WO2012057282A1 - ガスタービンおよびこれを備えたガスタービンプラント - Google Patents

ガスタービンおよびこれを備えたガスタービンプラント Download PDF

Info

Publication number
WO2012057282A1
WO2012057282A1 PCT/JP2011/074853 JP2011074853W WO2012057282A1 WO 2012057282 A1 WO2012057282 A1 WO 2012057282A1 JP 2011074853 W JP2011074853 W JP 2011074853W WO 2012057282 A1 WO2012057282 A1 WO 2012057282A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
scavenging
gas turbine
valve
air
Prior art date
Application number
PCT/JP2011/074853
Other languages
English (en)
French (fr)
Inventor
雅幸 村上
一也 東
行政 中本
智子 藤井
建行 清水
圭悟 松本
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to KR1020127030359A priority Critical patent/KR101407829B1/ko
Priority to EP11836415.7A priority patent/EP2634395B1/en
Priority to JP2012540940A priority patent/JP5571197B2/ja
Priority to US13/806,961 priority patent/US9347377B2/en
Priority to CN201180026513.4A priority patent/CN103109059B/zh
Publication of WO2012057282A1 publication Critical patent/WO2012057282A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/22Fuel supply systems
    • F02C7/232Fuel valves; Draining valves or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/12Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/30Adding water, steam or other fluids for influencing combustion, e.g. to obtain cleaner exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/14Cooling of plants of fluids in the plant, e.g. lubricant or fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/22Fuel supply systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/22Fuel supply systems
    • F02C7/222Fuel flow conduits, e.g. manifolds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/22Fuel supply systems
    • F02C7/228Dividing fuel between various burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/26Control of fuel supply
    • F02C9/40Control of fuel supply specially adapted to the use of a special fuel or a plurality of fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/283Attaching or cooling of fuel injecting means including supports for fuel injectors, stems, or lances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/34Feeding into different combustion zones
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/34Feeding into different combustion zones
    • F23R3/343Pilot flames, i.e. fuel nozzles or injectors using only a very small proportion of the total fuel to insure continuous combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/36Supply of different fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/213Heat transfer, e.g. cooling by the provision of a heat exchanger within the cooling circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/221Improvement of heat transfer
    • F05D2260/2214Improvement of heat transfer by increasing the heat transfer surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/60Fluid transfer
    • F05D2260/608Aeration, ventilation, dehumidification or moisture removal of closed spaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2209/00Safety arrangements
    • F23D2209/30Purging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K2300/00Pretreatment and supply of liquid fuel
    • F23K2300/20Supply line arrangements
    • F23K2300/203Purging

