal 68 has been depressed by the brake operation detection switch 68a.
The control device 80 is connected to the seedling end detection switch 49a, and can acquire a detection signal indicating that the seedling stage 41 has reached a predetermined position by the seedling end detection switch 49a.
 制御装置80はモータ71に接続され、モータ71に制御信号を送信し、当該モータ71を回動することができる。
 制御装置80はモータ用ポテンショメータ71aに接続され、モータ用ポテンショメータ71aによるモータ71の回動角の検出信号を取得することができる。
 制御装置80はモータ用ポテンショメータ71aによる検出信号が所望の回動角になるまでモータ71に制御信号を送信することにより、当該モータ71を所望の回動角まで駆動することができる。
The control device 80 is connected to the motor 71 and can transmit a control signal to the motor 71 to rotate the motor 71.
The control device 80 is connected to the motor potentiometer 71a, and can acquire a detection signal of the rotation angle of the motor 71 by the motor potentiometer 71a.
The control device 80 can drive the motor 71 to a desired rotation angle by transmitting a control signal to the motor 71 until the detection signal from the motor potentiometer 71a reaches a desired rotation angle.
 制御装置80はセルモータ72に接続され、セルモータ72に制御信号を送信し、当該セルモータ72を駆動することができる。
 制御装置80はメータパネル73に接続され、エンジンや作業機の動作状況や異常等を検知したときにその情報を表示することができる。
The control device 80 is connected to the cell motor 72 and can transmit a control signal to the cell motor 72 to drive the cell motor 72.
The control device 80 is connected to the meter panel 73, and can display the information when the operating state or abnormality of the engine or the work machine is detected.
 制御装置80は、不等速変速操作検出スイッチ74aと接続され、不等速変速操作検出スイッチ74aによる株間変速レバー74が不等速変速位置に操作された旨の検出信号を取得することができる。 The control device 80 is connected to the inconstant speed shift operation detection switch 74a, and can acquire a detection signal indicating that the stock shift lever 74 is operated to the inconstant speed shift position by the inequal speed shift operation detection switch 74a. .
 また、制御装置80は、株間変速レバー74が不等速変速位置に操作された旨の検出信号を取得すると、車速が低速となるようにモータ71の駆動を制限する。つまり、制御装置80が不等速位置の検出信号を取得する場合と、取得しない場合と、を比較すると、変速ペダル67の踏み込み量が同じであるならば、不等速位置の検出信号を取得する場合の方がモータ71を低速側に回動させる。これにより、疎植作業時に、高速で作業することを抑制して、苗の引き摺りを確実に防止できる。
 なお、本実施形態では、株間変速レバー74が不等速変速位置に操作されると、制御装置80がその位置を検出する構成とされるが、株間変速機構75が不等速とならず等速変速となる位置を検出する構成とすることも可能である。さらに、等速変速、不等速変速にかかわらず変速段毎に前記同様にマイクロスイッチ等を設けて、変速段毎にモータの駆動を制限することも可能である。これにより、株間変速機構75の変速段、つまり、株間にあった最適な速度で作業することができる。
In addition, when the control device 80 obtains a detection signal indicating that the stock shift lever 74 has been operated to the inconstant speed shift position, the control device 80 limits the drive of the motor 71 so that the vehicle speed becomes low. That is, comparing the case where the control device 80 acquires the detection signal of the inconstant speed position with the case where the control device 80 does not acquire it, if the amount of depression of the shift pedal 67 is the same, the detection signal of the inconstant speed position is acquired. In this case, the motor 71 is rotated to the low speed side. Thereby, at the time of sparse planting work, it is possible to suppress working at high speed and reliably prevent seedling dragging.
In this embodiment, the control device 80 is configured to detect the position when the inter-shaft shift lever 74 is operated to the inconstant speed shift position, but the inter-shaft speed change mechanism 75 does not become inconstant speed, etc. It is also possible to adopt a configuration for detecting the position where the speed is changed. Furthermore, it is also possible to provide a microswitch or the like for each shift stage regardless of the constant speed shift or the non-uniform speed shift, and to limit the driving of the motor for each shift stage. Thereby, it is possible to work at a gear position of the inter-stock transmission mechanism 75, that is, at an optimum speed suitable for the inter-stock.
(第一マップ)
 また、制御装置80には、変速ペダル67の踏み込み量βと、モータ71の回動角γとの関係(より詳細には、ペダル用ポテンショメータ67aの検出軸の回動角βと、モータ用ポテンショメータ71aの検出軸の回動角γとの関係)を示す第一マップが記憶される。
(First map)
The control device 80 also includes a relationship between the depression amount β of the speed change pedal 67 and the rotation angle γ of the motor 71 (more specifically, the rotation angle β of the detection shaft of the pedal potentiometer 67a and the motor potentiometer. The first map showing the relationship with the rotation angle γ of the detection shaft 71a) is stored.
 図7は、前記第一マップを示している。図7中の横軸は変速ペダル67の踏み込み量βを、縦軸はモータ用ポテンショメータ71aの検出軸の回動角γを、それぞれ示している。
 変速ペダル67が踏み込み操作された場合に、制御装置80は、第一マップにおいて変速ペダル67の踏み込み量βと対応するモータ71の回動角γを目標回動角として算出し、算出した目標回動角になるようにモータ71を回動する。これにより、田植機1の車速を、変速ペダル67の踏み込み量βに応じた大きさに変更する。
FIG. 7 shows the first map. In FIG. 7, the horizontal axis indicates the depression amount β of the speed change pedal 67, and the vertical axis indicates the rotation angle γ of the detection shaft of the motor potentiometer 71a.
When the shift pedal 67 is depressed, the control device 80 calculates the rotation angle γ of the motor 71 corresponding to the depression amount β of the shift pedal 67 in the first map as the target rotation angle, and calculates the calculated target rotation. The motor 71 is rotated so as to have a moving angle. Thereby, the vehicle speed of the rice transplanter 1 is changed to a magnitude corresponding to the depression amount β of the shift pedal 67.
 変速ペダル67の踏み込み量βは、β1~βmaxの範囲で変化するように構成されている。β1は、変速ペダル67が踏み込み操作されておらず、フリーの状態のときの変速ペダル67の踏み込み量である。βmaxは、変速ペダル67が限界まで踏み込まれたときの変速ペダル67の踏み込み量である。 The depression amount β of the speed change pedal 67 is configured to vary in the range of β1 to βmax. β1 is the depression amount of the shift pedal 67 when the shift pedal 67 is not depressed and is in a free state. βmax is the depression amount of the shift pedal 67 when the shift pedal 67 is depressed to the limit.
 前記第一マップの横軸のβにおいては、β1からβmaxまでの領域は、さらに遊び領域(β1以上β2未満)、接続領域(β2)、変速領域(β2より大きくβ3未満)、および最高速保持領域(β3以上βmax以下)に分割される。 In β on the horizontal axis of the first map, the region from β1 to βmax further includes a play region (β1 or more and less than β2), a connection region (β2), a speed change region (greater than β2 and less than β3), and the highest speed holding. It is divided into regions (β3 or more and βmax or less).
 前記第一マップの遊び領域(β1以上β2未満)においては、モータ71の回動角γは一定値(γ1)に保持される。
 前記第一マップの接続領域(β2)においては、モータ71の回動角γは一定値(γ2)に保持される。
 前記第一マップにおける変速領域(β2より大きくβ3未満)においては、モータ71の回動角γは、変速ペダル67の踏み込み量βの増加に伴って、β2に対応するγ2から、β3に対応するγmaxまで増加する。
 前記第一マップにおける最高速保持領域(β3以上βmax以下)においては、モータ71の回動角γは一定値(γmax)に保持される。
In the play area (β1 or more and less than β2) of the first map, the rotation angle γ of the motor 71 is held at a constant value (γ1).
In the connection area (β2) of the first map, the rotation angle γ of the motor 71 is held at a constant value (γ2).
In the shift region (greater than β2 and less than β3) in the first map, the rotation angle γ of the motor 71 corresponds to β3 from γ2 corresponding to β2 as the depression amount β of the shift pedal 67 increases. Increases to γmax.
In the highest speed holding region (β3 or more and βmax or less) in the first map, the rotation angle γ of the motor 71 is held at a constant value (γmax).
 また、制御装置80には、最高速設定ダイヤル69の回動角Dと、モータ71の補正割合PA(モータ71の修正目標回動角)と、の関係を示す第二マップが記憶される。 Also, the control device 80 stores a second map indicating the relationship between the rotation angle D of the maximum speed setting dial 69 and the correction ratio PA (corrected target rotation angle of the motor 71) of the motor 71.
(第二マップ)
 図8は、前記第二マップを示している。図8中の横軸は最高速設定ダイヤル69の回動角Dを、縦軸はモータ71の目標回動角γmaxの補正割合PA(モータ71の修正目標回動角)を、それぞれ示している。
 変速ペダル67の踏み込み量βが最高速保持領域(β3以上βmax以下)となる場合で、最高速設定ダイヤル69が回動されるとき、制御装置80は、第一マップに基づいて算出したモータ71の目標回動角γmaxを、第二マップに基づいて補正(修正)して、修正目標回動角を算出する。
 そして、制御装置80は、修正目標回動角となるようにモータ71を回動することにより、田植機1の最高速度を、最高速設定ダイヤル69の回動角Dに応じた大きさに変更する。
 なお、第二マップに基づいて修正目標回動角を算出するときの手順については、後述する(2-4)で詳細に説明することとし、以下では、第二マップについて説明する。
(Second map)
FIG. 8 shows the second map. 8, the horizontal axis indicates the rotation angle D of the maximum speed setting dial 69, and the vertical axis indicates the correction ratio PA (corrected target rotation angle of the motor 71) of the target rotation angle γmax of the motor 71. .
When the depression amount β of the speed change pedal 67 is in the maximum speed holding region (β3 or more and βmax or less), when the maximum speed setting dial 69 is rotated, the controller 80 calculates the motor 71 calculated based on the first map. The target rotation angle γmax is corrected (corrected) based on the second map to calculate the corrected target rotation angle.
And the control apparatus 80 changes the maximum speed of the rice transplanter 1 to the magnitude | size according to the rotation angle D of the maximum speed setting dial 69 by rotating the motor 71 so that it may become a correction target rotation angle. To do.
The procedure for calculating the corrected target rotation angle based on the second map will be described in detail in (2-4) described later, and the second map will be described below.
 前記第二マップの縦軸においては、モータ71の目標回動角γmaxの補正割合PAを示している。補正割合PAは、第一マップに基づいて算出したモータ71の目標回動角γmaxを、最高速設定ダイヤル69の回動角Dに応じて補正(修正)するときの割合を千分率で示したものである。 The vertical axis of the second map indicates the correction ratio PA of the target rotation angle γmax of the motor 71. The correction ratio PA indicates the ratio when the target rotation angle γmax of the motor 71 calculated based on the first map is corrected (corrected) according to the rotation angle D of the maximum speed setting dial 69 in terms of a thousandths. It is a thing.
 前記第二マップの横軸の回動角Dにおいては、D0からD5までの領域は、さらに最低速度域Da(D0以上D1未満)、第一可変域Db(D1以上D2未満)、疎植推奨速度域Dc(D2以上D3未満)、第二可変域Dd(D3以上D4未満)、および最高速度域De(D4以上D5以下)に分割される。 In the rotation angle D of the horizontal axis of the second map, the area from D0 to D5 is further the minimum speed area Da (D0 or more and less than D1), first variable area Db (D1 or more and less than D2), and sparse vegetation recommendation It is divided into a speed range Dc (D2 or more and less than D3), a second variable range Dd (D3 or more and less than D4), and a maximum speed range De (D4 or more and D5 or less).
 前記第二マップにおける最低速度域Da(D0以上D1未満)においては、上記補正割合PAは一定値(VRS‰)、に保持される。
 前記第二マップにおける第一可変域Db(D1以上D2未満)においては、上記補正割合PAは、(VRSM={(VRM-VRS)・(D-D1)/(D2-D1)}+VRS‰)、となり、最高速設定ダイヤル69の回動角Dの増加に伴って、回動角D1に対応する(VRS‰)から、回動角D2に対応する(VRM‰)まで増加する。
 前記第二マップにおける疎植推奨速度域Dc(D2以上D3未満)においては、上記補正割合PAは一定値(VRM)‰、に保持される。
 前記第二マップにおける第二可変域Dd(D3以上D4未満)においては、上記補正割合PAは、(VRSH={(1000-VRM)・(D-D3)/(D4-D3)}+VRM‰)、となり、最高速設定ダイヤル69の回動角Dの増加に伴って、回動角D3に対応する(VRM‰)から、回動角D4に対応する(1000‰)まで増加する。
 前記第二マップにおける最高速度域De(D4以上D5以下)においては、上記補正割合PAは一定値(1000‰)に保持される。
In the lowest speed range Da (D0 or more and less than D1) in the second map, the correction ratio PA is held at a constant value (VRS ‰).
In the first variable range Db (D1 or more and less than D2) in the second map, the correction ratio PA is (VRSM = {(VRM−VRS) · (D−D1) / (D2−D1)} + VRS ‰). As the rotation angle D of the maximum speed setting dial 69 increases, the rotation speed increases from (VRS ‰) corresponding to the rotation angle D1 to (VRM ‰) corresponding to the rotation angle D2.
In the recommended sparse planting speed range Dc (D2 or more and less than D3) in the second map, the correction ratio PA is held at a constant value (VRM) ‰.
In the second variable range Dd (D3 or more and less than D4) in the second map, the correction ratio PA is (VRSH = {(1000−VRM) · (D−D3) / (D4−D3)} + VRM ‰). As the rotational angle D of the maximum speed setting dial 69 increases, the rotational speed increases from (VRM ‰) corresponding to the rotational angle D3 to (1000 ‰) corresponding to the rotational angle D4.
In the maximum speed range De (D4 or more and D5 or less) in the second map, the correction ratio PA is held at a constant value (1000 ‰).
 なお、前記第二マップにおいて、第二可変域(D3以上D4未満)の傾きの方が、第一可変域(D1以上D2未満)の傾きよりも小さくなるように構成されている((1000-VRM)/(D4-D3)<(VRM-VRS)/(D2-D1))。
 すなわち、第二可変域の方が、第一可変域よりも、最高速設定ダイヤル69の回動角に対する、補正割合PAの変化量が小さくなるように構成されている。
 従って、最高速設定ダイヤル69を回動する際に、最高速設定ダイヤル69を第二可変域内で回動する方が、第一可変域内で回動するよりも、補正割合PAを微調整することが可能である。
In the second map, the slope of the second variable region (D3 or more and less than D4) is configured to be smaller than the slope of the first variable region (D1 or more and less than D2) ((1000− VRM) / (D4-D3) <(VRM-VRS) / (D2-D1)).
That is, the second variable region is configured such that the change amount of the correction ratio PA with respect to the rotation angle of the maximum speed setting dial 69 is smaller than that of the first variable region.
Accordingly, when the maximum speed setting dial 69 is rotated, the correction ratio PA is finely adjusted when the maximum speed setting dial 69 is rotated within the second variable range, rather than when it is rotated within the first variable range. Is possible.
(田植機の基本動作)
 上述の如く構成された田植機1において、制御装置80はキースイッチ66が始動操作された場合、セルモータ72を駆動して、エンジン14を始動させる。また、制御装置80はキースイッチ66が停止操作された場合、モータ71を回動して、調速装置14aによる燃料の供給を遮断し(本実施形態ではディーゼルエンジン、ガソリンエンジンの場合は点火装置を停止させる)、エンジン14を停止させる。
(Basic operation of rice transplanter)
In the rice transplanter 1 configured as described above, when the key switch 66 is started, the control device 80 drives the cell motor 72 to start the engine 14. In addition, when the key switch 66 is stopped, the control device 80 rotates the motor 71 to cut off the fuel supply by the speed governor 14a (in this embodiment, an ignition device in the case of a diesel engine or a gasoline engine). The engine 14 is stopped.
 また、制御装置80は、変速ペダル67の踏み込み量を示す上記ペダル信号を取得した場合、取得した上記ペダル信号に基づいてモータ71の目標回動角を算出する。そして、制御装置80は、算出した目標回動角を、最高速設定ダイヤル69から取得する上記ダイヤル信号に基づいて修正(変更)することで、修正目標回動角を算出する。そして、制御装置80は、算出した修正目標回動角になるようにモータ71を回動することで、エンジン14の回転数の変更、HMT21の変速比の変更、クラッチ23の断接の切り換え、および制動装置24の動作の切り換えを行い、田植機1の車速を変更する。 Further, when the control device 80 acquires the pedal signal indicating the depression amount of the speed change pedal 67, the control device 80 calculates a target rotation angle of the motor 71 based on the acquired pedal signal. Then, the control device 80 corrects (changes) the calculated target rotation angle based on the dial signal acquired from the maximum speed setting dial 69, thereby calculating the corrected target rotation angle. Then, the control device 80 rotates the motor 71 so that the calculated correction target rotation angle is obtained, thereby changing the rotation speed of the engine 14, changing the speed ratio of the HMT 21, switching the connection / disconnection of the clutch 23, Then, the operation of the braking device 24 is switched, and the vehicle speed of the rice transplanter 1 is changed.
 以下では、制御装置80が上記目標回動角および修正目標回動角を算出するときの構成について説明する。 Hereinafter, a configuration when the control device 80 calculates the target rotation angle and the corrected target rotation angle will be described.
(目標回動角)
 目標回動角は、変速ペダル67の踏み込み量(上記ペダル信号)に基づいて算出される。
 目標回動角に関して、制御装置80は、変速ペダル67の踏み込み量を示す上記ペダル信号を取得した場合、前記第一マップにおいて、取得したペダル信号(変速ペダル67の踏み込み量β)と対応するモータ71の回動角γを算出し、算出した回動角γを修正目標回動角γとする。
(Target rotation angle)
The target rotation angle is calculated based on the depression amount of the speed change pedal 67 (the pedal signal).
Regarding the target rotation angle, when the control device 80 acquires the pedal signal indicating the depression amount of the shift pedal 67, the motor corresponding to the acquired pedal signal (depression amount β of the shift pedal 67) in the first map. The rotation angle γ of 71 is calculated, and the calculated rotation angle γ is set as the corrected target rotation angle γ.
 目標回動角γに関しては、制御装置80の取得したペダル信号(変速ペダル67の踏み込み量β)の大きさに応じて、以下の(1-1)~(1-4)に示す値になる。 The target rotation angle γ has the following values (1-1) to (1-4) according to the magnitude of the pedal signal (depression amount β of the shift pedal 67) acquired by the control device 80. .
 (1-1)図7に示すように、制御装置80の取得したペダル信号が、βa(β1以上β2未満)、になる場合(遊び領域)、目標回動角γは一定値(回動角γ1)となる。 (1-1) As shown in FIG. 7, when the pedal signal acquired by the control device 80 becomes βa (β1 or more and less than β2) (play area), the target rotation angle γ is a constant value (rotation angle). γ1).
 (1-2)制御装置80の取得したペダル信号が、β2になる場合(接続領域)、目標回動角γは一定値(回動角γ2)となる。 (1-2) When the pedal signal acquired by the control device 80 is β2 (connection region), the target rotation angle γ is a constant value (rotation angle γ2).
 (1-3)制御装置80の取得したペダル信号が、βb(β2より大きくβ3未満)、になる場合(変速領域)、目標回動角γは、前記第一マップにおいて、βbと対応するγb(γ2以上γmax未満)となる。従って、この場合の目標回動角γbは取得したペダル信号(回動角βb)の値に応じて変化する。 (1-3) When the pedal signal acquired by the control device 80 is βb (greater than β2 and less than β3) (shift region), the target rotation angle γ is γb corresponding to βb in the first map. (Γ2 or more and less than γmax). Therefore, the target rotation angle γb in this case changes according to the value of the acquired pedal signal (rotation angle βb).
 (1-4)制御装置80の取得したペダル信号が、βc(β3以上βmax以下)、になる場合(最高速保持領域)、目標回動角γは一定値(回動角γmax)となる。 (1-4) When the pedal signal acquired by the control device 80 becomes βc (β3 or more and βmax or less) (maximum speed holding region), the target rotation angle γ becomes a constant value (rotation angle γmax).
(修正目標回動角)
 修正目標回動角は、上記(1-1)~(1-4)で算出した目標回動角γを、最高速設定ダイヤル69の回動角の値(上記ダイヤル信号)に基づいて修正(変更)することで、算出される。
 修正目標回動角に関して、変速ペダル67の踏み込み量β、すなわち制御装置80の取得するペダル信号の大きさに応じて、以下の(2-1)~(2-4)の示す値になる。
(Corrected target rotation angle)
The correction target rotation angle is obtained by correcting the target rotation angle γ calculated in the above (1-1) to (1-4) based on the rotation angle value of the maximum speed setting dial 69 (the dial signal) ( Change).
The corrected target rotation angle has the following values (2-1) to (2-4) according to the depression amount β of the shift pedal 67, that is, the magnitude of the pedal signal acquired by the control device 80.
 (2-1)制御装置80の取得したペダル信号が、βa(β1以上β2未満)、になる場合(遊び領域)、制御装置80は、最高速設定ダイヤル69の回動角Dの値(ダイヤル信号)に関係なく、上記(1-1)にて算出した目標回動角γ1を、修正目標回動角とする。 (2-1) When the pedal signal acquired by the control device 80 is βa (β1 or more and less than β2) (play area), the control device 80 determines the value of the rotation angle D of the maximum speed setting dial 69 (dial Regardless of the signal), the target rotation angle γ1 calculated in (1-1) is set as the corrected target rotation angle.
 (2-2)制御装置80の取得したペダル信号が、β2になる場合(接続領域)、制御装置80は、最高速設定ダイヤル69の回動角Dの値(ダイヤル信号)に関係なく、上記(1-2)にて算出した目標回動角(回動角γ2)を、修正目標回動角とする。 (2-2) When the pedal signal acquired by the control device 80 becomes β2 (connection region), the control device 80 does not depend on the value (dial signal) of the rotation angle D of the maximum speed setting dial 69. The target rotation angle (rotation angle γ2) calculated in (1-2) is set as the corrected target rotation angle.
 (2-3)制御装置80の取得したペダル信号が、βb(β2より大きくβ3未満)、になる場合(変速領域)、制御装置80は、上記(1-3)にて算出した目標回動角γbを、最高速設定ダイヤル69の回動角Dの値(ダイヤル信号)に基づいて適宜修正する。そして、制御装置80は、この修正した値を、修正目標回動角として算出する。 (2-3) When the pedal signal acquired by the control device 80 becomes βb (greater than β2 and less than β3) (shift region), the control device 80 calculates the target rotation calculated in (1-3) above. The angle γb is appropriately corrected based on the value (dial signal) of the rotation angle D of the maximum speed setting dial 69. Then, the control device 80 calculates the corrected value as a corrected target rotation angle.
 (2-4)制御装置80の取得したペダル信号が、βc(β3以上βmax以下)、になる場合(最高速保持領域)、制御装置80は、上記(1-4)にて算出した目標回動角γmaxを、最高速設定ダイヤル69の回動角Dの値(ダイヤル信号)に基づいて修正する。そして、制御装置80は、この修正した値を、修正目標回動角として算出する。
 本実施形態では、この場合の修正目標回動角は、図8に示す前記第二マップを用いて算出され、最高速設定ダイヤル69の回動角Dの大きさに応じて以下の(2-4-1)~(2-4-5)に示す値になる。
 以下、図8を参照して詳細に説明する。
(2-4) When the pedal signal acquired by the control device 80 becomes βc (β3 or more and βmax or less) (maximum speed holding region), the control device 80 sets the target number of times calculated in (1-4) above. The moving angle γmax is corrected based on the value of the rotation angle D (dial signal) of the maximum speed setting dial 69. Then, the control device 80 calculates the corrected value as a corrected target rotation angle.
In the present embodiment, the correction target rotation angle in this case is calculated using the second map shown in FIG. 8, and the following (2-) is calculated according to the rotation angle D of the maximum speed setting dial 69. The values are as shown in (4-1) to (2-4-5).
Hereinafter, this will be described in detail with reference to FIG.
 (2-4-1)最高速設定ダイヤル69の回動角Dが、(a)最低速度域Da(D0以上D1未満)のとき、このときの前記第二マップにおける補正割合PAは(VRS‰)になる。したがって、このときの修正目標回動角(γmax1)、すなわちモータ71の最大回動角は、以下の[数1]に示す値になり、一定値になる。なお、本実施形態では、補正割合PAが(0‰)となるときのモータ71の回動角γを、回動角γ2に設定している。
 [数1]
 γmax1={(γmax-γ2)×VRS/1000}+γ2
(2-4-1) When the rotation angle D of the maximum speed setting dial 69 is (a) the minimum speed range Da (D0 or more and less than D1), the correction ratio PA in the second map at this time is (VRS ‰). )become. Accordingly, the corrected target rotation angle (γmax1) at this time, that is, the maximum rotation angle of the motor 71 is a value shown in the following [Equation 1], which is a constant value. In the present embodiment, the rotation angle γ of the motor 71 when the correction ratio PA is (0 ‰) is set to the rotation angle γ2.
[Equation 1]
γmax1 = {(γmax−γ2) × VRS / 1000} + γ2
 (2-4-2)最高速設定ダイヤル69の回動角Dが、(b)第一可変域Db(D1以上D2未満)のとき、このときの前記第二マップにおける補正割合PAは回動角Dの値に応じて(VRS‰~VRM‰)の範囲内のいずれかの値になる。したがって、このときの修正目標回動角(γmax2)、すなわちモータ71の最大回動角は、以下の[数2]に示す値になり、回動角Dの値に対応して変化する。
 [数2]
 γmax2={(γmax-γ2)×VRSM/1000}+γ2
 VRSM={(VRM-VRS)・(D-D1)/(D2-D1)}+VRS
(2-4-2) When the rotation angle D of the maximum speed setting dial 69 is (b) the first variable range Db (D1 or more and less than D2), the correction ratio PA in the second map at this time is the rotation Depending on the value of the angle D, it becomes any value within the range of (VRS ‰ to VRM ‰). Therefore, the corrected target rotation angle (γmax2) at this time, that is, the maximum rotation angle of the motor 71 is a value shown in the following [Equation 2], and changes corresponding to the value of the rotation angle D.
[Equation 2]
γmax2 = {(γmax−γ2) × VRSM / 1000} + γ2
VRSM = {(VRM−VRS) · (D−D1) / (D2−D1)} + VRS
 (2-4-3)最高速設定ダイヤル69の回動角Dが、(c)疎植推奨速度域Dc(D2以上D3未満)のとき、このときの前記第二マップにおける補正割合PAは(VRM‰)になる。したがって、修正目標回動角(γmax3)、以下の[数3]に示す値になり、一定値になる。
 [数3]
 γmax3={(γmax-γ2)×VRM/1000}+γ2
(2-4-3) When the rotation angle D of the maximum speed setting dial 69 is (c) the sparse planting recommended speed range Dc (D2 or more and less than D3), the correction ratio PA in the second map at this time is ( VRM ‰). Therefore, the corrected target rotation angle (γmax3) is a value shown in the following [Equation 3], which is a constant value.
[Equation 3]
γmax3 = {(γmax−γ2) × VRM / 1000} + γ2
 (2-4-4)最高速設定ダイヤル69の回動角Dが、(d)第二可変域Dd(D3以上D4未満)のとき、このときの前記第二マップにおける補正割合PAは回動角Dの値に応じて(VRM‰~1000‰)の範囲内のいずれかの値になる。したがって、このときの修正目標回動角(γmax4)、すなわちモータ71の最大回動角は、以下の[数4]に示す値になり、回動角Dの値に対応して変化する。
 [数4]
 γmax4={(γmax-γ2)×VRSH/1000}+γ2
 VRSH={(1000-VRM)・(D-D3)/(D4-D3)}+VRM