Definitions

  • the present invention relates to a gas turbine and a gas turbine plant equipped with the same, and more particularly to a sweep during combustion.
  • a combustor provided in a gas turbine is provided with a pilot nozzle and a main nozzle.
  • the flame obtained by burning the fuel injected from the pilot nozzle is used as a starting flame of combustion by the main nozzle.
  • high temperature combustion gas flows back to a pilot nozzle that does not inject fuel gas as fuel during oil burning operation
  • the pilot nozzle may be burnt out.
  • the pilot nozzle is swept using air introduced from the casing of the gas turbine (e.g. reference 1).
  • the main nozzle provided in the combustor is divided into a predetermined number of blocks, and staging processing is performed to sequentially operate and stop each block, whereby combustion from the pilot nozzle to combustion by the main nozzle is performed. It is disclosed to prevent rapid ignition in the main nozzle at the time of switching to prevent damage to the gas turbine.
  • Patent Document 2 is about performing staging processing smoothly to prevent damage to the gas turbine, and fuel gas remaining in the main nozzle whose injection of fuel gas is stopped by staging processing is There is no disclosure of measures for self-ignition and ignition.
  • This invention is made in view of such a situation, Comprising: It aims at providing a gas turbine which can carry out a sweep, preventing the self-ignition of a fuel, and a gas turbine plant provided with the same. I assume.
  • the gas turbine of this invention and a gas turbine plant provided with this employ
  • a sweep is conducted by introducing the air extracted from the casing of the gas turbine to the scavenging air supply path.
  • the fuel gas remaining in the fuel and scavenging air supply path is ignited and the fuel nozzle for the gas turbine is There was a risk of burnout or fuel gas self-igniting and exploding.
  • the scavenging body cooled to less than the self-ignition temperature of the fuel by the scavenging air body cooling means is guided from the scavenging air body supply path to the fuel and scavenging air body supply path of the fuel nozzle for gas turbine. Therefore, it is possible to prevent self-ignition due to the fuel remaining in the fuel and scavenging air stream supply path, and to prevent the fuel nozzle for the gas turbine from being burnt. Therefore, the soundness of the gas turbine can be maintained.
  • the scavenging body supply path is connected to the fuel and scavenging body supply path and a casing of the gas turbine, and the fluid extracted from the compartment is
  • the scavenging air flow guide may be a guide
  • the scavenging air flow cooling means may be a plurality of projections provided on the outer periphery of the scavenging air supply path.
  • a plurality of projections are provided as a scavenging body cooling means on the outer periphery of the scavenging body supply path connecting between the fuel and scavenging body supply path and the casing of the gas turbine. Therefore, it is possible to cool the scavenging air flow introduced to the scavenging air flow from the casing to the maximum temperature of about 500 ° C. during gas turbine operation by heat radiation by the projections provided on the outer periphery of the scavenging air flow. .
  • the temperature of the scavenging body can be lowered to less than the self-ignition temperature of the fuel. Therefore, the temperature of the scavenging body leading from the scavenging body supply passage to the fuel and scavenging body supply passage can be cooled to less than the self-ignition temperature of the fuel.
  • the plurality of protrusions may be provided in the vicinity of the inlet of a ventilation fan provided in a gas turbine outer jacket surrounding the gas turbine.
  • a plurality of projections are provided in the vicinity of the inlet of the ventilation fan provided in the gas turbine outer jacket surrounding the gas turbine. Therefore, the air sucked by the ventilation fan and the projections provided on the outer periphery of the scavenging body supply passage can be positively brought into contact with each other. Therefore, the heat release of the scavenging body introduced into the scavenging body supply passage can be promoted.
  • the scavenging body supply passage is connected to the fuel and scavenging body supply passage and a casing of the gas turbine, and the fluid extracted from the casing is
  • the scavenging air flow body may be introduced as a scavenging air flow body
  • the scavenging air flow body cooling means may be a heat exchange means provided on the scavenging air flow path so that the cooling medium and the scavenging air flow exchange heat.
  • the heat exchange means provided on the scavenging air flow path as the scavenging air flow cooling means the high temperature (for example, about 500 ° C.) fluid extracted from the cabin of the gas turbine is heat exchanged with the cooling medium as the scavenging air flow. Therefore, the cooled scavenging body can be introduced to the fuel and scavenging body supply passage. Therefore, the temperature of the scavenging body leading to the fuel and scavenging body supply passage can be cooled to less than the self-ignition temperature of the fuel.
  • the heat exchange means may be a gas turbine cooling air cooler, and the scavenging body may be a part of the fluid cooled by the gas turbine cooling air cooler.
  • a gas turbine driven by high temperature combustion gas extracts high pressure air from a casing and cools the air in a gas turbine cooling air cooler (TCA) to cool the turbine shaft and turbine blades. After cooling through the cooler), it is supplied to the turbine shaft and turbine blades for cooling.
  • TCA gas turbine cooling air cooler
  • a part of the fluid cooled by the gas turbine cooling air cooler is used as the scavenging body. Therefore, it is not necessary to separately provide a heat exchange means for cooling the scavenging body. Therefore, the equipment cost can be reduced.
  • the heat exchange unit may be water-cooled using water as the cooling medium.
  • the scavenging body cooling means may be a compressor that supplies the compressed air to the scavenging body supply passage as the scavenging body.
  • the compressor was used as the scavenging body cooling means. As a result, air pressurized and reduced in temperature by the compressor can be introduced to the scavenging air supply passage as the scavenging air flow. Therefore, it is possible to lead the scavenging body cooled to less than the self-ignition temperature of the fuel to the fuel and scavenging body supply passage.
  • a fuel flow control valve for controlling the flow rate of the fuel and a fuel pressure control for controlling the pressure of the fuel are provided upstream of the fuel and scavenging air supply passage. Atmospheric release provided between the fuel flow control valve and the fuel pressure control valve and releasing the scavenging body introduced between the fuel flow control valve and the fuel pressure control valve to the atmosphere And means may be included.
  • a fuel flow control valve and a fuel pressure control valve are provided between the fuel pressure control valve for controlling the pressure of the fuel provided on the upstream side of the fuel and scavenging air supply passage and the fuel flow control valve for controlling the fuel flow rate. It was decided to provide an atmosphere opening means for releasing the scavenging air introduced into the air to the atmosphere. Therefore, even if the scavenging air flow introduced from the fuel and scavenging air flow path flows in between the fuel flow control valve and the fuel pressure control valve, the air opening means can release the scavenging air to the atmosphere. . Therefore, the fuel can be prevented from mixing into the fuel between the fuel flow control valve and the fuel pressure control valve and exploding.
  • the scavenging body supply path is a scavenging body supply on-off valve downstream of the scavenging body cooling means, the scavenging body cooling means, and the scavenging body supply opening and closing.
  • a scavenging body discharge path branched from between the valve and the scavenging body discharge path, the scavenging body discharge path has a scavenging body discharging on-off valve, and when the gas turbine is started, the scavenging body supply on-off valve is all It is good also as composition closed by closing, and the on-off valve for scavenging body release is made full open.
  • the scavenging body When the temperature of the scavenging body is not sufficiently raised or the scavenging body supply path is not warmed up, for example, when the gas turbine is started, the scavenging body whose temperature has not risen is cooled by the scavenging body cooling means. As a result, the scavenging body may condense to form a drain. After the scavenging air flow containing the drain is supplied to the fuel and scavenging air supply path, if the fuel is supplied to the fuel and scavenging air supply path to operate the gas turbine, the drain mixes with the fuel.
  • the scavenging body supply on-off valve is provided downstream of the scavenging body cooling means, and the scavenging body discharge passage is branched from between the scavenging body supply on-off valve and the scavenging body cooling means. Furthermore, a scavenging body discharge on-off valve is provided with a scavenging body discharge on-off valve, and when the gas turbine is started, the scavenging body supply on-off valve is fully closed to completely open the scavenging body on-off valve. Therefore, the drain generated when starting the gas turbine can be discharged from the scavenging body discharge passage. Therefore, it is possible to prevent the drain from being mixed in the fuel injected from the injection holes through the fuel and scavenging air flow supply path.
  • the scavenging body supply on-off valve is provided at two positions downstream of the scavenging body discharge path, and the scavenging body supply path between the scavenging body supply on-off valve is a scavenging body.
  • the pressure relief passage is branched, and the scavenging fluid pressure relief passage is provided with a scavenging fluid pressure relief on-off valve that operates in conjunction with the movement of at least one of the scavenging fluid supply on-off valves;
  • the depressurizing on-off valve may be fully opened when at least one of the scavenging air supply on-off valves is fully closed.
  • the shutoff of the scavenging body to the fuel and scavenging body supply passage can be performed by fully closing the scavenging body supply on-off valve.
  • two scavenging body supply on-off valves are provided on the scavenging body supply path.
  • the scavenging body supply on-off valve with redundancy, even if a problem occurs in either one of the scavenging body supply on-off valves, the other scavenging body supply on-off valve does not Backflow of fuel from the scavenging air supply passage can be prevented.
  • the scavenging body pressure release path is branched from between the scavenging air flow body supply on-off valves provided at two locations, and the scavenging body pressure release path operates in conjunction with at least one of the scavenging air flow on-off valves. It is decided to provide an on-off valve for depressurizing the scavenging air flow.
  • the fuel can be discharged from the scavenging air flow release passage. Therefore, the gas turbine can be operated safely.
  • the scavenging air supply valve may be provided with an opening degree detecting means for detecting the valve opening degree, a load lowering function for lowering the operation load of the gas turbine, and the operation of the gas turbine
  • a control device having an emergency stop function and the control device determines that the scavenging body supply on-off valve is abnormal based on the valve opening degree detected by the opening degree detecting means. May activate the emergency stop function and / or the load drop function.
  • the scavenging body supply on-off valve is provided with an opening degree detecting means for detecting the valve opening degree, and when the control device determines that the valve opening degree of the scavenging body supply on-off valve is abnormal, The emergency stop function for stopping the operation and / or the load drop function for reducing the operating load of the gas turbine are to be operated.
  • the emergency stop function for stopping the operation and / or the load drop function for reducing the operating load of the gas turbine are to be operated.
  • a temperature detection unit provided downstream of the scavenging air body cooling means for detecting the temperature of the scavenging air flow body derived from the scavenging air flow body cooling means;
  • a control device having a load lowering function to lower the operation load of the turbine, wherein the control device determines that the temperature of the scavenging body detected by the temperature detection means is equal to or higher than the self-ignition temperature of the fuel
  • the load drop function may be activated.
  • the temperature detection means for detecting the temperature of the scavenging body cooled by the scavenging body cooling means is provided downstream of the scavenging body cooling means, and the control device detects the scavenging body temperature higher than the self-ignition temperature of the fuel At the same time, we decided to operate the load drop function to reduce the operating load of the gas turbine.
  • the control device detects the scavenging body temperature higher than the self-ignition temperature of the fuel
  • the control device detects the scavenging body temperature higher than the self-ignition temperature of the fuel
  • an orifice may be provided on the downstream side of the scavenging body discharge on-off valve or on the downstream side of the scavenging air flow on-off valve.
  • An orifice is provided on the downstream side of the scavenging air discharge on-off valve or the scavenging air pressure release on-off valve. Therefore, when supplying the scavenging material to the fuel and scavenging material supply passage, the orifice is not fully closed even if the scavenging material discharge on-off valve or the scavenging fluid pressure release on-off valve is abnormal. Thus, it is possible to limit the flow rate of the scavenging body exhausted to the atmosphere from the scavenging body discharge path or the scavenging body pressure release path.
  • the fuel nozzle for gas turbine is a pilot nozzle to which gaseous fuel is introduced as the fuel, and the fuel and scavenging air supply passage is burned by diffusion method.
  • the gaseous fuel may be supplied, and the gaseous fuel combusted by the premix system may be supplied to the fuel supply path.
  • the scavenging body cooled to less than the self-ignition temperature of the gaseous fuel by the scavenging body cooling means is guided from the scavenging body supply path to the fuel and scavenging body supply path to which the gaseous fuel combusted by the diffusion method is introduced. Therefore, it is possible to prevent the self-ignition due to the gaseous fuel remaining in the fuel and scavenging airstream supply passage, and to prevent the pilot nozzle from being burnt. Therefore, the soundness of the gas turbine can be maintained.
  • control device stops the supply of the scavenging body at the time of load interruption, and increases the flow rate of the fuel supplied to the premixed fuel supply path. It may be
  • the fuel nozzle for a gas turbine is a dual fuel-burning pilot nozzle to which a gaseous fuel or a liquid fuel is introduced as the fuel, and
  • the gaseous fuel combusted by the diffusion method may be supplied, and the liquid fuel combusted by the diffusion method may be supplied to the fuel supply path.
  • the scavenging body cooled to less than the self-ignition temperature of the gaseous fuel by the scavenging body cooling means is introduced from the scavenging body supply path to the fuel and scavenging body supply path to which the gaseous fuel combusted by the diffusion method is supplied. Therefore, in the case of liquid fuel combustion operation of the gas turbine, the self-ignition by the gaseous fuel remaining in the fuel and scavenging air supply passage is conducted by guiding the scavenging air cooled to less than the self-ignition temperature to the fuel and scavenging air flow supply passage. While preventing, it can prevent that a pilot nozzle burns out. Therefore, the soundness of the gas turbine can be maintained.
  • the fuel nozzle for the gas turbine is a gas fuel to be burned by the premixing method as the fuel or the scavenging body is supplied to the fuel and scavenging body supply passage.
  • a plurality of main nozzles may be provided, and the scavenging body may be supplied to a part of the main nozzles according to the operation of the gas turbine.
  • a staging method is used in which a part of the plurality of main nozzles provided in the gas turbine is stopped and combustion is performed using the remaining main nozzles and pilot nozzles, The descent of nitrogen oxides discharged from the gas turbine is achieved.
  • a gas turbine plant includes the gas turbine described in any of the above.
  • a gas turbine outer jacket that surrounds the gas turbine may be provided.
  • the scavenging body cooling means is provided in the vicinity of the inlet of the ventilation fan provided in the gas turbine outer jacket surrounding the gas turbine. Therefore, the scavenging air body cooling means and the air drawn by the ventilation fan can be positively brought into contact with each other. As a result, the radiation of the scavenging air flow introduced into the scavenging air flow path is promoted to prevent self-ignition due to the fuel remaining in the fuel and scavenging air flow path, and the fuel nozzle for the gas turbine is prevented from burning out. can do.
  • the scavenging body cooled to less than the self-ignition temperature of the fuel by the scavenging body cooling means is introduced from the scavenging body supply path to the fuel and scavenging body supply path of the fuel nozzle for the gas turbine. Therefore, it is possible to prevent self-ignition due to the fuel remaining in the fuel and scavenging air stream supply path, and to prevent the fuel nozzle for the gas turbine from being burnt. Therefore, the soundness of the gas turbine can be maintained.
  • FIG. 6 is a partially enlarged layout view showing the arrangement of a scavenging body cooling means provided in the suction port of a ventilation fan provided in a gas turbine enclosure including the gas turbine shown in FIG. 1. It is a timing chart of the valve of the gas turbine shown in FIG. It is a flowchart of sweep operation
  • FIG. 1 The schematic block diagram of the gas turbine which has a scavenging body cooling means which concerns on this embodiment is shown by FIG.
  • a gas turbine (not shown) provided in a gas turbine combined plant (gas turbine plant) uses fuel gas (gaseous fuel) as fuel.
  • the gas turbine has a compressor, a combustor and a turbine not shown.
  • a gas turbine is used as a topping cycle, and a waste heat recovery boiler (HRSG) not shown as a bottoming cycle and a steam turbine (not shown) driven by steam generated by the waste heat recovery boiler It is used.
  • HRSG waste heat recovery boiler
  • the combustor provided in the gas turbine is provided with a pilot nozzle (fuel nozzle for gas turbine) 1 and a plurality of main nozzles 11 arranged on the outer periphery of the pilot nozzle 1.
  • the pilot nozzle 1 supplies fuel gas (fuel) into the air flow in the combustor.
  • the pilot nozzle 1 is formed at a pilot nozzle main body 4 including a plurality of pilot nozzle fuel supply pipes 3 and a plurality of pilot nozzle fuel supply pipes 3 and a tip end portion of the pilot nozzle main body 4 on the downstream side. And an injection hole (injection hole) 7 for the pilot nozzle.
  • the pilot nozzle body 4 is disposed along the flow direction of the air in the combustor.
  • the plurality of pilot nozzle fuel supply pipes 3 contained in the pilot nozzle main body 4 are a premixing fuel supply pipe (fuel supply path) 3a used in the premixing system and a diffusion fuel supply used in the diffusion system. And a pipe (fuel and scavenging air supply body) 3b.
  • Fuel gas (hereinafter referred to as “premixed pilot fuel gas”) is supplied to the premix fuel supply pipe 3a during low load operation and high load operation of the gas turbine.
  • the diffusion fuel supply pipe 3b is supplied with fuel gas (hereinafter, referred to as “diffusion pilot fuel gas”) or air (scavenger) that scavenges the diffusion pilot fuel gas.
  • diffusion pilot fuel gas fuel gas
  • air (scavenger) that scavenges the diffusion pilot fuel gas.
  • a premixed pilot fuel gas or diffusion pilot introduced from each premixed fuel supply pipe 3a or each diffused fuel supply pipe 3b is provided at the downstream end of each premixed fuel supply pipe 3a or each diffused fuel supply pipe 3b.
  • a plurality of pilot nozzle injection holes (injection holes) 7 for injecting a fuel gas are provided.
  • the pilot nozzle injection holes 7a communicating with the premixing fuel supply pipe 3a are provided on the upstream side of the air flow in the combustor than the pilot nozzle injection holes 7b communicating with the diffusion fuel supply pipe 3b. It is done.
  • the pilot nozzle 1 injects the diffusion pilot fuel gas from the diffusion fuel supply pipe 3 b and the premix pilot fuel gas from the premix fuel supply pipe 3 a into the combustor for combustion. Do.
  • only premixed pilot fuel gas is injected from the premixed fuel supply pipe 3a into the combustor for combustion. Such a flame obtained by burning the fuel injected from the pilot nozzle 1 is used as a starting flame of the combustion by the main nozzle 11.
  • the main nozzle 11 supplies a main fuel gas, which is a fuel gas, to the air flow in the combustor.
  • the main nozzle 11 includes a main nozzle fuel supply pipe 13, a main nozzle main body 14 including the main nozzle fuel supply pipe 13, and a main nozzle injection hole formed on the downstream side of the main nozzle main body 14. And 17).
  • the main nozzle body 14 is disposed along the flow direction of the air in the combustor.
  • the main nozzle fuel supply pipe 13 contained in the main nozzle body 14 supplies the main fuel gas used in the premixing system.
  • the downstream end of the main nozzle fuel supply pipe 13 is branched into a plurality, and a plurality of main nozzle injection holes 17 for injecting the main fuel gas led from the main nozzle fuel supply pipe 13 are provided.
  • the main nozzle injection holes 17 communicating with the branched main nozzle fuel supply pipe 13 are in the air flow in the combustor than the pilot nozzle injection holes 7 a and 7 b provided in the pilot nozzle 1. It is provided on the upstream side.
  • the main fuel gas injected into the air flow from the main nozzle fuel supply pipe 13 burns the flame generated by the pilot nozzle 1 as a seed fire.
  • the sweep air supply pipe 21 is provided with two on-off valves 22.
  • the sweep air supply pipe 21 between the two on-off valves 22a and 22b has a plurality of protrusions (scavenging body cooling means) 23 on the outer periphery thereof.
  • a cooling fin is preferable.
  • the plurality of cooling fins (protrusions) 23 provided in the sweep air supply pipe 21 radiates the heat of the high temperature sweep air led to the sweep air supply pipe 21.
  • the cooling fins 23 cool the high temperature sweep air passing through the sweep air supply pipe 21.
  • a plurality of cooling fins 23 are provided on the outer periphery of the sweep air supply pipe 21.
  • the sweeping air is cooled to about 440 ° C. due to the heat radiation from the chamber.
  • the temperature of about 440 ° C. is an example of a value less than the self-ignition temperature (about 445 ° C.) of methane which is the main component of the diffusion pilot fuel gas remaining in the diffusion fuel supply pipe 3 b (see FIG. 1). .
  • the fuel pressure control valve 25 is provided upstream of the fuel flow control valve 24.
  • the opening degree of the fuel pressure control valve 25 and the fuel flow control valve 24 is controlled in accordance with the load state of the gas turbine.
  • the air release means 26 includes an air release pipe 26a branched and connected from between the fuel pressure control valve 25 and the fuel flow control valve 24, and a vent valve 26b provided on the air release pipe 26a. Have. By opening and closing the vent bubble 26b, the fuel pressure control valve 25 and the fuel flow control valve 24 can be communicated with the atmosphere via the atmosphere release pipe 26a.
  • FIG. 2 shows a partially enlarged layout view showing the arrangement of the scavenging body cooling means provided at the inlet of the gas turbine enclosure 28 surrounding the gas turbine.
  • the gas turbine is surrounded at its outer periphery by a gas turbine enclosure (gas turbine outer jacket) 28.
  • the gas turbine enclosure 28 encloses the outer periphery of the casing, the compressor and the combustor of the turbine. This prevents the noise generated by the gas turbine from diffusing around.
  • the gas turbine enclosure 28 is provided with a ventilation fan 30 via a ventilation pipe 29 in order to suppress the temperature rise in the gas turbine enclosure 28.
  • a plurality of ventilation pipes 29 for guiding the air in the gas turbine enclosure 28 to the ventilation fan 30 are provided.
  • Each ventilation pipe 29 is connected to, for example, the upper portion of the gas turbine enclosure 28.
  • an inlet 29 a of a ventilation fan 30 for guiding the air in the gas turbine enclosure 28 to the respective ventilation pipes 29 is formed.
  • the sweep air supply pipe 21 is disposed along the upper portion of the gas turbine enclosure 28 in the gas turbine enclosure 28, and the plurality of cooling fins 23 provided in the sweep air supply pipe 21 is in the vicinity of the suction port 29 a Provided in
  • the cooling fins 23 are disposed in a range including at least one having a shortest distance of 10 cm or less to the suction port 29 a.
  • the air sucked by the ventilation fan 30 and the cooling fins 23 provided on the outer periphery of the sweep air supply pipe 21 can be positively brought into contact with each other.
  • FIG. 3 shows a valve timing chart of the gas turbine shown in FIG.
  • A1 shown in the valve timing chart of FIG. 3 indicates the open / close state of the open / close valve 22a provided in the sweep air supply pipe 21
  • A2 indicates the open / close state of the open / close valve 22b
  • FCV is for diffusion
  • the open / close state of the fuel flow control valve 24 provided on the upstream side of the fuel supply pipe 3b is shown
  • PCV is the open / close state of the fuel pressure control valve 25
  • VV is a vent provided in the air release pipe 26a.
  • SA indicates the on / off state of the sweep operation
  • PGK indicates the injection state of the diffusion pilot fuel gas injected from the diffusion fuel supply pipe 3b according to the load state of the gas turbine.
  • PGY indicates the injection situation of the premixed pilot fuel gas injected from the premixing fuel supply pipe 3a according to the load state of the gas turbine
  • MGY indicates the injection state of the main mix. It shows the injection state of the main fuel gas injected from the Le 11.
  • the on-off valves 22a and 22b provided in the sweep air supply pipe 21, the fuel pressure adjustment valve 25 provided upstream of the diffusion fuel supply pipe 3b, and the fuel The flow control valve 24 and the vent valve 26b are fully closed, and the diffusion pilot fuel gas injected from the diffusion fuel supply pipe 3b, the premixed pilot fuel gas injected from the premix fuel supply pipe 3a, and the main nozzle The injection of the main fuel gas injected from 11 is stopped.
  • the fuel pressure control valve 25 and the fuel flow control valve 24 are opened, and the on-off valves 22a and 22b and the vent valve 26b remain fully closed. Since the fuel pressure control valve 25 and the fuel flow control valve 24 are opened, the diffusion pilot fuel gas is supplied to the diffusion fuel supply pipe 3b.
  • the diffusion pilot fuel gas supplied to the diffusion fuel supply pipe 3b is injected into the air flow in the combustor from the pilot nozzle injection holes 7b communicating with the diffusion fuel supply pipe 3b and burns. Further, the premixed pilot fuel gas is also supplied to the premixed fuel supply pipe 3a, and premixed into the air flow in the combustor from the pilot nozzle injection holes 7a communicated with the premixed fuel supply pipe 3a.
  • the pilot fuel gas is injected and burned.
  • the main fuel gas is injected from the main nozzle 11 and burns, with a flame of the diffusion pilot fuel gas and the premix pilot fuel gas supplied from the diffusion fuel supply pipe 3b and the premix fuel supply pipe 3a serving as a seed fire.
  • the injection of the premixed pilot fuel gas does not have to be substantially simultaneous with the injection of the diffused pilot fuel gas.
  • the injection of the premixed pilot fuel gas may be performed after the injection of the diffused pilot fuel gas.
  • the on-off valves 22a and 22b and the vent valve 26b are opened. Since the open / close valves 22a and 22b are fully opened, the sweep air extracted from the casing of the gas turbine and guided to the sweep air supply pipe 21 is guided to the diffusion fuel supply pipe 3b to diffuse the fuel supply pipe for diffusion The sweep of 3b will be started (turned on). Further, the fuel pressure control valve 25 and the fuel flow control valve 24 are fully closed. Therefore, the injection of the diffusion pilot fuel gas from the diffusion fuel supply pipe 3b is stopped.
  • the high temperature (about 500 ° C.) sweep air extracted from the casing of the gas turbine passes through the sweep air supply pipe 21, a plurality of cooling fins 23 provided on the outer periphery of the sweep air supply pipe 21.
  • the sweep air is cooled to about 440.degree.
  • the temperature of about 440 ° C. is an example of a value less than the self-ignition temperature (about 445 ° C.) of methane which is the main component of the diffusion pilot fuel gas remaining in the diffusion fuel supply pipe 3 b.
  • the cooled sweep air led from the sweep air supply pipe 21 to the diffusion fuel supply pipe 3b is led from the diffusion fuel supply pipe 3b to the pilot nozzle injection hole 7b. Since the cooled sweep air is guided to the diffusion fuel supply pipe 3b, the remaining diffusion pilot fuel gas is prevented from self-ignition, and the flame in the combustor and the high temperature combustion gas are pilot nozzles. Backflow from the injection holes 7b to the diffusion fuel supply pipe 3b can be prevented.
  • the fuel pressure control valve 25 and the fuel flow control valve 24 are opened, and the on-off valves 22a and 22b and the vent valve 26b are fully closed. .
  • the sweep operation is stopped (turned off), and the diffusion pilot fuel gas is supplied to the diffusion fuel supply pipe 3b and injected into the combustor.
  • the injection of the premixed pilot fuel gas and the main fuel gas is continued during low load operation and high load operation of the gas turbine.
  • step S1 A flowchart related to the sweep operation in the valve timing chart shown in FIG. 3 will be described with reference to FIG.
  • the sweep operation of the diffusion fuel supply pipe 3b is started (step S1).
  • step S2 it is determined whether the gas turbine is in a high load operation or a low load operation.
  • step S2 it is determined in step S2 that the gas turbine is in a high load operation
  • the diffusion pilot fuel gas injected from the diffusion fuel supply pipe 3b is stopped (turned off), and from the premixing fuel supply pipe 3a
  • the injected premixed pilot fuel gas is brought into the injection state (ON), and the main fuel gas injected from the main nozzle 11 is brought into the injection state (ON) (step S3).
  • step S3 After the injection states of the diffusion pilot fuel gas, the premixed pilot fuel gas and the main fuel gas are set in step S3, the vent valve 26b provided in the atmosphere open pipe 26a is opened (step S4). Thereafter, the on-off valves 22a and 22b provided in the sweep air supply pipe 21 are opened, and the cooled sweep air is introduced to the diffusion fuel supply pipe 3b. Thus, the sweep operation of the diffusion fuel supply pipe 3b is started (turned on) (step S5).
  • step S2 When it is determined in step S2 that the gas turbine is in a low load operation, the diffusion pilot fuel gas injected from the diffusion fuel supply pipe 3b is put into the injection state (ON), and the premixing fuel supply pipe 3a The injected premixed pilot fuel gas is turned on (on), the main fuel gas injected from the main nozzle 11 is turned on (on) (step S6), and sweeping is performed without sweeping the diffusion fuel supply pipe 3b.
  • the driving operation ends (step S7).
  • a plurality of cooling fins (projections) 23 are provided as the scavenging air body cooling means. Therefore, the sweep air led to the sweep air supply pipe 21 from the compartment having a maximum temperature of about 500 ° C. during the gas turbine operation is cooled by heat radiation by the cooling fins 23 provided on the outer periphery of the sweep air supply pipe 21. be able to. Therefore, the temperature of the sweep air introduced from the sweep air supply pipe 21 to the diffusion fuel supply pipe 3b can be cooled to about 440 ° C. lower than the self-ignition temperature (about 445 ° C.) of the diffusion pilot fuel gas.
  • a plurality of cooling fins 23 provided on the outer periphery of the sweep air supply pipe 21 are arranged It was decided to. Therefore, the air sucked by the ventilation fan 30 can be positively brought into contact with the cooling fins 23 provided on the outer periphery of the sweep air supply pipe 21. Therefore, the heat radiation of the sweep air introduced into the sweep air supply pipe 21 can be promoted.
  • a fuel pressure control valve 25 provided upstream of the diffusion fuel supply pipe 3b for controlling the pressure of the diffusion pilot fuel gas led to the diffusion fuel supply pipe 3b and a fuel flow control for controlling the flow rate of the diffusion pilot fuel gas
  • the air release means 26 for releasing the sweep air introduced between the fuel flow control valve 24 and the fuel pressure control valve 25 to the atmosphere is provided. Therefore, even if the sweep air introduced from the diffusion fuel supply pipe 3b flows between the fuel flow control valve 24 and the fuel pressure control valve 25, the sweep air is released to the atmosphere by the atmosphere opening means 26. be able to. Therefore, sweep air can be prevented from mixing into the diffusion pilot fuel gas between the fuel flow control valve 24 and the fuel pressure control valve 25 to prevent explosion.
  • FIG. 5 shows a schematic configuration diagram of a sweep air scavenging body cooling means introduced to the gas turbine according to the present embodiment.
  • the scavenging air body cooling means supplies compressed air (scavenging air flow body) as sweep air to the sweep air supply pipe (scavenging air flow path supply path) 31 connected to the diffusion fuel supply pipe (fuel and scavenging air stream supply path) 3b. It is an air compressor (compressor) 32 separately provided outside.
  • the sweep air supply pipe 31 connects between the diffusion fuel supply pipe 3 b and the air compressor 32.
  • the sweep air supply pipe 31 is provided with an on-off valve 33 for supplying and blocking the sweep air supplied from the air compressor 32 to the diffusion fuel supply pipe 3 b.
  • the air compressor 32 compresses the sucked air and discharges the air as sweep air to the sweep air supply pipe 31.
  • the sweep air discharged from the air compressor 32 is led to the diffusion fuel supply pipe 3b.
  • the temperature of the sweep air is at most about 60 ° C., which is a value sufficiently lower than the self-ignition temperature of methane which is the main component of the diffusion pilot fuel gas.
  • the air compressor 32 is used as the scavenging body cooling means. Thereby, the air (about 60 ° C.) supplied from the air compressor 32 can be guided as the sweep air (scavenger) to the diffusion fuel supply pipe (fuel and scavenging air supplier supply path) 3b. Therefore, sweep air lower than the self-ignition temperature (about 445 ° C.) of methane which is the main component of the diffusion pilot fuel gas (fuel) can be introduced to the diffusion fuel supply pipe 3b.
  • the present embodiment is different from the first embodiment in that an air compressor and a TCA cooler are used as the scavenging air body cooling means, and the others are the same. Therefore, about the same structure, the same code
  • FIG. 6 the schematic block diagram of the scavenging body cooling means of sweep air guide
  • the scavenging air body cooling means is provided on the sweep air supply pipe (scavenging air body supply path) 41, and heat exchange between the air (cooling medium) and the sweep air (scavenging air body) extracted from the casing 45 of the gas turbine And an air compressor 43 for compressing the sweep air cooled by the TCA cooler 42.
  • an on-off valve 44 for supplying and blocking the sweep air to the diffusion fuel supply pipe (fuel and scavenging air stream supply path) 3b is provided. There is.
  • the TCA cooler 42 (heat exchange means) exchanges heat of high temperature (about 500 ° C.) air extracted from the passenger compartment 45 with air as a cooling medium.
  • the air of about 500 ° C. extracted from the passenger compartment 45 is cooled to, for example, about 200 ° C., and is discharged from the TCA cooler 42.
  • a portion of the extracted air that has been heat exchanged with air in the TCA cooler 42 and cooled to about 200 ° C. is led from the sweep air supply pipe 41 to the air compressor 43 as sweep air.
  • the remaining extracted air is used to cool the gas turbine's turbine shaft (not shown) and turbine blades (not shown).
  • the air compressor 43 supplies the sweep air cooled to about 200 ° C. by the TCA cooler 42 to the sweep air supply pipe 41 downstream of the air compressor 43.
  • one air compressor 43 is provided.
  • the sweep air supplied by the air compressor 43 is drained from the sweep air by passing through a drain separator (not shown).
  • the drain removed from the sweep air is drained out of the sweep air supply pipe 41 from the drain valve 46 provided on the sweep air supply pipe 41.
  • the gas turbine according to the present embodiment and the gas turbine combined plant provided with the same, the following effects can be obtained.
  • a TCA cooler (heat exchange means, gas turbine cooling air cooler) 42 as the scavenging air body cooling means
  • high temperature (for example, about 500 ° C.) air extracted from the casing 45 of the gas turbine is air (cooling medium) and heat I decided to exchange it. Therefore, the air cooled by the TCA cooler 42 (about 200 ° C.) is used as sweep air (scavenger) from the sweep air supply pipe (scavenger body supply path) 41 to the diffusion fuel supply pipe (fuel and scavenging body supply path) 3b. It can lead to. Therefore, the temperature of the sweep air introduced to the diffusion fuel supply pipe 3b can be cooled to about 400 ° C. lower than the self-ignition temperature (about 445 ° C.) of methane which is the main component of the diffusion pilot fuel gas (fuel).
  • a portion of the air (fluid) cooled by the TCA cooler 42 is used as the sweep air. Therefore, it is not necessary to separately provide heat exchange means for cooling the sweep air. Therefore, the equipment cost can be reduced.
  • the sweep air drawn from the TCA cooler 42 is described as being supplied to the sweep air supply pipe 41 on the downstream side of the air compressor 43 via the air compressor 43, but the present invention is not limited thereto.
  • the air compressor 43 may not be provided.
  • the present invention is not limited to this, and the steam or the like led from an exhaust heat recovery boiler provided in the gas turbine combined plant Also good.
  • the present embodiment is different from the first embodiment in that the main nozzle and the pilot nozzle are dual-type in which fuel oil or fuel gas is injected. Therefore, about the same structure, the same code
  • the schematic block diagram of the gas turbine provided with the scavenging body cooling means which concerns on this embodiment is shown by FIG.
  • the pilot nozzle (fuel nozzle for gas turbine) 51 is a dual fuel-burning pilot nozzle that selectively supplies fuel oil (liquid fuel) and fuel gas (gas fuel) into the air flow in the combustor.
  • the pilot nozzle 51 is formed at a pilot nozzle main body 54 including a pilot nozzle fuel supply pipe 53, a plurality of pilot nozzle fuel supply pipes 53, and a tip end of the pilot nozzle main body 54 on the downstream side. And a pilot nozzle injection hole (injection hole) 57.
  • the pilot nozzle body 54 is disposed along the flow direction of the air in the combustor.
  • the pilot nozzle fuel supply pipe 53 contained in the pilot nozzle main body 54 supplies the fuel used in the diffusion method.
  • the pilot nozzle fuel supply pipe 53 is a diffusion fuel oil supply pipe (fuel supply path) 53a to which fuel oil (hereinafter, referred to as “diffusion pilot fuel oil”) is supplied during the oil-burning operation of the gas turbine.
  • Fuel gas hereinafter referred to as “diffusion pilot fuel gas” is supplied at the time of gas turbine operation of the gas turbine, and for diffusion where sweep air (scavenger) is supplied at the time of oil turbine operation of the gas turbine
  • a fuel gas supply pipe (fuel and scavenging gas supply path) 53b is a fuel gas supply pipe (fuel and scavenging gas supply path) 53b.
  • each diffusion fuel oil supply pipe 53a or each diffusion fuel gas supply pipe 53b is a diffusion pilot fuel oil or diffusion pilot led from each diffusion fuel oil supply pipe 53a or each diffusion fuel gas supply pipe 53b.
  • a plurality of pilot nozzle injection holes 57 for injecting fuel gas are provided.
  • the pilot nozzle injection hole 57b in communication with the diffusion fuel gas supply pipe 53b is on the downstream side of the air flow in the combustor than the pilot nozzle injection hole 57a in communication with the diffusion fuel oil supply pipe 53a. It is provided.
  • the pilot nozzle 51 injects diffusion pilot fuel gas into the combustor from the diffusion fuel gas supply pipe 53b and burns it during gas burning operation of the gas turbine.
  • the diffusion pilot fuel oil is injected from the diffusion fuel oil supply pipe 53a into the combustor for combustion.
  • the main nozzle 61 supplies a main fuel oil, which is liquid fuel, or a main fuel gas, which is gaseous fuel, to an air flow in the combustor.
  • the main nozzle 61 includes a main nozzle main body 64 including a main nozzle fuel gas supply pipe 66, a main nozzle fuel oil supply pipe 63 and a main nozzle fuel gas supply pipe 66, and a main nozzle fuel oil supply.
  • a tube 63 and a main nozzle injection hole 67 formed at the downstream end of the main nozzle main body 64 are provided.
  • the main nozzle body 64 is disposed along the flow direction of the air in the combustor.
  • the main nozzle fuel oil supply pipe 63 contained in the main nozzle main body 64 supplies the main fuel oil by a premixing method at the time of the oil-burning operation.
  • the main nozzle fuel gas supply pipe 66 contained in the main nozzle main body 64 supplies the main fuel gas by the premixing method at the time of the gas heating operation.
  • the downstream end of the main nozzle fuel oil supply pipe 63 branches into two and is in communication with the main nozzle injection hole 67a, and supplies the main fuel oil into the air flow.
  • the downstream end of the main nozzle fuel gas supply pipe 66 is branched into a plurality and communicated with the main nozzle injection holes 67b to supply the main fuel gas.
  • FIG. 8 shows a valve timing chart of the gas turbine shown in FIG.
  • A1 shown in the valve timing chart of FIG. 8 indicates the open / close state of the on-off valve 22a provided in the sweep air supply pipe (scavenger body supply path) 21, A2 indicates the open / close state of the on-off valve 22b , FCV indicates the open / close state of the fuel flow control valve 24 provided on the upstream side of the diffusion fuel gas supply pipe 53b, PCV indicates the open / close state of the fuel pressure control valve 25, and VV indicates the open air pipe 26 shows the open / close state of the vent valve 26b provided in 26a, SA indicates the on / off state of the sweep operation, and PGK is injected from the diffusion fuel gas supply pipe 53b according to the load state of the gas turbine POK indicates the injection state of the diffusion pilot fuel gas, and POK indicates the injection state of the diffusion pilot fuel oil injected from the diffusion fuel oil supply pipe 53a according to the load state of the gas turbine.
  • MGY indicates the injection state of the main fuel gas injected from the main nozzle fuel gas supply pipe 66, and MOY
  • the fuel pressure control valve 25 and the fuel flow control valve 24 are opened, and the on-off valves 22a and 22b and the vent valve 26b are closed. Since the fuel pressure control valve 25 and the fuel flow control valve 24 are opened, the diffusion pilot fuel gas is supplied to the diffusion fuel gas supply pipe 53b.
  • the diffusion pilot fuel gas supplied to the diffusion fuel gas supply pipe 53b is injected into the air flow in the combustor from the pilot nozzle injection holes 57b communicating with the diffusion fuel gas supply pipe 53b and burns. Further, the main fuel gas is also supplied to the main nozzle fuel gas supply pipe 66, and the flame in which the diffusion pilot fuel gas is burned is burned as a seed fire. The injection of the diffusion pilot fuel oil and the main fuel oil is stopped.
  • the on-off valves 22a and 22b and the vent valve 26b provided in the sweep air supply pipe 21 are opened. Since the on-off valves 22a and 22b are opened, the sweep air extracted from the casing of the gas turbine and guided to the sweep air supply pipe 21 is guided to the diffusion fuel gas supply pipe 53b to diffuse the fuel gas for diffusion. The sweep of the supply pipe 53b is started (turned on). Also, the fuel pressure control valve 25 and the fuel flow control valve 24 are closed. Therefore, the injection of the diffusion pilot fuel gas from the diffusion fuel gas supply pipe 53b is stopped.
  • the cooled (for example, about 400 ° C.) swept air introduced from the sweep air supply pipe 21 to the diffusion fuel gas supply pipe 53b is introduced from the diffusion fuel gas supply pipe 53b to the pilot nozzle injection hole 57b. Since the cooled sweep air is introduced to the diffusion fuel gas supply pipe 53b, the self-ignition of methane, which is the main component of the remaining diffusion pilot fuel gas, is prevented, and a flame or the like in the combustor can be prevented. It is possible to prevent the high temperature combustion gas from flowing back from the pilot nozzle injection hole 57b to the diffusion fuel gas supply pipe 53b. The injection of the diffusion pilot fuel gas and the main fuel gas is stopped.
  • the fuel pressure control valve 25 and the fuel flow control valve 24 are opened, and the on-off valves 22a and 22b and the vent valve 26b are closed.
  • the diffusion pilot fuel gas is supplied to the diffusion fuel gas supply pipe 53b and injected from the pilot nozzle injection holes 57b into the combustor.
  • the main fuel gas is supplied to the main nozzle fuel gas supply pipe 66 and injected from the main nozzle injection holes 67b into the combustor. The injection of the diffusion pilot fuel oil and the main fuel oil is stopped.
  • step S11 A flowchart related to the sweep operation in the valve timing chart shown in FIG. 8 will be described with reference to FIG.
  • the sweep operation of the diffusion fuel gas supply pipe 53b is started (step S11).
  • step S12 it is determined whether the gas turbine is an oil-fired operation or a gas-fired operation (step S12).
  • step S12 the injection of the diffusion pilot fuel gas and the main fuel gas is stopped (off), and the diffusion pilot fuel oil and the main fuel oil are injected ( It turns on (step S13).
  • step S13 After the injection states of the diffusion pilot fuel gas, the main fuel gas, the diffusion pilot fuel oil and the main fuel oil are set in step S13, the vent valve 26b provided in the atmosphere open pipe 26a is opened (step S14). Thereafter, the on-off valves 22a and 22b provided in the sweep air supply pipe 21 are opened, and the cooled sweep air is introduced to the diffusion fuel gas supply pipe 53b. Thereby, the sweep operation of the diffusion fuel gas supply pipe 53b is started (turned on) (step S15).
  • step S12 When it is determined in step S12 that the gas turbine is in the gas firing mode, the injected diffusion pilot fuel oil and the main fuel oil are stopped (off), and the injected diffusion pilot fuel gas and the main fuel gas are Into the injection state (ON) (step S16), and the sweep operation ends without sweeping the diffusion fuel gas supply pipe 53b (step S17).
  • the cooling fin (scavenging body cooling means) 23 self-ignites methane which is the main component of the diffusion pilot fuel gas (gas fuel).
  • the sweep air cooled to less than the self-ignition temperature is guided to the sweep air supply pipe 21 so that the inside of the diffusion fuel gas supply pipe 53b is As a result, it is possible to prevent self-ignition due to methane which is the main component of the remaining diffusion pilot fuel gas, and to prevent burning of the pilot nozzle (fuel nozzle for gas turbine) 51. Therefore, the soundness of the gas turbine can be maintained.
  • FIG. 10 shows a schematic configuration diagram of a gas turbine provided with a scavenging body cooling means according to the present embodiment.
  • FIG. 11 is a schematic cross-sectional view of the combustor of the gas turbine shown in FIG.
  • a pilot nozzle 71 and a plurality of (for example, eight) main nozzles (fuel nozzles for gas turbine) disposed around the pilot nozzle 71 And 81) are provided.
  • the eight main nozzles 81 are a staging method in which the main fuel gas (fuel) injection is selectively stopped and started.
  • the pilot nozzle fuel supply pipe 73 provided in the pilot nozzle 71 is used in the diffusion method to supply a fuel gas (hereinafter referred to as "pilot fuel gas").
  • the pilot fuel gas supplied to the pilot nozzle fuel supply pipe 73 is injected from a pilot nozzle injection hole 77 provided on the downstream side of the pilot nozzle fuel supply pipe 73.
  • the main nozzle 81 supplies a main fuel gas (gaseous fuel), which is a fuel, to the air flow in the combustor 90 (see FIG. 11) in a premixed system.
  • the main nozzle 81 is disposed along the flow direction of the air in the combustor 90, including the main nozzle fuel supply pipe (fuel and scavenging air flow body supply path) 83 and the main nozzle fuel supply pipe 83.
  • the main nozzle main body 84 and the main nozzle injection holes 87 (injection holes) formed on the downstream side of the main nozzle main body 84 are provided.
  • the downstream end of the main nozzle fuel supply pipe 83 is branched into a plurality, and a plurality of main nozzle injection holes 87 for injecting the main fuel gas led from the main nozzle fuel supply pipe 83 are provided.
  • the main nozzle injection holes 87 communicating with the branched main nozzle fuel supply pipe 83 are provided on the upstream side of the air flow in the combustor 90 than the pilot nozzle injection holes 77 provided in the pilot nozzle 71. It is done.
  • the main fuel gas injected into the air flow from the main nozzle fuel supply pipe 83 burns the flame generated by the pilot nozzle 71 as a seed fire.
  • a sweep air supply pipe 21 for guiding high temperature air (for example, about 500 ° C.) extracted from a casing (not shown) of a gas turbine as sweep air (scavenger). It is done.
  • the sweep air supply pipe 21 is provided with two on-off valves 22.
  • the sweep air supply pipe 21 between the two on-off valves 22a and 22b has a plurality of cooling fins (scavenger cooling means) 23 on its outer periphery.
  • the plurality of cooling fins 23 provided in the sweep air supply pipe 21 radiate the heat of the high temperature sweep air led to the sweep air supply pipe 21.
  • the cooling fins 23 cool the high temperature sweep air passing through the sweep air supply pipe 21.
  • An atmosphere opening means 26 for opening the air to the atmosphere is provided.
  • FIG. 12 shows a valve timing chart of the gas turbine shown in FIG. 10 and FIG.
  • A1 shown in the valve timing chart of FIG. 12 indicates the open / close state of the on-off valve 22a provided in the sweep air supply pipe 21
  • A2 indicates the open / close state of the on-off valve 22b
  • FCV indicates the main nozzle
  • PCV indicates the open / close state of the fuel pressure control valve 25
  • VV is provided in the atmosphere release pipe 26a
  • SA indicates the on / off state of the sweep operation
  • PGK indicates the injection state of the pilot fuel gas injected from the pilot nozzle 71
  • MGY is the load state of the gas turbine Accordingly, the injection state of the main fuel gas injected from the main nozzle 81 is shown.
  • j attached to A1, A2, FCV, PCV, VV, SA, and MGY shown in FIG. 12 is staging performed in the staging method in which the main fuel gas is selectively injected from the main nozzle 81.
  • the main fuel gas injection is stopped and started, and similarly attached i indicates that the main fuel gas injection does not stop even when staging is performed. It shows that it is the nozzle 81i.