(2-4-4) When the rotation angle D of the maximum speed setting dial 69 is (d) the second variable range Dd (D3 or more and less than D4), the correction ratio PA in the second map at this time is the rotation Depending on the value of the angle D, it becomes any value within the range of (VRM ‰ to 1000 ‰). Therefore, the corrected target rotation angle (γmax4) at this time, that is, the maximum rotation angle of the motor 71 is a value shown in the following [Equation 4], and changes according to the value of the rotation angle D.
[Equation 4]
γmax4 = {(γmax−γ2) × VRSH / 1000} + γ2
VRSH = {(1000−VRM) · (D−D3) / (D4−D3)} + VRM
 (2-4-5)最高速設定ダイヤル69の回動角Dが、(e)最高速度域De(D4以上D5以下)のとき、このときの前記第二マップにおける補正割合PAは(1000‰)になる。したがって、このときの修正目標回動角、すなわちモータ71の最大回動角は、目標回動角γmaxと同じ値になる。 (2-4-5) When the rotation angle D of the maximum speed setting dial 69 is (e) the maximum speed range De (D4 or more and D5 or less), the correction ratio PA in the second map at this time is (1000 ‰). )become. Therefore, the corrected target rotation angle at this time, that is, the maximum rotation angle of the motor 71 becomes the same value as the target rotation angle γmax.
(田植機の動作)
 以下では、変速ペダル67が踏み込み操作された場合における田植機1の動作について説明する。
 なお、田植機1の変速ペダル67が、以下の(3-1)~(3-5)の順序で踏み込み操作されることとする。
 また、説明の便宜上、主変速レバー65は植付位置に操作されているものとする。
 また、最高速設定ダイヤル69が、(c)疎植推奨速度域Dc(D2以上D3未満)内に操作されているものとする。
(Operation of rice transplanter)
Hereinafter, the operation of the rice transplanter 1 when the shift pedal 67 is depressed will be described.
It is assumed that the shift pedal 67 of the rice transplanter 1 is depressed in the following order (3-1) to (3-5).
For convenience of explanation, it is assumed that the main transmission lever 65 is operated to the planting position.
In addition, it is assumed that the maximum speed setting dial 69 is operated within (c) a recommended sparse planting speed range Dc (D2 or more and less than D3).
 (3-1)図9に示すように、まず、変速ペダル67が踏み込み操作されていない場合において、この場合の当該変速ペダル67の回動角(ペダル回動角)αをα1(度)とする。この場合のペダル用ポテンショメータ67aの検出軸の回動角β(変速ペダル67の踏み込み量β)をβ1(度)とする。変速ペダル67の踏み込み量βがβ1以上β2未満のとき(遊び領域)、制御装置80は、モータ用ポテンショメータ71aの検出軸の回動角(モータ71の回動角)γ1(度)を修正目標回動角として算出する(上記(2-1)参照)。そして、制御装置80は、モータ71の回動角γが修正目標回動角γ1になるようにモータ71を回動する。
 モータ71の回動角γがγ1になるようにモータ71が回動された場合、リンク機構を介してクラッチ23が切断される。これによって、エンジン14の動力が前車輪12および後車輪13に伝達されることがなく、田植機1の車速Vは0(m/秒)となる。
 また、この場合、リンク機構を介して制動装置24が作動する。これによって、前車輪12および後車輪13が制動され、田植機1が不意に前進または後進するのを防止することができる。
 モータ71の回動角γがγ1になるようにモータ71が回動された場合、リンク機構を介してエンジン14の回転数NはN1(rpm)に設定される。
 また、この場合、リンク機構を介してHST21aの可動斜板の傾斜角度が最大となるように設定される。これによって、エンジン14からの動力とHST21aからの動力が遊星歯車機構21bによって互いに打ち消すように合成され、主変速機構22へ動力が伝達されることがない。
(3-1) As shown in FIG. 9, first, when the shift pedal 67 is not depressed, the rotation angle (pedal rotation angle) α of the shift pedal 67 in this case is expressed as α1 (degrees). To do. In this case, the rotation angle β of the detection shaft of the pedal potentiometer 67a (depression amount β of the transmission pedal 67) is β1 (degrees). When the depression amount β of the shift pedal 67 is not less than β1 and less than β2 (play area), the control device 80 corrects the rotation angle (rotation angle of the motor 71) γ1 (degree) of the detection shaft of the motor potentiometer 71a. The rotation angle is calculated (see (2-1) above). Then, the control device 80 rotates the motor 71 so that the rotation angle γ of the motor 71 becomes the corrected target rotation angle γ1.
When the motor 71 is rotated such that the rotation angle γ of the motor 71 is γ1, the clutch 23 is disconnected via the link mechanism. As a result, the power of the engine 14 is not transmitted to the front wheels 12 and the rear wheels 13, and the vehicle speed V of the rice transplanter 1 becomes 0 (m / sec).
In this case, the braking device 24 is operated via the link mechanism. Thereby, the front wheel 12 and the rear wheel 13 are braked, and the rice transplanter 1 can be prevented from moving forward or backward unexpectedly.
When the motor 71 is rotated such that the rotation angle γ of the motor 71 is γ1, the rotational speed N of the engine 14 is set to N1 (rpm) via the link mechanism.
In this case, the inclination angle of the movable swash plate of the HST 21a is set to be maximum via the link mechanism. Thus, the power from the engine 14 and the power from the HST 21a are combined so as to cancel each other out by the planetary gear mechanism 21b, and the power is not transmitted to the main transmission mechanism 22.
 (3-2)変速ペダル67が踏み込み操作されて、ペダル回動角αが徐々に増加すると、当該ペダル回動角αの増加に伴って変速ペダル67の踏み込み量βも増加する。
 ペダル回動角αがα1からα2(α2未満)まで増加すると、変速ペダル67の踏み込み量βはβ1からβ2(β2未満)まで増加する(遊び領域)。この間、制御装置80は、修正目標回動角をγ1とするため(上記(2-1)参照)、変速ペダル67の踏み込み量βの値に関係なくモータ71の回動角γをγ1のまま保持して、モータ71を回動しない。
 モータ71の回動角γがγ1に保持されている場合、クラッチ23は切断された状態に維持される。
 同様に、モータ71の回動角γがγ1に保持されている場合、制動装置24が作動した状態に維持される。
 モータ71の回動角γがγ1に保持されている場合、エンジン14の回転数NはN1のまま維持される。
 同様に、モータ71の回動角γがγ1に保持されている場合、HST21aの可動斜板の傾斜角度が最大のまま維持される。
 従って、変速ペダル67が踏み込み操作されて変速ペダル67の踏み込み量βがβ1からβ2(β2未満)に増加した場合であっても、エンジン14の回転数NはN1のまま一定であり、かつ田植機1の車速Vは0のまま維持される。このようにして、変速ペダル67の踏み込み操作操作に対して田植機1が走行しない領域(いわゆる「遊び代」)が設けられる。これは、変速ペダル67が多少踏み込まれたぐらいでは田植機1が発進しないようにして、田植機1の誤発進を防止するためである。また、製造誤差による品質のバラツキを抑制するためである。
(3-2) When the shift pedal 67 is depressed and the pedal rotation angle α is gradually increased, the depression amount β of the shift pedal 67 is also increased as the pedal rotation angle α is increased.
When the pedal rotation angle α increases from α1 to α2 (less than α2), the depression amount β of the shift pedal 67 increases from β1 to β2 (less than β2) (play area). During this time, the control device 80 sets the correction target rotation angle to γ1 (see (2-1) above), so that the rotation angle γ of the motor 71 remains γ1 regardless of the value of the depression amount β of the shift pedal 67. Holding the motor 71 does not rotate.
When the rotation angle γ of the motor 71 is held at γ1, the clutch 23 is maintained in a disconnected state.
Similarly, when the rotation angle γ of the motor 71 is held at γ1, the braking device 24 is maintained in an activated state.
When the rotation angle γ of the motor 71 is held at γ1, the rotational speed N of the engine 14 is maintained at N1.
Similarly, when the rotation angle γ of the motor 71 is held at γ1, the inclination angle of the movable swash plate of the HST 21a is maintained at the maximum.
Accordingly, even when the shift pedal 67 is depressed and the amount of depression β of the shift pedal 67 increases from β1 to β2 (less than β2), the rotational speed N of the engine 14 remains constant at N1 and The vehicle speed V of the machine 1 is maintained at 0. In this way, an area (so-called “play allowance”) in which the rice transplanter 1 does not travel with respect to the depressing operation of the shift pedal 67 is provided. This is because the rice transplanter 1 is prevented from starting until the shift pedal 67 is depressed a little, thereby preventing the rice transplanter 1 from starting erroneously. Moreover, it is for suppressing the dispersion | variation in the quality by a manufacturing error.
 (3-3)変速ペダル67が踏み込み操作されて、ペダル回動角αがα2になるとき、すなわち変速ペダル67の踏み込み量βがβ2になるとき(接続領域)、制御装置80は、γ2を、修正目標回動角として算出する(上記(2-2)参照)。そして、制御装置80は、モータ71の回動角γがγ2になるようにモータ71を回動する。
 モータ71の回動角γがγ1からγ2まで増加するようにモータ71が回動すると、リンク機構を介してエンジン14の調速装置14aが駆動され、当該エンジン14の回転数NがN1からN2まで増加する。
 モータ71の回動角γがγ2になると(γ2を超えると)、クラッチ23は接続される。これによって、エンジン14の動力が前車輪12および後車輪13に伝達可能となる。
 同様に、モータ71の回動角γがγ2になると、制動装置24が解除される。これによって、前車輪12および後車輪13の制動が解除され、田植機1が前進又は後進可能となる。
(3-3) When the shift pedal 67 is depressed and the pedal rotation angle α becomes α2, that is, when the depression amount β of the shift pedal 67 becomes β2 (connection region), the control device 80 sets γ2 The correction target rotation angle is calculated (see (2-2) above). Then, the control device 80 rotates the motor 71 so that the rotation angle γ of the motor 71 becomes γ2.
When the motor 71 rotates so that the rotation angle γ of the motor 71 increases from γ1 to γ2, the speed governor 14a of the engine 14 is driven via the link mechanism, and the rotational speed N of the engine 14 is changed from N1 to N2. Increase to.
When the rotation angle γ of the motor 71 becomes γ2 (exceeds γ2), the clutch 23 is connected. As a result, the power of the engine 14 can be transmitted to the front wheels 12 and the rear wheels 13.
Similarly, when the rotation angle γ of the motor 71 becomes γ2, the braking device 24 is released. Thereby, braking of the front wheel 12 and the rear wheel 13 is released, and the rice transplanter 1 can move forward or backward.
 (3-4)変速ペダル67が踏み込み操作されて、ペダル回動角αがα2からα3まで増加すると、変速ペダル67の踏み込み量βはβ2からβ3まで増加する(変速領域)。このとき、制御装置80は、モータ71の回動角γが、変速ペダル67の踏み込み量β2に対応する修正目標回動角γ2(上記(2-2)参照)から、変速ペダル67の踏み込み量β3に対応する修正目標回動角γmax3(上記(2-4-3)参照)まで増加するように、モータ71を回動する。
 モータ71の回動角γがγ2からγmax3まで増加するようにモータ71が回動すると、リンク機構を介してエンジン14の調速装置14aが駆動され、当該エンジン14の回転数NがN1からNmax2まで増加する。
 同様に、モータ71の回動角γがγ2からγmax3まで増加するようにモータ71が回動すると、リンク機構を介してHST21aの可動斜板の傾斜角度が減少するように駆動される。これによってエンジン14の動力はHMT21を介して前車輪12および後車輪13に伝達されて、田植機1の車速Vは0から最高速度Vmax2まで増加する。
(3-4) When the shift pedal 67 is depressed to increase the pedal rotation angle α from α2 to α3, the amount of depression β of the shift pedal 67 increases from β2 to β3 (shift region). At this time, the control device 80 determines the depression amount of the shift pedal 67 from the corrected target rotation angle γ2 (see (2-2) above) corresponding to the rotation angle γ of the motor 71 corresponding to the depression amount β2 of the shift pedal 67. The motor 71 is rotated so as to increase to the corrected target rotation angle γmax3 (see (2-4-3) above) corresponding to β3.
When the motor 71 rotates so that the rotation angle γ of the motor 71 increases from γ2 to γmax3, the speed governor 14a of the engine 14 is driven via the link mechanism, and the rotational speed N of the engine 14 is changed from N1 to Nmax2. Increase to.
Similarly, when the motor 71 rotates so that the rotation angle γ of the motor 71 increases from γ2 to γmax3, the motor 71 is driven to decrease the inclination angle of the movable swash plate of the HST 21a via the link mechanism. As a result, the power of the engine 14 is transmitted to the front wheels 12 and the rear wheels 13 via the HMT 21, and the vehicle speed V of the rice transplanter 1 increases from 0 to the maximum speed Vmax2.
 (3-5)変速ペダル67が限界まで踏み込まれて、ペダル回動角αがα3からαmaxまで増加すると、変速ペダル67の踏み込み量βはβ3からβmaxまで増加する(最高速保持領域)。この間、制御装置80は、修正目標回動角をγmax3とするため(上記(2-4-3)参照)、変速ペダル67の踏み込み量βの値に関係なくモータ71の回動角γをγmax3のまま保持して、モータ71を回動しない。
 従って、エンジン14の回転数Nは一定値(Nmax2)のまま、田植機1の車速V(最高速度)は一定値(Vmax2)のまま、それぞれ維持される。このようにして、変速ペダル67の踏み込み操作に対して田植機1の車速Vが増加しない領域(いわゆる「余裕代」)が設けられる。これは、路面の状況等により変速ペダルの踏み込み量が多少変化したぐらいでは車速の変更が行われないようにして、車速が敏感に反応しないようにするためである。また、製造誤差による品質のバラツキを抑制するためである。
 このように、最高速設定ダイヤル69の回動角が(c)疎植推奨速度域Dc(D2以上D3未満)のとき、田植機1の最高速度が一定値(Vmax2)となる。
(3-5) When the shift pedal 67 is depressed to the limit and the pedal rotation angle α increases from α3 to αmax, the depression amount β of the shift pedal 67 increases from β3 to βmax (maximum speed holding region). During this time, the control device 80 sets the rotation angle γ of the motor 71 to γmax3 irrespective of the value of the depression amount β of the shift pedal 67 in order to set the corrected target rotation angle to γmax3 (see (2-4-3) above). The motor 71 is not rotated.
Accordingly, the rotational speed N of the engine 14 is maintained at a constant value (Nmax2), and the vehicle speed V (maximum speed) of the rice transplanter 1 is maintained at a constant value (Vmax2). In this way, an area (so-called “margin”) in which the vehicle speed V of the rice transplanter 1 does not increase with respect to the depression operation of the shift pedal 67 is provided. This is to prevent the vehicle speed from reacting sensitively so that the vehicle speed is not changed as long as the amount of depression of the speed change pedal is slightly changed due to the road surface condition or the like. Moreover, it is for suppressing the dispersion | variation in the quality by a manufacturing error.
As described above, when the rotation angle of the maximum speed setting dial 69 is (c) the recommended sparse planting speed range Dc (D2 or more and less than D3), the maximum speed of the rice transplanter 1 becomes a constant value (Vmax2).
 上述の如く、本実施形態に係る田植機1は、変速ペダル67を踏み込み操作することで、田植機1の車速Vを増加(加速)させることができる。また、上述の説明とは逆に、踏み込み操作された変速ペダル67を元の位置に向かって戻すことで、田植機1の車速Vを減少(減速)させることができる。 As described above, the rice transplanter 1 according to the present embodiment can increase (accelerate) the vehicle speed V of the rice transplanter 1 by depressing the shift pedal 67. Contrary to the above description, the vehicle speed V of the rice transplanter 1 can be reduced (decelerated) by returning the stepped-on shift pedal 67 to the original position.
 上記(3-3)~(3-5)で示したように、田植機1の動作に関して、最高速設定ダイヤル69が、(c)疎植推奨速度域Dc(D2以上D3未満)内に操作されている場合において、変速ペダル67がβ2からβmaxまで踏み込まれるとき、モータ71の回動角γ、エンジン14の回転数N、田植機1の車速Vが、図9の実線で示すように変化する。
 この場合において、変速ペダル67が限界(βmax)まで踏み込まれるとき、モータ71の回動角γは、γmax3となる(上記(2-4-3)参照)。
 そして、エンジン14の回転数Nが、修正目標回動角γmax3と対応する、Nmax2となる。そして、田植機1の車速V(最高速度)が、エンジン14の回転数Nmax2と対応する、Vmax2となる。
As shown in (3-3) to (3-5) above, regarding the operation of the rice transplanter 1, the maximum speed setting dial 69 is operated within the (c) sparse planting recommended speed range Dc (D2 or more and less than D3). In this case, when the shift pedal 67 is depressed from β2 to βmax, the rotation angle γ of the motor 71, the rotational speed N of the engine 14, and the vehicle speed V of the rice transplanter 1 change as shown by the solid line in FIG. To do.
In this case, when the shift pedal 67 is depressed to the limit (βmax), the rotation angle γ of the motor 71 becomes γmax3 (see (2-4-3) above).
Then, the rotational speed N of the engine 14 becomes Nmax2 corresponding to the corrected target rotational angle γmax3. Then, the vehicle speed V (maximum speed) of the rice transplanter 1 becomes Vmax2 corresponding to the rotational speed Nmax2 of the engine 14.
 なお、田植機1の動作に関して、最高速設定ダイヤル69が、(a)最低速度域Da(D0以上D1未満)内に操作されている場合において、変速ペダル67がβ2からβmaxまで踏み込まれるとき、モータ71の回動角γ、エンジン14の回転数N、田植機1の車速Vが、図9の一点鎖線で示すように変化する。
 この場合において、変速ペダル67が限界(βmax)まで踏み込まれるとき、モータ71の回動角γは、γmax1となる(上記(2-4-1)参照)。
 そして、エンジン14の回転数Nが、修正目標回動角γmax1と対応する、Nmax1となる。そして、田植機1の車速V(最高速度)が、エンジン14の回転数Nmax1と対応する、Vmax1となる。
Regarding the operation of the rice transplanter 1, when the maximum speed setting dial 69 is operated within (a) the minimum speed range Da (D0 or more and less than D1), when the shift pedal 67 is depressed from β2 to βmax, The rotation angle γ of the motor 71, the rotational speed N of the engine 14, and the vehicle speed V of the rice transplanter 1 change as shown by a one-dot chain line in FIG.
In this case, when the shift pedal 67 is depressed to the limit (βmax), the rotation angle γ of the motor 71 becomes γmax1 (see (2-4-1) above).
Then, the rotational speed N of the engine 14 becomes Nmax1 corresponding to the corrected target rotation angle γmax1. Then, the vehicle speed V (maximum speed) of the rice transplanter 1 becomes Vmax1 corresponding to the rotational speed Nmax1 of the engine 14.
 また、田植機1の動作に関して、最高速設定ダイヤル69が、(e)最高速度域De(D4以上D5以下)内に操作されている場合において、変速ペダル67の踏み込み量βがβ2からβmaxまで増加するとき、モータ71の回動角γ、エンジン14の回転数N、田植機1の車速Vが、図9の二点鎖線で示すように変化する。
 この場合において、変速ペダル67が限界(βmax)まで踏み込まれるとき、モータ71の回動角γは、γmaxとなる(上記(2-4-5)参照)。
 そして、エンジン14の回転数Nが、修正目標回動角γmaxと対応する、Nmax3となる。そして、田植機1の車速V(最高速度)が、エンジン14の回転数Nmax3と対応する、Vmax3となる。
Regarding the operation of the rice transplanter 1, when the maximum speed setting dial 69 is operated within (e) the maximum speed range De (D4 or more and D5 or less), the depression amount β of the shift pedal 67 is from β2 to βmax. When increasing, the rotation angle γ of the motor 71, the rotational speed N of the engine 14, and the vehicle speed V of the rice transplanter 1 change as shown by the two-dot chain line in FIG.
In this case, when the shift pedal 67 is depressed to the limit (βmax), the rotation angle γ of the motor 71 becomes γmax (see (2-4-5) above).
Then, the rotational speed N of the engine 14 becomes Nmax3 corresponding to the corrected target rotational angle γmax. The vehicle speed V (maximum speed) of the rice transplanter 1 becomes Vmax3 corresponding to the rotational speed Nmax3 of the engine 14.
 また、田植機1の動作に関して、最高速設定ダイヤル69が、(b)第一可変域Db(D1以上D2未満)内に操作されている場合において、上記(3-5)に示すように変速ペダル67が限界まで踏み込まれるとき、修正目標回動角γmax2は、最高速設定ダイヤル69の回動角Dの値に対応して変化する(上記(2-4-2)参照)。
 そして、エンジン14の回転数Nが最高速設定ダイヤル69の回動角D(修正目標回動角γmax2)の値に対応して変更され、これにより田植機1の最高速度がエンジン14の回転数Nの変更に対応して変更される。この場合、エンジン14の回転数NはNmax1~Nmax2の範囲で変更され、田植機1の最高速度はVmax1~Vmax2の範囲で変更される。
 すなわち、最高速設定ダイヤル69の回動角が(b)第一可変域Db(D1以上D2未満)のとき、田植機1の最高速度が、最高速設定ダイヤル69に回動角の値に対応して、Vmax1~Vmax2の範囲で変更される。
Regarding the operation of the rice transplanter 1, when the maximum speed setting dial 69 is operated within (b) the first variable range Db (D1 or more and less than D2), the speed change is performed as shown in (3-5) above. When the pedal 67 is depressed to the limit, the corrected target rotation angle γmax2 changes corresponding to the value of the rotation angle D of the maximum speed setting dial 69 (see (2-4-2) above).
Then, the rotational speed N of the engine 14 is changed in accordance with the value of the rotational angle D (corrected target rotational angle γmax2) of the maximum speed setting dial 69, whereby the maximum speed of the rice transplanter 1 is changed to the rotational speed of the engine 14. It is changed corresponding to the change of N. In this case, the rotational speed N of the engine 14 is changed in the range of Nmax1 to Nmax2, and the maximum speed of the rice transplanter 1 is changed in the range of Vmax1 to Vmax2.
That is, when the rotation speed of the maximum speed setting dial 69 is (b) the first variable range Db (D1 or more and less than D2), the maximum speed of the rice transplanter 1 corresponds to the rotation angle value of the maximum speed setting dial 69. Thus, it is changed in the range of Vmax1 to Vmax2.
 また、田植機1の動作に関して、最高速設定ダイヤル69が、(d)第二可変域Dd(D3以上D4未満)内に操作されている場合において、上記(3-5)に示すように変速ペダル67が限界まで踏み込まれて、変速ペダル67の踏み込み量βがβ3からβmaxまで増加するとき、修正目標回動角γmax4は、最高速設定ダイヤル69の回動角Dの値に対応して変化する(上記(2-4-4)参照)。
 そして、エンジン14の回転数Nが最高速設定ダイヤル69の回動角D(修正目標回動角γmax4)の値に対応して変更され、これにより田植機1の最高速度がエンジン14の回転数Nの変更に対応して変更される。この場合、エンジン14の回転数NはNmax2~Nmax3の範囲で変更され、田植機1の最高速度はVmax2~Vmax3の範囲で変更される。
 すなわち、最高速設定ダイヤル69の回動角が(d)第二可変域Dd(D3以上D4未満)のとき、田植機1の最高速度が、最高速設定ダイヤル69に回動角の値に対応して、Vmax2~Vmax3の範囲で変更される。
Regarding the operation of the rice transplanter 1, when the maximum speed setting dial 69 is operated within (d) the second variable range Dd (D3 or more and less than D4), the speed change is performed as shown in (3-5) above. When the pedal 67 is depressed to the limit and the depression amount β of the shift pedal 67 increases from β3 to βmax, the corrected target rotation angle γmax4 changes corresponding to the value of the rotation angle D of the maximum speed setting dial 69. (Refer to (2-4-4) above).
Then, the rotational speed N of the engine 14 is changed in accordance with the value of the rotational angle D (corrected target rotational angle γmax4) of the maximum speed setting dial 69, whereby the maximum speed of the rice transplanter 1 is changed to the rotational speed of the engine 14. It is changed corresponding to the change of N. In this case, the rotational speed N of the engine 14 is changed in the range of Nmax2 to Nmax3, and the maximum speed of the rice transplanter 1 is changed in the range of Vmax2 to Vmax3.
That is, when the rotation speed of the maximum speed setting dial 69 is (d) the second variable range Dd (D3 or more and less than D4), the maximum speed of the rice transplanter 1 corresponds to the rotation angle value of the maximum speed setting dial 69. Thus, it is changed within the range of Vmax2 to Vmax3.
 なお、エンジン14の回転数Nmax1~Nmax3の大小関係については、Nmax1<Nmax2<Nmax3、になるように構成されている。 The magnitude relationship between the engine speeds Nmax1 to Nmax3 is configured such that Nmax1 <Nmax2 <Nmax3.
(速度固定レバーによる車速固定)
 以下では、速度固定レバー70により、田植機1の車速固定、および車速固定の解除が行われるときの手順について説明する。
(Vehicle speed fixed by speed fixing lever)
Below, the procedure at the time of the vehicle speed fixation of the rice transplanter 1 being cancelled | released by the speed fixing lever 70 is demonstrated.
 田植機1が走行している状態において、速度固定レバー70が固定位置に切り換えられるとき、このときの車速が固定(維持)される。
 本実施形態では、作業者は、変速ペダル67の踏み込み量βが固定記憶位置βxとなるときに、速度固定レバー70により田植機1の車速固定を行ったこととする。このとき、モータ用ポテンショメータ71aの回動角γ(モータ71の回動角γ)が固定回動角γxであり、田植機1の車速が固定車速Vx3であったこととする。
 速度固定レバー70が固定位置にあるとき、制御装置80は、変速ペダル67の踏み込み量βに関係なく、モータ71の回動角γを一定値、詳細には速度固定レバー70が固定位置に切り換えられた時の値(固定回動角γx)に維持する。これにより、変速ペダル67の踏み込み量βに関係なく、田植機1の車速が固定車速Vx3に固定され、田植機1が固定車速Vx3で走行し続ける。
 また、制御装置80は、変速ペダル67の固定記憶位置βxに係る情報、およびモータ71の固定回動角γxに係る情報を記憶する。
When the speed fixing lever 70 is switched to the fixed position while the rice transplanter 1 is traveling, the vehicle speed at this time is fixed (maintained).
In the present embodiment, it is assumed that the operator has fixed the vehicle speed of the rice transplanter 1 with the speed fixing lever 70 when the depression amount β of the speed change pedal 67 reaches the fixed storage position βx. At this time, the rotation angle γ of the motor potentiometer 71a (the rotation angle γ of the motor 71) is the fixed rotation angle γx, and the vehicle speed of the rice transplanter 1 is the fixed vehicle speed Vx3.
When the speed fixing lever 70 is in the fixed position, the control device 80 switches the rotation angle γ of the motor 71 to a fixed value, more specifically, the speed fixing lever 70 is switched to the fixed position regardless of the depression amount β of the speed change pedal 67. The value at the time (fixed rotation angle γx) is maintained. Thereby, irrespective of the depression amount β of the shift pedal 67, the vehicle speed of the rice transplanter 1 is fixed to the fixed vehicle speed Vx3, and the rice transplanter 1 continues to travel at the fixed vehicle speed Vx3.
In addition, the control device 80 stores information related to the fixed storage position βx of the shift pedal 67 and information related to the fixed rotation angle γx of the motor 71.
 そして、田植機1の車速が固定車速Vx3に固定された状態で、速度固定レバー70が解除位置に切り換えられるとき、すなわち制御装置80が速度固定解除スイッチ70bから上記解除信号を取得するとき、制御装置80は速度固定レバー70による車速固定を解除する。
 速度固定レバー70が解除位置にあるとき、制御装置80は、田植機1の車速Vを変速ペダル67の踏み込み量βに対応した大きさに変更する(図9参照)。
When the speed fixing lever 70 is switched to the release position with the vehicle speed of the rice transplanter 1 fixed at the fixed vehicle speed Vx3, that is, when the control device 80 acquires the release signal from the speed fixation release switch 70b, The device 80 releases the vehicle speed fixed by the speed fixing lever 70.
When the speed fixing lever 70 is in the release position, the control device 80 changes the vehicle speed V of the rice transplanter 1 to a magnitude corresponding to the depression amount β of the shift pedal 67 (see FIG. 9).
(最高速設定ダイヤルによる固定車速の調整)
 以下では、田植機1の車速Vが速度固定レバー70により固定車速Vx3に固定された場合において、速度固定レバー70が固定位置にある状態で、最高速設定ダイヤル69により固定車速Vx3を微調整して変更可能とするための構成について説明する。なお、速度固定レバー70が固定位置にある状態で、最高速設定ダイヤル69が最高速度域De(D4以上D5以下)に回動されたこととする。
(Adjustment of fixed vehicle speed using the maximum speed setting dial)
In the following, when the vehicle speed V of the rice transplanter 1 is fixed to the fixed vehicle speed Vx3 by the speed fixing lever 70, the fixed vehicle speed Vx3 is finely adjusted by the maximum speed setting dial 69 in a state where the speed fixing lever 70 is in the fixed position. The configuration for enabling the change will be described. It is assumed that the maximum speed setting dial 69 is rotated to the maximum speed range De (D4 or more and D5 or less) in a state where the speed fixing lever 70 is at the fixed position.
 田植機1の車速Vが速度固定レバー70により固定車速Vx3(モータ71の回動角:固定回動角γx)に固定された場合において、制御装置80は、最高速設定ダイヤル69の回動角(上記ダイヤル信号)に基づいてモータ71の固定回動角γxを変更(調整)することで調整目標回動角を算出し、そして、算出した調整目標回動角になるようにモータ71を回動することで、田植機1の固定車速Vx3を変更(微調整)する。
 詳細には、固定車速Vx3は、以下の(4-1)~(4-2)の手順で微調整される。
 (4-1)速度固定レバー70により、モータ71の回動角が固定回動角γxに維持され、これにより田植機1の車速Vが固定車速Vx3に固定された場合において、制御装置80は、最高速設定ダイヤル69の回動角Dとモータ71の固定回動角γxの補正割合PB(調整目標回動角)との対応関係を示す第三マップを作成する。
 図10は、前記第三マップを示している。図10中の横軸は最高速設定ダイヤル69の回動角Dを、縦軸はモータ71の固定回動角γxの補正割合PBを、それぞれ示している。
 図9に示すように、前記第三マップの横軸は、図8に示す第二マップの横軸と同様の構成を有しており、その詳細な説明は省略する。
 前記第三マップの縦軸においては、モータ71の固定回動角γxの補正割合PBを示している。補正割合PBは、固定回動角γxを、最高速設定ダイヤル69の回動角Dに応じて補正(修正)するときの割合を千分率で示したものである。
 前記第三マップにおける最低速度域Da(D0以上D1未満)においては、上記補正割合PBは一定値(VRS‰)に保持される。
 前記第三マップにおける第一可変域Db(D1以上D2未満)においては、上記補正割合PBは、(VRSM={(VRM-VRS)・(D-D1)/(D2-D1)}+VRS‰)、となり、最高速設定ダイヤル69の回動角Dの増加に伴って、回動角D1に対応する(VRS‰)から、回動角D2に対応する(VRM‰)まで増加する。
 前記第三マップにおける疎植推奨速度域Dc(D2以上D3未満)においては、上記補正割合PBは一定値(VRM‰)に保持される。
 前記第三マップにおける第二可変域Dd(D3以上D4未満)においては、上記補正割合PBは、(VRSH={(1000-VRM)・(D-D3)/(D4-D3)}+VRM‰)、となり、最高速設定ダイヤル69の回動角Dの増加に伴って、回動角D3に対応する(VRM‰)から、回動角D4に対応する(1000‰)まで増加する。
 前記第三マップにおける最高速度域De(D4以上D5以下)においては、上記補正割合PBは一定値(1000‰)に保持される。
When the vehicle speed V of the rice transplanter 1 is fixed to the fixed vehicle speed Vx3 (rotation angle of the motor 71: fixed rotation angle γx) by the speed fixing lever 70, the control device 80 rotates the rotation speed of the maximum speed setting dial 69. The adjustment target rotation angle is calculated by changing (adjusting) the fixed rotation angle γx of the motor 71 based on (the dial signal), and the motor 71 is rotated so that the calculated adjustment target rotation angle is obtained. By moving, the fixed vehicle speed Vx3 of the rice transplanter 1 is changed (finely adjusted).
Specifically, the fixed vehicle speed Vx3 is finely adjusted by the following procedures (4-1) to (4-2).
(4-1) When the rotation angle of the motor 71 is maintained at the fixed rotation angle γx by the speed fixing lever 70, and the vehicle speed V of the rice transplanter 1 is fixed to the fixed vehicle speed Vx3, the control device 80 Then, a third map showing the correspondence between the rotation angle D of the maximum speed setting dial 69 and the correction ratio PB (adjustment target rotation angle) of the fixed rotation angle γx of the motor 71 is created.
FIG. 10 shows the third map. 10, the horizontal axis indicates the rotation angle D of the maximum speed setting dial 69, and the vertical axis indicates the correction ratio PB of the fixed rotation angle γx of the motor 71.
As shown in FIG. 9, the horizontal axis of the third map has the same configuration as the horizontal axis of the second map shown in FIG. 8, and a detailed description thereof will be omitted.
The vertical axis of the third map indicates the correction ratio PB of the fixed rotation angle γx of the motor 71. The correction ratio PB indicates the ratio when the fixed rotation angle γx is corrected (corrected) according to the rotation angle D of the maximum speed setting dial 69 in terms of thousandths.
In the lowest speed range Da (D0 or more and less than D1) in the third map, the correction ratio PB is held at a constant value (VRS ‰).
In the first variable range Db (D1 or more and less than D2) in the third map, the correction ratio PB is (VRSM = {(VRM−VRS) · (D−D1) / (D2−D1)} + VRS ‰). As the rotation angle D of the maximum speed setting dial 69 increases, the rotation speed increases from (VRS ‰) corresponding to the rotation angle D1 to (VRM ‰) corresponding to the rotation angle D2.
In the sparse vegetation recommended speed range Dc (D2 or more and less than D3) in the third map, the correction ratio PB is held at a constant value (VRM ‰).
In the second variable range Dd (D3 or more and less than D4) in the third map, the correction ratio PB is (VRSH = {(1000−VRM) · (D−D3) / (D4−D3)} + VRM ‰). As the rotational angle D of the maximum speed setting dial 69 increases, the rotational speed increases from (VRM ‰) corresponding to the rotational angle D3 to (1000 ‰) corresponding to the rotational angle D4.
In the maximum speed range De (D4 or more and D5 or less) in the third map, the correction ratio PB is held at a constant value (1000 ‰).
 (4-2)制御装置80は、上記固定回動角γxを、最高速設定ダイヤル69から取得する上記ダイヤル信号(最高速設定ダイヤル69の回動角D)に基づいて、モータ71の固定回動角γxを調整(変更)することで、調整目標回動角を算出する。そして、制御装置80は、算出した調整目標回動角になるようにモータ71を回動することで、固定車速Vx3を変更(微調整)する。
 本実施形態では、調整目標回動角は、前記第三マップを用いて算出され、最高速設定ダイヤル69の回動角Dの大きさに応じて、以下の(4-2-1)~(4-2-5)の値になる。
 (4-2-1)最高速設定ダイヤル69の回動角Dが、(a)最低速度域Da(D0以上D1未満)のとき、このときの調整目標回動角(γx1)は、前記第三マップにおいて、最低速度域Daと対応する値(VRS‰)を用いて算出される。
 調整目標回動角(γx1)は、一定値(γx・VRS/1000)、となる。
 (4-2-2)最高速設定ダイヤル69の回動角Dが、(b)第一可変域Db(D1以上D2未満)のとき、このときの調整目標回動角(γx2)は、前記第三マップにおいて、第一可変域Dbと対応する値(VRSM‰)を用いて算出される。
 調整目標回動角(γx2)は、(γx・VRSM/1000)、となり、回動角Dの値に対応して変化する。
 (4-2-3)最高速設定ダイヤル69の回動角Dが、(c)疎植推奨速度域Dc(D2以上D3未満)のとき、このときの調整目標回動角(γx3)は、前記第三マップにおいて、疎植推奨速度域Dcと対応する値(VRM‰)を用いて算出される。
 調整目標回動角(γx3)は、一定値(γx3=γx・VRM/1000)、となる。
 (4-2-4)最高速設定ダイヤル69の回動角Dが、(d)第二可変域Dd(D3以上D4未満)のとき、このときの調整目標回動角(γx4)は、前記第三マップにおいて、第二可変域Ddと対応する値(VRSH‰)を用いて算出される。
 調整目標回動角(γx4)は、(γx・VRSH/1000)、となり、回動角Dの値に対応して変化する。
 (4-2-5)最高速設定ダイヤル69の回動角Dが、(e)最高速度域De(D4以上D5以下)のとき、このときの調整目標回動角(γx5)は、前記第三マップにおいて、最高速度域Deと対応する値(1000‰)を用いて算出される。
 調整目標回動角(γx5)は、一定値(γx5=γx・1000/1000=γx)、となり、調整目標回動角と固定回動角とが同じ値γxになる。
(4-2) The control device 80 determines the fixed rotation angle γx of the motor 71 based on the dial signal (the rotation angle D of the highest speed setting dial 69) acquired from the highest speed setting dial 69. The adjustment target rotation angle is calculated by adjusting (changing) the moving angle γx. Then, the control device 80 changes (finely adjusts) the fixed vehicle speed Vx3 by rotating the motor 71 so that the calculated adjustment target rotation angle is obtained.
In the present embodiment, the adjustment target rotation angle is calculated using the third map, and according to the rotation angle D of the maximum speed setting dial 69, the following (4-2-1) to (4- 4-2-5).
(4-2-1) When the rotation angle D of the maximum speed setting dial 69 is (a) the minimum speed range Da (D0 or more and less than D1), the adjustment target rotation angle (γx1) at this time is In the three maps, calculation is performed using a value (VRS ‰) corresponding to the minimum speed range Da.
The adjustment target rotation angle (γx1) is a constant value (γx · VRS / 1000).
(4-2-2) When the rotation angle D of the maximum speed setting dial 69 is (b) the first variable range Db (D1 or more and less than D2), the adjustment target rotation angle (γx2) at this time is In the third map, calculation is performed using a value (VRSM ‰) corresponding to the first variable range Db.
The adjustment target rotation angle (γx2) is (γx · VRSM / 1000), and changes according to the value of the rotation angle D.
(4-2-3) When the rotation angle D of the maximum speed setting dial 69 is (c) the sparse planting recommended speed range Dc (D2 or more and less than D3), the adjustment target rotation angle (γx3) at this time is In the third map, calculation is performed using a value (VRM ‰) corresponding to the recommended sparse planting speed range Dc.
The adjustment target rotation angle (γx3) is a constant value (γx3 = γx · VRM / 1000).
(4-2-4) When the rotation angle D of the maximum speed setting dial 69 is (d) the second variable range Dd (D3 or more and less than D4), the adjustment target rotation angle (γx4) at this time is In the third map, calculation is performed using a value (VRSH ‰) corresponding to the second variable range Dd.
The adjustment target rotation angle (γx4) is (γx · VRSH / 1000), and changes according to the value of the rotation angle D.
(4-2-5) When the rotation angle D of the maximum speed setting dial 69 is (e) the maximum speed range De (D4 or more and D5 or less), the adjustment target rotation angle (γx5) at this time is In the three maps, calculation is performed using a value (1000 ‰) corresponding to the maximum speed range De.
The adjustment target rotation angle (γx5) is a constant value (γx5 = γx · 1000/1000 = γx), and the adjustment target rotation angle and the fixed rotation angle are the same value γx.
 従って、最高速設定ダイヤル69が、(e)最高速度域De(D4以上D5以下)から(a)最低速度域Da(D0以上D1未満)まで回動される場合において、(e)最高速度域De(D4以上D5以下)では、調整目標回動角が一定値(γx5=γx)となる。これにより、田植機1の車速が固定車速Vx3のまま変化しない。
 同様の場合において、(d)第二可変域Dd(D3以上D4未満)では、調整目標回動角(γx4)が、最高速設定ダイヤル69の回動角D4に対応する(γx5=γx)から、回動角D3に対応する(γx3)まで減少する。これにより、田植機1の車速が、調整目標回動角(γx5=γx)に対応する固定車速Vx3から、調整目標回動角(γx3)に対応する(Vx2)まで減少する。
 同様の場合において、(c)疎植推奨速度域Dc(D2以上D3未満)では、調整目標回動角が一定値(γx3)となる。これにより、田植機1の車速が、調整目標回動角(γx3)に対応する(Vx2)のまま変化しない。
 同様の場合において、(b)第一可変域Db(D1以上D2未満)では、調整目標回動角(γx2)が、最高速設定ダイヤル69の回動角D2に対応する(γx3)から、回動角D1に対応する(γx1)まで減少する。これにより、田植機1の車速が、調整目標回動角(γx3)に対応する(Vx2)から、調整目標回動角(γx1)に対応する(Vx1)まで減少する。
 同様の場合において、(a)最低速度域Da(D0以上D1未満)では、調整目標回動角が一定値(γx1)となる。これにより、田植機1の車速が、調整目標回動角(γx1)に対応する(Vx1)のまま変化しない。
Accordingly, when the maximum speed setting dial 69 is rotated from (e) the maximum speed range De (D4 to D5) to (a) the minimum speed range Da (D0 to less than D1), (e) the maximum speed range In De (D4 or more and D5 or less), the adjustment target rotation angle becomes a constant value (γx5 = γx). Thereby, the vehicle speed of the rice transplanter 1 remains unchanged at the fixed vehicle speed Vx3.
In the same case, (d) in the second variable range Dd (D3 or more and less than D4), the adjustment target rotation angle (γx4) corresponds to the rotation angle D4 of the maximum speed setting dial 69 (γx5 = γx). , It decreases to (γx3) corresponding to the rotation angle D3. Thereby, the vehicle speed of the rice transplanter 1 decreases from the fixed vehicle speed Vx3 corresponding to the adjustment target rotation angle (γx5 = γx) to (Vx2) corresponding to the adjustment target rotation angle (γx3).
In the same case, in (c) the recommended sparse planting speed range Dc (D2 or more and less than D3), the adjustment target rotation angle becomes a constant value (γx3). Thereby, the vehicle speed of the rice transplanter 1 remains unchanged (Vx2) corresponding to the adjustment target rotation angle (γx3).
In the same case, (b) In the first variable range Db (D1 or more and less than D2), the adjustment target rotation angle (γx2) is rotated from (γx3) corresponding to the rotation angle D2 of the maximum speed setting dial 69. It decreases to (γx1) corresponding to the moving angle D1. As a result, the vehicle speed of the rice transplanter 1 decreases from (Vx2) corresponding to the adjustment target rotation angle (γx3) to (Vx1) corresponding to the adjustment target rotation angle (γx1).
In the same case, (a) In the minimum speed range Da (D0 or more and less than D1), the adjustment target rotation angle becomes a constant value (γx1). Thereby, the vehicle speed of the rice transplanter 1 remains unchanged (Vx1) corresponding to the adjustment target rotation angle (γx1).
 以上のように、田植機1は、速度固定レバー70により車速VをVx3に固定した後において、速度固定レバー70が固定位置にある状態で、最高速設定ダイヤル69の回動操作により、固定車速Vx3を変更(調整)可能な構成を有する。
 なお、制御装置80は、調整目標回動角を算出する際、速度固定レバー70による車速固定開始時のモータ71の回動角と、速度固定レバー70による車速固定開始時の最高速設定ダイヤル69の回動角Dと、が基準となるように構成して、(調整目標回動角)=(速度固定レバー70による車速固定開始時のモータ71の回動角)×(現在の最高速設定ダイヤル69の回動角D)/(速度固定レバー70による速度固定開始時の最高速設定ダイヤル69の回動角D)、とするように構成してもよい。
As described above, the rice transplanter 1 can fix the fixed vehicle speed by rotating the maximum speed setting dial 69 while the speed fixing lever 70 is in the fixed position after the vehicle speed V is fixed to Vx3 by the speed fixing lever 70. Vx3 can be changed (adjusted).
When calculating the adjustment target turning angle, the control device 80 turns the motor 71 when the speed fixing lever 70 starts fixing the vehicle speed and the maximum speed setting dial 69 when the speed fixing lever 70 starts fixing the vehicle speed. And (rotation angle of the motor 71 when the vehicle speed is fixed by the speed fixing lever 70) × (current maximum speed setting). The rotation angle D of the dial 69) / (the rotation angle D of the maximum speed setting dial 69 when the speed fixing lever 70 starts to fix the speed) may be used.
 なお、上記第三マップにおける補正割合PB(VRS‰)、(VRSM‰)、(VRM‰)、および(VRSH‰)は、前記第二マップにおける補正割合PA(VRS‰)、(VRSM‰)、(VRM‰)、および(VRSH‰)、とそれぞれ同じ値で構成されている。
 これにより、田植機1においては、最高速設定ダイヤル69の回動操作により田植機1の最高速度を設定するときの操作感と、最高速設定ダイヤル69の回動操作により上記固定車速を調整するときの操作感とが、近似するように構成されている。
 なお、図8の二点鎖線は、前記第三マップを仮に前記第二マップ上で表したときの状態を示している。
It should be noted that the correction ratios PB (VRS ‰), (VRSM ‰), (VRM ‰), and (VRSH ‰) in the third map are the correction ratios PA (VRS ‰), (VRSM ‰) in the second map, (VRM ‰) and (VRSH ‰) are configured with the same values.
Thereby, in the rice transplanter 1, the operation feeling when the maximum speed of the rice transplanter 1 is set by the turning operation of the maximum speed setting dial 69 and the fixed vehicle speed is adjusted by the turning operation of the maximum speed setting dial 69. The operation feeling at the time is configured to approximate.
In addition, the dashed-two dotted line of FIG. 8 has shown the state when said 3rd map is represented on said 2nd map.
 なお、本実施形態では、モータ71によりエンジン14の回転数およびHST21aの変速比を変更するように構成したが、これに限定されず、モータ71によりエンジン14の回転数またはHST21aの変速比を変更するように構成してもよい。また、モータ71によりエンジン14の回転数およびHST21aの変速比を変更するように構成する場合、モータ71を一つのモータで構成してもよいし、エンジン14の回転数を変更する第一モータとHST21aの変速比を変更する第二モータとで構成してもよい。 In this embodiment, the motor 71 is configured to change the rotational speed of the engine 14 and the gear ratio of the HST 21a. However, the present invention is not limited to this, and the motor 71 changes the rotational speed of the engine 14 or the gear ratio of the HST 21a. You may comprise. Further, when the motor 71 is configured to change the rotational speed of the engine 14 and the gear ratio of the HST 21a, the motor 71 may be configured by one motor, or the first motor that changes the rotational speed of the engine 14 and You may comprise with the 2nd motor which changes the gear ratio of HST21a.
(車速固定の解除)
 以下では、田植機1の車速Vが速度固定レバー70によりVx3に固定された場合において、速度固定レバー70の切り換え操作やブレーキペダル68の踏み込み操作以外の操作により車速固定を解除するための構成(i)~(ii)について説明する。
(Release the vehicle speed)
In the following, when the vehicle speed V of the rice transplanter 1 is fixed to Vx3 by the speed fixing lever 70, the vehicle speed fixing is released by an operation other than the switching operation of the speed fixing lever 70 or the depression of the brake pedal 68 ( i) to (ii) will be described.
 (i)車速固定の解除が、最高速設定ダイヤル69の回動操作により行われる構成について説明する。
 制御装置80は、速度固定レバー70の操作により車速VがVx3に固定されたときに、前記第三マップにおいて、上記補正割合PBに関して、所定のダイヤル下限閾値VRX(VRS<VRX<VRM)を設定する。
 図10に示すように、車速固定の解除は、最高速設定ダイヤル69が回動操作されて、最高速設定ダイヤル69の回動角Dが減少していく場合において、最高速設定ダイヤル69の回動角Dに対応する補正割合PBが、上記ダイヤル下限閾値VRX未満の値になるときに行われる。
 すなわち、車速固定の解除は、最高速設定ダイヤル69が回動操作されて、これに伴い固定車速Vx3が低速側に変更される場合において、変更後の車速が、上記ダイヤル下限閾値VRXに対応する車速である速度下限閾値(Vx0)未満の値になるときに行われる(図10参照)。車速固定の解除が行われると、田植機1は、変速ペダル67の踏み込み操作により車速を制御可能な状態に戻る。なお、速度下限閾値(ダイヤル下限閾値)は、実験等により適宜決定される値である。また、車速が速度下限閾値未満の値になったか否かは、例えば、制御装置80がモータ71の回動角より判断する。
 このように構成することで、低速域で速度固定レバー70による車速固定が行われ、さらに最高速設定ダイヤル69が低速側(車速が遅くなる側)に回動操作された場合に、モータ71の調整目標回動角がγ2以下となり、田植機1が走行停止した状態で速度固定レバー70による車速固定状態が維持されることを防ぐことが可能である。
(I) A configuration in which the release of the fixed vehicle speed is performed by turning the maximum speed setting dial 69 will be described.
When the vehicle speed V is fixed to Vx3 by operating the speed fixing lever 70, the control device 80 sets a predetermined dial lower limit threshold value VRX (VRS <VRX <VRM) for the correction ratio PB in the third map. To do.
As shown in FIG. 10, the release of the vehicle speed is fixed when the maximum speed setting dial 69 is rotated and the rotation angle D of the maximum speed setting dial 69 is decreased. This is performed when the correction ratio PB corresponding to the moving angle D becomes a value less than the dial lower limit threshold VRX.
That is, when the maximum speed setting dial 69 is turned and the fixed vehicle speed Vx3 is changed to the low speed side, the changed vehicle speed corresponds to the dial lower limit threshold value VRX. This is performed when the vehicle speed is less than the lower speed threshold (Vx0) (see FIG. 10). When the release of the fixed vehicle speed is performed, the rice transplanter 1 returns to a state in which the vehicle speed can be controlled by the depression operation of the shift pedal 67. The speed lower limit threshold (dial lower limit threshold) is a value that is appropriately determined by experiments or the like. Further, for example, the control device 80 determines whether or not the vehicle speed has become a value less than the speed lower limit threshold based on the rotation angle of the motor 71.
With this configuration, when the vehicle speed is fixed by the speed fixing lever 70 in the low speed range and the maximum speed setting dial 69 is rotated to the low speed side (the vehicle speed decreases side), the motor 71 It is possible to prevent the vehicle speed fixed state by the speed fixing lever 70 from being maintained in a state where the adjustment target rotation angle is γ2 or less and the rice transplanter 1 is stopped traveling.
 (ii)車速固定の解除が、変速ペダル67の踏み込み操作により行われる構成について二通り説明する。
(第一の構成)
 上記したように、制御装置80には、固定車速Vx3に対応する変速ペダル67の固定記憶位置βxに係る情報が記憶されている。
 制御装置80は、速度固定レバー70の操作により車速VがVx3に固定されているときに、前記第三マップにおいて、固定解除下限値βx1を設定する。固定解除下限値βx1は、図11(a)に示すように、変速ペダル67の踏み込み操作が解除されたときの変速ペダル67の踏み込み量β1よりも大きく、固定車速Vx3に対応する固定記憶位置βxよりも小さい値(β1<βx1<βx)であり、実験等により適宜決定される値である。
 図11(a)に示すように、変速ペダル67の踏み込み操作による車速固定の解除は、速度固定レバー70が固定位置にある状態で、変速ペダル67の踏み込み量βが、上記固定解除下限値βx1(β1<βx1<βx)未満まで減少して、その後、前記固定解除下限値βx1まで増加したときに行われる。
 このように構成した場合、車速固定の解除時において、田植機1の車速Vが固定車速Vx3よりも遅くなる。
(第二の構成)
 制御装置80は、速度固定レバー70の操作により車速VがVx3に固定されたときに、前記第三マップにおいて、固定解除上限値βx2を設定する。固定解除上限値βx2は、図11(b)に示すように、固定車速Vx3に対応する固定記憶位置βxよりも大きい値(βx<βx2)であり、実験等により適宜決定される値である。
 図11(b)に示すように、変速ペダル67の踏み込み操作による車速固定の解除は、速度固定レバー70が固定位置にある状態で、変速ペダル67の踏み込み量βが、固定解除上限値βx2(βx<βx2)まで増加したときに行われる。
 このように構成した場合、車速固定の解除時において、田植機1の車速Vが固定車速Vx3よりも速くなる。
 上記第一の構成による車速固定の解除は、変速ペダル67の踏み込み量βが、上記固定解除上限値βx2未満の状態で、上記固定解除下限値βx1未満まで減少して、そして固定解除下限値βx1まで増加したときに行われる(図11(a)参照)。
 これに対し、上記第二の構成による車速固定の解除は、変速ペダル67の踏み込み量βが、上記固定解除下限値βx1以上の状態で、上記固定解除上限値βx2まで増加したときに行われる(図11(b)参照)。
 これにより、変速ペダル67の踏み込み量を適宜調整することで、変速ペダル67の踏み込み操作による車速固定の解除時において、田植機1の車速Vを、固定車速Vx3よりも遅くするか(上記第一の構成参照)、または速くするか(上記第二の構成参照)、を選択可能となる。
(Ii) Two configurations will be described in which the release of the fixed vehicle speed is performed by depressing the shift pedal 67.
(First configuration)
As described above, the control device 80 stores information related to the fixed storage position βx of the shift pedal 67 corresponding to the fixed vehicle speed Vx3.
When the vehicle speed V is fixed at Vx3 by the operation of the speed fixing lever 70, the control device 80 sets the fixed release lower limit βx1 in the third map. As shown in FIG. 11A, the fixed release lower limit value βx1 is larger than the depression amount β1 of the shift pedal 67 when the depression operation of the shift pedal 67 is released, and the fixed storage position βx corresponding to the fixed vehicle speed Vx3. The value is smaller than (β1 <βx1 <βx), and is a value determined as appropriate by experiments or the like.
As shown in FIG. 11A, the release of the vehicle speed fixed by the operation of depressing the shift pedal 67 is performed when the depressing amount β of the shift pedal 67 is the fixed release lower limit βx1 in a state where the speed fixing lever 70 is in the fixed position. This is performed when the value decreases to less than (β1 <βx1 <βx) and then increases to the fixed release lower limit βx1.
When configured in this manner, the vehicle speed V of the rice transplanter 1 becomes slower than the fixed vehicle speed Vx3 when the vehicle speed fixation is released.
(Second configuration)
When the vehicle speed V is fixed to Vx3 by the operation of the speed fixing lever 70, the control device 80 sets the fixed release upper limit βx2 in the third map. As shown in FIG. 11B, the fixed release upper limit βx2 is a value (βx <βx2) larger than the fixed storage position βx corresponding to the fixed vehicle speed Vx3, and is a value that is appropriately determined by experiments or the like.
As shown in FIG. 11B, the release of the vehicle speed fixed by the operation of depressing the shift pedal 67 is performed when the depressing amount β of the shift pedal 67 is the fixed release upper limit βx2 ( Performed when βx <βx2).
When configured in this manner, the vehicle speed V of the rice transplanter 1 becomes faster than the fixed vehicle speed Vx3 when the vehicle speed fixation is released.
The vehicle speed fixed release according to the first configuration is such that the depression amount β of the speed change pedal 67 decreases to less than the fixed release lower limit value βx1 in a state where the depression amount β is less than the fixed release upper limit value βx2, and the fixed release lower limit value βx1 (See FIG. 11A).
On the other hand, the release of the vehicle speed fixation by the second configuration is performed when the depression amount β of the speed change pedal 67 increases to the fixation release upper limit value βx2 in a state of being equal to or larger than the fixation release lower limit value βx1 ( (Refer FIG.11 (b)).
Accordingly, by appropriately adjusting the depression amount of the shift pedal 67, when the vehicle speed fixed is released by the depression operation of the shift pedal 67, the vehicle speed V of the rice transplanter 1 is made slower than the fixed vehicle speed Vx3 (the first vehicle described above) It is possible to select whether to speed up (see the second configuration).
 なお、上記(ii)に関して、速度固定レバー70の操作により車速VがVx3に固定されている状態で、最高速設定ダイヤル69の回動操作により固定車速Vx3を調整(変更)する場合、最高速設定ダイヤル69の回動角に応じて上記固定解除下限値βx1、および固定解除上限値βx2、が変化するように構成してもよい。
 詳細には、最高速設定ダイヤル69が高速側(車速が速くなる側)に回動される場合、制御装置80は、上記固定解除下限値βx1、および固定解除上限値βx2g、をより大きい値に変更する。
 また、最高速設定ダイヤル69が低速側(車速が遅くなる側)に回動される場合、制御装置80は、上記固定解除下限値βx1、および固定解除上限値βx2g、をより小さい値に変更する。
 このように構成することで、上記(ii)に示すように変速ペダル67の踏み込み操作により車速固定を解除するとき、田植機1が急加速・急減速することを防ぐことが可能である。
Regarding (ii) above, when the fixed vehicle speed Vx3 is adjusted (changed) by rotating the maximum speed setting dial 69 while the vehicle speed V is fixed to Vx3 by the operation of the speed fixing lever 70, the maximum speed The fixed release lower limit βx1 and the fixed release upper limit βx2 may be changed according to the rotation angle of the setting dial 69.