  • FIG. 10 shows a main nozzle 81 j at the upper side of the drawing, and in FIG. 11, for example, three main nozzles on the right side of the drawing. (A white cross) 81j is shown. Further, as the main nozzle 81 which does not stop the injection of the main fuel gas even when staging is performed, FIG. 10 shows the main nozzle 81i at the lower side of the drawing, and in FIG. The five main nozzles 81i (white out) are shown.
  • the vent valves 26bi and 26bj are closed, and the injection of the pilot fuel gas injected from the pilot nozzle 71 and the injection of the main fuel gas injected from the main nozzles 81i and 81j are stopped.
  • the fuel pressure control valves 25i, 25j and the fuel flow control valves 24i, 24j are opened, and the on-off valves 22ai, 22aj, 22bi, 22bj and the vent valve 26bi and 26bj are closed. Since the fuel pressure control valves 25i, 25j and the fuel flow control valves 24i, 24j are opened, the main fuel gas is injected from all the main nozzles 81i, 81j and burned. In this case, the pilot fuel gas is injected from the pilot nozzle 71, and the main nozzles 81i and 81j become the start fire.
  • the injection of the main fuel gas from the main nozzle 81j is stopped, and the combustion is performed by the injection of the main fuel gas from the main nozzle 81i and the injection of the pilot fuel from the pilot nozzle 71. .
  • the fuel pressure control valve 25j and the fuel flow control valve 24j of the main nozzle 81j are closed, and the supply of the main fuel gas is stopped. Further, the on-off valves 22aj and 22bj and the vent valve 26bj of the main nozzle 81j are opened. Since the on-off valves 22aj and 22bj are opened, sweep air extracted from the casing of the gas turbine and guided to the sweep air supply pipe 21 connected to the main nozzle 81j is used as fuel for the main nozzle of the main nozzle 81j. It leads to the supply pipe 83, and sweeping of the main nozzle fuel supply pipe 83 is started (turned on).
  • the fuel pressure control valve 25i and the fuel flow control valve 24i of the main nozzle 81i are in the open state, and the main fuel gas injected from the main nozzle 81i is in the injection state. Further, since the on-off valves 22ai and 22bi and the vent valve 26bi of the main nozzle 81i are closed, the sweep air is not guided to the main nozzle fuel supply pipe 83 of the main nozzle 81i.
  • the injection of the main fuel gas from the main nozzle 81j is stopped, the sweep air is guided to the main nozzle 81j, and the main fuel gas is injected from the main nozzle 81i.
  • burnout of the main nozzle 81 j can be prevented.
  • the fuel pressure control valves 25i, 25j and the fuel flow control valves 24i, 24j are opened, and the on / off valves 22ai, 22aj, 22bi, 22bj and the vent valves 26bi, 26bj are It is closed.
  • a pilot fuel gas is injected into the combustor 90 from the pilot nozzle fuel supply pipe 73 of the pilot nozzle 71.
  • the fuel pressure control valves 25i, 25j and the fuel flow control valves 24i, 24j are opened, the main fuel gas is injected from the main nozzle fuel supply pipe 83 of each of the main nozzles 81i, 81j.
  • step S31 A flowchart related to the sweep operation in the valve timing chart shown in FIG. 12 will be described with reference to FIG.
  • the sweep operation of the main nozzle 81j is started (step S31).
  • step S32 it is determined whether the gas turbine is in the staging operation (step S32).
  • step S32 it is determined that the gas turbine is in the staging operation, the pilot fuel gas injected from the pilot nozzle 71 is injected (turned on), and the main fuel gas injected from the main nozzle 81j is stopped ( The main fuel gas injected from the main nozzle 81i is switched to the injection state (on) (step S33).
  • step S34 the vent valve 26bj of the main nozzle 81j is opened (step S34).
  • step S34 the on-off valves 22aj and 22bj of the main nozzle 81j are opened, and the cooled sweep air is introduced to the main nozzle fuel supply pipe 83 of the main nozzle 81j.
  • step S 35 the sweep operation of the main nozzle fuel supply pipe 83 of the main nozzle 81 j is started (turned on) (step S 35).
  • step S32 If it is determined in step S32 that the gas turbine is not in the staging operation, the pilot fuel gas injected from the pilot nozzle 71 and the main fuel gas injected from all the main nozzles 81i and 81j are turned on (on). Then (step S36), the sweep operation ends without sweeping the main nozzle 81j (step S37).
  • the main nozzle fuel supply pipe (fuel and scavenging airstream supply path) 83 of the main nozzle (fuel nozzle for gas turbine) 81j which has stopped the injection of the main fuel gas (fuel) 83 To supply cooled sweep air (scavenger). Therefore, the self-ignition due to methane which is the main component of the main fuel gas remaining in the main nozzle fuel supply pipe 83 of the main nozzle 81j which has stopped the injection of the main fuel gas is prevented to burn the main nozzle 81j. Can be prevented. Therefore, the soundness of the gas turbine can be maintained.
  • FIG. 14 shows a schematic configuration diagram of a sweep air scavenging body cooling means introduced to the gas turbine according to the present embodiment.
  • a sweep air for example, about 500 ° C.
  • two on-off valves scavenger body supply on-off valves 22 are provided on the downstream side of the cooling fins (scavenger body cooling means) 23.
  • the casing 45 side is the sweep air cutoff valve 22b
  • the diffusion fuel supply pipe 3b side is the sweep air supply valve 22a.
  • the sweep air supply valve 22a and the sweep air shutoff valve 22b are fully open when the sweep air is supplied to the diffusion fuel supply pipe 3b, that is, when the sweep operation is on, and the sweep operation is off. Is fully closed.
  • Each of the sweep air supply valve 22a and the sweep air shutoff valve 22b is provided with two limit switches (opening degree detecting means) (not shown) for detecting the degree of opening of the valves. These limit switches detect the valve opening degree of each of the valves 22a and 22b, that is, detects whether the valve is fully open or fully closed, and transmits a signal of the valve opening degree to the control device 94 described later. is there.
  • a plurality of cooling fins 23 are provided on the outer periphery of a sweep air supply pipe 21 which connects between the sweep air shutoff valve 22 b and the casing 45.
  • a warming pipe 97 and a drain pipe (scavenger body discharge path) 91 are branched from between the cooling fin 23 and the sweep air shutoff valve 22b.
  • a hollow pipe (scavenge air flow venting path) 92 is branched and connected to the sweep air supply pipe 21 connecting the sweep air shutoff valve 22b and the sweep air supply valve 22a.
  • the warming pipe 97 is open to the atmosphere or connected to the exhaust side of the gas turbine.
  • the warming pipe 97 is provided with a sweep warming valve (a scavenging body discharge on-off valve) 97a that operates in conjunction with the movement of the sweep air supply valve 22a and / or the sweep air shutoff valve 22b, and an orifice 97b. There is.
  • a sweep warming valve a scavenging body discharge on-off valve
  • the sweep warming valve 97a is an on-off valve that discharges sweep air from the warming pipe 97, and when the sweep operation is off (that is, the sweep air supply valve 22a and / or the sweep air shutoff valve 22b is fully closed). It is fully open, and is fully closed when the sweep operation is on (ie, the sweep air supply valve 22a and the sweep air shutoff valve 22b are fully open). By this, it is possible to warm the inside of the sweep air supply pipe 21 when the sweep operation is in the off state, and it is possible to suppress the occurrence of condensation.
  • the orifice 97 b is provided on the downstream side of the sweep warming valve 97 a.
  • the orifice 97 b limits the flow rate of sweep air exhausted from the warming pipe 97 to the atmosphere.
  • the drain pipe 91 is opened vertically downward.
  • the drain pipe 91 is provided with a sweep drain valve (scavenger body discharge on / off valve) 91a and an orifice 91b that operate in conjunction with the movement of the sweep air supply valve 22a and / or the sweep air shutoff valve 22b.
  • a sweep drain valve suppressenger body discharge on / off valve
  • the sweep drain valve 91a is an on-off valve that discharges the drain generated in the sweep air supply pipe 21 from the drain pipe 91, and is fully opened immediately after the gas turbine is started (up to 10% of the rated rotation speed). After the start is stabilized, it is fully closed. As a result, drain generated in the sweep air supply pipe 21 can be discharged from the warming pipe 91 to the outside.
  • the orifice 91b is provided on the downstream side of the sweep drain valve 91a.
  • the orifice 91 b is to limit the flow rate of drain drained from the drain pipe 91 to the outside together with the drain.
  • the hollowing pipe 92 has one end open to the atmosphere, and sweeps air or backflows diffusion pilot fuel gas (fuel) into the atmosphere from a position between the sweep air shutoff valve 22b and the sweep air supply valve 22a in the event of a valve abnormality described later. Discharge into the atmosphere
  • a sweep air diffusion valve (a scavenging fluid pressure release on-off valve) 92a that operates in conjunction with the movement of the sweep air supply valve 22a or the sweep air shutoff valve 22b (at least one of them) and an orifice 92b And are provided. That is, the sweep air diffusion valve 92a is an on-off valve for discharging the sweep air or backflowing diffusion pilot fuel gas from the hollow pipe 92 at the time of a valve abnormality described later.
  • the sweep operation is fully open when the sweep operation is off. When the operation is on, it is fully closed.
  • the orifice 92b is provided downstream of the sweep air diffusion valve 92a.
  • the orifice 92b is to limit the flow rate of the fluid released from the open end of the hollow pipe 92 to the atmosphere when the sweep air supply valve 22a or the sweep air shutoff valve 22b is abnormal (for example, when it is not completely closed). is there.
  • a temperature sensor (temperature detecting means) 93 is provided in the sweep air supply pipe 21 downstream of the cooling fin 23 and connecting the sweep air shutoff valve 22 b and the warming pipe 91. There is.
  • the temperature sensor 93 detects the temperature of the sweep air downstream of the plurality of cooling fins 23 and transmits a signal to the control device 94.
  • the control device 94 has an automatic load lowering function (load lowering function) for reducing the operating load of the gas turbine and an automatic stop function (emergency stop function) for stopping the operation of the gas turbine. Further, the control device 94 opens the sweep air supply valve 22a, the sweep air shutoff valve 22b, the fuel flow control valve 24, the fuel pressure control valve 25, the sweep warming valve 97a, the sweep drain valve 91a, and the sweep air diffusion valve 92a. Control.
  • the gas turbine is started.
  • the temperature of the sweep air flowing from the casing 45 to the sweep air supply pipe 21 is not sufficiently increased.
  • the sweep air extracted from the passenger compartment 45 in such a state is cooled by the plurality of cooling fins 23
  • the sweep air may be condensed to generate a drain. Therefore, the drain in the sweep air can be discharged from the open end of the drain pipe 91 by fully opening the sweep drain valve 91 a provided in the drain pipe 91.
  • the sweep air flows in the sweep air supply pipe 21 when the sweep warming valve 97a is open, the temperature of the sweep air supply pipe 21 can be sufficiently raised, and the occurrence of condensation can be suppressed. Can.
  • the sweep drain valve 91a is fully closed when a predetermined time has elapsed since the rotation speed of the started gas turbine has reached, for example, 10% of the rated rotation speed. Thereafter, the fuel pressure control valve 25 and the fuel flow control valve 24 are opened, and the diffusion pilot fuel gas is supplied to the diffusion fuel supply pipe 3b. As a result, the rotational speed of the gas turbine is increased (or increased).
  • FIG. 15 shows a valve timing chart during load operation of the gas turbine shown in FIG. A1 shown in the valve timing chart of FIG. 15 indicates the open / close state of the sweep air supply valve 22a provided in the sweep air supply pipe 21, A2 indicates the open / close state of the sweep air shutoff valve 22b, A3.
  • FCV indicates the open / close state of the fuel flow control valve 24 provided on the upstream side of the diffusion fuel gas supply pipe 3b
  • PCV indicates the fuel pressure control valve 25.
  • PGK indicates the injection state of the diffusion pilot fuel gas injected from the diffusion fuel gas supply pipe 3b according to the load state of the gas turbine
  • PGY indicate the injection situation of the premixed pilot fuel gas injected from the premixed fuel supply pipe 3a according to the load state of the gas turbine
  • MGY Shows the injection state of the main fuel gas injected from N'nozuru 11
  • B1 indicates the closed state of the sweep drain valve 91a
  • W represents the sweep warming valve 97a.
  • the sweep air diffusion valve 92a and the sweep warming valve 97a are fully opened, and when the gas turbine is in a high load operation, the sweep air diffusion valve 92a and the sweep warming valve 97a. Is the fully closed state, and in the low load operation and the high load operation of the gas turbine, the same as in the first embodiment except that the sweep drain valve 91a is in the fully closed state.
  • FIG. 16 shows a flowchart related to the sweep operation in the valve timing chart shown in FIG. This flowchart is the same as FIG. 4 except that step S4 in FIG. 4 of the first embodiment is omitted.
  • the temperature sensor 93 which has detected the temperature of the sweep air transmits the signal to the control device 94. Based on this signal, the controller 94 determines whether the detected temperature of the sweep air is equal to or higher than the self-ignition temperature of the diffusion pilot fuel gas.
  • the control device 94 determines that the temperature of the sweep air is equal to or higher than the self-ignition temperature of the diffusion pilot fuel gas, the control device 94 operates an automatic load lowering function (not shown).
  • the operation load of the gas turbine is reduced by operating the automatic load lowering function.
  • the lowering of the operating load of the gas turbine lowers the temperature of the sweep air extracted from the passenger compartment 45.
  • the temperature-reduced sweep air is guided to the diffusion fuel supply pipe 3 b through the sweep air supply pipe 21.
  • control device 94 determines that the temperature of the sweep air extracted from the casing 45 of the gas turbine whose operating load has dropped is not lower than the self-ignition temperature of the diffusion pilot fuel gas, the control device 94 Activates the automatic stop function (not shown).
  • valve opening degree signal transmitted to the control device 94 from both of the two limit switches provided in the sweep air supply valve 22a the valve opening degree of the sweep air supply valve 22a or the sweep air shutoff valve 22b is fully opened. If the control device 94 determines that the condition is not (abnormal), the pilot nozzle 1 may be damaged if the gas turbine is operated for a long time in a state where the sweep air amount as it is is insufficient.
  • the control device 94 determines that the sweep air supply valve 22a or the sweep air shutoff valve 22b is abnormal when sweep air is supplied, the automatic load lowering function is activated, and the sweep air supply valve 22a and the sweep air supply valve 22a The sweep air shutoff valve 22b is fully closed, and the sweep air diffusion valve 92a is fully open.
  • the operating load of the gas turbine can be reduced and thereafter the operation of the gas turbine can be stopped to prevent damage to the pilot nozzle 1.
  • the controller 94 determines (abnormal), the dual shutoff function of the on-off valves 22a and 22b provided in the sweep air supply pipe 21 is lost. That is, there is a possibility that the diffusion pilot fuel gas supplied to the diffusion fuel supply pipe 3 b flows backward from the sweep air supply pipe 21 to the vehicle compartment 45.
  • the control device 94 determines that the sweep air supply valve 22a and the sweep air shutoff valve 22b are abnormal at the time of sweep air removal, the automatic stop function is activated, and the sweep air supply valve 22a and sweep The air shutoff valve 22b is fully closed, and the sweep air diffusion valve 92a is fully open. As a result, the operation of the gas turbine can be stopped to ensure the soundness of the gas turbine.
  • the sweep air diffusion valve 92a since the sweep air diffusion valve 92a is fully opened, the diffusion pilot fuel gas flowing back from the diffusion fuel supply pipe 3b to the sweep air supply pipe 21 can be discharged from the hollow pipe 92.
  • the controller 94 decreases the flow rate of the premixed pilot fuel gas and is provided upstream of the diffusion fuel supply pipe 3b.
  • the valve openings of the fuel flow control valve 24 and the fuel pressure control valve 25 are increased.
  • the combustion can be switched to the diffusion pilot fuel gas while the flame is stabilized.
  • the predetermined time for increasing the flow rate of the premixed pilot fuel gas is a time during which the rotational speed of the gas turbine is stabilized, and is, for example, 60 seconds.
  • An on-off valve (scavenging body supply on-off valve) 22 is provided on the sweep air supply pipe (scavenging body supply path) 21 on the downstream side of the cooling fin (scavenging body cooling means) 23, and the on-off valve 22 and the cooling fin 23 are provided.
  • the drain pipe (scavenger body discharge path) 91 is branched from the connected sweep air supply pipe 21.
  • the drain pipe 91 is provided with a sweep drain valve (a scavenging body discharge on-off valve) 91a, and when the gas turbine (not shown) is activated, the on-off valve 22 is fully opened with the sweep drain valve 91a fully open. I decided to make it a closed state. Therefore, drain generated when the gas turbine is started can be discharged from the drain pipe 91. Therefore, it is possible to prevent the drain from being mixed in the diffusion pilot fuel gas (fuel) injected from the pilot nozzle injection hole (injection hole) 7b through the diffusion fuel supply pipe (fuel and scavenging air flow body supply passage) 3b. it can.
  • a sweep drain valve a scavenging body discharge on-off valve
  • the sweep air supply valve (opener valve for supplying scavenging air flow) 22a and the open / close valve for sweep air supply (opened valve for supplying air scavenging air) 22b Provided in two places.
  • the other on-off valves 22a and 22b diffuse the fuel supply pipe for diffusion. It is possible to prevent the backflow of the diffusion pilot fuel gas from 3 b through the sweep air supply pipe 21 to the casing 45.
  • the sweep warming valve 97a is provided.
  • the sweep warming valve 97a is fully opened when the sweep operation is off, and is fully closed when the sweep operation is on. By this, it is possible to warm the inside of the sweep air supply pipe 21 to an off state of the sweep operation, and it is possible to suppress the occurrence of condensation.
  • a sweep air supply pipe 21 connecting between the sweep air supply valve 22a and the sweep air shutoff valve 22b is branched into a hollow pipe (scavenging fluid pressure discharge path) 92 so that the hollow air pipe 92 receives sweep air.
  • a sweep air diffusion valve (a scavenging air valve pressure release on-off valve) 92a that operates in conjunction with the supply valve 22a (at least one of them) is provided.
  • the sweep air supply valve 22a and the sweep air shutoff valve 22b are provided with limit switches (opening degree detecting means) capable of detecting the valve opening degree. Furthermore, when the sweep air is supplied to the diffusion fuel supply pipe 3b, the control device 94 determines that the valve opening degree of the sweep air supply valve 22a or the sweep air shutoff valve 22b is not fully open (abnormal) In order to reduce the operating load of the gas turbine, we decided to operate an automatic load drop function (load drop function). As a result, it is possible to prevent the pilot nozzle (nozzle) 1 of the gas turbine from being damaged due to the shortage of the sweep air introduced to the diffusion fuel supply pipe 3b, thereby preventing the operation of the gas turbine from being disturbed.
  • limit switches opening degree detecting means
  • a temperature sensor (temperature detection means) 93 for detecting the temperature of the sweep air (scavenger) cooled by the cooling fins 23 is provided in the sweep air supply pipe 21 on the downstream side of the cooling fins 23, and the control device 94
  • the sensor 93 detects the temperature of sweep air higher than the self-ignition temperature of the diffusion pilot fuel gas
  • the automatic load lowering function (not shown) is activated.
  • the temperature of the sweep air led to the diffusion fuel supply pipe 3b becomes equal to or higher than the self-ignition temperature of the diffusion pilot fuel gas due to a failure of the cooling fins 23, etc.
  • the temperature of the sweep air extracted from the passenger compartment 45 of can be reduced.
  • the sweep air whose temperature has dropped can be supplied to the diffusion fuel supply pipe 3b. Therefore, the soundness of the gas turbine can be achieved.
  • the control device 94 determines that the temperature of the diffusion pilot fuel gas detected by the temperature sensor 93 is equal to or higher than the self-ignition temperature of the diffusion pilot fuel gas even after the automatic load lowering function operates to lower the operation load of the gas turbine.
  • the automatic stop function (emergency stop function) for stopping the operation of the gas turbine provided in the control device 94 is activated.
  • the control device 94 fully closes the sweep air supply valve 22a and the sweep air shutoff valve 22b, and mixes the premixed pilot fuel gas supplied to the premixed fuel supply pipe (fuel supply passage) 3a.
  • the opening degree of each of the fuel pressure adjustment valve 25 and the fuel flow adjustment valve 24 is increased.
  • combustion can be performed by the diffusion pilot fuel gas supplied to the diffusion fuel supply pipe 3b. . Therefore, the flame stability of the gas turbine can be maintained.
  • orifices 91b and 92b are provided on the downstream side of the sweep drain valve 91a and the sweep air dissipating valve 92a. Therefore, even when the sweep drain valve 91a or the sweep air diffusion valve 92a has an abnormality when supplying the sweep air to the diffusion fuel supply pipe 3b and the valve opening degree is not fully closed, the respective orifices 91b, The flow rate of the sweep air exhausted to the atmosphere from the drain pipe 91 or the hollow pipe 92 can be restricted by 92b. As a result, it is possible to prevent the pilot nozzle (nozzle) 1 of the gas turbine from being damaged due to the shortage of the sweep air introduced to the diffusion fuel supply pipe 3b, thereby preventing the operation of the gas turbine from being disturbed. Therefore, the soundness can be maintained to operate the gas turbine.
  • FIG. 17 shows a schematic configuration diagram of a sweep air scavenging body cooling means introduced to the gas turbine according to the present embodiment.
  • the sweep air supply pipe 21 (scavenger body supply path) connecting between the diffusion fuel supply pipe (fuel and gas supply path) 3b and the casing 45 of the gas turbine (not shown) is water cooled.
  • a cooler (heat exchange means) 95 is provided.
  • the water cooling type cooler 95 exchanges heat of high temperature (about 500 ° C.) air (fluid) extracted from the passenger compartment 45 with water as a cooling medium, and a double pipe system is used.
  • the air of about 500 ° C. extracted from the passenger compartment 45 is cooled to, for example, about 400 ° C., and is discharged from the cooler 95.
  • Extracted air, which exchanges heat with water in the cooler 95 and is cooled to about 400 ° C. is led to the sweep air supply pipe 21 connected to the downstream side of the cooler 95 as sweep air (scavenger).
  • the leak from the tube (not shown) which comprises the cooler 95 is enabled by using the cooler 95 of a double tube
  • Cooling Water which is a cooling medium for the cooler 95, is supplied from the cooling water supply pipe 96 to the cooler 95.
  • a cooling water inlet valve 96 a which is a motor-operated valve, is provided on the cooling water supply pipe 96. The cooling water inlet valve 96 a is fully closed while the gas turbine is stopped to shut off the supply of cooling water to the cooler 95. Thus, generation of drain in the cooler 95 is suppressed while the gas turbine is stopped.
  • a bypass circuit 96 c is provided in the cooling water supply pipe 96 so as to bypass the cooling water inlet valve 96 a.
  • a bypass valve 96d is provided on the bypass circuit 96c.
  • a warming pipe (scavenge air flow release passage) 97 is branched.
  • a hollow pipe (scavenger fluid pressure discharge path) 92 is branched and connected It is done.
  • One end of the warming pipe 97 is open to the atmosphere, and the sweep warming valve (open / close valve for scavenging air flow outlet) 97a that operates in conjunction with the movement of the sweep air supply valve 22a and / or the sweep air shutoff valve 22b. And an orifice 97b.
  • the sweep warming valve 97a is the same as the sweep drain valve 91a provided in the drain pipe 91, and the sweep operation is off (ie, the sweep air supply valve 22a and / or the sweep air shutoff valve 22b is fully closed).
  • the sweep operation is on (ie, the sweep air supply valve 22a and the sweep air shutoff valve 22b are fully open), the sweep operation is fully closed.
  • the orifice 97 b limits the flow rate of the sweep air exhausted from the warming pipe 97 to the atmosphere.
  • FIG. 18 shows a valve timing chart of the gas turbine shown in FIG. A1, A2, A3, FCV, PCV, SA, PGK, PGY, MGY, B1, D1 shown in the valve timing chart of FIG. 18 are the same as those of FIG. 15 of the sixth embodiment.
  • C1 in FIG. 18 indicates the open / close state of the cooling water inlet valve 96a.
  • the sweep air supply valve 22a, the sweep air shutoff valve 22b, the fuel pressure control valve 25, the fuel flow control valve 24 and the cooling water inlet valve 96a are fully closed, and diffusion pilot fuel gas, The injection of the premixed pilot fuel gas and the main fuel gas is stopped.
  • the sweep drain valve 91a, the sweep air dissipating valve 92a, and the sweep warming valve 97a are fully open.
  • This embodiment is the same as the sixth embodiment except that the cooling water inlet valve 96a is fully open during load operation of the gas turbine and the cooling water inlet valve 96a is fully closed during shutdown.