Specifically, when the maximum speed setting dial 69 is turned to the high speed side (the vehicle speed increases), the control device 80 increases the fixed release lower limit value βx1 and the fixed release upper limit value βx2g to larger values. change.
Further, when the maximum speed setting dial 69 is rotated to the low speed side (the vehicle speed decreases), the control device 80 changes the fixed release lower limit value βx1 and the fixed release upper limit value βx2g to smaller values. .
With this configuration, it is possible to prevent the rice transplanter 1 from suddenly accelerating or decelerating when the vehicle speed is released by depressing the shift pedal 67 as shown in (ii) above.
 以上のように、田植機1は、
 エンジン14の回転数、および/またはHST21aの変速比を変更するモータ71と、
 モータ71の回動角を変更するための操作具である変速ペダル67と、
 モータ71および変速ペダル67に接続され、変速ペダル67の踏み込み量に基づいてモータ71によりエンジン14の回転数およびHST21aの変速比のうちの少なくとも一方を変更して、車速を変更する制御装置80と、
 制御装置80に接続され、変速ペダル67が限界まで踏み込まれたときの車速である最高速度を変更するための操作具である最高速設定ダイヤル69と、を備え、
 制御装置80は、
 変速ペダル67の踏み込み量に基づいてモータ71の目標回動角を算出して、モータ71の回動角が前記目標回動角になるようにモータ71を回動することにより、車速をモータ71の目標回動角に対応した大きさに変更し、
 変速ペダル67が限界まで踏み込まれたときのモータ71の目標回動角を、最高速設定ダイヤル69の回動角に対応した大きさに変更することにより、前記最高速度を最高速設定ダイヤル69の回動角に対応した大きさに変更する。
As described above, the rice transplanter 1
A motor 71 that changes the rotational speed of the engine 14 and / or the gear ratio of the HST 21a;
A shift pedal 67 which is an operating tool for changing the rotation angle of the motor 71;
A control device 80 that is connected to the motor 71 and the speed change pedal 67, and that changes at least one of the rotational speed of the engine 14 and the speed ratio of the HST 21a by the motor 71 based on the depression amount of the speed change pedal 67 to change the vehicle speed; ,
A maximum speed setting dial 69 that is connected to the control device 80 and is an operating tool for changing the maximum speed that is the vehicle speed when the shift pedal 67 is depressed to the limit;
The control device 80
The target rotation angle of the motor 71 is calculated based on the depression amount of the shift pedal 67, and the motor 71 is rotated so that the rotation angle of the motor 71 becomes the target rotation angle. Change the size to correspond to the target rotation angle of
By changing the target rotation angle of the motor 71 when the shift pedal 67 is depressed to the limit to a size corresponding to the rotation angle of the maximum speed setting dial 69, the maximum speed is set to the maximum speed setting dial 69. Change the size to correspond to the rotation angle.
 これより、移動・作業・トラックから積み降ろし・納屋入れ等、シーンに応じて最高速設定ダイヤル69で車速(最高速度)設定すれば、変速ペダル67をフルストロークで踏み込む(限界まで踏み込む)ことで、田植機1を所望の車速で走行させることが可能である。従って、変速ペダル67の微量な操作が不要となり、田植機1を所望の車速で走行させることが容易に実現可能である。
 また、圃場への出入り・トラックからの積み降ろし等、オペレータの姿勢が不安定で、これによりオペレータが誤操作を行った場合でも、最高速設定ダイヤル69で設定した最高速度までしか変速されないため、安定性の点で有利である。
From this, if you set the vehicle speed (maximum speed) with the maximum speed setting dial 69 according to the scene, such as moving, working, loading and unloading from the truck, barn, etc., you can depress the shift pedal 67 with full stroke (depress to the limit) The rice transplanter 1 can be driven at a desired vehicle speed. Therefore, a very small amount of operation of the shift pedal 67 is not required, and it is possible to easily implement the rice transplanter 1 at a desired vehicle speed.
In addition, even if the operator's posture is unstable, such as entering or leaving the field or loading / unloading from a truck, even if the operator performs an incorrect operation, the speed is changed only up to the maximum speed set by the maximum speed setting dial 69, so that it is stable. It is advantageous in terms of sex.
 また、田植機1においては、
 最高速設定ダイヤル69は、回動操作可能であり、その回動範囲内にて、回動角の変化量に対応して前記最高速度を変更する可変域と、回動角の変化に対して前記最高速度を一定の値に維持する定速域と、を有する。
In the rice transplanter 1,
The maximum speed setting dial 69 can be rotated, and within the rotation range, the variable range for changing the maximum speed corresponding to the amount of change in the rotation angle, and the change in the rotation angle. A constant speed region that maintains the maximum speed at a constant value.
 これにより、最高速設定ダイヤル69を回動して最高速度を設定する際に、最高速設定ダイヤル69を前記定速域内に回動すれば、最高速度が前記定速域に対応する一定の値に設定されるので、最高速度の設定を容易に行うことが可能である。 Thus, when the maximum speed setting dial 69 is rotated to set the maximum speed, the maximum speed is a constant value corresponding to the constant speed range if the maximum speed setting dial 69 is rotated within the constant speed range. Therefore, it is possible to easily set the maximum speed.
 また、田植機1においては、
 前記定速域は、最低速度域と、最高速度域と、前記最低速度域および最高速度域の間に設けられる疎植推奨速度域と、を有し、
 前記可変域は、前記最低速度域および疎植推奨速度域の間に設けられる第一可変域と、前記疎植推奨速度域および最高速度の間に設けられる第二可変域と、を有する。
In the rice transplanter 1,
The constant speed range has a minimum speed range, a maximum speed range, and a sparse recommended speed range provided between the minimum speed range and the maximum speed range,
The variable range includes a first variable range provided between the minimum speed range and the recommended sparse planting speed range, and a second variable range provided between the recommended sparse planting speed range and the maximum speed.
 これにより、最高速設定ダイヤル69を回動して最高速度を設定する際に、前記最低速度域に対応する最高速度Vmax1、前記疎植推奨速度域に対応する最高速度Vmax2、および前記最高速度域に対応する最高速度Vmax3、の設定を容易に行うことが可能である。
 また、田植機1の最高速度を、疎植作業に最適な最高速度Vmax2に容易に設定可能なので、疎植作業をする際に植付精度を向上させることが可能である。
 また、疎植等の推薦車速の設定領域を設けることで、植え付けロータのシャクリを未然に防ぐことが可能である。
Accordingly, when the maximum speed setting dial 69 is rotated to set the maximum speed, the maximum speed Vmax1 corresponding to the minimum speed range, the maximum speed Vmax2 corresponding to the recommended sparse planting speed range, and the maximum speed range It is possible to easily set the maximum speed Vmax3 corresponding to.
In addition, since the maximum speed of the rice transplanter 1 can be easily set to the maximum speed Vmax2 that is optimal for sparse planting work, it is possible to improve planting accuracy when performing sparse planting work.
Further, by providing a recommended vehicle speed setting area such as sparse planting, it is possible to prevent the planting rotor from being crushed.
 また、田植機1においては、
 エンジン14の回転数、および/またはHST21aの変速比を変更するモータ71と、
 モータ71の回動角を変更するための操作具である変速ペダル67と、
 モータ71および変速ペダル67に接続され、変速ペダル67の踏み込み量に基づいてモータ71によりエンジン14の回転数およびHST21aの変速比のうちの少なくとも一方を変更して、車速を変更する制御装置80と、
 制御装置80に接続され、変速ペダル67が限界まで踏み込まれたときの車速である最高速度を変更するための操作具である最高速設定ダイヤル69と、
 制御装置80に接続され、車速を、変速ペダル67の踏み込み操作に関係なく一定値に固定するための操作具である速度固定レバー70と、を備え、
 制御装置80は、速度固定レバー70による車速固定が行われている場合で、すなわち速度固定レバー70が前記固定位置にあり、変速ペダル67の踏み込み操作によってはモータ71が回動しない場合で、最高速設定ダイヤル69が回動操作されるときに、最高速設定ダイヤル69の回動角に基づいてモータ71の回動角を変更することにより、速度固定レバー70により固定された車速(固定車速Vx3)を最高速設定ダイヤル69の回動角に対応した大きさに変更する。
In the rice transplanter 1,
A motor 71 that changes the rotational speed of the engine 14 and / or the gear ratio of the HST 21a;
A shift pedal 67 which is an operating tool for changing the rotation angle of the motor 71;
A control device 80 that is connected to the motor 71 and the speed change pedal 67, and that changes at least one of the rotational speed of the engine 14 and the speed ratio of the HST 21a by the motor 71 based on the depression amount of the speed change pedal 67 to change the vehicle speed; ,
A maximum speed setting dial 69 that is connected to the control device 80 and is an operating tool for changing the maximum speed that is the vehicle speed when the shift pedal 67 is depressed to the limit;
A speed fixing lever 70 which is connected to the control device 80 and is an operating tool for fixing the vehicle speed to a constant value regardless of the depression operation of the shift pedal 67;
The control device 80 is used when the vehicle speed is fixed by the speed fixing lever 70, that is, when the speed fixing lever 70 is at the fixed position and the motor 71 does not rotate by the depression operation of the shift pedal 67. When the high speed setting dial 69 is rotated, the rotation angle of the motor 71 is changed based on the rotation angle of the maximum speed setting dial 69, thereby fixing the vehicle speed (fixed vehicle speed Vx3) by the speed fixing lever 70. ) Is changed to a size corresponding to the rotation angle of the maximum speed setting dial 69.
 これより、移動・作業・トラックから積み降ろし・納屋入れ等、シーンに応じて最高速設定ダイヤル69で車速(最高速度)設定すれば、変速ペダル67をフルストロークで踏み込む(限界まで踏み込む)ことで、田植機1を所望の車速で走行させることが可能である。従って、変速ペダル67の微量な操作が不要となり、田植機1を所望の車速で走行させることが容易に実現可能である。
 また、速度固定レバー70により固定された車速を、速度固定レバー70が固定位置にある状態で、最高速設定ダイヤル69の回動操作により増減調整可能である。したがって、速度固定レバー70により固定された車速の増減調整を円滑に行うことが可能となる。
 なお、従来、田植機の車速が速度固定手段により一定値(固定車速)に固定された場合で、オペレータが前記固定車速を変更するとき、オペレータは一旦速度固定手段による車速固定の解除を行い、そして田植機の車速を、変速ペダルの踏み込み操作により所望の車速になるように増減調整した後に、再度速度固定手段により車速固定をやり直さなければならなかった。これにより煩雑な作業を要することとなっていた。
 これに対し、田植機1は、固定車速Vx3を最高速設定ダイヤル69の回動操作のみで変更できる。したがって、固定車速Vx3の増減調整を円滑に行うことが可能となる。
From this, if you set the vehicle speed (maximum speed) with the maximum speed setting dial 69 according to the scene, such as moving, working, loading and unloading from the truck, barn, etc., you can depress the shift pedal 67 with full stroke (depress to the limit) The rice transplanter 1 can be driven at a desired vehicle speed. Therefore, a very small amount of operation of the shift pedal 67 is not required, and it is possible to easily implement the rice transplanter 1 at a desired vehicle speed.
Further, the vehicle speed fixed by the speed fixing lever 70 can be increased or decreased by rotating the maximum speed setting dial 69 while the speed fixing lever 70 is at the fixed position. Accordingly, the vehicle speed fixed by the speed fixing lever 70 can be adjusted smoothly.
Conventionally, when the vehicle speed of the rice transplanter is fixed to a constant value (fixed vehicle speed) by the speed fixing means, when the operator changes the fixed vehicle speed, the operator temporarily releases the vehicle speed fixed by the speed fixing means, Then, after the vehicle speed of the rice transplanter has been adjusted to increase or decrease to a desired vehicle speed by depressing the shift pedal, the vehicle speed must be fixed again by the speed fixing means. This requires complicated work.
On the other hand, the rice transplanter 1 can change the fixed vehicle speed Vx3 only by rotating the maximum speed setting dial 69. Therefore, the increase / decrease adjustment of the fixed vehicle speed Vx3 can be performed smoothly.
 また、田植機1においては、
 制御装置80は、速度固定レバー70による車速固定が行われている場合で、最高速設定ダイヤル69による変更後の車速が所定の速度下限閾値Vx0未満の値になるときに、速度固定レバー70による車速固定を解除する。
In the rice transplanter 1,
When the vehicle speed is fixed by the speed fixing lever 70 and the vehicle speed after the change by the maximum speed setting dial 69 is less than the predetermined speed lower limit threshold Vx0, the control device 80 uses the speed fixing lever 70. Release the vehicle speed lock.
 これにより、低速域で速度固定レバー70による車速固定が行われ、さらに最高速設定ダイヤル69が低速側(車速が遅くなる側)に回動操作された場合に、モータ71の調整目標回動角がγ2以下となり、田植機1が走行停止した状態で速度固定レバー70による車速固定状態が維持されることを防ぐことが可能である。 As a result, the vehicle speed is fixed by the speed fixing lever 70 in the low speed range, and the target rotation angle of the motor 71 is adjusted when the maximum speed setting dial 69 is rotated to the low speed side (the vehicle speed decreases). Becomes γ2 or less, and it is possible to prevent the vehicle speed fixed state by the speed fixing lever 70 from being maintained while the rice transplanter 1 has stopped traveling.
 また、田植機1においては、
 制御装置80は、
 速度固定レバー70による車速固定が行われている場合で、変速ペダル67の踏み込み量が、所定の固定解除下限値βx1未満まで減少して、その後、前記固定解除下限値βx1まで増加したときには、速度固定レバー70による車速固定を解除し、
 速度固定レバー70による車速固定が行われている場合で、前記変速ペダル67の踏み込み量が、所定の固定解除上限値βx2まで増加したときには、速度固定レバー70による車速固定を解除し、
 前記固定解除下限値βx1は、速度固定レバー70が操作されて車速固定が行われた時の変速ペダル67の踏み込み量である固定記憶位置βxよりも小さい値であり、
 前記固定解除上限値βx2は、前記固定記憶位置βxよりも大きい値である。
In the rice transplanter 1,
The control device 80
When the vehicle speed is fixed by the speed fixing lever 70, when the amount of depression of the speed change pedal 67 decreases to less than a predetermined fixed release lower limit value βx1, and then increases to the fixed release lower limit value βx1, Release the vehicle speed fixed by the fixing lever 70,
When the vehicle speed is fixed by the speed fixing lever 70 and the amount of depression of the shift pedal 67 increases to the predetermined fixing release upper limit βx2, the vehicle speed fixing by the speed fixing lever 70 is released,
The unlocking lower limit βx1 is a value smaller than the fixed storage position βx, which is the depression amount of the shift pedal 67 when the speed fixing lever 70 is operated and the vehicle speed is fixed.
The fixed release upper limit βx2 is a value larger than the fixed storage position βx.
 これにより、オペレータは変速ペダル67の踏み込み操作により車速固定を解除したときに、解除時の車速を遅くするか、または速くするかを選択可能となる。 This allows the operator to select whether to slow down or speed up the vehicle speed when the vehicle speed is released by depressing the shift pedal 67.
 また、田植機1においては、
 制御装置80は、速度固定レバー70による車速固定が行われている場合で、最高速設定ダイヤル69が回動されるとき、最高速設定ダイヤル69の回動角に応じて前記固定解除下限値βx1、および固定解除上限値βx2を変更する。
In the rice transplanter 1,
In the case where the vehicle speed is fixed by the speed fixing lever 70 and the maximum speed setting dial 69 is rotated, the control device 80 determines the fixed release lower limit βx1 according to the rotation angle of the maximum speed setting dial 69. , And the fixed release upper limit βx2.
 これにより、変速ペダル67の踏み込み操作により車速固定が解除されたときに、田植機1が急加速・急減速することを防ぐことが可能である。 This makes it possible to prevent the rice transplanter 1 from suddenly accelerating or decelerating when the fixed vehicle speed is released by depressing the shift pedal 67.
 以下では、操作性がよく、走行状況や作業状況に応じて、エンジンの回転数及び無段変速装置の変速比を適切に変更することができる田植機について説明する。 Hereinafter, a rice transplanter that has good operability and can appropriately change the engine speed and the gear ratio of the continuously variable transmission according to the driving situation and working situation will be described.
 従来、エンジンからの動力を、無段変速装置で変速して走行部及び植付部に伝達する構成の田植機は公知となっている。このような田植機においては、アクセルレバーを操作してエンジンの回転数を設定した後に、変速ペダルを操作して無段変速装置の変速比を変更することで、走行速度(作業時には作業速度)の変更を行う構成とされる。 Conventionally, a rice transplanter having a configuration in which power from an engine is shifted by a continuously variable transmission and transmitted to a traveling unit and a planting unit is known. In such a rice transplanter, after operating the accelerator lever and setting the engine speed, operating the shift pedal to change the gear ratio of the continuously variable transmission, the travel speed (work speed during work) It is set as the structure which changes.
 前記従来の田植機においては、作業者がアクセルレバー及び変速ペダルを別々に操作して、エンジンの回転数及び無段変速装置の変速比を変更する構成であるため、操作が煩わしいという問題があった。また、作業者が、田植機の走行状況(例えば、圃場に出入りする状況)や作業状況(例えば、泥濘で植付作業を行う状況)に応じて、エンジンの回転数と無段変速装置の変速比を適切に変更することができないという問題もあった。 The conventional rice transplanter has a configuration in which an operator operates the accelerator lever and the shift pedal separately to change the engine speed and the transmission gear ratio of the continuously variable transmission. It was. Further, the speed of the engine and the speed of the continuously variable transmission can be changed according to the traveling situation of the rice transplanter (for example, the situation of entering and exiting the field) and the working situation (for example, the situation of planting work in mud). There was also a problem that the ratio could not be changed appropriately.
 そこで、操作性がよく、走行状況や作業状況に応じて、エンジンの回転数及び無段変速装置の変速比を適切に変更することができる田植機を提供する。 Therefore, there is provided a rice transplanter that has good operability and can appropriately change the engine speed and the transmission gear ratio of the continuously variable transmission according to the driving situation and working situation.
 田植機は、エンジンと、前記エンジンの回転数を変更する第一アクチュエータと、前記エンジンからの動力を変速する無段変速装置と、前記無段変速装置の変速比を変更する第二アクチュエータと、走行速度を変更操作する変速操作具と、前記変速操作具の操作量を検出する操作量検出手段と、前記操作量検出手段の検出値に基づいて、前記第一アクチュエータ及び前記第二アクチュエータを制御する制御装置と、を備える。 The rice transplanter includes an engine, a first actuator that changes a rotational speed of the engine, a continuously variable transmission that changes power from the engine, a second actuator that changes a transmission ratio of the continuously variable transmission, The first actuator and the second actuator are controlled based on a detected value of the speed change operation tool, an operation amount detection means for detecting an operation amount of the speed change operation tool, and an operation amount detection means. A control device.
 これにより、田植機は、操作量検出手段の検出値に基づいて、第一アクチュエータ及び前記第二アクチュエータを制御することで、田植機の走行速度や作業速度を変更することができる。従って、作業者が変速操作具のみで田植機の走行速度や作業速度を変更することができ、操作性が向上する。また、田植機の走行状況や作業状況に応じて、エンジンの回転数及び無段変速装置の変速比を適切に変更することができる。 Thereby, the rice transplanter can change the traveling speed and work speed of the rice transplanter by controlling the first actuator and the second actuator based on the detection value of the operation amount detection means. Therefore, the operator can change the traveling speed and work speed of the rice transplanter with only the speed change operation tool, and the operability is improved. Further, the engine speed and the gear ratio of the continuously variable transmission can be appropriately changed in accordance with the traveling situation and work situation of the rice transplanter.
 また、田植機においては、前記制御装置には、前記エンジンの燃費効率に係るマップ、前記無段変速装置の変速効率に係るマップ、前記エンジンの排ガス排出率に係るマップ及び前記エンジンの負荷率に係るマップ、のうち少なくとも一つが記憶され、前記制御装置は、該記憶されたマップ及び前記操作量検出手段の検出値に基づいて、前記第一アクチュエータ及び前記第二アクチュエータを制御する。 In the rice transplanter, the control device includes a map related to the fuel efficiency of the engine, a map related to the gear shift efficiency of the continuously variable transmission, a map related to the exhaust gas emission rate of the engine, and a load factor of the engine. At least one of the maps is stored, and the control device controls the first actuator and the second actuator based on the stored map and the detection value of the operation amount detection means.
 これにより、前記制御装置は、燃費効率に係るマップに基づいて第一アクチュエータ及び第二アクチュエータを制御することで、燃費を向上させることができる。また、変速効率に係るマップに基づいて第一アクチュエータ及び第二アクチュエータを制御することで、全速度域で変速効率を向上させることができる。また、排ガス排出率に係るマップに基づいて第一アクチュエータ及び第二アクチュエータを制御することで、排ガスを低減することができる。また、エンジンの負荷率に係るマップに基づいて第一アクチュエータ及び第二アクチュエータを制御することで、傾斜等でエンジンが過負荷となった場合でも確実に走行することができる。 Thereby, the control device can improve the fuel efficiency by controlling the first actuator and the second actuator based on the map related to the fuel efficiency. Further, by controlling the first actuator and the second actuator based on the map related to the shift efficiency, the shift efficiency can be improved in the entire speed range. Further, the exhaust gas can be reduced by controlling the first actuator and the second actuator based on the map related to the exhaust gas emission rate. Further, by controlling the first actuator and the second actuator based on the map relating to the load factor of the engine, it is possible to travel reliably even when the engine is overloaded due to inclination or the like.
 また、田植機においては、前記エンジンから分岐してPTO出力軸に動力が伝達される。 In the rice transplanter, power is transmitted from the engine to the PTO output shaft.
 これにより、田植機は、エンジンの回転数を変更することで、PTO出力軸の回転数を変更することができる。従って、増減速ギヤや変速機構が不要となり、コストを低減することができる。 This allows the rice transplanter to change the rotational speed of the PTO output shaft by changing the rotational speed of the engine. Therefore, the speed increasing / decreasing gear and the speed change mechanism are not required, and the cost can be reduced.
 以下では、田植機200の全体構成について説明する。なお、田植機200は、八条植えの田植機とするが、これは特に限定するものではなく、例えば六条植えや十条植えの田植機であってもよい。 Hereinafter, the overall configuration of the rice transplanter 200 will be described. In addition, although the rice transplanter 200 is an eight-planted rice transplanter, this is not particularly limited, and for example, a six-row or ten-row planter may be used.
 図12に示すように、田植機200は、走行部210と植付部240とを有し、走行部210により走行しながら、植付部240により苗を圃場に植え付けることができるように構成される。植付部240は、走行部210の後方に配置されて、この走行部210の後部に昇降機構230を介して昇降可能に連結される。 As shown in FIG. 12, the rice transplanter 200 has a traveling unit 210 and a planting unit 240, and is configured so that seedlings can be planted in the field by the planting unit 240 while traveling by the traveling unit 210. The The planting unit 240 is disposed behind the traveling unit 210 and is connected to the rear portion of the traveling unit 210 via an elevating mechanism 230 so as to be movable up and down.
 昇降機構230は、走行部210と植付部240との間に設けられる。具体的には、トップリンク231とロワリンク232とが走行部210と植付部240との間に架設され、昇降用シリンダがロワリンク232と走行部210との間に連結される。そして、この昇降用シリンダの伸縮動作によって、植付部240が走行部210に対して上下方向に回動可能、即ち昇降可能とされる。 The elevating mechanism 230 is provided between the traveling unit 210 and the planting unit 240. Specifically, the top link 231 and the lower link 232 are installed between the traveling unit 210 and the planting unit 240, and the lifting cylinder is connected between the lower link 232 and the traveling unit 210. The planting part 240 can be rotated in the vertical direction with respect to the traveling part 210, that is, can be raised and lowered by the expansion and contraction operation of the lifting cylinder.
 走行部210においては、エンジン214が車体フレーム211の前部に設けられて、ボンネット215により被覆される。ミッションケース100が車体フレーム211の前部に支持されて、エンジン214の後方に配置される。フロントアクスルケース216が車体フレーム211の前部に支持され、前車輪212が当該フロントアクスルケース216の左右両側に取り付けられる。リヤアクスルケース217が車体フレーム211の後部に支持され、後車輪213が当該リヤアクスルケース217の左右両側に取り付けられる。 In the traveling unit 210, the engine 214 is provided at the front portion of the vehicle body frame 211 and is covered with a bonnet 215. The mission case 100 is supported by the front portion of the vehicle body frame 211 and is disposed behind the engine 214. The front axle case 216 is supported on the front portion of the vehicle body frame 211, and the front wheels 212 are attached to the left and right sides of the front axle case 216. The rear axle case 217 is supported on the rear portion of the vehicle body frame 211, and the rear wheels 213 are attached to the left and right sides of the rear axle case 217.
 走行部210においては、車体フレーム211の前後中途部に運転操作部220が設けられる。運転操作部220の前部には、ダッシュボード221が配置され、ダッシュボード221の左右中央部には、操向ハンドル224が配置され、操向ハンドル224の後方には、運転席222が配置され、運転席222の下方には、一部を乗降用ステップとする車体カバー223が配置される。運転操作部220においては、主変速レバー225や変速ペダル226を含む複数の操作具が配置され、これらの操作具によって、走行部210および植付部240に対して適宜の操作を行うことが可能とされる。 In the traveling unit 210, a driving operation unit 220 is provided in the middle of the vehicle body 211 in the front and rear direction. A dashboard 221 is disposed at the front of the driving operation unit 220, a steering handle 224 is disposed at the left and right center of the dashboard 221, and a driver seat 222 is disposed behind the steering handle 224. Below the driver's seat 222, a vehicle body cover 223, a part of which is a step for getting on and off, is disposed. In the driving operation unit 220, a plurality of operation tools including a main transmission lever 225 and a transmission pedal 226 are arranged, and it is possible to perform appropriate operations on the traveling unit 210 and the planting unit 240 with these operation tools. It is said.