Abstract

 燃料が供給される複数の燃料供給路(3a)と、燃料または燃料を掃気する掃気流体が供給される複数の燃料兼掃気流体供給路(3b)と、各燃料供給路(3a)または各燃料兼掃気流体供給路(3b)の下流端に設けられて、各燃料供給路(3a)または各燃料兼掃気流体供給路(3b)から導かれた燃料または掃気流体を噴射する複数の噴射孔(7a、7b)と、を有するガスタービン用燃料ノズル(1)と、燃料兼掃気流体供給路(3b)に接続されて掃気流体を導く掃気流体供給路(21)と、掃気流体を燃料の自己着火温度未満に冷却する掃気流体冷却手段(23)と、を備える。

Description

ガスタービンおよびこれを備えたガスタービンプラント
 本発明は、ガスタービンおよびこれを備えたガスタービンプラントに関し、燃焼時のスイープに関するものである。
 一般に、ガスタービンに設けられている燃焼器には、パイロットノズルと、メインノズルとが設けられている。パイロットノズルから噴射された燃料を燃焼させて得られる火炎は、メインノズルによる燃焼の種火として用いられる。燃料として燃料ガスと燃料油とを選択的に用いて燃焼を行うデュアル燃料焚き燃焼器の場合には、油焚き運転の際に燃料として燃料ガスを噴射しないパイロットノズルに高温の燃焼ガスが逆流してパイロットノズルが焼損する恐れがある。そのために、ガスタービンの車室から導いた空気を用いてパイロットノズルをスイープしている(例えば、引用文献1)。
 また、特許文献2には、燃焼器に複数設けられているメインノズルを所定数のブロックに分けて各ブロックを順次作動・停止させるステージング処理を行うことによって、パイロットノズルによる燃焼からメインノズルによる燃焼への切替え時におけるメインノズルでの急激な着火を防止して、ガスタービンの損傷を防止することが開示されている。
特開2005-195284号公報 特開2004-143942号公報
 しかしながら、燃料ガスの主成分であるメタンの自己着火温度が約445℃であるため、特許文献1に記載の発明では、最高温度が約500℃になる車室から導かれた空気によってスイープした場合には、燃料ガスが自己着火して発火する恐れがあるという問題があった。
 また、特許文献2に記載の発明は、ステージング処理を円滑に行ってガスタービンの損傷を防止することについてであり、ステージング処理によって燃料ガスの噴射を停止させたメインノズル内に残存する燃料ガスが自己着火して発火することについての対策は開示されていない。
 本発明は、このような事情に鑑みてなされたものであって、燃料の自己着火を防止しつつスイープを実施することが可能なガスタービンおよびこれを備えたガスタービンプラントを提供することを目的とする。
 上記課題を解決するために、本発明のガスタービンおよびこれを備えたガスタービンプラントは、以下の手段を採用する。
 すなわち、本発明の一態様に係るガスタービンによれば、燃料が供給される複数の燃料供給路と、燃料または前記燃料を掃気する掃気流体が供給される複数の燃料兼掃気流体供給路と、各前記燃料供給路または各前記燃料兼掃気流体供給路の下流端に設けられて、各前記燃料供給路または各前記燃料兼掃気流体供給路から導かれた燃料を噴射する複数の噴射孔と、を有するガスタービン用燃料ノズルと、前記燃料兼掃気流体供給路に接続されて前記掃気流体を導く掃気流体供給路と、前記掃気流体を燃料の自己着火温度未満に冷却する掃気流体冷却手段と、を備える。
 燃料として燃料ガスを用いるガスタービン用燃料ノズルには、燃料ガスを噴射しない場合に高温の燃焼ガスが噴射孔に逆流することによってガスタービン用燃料ノズルが焼損することを防止するために、燃料兼掃気流体供給路にガスタービンの車室から抽気した空気を導いてスイープが実施されている。しかし、燃料兼掃気流体供給路に燃料ガスの自己着火温度に近い高温の空気が導かれた場合には、燃料兼掃気流体供給路内に残存した燃料ガスが着火してガスタービン用燃料ノズルが焼損したり、燃料ガスが自己着火して爆発する危険性があった。
 そこで、ガスタービン用燃料ノズルの燃料兼掃気流体供給路へ掃気流体冷却手段によって燃料の自己着火温度未満に冷却された掃気流体を掃気流体供給路から導くこととした。そのため、燃料兼掃気流体供給路内に残存する燃料による自己着火を防止するとともに、ガスタービン用燃料ノズルが焼損することを防止することができる。したがって、ガスタービンの健全性を維持することができる。
 さらに、本発明の一態様に係るガスタービンにおいては、前記掃気流体供給路は、前記燃料兼掃気流体供給路とガスタービンの車室とに接続されて、該車室内から抽気された流体を前記掃気流体として導き、前記掃気流体冷却手段は、前記掃気流体供給路の外周に設けられる複数の突起物である構成としてもよい。
 燃料兼掃気流体供給路とガスタービンの車室との間を接続する掃気流体供給路の外周には、掃気流体冷却手段として複数の突起物を設けることとした。そのため、ガスタービン運転中に最高温度が約500℃になる車室から掃気流体供給路に導かれた掃気流体を掃気流体供給路の外周に複数設けられた突起物による放熱によって冷却することができる。この突起物による放熱により、掃気流体の温度を燃料の自己着火温度未満に下げられるようになっている。したがって、掃気流体供給路から燃料兼掃気流体供給路へと導く掃気流体の温度を燃料の自己着火温度未満に冷却することができる。
 さらに、上記構成においては、複数の前記突起物は、ガスタービンを包囲するガスタービン外衣に設けられる換気ファンの吸込み口の近傍に設けられるようにしてもよい。
 ガスタービンを包囲するガスタービン外衣に設けられる換気ファンの吸込み口の近傍に複数の突起物を設けることとした。そのため、換気ファンに吸引される空気と掃気流体供給路の外周に設けられる突起物とを積極的に接触させることができる。したがって、掃気流体供給路内に導かれる掃気流体の放熱を促進させることができる。
 さらに、本発明の一態様に係るガスタービンにおいては、前記掃気流体供給路は、前記燃料兼掃気流体供給路とガスタービンの車室とに接続されて、該車室から抽気された流体を前記掃気流体として導き、前記掃気流体冷却手段は、前記掃気流体供給路上に設けられて、冷却媒体と前記掃気流体とが熱交換する熱交換手段である構成としてもよい。
 掃気流体冷却手段として掃気流体供給路上に設けられる熱交換手段を用いて、ガスタービンの車室内から抽気した高温(例えば約500℃)の流体を掃気流体として冷却媒体と熱交換させることとした。そのため、燃料兼掃気流体供給路へと冷却した掃気流体を導くことができる。したがって、燃料兼掃気流体供給路へと導く掃気流体の温度を燃料の自己着火温度未満に冷却することができる。
 さらに、上記構成においては、前記熱交換手段は、ガスタービン冷却空気冷却器であり、前記掃気流体は、前記ガスタービン冷却空気冷却器により冷却された前記流体の一部であるようにしてもよい。
 一般的に、高温の燃焼ガスによって駆動されるガスタービンは、そのタービン軸やタービン翼を冷却する冷却するために、車室の高圧空気を抽気してその空気をガスタービン冷却空気冷却器(TCAクーラ)に通して冷却した後に、タービン軸やタービン翼に供給して冷却している。
 そこで、本発明では、ガスタービン冷却空気冷却器によって冷却された流体の一部を掃気流体として用いることとした。そのため、掃気流体を冷却するための熱交換手段を別途設置する必要がなくなる。したがって、設備費を低下することができる。
 さらに、上記構成においては、前記熱交換手段は、前記冷却媒体に水を用いる水冷式であるようにしてもよい。
 掃気流体を冷却する熱交換手段の冷却媒体に水を用いることとした。そのため、空冷式の熱交換手段に比べて、効率的に掃気流体を冷却することができる。
 さらに、本発明の一態様に係るガスタービンにおいては、前記掃気流体冷却手段は、前記掃気流体供給路に圧縮した空気を前記掃気流体として供給する圧縮機である構成としてもよい。
 圧縮機を掃気流体冷却手段として用いることとした。これにより、圧縮機によって昇圧されて温度が低下した空気を掃気流体として掃気流体供給路へと導くことができる。したがって、燃料兼掃気流体供給路へと燃料の自己着火温度未満に冷却された掃気流体を導くことができる。
 さらに、本発明の一態様に係るガスタービンにおいては、前記燃料兼掃気流体供給路の上流側には、前記燃料の流量を制御する燃料流量制御弁と、前記燃料の圧力を制御する燃料圧力制御弁と、前記燃料流量制御弁と前記燃料圧力制御弁との間に設けられて、前記燃料流量制御弁と前記燃料圧力制御弁との間に導かれた前記掃気流体を大気に放出する大気開放手段と、を有する構成としてもよい。
 燃料兼掃気流体供給路の上流側に設けられる燃料の圧力を制御する燃料圧力制御弁と燃料の流量を制御する燃料流量制御弁との間には、燃料流量制御弁と燃料圧力制御弁との間に導かれた掃気流体を大気に放出する大気開放手段を設けることとした。そのため、燃料流量制御弁と燃料圧力制御弁との間に燃料兼掃気流体供給路から導かれた掃気流体が流入した場合であっても、大気開放手段によって掃気流体を大気に放出することができる。したがって、燃料流量制御弁と燃料圧力制御弁との間の燃料に掃気流体が混入して爆発することを防止することができる。
 さらに、本発明の一態様に係るガスタービンにおいては、前記掃気流体供給路は、前記掃気流体冷却手段の下流側に掃気流体供給用開閉弁と、前記掃気流体冷却手段と前記掃気流体供給用開閉弁との間から分岐する掃気流体放出路と、を備え、該掃気流体放出路は、掃気流体放出用開閉弁を有し、ガスタービン起動の際には、前記掃気流体供給用開閉弁が全閉とされて、前記掃気流体放出用開閉弁が全開とされる構成としてもよい。
 ガスタービンを起動した際等、掃気流体の温度が十分に上昇していない場合や掃気流体供給路が暖気されていない場合には、温度が上昇していない掃気流体を掃気流体冷却手段によって冷却することによって、掃気流体が凝縮してドレンを生じる恐れがある。このドレンを含んだ掃気流体を燃料兼掃気流体供給路に供給した後に、燃料兼掃気流体供給路に燃料を供給してガスタービンを運転した場合には、燃料にドレンが混入してしまう。
 そこで、掃気流体供給用開閉弁を掃気流体冷却手段の下流側に設けて、掃気流体放出路を掃気流体供給用開閉弁と掃気流体冷却手段との間から分岐することとした。さらに、掃気流体放出路には、掃気流体放出用開閉弁を設け、ガスタービン起動の際に掃気流体供給用開閉弁を全閉として掃気流体放出用開閉弁を全開とすることとした。そのため、ガスタービンを起動した際等に生じるドレンを掃気流体放出路から排出することができる。したがって、燃料兼掃気流体供給路を経て噴射孔から噴射される燃料にドレンが混入することを防止することができる。
 さらに、上記構成においては、前記掃気流体供給用開閉弁は、前記掃気流体放出路より下流側に2箇所設けて、該掃気流体供給用開閉弁の間の前記掃気流体供給路には、掃気流体圧抜き路が分岐しており、該掃気流体圧抜き路は、前記掃気流体供給用開閉弁の少なくともどちらか一方の動きに連動して作動する掃気流体圧抜き用開閉弁を備え、該掃気流体圧抜き用開閉弁は、前記掃気流体供給用開閉弁の少なくともどちらか一方が全閉の際に全開とされるようにしてもよい。
 燃料兼掃気流体供給路への掃気流体の遮断は、掃気流体供給用開閉弁を全閉にすることによって行うことができる。
 そこで、掃気流体供給路上であって掃気流体放出路よりも下流側に、掃気流体供給用開閉弁を2個所に設けることとした。このように、掃気流体供給用開閉弁に冗長性をもたせることによって、掃気流体供給用開閉弁のどちらか一方に不具合が生じた場合であっても、他方の掃気流体供給用開閉弁によって燃料兼掃気流体供給路から燃料が逆流することを防止することができる。
 さらに、2箇所に設けた掃気流体供給用開閉弁の間から掃気流体圧抜き路を分岐させて、掃気流体圧抜き路には、掃気流体供給用開閉弁の少なくともどちらか一方に連動して作動する掃気流体圧抜き用開閉弁を設けることとした。これにより、燃料兼掃気流体供給路から掃気流体供給路へと燃料が逆流した場合であっても、燃料を掃気流体圧抜き路から排出することができる。したがって、ガスタービンを安全に運転することができる。
 さらに、上記構成においては、前記掃気流体供給用開閉弁に設けられて、弁開度を検知する開度検知手段と、ガスタービンの運転負荷を降下する負荷降下機能と、ガスタービンの運転を停止する緊急停止機能と、を有する制御装置と、を備え、該制御装置は、前記開度検知手段が検知する弁開度に基づいて前記掃気流体供給用開閉弁が異常であると判定した場合には、前記緊急停止機能および/または前記負荷降下機能を作動するようにしてもよい。
 掃気流体供給用開閉弁にはその弁開度を検知する開度検知手段を設けて、制御装置が掃気流体供給用開閉弁の弁開度が異常であると判定した場合には、ガスタービンの運転を停止する緊急停止機能および/またはガスタービンの運転負荷を降下する負荷降下機能を作動させることとした。これによって、掃気流体供給用開閉弁への指令が全開の際に掃気流体供給用開閉弁の弁開度が全開になっていない場合に、燃料兼掃気流体供給路に導かれる掃気流体が不足することによって、ガスタービンのノズル等が損傷する等してガスタービンの運転に支障が生じることを防止することができる。
 さらに、本発明の一態様に係るガスタービンにおいては、前記掃気流体冷却手段の下流側に設けられて、該掃気流体冷却手段から導出される前記掃気流体の温度を検知する温度検知手段と、ガスタービンの運転負荷を降下する負荷降下機能を有する制御装置と、を備え、該制御装置は、前記温度検知手段が検知する前記掃気流体の温度が前記燃料の自己着火温度以上であると判定した場合には、前記負荷降下機能を作動する構成としてもよい。
 掃気流体冷却手段により冷却された掃気流体の温度を検知する温度検知手段を掃気流体冷却手段の下流側に設けて、制御装置が温度検知手段が燃料の自己着火温度以上の掃気流体温度を検知した際に、ガスタービンの運転負荷を降下する負荷降下機能を作動することとした。これにより、掃気流体冷却手段の不具合等により燃料兼掃気流体供給路に導かれる掃気流体の温度が燃料の自己着火温度以上になった場合に、ガスタービンの運転負荷を降下してガスタービンの車室から抽気される掃気流体の温度を下げることができる。そのため、温度の低下した掃気流体を燃料兼掃気流体供給路に供給することができる。したがって、ガスタービンの健全性を図ることができる。
 さらに、上記構成においては、前記掃気流体放出用開閉弁の下流側または前記掃気流体圧抜き用開閉弁の下流側には、オリフィスを設けるようにしてもよい。
 掃気流体放出用開閉弁または掃気流体圧抜き用開閉弁の下流側にオリフィスを設けることとした。そのため、燃料兼掃気流体供給路に掃気流体を供給する際に掃気流体排出用開閉弁または掃気流体圧抜き用開閉弁に異常が生じて弁開度が全閉にならない場合であっても、オリフィスによって掃気流体放出路または掃気流体圧抜き路から大気に排出される掃気流体の流量を制限することができる。これにより、燃料兼掃気流体供給路に導かれる掃気流体が不足することによって、ガスタービンのノズル等が損傷する等してガスタービンの運転に支障が生じることを防止することができる。したがって、健全性を維持してガスタービンの運転を行うことができる。
 さらに、本発明の一態様に係るガスタービンにおいては、前記ガスタービン用燃料ノズルは、前記燃料として気体燃料が導かれるパイロットノズルであって、前記燃料兼掃気流体供給路には、拡散方式によって燃焼する前記気体燃料が供給され、前記燃料供給路には、予混合方式によって燃焼する前記気体燃料が供給される構成としてもよい。
 拡散方式によって燃焼する気体燃料が導かれる燃料兼掃気流体供給路には、掃気流体冷却手段によって気体燃料の自己着火温度未満に冷却された掃気流体を掃気流体供給路から導くこととした。そのため、燃料兼掃気流体供給路内に残存する気体燃料による自己着火を防止するとともに、パイロットノズルが焼損することを防止することができる。したがって、ガスタービンの健全性を維持することができる。
 さらに、本発明の一態様に係るガスタービンにおいては、前記制御装置は、負荷遮断時に、前記掃気流体の供給を停止し、予混合方式の燃料供給路に供給される燃料の流量を増加させる構成としてもよい。
 スイープ動作オンのときに負荷遮断が発生した際は、火炎保持のための拡散パイロット燃料を即座に投入することができない。よってこの負荷遮断時は、一定時間、予混合用燃料供給管3aに供給される予混合パイロット燃料ガスの流量が増加される。これによって、スイープ空気が供給されていた拡散用燃料供給管3bの圧抜きを行うと共に、火炎を安定させることができる。
 さらに、本発明の一態様に係るガスタービンにおいては、前記ガスタービン用燃料ノズルは、前記燃料として気体燃料または液体燃料が導かれるデュアル燃料焚きパイロットノズルであって、前記燃料兼掃気流体供給路には、拡散方式によって燃焼する前記気体燃料が、また、前記燃料供給路には、拡散方式によって燃焼する前記液体燃料が供給される構成としてもよい。
 拡散方式によって燃焼する気体燃料が供給される燃料兼掃気流体供給路には、掃気流体冷却手段によって気体燃料の自己着火温度未満に冷却された掃気流体を掃気流体供給路から導くこととした。そのため、ガスタービンの液体燃料焚き運転の場合に、自己着火温度未満に冷却された掃気流体を燃料兼掃気流体供給路に導くことにより燃料兼掃気流体供給路内に残存する気体燃料による自己着火を防止するとともに、パイロットノズルが焼損することを防止することができる。したがって、ガスタービンの健全性を維持することができる。
 さらに、本発明の一態様に係るガスタービンにおいては、前記ガスタービン用燃料ノズルは、前記燃料として予混合方式によって燃焼する気体燃料または前記掃気流体が前記燃料兼掃気流体供給路に供給されるメインノズルであって、該メインノズルは、複数設けられて、ガスタービンの運転に応じて、一部の前記メインノズルに前記掃気流体が供給される構成としてもよい。
 ガスタービンが低負荷運転の場合には、ガスタービンに設けられる複数のメインノズルの一部を停止して、残りのメインノズルとパイロットノズルとを用いて燃焼を行うステージング方式が用いられることによって、ガスタービンから排出される窒素酸化物の降下が図られている。
 そこで、本発明では、ステージング方式によるガスタービンの運転が行われる場合に、一部のメインノズルの燃料兼掃気流体供給路に冷却された掃気流体を供給することとした。そのため、一部のメインノズルを停止した場合であっても、停止したメインノズルの燃料兼掃気流体供給路内に残存する気体燃料による自己着火を防止してメインノズルが焼損することを防止することができる。したがって、ガスタービンの健全性を維持することができる。
 さらに、本発明の一態様に係るガスタービンプラントは、上記のいずれかに記載のガスタービンを備える。
 損傷の発生を抑制することが可能なガスタービンを用いることとした。したがって、ガスタービンプラントの健全な運転を維持することができる。
 さらに、本発明の一態様に係るガスタービンプラントにおいては、前記ガスタービンを包囲するガスタービン外衣を備える構成としてもよい。
 ガスタービンプラントは、ガスタービンを包囲するガスタービン外衣に設けられる換気ファンの吸込み口の近傍に掃気流体冷却手段を設けることとした。そのため、掃気流体冷却手段と換気ファンに吸引される空気とを積極的に接触させることができる。これにより、掃気流体供給路内に導かれた掃気流体の放熱を促進させて燃料兼掃気流体供給路内に残存する燃料による自己着火を防止するとともに、ガスタービン用燃料ノズルが焼損することを防止することができる。
 ガスタービン用燃料ノズルの燃料兼掃気流体供給路へ掃気流体冷却手段によって燃料の自己着火温度未満に冷却された掃気流体を掃気流体供給路から導くこととした。そのため、燃料兼掃気流体供給路内に残存する燃料による自己着火を防止するとともに、ガスタービン用燃料ノズルが焼損することを防止することができる。したがって、ガスタービンの健全性を維持することができる。
本発明の第1実施形態に係る掃気流体冷却手段を有するガスタービンの概略構成図である。 図1に示すガスタービンを内含するガスタービンエンクロージャーに設けられている換気ファンの吸込み口に設けられている掃気流体冷却手段の配置を示す部分拡大配置図である。 図1に示すガスタービンのバルブのタイミングチャートである。 図1に示すガスタービンのスイープ動作のフローチャートである。 本発明の第2実施形態に係るガスタービンに導かれるスイープ空気の掃気流体冷却手段の概略構成図である。 本発明の第3実施形態に係るガスタービンに導かれるスイープ空気の掃気流体冷却手段の概略構成図である 本発明の第4実施形態に係る掃気流体冷却手段を備えているガスタービンの概略構成図である。 図7に示すガスタービンのバルブのタイミングチャートである。 図7に示すガスタービンのスイープ動作のフローチャートである。 本発明の第5実施形態に係る掃気流体冷却手段を備えているガスタービンの概略構成図である。 図10に示すガスタービンの燃焼器の縦断面概略構成図である。 図10に示すガスタービンのバルブのタイミングチャートである。 図10に示すガスタービンのスイープ動作のフローチャートである。 本発明の第6実施形態に係る掃気流体冷却手段を備えているガスタービンの概略構成図である。 図14に示すガスタービンのバルブのタイミングチャートである。 図14に示すガスタービンのスイープ動作のフローチャートである。 本発明の第7実施形態に係る掃気流体冷却手段を備えているガスタービンの概略構成図である。 図17に示すガスタービンのバルブのタイミングチャートである。
[第1実施形態]
 以下、本発明の第1実施形態について、図1から図4を用いて説明する。
 図1には、本実施形態に係る掃気流体冷却手段を有するガスタービンの概略構成図が示されている。
 ガスタービンコンバインドプラント(ガスタービンプラント)に設けられているガスタービン(図示せず)は、燃料として燃料ガス(気体燃料)を用いる。ガスタービンは、図示しない圧縮機、燃焼器およびタービンを有している。このガスタービンコンバインドプラントとしては、トッピングサイクルとしてガスタービンが用いられ、ボトミングサイクルとして図示しない排熱回収ボイラ(HRSG)および排熱回収ボイラによって発生した蒸気により駆動される蒸気タービン(図示せず)が用いられている。
 ガスタービンに設けられている燃焼器には、パイロットノズル(ガスタービン用燃料ノズル)1と、パイロットノズル1の外周に複数配置されているメインノズル11と、が設けられている。
 パイロットノズル1は、燃焼器内の空気流中に燃料ガス(燃料)を供給するものである。パイロットノズル1は、複数のパイロットノズル用燃料供給管3と、複数のパイロットノズル用燃料供給管3を内含しているパイロットノズル本体4と、パイロットノズル本体4の下流側の先端部に形成されているパイロットノズル用噴射孔(噴射孔)7と、を有している。
 パイロットノズル本体4は、燃焼器内の空気の流れ方向に沿って配置されている。パイロットノズル本体4に内含されている複数のパイロットノズル用燃料供給管3は、予混合方式において用いられる予混合用燃料供給管(燃料供給路)3aと、拡散方式において用いられる拡散用燃料供給管(燃料兼掃気流体供給路)3bと、から構成されている。
 予混合用燃料供給管3aには、ガスタービンの低負荷運転および高負荷運転の際に燃料ガス(以下、「予混合パイロット燃料ガス」という。)が供給される。拡散用燃料供給管3bには、燃料ガス(以下、「拡散パイロット燃料ガス」という。)または拡散パイロット燃料ガスを掃気する空気(掃気流体)が供給される。拡散用燃料供給管3bには、ガスタービンの低負荷運転の際には拡散パイロット燃料ガスが供給されるが、ガスタービンの高負荷運転の際には後述するスイープ空気(掃気流体)が供給される。
 各予混合用燃料供給管3aまたは各拡散用燃料供給管3bの下流端には、各予混合用燃料供給管3aまたは各拡散用燃料供給管3bから導かれた予混合パイロット燃料ガスまたは拡散パイロット燃料ガスを噴射する複数のパイロットノズル用噴射孔(噴射孔)7が設けられている。予混合用燃料供給管3aに連通しているパイロットノズル用噴射孔7aは、拡散用燃料供給管3bに連通しているパイロットノズル用噴射孔7bよりも燃焼器内の空気流の上流側に設けられている。
 パイロットノズル1は、ガスタービンの低負荷運転の際には、拡散用燃料供給管3bから拡散パイロット燃料ガスおよび予混合用燃料供給管3aから予混合パイロット燃料ガスを燃焼器内に噴射して燃焼する。ガスタービンが高負荷運転の際には、予混合用燃料供給管3aから予混合パイロット燃料ガスのみが燃焼器内に噴射されて燃焼する。このようなパイロットノズル1から噴射された燃料を燃焼させて得られる火炎は、メインノズル11による燃焼の種火として用いられる。
 メインノズル11は、燃焼器内の空気流中に燃料ガスであるメイン燃料ガスを供給するものである。メインノズル11は、メインノズル用燃料供給管13と、メインノズル用燃料供給管13を内含しているメインノズル本体14と、メインノズル本体14の下流側に形成されているメインノズル用噴射孔17と、を有している。
 メインノズル本体14は、燃焼器内の空気の流れ方向に沿って配置されている。メインノズル本体14に内含されているメインノズル用燃料供給管13は、予混合方式において用いられるメイン燃料ガスを供給する。
 メインノズル用燃料供給管13の下流端は、複数に分岐しており、メインノズル用燃料供給管13から導かれたメイン燃料ガスを噴射する複数のメインノズル用噴射孔17が設けられている。分岐しているメインノズル用燃料供給管13に連通しているメインノズル用噴射孔17は、パイロットノズル1に設けられているパイロットノズル用噴射孔7a、7bよりも燃焼器内の空気流中の上流側に設けられている。メインノズル用燃料供給管13から空気流中に噴射されたメイン燃料ガスは、パイロットノズル1によって生成された火炎を種火として燃焼する。
 拡散用燃料供給管3bには、ガスタービンの車室(図示せず)から抽気された高温の空気(例えば、約500℃)をスイープ空気として導くスイープ空気供給管(掃気流体供給路)21が接続されている。スイープ空気供給管21には、2つの開閉弁22が設けられている。2つの開閉弁22a、22bの間のスイープ空気供給管21は、その外周に複数の突起物(掃気流体冷却手段)23を有している。
 突起物23としては、具体例には、図2に示すように冷却フィンが好ましい。このスイープ空気供給管21に設けられている複数の冷却フィン(突起物)23は、スイープ空気供給管21に導かれた高温のスイープ空気の熱を放熱するものである。これら冷却フィン23によって、スイープ空気供給管21内を通過する高温のスイープ空気が冷却されることとなる。
 より詳しくは、ガスタービンの車室から抽気された高温(約500℃)のスイープ空気がスイープ空気供給管21を通過するときに、スイープ空気供給管21の外周に複数設けられている冷却フィン23からの放熱により、スイープ空気は約440℃に冷却されるようになっている。この約440℃という温度は、拡散用燃料供給管3b(図1参照)に残存している拡散パイロット燃料ガスの主成分であるメタンの自己着火温度(約445℃)未満の値の一例である。
 拡散用燃料供給管3bの上流側には、拡散用燃料供給管3bに供給される拡散パイロット燃料ガスの流量を制御する燃料流量調整弁24と、拡散パイロット燃料ガスの圧力を制御する燃料圧力調整弁25と、燃料流量調整弁24と燃料圧力調整弁25との間に設けられて燃料流量調整弁24と燃料圧力調整弁25との間に導かれた拡散用燃料供給管3bからのスイープ空気を大気に開放する大気開放手段26と、が設けられている。
 燃料圧力調整弁25は、燃料流量調整弁24よりも上流側に設けられている。燃料圧力調整弁25および燃料流量調整弁24は、ガスタービンの負荷状態に応じてその開度が制御されるものである。
 大気開放手段26は、燃料圧力調整弁25と燃料流量調整弁24との間から分岐して接続されている大気開放管26aと、大気開放管26a上に設けられているベントバルブ26bと、を備えている。ベントバブル26bを開閉することによって、燃料圧力調整弁25と燃料流量調整弁24との間を大気開放管26aを介して大気に連通させることができる。
 図2には、ガスタービンを包囲しているガスタービンエンクロージャー28の吸込み口に設けられている掃気流体冷却手段の配置を示す部分拡大配置図が示されている。
 ガスタービンは、その外周をガスタービンエンクロージャー(ガスタービン外衣)28によって包囲されている。ガスタービンエンクロージャー28は、タービンの車室、圧縮機および燃焼器の外周を包囲している。これによって、ガスタービンで発生する騒音の周囲への拡散を防止している。
 ガスタービンエンクロージャー28には、ガスタービンエンクロージャー28内の温度上昇を抑制するために換気管29を介して換気ファン30が設けられている。ガスタービンエンクロージャー28と換気ファン30との間には、ガスタービンエンクロージャー28内の空気を換気ファン30に導く複数の換気管29が設けられている。各換気管29は、ガスタービンエンクロージャー28の例えば上部に接続されている。ガスタービンエンクロージャー28の上部には、ガスタービンエンクロージャー28内の空気を各換気管29へと導く換気ファン30の吸込み口29aが形成されている。
 スイープ空気供給管21は、ガスタービンエンクロージャー28内をガスタービンエンクロージャー28の上部に沿うように配置されており、スイープ空気供給管21に設けられている複数の冷却フィン23は、吸込み口29aの近傍に設けられている。
 具体的には、冷却フィン23は、吸込み口29aとの最短距離が10cm以下となるものが少なくとも一つ含まれる範囲にある配置とされる。これによって、換気ファン30に吸引される空気とスイープ空気供給管21の外周に設けられている冷却フィン23とを積極的に接触させることができる。
 次に、本実施形態のガスタービンのスイープ動作について、図3に示すバルブタイミングチャートと、図4に示すフローチャートを用いて説明する。
 図3には、図1に示すガスタービンのバルブタイミングチャートが示されている。
 図3のバルブタイミングチャートに示されているA1は、スイープ空気供給管21に設けられている開閉弁22aの開閉状態を示し、A2は、開閉弁22bの開閉状態を示し、FCVは、拡散用燃料供給管3bの上流側に設けられている燃料流量調整弁24の開閉状態を示し、PCVは、燃料圧力調整弁25の開閉状態を示し、VVは、大気開放管26aに設けられているベントバルブ26bの開閉状態を示し、SAは、スイープ動作のオン・オフ状態を示し、PGKは、ガスタービンの負荷状態に応じて拡散用燃料供給管3bから噴射される拡散パイロット燃料ガスの噴射状況を示し、PGYは、ガスタービンの負荷状態に応じて予混合用燃料供給管3aから噴射される予混合パイロット燃料ガスの噴射状況を示し、MGYは、メインノズル11から噴射されるメイン燃料ガスの噴射状態を示している。