 植付部240においては、植付ミッションケース247が植付フレーム249の下部中央付近に支持されて、伝動軸が当該植付ミッションケース247から左右両側方に延設される。四つの植付伝動ケース246がそれぞれ伝動軸から後方に延設されて、左右方向に適宜の間隔をとって配置される。 In the planting part 240, the planting mission case 247 is supported near the lower center of the planting frame 249, and the transmission shaft extends from the planting mission case 247 to the left and right sides. Four planting transmission cases 246 are respectively extended rearward from the transmission shaft, and are arranged at appropriate intervals in the left-right direction.
 ロータリケース244が各植付伝動ケース246の後端部左右両側に回動自在に支持される。ロータリケース244は植付条数と同数、即ち八つ備えられる。そして、二つの植付爪245が、ロータリケース244の回転支点を挟むように、このロータリケース244の長手方向両側にそれぞれ取り付けられる。 The rotary case 244 is rotatably supported on the left and right sides of the rear end of each planting transmission case 246. The number of rotary cases 244 is the same as the number of planting strips, that is, eight. The two planting claws 245 are attached to both sides of the rotary case 244 in the longitudinal direction so as to sandwich the rotation fulcrum of the rotary case 244.
 苗載台241が植付伝動ケース246の上方に前高後低の傾斜状態で配置される。苗載台241は、植付フレーム249の後部にガイドレールを介して左右方向に往復動可能に取り付けられる。苗載台241は、横送り機構により左右往復横送り可能とされる。 The seedling mounting table 241 is arranged above the planting transmission case 246 in an inclined state with a front height and a low height. The seedling mount 241 is attached to the rear portion of the planting frame 249 through a guide rail so as to be capable of reciprocating in the left-right direction. The seedling table 241 can be reciprocated horizontally by a lateral feed mechanism.
 複数条(8条)の苗マット載置部を備える苗載台241は、それぞれの下端側が一つのロータリケース244と対向するように、左右方向に並べられる。そして、苗マットが各苗載台241に載置されて、ロータリケース244の回転時に植付爪245により1株の苗が当該苗載台241上の苗マットから切り取り可能とされる。 The seedling mounting bases 241 provided with a plurality of (8) seedling mat mounting parts are arranged in the left-right direction so that the lower ends of the seedling mounting bases 241 face one rotary case 244. Then, the seedling mat is placed on each seedling mounting table 241, and one seedling can be cut from the seedling mat on the seedling mounting table 241 by the planting claws 245 when the rotary case 244 rotates.
 植付部240においては、圃場面を整地する複数のフロート242と、旋回後の荒れた枕地を整地する整地ロータ243と、がそれぞれ上下動自在となるように植付フレーム249に支持されている。また、圃場に線引きを行う左右の線引きマーカ248が植付フレーム249の左右両側に回動可能に支持される。 In the planting unit 240, a plurality of floats 242 that level the farm scene and a leveling rotor 243 that leveles the rough headland after turning are supported by the planting frame 249 so as to be movable up and down. Yes. In addition, left and right drawing markers 248 for drawing on the field are rotatably supported on the left and right sides of the planting frame 249.
 以下では、図13を用いて、ミッションケース100内部の動力伝達構造について説明する。 Hereinafter, the power transmission structure inside the mission case 100 will be described with reference to FIG.
 エンジン214の動力は、ミッションケース100内部に設けられた動力伝達機構を介して、前車輪212及び後車輪213、植付部240に伝達される。ミッションケース100内部には、油圧-機械式無段変速機(HMT:HydroMechanicalTransmission)110と、主クラッチ130と、主変速機構140と、制動装置150と、が搭載される。 The power of the engine 214 is transmitted to the front wheel 212, the rear wheel 213, and the planting part 240 via a power transmission mechanism provided inside the mission case 100. Inside the mission case 100, a hydraulic-mechanical continuously variable transmission (HMT) 110, a main clutch 130, a main transmission mechanism 140, and a braking device 150 are mounted.
 エンジン214は、調速装置214aにより燃料噴射量を調整して、動力(回転数)を増減させることが可能に構成される。エンジン214の動力は、Vベルトや、プロペラシャフトを介してミッションケース100の入力軸101に伝達される。 The engine 214 is configured to be able to increase or decrease the power (the number of revolutions) by adjusting the fuel injection amount by the speed governor 214a. The power of the engine 214 is transmitted to the input shaft 101 of the mission case 100 via a V-belt or a propeller shaft.
 HMT110は、無段変速装置であり、可変容量式の油圧ポンプ111と、固定容量式の油圧モータ112と、遊星歯車機構120と、を有する。ミッションケース100の入力軸101から入力された動力は、油圧ポンプ111を駆動し、この油圧ポンプ111からの圧油を油圧モータ112に送油して油圧モータ112のモータ軸113を回転させる。 The HMT 110 is a continuously variable transmission, and includes a variable displacement hydraulic pump 111, a fixed displacement hydraulic motor 112, and a planetary gear mechanism 120. The motive power input from the input shaft 101 of the mission case 100 drives the hydraulic pump 111 and feeds the hydraulic oil from the hydraulic pump 111 to the hydraulic motor 112 to rotate the motor shaft 113 of the hydraulic motor 112.
 油圧ポンプ111の可動斜板111aには、ミッションケース100に設けられた変速アーム100aが連動連結され、この変速アーム100aの回動操作により可動斜板111aの角度が変更可能に構成される。油圧ポンプ111のポンプ出力軸114には、伝動ギヤ115が固定されるとともに、その端部でHMT110のチャージポンプ271や昇降機構230のチャージポンプ272に動力が伝達される。 The movable swash plate 111a of the hydraulic pump 111 is linked to a transmission arm 100a provided in the transmission case 100, and the angle of the movable swash plate 111a can be changed by rotating the transmission arm 100a. A transmission gear 115 is fixed to the pump output shaft 114 of the hydraulic pump 111, and power is transmitted to the charge pump 271 of the HMT 110 and the charge pump 272 of the elevating mechanism 230 at the end thereof.
 油圧モータ112のモータ軸113には、サンギヤ121が軸支され、このサンギヤ121のボス部には遊転可能にプラネタリキャリア122が軸支されるとともに、サンギヤ121の回りに三つのプラネタリギヤ123・123・123が回転自在に設けられる。また、三つのプラネタリギヤ123・123・123にはリングギヤ124が外嵌されて、係合される。このように、サンギヤ121、プラネタリキャリア122、三つのプラネタリギヤ123・123・123、リングギヤ124によって遊星歯車機構120が形成され、HST系統の動力とギヤ系統の動力とが合成される。 A sun gear 121 is pivotally supported on the motor shaft 113 of the hydraulic motor 112, and a planetary carrier 122 is pivotally supported on a boss portion of the sun gear 121 so as to be freely rotatable, and three planetary gears 123 and 123 around the sun gear 121 are supported. -123 is rotatably provided. Further, a ring gear 124 is externally fitted to and engaged with the three planetary gears 123, 123, and 123. Thus, the planetary gear mechanism 120 is formed by the sun gear 121, the planetary carrier 122, the three planetary gears 123, 123, 123, and the ring gear 124, and the power of the HST system and the power of the gear system are combined.
 このようなHMT110においては、変速アーム100aを回動操作して、油圧ポンプ111の可動斜板111aの角度を変更することで、その角度に対応する圧油が油圧ポンプ111から送油される。そして、油圧ポンプ111からの送油量に応じて、油圧モータ112のモータ軸113の動力(回転速度)が変更されて、この動力に対応する速度でサンギヤ121が回転する。一方、油圧ポンプ111のポンプ出力軸114が回転することで、伝動ギヤ115及びプラネタリキャリア122が回転して、プラネタリギヤ123・123・123が回転する。 In such an HMT 110, by changing the angle of the movable swash plate 111a of the hydraulic pump 111 by rotating the transmission arm 100a, the hydraulic oil corresponding to the angle is sent from the hydraulic pump 111. The power (rotational speed) of the motor shaft 113 of the hydraulic motor 112 is changed according to the amount of oil fed from the hydraulic pump 111, and the sun gear 121 rotates at a speed corresponding to this power. On the other hand, when the pump output shaft 114 of the hydraulic pump 111 rotates, the transmission gear 115 and the planetary carrier 122 rotate, and the planetary gears 123, 123, 123 rotate.
 その後、遊星歯車機構120により、サンギヤ121の動力と、プラネタリギヤ123・123・123の動力と、が合成されて、合成出力軸102が変速アーム100aの位置に応じた速度で回転又は停止することとなる。このようにして、HMT110の変速比が変更される。なお、合成出力軸102の回転速度は、エンジン214の回転数及びHMT110の変速比に対応する速度となる。 Thereafter, the planetary gear mechanism 120 combines the power of the sun gear 121 and the power of the planetary gears 123, 123, 123 so that the combined output shaft 102 rotates or stops at a speed corresponding to the position of the speed change arm 100a. Become. In this way, the gear ratio of the HMT 110 is changed. The rotational speed of the combined output shaft 102 is a speed corresponding to the rotational speed of the engine 214 and the gear ratio of the HMT 110.
 主クラッチ130は、HMT110から合成出力軸102への動力の伝達の可否を切り替えるものである。主クラッチ130は、リングギヤ124と合成出力軸102との間に介設される。主クラッチ130においては、クラッチシフター131が摺動することで、リングギヤ124と合成出力軸102とが連結または、連結解除される。こうして、リングギヤ124の動力が合成出力軸102に伝達される。又は、伝達されない。 The main clutch 130 switches whether power can be transmitted from the HMT 110 to the composite output shaft 102. The main clutch 130 is interposed between the ring gear 124 and the composite output shaft 102. In the main clutch 130, the ring gear 124 and the composite output shaft 102 are connected or disconnected as the clutch shifter 131 slides. In this way, the power of the ring gear 124 is transmitted to the composite output shaft 102. Or it is not transmitted.
 主変速機構140は、HMT110からの動力を複数段に変速するものである。主変速機構140は、合成出力軸102に順次固設された後進側入力ギヤ141、前進ギヤ142及び移動ギヤ143と、カウンタ軸103に固設された後進側出力ギヤ144及び後進ギヤ145と、走行伝動軸104に摺動可能に設けられたスライダ146と、で主に構成される。前記後進側入力ギヤ141と、前記後進側出力ギヤ144とが噛合されて、合成出力軸102の動力が常時、カウンタ軸103に伝達される。 The main transmission mechanism 140 shifts the power from the HMT 110 in multiple stages. The main transmission mechanism 140 includes a reverse input gear 141, a forward gear 142, and a moving gear 143 that are sequentially fixed to the composite output shaft 102, a reverse output gear 144, and a reverse gear 145 that are fixed to the counter shaft 103, And a slider 146 slidably provided on the travel transmission shaft 104. The reverse input gear 141 and the reverse output gear 144 are engaged with each other, and the power of the combined output shaft 102 is always transmitted to the counter shaft 103.
 スライダ146には、小径ギヤ146a及び大径ギヤ146bが形成される。該スライダ146は、主変速レバー225の操作により走行伝動軸104に対して摺動して、小径ギヤ146aが前進ギヤ142と噛合することで前進に、大径ギヤ146bが移動ギヤ143と噛合することで移動に、大径ギヤ146bが後進ギヤ145と噛合することで後進に、小径ギヤ146a及び大径ギヤ146bが何れのギヤにも噛合しない場合に中立に、それぞれ切り替える構成とされる。 The slider 146 is formed with a small diameter gear 146a and a large diameter gear 146b. The slider 146 slides on the traveling transmission shaft 104 by the operation of the main transmission lever 225, and the small-diameter gear 146a meshes with the forward gear 142 to advance, and the large-diameter gear 146b meshes with the moving gear 143. Thus, the large-diameter gear 146b meshes with the reverse gear 145 to reversely move, and the small-diameter gear 146a and the large-diameter gear 146b switch to neutral when the gear does not mesh with any gear.
 制動装置150は、主変速機構140の出力軸となる走行伝動軸104の回動を制動するものである。制動装置150は、走行伝動軸104の一端に設けられる。制動装置150においては、ブレーキアームの回動操作により、当該制動装置150が作動可能に構成される。 The braking device 150 brakes the rotation of the traveling transmission shaft 104 that is the output shaft of the main transmission mechanism 140. The braking device 150 is provided at one end of the traveling transmission shaft 104. The braking device 150 is configured such that the braking device 150 can be operated by rotating the brake arm.
 走行伝動軸104の他端には、フロント側伝動ギヤ161が固設されて、該フロント側伝動ギヤ161は、差動装置162の入力ギヤと噛合される。そして、走行伝動軸104の動力が、差動装置162を介して左右のフロント出力軸105に伝達されて、左右のフロント出力軸105に伝達された動力は、フロントアクスルケース216内の伝達機構を介して、前車輪212に伝達される。なお、差動装置162は、フロントデフロック装置163によりロック可能とされる。 A front side transmission gear 161 is fixed to the other end of the traveling transmission shaft 104, and the front side transmission gear 161 meshes with an input gear of the differential device 162. The power of the travel transmission shaft 104 is transmitted to the left and right front output shafts 105 via the differential device 162, and the power transmitted to the left and right front output shafts 105 is transmitted to the transmission mechanism in the front axle case 216. Via the front wheel 212. The differential device 162 can be locked by the front differential lock device 163.
 走行伝動軸104の中途部には、リヤ側第一伝動ギヤ171が固設されて、該リヤ側第一伝動ギヤ171は、伝動軸106の一端に遊嵌されたリヤ側第二伝動ギヤ172と噛合され、該リヤ側第二伝動ギヤ172がリヤ側伝動軸107の一端に固設されたリヤ側第三伝動ギヤ173と噛合される。リヤ側伝動軸107の他端には、ベベルギヤ174が固設されて、このベベルギヤ174と噛合するベベルギヤ175が、リヤ出力軸108の一端に固設される。そして、走行伝動軸104の動力が、リヤ側伝動軸107を介して、リヤ出力軸108に伝達されて、リヤ側伝動軸107に伝達された動力は、リヤアクスルケース217内の伝達機構を介して、後車輪213に伝達される。 A rear side first transmission gear 171 is fixed in the middle of the travel transmission shaft 104, and the rear side first transmission gear 171 is loosely fitted to one end of the transmission shaft 106. The rear side second transmission gear 172 is meshed with a rear side third transmission gear 173 fixed to one end of the rear side transmission shaft 107. A bevel gear 174 is fixed to the other end of the rear transmission shaft 107, and a bevel gear 175 that meshes with the bevel gear 174 is fixed to one end of the rear output shaft 108. The power of the travel transmission shaft 104 is transmitted to the rear output shaft 108 via the rear side transmission shaft 107, and the power transmitted to the rear side transmission shaft 107 is transmitted via the transmission mechanism in the rear axle case 217. And transmitted to the rear wheel 213.
 合成出力軸102の一端には、PTO側第一伝動ギヤ181が固設されて、該PTO側第一伝動ギヤ181は、走行伝動軸104の他端に遊嵌されたPTO側第二伝動ギヤ182と噛合され、該PTO側第二伝動ギヤ182が伝動軸106の中途部に固設されたPTO側第三伝動ギヤ183と噛合される。伝動軸106の他端には、ベベルギヤ184が固設されて、このベベルギヤ184と噛合するベベルギヤ185が、PTO出力軸109の一端に固設される。そして、合成出力軸102の動力が、伝動軸106を介して、PTO出力軸109に伝達される。 A PTO-side first transmission gear 181 is fixed to one end of the composite output shaft 102, and the PTO-side first transmission gear 181 is loosely fitted to the other end of the traveling transmission shaft 104. 182, and the PTO side second transmission gear 182 is engaged with a PTO side third transmission gear 183 fixed in the middle of the transmission shaft 106. A bevel gear 184 is fixed to the other end of the transmission shaft 106, and a bevel gear 185 that meshes with the bevel gear 184 is fixed to one end of the PTO output shaft 109. Then, the power of the combined output shaft 102 is transmitted to the PTO output shaft 109 via the transmission shaft 106.
 PTO出力軸109に伝達された動力は、株間変速ケース251に内装される増減速ギヤや変速機構で変速されて、植付クラッチや植付ミッションケース247などを介して横送り機構及び各ロータリケース244に伝達される。これにより、横送り機構が作動して、苗載台241が左右方向に摺動することとなり、また、ロータリケース244が回転作動して、二つの植付爪245が交互に苗を苗載台241上の苗マットから取り出して圃場に植付可能とされる。 The motive power transmitted to the PTO output shaft 109 is shifted by an increase / decrease gear or a transmission mechanism built in the inter-stock transmission case 251, and the lateral feed mechanism and each rotary case via a planting clutch, a planting mission case 247, etc. 244. As a result, the lateral feed mechanism is activated and the seedling stage 241 is slid in the left-right direction, and the rotary case 244 is rotated and the two planting claws 245 are alternately seedlings. It can be taken out from the seedling mat on 241 and planted in the field.
 以下では、図13を用いて、田植機200の制御の構成について説明する。 Hereinafter, the control configuration of the rice transplanter 200 will be described with reference to FIG.
 図13に示すように、変速ペダル226は、田植機200の作業速度(走行速度)を変更するための変速操作具である。変速ペダル226はダッシュボード221の右下方に配置される。変速ペダル226は、ポテンショメータ226aにより、その操作量が検出可能とされる。ポテンショメータ226aは、変速ペダル226を操作することで回動する検出軸の回動角を検出する構成とされる。ポテンショメータ226aは、制御装置260と接続され、その検出値(変速ペダル226の操作量)を制御装置260に送信する。なお、変速操作具として、ペダルではなく、レバーや、プッシュスイッチとすることも可能である。 As shown in FIG. 13, the shift pedal 226 is a shift operation tool for changing the working speed (traveling speed) of the rice transplanter 200. The transmission pedal 226 is disposed on the lower right side of the dashboard 221. The operation amount of the shift pedal 226 can be detected by a potentiometer 226a. The potentiometer 226a is configured to detect a rotation angle of a detection shaft that rotates by operating the speed change pedal 226. The potentiometer 226 a is connected to the control device 260 and transmits the detected value (the operation amount of the shift pedal 226) to the control device 260. In addition, it is also possible to use not a pedal but a lever or a push switch as a speed change operation tool.
 モード選択スイッチ227は、田植機200の制御モードを選択するための操作具である。モード選択スイッチ227は、ダッシュボード221に設けられる。モード選択スイッチ227は、田植機200を「燃費効率モード」、「変速効率モード」、「排ガス低減モード」、「負荷モード」、「自動モード」、の五つの制御モードに選択可能に構成される。モード選択スイッチ227は、制御装置260と接続され、選択された制御モードに対応する信号を制御装置260に送信する。 The mode selection switch 227 is an operation tool for selecting the control mode of the rice transplanter 200. The mode selection switch 227 is provided on the dashboard 221. The mode selection switch 227 is configured so that the rice transplanter 200 can be selected from five control modes of “fuel efficiency mode”, “shift efficiency mode”, “exhaust gas reduction mode”, “load mode”, and “automatic mode”. . The mode selection switch 227 is connected to the control device 260 and transmits a signal corresponding to the selected control mode to the control device 260.
 制御装置260は、第一モータ261及び第二モータ262を制御するものである。制御装置260は、走行部210の任意の位置に設けられる。制御装置260は、具体的にはCPU、ROM、RAM、HDD等がバスで接続される構成であってもよく、あるいはワンチップのLSI等からなる構成であってもよい。制御装置260には、第一モータ261及び第二モータ262の動作を制御するための各種プログラムやマップが予め記憶される。 The control device 260 controls the first motor 261 and the second motor 262. The control device 260 is provided at an arbitrary position of the traveling unit 210. Specifically, the control device 260 may be configured such that a CPU, a ROM, a RAM, an HDD, and the like are connected by a bus, or may be configured by a one-chip LSI or the like. Various programs and maps for controlling the operations of the first motor 261 and the second motor 262 are stored in the control device 260 in advance.
 第一モータ261は、エンジン214の回転数を変更するためのアクチュエータである。第一モータ261は、具体的には、ブラスレスDCモータやステッピングモータ等とされる。第一モータ261は、制御装置260と接続され、制御装置260から送信される信号に基づいて駆動する。第一モータ261の出力軸は、リンク機構を介して、エンジン214の調速装置214aと連結される。第一モータ261により、調速装置214aが駆動され、エンジン214の回転数を変更することができる。なお、調速装置214aは、エンジン214の出力を検出するための出力検出手段を兼ねている。 The first motor 261 is an actuator for changing the rotational speed of the engine 214. Specifically, the first motor 261 is a brassless DC motor, a stepping motor, or the like. The first motor 261 is connected to the control device 260 and is driven based on a signal transmitted from the control device 260. The output shaft of the first motor 261 is connected to the speed governor 214a of the engine 214 via a link mechanism. The first motor 261 drives the speed governor 214a and can change the rotational speed of the engine 214. Note that the speed governor 214a also serves as an output detection unit for detecting the output of the engine 214.
 第二モータ262は、HMT110の変速比を変更するためのアクチュエータである。第二モータ262は、具体的には、ブラスレスDCモータやステッピングモータ等とされる。第二モータ262は、制御装置260と接続され、制御装置260から送信される信号により駆動する。第二モータ262の出力軸は、リンク機構を介して、変速アーム100aに連結される。第二モータ262により変速アーム100aが回動されて、油圧ポンプ111の可動斜板111aの傾斜角度が変更され、HMT110の変速比を変更することができる。 The second motor 262 is an actuator for changing the gear ratio of the HMT 110. Specifically, the second motor 262 is a brassless DC motor, a stepping motor, or the like. The second motor 262 is connected to the control device 260 and is driven by a signal transmitted from the control device 260. The output shaft of the second motor 262 is connected to the speed change arm 100a via a link mechanism. The speed change arm 100a is rotated by the second motor 262, the inclination angle of the movable swash plate 111a of the hydraulic pump 111 is changed, and the speed change ratio of the HMT 110 can be changed.
 エンジン回転数検出手段263は、エンジン214の回転数を検出するものである。エンジン回転数検出手段263は、例えば、エンジン214のフライホイールやクランク軸の回転数を検出する構成とされる。エンジン回転数検出手段263は、具体的には、磁気ピックアップコイルやロータリエンコーダ等で構成される。エンジン回転数検出手段263は、制御装置260と接続され、その検出信号を制御装置260に送信する。 The engine speed detecting means 263 detects the speed of the engine 214. The engine speed detection means 263 is configured to detect, for example, the speed of the flywheel or crankshaft of the engine 214. Specifically, the engine speed detection means 263 is configured by a magnetic pickup coil, a rotary encoder, or the like. The engine speed detection means 263 is connected to the control device 260 and transmits the detection signal to the control device 260.
 このような田植機200においては、制御装置260は、ポテンショメータ226aの検出値に基づいて、第一モータ261及び前記第二モータ262を制御することで、田植機200の走行速度や作業速度を変更することができる。すなわち、従来のように、二つの操作具でなく一つの操作具(変速ペダル226)のみで、走行速度や作業速度を変更する構成であるので、田植機200の操作性が向上する。また、田植機200の走行状況、例えば、圃場に出入りする状況や、トラックに搬入出する状況等に応じて、エンジン214の回転数及びHMT110の変速比を適切に変更することができる。また、田植機200の作業状況、例えば、エンジン214の燃料消費量が大きい状態で植付作業を行う状況、エンジン214の排ガス排出率が大きい状態で植付作業を行う状況、泥濘や溝にはまった状態で植付作業を行う状況等に応じて、エンジン214の回転数及びHMT110の変速比を適切に変更することができる。 In such a rice transplanter 200, the control device 260 controls the first motor 261 and the second motor 262 based on the detection value of the potentiometer 226a, thereby changing the traveling speed and work speed of the rice transplanter 200. can do. That is, the operability of the rice transplanter 200 is improved because the traveling speed and the working speed are changed by only one operating tool (shift pedal 226) instead of two operating tools as in the prior art. In addition, the rotational speed of the engine 214 and the gear ratio of the HMT 110 can be appropriately changed according to the traveling state of the rice transplanter 200, for example, the state of entering / exiting the farm field, the state of entering / exiting the truck, and the like. Also, the working situation of the rice transplanter 200, for example, the situation where the plant 214 is planted with a large amount of fuel consumed by the engine 214, the situation where the plant 214 is planted while the exhaust gas emission rate of the engine 214 is high, The speed of the engine 214 and the gear ratio of the HMT 110 can be appropriately changed according to the situation in which the planting operation is performed in the above state.
 以下では、図13及び図14を用いて、田植機200の具体的な制御態様について説明する。 Hereinafter, specific control modes of the rice transplanter 200 will be described with reference to FIGS. 13 and 14.
 図14は、エンジン214の回転数と正味平均有効圧力との関係を示す図である。制御装置260には、図14に示すマップが予め記憶されている。ここで、正味平均有効圧力とは、エンジン214の1サイクル中におけるシリンダ内の圧力の平均値を言う。当該マップは、エンジン214の特性を示すものであり、試験等により予め導き出されるものとされる。なお、図14は例示であり、エンジン214の特性はこれに限るものではない。 FIG. 14 is a diagram showing the relationship between the rotational speed of the engine 214 and the net average effective pressure. The control device 260 stores a map shown in FIG. 14 in advance. Here, the net average effective pressure refers to an average value of the pressure in the cylinder during one cycle of the engine 214. The map shows the characteristics of the engine 214 and is derived in advance by a test or the like. FIG. 14 is an example, and the characteristics of the engine 214 are not limited to this.
 図14中の実線は、エンジン214の等燃費曲線を示している。等燃費曲線とは、エンジン214の出力あたりの燃料消費量(以下、単に「燃料消費量」と記す)を各エンジン回転数、及び各正味平均有効圧力ごとに計測し、同じ燃料消費量の点を結んだものである。図14中の等燃費曲線のうち、一番内側に位置する等燃費曲線内の領域(以下、「最小燃費領域」と記す)が最も燃料消費量が小さく(燃費が良く)、外側の等燃費曲線に向かって燃料消費量が大きく(燃費が悪く)なる。つまり、図14は、エンジン214の燃費効率に係るマップとされる。 The solid line in FIG. 14 shows the iso-fuel consumption curve of the engine 214. An equal fuel consumption curve is a measurement of fuel consumption per output of the engine 214 (hereinafter simply referred to as “fuel consumption”) for each engine speed and each net average effective pressure. Is connected. Of the equal fuel consumption curves in FIG. 14, the area within the innermost fuel consumption curve (hereinafter referred to as “minimum fuel consumption area”) has the smallest fuel consumption (good fuel consumption) and the outer equal fuel consumption curve. The fuel consumption increases toward the curve (fuel consumption is worse). That is, FIG. 14 is a map relating to fuel efficiency of the engine 214.
 制御装置260は、エンジン214の正味平均有効圧力を常時算出する。すなわち、制御装置260には、前記調速装置214aの燃料噴射パターン(例えば、燃料噴射量、燃料の噴射回数、燃料の噴射タイミング等)と正味平均有効圧力との関係を示すマップが予め記憶され、前記調速装置214aの燃料噴射パターンから前記マップに基づいて、エンジン214の正味平均有効圧力を常時算出する。 The control device 260 constantly calculates the net average effective pressure of the engine 214. That is, the control device 260 stores in advance a map indicating the relationship between the fuel injection pattern (for example, the fuel injection amount, the number of fuel injections, the fuel injection timing, etc.) of the governor 214a and the net average effective pressure. The net average effective pressure of the engine 214 is always calculated based on the map from the fuel injection pattern of the governor 214a.
 このような田植機200において、モード選択スイッチ227で「燃費効率モード」が選択された上で変速ペダル226が操作されると、制御装置260は、ポテンショメータ226aで検出した変速ペダル226の操作量に基づいて第一モータ261及び第二モータ262を制御して、エンジン214の回転数及びHMT110の変速比を変更し、ひいては作業速度(走行速度)を変更する。この際、制御装置260は、エンジン回転数検出手段263で検出したエンジンの回転数と、算出した正味平均有効圧と、から図14中のエンジン214の状態に対応する位置を把握して、図14中のエンジン214の状態に対応する位置が、最小燃費領域内に位置するように、又は最小燃費領域に近接するように第一モータ261及び第二モータ262を制御する。 In such rice transplanter 200, when the shift pedal 226 is operated after the “fuel efficiency mode” is selected by the mode selection switch 227, the control device 260 sets the operation amount of the shift pedal 226 detected by the potentiometer 226a. Based on this, the first motor 261 and the second motor 262 are controlled to change the rotational speed of the engine 214 and the gear ratio of the HMT 110, and consequently change the working speed (traveling speed). At this time, the control device 260 grasps the position corresponding to the state of the engine 214 in FIG. 14 from the engine speed detected by the engine speed detecting means 263 and the calculated net average effective pressure. 14, the first motor 261 and the second motor 262 are controlled so that the position corresponding to the state of the engine 214 in the engine 14 is within the minimum fuel consumption region or close to the minimum fuel consumption region.
 例えば、エンジン214の回転数がN1、正味平均有効圧力がP1であり、エンジン214の状態に対応する位置がX1であるものとする。このような場合、制御装置260は、白抜き矢印に示すように、エンジン214の回転数をN1からN2に低下させるとともに正味平均有効圧をP1からP2に増大させて、最小燃費領域内のX2に位置するように第一モータ261及び第二モータ262を制御する。このように、エンジン214の燃費効率に係るマップ及びポテンショメータ226aの検出値に基づいて、第一モータ261及び第二モータ262を制御することで、同じ作業速度であっても、エンジン214の燃料消費を抑えることが可能となり、燃費を向上させることができる。 For example, it is assumed that the rotational speed of the engine 214 is N1, the net average effective pressure is P1, and the position corresponding to the state of the engine 214 is X1. In such a case, as indicated by the white arrow, the control device 260 decreases the rotational speed of the engine 214 from N1 to N2 and increases the net average effective pressure from P1 to P2, thereby reducing X2 within the minimum fuel consumption region. The first motor 261 and the second motor 262 are controlled so as to be positioned at the position. In this way, by controlling the first motor 261 and the second motor 262 based on the map related to the fuel efficiency of the engine 214 and the detected value of the potentiometer 226a, the fuel consumption of the engine 214 can be achieved even at the same work speed. Can be suppressed, and fuel consumption can be improved.
 以下では、図13及び図15を用いて、田植機200の具体的な制御態様の変形例について説明する。 Below, the modification of the specific control aspect of the rice transplanter 200 is demonstrated using FIG.13 and FIG.15.
 図15は、HMT110の変速効率に係るマップであり、詳細には、田植機200の作業速度とHMT110の全効率との関係を示すマップである。HMT110の全効率は、図13に示す油圧ポンプ111及び油圧モータ112で構成される油圧変速機構の有効動力と、伝動ギヤ115及びプラネタリキャリア122で構成されるギヤ変速機構の有効動力と、の和とされる。当該マップは、HMT110の特性を示すものであり、試験等により予め導き出されるものとされる。なお、図15は例示であり、HMT110の特性はこれに限るものではない。 FIG. 15 is a map relating to the speed change efficiency of the HMT 110, and more specifically, a map showing the relationship between the working speed of the rice transplanter 200 and the overall efficiency of the HMT 110. The total efficiency of the HMT 110 is the sum of the effective power of the hydraulic transmission mechanism constituted by the hydraulic pump 111 and the hydraulic motor 112 shown in FIG. 13 and the effective power of the gear transmission mechanism constituted by the transmission gear 115 and the planetary carrier 122. It is said. The map shows the characteristics of the HMT 110 and is derived in advance by a test or the like. Note that FIG. 15 is an example, and the characteristics of the HMT 110 are not limited thereto.
 このような田植機200において、モード選択スイッチ227で「変速効率モード」が選択された上で変速ペダル226が操作されると、制御装置260は、ポテンショメータ226aで検出した変速ペダル226の操作量に基づいて第一モータ261及び第二モータ262を制御して、エンジン214の回転数及びHMT110の変速比、ひいては作業速度を変更する。この際、制御装置260は、HMT110全体における全効率が高くなるように、つまり、HMT110の変換効率が向上するように第一モータ261及び第二モータ262を制御する。 In such a rice transplanter 200, when the speed change pedal 226 is operated after the “speed change efficiency mode” is selected by the mode selection switch 227, the control device 260 sets the operation amount of the speed change pedal 226 detected by the potentiometer 226a. Based on this, the first motor 261 and the second motor 262 are controlled to change the rotational speed of the engine 214, the gear ratio of the HMT 110, and the work speed. At this time, the control device 260 controls the first motor 261 and the second motor 262 so that the overall efficiency of the entire HMT 110 is increased, that is, the conversion efficiency of the HMT 110 is improved.
 例えば、変速ペダル226の操作量に対応する作業速度がV1であり、作業速度V1時におけるHMT110の全効率がE1であるものとする。このような場合、制御装置260は、全効率E1が、最も高くなる変速比となるように、すなわち、HMT110は、ギヤ有効動力のみで変速するように第二モータ262を制御する。そして、制御装置260は、この全効率が最も高くなる変速比と、変速ペダル226の操作量に対応する作業速度V1と、から、適切なエンジン214の回転数を算出して、この回転数となるように第一モータ261を制御する。 For example, it is assumed that the work speed corresponding to the operation amount of the shift pedal 226 is V1, and the total efficiency of the HMT 110 at the work speed V1 is E1. In such a case, the control device 260 controls the second motor 262 so that the total efficiency E1 becomes the highest gear ratio, that is, the HMT 110 shifts only with the gear effective power. Then, the control device 260 calculates an appropriate number of revolutions of the engine 214 from the speed ratio at which the overall efficiency becomes the highest and the work speed V1 corresponding to the operation amount of the speed change pedal 226, and calculates the number of revolutions. Thus, the first motor 261 is controlled.
 この状態から、変速ペダル226の操作により、この変速ペダル226の操作量に対応する作業速度がV1からV2に変化して、この作業速度V2時におけるHMT110の全効率をE2とした場合、制御装置260は、白塗り矢印に示すように、全効率E2が、最も高くなる変速比となるように、すなわち、HMT110は、V1時と同様にギヤ有効動力のみで変速するように第二モータ262を制御する。そして、制御装置260は、この全効率が最も高くなる変速比と、作業速度V2と、に対応するエンジン214の回転数となるように第一モータ261を制御する。このように、HMT110の変速効率に係るマップ及びポテンショメータ226aの検出値に基づいて、第一モータ261及び第二モータ262を制御することで、全作業速度領域で、HMT110における全効率が高い状態で作業を行うことができる。
 なお、低速側で微小な変速が必要な場合は、油圧有効動力の全効率に対する割合を大きくすることも可能である。
In this state, when the operation speed corresponding to the operation amount of the shift pedal 226 is changed from V1 to V2 by operating the shift pedal 226, and the total efficiency of the HMT 110 at the work speed V2 is E2, the control device 260 indicates the second motor 262 so that the overall efficiency E2 becomes the highest gear ratio as indicated by the white arrow, that is, the HMT 110 shifts only with the gear effective power as in the case of V1. Control. Then, the control device 260 controls the first motor 261 so that the rotational speed of the engine 214 corresponds to the speed ratio at which the overall efficiency becomes the highest and the work speed V2. In this way, by controlling the first motor 261 and the second motor 262 based on the map related to the shift efficiency of the HMT 110 and the detected value of the potentiometer 226a, the overall efficiency in the HMT 110 is high in the entire work speed region. Work can be done.
Note that when a small speed change is required on the low speed side, the ratio of the effective hydraulic power to the total efficiency can be increased.
 以下では、図13及び図16を用いて、田植機200の具体的な制御態様の変形例について説明する。 Below, the modification of the specific control aspect of the rice transplanter 200 is demonstrated using FIG.13 and FIG.16.
 図16は、エンジン214の排ガス排出率に係るマップであり、詳細には、エンジン214の回転数と排ガス中のNOx濃度との関係を示すマップである。制御装置260には、図16に示すマップが予め記憶されている。当該マップは、エンジン214の特性を示すものであり、試験等により予め導き出されるものとされる。なお、図16は例示であり、エンジン214の特性はこれに限るものではない。また、排ガス中のPM濃度やHC濃度を示すマップであってもよい。 FIG. 16 is a map relating to the exhaust gas emission rate of the engine 214, and more specifically, a map showing the relationship between the rotational speed of the engine 214 and the NOx concentration in the exhaust gas. The control device 260 stores in advance a map shown in FIG. The map shows the characteristics of the engine 214 and is derived in advance by a test or the like. FIG. 16 is an example, and the characteristics of the engine 214 are not limited thereto. Moreover, the map which shows PM density | concentration and HC density | concentration in waste gas may be sufficient.
 このような田植機200において、モード選択スイッチ227で「排ガス効率モード」が選択された上で変速ペダル226が操作されると、制御装置260は、ポテンショメータ226aで検出した変速ペダル226の操作量に基づいて第一モータ261及び第二モータ262を制御して、エンジン214の回転数及びHMT110の変速比を変更し、ひいては作業速度を変更する。この際、制御装置260は、前記マップに基づいて排ガス中のNOx濃度が低下するように第一モータ261及び第二モータ262を制御する。 In such a rice transplanter 200, when the shift pedal 226 is operated after the “exhaust gas efficiency mode” is selected by the mode selection switch 227, the control device 260 sets the operation amount of the shift pedal 226 detected by the potentiometer 226a. Based on this, the first motor 261 and the second motor 262 are controlled to change the rotational speed of the engine 214 and the gear ratio of the HMT 110, thereby changing the working speed. At this time, the control device 260 controls the first motor 261 and the second motor 262 so that the NOx concentration in the exhaust gas decreases based on the map.
 例えば、エンジン214の回転数がN3であり、この回転数N3に対応するNOx濃度がC1であるものとする場合、制御装置260は、白抜き矢印に示すように、エンジン214の回転数がN3からN4に上昇するように第一モータ261を制御して、NOx濃度をC2に低下させる。そして、制御装置260は、エンジン214の回転数N4と、変速ペダル226の操作量に対応する作業速度と、から、適切なHMT110の変速比を算出して、この変速比となるように第二モータ262を制御する。このように、エンジン214の排ガス効率に係るマップ及びポテンショメータ226aの検出値に基づいて、第一モータ261及び第二モータ262を制御することで、同じ作業速度であっても、NOx濃度を低くすることが可能となり、排ガスを低減することができる。 For example, when the rotational speed of the engine 214 is N3 and the NOx concentration corresponding to the rotational speed N3 is C1, the control device 260 indicates that the rotational speed of the engine 214 is N3 as indicated by a white arrow. The first motor 261 is controlled to increase from NO to N4, and the NOx concentration is decreased to C2. Then, the control device 260 calculates an appropriate gear ratio of the HMT 110 from the rotational speed N4 of the engine 214 and the work speed corresponding to the operation amount of the shift pedal 226, and the second gear ratio is set so as to be this gear ratio. The motor 262 is controlled. In this way, by controlling the first motor 261 and the second motor 262 based on the map related to the exhaust gas efficiency of the engine 214 and the detected value of the potentiometer 226a, the NOx concentration is lowered even at the same work speed. This makes it possible to reduce exhaust gas.
 以下では、図13及び図17を用いて、田植機200の具体的な制御態様の変形例について説明する。 Hereinafter, a modified example of a specific control mode of the rice transplanter 200 will be described with reference to FIGS. 13 and 17.
 図17は、エンジン214の負荷率に係るマップであり、詳細には、エンジン214の回転数とエンジン214の出力(負荷)との関係を示すマップである。制御装置260には、図17に示すマップが予め記憶されている。図17中の実線は、各回転数における最大出力となる点を結んだ出力曲線であり、この出力曲線上では、エンジン214の負荷率(エンジン214の最大出力に対する実際の出力の割合)が100%とされる。図17中の出力曲線における下側の領域は、エンジン214が作動する作動領域とされ、上側の領域は、エンジン214が停止する停止領域とされる。当該マップは、エンジン214の特性を示すものであり、試験等により予め導き出されるものとされる。なお、図17は例示であり、エンジン214の特性はこれに限るものではない。 FIG. 17 is a map relating to the load factor of the engine 214, and more specifically, a map showing the relationship between the rotational speed of the engine 214 and the output (load) of the engine 214. The control device 260 stores a map shown in FIG. 17 in advance. The solid line in FIG. 17 is an output curve connecting points that are the maximum output at each rotation speed. On this output curve, the load factor of the engine 214 (the ratio of the actual output to the maximum output of the engine 214) is 100. %. A lower region in the output curve in FIG. 17 is an operation region where the engine 214 operates, and an upper region is a stop region where the engine 214 stops. The map shows the characteristics of the engine 214 and is derived in advance by a test or the like. Note that FIG. 17 is an example, and the characteristics of the engine 214 are not limited thereto.
 制御装置260は、エンジン214の出力を常時算出する。すなわち、制御装置260には、前記調速装置214aの燃料噴射パターン(例えば、燃料噴射量、燃料の噴射回数、燃料の噴射タイミング等)とエンジンの出力との関係を示すマップが予め記憶され、前記調速装置214aの燃料噴射パターンから前記マップに基づいて、エンジン214の出力を常時算出する。 The control device 260 constantly calculates the output of the engine 214. That is, the control device 260 stores in advance a map indicating the relationship between the fuel injection pattern (for example, the fuel injection amount, the number of fuel injections, the fuel injection timing, etc.) of the governor 214a and the engine output, Based on the map, the output of the engine 214 is constantly calculated from the fuel injection pattern of the governor 214a.
 このような田植機200において、モード選択スイッチ227で「負荷モード」が選択された上で変速ペダル226が操作されると、制御装置260は、ポテンショメータ226aで検出した変速ペダル226の操作量に基づいて第一モータ261及び第二モータ262を制御して、エンジン214の回転数及びHMT110の変速比、ひいては作業速度を変更する。この際、泥、溝、傾斜等でエンジン214に過剰な負荷がかかった場合であっても、制御装置260は、エンジン回転数検出手段263で検出したエンジンの回転数と、算出したエンジンの出力と、から図17中のエンジン214の状態に対応する位置を把握して、図17中のエンジン214の状態に対応する位置が、作動領域内に位置するように、第一モータ261及び第二モータ262を制御する。 In such a rice transplanter 200, when the shift pedal 226 is operated after the “load mode” is selected by the mode selection switch 227, the control device 260 is based on the operation amount of the shift pedal 226 detected by the potentiometer 226a. Then, the first motor 261 and the second motor 262 are controlled to change the rotational speed of the engine 214, the gear ratio of the HMT 110, and the work speed. At this time, even when an excessive load is applied to the engine 214 due to mud, grooves, inclination, etc., the control device 260 detects the engine speed detected by the engine speed detection means 263 and the calculated engine output. 17, the position corresponding to the state of the engine 214 in FIG. 17 is grasped, and the position corresponding to the state of the engine 214 in FIG. The motor 262 is controlled.
 例えば、エンジン214の回転数がN5、エンジン214の出力がW1であり、エンジン214の状態に対応する位置がY1であるものとする。このような場合に、エンジン214に過剰な負荷(対応するエンジン214の出力がW2)が掛かかり、エンジン214の回転数が低下すると、制御装置260は、エンジン214の状態に対応する位置が作動領域内のY2に位置するように、エンジン214の回転数をN5からN6に上昇させ(図17中の二点鎖線の矢印)、この回転数N6と、変速ペダル226の操作量に対応する作業速度と、から、適切なHMT110の変速比を算出して、この変速比となるように第一モータ261及び第二モータ262を制御する。このように、エンジン214の負荷率に係るマップ及びポテンショメータ226aの検出値に基づいて、第一モータ261及び第二モータ262を制御することで、傾斜等でエンジン214が過負荷となった場合でも作業速度が低下せず、確実に作業を行うことができる。 For example, it is assumed that the rotational speed of the engine 214 is N5, the output of the engine 214 is W1, and the position corresponding to the state of the engine 214 is Y1. In such a case, when an excessive load is applied to the engine 214 (the output of the corresponding engine 214 is W2) and the rotational speed of the engine 214 decreases, the control device 260 operates the position corresponding to the state of the engine 214. The rotational speed of the engine 214 is increased from N5 to N6 so as to be located at Y2 in the region (the two-dot chain arrow in FIG. 17), and the work corresponding to the rotational speed N6 and the operation amount of the shift pedal 226 Based on the speed, an appropriate gear ratio of the HMT 110 is calculated, and the first motor 261 and the second motor 262 are controlled to achieve this gear ratio. As described above, even when the engine 214 is overloaded due to inclination or the like by controlling the first motor 261 and the second motor 262 based on the map relating to the load factor of the engine 214 and the detected value of the potentiometer 226a. The work speed does not decrease, and the work can be performed reliably.
 さらに、モード選択スイッチ227で「自動モード」が選択されると、前記四つの制御モード(「燃費効率モード」、「変速効率モード」、「排ガス低減モード」、「負荷モード」)のうち、田植機200の走行状況や作業状況に応じて、適切な制御モードが自動で選択される。例えば、通常作業時は、「燃費効率モード」で作業を行い、泥、溝、傾斜等でエンジン214が過負荷となると、「負荷モード」に自動で切り替わる。 Further, when “automatic mode” is selected by the mode selection switch 227, among the four control modes (“fuel efficiency mode”, “transmission efficiency mode”, “exhaust gas reduction mode”, “load mode”), rice transplanting is performed. An appropriate control mode is automatically selected according to the traveling state and working state of the machine 200. For example, during normal work, the work is performed in the “fuel efficiency mode”, and when the engine 214 is overloaded due to mud, grooves, inclination, etc., it is automatically switched to the “load mode”.
 なお、田植機200において、複数の制御モードを兼ねる構成とすることも可能である。例えば、「燃費効率モード」と「変換効率モード」を兼ねることで、燃料消費量を更に低減することができる。また、「排ガス効率モード」と「負荷モード」を兼ねることで、排ガスを低減しつつ、傾斜等でエンジン214が過負荷となった場合でも確実に作業を行うことができる。 It should be noted that the rice transplanter 200 can be configured to serve as a plurality of control modes. For example, the fuel consumption can be further reduced by combining the “fuel efficiency mode” and the “conversion efficiency mode”. In addition, by combining the “exhaust gas efficiency mode” and the “load mode”, it is possible to reliably perform work even when the engine 214 is overloaded due to inclination or the like while reducing exhaust gas.
 また、田植機200は、第一モータ261及び第二モータ262を個々に制御することで、エンジン214の回転数とHMT110の変速比とが任意に変更可能であるので、HMT110を介さずにエンジン214から分岐してPTO出力軸109に動力が伝達されるように構成することも可能である。例えば、図18に示すように、油圧ポンプ111のポンプ出力軸114にベベルギヤ191が固設されて、このベベルギヤ191と噛合するベベルギヤ192が、PTO出力軸109の一端に固設されて、エンジン214の動力が、HMT110で変速されず、PTO出力軸109に伝達されるように構成される。 In addition, the rice transplanter 200 can arbitrarily change the rotational speed of the engine 214 and the gear ratio of the HMT 110 by individually controlling the first motor 261 and the second motor 262, so that the engine does not pass through the HMT 110. It is also possible to configure so that power is transmitted to the PTO output shaft 109 by branching from 214. For example, as shown in FIG. 18, a bevel gear 191 is fixed to the pump output shaft 114 of the hydraulic pump 111, and a bevel gear 192 that meshes with the bevel gear 191 is fixed to one end of the PTO output shaft 109. Power is transmitted to the PTO output shaft 109 without being shifted by the HMT 110.
 この場合は、制御装置260は、第一モータ261を制御してエンジン214の回転数を変更することで、PTO出力軸109の回転数を任意の回転数に変更することができる。従って、株間変速ケース251に内装される増減速ギヤや変速機構が不要となり、コストを低減することができる。なお、制御装置260は、エンジン214の回転数と、変速ペダル226の操作量(作業速度)と、に対応するHMT110の変速比となるように第二モータ262を制御することとなる。 In this case, the control device 260 can change the rotational speed of the PTO output shaft 109 to an arbitrary rotational speed by controlling the first motor 261 and changing the rotational speed of the engine 214. Therefore, an increase / decrease gear and a transmission mechanism built in the inter-stock transmission case 251 are not required, and the cost can be reduced. Note that the control device 260 controls the second motor 262 so that the speed ratio of the HMT 110 corresponding to the rotation speed of the engine 214 and the operation amount (working speed) of the speed change pedal 226 is obtained.
 同様に、エンジン214から分岐して走行伝動軸104に動力が伝達されるように構成することも可能である。これにより、走行側の増減速ギヤや変速機構が不要となり、コストを低減することができる。 Similarly, it is also possible to configure so that power is transmitted from the engine 214 to the traveling transmission shaft 104. This eliminates the need for the speed increasing / decreasing gear and the speed change mechanism on the traveling side, thereby reducing the cost.
 以上のように、田植機200においては、エンジン214と、前記エンジン214の回転数を変更する第一アクチュエータとなる第一モータ261と、前記エンジン214からの動力を変速する無段変速装置となるHMT110と、前記HMT110の変速比を変更する第二アクチュエータとなる第二モータ262と、走行速度を変更操作する変速操作具となる変速ペダル226と、前記変速ペダル226の操作量を検出する操作量検出手段となるポテンショメータ226aと、前記ポテンショメータ226aの検出値に基づいて、前記第一モータ261及び前記第二モータ262を制御する制御装置260と、を備える田植機200である。これにより、ポテンショメータ226aの検出値に基づいて、第一モータ261及び前記第二モータ262を制御することで、田植機200の走行速度や作業速度を変更することができる。従って、作業者が変速ペダル226のみで田植機200の走行速度や作業速度を変更することができ、操作性が向上する。また、田植機の走行状況や作業状況に応じて、エンジン214の回転数及びHMT110の変速比を適切に変更することができる。 As described above, in the rice transplanter 200, the engine 214, the first motor 261 serving as the first actuator for changing the rotational speed of the engine 214, and the continuously variable transmission for shifting the power from the engine 214 are provided. HMT 110, a second motor 262 serving as a second actuator for changing a gear ratio of the HMT 110, a shift pedal 226 serving as a shift operating tool for changing a traveling speed, and an operation amount for detecting an operation amount of the shift pedal 226 The rice transplanter 200 includes a potentiometer 226a serving as a detection unit, and a control device 260 that controls the first motor 261 and the second motor 262 based on a detection value of the potentiometer 226a. Thereby, the traveling speed and work speed of the rice transplanter 200 can be changed by controlling the first motor 261 and the second motor 262 based on the detection value of the potentiometer 226a. Therefore, the operator can change the traveling speed and work speed of the rice transplanter 200 with only the shift pedal 226, and the operability is improved. Further, the rotational speed of the engine 214 and the gear ratio of the HMT 110 can be appropriately changed according to the traveling situation and work situation of the rice transplanter.
 また、前記制御装置260には、前記エンジン214の燃費効率に係るマップ、前記HMT110の変速効率に係るマップ、前記エンジン214の排ガス排出率に係るマップ及び前記エンジン214の負荷率に係るマップ、のうち少なくとも一つが記憶され、該記憶されたマップ及び前記ポテンショメータ226aの検出値に基づいて、前記第一モータ261及び前記第二モータ262を制御するものである。これにより、燃費効率に係るマップに基づいて第一モータ261及び第二モータ262を制御することで、燃費を向上させることができる。また、変速効率に係るマップに基づいて第一モータ261及び第二モータ262を制御することで、全速度域で変速効率を向上させることができる。また、排ガス排出率に係るマップに基づいて第一モータ261及び第二モータ262を制御することで、排ガスを低減することができる。また、エンジン214の負荷率に係るマップに基づいて第一モータ261及び第二モータ262を制御することで、傾斜等でエンジン214が過負荷となった場合でも確実に走行することができる。 Further, the control device 260 includes a map relating to fuel efficiency of the engine 214, a map relating to the shift efficiency of the HMT 110, a map relating to the exhaust gas emission rate of the engine 214, and a map relating to the load factor of the engine 214. At least one of them is stored, and the first motor 261 and the second motor 262 are controlled based on the stored map and the detected value of the potentiometer 226a. Thereby, fuel consumption can be improved by controlling the 1st motor 261 and the 2nd motor 262 based on the map concerning fuel consumption efficiency. Further, by controlling the first motor 261 and the second motor 262 based on the map related to the shift efficiency, the shift efficiency can be improved in the entire speed range. Moreover, exhaust gas can be reduced by controlling the 1st motor 261 and the 2nd motor 262 based on the map which concerns on an exhaust gas discharge rate. Further, by controlling the first motor 261 and the second motor 262 based on the map related to the load factor of the engine 214, it is possible to reliably travel even when the engine 214 is overloaded due to inclination or the like.
 また、前記エンジン214から分岐してPTO出力軸109に動力が伝達されるものである。これにより、エンジン214の回転数を変更することで、PTO出力軸109の回転数を変更することができる。従って、増減速ギヤや変速機構が不要となり、コストを低減することができる。 Also, power is transmitted from the engine 214 to the PTO output shaft 109 by branching. Thereby, the rotational speed of the PTO output shaft 109 can be changed by changing the rotational speed of the engine 214. Therefore, the speed increasing / decreasing gear and the speed change mechanism are not required, and the cost can be reduced.

Claims (7)

  1.  エンジンの回転数、および/またはHSTの変速比を変更するアクチュエータと、
     前記アクチュエータの駆動量を変更するための操作具である変速手段と、
     前記アクチュエータおよび変速手段に接続され、前記変速手段の操作量に基づいて前記アクチュエータにより前記エンジンの回転数およびHSTの変速比のうちの少なくとも一方を変更して、車速を変更する制御装置と、
     前記制御装置に接続され、前記変速手段が最大操作量まで操作されたときの車速である最高速度を変更するための操作具である最高速設定手段と、を備え、
     前記制御装置は、
     前記変速手段の操作量に基づいて前記アクチュエータの目標駆動量を算出して、前記アクチュエータの駆動量が前記目標駆動量になるように前記アクチュエータを駆動することにより、車速を前記アクチュエータの目標駆動量に対応した大きさに変更し、
     前記変速手段が最大操作量まで操作されたときの前記アクチュエータの目標駆動量を、前記最高速設定手段の操作量に対応した大きさに変更することにより、前記最高速度を前記最高速設定手段の操作量に対応した大きさに変更する、
     田植機。
    An actuator for changing the engine speed and / or the gear ratio of the HST;
    Transmission means that is an operating tool for changing the drive amount of the actuator;
    A control device that is connected to the actuator and the speed change means, and changes the vehicle speed by changing at least one of the rotational speed of the engine and the speed ratio of the HST by the actuator based on an operation amount of the speed change means;
    A maximum speed setting means that is connected to the control device and is an operating tool for changing a maximum speed that is a vehicle speed when the speed change means is operated up to a maximum operation amount;
    The controller is
    The target drive amount of the actuator is calculated based on the operation amount of the speed change means, and the actuator is driven so that the drive amount of the actuator becomes the target drive amount. Change the size to correspond to
    By changing the target drive amount of the actuator when the speed change means is operated to the maximum operation amount to a size corresponding to the operation amount of the maximum speed setting means, the maximum speed is set to the maximum speed setting means. Change to the size corresponding to the operation amount,
    Rice transplanter.
  2.  前記最高速設定手段は、回動操作可能であり、その回動範囲内にて、回動角の変化量に対応して前記最高速度を変更する可変域と、回動角の変化に対して前記最高速度を一定の値に維持する定速域と、を有する、
     請求項1に記載の田植機。
    The maximum speed setting means can be rotated, and within the rotation range, the variable range for changing the maximum speed corresponding to the amount of change of the rotation angle, and the change of the rotation angle A constant speed region for maintaining the maximum speed at a constant value,
    The rice transplanter according to claim 1.
  3.  前記定速域は、最低速度域と、最高速度域と、前記最低速度域および最高速度域の間に設けられる疎植推奨速度域と、を有し、
     前記可変域は、前記最低速度域および疎植推奨速度域の間に設けられる第一可変域と、前記疎植推奨速度域および最高速度の間に設けられる第二可変域と、を有する、
     請求項2に記載の田植機。
    The constant speed range has a minimum speed range, a maximum speed range, and a sparse recommended speed range provided between the minimum speed range and the maximum speed range,
    The variable range includes a first variable range provided between the minimum speed range and a sparse vegetation recommended speed range, and a second variable range provided between the sparse vegetation recommended speed range and a maximum speed.
    The rice transplanter according to claim 2.
  4.  エンジンの回転数、および/またはHSTの変速比を変更するアクチュエータと、
     前記アクチュエータの駆動量を変更するための操作具である変速手段と、
     前記アクチュエータおよび変速手段に接続され、前記変速手段の操作量に基づいて前記アクチュエータにより前記エンジンの回転数およびHSTの変速比のうちの少なくとも一方を変更して、車速を変更する制御装置と、
     前記制御装置に接続され、前記変速手段が最大操作量まで操作されたときの車速である最高速度を変更するための操作具である最高速設定手段と、
     前記制御装置に接続され、車速を、前記変速手段の操作に関係なく一定値に固定するための操作具である速度固定手段と、を備え、
     前記制御装置は、前記速度固定手段による車速固定が行われている場合で、前記最高速設定手段が操作されるときに、前記最高速設定手段の操作量に基づいて前記アクチュエータの駆動量を変更することにより、前記速度固定手段により固定された車速を前記最高速設定手段の操作量に対応した大きさに変更する、
     田植機。
    An actuator for changing the engine speed and / or the gear ratio of the HST;
    Transmission means that is an operating tool for changing the drive amount of the actuator;
    A control device that is connected to the actuator and the speed change means, and changes the vehicle speed by changing at least one of the rotational speed of the engine and the speed ratio of the HST by the actuator based on an operation amount of the speed change means;
    Maximum speed setting means that is connected to the control device and is an operating tool for changing a maximum speed that is a vehicle speed when the speed change means is operated to a maximum operation amount;
    A speed fixing means connected to the control device, and being an operating tool for fixing the vehicle speed to a constant value regardless of the operation of the speed change means;
    The controller changes the drive amount of the actuator based on the operation amount of the maximum speed setting means when the vehicle speed is fixed by the speed fixing means and the maximum speed setting means is operated. By changing the vehicle speed fixed by the speed fixing means to a size corresponding to the operation amount of the maximum speed setting means,
    Rice transplanter.
  5.  前記制御装置は、前記速度固定手段による車速固定が行われている場合で、前記最高速設定手段による変更後の車速が所定の速度下限閾値未満の値になるとき、前記速度固定手段による車速固定を解除する、
     請求項4に記載の田植機。
    When the vehicle speed is fixed by the speed fixing unit and the vehicle speed after the change by the maximum speed setting unit is less than a predetermined speed lower limit threshold, the control device fixes the vehicle speed by the speed fixing unit. ,
    The rice transplanter according to claim 4.
  6.  前記制御装置は、
     前記速度固定手段による車速固定が行われている場合で、前記変速手段の操作量が、所定の固定解除下限値未満まで減少して、その後、前記固定解除下限値まで増加したときには、前記速度固定手段による車速固定を解除し、
     前記速度固定手段による車速固定が行われている場合で、前記変速手段の操作量が、所定の固定解除上限値まで増加したときには、前記速度固定手段による車速固定を解除し、
     前記固定解除下限値は、前記速度固定手段が操作されて車速固定が行われた時の前記変速手段の操作量である固定記憶位置よりも小さい値であり、
     前記固定解除上限値は、前記固定記憶位置よりも大きい値である、
     請求項4または請求項5に記載の田植機。
    The controller is
    When the vehicle speed is fixed by the speed fixing means, the speed fixing is performed when the operation amount of the speed change means decreases to less than a predetermined fixed release lower limit and then increases to the fixed release lower limit. Release the vehicle speed fixed by means,
    When the vehicle speed is fixed by the speed fixing means and the operation amount of the speed change means increases to a predetermined unlocking upper limit value, the vehicle speed fixing by the speed fixing means is released,
    The fixed release lower limit value is a value smaller than a fixed storage position that is an operation amount of the transmission unit when the speed fixing unit is operated and vehicle speed is fixed.
    The fixed release upper limit value is a value larger than the fixed storage position.
    The rice transplanter according to claim 4 or 5.
  7.  前記制御装置は、前記速度固定手段による車速固定が行われている場合で、前記最高速設定手段が操作されるとき、前記最高速設定手段の操作量に応じて前記固定解除下限値、および固定解除上限値を変更する、
     請求項6に記載の田植機。
    When the vehicle speed is fixed by the speed fixing means and the maximum speed setting means is operated, the control device, when the maximum speed setting means is operated, the fixed release lower limit value and a fixed value according to the operation amount of the maximum speed setting means Change the cancellation upper limit,
    The rice transplanter according to claim 6.
PCT/JP2011/074969 2010-10-29 2011-10-28 Rice planting machine WO2012057334A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180051414.1A CN103188927B (en) 2010-10-29 2011-10-28 Rice transplanter
KR1020137013735A KR101485549B1 (en) 2010-10-29 2011-10-28 Rice planting machine