 ガスタービンの運転が停止している場合には、スイープ空気供給管21に設けられている開閉弁22a、22b、拡散用燃料供給管3bの上流側に設けられている燃料圧力調整弁25、燃料流量調整弁24およびベントバルブ26bは、全閉状態であり、拡散用燃料供給管3bから噴射される拡散パイロット燃料ガス、予混合用燃料供給管3aから噴射される予混合パイロット燃料ガスおよびメインノズル11から噴射されるメイン燃料ガスの噴射は、停止されている。
 ガスタービンが低負荷運転の場合には、燃料圧力調整弁25および燃料流量調整弁24が開状態とされ、開閉弁22a、22bおよびベントバルブ26bは、全閉状態のままである。燃料圧力調整弁25および燃料流量調整弁24が開状態とされるため、拡散用燃料供給管3bには、拡散パイロット燃料ガスが供給される。
 拡散用燃料供給管3bに供給された拡散パイロット燃料ガスは、拡散用燃料供給管3bに連通しているパイロットノズル用噴射孔7bから燃焼器内の空気流中に噴射されて燃焼する。また、予混合用燃料供給管3aにも予混合パイロット燃料ガスが供給されて、予混合用燃料供給管3aに連通しているパイロットノズル用噴射孔7aから燃焼器内の空気流中に予混合パイロット燃料ガスが噴射されて燃焼する。これら拡散用燃料供給管3bおよび予混合用燃料供給管3aから供給された拡散パイロット燃料ガスおよび予混合パイロット燃料ガスによる火炎を種火として、メインノズル11からメイン燃料ガスが噴射されて燃焼する。
 なお、予混合パイロット燃料ガスの噴射は、拡散パイロット燃料ガスの噴射と略同時期でなくても良く、例えば、拡散パイロット燃料ガスの噴射後に予混合パイロット燃料ガスの噴射が行われても良い。
 ガスタービンが高負荷運転の場合には、開閉弁22a、22bおよびベントバルブ26bが開状態とされる。開閉弁22a、22bが全開状態とされるため、ガスタービンの車室から抽気されてスイープ空気供給管21に導かれたスイープ空気を拡散用燃料供給管3bへと導いて、拡散用燃料供給管3bのスイープを開始(オン)することとなる。また、燃料圧力調整弁25および燃料流量調整弁24は、全閉状態とされる。そのため、拡散用燃料供給管3bからの拡散パイロット燃料ガスの噴射が停止される。
 この際、ガスタービンの車室から抽気された高温(約500℃)のスイープ空気がスイープ空気供給管21を通過するときに、スイープ空気供給管21の外周に複数設けられている冷却フィン23からの放熱により、スイープ空気は約440℃に冷却されるようになっている。この約440℃という温度は、拡散用燃料供給管3bに残存している拡散パイロット燃料ガスの主成分であるメタンの自己着火温度(約445℃)未満の値の一例である。
 スイープ空気供給管21から拡散用燃料供給管3bへと導かれた冷却されたスイープ空気は、拡散用燃料供給管3bからパイロットノズル用噴射孔7bへと導かれる。拡散用燃料供給管3bには、冷却されたスイープ空気が導かれるため、残存している拡散パイロット燃料ガスが自己着火するのを防止するとともに、燃焼器内の火炎や高温の燃焼ガスがパイロットノズル用噴射孔7bから拡散用燃料供給管3bへと逆流することを防止することができる。
 また、スイープ空気供給管21から拡散用燃料供給管3bへと導かれた冷却されたスイープ空気の一部が燃料圧力調整弁25と燃料流量調整弁24との間に流入した場合であっても、大気開放管26aに設けられているベントバルブ26bが開状態にされるため、拡散用燃料供給管3bに流入したスイープ空気を大気に開放することができる。そのため、燃料圧力調整弁25と燃料流量調整弁24との間に溜まっている燃料ガスに拡散用燃料供給管3bから導かれたスイープ空気の一部が混入した場合であっても、燃料ガスの爆発を抑制することができる。
 ガスタービンが高負荷運転から低負荷運転になった場合には、燃料圧力調整弁25および燃料流量調整弁24が開状態とされ、開閉弁22a、22bおよびベントバルブ26bが全閉状態とされる。これにより、スイープ動作が停止(オフ)となり、拡散用燃料供給管3bには、拡散パイロット燃料ガスが供給されて燃焼器内に噴射される。
 なお、ガスタービンの低負荷運転、高負荷運転時共に、予混合パイロット燃料ガスおよびメイン燃料ガスの噴射は継続されている。
 図3に示したバルブタイミングチャート中のスイープ動作に関するフローチャートについて図4を用いて説明する。
 拡散用燃料供給管3bのスイープ運転動作を開始する(ステップS1)。スイープ運転動作が開始されると、ガスタービンが高負荷運転か低負荷運転かを判定する(ステップS2)。ステップS2において、ガスタービンが高負荷運転であると判定された場合には、拡散用燃料供給管3bから噴射される拡散パイロット燃料ガスを停止状態(オフ)にし、予混合用燃料供給管3aから噴射される予混合パイロット燃料ガスを噴射状態(オン)にし、メインノズル11から噴射されるメイン燃料ガスを噴射状態(オン)にする(ステップS3)。
 ステップS3において、拡散パイロット燃料ガス、予混合パイロット燃料ガスおよびメイン燃料ガスの噴射状態が設定された後、大気開放管26aに設けられているベントバルブ26bが開状態とされる(ステップS4)。その後、スイープ空気供給管21に設けられている開閉弁22a、22bが開状態とされて、拡散用燃料供給管3bに冷却されたスイープ空気が導かれることとなる。これにより、拡散用燃料供給管3bのスイープ動作が開始(オン)される(ステップS5)。
 ステップS2において、ガスタービンが低負荷運転であると判定された場合には、拡散用燃料供給管3bから噴射される拡散パイロット燃料ガスを噴射状態(オン)にし、予混合用燃料供給管3aから噴射される予混合パイロット燃料ガスを噴射状態(オン)にし、メインノズル11から噴射されるメイン燃料ガスを噴射状態(オン)にし(ステップS6)、拡散用燃料供給管3bをスイープすることなくスイープ運転動作は終了する(ステップS7)。
 以上述べたように、本実施形態に係るガスタービンおよびこれを備えたガスタービンコンバインドプラントによれば、以下の効果を奏する。
 パイロットノズル(ガスタービン用燃料ノズル)1の拡散用燃料供給管(燃料兼掃気流体供給路)3bへは、スイープ空気(掃気流体)をスイープ空気供給管(掃気流体供給路)21から導くこととした。このスイープ空気は、掃気流体冷却手段23によって拡散パイロット燃料ガス(燃料)の主成分であるメタンの自己着火温度未満に冷却されて導かれる。そのため、拡散用燃料供給管3b内に残存している拡散パイロット燃料ガスによる自己着火を防止するとともに、パイロットノズル1が焼損することを防止することができる。したがって、ガスタービンの健全性を維持することができる。
 掃気流体冷却手段として複数の冷却フィン(突起物)23を設けることとした。そのため、ガスタービン運転中に最高温度が約500℃になる車室からスイープ空気供給管21に導かれたスイープ空気をスイープ空気供給管21の外周に複数設けられた冷却フィン23による放熱によって冷却することができる。したがって、スイープ空気供給管21から拡散用燃料供給管3bへと導くスイープ空気の温度を拡散パイロット燃料ガスの自己着火温度(約445℃)未満の約440℃に冷却することができる。
 ガスタービンを包囲しているガスタービンエンクロージャー(ガスタービン外衣)28に設けられている換気ファン30の吸込み口29aの近傍に、スイープ空気供給管21の外周に複数設けられている冷却フィン23を配置することとした。そのため、換気ファン30に吸引される空気とスイープ空気供給管21の外周に複数設けられている冷却フィン23とを積極的に接触させることができる。したがって、スイープ空気供給管21内に導かれるスイープ空気の放熱を促進させることができる。
 拡散用燃料供給管3bの上流側に設けられて、拡散用燃料供給管3bに導かれる拡散パイロット燃料ガスの圧力を制御する燃料圧力制御弁25と拡散パイロット燃料ガスの流量を制御する燃料流量制御弁24との間には、燃料流量制御弁24と燃料圧力制御弁25との間に導かれたスイープ空気を大気に放出する大気開放手段26を設けることとした。そのため、燃料流量制御弁24と燃料圧力制御弁25との間に拡散用燃料供給管3bから導かれたスイープ空気が流入した場合であっても、大気開放手段26によってスイープ空気を大気に放出することができる。したがって、燃料流量制御弁24と燃料圧力制御弁25との間の拡散パイロット燃料ガスにスイープ空気が混入して爆発することを防止することができる。
 パイロットノズル1の焼損の発生を抑制することが可能なガスタービンを用いることとした。したがって、ガスタービンコンバインドプラント(ガスタービンプラント)の健全な運転を維持することができる。
[第2実施形態]
 本実施形態は、掃気流体冷却手段として空気圧縮機を用いる点で、第1実施形態と相違しその他は同様である。したがって、同一の構成については、同一の符号を付してその説明を省略する。
 図5には、本実施形態に係るガスタービンに導かれるスイープ空気の掃気流体冷却手段の概略構成図が示されている。
 掃気流体冷却手段は、拡散用燃料供給管(燃料兼掃気流体供給路)3bに接続されているスイープ空気供給管(掃気流体供給路)31に圧縮した空気(掃気流体)をスイープ空気として供給する外部別置きの空気圧縮機(圧縮機)32である。スイープ空気供給管31は、拡散用燃料供給管3bと空気圧縮機32との間を接続している。スイープ空気供給管31には、空気圧縮機32から供給されたスイープ空気の拡散用燃料供給管3bへの供給・遮断を行う開閉弁33が設けられている。
 空気圧縮機32は、吸引した大気を圧縮してスイープ空気としてスイープ空気供給管31へと吐出するものであり、例えば、2台設けられている。空気圧縮機32から吐出されたスイープ空気は、拡散用燃料供給管3bへ導かれる。このスイープ空気の温度は、高くても60°C程度であり、拡散パイロット燃料ガスの主成分であるメタンの自己着火温度よりも十分に低い値である。
 以上述べたように、本実施形態に係るガスタービンおよびこれを備えたガスタービンコンバインドプラントによれば、以下の効果を奏する。
 空気圧縮機32を掃気流体冷却手段として用いることとした。これにより、空気圧縮機32から供給された空気(60°C程度)をスイープ空気(掃気流体)として拡散用燃料供給管(燃料兼掃気流体供給路)3bへと導くことができる。したがって、拡散用燃料供給管3bへと拡散パイロット燃料ガス(燃料)の主成分であるメタンの自己着火温度(約445℃)未満のスイープ空気を導くことができる。
[第3実施形態]
 本実施形態は、掃気流体冷却手段として空気圧縮機およびTCAクーラを用いる点で、第1実施形態と相違しその他は同様である。したがって、同一の構成については、同一の符号を付してその説明を省略する。
 図6には、本実施形態に係るガスタービンに導かれるスイープ空気の掃気流体冷却手段の概略構成図を示している。
 掃気流体冷却手段は、スイープ空気供給管(掃気流体供給路)41上に設けられて、空気(冷却媒体)と、ガスタービンの車室45から抽気されたスイープ空気(掃気流体)とが熱交換するTCAクーラ(ガスタービン冷却空気冷却器)42と、TCAクーラ42によって冷却されたスイープ空気を圧縮する空気圧縮機43と、を備えている。スイープ空気供給管41に設けられている空気圧縮機43の下流には、スイープ空気の拡散用燃料供給管(燃料兼掃気流体供給路)3bへの供給・遮断を行う開閉弁44が設けられている。
 TCAクーラ42(熱交換手段)は、車室45から抽気された高温(約500℃)の空気を、冷却媒体である空気と熱交換するものである。これによって、車室45から抽気された約500℃の空気は、例えば約200℃に冷却されてTCAクーラ42から導出される。TCAクーラ42において空気と熱交換して約200℃に冷却された抽気された空気の一部は、スイープ空気としてスイープ空気供給管41から空気圧縮機43へと導かれる。また、残りの抽気された空気は、ガスタービンのタービン軸(図示せず)やタービン翼(図示せず)の冷却に用いられる。
 空気圧縮機43は、TCAクーラ42によって約200℃に冷却されたスイープ空気を空気圧縮機43の下流側のスイープ空気供給管41へと供給する。空気圧縮機43は、例えば1台設けられている。空気圧縮機43によって供給されたスイープ空気は、図示しないドレンセパレータを通過することによってスイープ空気中に含まれているドレンが除去される。スイープ空気中から除去されたドレンは、スイープ空気供給管41上に設けられているドレンバルブ46からスイープ空気供給管41外へと排出される。
 以上述べたように、本実施形態に係るガスタービンおよびこれを備えたガスタービンコンバインドプラントによれば、以下の効果を奏する。
 掃気流体冷却手段としてTCAクーラ(熱交換手段、ガスタービン冷却空気冷却器)42を用いて、ガスタービンの車室45から抽気した高温(例えば約500℃)の空気を空気(冷却媒体)と熱交換させることとした。そのため、TCAクーラ42によって冷却された(約200℃)空気をスイープ空気(掃気流体)としてスイープ空気供給管(掃気流体供給路)41から拡散用燃料供給管(燃料兼掃気流体供給路)3bへと導くことができる。したがって、拡散用燃料供給管3bへと導くスイープ空気の温度を拡散パイロット燃料ガス(燃料)の主成分であるメタンの自己着火温度(約445℃)未満の約400℃に冷却することができる。
 TCAクーラ42によって冷却された空気(流体)の一部をスイープ空気として用いることとした。そのため、スイープ空気を冷却するための熱交換手段を別途設置する必要がなくなる。したがって、設備費を低下することができる。
 なお、本実施形態では、TCAクーラ42から導出されたスイープ空気を空気圧縮機43を介して空気圧縮機43の下流側のスイープ空気供給管41へと供給するとして説明したが、本発明はこれに限定されるものではなく、空気圧縮機43を設けないものとしても良い。
 また、TCAクーラ42の冷却媒体として空気を用いるとして説明したが、本発明はこれに限定されるものではなく、ガスタービンコンバインドプラントに設けられている排熱回収ボイラから導かれる蒸気などであっても良い。
[第4実施形態]
 本実施形態は、メインノズルおよびパイロットノズルが燃料油または燃料ガスを噴射するデュアル式である点で、第1実施形態と相違しその他は同様である。したがって、同一の構成については、同一の符号を付してその説明を省略する。
 図7には、本実施形態に係る掃気流体冷却手段を備えているガスタービンの概略構成図が示されている。
 パイロットノズル(ガスタービン用燃料ノズル)51は、燃焼器内の空気流中に燃料油(液体燃料)と燃料ガス(気体燃料)とを選択的に供給するデュアル燃料焚きパイロットノズルである。パイロットノズル51は、パイロットノズル用燃料供給管53と、複数のパイロットノズル用燃料供給管53を内含しているパイロットノズル本体54と、パイロットノズル本体54の下流側の先端部に形成されているパイロットノズル用噴射孔(噴射孔)57と、を有している。
 パイロットノズル本体54は、燃焼器内の空気の流れ方向に沿って配置されている。パイロットノズル本体54に内含されているパイロットノズル用燃料供給管53は、拡散方式において用いられる燃料を供給するものである。パイロットノズル用燃料供給管53は、ガスタービンの油焚き運転の際に燃料油(以下、「拡散パイロット燃料油」という。)が供給される拡散用燃料油供給管(燃料供給路)53aと、ガスタービンのガス焚き運転の際に燃料ガス(以下、「拡散パイロット燃料ガス」という。)が供給されて、ガスタービンの油焚き運転の際にはスイープ空気(掃気流体)が供給される拡散用燃料ガス供給管(燃料兼掃気流体供給路)53bと、を有している。
 各拡散用燃料油供給管53aまたは各拡散用燃料ガス供給管53bの下流端は、各拡散用燃料油供給管53aまたは各拡散用燃料ガス供給管53bから導かれた拡散パイロット燃料油または拡散パイロット燃料ガスを噴射する複数のパイロットノズル用噴射孔57が設けられている。拡散用燃料ガス供給管53bに連通しているパイロットノズル用噴射孔57bは、拡散用燃料油供給管53aに連通しているパイロットノズル用噴射孔57aよりも燃焼器内の空気流の下流側に設けられている。
 パイロットノズル51は、ガスタービンのガス焚き運転の際には、拡散用燃料ガス供給管53bから拡散パイロット燃料ガスを燃焼器内に噴射して燃焼する。ガスタービンが油焚き運転の際には、拡散用燃料油供給管53aから拡散パイロット燃料油を燃焼器内に噴射して燃焼する。
 メインノズル61は、燃焼器内の空気流中に液体燃料であるメイン燃料油または気体燃料であるメイン燃料ガスを供給するものである。メインノズル61は、メインノズル用燃料ガス供給管66と、メインノズル用燃料油供給管63およびメインノズル用燃料ガス供給管66を内含しているメインノズル本体64と、メインノズル用燃料油供給管63と、メインノズル本体64の下流側の先端部に形成されているメインノズル用噴射孔67と、を有している。
 メインノズル本体64は、燃焼器内の空気の流れ方向に沿って配置されている。メインノズル本体64に内含されているメインノズル用燃料油供給管63は、油焚き運転の際に予混合方式によりメイン燃料油を供給するものである。また、メインノズル本体64に内含されているメインノズル用燃料ガス供給管66は、ガス焚き運転の際に予混合方式によりメイン燃料ガスを供給するものである。
 メインノズル用燃料油供給管63の下流端は、2つに分岐してメインノズル用噴射孔67aに連通しており、空気流中にメイン燃料油を供給する。メインノズル用燃料ガス供給管66の下流端は、複数に分岐して各々メインノズル用噴射孔67bに連通しており、メイン燃料ガスを供給する。
 次に、本実施形態のガスタービンのスイープ動作について、図8に示すバルブタイミングチャートと、図9に示すフローチャートを用いて説明する。
 図8には、図7に示したガスタービンのバルブタイミングチャートが示されている。
 図8のバルブタイミングチャートに示されているA1は、スイープ空気供給管(掃気流体供給路)21に設けられている開閉弁22aの開閉状態を示し、A2は、開閉弁22bの開閉状態を示し、FCVは、拡散用燃料ガス供給管53bの上流側に設けられている燃料流量調整弁24の開閉状態を示し、PCVは、燃料圧力調整弁25の開閉状態を示し、VVは、大気開放管26aに設けられているベントバルブ26bの開閉状態を示し、SAは、スイープ動作のオン・オフ状態を示し、PGKは、ガスタービンの負荷状態に応じて拡散用燃料ガス供給管53bから噴射される拡散パイロット燃料ガスの噴射状況を示し、POKは、ガスタービンの負荷状態に応じて拡散用燃料油供給管53aから噴射される拡散パイロット燃料油の噴射状況を示し、MGYは、メインノズル用燃料ガス供給管66から噴射されるメイン燃料ガスの噴射状態を示し、MOYは、メインノズル用燃料油供給管63から噴射されるメイン燃料油の噴射状態を示している。
 ガスタービンの運転が停止している場合には、開閉弁22a、22b、燃料圧力調整弁25、燃料流量調整弁24、ベントバルブ26bは、閉状態であり、拡散パイロット燃料ガス、拡散パイロット燃料油、メイン燃料ガスおよびメイン燃料油の噴射は、停止されている。
 ガスタービンがガス焚き運転の場合には、燃料圧力調整弁25および燃料流量調整弁24が開状態とされ、開閉弁22a、22bおよびベントバルブ26bは、閉状態とされる。燃料圧力調整弁25および燃料流量調整弁24が開状態とされるため、拡散用燃料ガス供給管53bには、拡散パイロット燃料ガスが供給される。
 拡散用燃料ガス供給管53bに供給された拡散パイロット燃料ガスは、拡散用燃料ガス供給管53bに連通しているパイロットノズル用噴射孔57bから燃焼器内の空気流中に噴射されて燃焼する。また、メインノズル用燃料ガス供給管66にもメイン燃料ガスが供給されて、拡散パイロット燃料ガスが燃焼した火炎を種火として燃焼する。なお、拡散パイロット燃料油およびメイン燃料油の噴射は、停止されている。
 ガスタービンが油焚き運転の場合には、スイープ空気供給管21に設けられている開閉弁22a、22bおよびベントバルブ26bが開状態とされる。開閉弁22a、22bが開状態とされるため、ガスタービンの車室から抽気されてスイープ空気供給管21に導かれたスイープ空気を拡散用燃料ガス供給管53bへと導いて、拡散用燃料ガス供給管53bのスイープを開始(オン)することとなる。また、燃料圧力調整弁25および燃料流量調整弁24は、閉状態とされる。そのため、拡散用燃料ガス供給管53bからの拡散パイロット燃料ガスの噴射が停止される。
 スイープ空気供給管21から拡散用燃料ガス供給管53bへと導かれた冷却された(例えば約400℃)スイープ空気は、拡散用燃料ガス供給管53bからパイロットノズル用噴射孔57bへと導かれる。拡散用燃料ガス供給管53bには、冷却されたスイープ空気が導かれるため、残存している拡散パイロット燃料ガスの主成分であるメタンが自己着火するのを防止するとともに、燃焼器内の火炎や高温の燃焼ガスがパイロットノズル用噴射孔57bから拡散用燃料ガス供給管53bへと逆流することを防止することができる。なお、拡散パイロット燃料ガスおよびメイン燃料ガスの噴射は、停止とされている。
 ガスタービンがガス焚き運転になった場合には、燃料圧力調整弁25および燃料流量調整弁24が開状態とされ、開閉弁22a、22bおよびベントバルブ26bが閉状態とされる。これにより、拡散用燃料ガス供給管53bには、拡散パイロット燃料ガスが供給されてパイロットノズル用噴射孔57bから燃焼器内に噴射される。また、メインノズル用燃料ガス供給管66には、メイン燃料ガスが供給されてメインノズル用噴射孔67bから燃焼器内に噴射される。なお、拡散パイロット燃料油およびメイン燃料油の噴射は、停止とされている。
 図8に示したバルブタイミングチャート中のスイープ動作に関するフローチャートについて図9を用いて説明する。
 拡散用燃料ガス供給管53bのスイープ運転動作を開始する(ステップS11)。スイープ運転動作が開始されると、ガスタービンが油焚き運転かガス焚き運転かを判定する(ステップS12)。ステップS12において、ガスタービンが油焚き運転であると判定された場合には、拡散パイロット燃料ガスおよびメイン燃料ガスの噴射を停止状態(オフ)にし、拡散パイロット燃料油およびメイン燃料油を噴射状態(オン)にする(ステップS13)。
 ステップS13において、拡散パイロット燃料ガス、メイン燃料ガス、拡散パイロット燃料油およびメイン燃料油の噴射状態が設定された後、大気開放管26aに設けられているベントバルブ26bが開状態とされる(ステップS14)。その後、スイープ空気供給管21に設けられている開閉弁22a、22bが開状態とされて、拡散用燃料ガス供給管53bに冷却したスイープ空気が導かれることとなる。これにより、拡散用燃料ガス供給管53bのスイープ動作が開始(オン)される(ステップS15)。
 ステップS12において、ガスタービンがガス焚き運転であると判定された場合には、噴射される拡散パイロット燃料油およびメイン燃料油を停止状態(オフ)にし、噴射される拡散パイロット燃料ガスおよびメイン燃料ガスを噴射状態(オン)にし(ステップS16)、拡散用燃料ガス供給管53bをスイープすることなくスイープ運転動作は終了する(ステップS17)
 以上述べたように、本実施形態に係るガスタービンおよびこれを備えたガスタービンコンバインドプラントによれば、以下の効果を奏する。
 拡散方式によって燃焼する拡散用燃料ガス供給管(燃料兼掃気流体供給路)53bには、冷却フィン(掃気流体冷却手段)23によって拡散パイロット燃料ガス(気体燃料)の主成分であるメタンの自己着火温度(約450℃)未満の約440℃に冷却されたスイープ空気(掃気流体)をスイープ空気供給管(掃気流体供給路)21から導くこととした。このように、ガスタービンの油焚き運転(液体燃料焚き運転)の場合に、上記自己着火温度未満に冷却されたスイープ空気をスイープ空気供給管21に導くことにより、拡散用燃料ガス供給管53b内に残存している拡散パイロット燃料ガスの主成分であるメタンによる自己着火を防止するとともに、パイロットノズル(ガスタービン用燃料ノズル)51が焼損することを防止することができる。したがって、ガスタービンの健全性を維持することができる。
[第5実施形態]
 本実施形態は、メインノズルがスイープされる点で、第1実施形態と相違しその他は同様である。したがって、同一の構成については、同一の符号を付してその説明を省略する。
 図10には、本実施形態に係る掃気流体冷却手段を備えているガスタービンの概略構成図が示されている。図11には、図10に示すガスタービンの燃焼器の縦断面概略構成図が示されている。
 図11に示すように、ガスタービンに設けられている燃焼器90には、パイロットノズル71と、パイロットノズル71の外周に複数(例えば、8本)配置されているメインノズル(ガスタービン用燃料ノズル)81と、が設けられている。8本からなるメインノズル81は、選択的にメイン燃料ガス(燃料)の噴射の停止・開始が行われるステージング方式である。
 図10に示すように、パイロットノズル71に設けられているパイロットノズル用燃料供給管73は、拡散方式において用いられて燃料ガス(以下、「パイロット燃料ガス」という。)が供給される。パイロットノズル用燃料供給管73に供給されたパイロット燃料ガスは、パイロットノズル用燃料供給管73の下流側に設けられているパイロットノズル用噴射孔77から噴射される。
 メインノズル81は、燃焼器90(図11参照)内の空気流中に燃料であるメイン燃料ガス(気体燃料)を予混合方式において供給するものである。メインノズル81は、メインノズル用燃料供給管(燃料兼掃気流体供給路)83と、メインノズル用燃料供給管83を内含して、燃焼器90内の空気の流れ方向に沿って配置されているメインノズル本体84と、メインノズル本体84の下流側に形成されているメインノズル用噴射孔87(噴射孔)と、を有している。
 メインノズル用燃料供給管83の下流端は、複数に分岐しており、メインノズル用燃料供給管83から導かれたメイン燃料ガスを噴射する複数のメインノズル用噴射孔87が設けられている。分岐したメインノズル用燃料供給管83に連通しているメインノズル用噴射孔87は、パイロットノズル71に設けられているパイロットノズル用噴射孔77よりも燃焼器90内の空気流の上流側に設けられている。メインノズル用燃料供給管83から空気流中に噴射されたメイン燃料ガスは、パイロットノズル71によって生成された火炎を種火として燃焼する。
 メインノズル用燃料供給管83には、ガスタービンの車室(図示せず)から抽気された高温の空気(例えば、約500℃)をスイープ空気(掃気流体)として導くスイープ空気供給管21が接続されている。スイープ空気供給管21には、2つの開閉弁22が設けられている。2つの開閉弁22a、22bの間のスイープ空気供給管21は、その外周に複数の冷却フィン(掃気流体冷却手段)23を有している。このスイープ空気供給管21に設けられている複数の冷却フィン23は、スイープ空気供給管21に導かれた高温のスイープ空気の熱を放熱する。これら冷却フィン23によって、スイープ空気供給管21内を通過する高温のスイープ空気が冷却されることとなる。
 メインノズル用燃料供給管83の上流側には、メインノズル用燃料供給管83に供給されるメイン燃料ガスの流量を制御する燃料流量調整弁24と、メイン燃料ガスの圧力を制御する燃料圧力調整弁25と、燃料流量調整弁24と燃料圧力調整弁25との間に設けられて燃料流量調整弁24と燃料圧力調整弁25との間に導かれたメインノズル用燃料供給管83からのスイープ空気を大気に開放する大気開放手段26と、が設けられている。
 次に、本実施形態のガスタービンのスイープ動作について、図12に示すバルブタイミングチャートと、図13に示すフローチャートを用いて説明する。
 図12には、図10および図11に示したガスタービンのバルブタイミングチャートが示されている。
 図12のバルブタイミングチャートに示されているA1は、スイープ空気供給管21に設けられている開閉弁22aの開閉状態を示し、A2は、開閉弁22bの開閉状態を示し、FCVは、メインノズル用燃料供給管83の上流側に設けられている燃料流量調整弁24の開閉状態を示し、PCVは、燃料圧力調整弁25の開閉状態を示し、VVは、大気開放管26aに設けられているベントバルブ26bの開閉状態を示し、SAは、スイープ動作のオン・オフ状態を示し、PGKは、パイロットノズル71から噴射されるパイロット燃料ガスの噴射状況を示し、MGYは、ガスタービンの負荷状態に応じてメインノズル81から噴射されるメイン燃料ガスの噴射状態を示している。
 ここで、図12に示すA1、A2、FCV、PCV、VV、SA、MGYに付されているjは、選択的にメインノズル81からメイン燃料ガスを噴射するステージング方式において、ステージングが行われた場合にメイン燃料ガスの噴射の停止・開始が行われるメインノズル81jを示しており、同様に付されているiは、ステージングが行われた場合であってもメイン燃料ガスの噴射を停止しないメインノズル81iであることを示している。
 ステージングが行われた場合にメイン燃料ガスの噴射を停止するメインノズル81としては、図10においては、図面上方のメインノズル81jを示し、図11においては、図面右側の、例えば3本のメインノズル(白抜きにバツ印)81jを示す。また、ステージングが行われた場合であってもメイン燃料ガスの噴射を停止しないメインノズル81としては、図10においては、図面下方のメインノズル81iを示し、図11においては、図面左側の、例えば5本のメインノズル81i(白抜き)を示す。
 ガスタービンの運転が停止している場合には、全スイープ空気供給管21に設けられている開閉弁22ai、22aj、22bi、22bj、燃料圧力調整弁25i、25j、燃料流量調整弁24i、24jおよびベントバルブ26bi、26bjは、閉状態であり、パイロットノズル71から噴射されるパイロット燃料ガスおよび各メインノズル81i、81jから噴射されるメイン燃料ガスの噴射は、停止されている。
 ガスタービンが着火して運転して全燃状態の場合には、燃料圧力調整弁25i、25jおよび燃料流量調整弁24i、24jが開状態とされ、開閉弁22ai、22aj、22bi、22bjおよびベントバルブ26bi、26bjは、閉状態とされる。燃料圧力調整弁25i、25jおよび燃料流量調整弁24i、24jが開状態とされるため、全メインノズル81i、81jからメイン燃料ガスが噴射されて燃焼する。この場合には、パイロットノズル71からパイロット燃料ガスが噴射されて各メインノズル81i、81jの種火となる。
 ガスタービンがステージング運転される場合には、メインノズル81jからのメイン燃料ガスの噴射が停止され、メインノズル81iからのメイン燃料ガスの噴射とパイロットノズル71からのパイロット燃料との噴射による燃焼となる。
 この場合には、メインノズル81jの燃料圧力調整弁25jおよび燃料流量調整弁24jが閉状態とされて、メイン燃料ガスの供給が停止する。また、メインノズル81jの開閉弁22aj、22bjおよびベントバルブ26bjが開状態とされる。開閉弁22aj、22bjが開状態とされるため、ガスタービンの車室から抽気されてメインノズル81jに接続されているスイープ空気供給管21に導かれたスイープ空気をメインノズル81jのメインノズル用燃料供給管83へと導いて、メインノズル用燃料供給管83のスイープを開始(オン)することとなる。
 一方、メインノズル81iの燃料圧力調整弁25iおよび燃料流量調整弁24iは、開状態とされて、メインノズル81iから噴射されるメイン燃料ガスは噴射状態とされる。また、メインノズル81iの開閉弁22ai、22biおよびベントバルブ26biが閉状態とされるため、メインノズル81iのメインノズル用燃料供給管83には、スイープ空気が導かれない。
 これらのように、メインノズル81jからのメイン燃料ガスの噴射を停止してメインノズル81jにスイープ空気を導き、メインノズル81iからのメイン燃料ガスの噴射を行うことによって、ガスタービンの低負荷運転時におけるNOx(窒素酸化物)の排出量の降下を図るとともに、メインノズル81jが焼損することを防止することができる。
 ガスタービンがステージング運転ではなくなった場合には、燃料圧力調整弁25i、25jおよび燃料流量調整弁24i、24jが開状態とされ、開閉弁22ai、22aj、22bi、22bjおよびベントバルブ26bi、26bjが、閉状態とされる。パイロットノズル71のパイロットノズル用燃料供給管73からは、パイロット燃料ガスが燃焼器90内に噴射される。また、燃料圧力調整弁25i、25jおよび燃料流量調整弁24i、24jが開状態とされるため、各メインノズル81i、81jのメインノズル用燃料供給管83からメイン燃料ガスが噴射される。
 図12に示したバルブタイミングチャート中のスイープ動作に関するフローチャートについて図13を用いて説明する。
 メインノズル81jのスイープ運転動作を開始する(ステップS31)。スイープ運転動作が開始されると、ガスタービンがステージング運転であるかを判定する(ステップS32)。ステップS32において、ガスタービンがステージング運転であると判定された場合には、パイロットノズル71から噴射するパイロット燃料ガスを噴射状態(オン)にし、メインノズル81jから噴射されるメイン燃料ガスを停止状態(オフ)にし、メインノズル81iから噴射されるメイン燃料ガスを噴射状態(オン)にする(ステップS33)。
 ステップS33において、パイロットノズル71、メインノズル81jおよびメインノズル81iの噴射状態が設定された後、メインノズル81jのベントバルブ26bjが開状態とされる(ステップS34)。その後、メインノズル81jの開閉弁22aj、22bjが開状態とされて、メインノズル81jのメインノズル用燃料供給管83に冷却されたスイープ空気が導かれることとなる。これにより、メインノズル81jのメインノズル用燃料供給管83のスイープ動作が開始(オン)される(ステップS35)。
 ステップS32において、ガスタービンがステージング運転ではないと判定された場合には、パイロットノズル71から噴射されるパイロット燃料ガスおよび全メインノズル81i、81jから噴射されるメイン燃料ガスを噴射状態(オン)にして(ステップS36)、メインノズル81jをスイープすることなくスイープ運転動作は終了する(ステップS37)。
 以上述べたように、本実施形態に係るガスタービンおよびこれを備えたガスタービンコンバインドプラントによれば、以下の効果を奏する。
 ステージング方式によるガスタービンの運転が行われる場合に、メイン燃料ガス(燃料)の噴射を停止したメインノズル(ガスタービン用燃料ノズル)81jのメインノズル用燃料供給管(燃料兼掃気流体供給路)83に冷却されたスイープ空気(掃気流体)を供給することとした。そのため、メイン燃料ガスの噴射を停止したメインノズル81jのメインノズル用燃料供給管83内に残存しているメイン燃料ガスの主成分であるメタンによる自己着火を防止してメインノズル81jが焼損することを防止することができる。したがって、ガスタービンの健全性を維持することができる。
[第6実施形態]
 本実施形態は、スイープ空気供給管からウォーミング配管と中抜き管(大気開放用)とが分岐している点、および冷却フィンのすぐ下流にドレン配管を有する点で、第1実施形態と相違しその他はほぼ同様である。したがって、同一の構成および負荷運転の際のスイープ動作については、同一の符号を付してその説明を省略する。
 図14には、本実施形態に係るガスタービンに導かれるスイープ空気の掃気流体冷却手段の概略構成図が示されている。
 ガスタービン(図示せず)の車室45から抽気された高温の空気(例えば、約500℃)をスイープ空気(掃気流体)として拡散用燃料供給管(燃料兼掃気流体供給路)3bへと導くスイープ空気供給管(掃気流体供給路)21には、冷却フィン(掃気流体冷却手段)23より下流側に開閉弁(掃気流体供給用開閉弁)22が2箇所設けられている。これら開閉弁22は、車室45側がスイープ空気遮断弁22bであり、拡散用燃料供給管3b側がスイープ空気供給弁22aとなっている。
 スイープ空気供給弁22aおよびスイープ空気遮断弁22bは、拡散用燃料供給管3bにスイープ空気を供給する際、すなわち、スイープ動作がオン状態の際に、全開状態とされ、スイープ動作がオフ状態の際には、全閉状態とされる。
 これらスイープ空気供給弁22aおよびスイープ空気遮断弁22bには、それらの弁開度を検知する図示しないリミットスイッチ(開度検知手段)が各々2つ設けられている。これらリミットスイッチは、各々の弁22a、22bの弁開度、すなわち全開状態であるか全閉状態であるかを検知して、後述する制御装置94へと弁開度の信号を送信するものである。
 スイープ空気遮断弁22bと車室45との間を接続しているスイープ空気供給管21には、その外周に複数の冷却フィン23が設けられている。また、冷却フィン23とスイープ空気遮断弁22bとの間からは、ウォーミング配管97およびドレン配管(掃気流体放出路)91が分岐している。さらに、スイープ空気遮断弁22bとスイープ空気供給弁22aとを接続しているスイープ空気供給管21には、中抜き管(掃気流体圧抜き路)92が分岐して接続されている。
 ウォーミング配管97は、その一端が大気開放となっているか或いはガスタービンの排気側に接続されている。ウォーミング配管97には、スイープ空気供給弁22aおよび/またはスイープ空気遮断弁22bの動きに連動して作動するスイープウォーミング弁(掃気流体排出用開閉弁)97aと、オリフィス97bとが設けられている。
 スイープウォーミング弁97aは、スイープ空気をウォーミング配管97から排出する開閉弁であり、スイープ動作がオフ状態(すなわちスイープ空気供給弁22aおよび/またはスイープ空気遮断弁22bが全閉状態)の際に全開状態とされ、スイープ動作がオン状態(すなわち、スイープ空気供給弁22aおよびスイープ空気遮断弁22bが全開状態)の際に全閉状態とされる。これによって、スイープ動作がオフ状態におけるスイープ空気供給管21内を暖めることができ、結露の発生を抑制することができるようになっている。
 オリフィス97bは、スイープウォーミング弁97aの下流側に設けられている。オリフィス97bは、ウォーミング配管97から大気に排出されるスイープ空気の流量を制限するものである。
 ドレン配管91は、その一端が鉛直下方に向けて開放されている。ドレン配管91には、スイープ空気供給弁22aおよび/またはスイープ空気遮断弁22bの動きに連動して作動するスイープドレン弁(掃気流体排出用開閉弁)91aと、オリフィス91bとが設けられている。
 スイープドレン弁91aは、スイープ空気供給管21内で生じたドレンをドレン配管91から排出する開閉弁であり、ガスタービン起動直後(定格回転数の10%回転数まで)の際に全開状態とされ、起動安定後に全閉状態とされる。これによって、スイープ空気供給管21内で生じたドレンをウォーミング配管91から外部に排出することができる。
 オリフィス91bは、スイープドレン弁91aの下流側に設けられている。オリフィス91bは、ドレン配管91からドレンとともに外部に排出されるドレンの流量を制限するものである。
 中抜き管92は、その一端が大気開放となっており、スイープ空気遮断弁22bとスイープ空気供給弁22aとの間から後述する弁異常時にスイープ空気または逆流した拡散パイロット燃料ガス(燃料)を大気に排出するものである。
 中抜き管92には、スイープ空気供給弁22aまたはスイープ空気遮断弁22b(少なくともどちらか一方)の動きに連動して作動するスイープ空気放散弁(掃気流体圧抜き用開閉弁)92aと、オリフィス92bとが設けられている。すなわち、スイープ空気放散弁92aは、後述する弁異常時にスイープ空気または逆流した拡散パイロット燃料ガスを中抜き管92から排出する開閉弁であり、スイープ動作がオフ状態の際に全開状態とされ、スイープ動作がオン状態の際に全閉状態とされる。
 オリフィス92bは、スイープ空気放散弁92aの下流側に設けられている。オリフィス92bは、スイープ空気供給弁22aまたはスイープ空気遮断弁22bの異常時(完全に閉状態にならない場合など)に中抜き管92の開放端から大気に放出される流体の流量を制限するものである。
 冷却フィン23よりも下流側であって、スイープ空気遮断弁22bとウォーミング配管91との間を接続しているスイープ空気供給管21内には、温度センサ(温度検知手段)93が設けられている。温度センサ93は、複数の冷却フィン23の下流のスイープ空気の温度を検知して、制御装置94へと信号を送信するものである。
 制御装置94は、ガスタービンの運転負荷を降下する自動負荷降下機能(負荷降下機能)と、ガスタービンの運転を停止する自動停止機能(緊急停止機能)とを有している。また、制御装置94は、スイープ空気供給弁22a、スイープ空気遮断弁22b、燃料流量調整弁24、燃料圧力調整弁25、スイープウォーミング弁97a、スイープドレン弁91aおよびスイープ空気放散弁92aの弁開度制御を行う。
〔動作説明〕
 このようなガスタービンの運転起動の際には、起動前にスイープ空気供給管21に設けられているスイープ空気供給弁22a、スイープ空気遮断弁22b、拡散用燃料供給管3bの上流側に設けられている燃料圧力調整弁25および燃料流量調整弁24が全閉状態であり、拡散用燃料供給管3bから噴射される拡散パイロット燃料ガス、予混合用燃料供給管3aから噴射される予混合パイロット燃料ガスおよびメインノズル11から噴射されるメイン燃料ガスの噴射が停止であること、並びにスイープウォーミング弁97a、スイープドレン弁91aおよびスイープ空気放散弁92aが全開状態であることが確認される。
〔起動〕
 このような状態下で、ガスタービンを起動する。ここで、ガスタービンの運転起動の際には、車室45からスイープ空気供給管21に流動するスイープ空気の温度が十分に上昇していない。このような状態で車室45から抽気されたスイープ空気を複数の冷却フィン23によって冷却した場合には、スイープ空気が凝縮してドレンを生じることがある。そこで、ドレン配管91に設けられているスイープドレン弁91aを全開状態にすることにより、スイープ空気中のドレンをドレン配管91の開放端から排出することができる。また、スイープウォーミング弁97aが開いていることにより、スイープ空気供給管21にスイープ空気が流動するため、スイープ空気供給管21の温度を十分に上昇させることができ、結露の発生を抑制することができる。
 起動したガスタービンの回転数が例えば定格回転数の10パーセント回転数までになってから所定時間経過後に、スイープドレン弁91aを全閉状態とする。その後、燃料圧力調整弁25および燃料流量調整弁24を開状態として、拡散用燃料供給管3bには、拡散パイロット燃料ガスが供給される。これによって、ガスタービンの回転数が上昇(昇速)する。
〔スイープ動作〕
 次に、ガスタービンの負荷運転の際のスイープ動作について図15および図16を用いて説明する。
 図15には、図14に示したガスタービンの負荷運転の際のバルブタイミングチャートが示されている。
 図15のバルブタイミングチャートに示されているA1は、スイープ空気供給管21に設けられているスイープ空気供給弁22aの開閉状態を示し、A2は、スイープ空気遮断弁22bの開閉状態を示し、A3は、スイープ空気放散弁92aの開閉状態を示し、FCVは、拡散用燃料ガス供給管3bの上流側に設けられている燃料流量調整弁24の開閉状態を示し、PCVは、燃料圧力調整弁25の開閉状態を示し、SAは、スイープ動作のオン・オフ状態を示し、PGKは、ガスタービンの負荷状態に応じて拡散用燃料ガス供給管3bから噴射される拡散パイロット燃料ガスの噴射状況を示し、PGYは、ガスタービンの負荷状態に応じて予混合用燃料供給管3aから噴射される予混合パイロット燃料ガスの噴射状況を示し、MGYは、メインノズル11から噴射されるメイン燃料ガスの噴射状態を示し、B1は、スイープドレン弁91aの開閉状態を示し、Wは、スイープウォーミング弁97aを示している。
 ガスタービンが低負荷運転の場合には、スイープ空気放散弁92aおよびスイープウォーミング弁97aが全開状態とされ、ガスタービンが高負荷運転の場合には、スイープ空気放散弁92aおよびスイープウォーミング弁97aが全閉状態とされ、ガスタービンが低負荷運転および高負荷運転において、スイープドレン弁91aが全閉状態とされる点を除いて、第1実施形態と同様である。
 図16には、図15に示したバルブタイミングチャート中のスイープ動作に関するフローチャートが示されている。
 本フローチャートは、第1実施形態の図4中のステップS4が無い点を除いて、図4と同様である。
〔スイープ空気冷却が不十分のときの動作〕
 次に、ガスタービンの負荷運転中であってスイープ動作がオン状態となっている際に、冷却フィン23よりも下流側に設けられている温度センサ93が、スイープ空気供給管21内を流動するスイープ空気の温度が拡散パイロット燃料ガスの自己着火温度以上の温度を検知した場合について説明する。
 スイープ空気の温度を検知した温度センサ93は、その信号を制御装置94に送信する。この信号に基づいて、制御装置94が、検知されたスイープ空気の温度が拡散パイロット燃料ガスの自己着火温度以上であるか否かを判定する。ここで、スイープ空気の温度が拡散パイロット燃料ガスの自己着火温度以上であると制御装置94が判定した場合には、制御装置94は、自動負荷降下機能(図示せず)を作動する。
 自動負荷降下機能が作動することによって、ガスタービンの運転負荷が降下する。ガスタービンの運転負荷が降下することによって、車室45から抽気されるスイープ空気の温度が下がる。この温度の低下したスイープ空気は、スイープ空気供給管21を経て拡散用燃料供給管3bへと導かれる。
 その後、運転負荷が降下したガスタービンの車室45から抽気されるスイープ空気の温度が、拡散パイロット燃料ガスの自己着火温度未満になっていないと制御装置94が判定した場合には、制御装置94が自動停止機能(図示せず)を作動する。
〔スイープ空気投入時におけるスイープ空気供給弁、スイープ空気遮断弁の異常時の動作〕
 次に、拡散用燃料ガス供給管3bへの供給が拡散パイロット燃料ガスからスイープ空気に切り替わる際に、スイープ空気供給弁22aまたはスイープ空気遮断弁22bが全開状態になっていない場合について説明する。
 通常、拡散パイロット燃料ガスからスイープ空気へ切り替えた際には、スイープ空気供給弁22aおよびスイープ空気遮断弁22bは共に全開状態とされる。
 しかし、スイープ空気供給弁22aに設けられている2つのリミットスイッチの両方から制御装置94に送信された弁開度信号により、スイープ空気供給弁22aまたはスイープ空気遮断弁22bの弁開度が全開状態ではない(異常)と制御装置94が判定した場合に、このままのスイープ空気量が不足した状態で長時間ガスタービンを運転すると、パイロットノズル1に損傷を生じる恐れがある。
 そこで、本実施形態では、スイープ空気投入時に制御装置94がスイープ空気供給弁22aまたはスイープ空気遮断弁22bの異常を判定した際には、自動負荷降下機能を作動すると共に、スイープ空気供給弁22aおよびスイープ空気遮断弁22bを全閉状態にして、スイープ空気放散弁92aを全開状態にする。これによって、ガスタービンの運転負荷を降下させて、その後にガスタービンの運転が停止されてパイロットノズル1の損傷を防止することができる。
〔スイープ空気切り時におけるスイープ空気供給弁およびスイープ空気遮断弁の異常時の動作〕
 次に、拡散用燃料供給管3bへの供給が、スイープ空気から拡散パイロット燃料ガスに切り替わる際に、スイープ空気供給弁22aおよびスイープ空気遮断弁22bが全閉状態になっていない場合について説明する。
 通常、スイープ空気から拡散パイロット燃料ガスに拡散用燃料供給管3bへの供給が切り替わる際には、スイープ空気供給弁22aおよびスイープ空気遮断弁22bが全閉状態とされると共に燃料圧力調整弁25および燃料流量調整弁24が開いて、拡散用燃料供給管3bへの拡散パイロット燃料ガスの供給が開始される。
 しかし、スイープ空気供給弁22aおよびスイープ空気遮断弁22bに各々設けられている各2個所のリミットスイッチの信号により、スイープ空気供給弁22aおよびスイープ空気遮断弁22bの弁開度が全閉状態ではない(異常)と制御装置94が判定した場合には、スイープ空気供給管21に設けられている開閉弁22a、22bによる二重遮断機能が喪失する。すなわち、拡散用燃料供給管3bに供給された拡散パイロット燃料ガスがスイープ空気供給管21から車室45に逆流する恐れがある。
 そこで、本実施形態では、スイープ空気切り時に制御装置94がスイープ空気供給弁22aおよびスイープ空気遮断弁22bの異常を判定した際には、自動停止機能を作動すると共に、スイープ空気供給弁22aおよびスイープ空気遮断弁22bを全閉状態にして、スイープ空気放散弁92aを全開状態にする。これによって、ガスタービンの運転が停止されて、ガスタービンの健全性を確保することができる。
 なお、スイープ空気放散弁92aが全開状態となるので、拡散用燃料供給管3bからスイープ空気供給管21に逆流した拡散パイロット燃料ガスを中抜き管92から排出することができる。
〔負荷遮断時の動作〕
 スイープ動作オンのときに負荷遮断が発生した際は、火炎保持のための拡散パイロット燃料を即座に投入することができない。よってこの負荷遮断時は、一定時間、予混合用燃料供給管3aに供給される予混合パイロット燃料ガスの流量が増加される。これによって、スイープ空気が供給されていた拡散用燃料供給管3bの圧抜きを行うと共に、火炎を安定させることができる。
 すなわち、予混合パイロット燃料ガスの流量を増加してから所定時間経過してから、制御装置94が予混合パイロット燃料ガスの流量を減少させると共に、拡散用燃料供給管3bの上流側に設けられている燃料流量調整弁24および燃料圧力調整弁25の弁開度を増加する。これによって、火炎を安定させた状態で拡散パイロット燃料ガスによる燃焼に切り替えることができる。
 なお、ここで、予混合パイロット燃料ガスの流量を増加させる一定時間とは、ガスタービンの回転数が静定する時間であり、例えば、60秒とされている。
 以上述べたように、本実施形態に係るガスタービンおよびこれを備えているガスタービンコンバインドプラントによれば、以下の効果を奏する。
 開閉弁(掃気流体供給用開閉弁)22を冷却フィン(掃気流体冷却手段)23の下流側のスイープ空気供給管(掃気流体供給路)21上に設けて、開閉弁22と冷却フィン23とを接続しているスイープ空気供給管21からドレン配管(掃気流体放出路)91を分岐することとした。さらに、ドレン配管91には、スイープドレン弁(掃気流体排出用開閉弁)91aを設け、ガスタービン(図示せず)を起動する際に、スイープドレン弁91aを全開状態として、開閉弁22を全閉状態とすることとした。そのため、ガスタービンを起動した際に生じるドレンをドレン配管91から排出することができる。したがって、拡散用燃料供給管(燃料兼掃気流体供給路)3bを経てパイロットノズル用噴射孔(噴射孔)7bから噴射される拡散パイロット燃料ガス(燃料)にドレンが混入することを防止することができる。
 スイープ空気供給管21上であってドレン配管91よりも下流側に、開閉弁22であるスイープ空気供給弁(掃気流体供給用開閉弁)22aおよびスイープ空気遮断弁(掃気流体供給用開閉弁)22bを2個所に設けることとした。このように、開閉弁22a、22bに冗長性をもたせることによって、開閉弁22a、22bのどちらか一方に不具合が生じた場合であっても、他方の開閉弁22a、22bにより拡散用燃料供給管3bからスイープ空気供給管21を経て車室45へと拡散パイロット燃料ガスが逆流することを防止することができる。
 また、スイープウォーミング弁97aを設けることとした。このスイープウォーミング弁97aは、スイープ動作がオフ状態の際に全開状態とされ、スイープ動作がオン状態の際に全閉状態とされる。これによって、スイープ動作がオフ状態にスイープ空気供給管21内を暖めることができ、結露の発生を抑制することができる。
 スイープ空気供給弁22aとスイープ空気遮断弁22bとの間を接続しているスイープ空気供給管21から中抜き管(掃気流体圧抜き路)92を分岐させて、中抜き管92には、スイープ空気供給弁22a(少なくともどちらか一方)に連動して作動するスイープ空気放散弁(掃気流体圧抜き用開閉弁)92aを設けることとした。これにより、スイープ空気供給弁22aの異常時に、拡散用燃料供給管3bからスイープ空気供給管21へと拡散パイロット燃料ガスが逆流した場合であっても、逆流した拡散パイロット燃料ガスを中抜き管92から排出することができる。したがって、ガスタービンを安全に運転することができる。
 スイープ空気供給弁22aおよびスイープ空気遮断弁22bには、その弁開度を検知することが可能なリミットスイッチ(開度検知手段)を設ける。さらに、拡散用燃料供給管3bにスイープ空気を供給する際に、制御装置94がスイープ空気供給弁22aまたはスイープ空気遮断弁22bの弁開度が全開状態ではない(異常である)と判定した場合には、ガスタービンの運転負荷を降下する自動負荷降下機能(負荷降下機能)を作動することとした。これによって、拡散用燃料供給管3bに導かれるスイープ空気が不足することによって、ガスタービンのパイロットノズル(ノズル)1が損傷してガスタービンの運転に支障が生じることを防止することができる。
 冷却フィン23により冷却されたスイープ空気(掃気流体)の温度を検知する温度センサ(温度検知手段)93を冷却フィン23の下流側のスイープ空気供給管21内に設けて、制御装置94が、温度センサ93が拡散パイロット燃料ガスの自己着火温度以上のスイープ空気の温度を検知した際に自動負荷降下機能(図示せず)を作動することとした。これにより、冷却フィン23の不具合等により拡散用燃料供給管3bに導かれるスイープ空気の温度が拡散パイロット燃料ガスの自己着火温度以上になった場合に、ガスタービンの運転負荷を降下してガスタービンの車室45から抽気されるスイープ空気の温度を下げることができる。これにより、温度の低下したスイープ空気を拡散用燃料供給管3bに供給することができる。したがって、ガスタービンの健全性を図ることができる。
 自動負荷降下機能が作動してガスタービンの運転負荷を降下した後であっても、温度センサ93が検知する拡散パイロット燃料ガスの温度が拡散パイロット燃料ガスの自己着火温度以上であると制御装置94が判定した場合には、制御装置94に設けられているガスタービンの運転を停止する自動停止機能(緊急停止機能)を作動することとした。
さらに、スイープ動作オンのときに負荷遮断が発生した際は、火炎保持のための拡散パイロット燃料を即座に投入することができない。よってこのような負荷遮断時に制御装置94は、スイープ空気供給弁22aおよびスイープ空気遮断弁22bを全閉状態とし、予混合用燃料供給管(燃料供給路)3aに供給される予混合パイロット燃料ガス(燃料)の流量を増加してから、燃料圧力調整弁25および燃料流量調整弁24の各弁開度を増加させることとした。これにより、予混合用燃料供給管3aから導かれる予混合パイロット燃料ガスによってガスタービンの火炎を安定させてから、拡散用燃料供給管3bに供給される拡散パイロット燃料ガスによる燃焼を行うことができる。したがって、ガスタービンの保炎性を維持することができる。
 スイープドレン弁91aおよびスイープ空気放散弁92aの下流側には、各々オリフィス91b、92bを設けることとした。そのため、拡散用燃料供給管3bにスイープ空気を供給する際にスイープドレン弁91aまたはスイープ空気放散弁92aに異常が生じて弁開度が全閉状態にならない場合であっても、各々オリフィス91b、92bによってドレン配管91または中抜き管92から大気に排出されるスイープ空気の流量を制限することができる。これにより、拡散用燃料供給管3bに導かれるスイープ空気が不足することによって、ガスタービンのパイロットノズル(ノズル)1が損傷してガスタービンの運転に支障が生じることを防止することができる。したがって、健全性を維持してガスタービンの運転を行うことができる。
[第7実施形態]
 本実施形態は、掃気流体冷却手段として水冷式の熱交換器を用いる点で、第6実施形態と相違しその他は同様である。したがって、同一の構成およびスイープ動作の流れについては、同一の符号を付してその説明を省略する。
 図17には、本実施形態に係るガスタービンに導かれるスイープ空気の掃気流体冷却手段の概略構成図が示されている。
 拡散用燃料供給管(燃料兼気体供給路)3bとガスタービン(図示せず)の車室45との間を接続しているスイープ空気供給管21(掃気流体供給路)には、水冷式の冷却器(熱交換手段)95が設けられている。
 水冷式の冷却器95は、車室45から抽気された高温(約500℃)の空気(流体)を冷却媒体である水と熱交換させるものであり、二重管方式が用いられている。この熱交換によって、車室45から抽気された約500℃の空気は、例えば約400℃に冷却されて冷却器95から導出される。冷却器95において水と熱交換して約400℃に冷却された抽気された空気は、スイープ空気(掃気流体)として冷却器95の下流側に接続されているスイープ空気供給管21へと導かれる。
 ここで、二重管方式の冷却器95を用いることによって、冷却器95を構成しているチューブ(図示せず)からの漏れが防止可能とされている。
 冷却器95の冷却媒体である水は、冷却水供給配管96から冷却器95へと供給される。冷却水供給配管96上には、電動弁である冷却水入口弁96aが設けられている。この冷却水入口弁96aは、ガスタービンが停止中には全閉状態とされて冷却器95への冷却水の供給を遮断している。これによって、ガスタービンが停止中に冷却器95内のドレンの発生を抑制している。
 また、冷却水供給配管96には、冷却水入口弁96aを迂回するようにバイパス回路96cが設けられている。このバイパス回路96c上には、バイパス弁96dが設けられている。このバイパス弁96dは、スイープ動作がオン状態中に冷却水入口弁96aに不具合が生じるなどして冷却水入口弁96aが全閉状態になった際に、冷却媒体である水を冷却器95へと導くことができるものとなっており、これによって冷却器95の沸騰を防止することが可能となっている。
 なお、冷却器95、スイープ空気供給管21の材質には、例えばステンレス鋼(SUS)が用いられる。これにより、冷却器95を通過して冷却されたスイープ空気による錆の発生を抑制することができる。
 また、スイープ空気遮断弁(掃気流体供給用開閉弁)22bと温度センサ(温度検知手段)93との間のスイープ空気供給管21上には、ウォーミング配管(掃気流体放出路)97が分岐して接続されており、スイープ空気遮断弁22bとスイープ空気供給弁22aとの間を接続しているスイープ空気供給管21上には、中抜き管(掃気流体圧抜き路)92が分岐して接続されている。
 ウォーミング配管97は、その一端が大気開放となっており、スイープ空気供給弁22aおよび/またはスイープ空気遮断弁22bの動きに連動して作動するスイープウォーミング弁(掃気流体排出用開閉弁)97aと、オリフィス97bとが設けられている。
 スイープウォーミング弁97aは、ドレン配管91に設けられているスイープドレン弁91aと同様であり、スイープ動作がオフ状態(すなわちスイープ空気供給弁22aおよび/またはスイープ空気遮断弁22bが全閉状態)の際に全開状態とされ、スイープ動作がオン状態(すなわち、スイープ空気供給弁22aおよびスイープ空気遮断弁22bが全開状態)の際に全閉状態とされる。
 また、オリフィス97bは、ウォーミング配管97から大気に排出されるスイープ空気の流量を制限するものである。
 次に、ガスタービンの負荷運転の際におけるスイープ動作について図18を用いて説明する。
 図18には、図17に示したガスタービンのバルブタイミングチャートが示されている。
 図18のバルブタイミングチャートに示されているA1、A2、A3、FCV、PCV、SA、PGK、PGY、MGY、B1、D1は、第6実施形態の図15と同様である。なお、図18中のC1は、冷却水入口弁96aの開閉状態を示している。
 ガスタービンの運転起動前には、スイープ空気供給弁22a、スイープ空気遮断弁22b、燃料圧力調整弁25、燃料流量調整弁24および冷却水入口弁96aが全閉状態であり、拡散パイロット燃料ガス、予混合パイロット燃料ガスおよびメイン燃料ガスの噴射が停止されている。また、スイープドレン弁91a、スイープ空気放散弁92aおよびスイープウォーミング弁97aは、全開状態とされている。
 このような状態からガスタービンを起動させた際には、冷却水入口弁96aの弁開度を増加させる。その後、第6実施形態と同様に燃料圧力調整弁25および燃料流量調整弁24の開閉を行う。
 ガスタービンの負荷運転中は冷却水入口弁96aが全開であり、停止中は冷却水入口弁96aが全閉であること以外は、第6実施形態と同様である。
 以上述べたように、本実施形態に係るガスタービンおよびこれを備えているガスタービンコンバインドプラントによれば、以下の効果を奏する。
 スイープ空気(掃気流体)を冷却する冷却器(熱交換手段)95の冷却媒体に水を用いることとした。そのため、空冷式の熱交換手段に比べて、効率的にスイープ空気を冷却することができる。
1 パイロットノズル(ガスタービン用燃料ノズル)
3a 予混合用燃料供給管(燃料供給路)
3b 拡散用燃料供給管(燃料兼気体供給路)
7a、7b パイロットノズル用噴射孔(噴射孔)
21 スイープ空気供給管(掃気流体供給路)
23 冷却フィン(掃気流体冷却手段、突起物)
24 燃料流量制御弁
25 燃料圧力制御弁
26 大気開放手段
28 ガスタービンエンクロージャー(ガスタービン外衣)
29a 吸込み口
30 換気ファン
31、41 スイープ空気供給管(掃気流体供給路)
32、43 空気圧縮機(圧縮機)
42 TCAクーラ(熱交換手段)
45 車室
51 パイロットノズル(ガスタービン用燃料ノズル)
53a 拡散用燃料油供給管(燃料供給路)
53b 拡散用燃料ガス供給管(燃料兼掃気流体供給路)
57 パイロットノズル用噴射孔(噴射孔)
81 メインノズル(ガスタービン用燃料ノズル)
83 メインノズル用燃料供給管(燃料兼掃気流体供給路)
87 メインノズル用噴射孔(噴射孔)
 