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2010244754A JP5808903B2 (en) 2010-10-29 2010-10-29 Rice transplanter
JP2010-244754 2010-10-29
JP2011038880A JP2012172668A (en) 2011-02-24 2011-02-24 Rice planting machine
JP2011-038880 2011-02-24
JP2011052091A JP5688803B2 (en) 2011-03-09 2011-03-09 Rice transplanter
JP2011-052091 2011-03-09

Publications (1)

Publication Number Publication Date
WO2012057334A1 true WO2012057334A1 (en) 2012-05-03

Family

ID=45994036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/074969 WO2012057334A1 (en) 2010-10-29 2011-10-28 Rice planting machine

Country Status (3)

Country Link
KR (1) KR101485549B1 (en)
CN (1) CN103188927B (en)
WO (1) WO2012057334A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108401628B (en) * 2018-05-08 2023-09-22 浙江大学 Cotyledon period seedling supplementing manipulator and seedling supplementing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004262417A (en) * 2003-01-10 2004-09-24 Yanmar Agricult Equip Co Ltd Running speed holding mechanism
JP2007313953A (en) * 2006-05-23 2007-12-06 Yanmar Co Ltd Working vehicle
JP2008074236A (en) * 2006-09-21 2008-04-03 Iseki & Co Ltd Working vehicle
JP2010207104A (en) * 2009-03-06 2010-09-24 Yanmar Co Ltd Rice transplanter
JP2010216563A (en) * 2009-03-16 2010-09-30 Yanmar Co Ltd Maximum speed control mechanism for work vehicle

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4442333B2 (en) * 2004-06-22 2010-03-31 井関農機株式会社 Traveling vehicle
JP4769265B2 (en) * 2008-03-31 2011-09-07 株式会社クボタ Work condition display structure of work vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004262417A (en) * 2003-01-10 2004-09-24 Yanmar Agricult Equip Co Ltd Running speed holding mechanism
JP2007313953A (en) * 2006-05-23 2007-12-06 Yanmar Co Ltd Working vehicle
JP2008074236A (en) * 2006-09-21 2008-04-03 Iseki & Co Ltd Working vehicle
JP2010207104A (en) * 2009-03-06 2010-09-24 Yanmar Co Ltd Rice transplanter
JP2010216563A (en) * 2009-03-16 2010-09-30 Yanmar Co Ltd Maximum speed control mechanism for work vehicle

Also Published As

Publication number Publication date
KR20130082510A (en) 2013-07-19
CN103188927A (en) 2013-07-03
KR101485549B1 (en) 2015-01-22
CN103188927B (en) 2015-09-16

Similar Documents

Publication Publication Date Title
US8483927B2 (en) Speed changing control system for a vehicle
US20150345111A1 (en) Work vehicle and control method for same
WO2012036280A1 (en) Rice transplanter
JP2011127473A (en) Engine control device for work vehicle
JP5688803B2 (en) Rice transplanter
WO2012057334A1 (en) Rice planting machine
JP2011072209A (en) Farm implement
JP5181979B2 (en) Gearbox for work vehicle
JP5346317B2 (en) Paddy field machine
JP5215491B2 (en) Paddy field machine
JP2005140242A (en) Shift control device for working vehicle
JP5779328B2 (en) Rice transplanter
JP5808903B2 (en) Rice transplanter
JP2010166929A5 (en)
JP4525641B2 (en) Shift control device for work vehicle
JP2012172668A (en) Rice planting machine
JP5798068B2 (en) Combine
JP6059268B2 (en) Shift control system
JP5346367B2 (en) Paddy field machine
JP2008008492A (en) Shift control device for working vehicle
JP5682886B2 (en) Rice transplanter
JP2011063245A (en) Engine load display device of work vehicle
JP3710394B2 (en) Agricultural machine
JP5369901B2 (en) Transmission device for work vehicle
JP2002293171A (en) Paddy field work machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11836467

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137013735

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11836467

Country of ref document: EP

Kind code of ref document: A1