Claims (19)

  1.  燃料が供給される複数の燃料供給路と、燃料または前記燃料を掃気する掃気流体が供給される複数の燃料兼掃気流体供給路と、各前記燃料供給路または各前記燃料兼掃気流体供給路の下流端に設けられて、各前記燃料供給路または各前記燃料兼掃気流体供給路から導かれた前記燃料を噴射する複数の噴射孔と、を有するガスタービン用燃料ノズルと、
     前記燃料兼掃気流体供給路に接続されて前記掃気流体を導く掃気流体供給路と、
     前記掃気流体を燃料の自己着火温度未満に冷却する掃気流体冷却手段と、を備えるガスタービン。
  2.  前記掃気流体供給路は、前記燃料兼掃気流体供給路とガスタービンの車室とに接続されて、該車室内から抽気された流体を前記掃気流体として導き、
     前記掃気流体冷却手段は、前記掃気流体供給路の外周に設けられる複数の突起物である請求項1に記載のガスタービン。
  3.  複数の前記突起物は、ガスタービンを包囲するガスタービン外衣に設けられる換気ファンの吸込み口の近傍に設けられる請求項2に記載のガスタービン。
  4.  前記掃気流体供給路は、前記燃料兼掃気流体供給路とガスタービンの車室とに接続されて、該車室から抽気された流体を前記掃気流体として導き、
     前記掃気流体冷却手段は、前記掃気流体供給路上に設けられて、冷却媒体と前記掃気流体とが熱交換する熱交換手段である請求項1から請求項3のいずれかに記載のガスタービン。
  5.  前記熱交換手段は、ガスタービン冷却空気冷却器であり、
     前記掃気流体は、前記ガスタービン冷却空気冷却器により冷却された前記流体の一部である請求項4に記載のガスタービン。
  6.  前記熱交換手段は、前記冷却媒体に水を用いる水冷式である請求項4に記載のガスタービン。
  7.  前記掃気流体冷却手段は、前記掃気流体供給路に圧縮した空気を前記掃気流体として供給する圧縮機である請求項1に記載のガスタービン。
  8.  前記燃料兼掃気流体供給路の上流側には、前記燃料の流量を制御する燃料流量制御弁と、前記燃料の圧力を制御する燃料圧力制御弁と、前記燃料流量制御弁と前記燃料圧力制御弁との間に設けられて、前記燃料流量制御弁と前記燃料圧力制御弁との間に導かれた前記掃気流体を大気に放出する大気開放手段と、を有する請求項1から請求項7のいずれかに記載のガスタービン。
  9.  前記掃気流体供給路は、前記掃気流体冷却手段の下流側に掃気流体供給用開閉弁と、前記掃気流体冷却手段と前記掃気流体供給用開閉弁との間から分岐する掃気流体放出路と、を備え、
     該掃気流体放出路は、掃気流体放出用開閉弁を有し、
     ガスタービン起動の際には、前記掃気流体供給用開閉弁が全閉とされて、前記掃気流体放出用開閉弁が全開とされる請求項1から請求項8のいずれかに記載のガスタービン。
  10.  前記掃気流体供給用開閉弁は、前記掃気流体放出路より下流側に2箇所設けて、
     該掃気流体供給用開閉弁の間の前記掃気流体供給路には、掃気流体圧抜き路が分岐しており、
     該掃気流体圧抜き路は、前記掃気流体供給用開閉弁の少なくともどちらか一方の動きに連動して作動する掃気流体圧抜き用開閉弁を備え、
     該掃気流体圧抜き用開閉弁は、前記掃気流体供給用開閉弁の少なくともどちらか一方が全閉の際に全開とされる請求項9に記載のガスタービン。
  11.  前記掃気流体供給用開閉弁に設けられて、弁開度を検知する開度検知手段と、
     ガスタービンの運転負荷を降下する負荷降下機能と、ガスタービンの運転を停止する緊急停止機能と、を有する制御装置と、を備え、
     該制御装置は、前記開度検知手段が検知する弁開度に基づいて前記掃気流体供給用開閉弁が異常であると判定した場合には、前記緊急停止機能および/または前記負荷降下機能を作動する請求項9または請求項10に記載のガスタービン
  12.  前記掃気流体冷却手段の下流側に設けられて、該掃気流体冷却手段から導出される前記掃気流体の温度を検知する温度検知手段と、
     ガスタービンの運転負荷を降下する負荷降下機能を有する制御装置と、を備え、
     該制御装置は、前記温度検知手段が検知する前記掃気流体の温度が前記燃料の自己着火温度以上であると判定した場合には、前記負荷降下機能を作動する請求項1から請求項11のいずれかに記載のガスタービン。
  13.  前記掃気流体放出用開閉弁の下流側または前記掃気流体圧抜き用開閉弁の下流側には、オリフィスを設ける請求項9から請求項12のいずれかに記載のガスタービン。
  14.  前記ガスタービン用燃料ノズルは、前記燃料として気体燃料が導かれるパイロットノズルであって、前記燃料兼掃気流体供給路には、拡散方式によって燃焼する前記気体燃料が供給され、前記燃料供給路には、予混合方式によって燃焼する前記気体燃料が供給される請求項1から請求項13のいずれかに記載のガスタービン。
  15. 前記制御装置は、負荷遮断時に、前記掃気流体の供給を停止し、予混合方式の前記燃料供給路に供給される燃料の流量を増加させる請求項12に記載のガスタービン。
  16.  前記ガスタービン用燃料ノズルは、前記燃料として気体燃料または液体燃料が導かれるデュアル燃料焚きパイロットノズルであって、前記燃料兼掃気流体供給路には、拡散方式によって燃焼する前記気体燃料が、また、前記燃料供給路には、拡散方式によって燃焼する前記液体燃料が供給される請求項1から請求項8のいずれかに記載のガスタービン。
  17.  前記ガスタービン用燃料ノズルは、前記燃料として予混合方式によって燃焼する気体燃料または前記掃気流体が前記燃料兼掃気流体供給路に供給されるメインノズルであって、
     該メインノズルは、複数設けられて、ガスタービンの運転に応じて、一部の前記メインノズルに前記掃気流体が供給される請求項1から請求項15のいずれかに記載のガスタービン。
  18.  請求項1から請求項17のいずれかに記載のガスタービンを備えたガスタービンプラント。
  19.  前記ガスタービンを包囲するガスタービン外衣を備える請求項18に記載のガスタービンプラント。
PCT/JP2011/074853 2010-10-28 2011-10-27 ガスタービンおよびこれを備えたガスタービンプラント WO2012057282A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020127030359A KR101407829B1 (ko) 2010-10-28 2011-10-27 가스 터빈 및 이를 구비한 가스 터빈 플랜트
EP11836415.7A EP2634395B1 (en) 2010-10-28 2011-10-27 Gas turbine
JP2012540940A JP5571197B2 (ja) 2010-10-28 2011-10-27 ガスタービンおよびこれを備えたガスタービンプラント
US13/806,961 US9347377B2 (en) 2010-10-28 2011-10-27 Gas turbine and gas-turbine plant having the same
CN201180026513.4A CN103109059B (zh) 2010-10-28 2011-10-27 燃气轮机及具有其的燃气轮机设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010242397 2010-10-28
JP2010-242397 2010-10-28

Publications (1)

Publication Number Publication Date
WO2012057282A1 true WO2012057282A1 (ja) 2012-05-03

Family

ID=45993985

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/074853 WO2012057282A1 (ja) 2010-10-28 2011-10-27 ガスタービンおよびこれを備えたガスタービンプラント

Country Status (6)

Country Link
US (1) US9347377B2 (ja)
EP (1) EP2634395B1 (ja)
JP (1) JP5571197B2 (ja)
KR (1) KR101407829B1 (ja)
CN (1) CN103109059B (ja)
WO (1) WO2012057282A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014181859A (ja) * 2013-03-19 2014-09-29 Mitsubishi Heavy Ind Ltd ノズル及びガスタービン燃焼器、ガスタービン
JP2016109129A (ja) * 2014-12-05 2016-06-20 ゼネラル・エレクトリック・カンパニイ ガスタービンエンジン用の燃料供給システム
CN107575304A (zh) * 2017-10-24 2018-01-12 南通联科电子科技有限公司 一种燃机内腐蚀保护系统

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2551470A1 (de) * 2011-07-26 2013-01-30 Siemens Aktiengesellschaft Verfahren zum Hochfahren einer stationären Gasturbine
US9188061B2 (en) * 2011-10-24 2015-11-17 General Electric Company System for turbine combustor fuel assembly
JP6210810B2 (ja) * 2013-09-20 2017-10-11 三菱日立パワーシステムズ株式会社 デュアル燃料焚きガスタービン燃焼器
JP6177187B2 (ja) * 2014-04-30 2017-08-09 三菱日立パワーシステムズ株式会社 ガスタービン燃焼器、ガスタービン、制御装置及び制御方法
FR3030629B1 (fr) * 2014-12-23 2017-02-03 Ge Energy Products France Snc Installation et procede d'alimentation d'une chambre de combustion ayant une cavite ventilee par air chaud de purge
EP3073097B1 (en) * 2015-03-27 2019-06-12 Ansaldo Energia Switzerland AG Integrated dual fuel delivery system
KR101867060B1 (ko) 2015-05-27 2018-06-14 두산중공업 주식회사 볼텍스유도체를 포함하는 연료공급노즐.
JP6779097B2 (ja) * 2016-10-24 2020-11-04 三菱パワー株式会社 ガスタービン燃焼器及びその運転方法
AU2018307955A1 (en) * 2017-07-27 2020-02-27 Swift Fuels, Llc Aviation gasoline engine coolant injection system
EP3524799A1 (de) * 2018-02-13 2019-08-14 Siemens Aktiengesellschaft Verfahren zum betreiben einer brenneranordnung einer gasturbine
US11846568B2 (en) 2021-06-09 2023-12-19 Pratt & Whitney Canada Corp. Leak detection for pressurized fluid systems
CN113513409B (zh) * 2021-08-20 2022-12-20 中国联合重型燃气轮机技术有限公司 用于燃气轮机的吹扫系统及其控制方法
US20230220802A1 (en) * 2022-01-13 2023-07-13 General Electric Company Combustor with lean openings
CN114754378B (zh) * 2022-06-13 2022-08-19 成都中科翼能科技有限公司 一种燃气轮机燃烧器结构

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07305848A (ja) * 1994-02-10 1995-11-21 General Electric Co <Ge> 燃料ノズル・アセンブリ、ガスタービン装置及び低NOxガスタービン装置における燃焼不安定性を低減する方法
JP2002071135A (ja) * 2000-08-31 2002-03-08 General Electric Co <Ge> ガス専用ノズル燃料チップ及びガス専用ノズル燃料チップを冷却する方法
JP2004012039A (ja) * 2002-06-07 2004-01-15 Hitachi Ltd ガスタービン燃焼器
JP2004143942A (ja) 2002-10-22 2004-05-20 Kawasaki Heavy Ind Ltd ガスタービンエンジンの制御方法および制御システム
JP2004211558A (ja) * 2002-12-27 2004-07-29 Hitachi Ltd ガスタービン燃焼器及び燃料噴射ノズルとガスタービン燃焼器の燃料噴射方法
JP2005195284A (ja) 2004-01-08 2005-07-21 Mitsubishi Heavy Ind Ltd ガスタービン用燃料ノズル、ガスタービン用燃焼器、ガスタービン用燃焼器の燃焼方法
JP2007155170A (ja) * 2005-12-02 2007-06-21 Hitachi Ltd 燃料ノズル,ガスタービン燃焼器,ガスタービン燃焼器の燃料ノズル及びガスタービン燃焼器の改造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9025778D0 (en) * 1990-11-27 1991-01-09 Rolls Royce Plc Improvements in or relating to gas generators
US5277023A (en) * 1991-10-07 1994-01-11 Fuel Systems Textron, Inc. Self-sustaining fuel purging fuel injection system
US5329760A (en) 1991-10-07 1994-07-19 Fuel Systems Textron, Inc. Self-sustaining fuel purging fuel injection system
US5435126A (en) * 1994-03-14 1995-07-25 General Electric Company Fuel nozzle for a turbine having dual capability for diffusion and premix combustion and methods of operation
US5966926A (en) * 1997-05-28 1999-10-19 Capstone Turbine Corporation Liquid fuel injector purge system
EP0955457A3 (en) 1998-05-08 2002-07-17 Mitsubishi Heavy Industries, Ltd. Gas turbine fuel system
US6145318A (en) * 1998-10-22 2000-11-14 General Electric Co. Dual orifice bypass system for dual-fuel gas turbine
US6539724B2 (en) * 2001-03-30 2003-04-01 Delavan Inc Airblast fuel atomization system
US6898938B2 (en) 2003-04-24 2005-05-31 General Electric Company Differential pressure induced purging fuel injector with asymmetric cyclone
FR2871519B1 (fr) * 2004-06-10 2006-08-04 Snecma Moteurs Sa Procede et systeme de protection des injecteurs de carburant de turbine de gaz
CN101365913A (zh) 2005-11-04 2009-02-11 阿尔斯托姆科技有限公司 燃料喷管
US7721521B2 (en) 2005-11-07 2010-05-25 General Electric Company Methods and apparatus for a combustion turbine fuel recirculation system and nitrogen purge system
US20090165435A1 (en) * 2008-01-02 2009-07-02 Michal Koranek Dual fuel can combustor with automatic liquid fuel purge

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07305848A (ja) * 1994-02-10 1995-11-21 General Electric Co <Ge> 燃料ノズル・アセンブリ、ガスタービン装置及び低NOxガスタービン装置における燃焼不安定性を低減する方法
JP2002071135A (ja) * 2000-08-31 2002-03-08 General Electric Co <Ge> ガス専用ノズル燃料チップ及びガス専用ノズル燃料チップを冷却する方法
JP2004012039A (ja) * 2002-06-07 2004-01-15 Hitachi Ltd ガスタービン燃焼器
JP2004143942A (ja) 2002-10-22 2004-05-20 Kawasaki Heavy Ind Ltd ガスタービンエンジンの制御方法および制御システム
JP2004211558A (ja) * 2002-12-27 2004-07-29 Hitachi Ltd ガスタービン燃焼器及び燃料噴射ノズルとガスタービン燃焼器の燃料噴射方法
JP2005195284A (ja) 2004-01-08 2005-07-21 Mitsubishi Heavy Ind Ltd ガスタービン用燃料ノズル、ガスタービン用燃焼器、ガスタービン用燃焼器の燃焼方法
JP2007155170A (ja) * 2005-12-02 2007-06-21 Hitachi Ltd 燃料ノズル,ガスタービン燃焼器,ガスタービン燃焼器の燃料ノズル及びガスタービン燃焼器の改造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2634395A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014181859A (ja) * 2013-03-19 2014-09-29 Mitsubishi Heavy Ind Ltd ノズル及びガスタービン燃焼器、ガスタービン
JP2016109129A (ja) * 2014-12-05 2016-06-20 ゼネラル・エレクトリック・カンパニイ ガスタービンエンジン用の燃料供給システム
US10012387B2 (en) 2014-12-05 2018-07-03 General Electric Company Fuel supply system for a gas turbine engine
CN107575304A (zh) * 2017-10-24 2018-01-12 南通联科电子科技有限公司 一种燃机内腐蚀保护系统

Also Published As

Publication number Publication date
KR101407829B1 (ko) 2014-06-17
US9347377B2 (en) 2016-05-24
EP2634395B1 (en) 2016-12-07
EP2634395A4 (en) 2015-01-14
US20130091824A1 (en) 2013-04-18
JPWO2012057282A1 (ja) 2014-05-12
CN103109059B (zh) 2015-09-09
EP2634395A1 (en) 2013-09-04
CN103109059A (zh) 2013-05-15
KR20130018895A (ko) 2013-02-25
JP5571197B2 (ja) 2014-08-13

Similar Documents

Publication Publication Date Title
WO2012057282A1 (ja) ガスタービンおよびこれを備えたガスタービンプラント
RU2623336C2 (ru) Газовая турбина с регулируемой системой воздушного охлаждения
JP4979615B2 (ja) 燃焼器及び燃焼器の燃料供給方法
CN102383936B (zh) 用于热回收锅炉的系统和方法
US9759130B2 (en) Gas turbine engine with cooling system
US8684660B2 (en) Pressure and temperature actuation system
EP2888531B1 (en) Sequential combustion with dilution gas mixer
JP2015518540A (ja) 量論的egrガスタービンシステムのためのシステム及び方法
EP2957835B1 (en) Method for recirculation of exhaust gas from a combustion chamber of a combustor of a gas turbine and gas turbine for conducting said method
JP2017503967A (ja) 排気ガス再循環を用いて作動するガスタービン内の燃焼工程を制御するためのシステム及び方法
US9303562B2 (en) Methods and systems for operating gas turbine engines
JP6285807B2 (ja) ガスタービン燃焼器
JP6253066B2 (ja) 2段燃焼ガスタービンのための部分負荷co低減運転の方法およびガスタービン
US6957540B1 (en) Multi-mode complex cycle power plant
JP2001254631A (ja) 多機能付加型水噴射マニホールド及びその操作方法
CN115898648A (zh) 燃气轮机设备
US20010022075A1 (en) Gas turbine
EP3130848B1 (en) Sequential combustion arrangement with cooling gas for dilution
JP3658497B2 (ja) 石炭ガス化コンバインドサイクル発電プラント
JP2023051720A (ja) ガスタービン設備
JP2005248707A (ja) ガスタービン燃焼装置、ガスタービン燃焼装置の制御装置及び制御方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180026513.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11836415

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127030359

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012540940

Country of ref document: JP

REEP Request for entry into the european phase

Ref document number: 2011836415

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011836415

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13806961

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE